1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/decode.h> 36 #include <linux/parser.h> 37 #include <linux/bsearch.h> 38 39 #include <linux/kernel.h> 40 #include <linux/device.h> 41 #include <linux/module.h> 42 #include <linux/blk-mq.h> 43 #include <linux/fs.h> 44 #include <linux/blkdev.h> 45 #include <linux/slab.h> 46 #include <linux/idr.h> 47 #include <linux/workqueue.h> 48 49 #include "rbd_types.h" 50 51 #define RBD_DEBUG /* Activate rbd_assert() calls */ 52 53 /* 54 * The basic unit of block I/O is a sector. It is interpreted in a 55 * number of contexts in Linux (blk, bio, genhd), but the default is 56 * universally 512 bytes. These symbols are just slightly more 57 * meaningful than the bare numbers they represent. 58 */ 59 #define SECTOR_SHIFT 9 60 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 61 62 /* 63 * Increment the given counter and return its updated value. 64 * If the counter is already 0 it will not be incremented. 65 * If the counter is already at its maximum value returns 66 * -EINVAL without updating it. 67 */ 68 static int atomic_inc_return_safe(atomic_t *v) 69 { 70 unsigned int counter; 71 72 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 73 if (counter <= (unsigned int)INT_MAX) 74 return (int)counter; 75 76 atomic_dec(v); 77 78 return -EINVAL; 79 } 80 81 /* Decrement the counter. Return the resulting value, or -EINVAL */ 82 static int atomic_dec_return_safe(atomic_t *v) 83 { 84 int counter; 85 86 counter = atomic_dec_return(v); 87 if (counter >= 0) 88 return counter; 89 90 atomic_inc(v); 91 92 return -EINVAL; 93 } 94 95 #define RBD_DRV_NAME "rbd" 96 97 #define RBD_MINORS_PER_MAJOR 256 98 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 99 100 #define RBD_MAX_PARENT_CHAIN_LEN 16 101 102 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 103 #define RBD_MAX_SNAP_NAME_LEN \ 104 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 105 106 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 107 108 #define RBD_SNAP_HEAD_NAME "-" 109 110 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 111 112 /* This allows a single page to hold an image name sent by OSD */ 113 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 114 #define RBD_IMAGE_ID_LEN_MAX 64 115 116 #define RBD_OBJ_PREFIX_LEN_MAX 64 117 118 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 119 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 120 121 /* Feature bits */ 122 123 #define RBD_FEATURE_LAYERING (1<<0) 124 #define RBD_FEATURE_STRIPINGV2 (1<<1) 125 #define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2) 126 #define RBD_FEATURE_DATA_POOL (1<<7) 127 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 128 RBD_FEATURE_STRIPINGV2 | \ 129 RBD_FEATURE_EXCLUSIVE_LOCK | \ 130 RBD_FEATURE_DATA_POOL) 131 132 /* Features supported by this (client software) implementation. */ 133 134 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 135 136 /* 137 * An RBD device name will be "rbd#", where the "rbd" comes from 138 * RBD_DRV_NAME above, and # is a unique integer identifier. 139 */ 140 #define DEV_NAME_LEN 32 141 142 /* 143 * block device image metadata (in-memory version) 144 */ 145 struct rbd_image_header { 146 /* These six fields never change for a given rbd image */ 147 char *object_prefix; 148 __u8 obj_order; 149 u64 stripe_unit; 150 u64 stripe_count; 151 s64 data_pool_id; 152 u64 features; /* Might be changeable someday? */ 153 154 /* The remaining fields need to be updated occasionally */ 155 u64 image_size; 156 struct ceph_snap_context *snapc; 157 char *snap_names; /* format 1 only */ 158 u64 *snap_sizes; /* format 1 only */ 159 }; 160 161 /* 162 * An rbd image specification. 163 * 164 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 165 * identify an image. Each rbd_dev structure includes a pointer to 166 * an rbd_spec structure that encapsulates this identity. 167 * 168 * Each of the id's in an rbd_spec has an associated name. For a 169 * user-mapped image, the names are supplied and the id's associated 170 * with them are looked up. For a layered image, a parent image is 171 * defined by the tuple, and the names are looked up. 172 * 173 * An rbd_dev structure contains a parent_spec pointer which is 174 * non-null if the image it represents is a child in a layered 175 * image. This pointer will refer to the rbd_spec structure used 176 * by the parent rbd_dev for its own identity (i.e., the structure 177 * is shared between the parent and child). 178 * 179 * Since these structures are populated once, during the discovery 180 * phase of image construction, they are effectively immutable so 181 * we make no effort to synchronize access to them. 182 * 183 * Note that code herein does not assume the image name is known (it 184 * could be a null pointer). 185 */ 186 struct rbd_spec { 187 u64 pool_id; 188 const char *pool_name; 189 190 const char *image_id; 191 const char *image_name; 192 193 u64 snap_id; 194 const char *snap_name; 195 196 struct kref kref; 197 }; 198 199 /* 200 * an instance of the client. multiple devices may share an rbd client. 201 */ 202 struct rbd_client { 203 struct ceph_client *client; 204 struct kref kref; 205 struct list_head node; 206 }; 207 208 struct rbd_img_request; 209 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 210 211 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 212 213 struct rbd_obj_request; 214 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 215 216 enum obj_request_type { 217 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 218 }; 219 220 enum obj_operation_type { 221 OBJ_OP_WRITE, 222 OBJ_OP_READ, 223 OBJ_OP_DISCARD, 224 }; 225 226 enum obj_req_flags { 227 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 228 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 229 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 230 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 231 }; 232 233 struct rbd_obj_request { 234 u64 object_no; 235 u64 offset; /* object start byte */ 236 u64 length; /* bytes from offset */ 237 unsigned long flags; 238 239 /* 240 * An object request associated with an image will have its 241 * img_data flag set; a standalone object request will not. 242 * 243 * A standalone object request will have which == BAD_WHICH 244 * and a null obj_request pointer. 245 * 246 * An object request initiated in support of a layered image 247 * object (to check for its existence before a write) will 248 * have which == BAD_WHICH and a non-null obj_request pointer. 249 * 250 * Finally, an object request for rbd image data will have 251 * which != BAD_WHICH, and will have a non-null img_request 252 * pointer. The value of which will be in the range 253 * 0..(img_request->obj_request_count-1). 254 */ 255 union { 256 struct rbd_obj_request *obj_request; /* STAT op */ 257 struct { 258 struct rbd_img_request *img_request; 259 u64 img_offset; 260 /* links for img_request->obj_requests list */ 261 struct list_head links; 262 }; 263 }; 264 u32 which; /* posn image request list */ 265 266 enum obj_request_type type; 267 union { 268 struct bio *bio_list; 269 struct { 270 struct page **pages; 271 u32 page_count; 272 }; 273 }; 274 struct page **copyup_pages; 275 u32 copyup_page_count; 276 277 struct ceph_osd_request *osd_req; 278 279 u64 xferred; /* bytes transferred */ 280 int result; 281 282 rbd_obj_callback_t callback; 283 struct completion completion; 284 285 struct kref kref; 286 }; 287 288 enum img_req_flags { 289 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 290 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 291 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 292 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 293 }; 294 295 struct rbd_img_request { 296 struct rbd_device *rbd_dev; 297 u64 offset; /* starting image byte offset */ 298 u64 length; /* byte count from offset */ 299 unsigned long flags; 300 union { 301 u64 snap_id; /* for reads */ 302 struct ceph_snap_context *snapc; /* for writes */ 303 }; 304 union { 305 struct request *rq; /* block request */ 306 struct rbd_obj_request *obj_request; /* obj req initiator */ 307 }; 308 struct page **copyup_pages; 309 u32 copyup_page_count; 310 spinlock_t completion_lock;/* protects next_completion */ 311 u32 next_completion; 312 rbd_img_callback_t callback; 313 u64 xferred;/* aggregate bytes transferred */ 314 int result; /* first nonzero obj_request result */ 315 316 u32 obj_request_count; 317 struct list_head obj_requests; /* rbd_obj_request structs */ 318 319 struct kref kref; 320 }; 321 322 #define for_each_obj_request(ireq, oreq) \ 323 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 324 #define for_each_obj_request_from(ireq, oreq) \ 325 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 326 #define for_each_obj_request_safe(ireq, oreq, n) \ 327 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 328 329 enum rbd_watch_state { 330 RBD_WATCH_STATE_UNREGISTERED, 331 RBD_WATCH_STATE_REGISTERED, 332 RBD_WATCH_STATE_ERROR, 333 }; 334 335 enum rbd_lock_state { 336 RBD_LOCK_STATE_UNLOCKED, 337 RBD_LOCK_STATE_LOCKED, 338 RBD_LOCK_STATE_RELEASING, 339 }; 340 341 /* WatchNotify::ClientId */ 342 struct rbd_client_id { 343 u64 gid; 344 u64 handle; 345 }; 346 347 struct rbd_mapping { 348 u64 size; 349 u64 features; 350 bool read_only; 351 }; 352 353 /* 354 * a single device 355 */ 356 struct rbd_device { 357 int dev_id; /* blkdev unique id */ 358 359 int major; /* blkdev assigned major */ 360 int minor; 361 struct gendisk *disk; /* blkdev's gendisk and rq */ 362 363 u32 image_format; /* Either 1 or 2 */ 364 struct rbd_client *rbd_client; 365 366 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 367 368 spinlock_t lock; /* queue, flags, open_count */ 369 370 struct rbd_image_header header; 371 unsigned long flags; /* possibly lock protected */ 372 struct rbd_spec *spec; 373 struct rbd_options *opts; 374 char *config_info; /* add{,_single_major} string */ 375 376 struct ceph_object_id header_oid; 377 struct ceph_object_locator header_oloc; 378 379 struct ceph_file_layout layout; /* used for all rbd requests */ 380 381 struct mutex watch_mutex; 382 enum rbd_watch_state watch_state; 383 struct ceph_osd_linger_request *watch_handle; 384 u64 watch_cookie; 385 struct delayed_work watch_dwork; 386 387 struct rw_semaphore lock_rwsem; 388 enum rbd_lock_state lock_state; 389 struct rbd_client_id owner_cid; 390 struct work_struct acquired_lock_work; 391 struct work_struct released_lock_work; 392 struct delayed_work lock_dwork; 393 struct work_struct unlock_work; 394 wait_queue_head_t lock_waitq; 395 396 struct workqueue_struct *task_wq; 397 398 struct rbd_spec *parent_spec; 399 u64 parent_overlap; 400 atomic_t parent_ref; 401 struct rbd_device *parent; 402 403 /* Block layer tags. */ 404 struct blk_mq_tag_set tag_set; 405 406 /* protects updating the header */ 407 struct rw_semaphore header_rwsem; 408 409 struct rbd_mapping mapping; 410 411 struct list_head node; 412 413 /* sysfs related */ 414 struct device dev; 415 unsigned long open_count; /* protected by lock */ 416 }; 417 418 /* 419 * Flag bits for rbd_dev->flags: 420 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 421 * by rbd_dev->lock 422 * - BLACKLISTED is protected by rbd_dev->lock_rwsem 423 */ 424 enum rbd_dev_flags { 425 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 426 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 427 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */ 428 }; 429 430 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 431 432 static LIST_HEAD(rbd_dev_list); /* devices */ 433 static DEFINE_SPINLOCK(rbd_dev_list_lock); 434 435 static LIST_HEAD(rbd_client_list); /* clients */ 436 static DEFINE_SPINLOCK(rbd_client_list_lock); 437 438 /* Slab caches for frequently-allocated structures */ 439 440 static struct kmem_cache *rbd_img_request_cache; 441 static struct kmem_cache *rbd_obj_request_cache; 442 443 static int rbd_major; 444 static DEFINE_IDA(rbd_dev_id_ida); 445 446 static struct workqueue_struct *rbd_wq; 447 448 /* 449 * Default to false for now, as single-major requires >= 0.75 version of 450 * userspace rbd utility. 451 */ 452 static bool single_major = false; 453 module_param(single_major, bool, S_IRUGO); 454 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 455 456 static int rbd_img_request_submit(struct rbd_img_request *img_request); 457 458 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 459 size_t count); 460 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 461 size_t count); 462 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 463 size_t count); 464 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 465 size_t count); 466 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 467 static void rbd_spec_put(struct rbd_spec *spec); 468 469 static int rbd_dev_id_to_minor(int dev_id) 470 { 471 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 472 } 473 474 static int minor_to_rbd_dev_id(int minor) 475 { 476 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 477 } 478 479 static bool rbd_is_lock_supported(struct rbd_device *rbd_dev) 480 { 481 return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) && 482 rbd_dev->spec->snap_id == CEPH_NOSNAP && 483 !rbd_dev->mapping.read_only; 484 } 485 486 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 487 { 488 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 489 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 490 } 491 492 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 493 { 494 bool is_lock_owner; 495 496 down_read(&rbd_dev->lock_rwsem); 497 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 498 up_read(&rbd_dev->lock_rwsem); 499 return is_lock_owner; 500 } 501 502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 506 507 static struct attribute *rbd_bus_attrs[] = { 508 &bus_attr_add.attr, 509 &bus_attr_remove.attr, 510 &bus_attr_add_single_major.attr, 511 &bus_attr_remove_single_major.attr, 512 NULL, 513 }; 514 515 static umode_t rbd_bus_is_visible(struct kobject *kobj, 516 struct attribute *attr, int index) 517 { 518 if (!single_major && 519 (attr == &bus_attr_add_single_major.attr || 520 attr == &bus_attr_remove_single_major.attr)) 521 return 0; 522 523 return attr->mode; 524 } 525 526 static const struct attribute_group rbd_bus_group = { 527 .attrs = rbd_bus_attrs, 528 .is_visible = rbd_bus_is_visible, 529 }; 530 __ATTRIBUTE_GROUPS(rbd_bus); 531 532 static struct bus_type rbd_bus_type = { 533 .name = "rbd", 534 .bus_groups = rbd_bus_groups, 535 }; 536 537 static void rbd_root_dev_release(struct device *dev) 538 { 539 } 540 541 static struct device rbd_root_dev = { 542 .init_name = "rbd", 543 .release = rbd_root_dev_release, 544 }; 545 546 static __printf(2, 3) 547 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 548 { 549 struct va_format vaf; 550 va_list args; 551 552 va_start(args, fmt); 553 vaf.fmt = fmt; 554 vaf.va = &args; 555 556 if (!rbd_dev) 557 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 558 else if (rbd_dev->disk) 559 printk(KERN_WARNING "%s: %s: %pV\n", 560 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 561 else if (rbd_dev->spec && rbd_dev->spec->image_name) 562 printk(KERN_WARNING "%s: image %s: %pV\n", 563 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 564 else if (rbd_dev->spec && rbd_dev->spec->image_id) 565 printk(KERN_WARNING "%s: id %s: %pV\n", 566 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 567 else /* punt */ 568 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 569 RBD_DRV_NAME, rbd_dev, &vaf); 570 va_end(args); 571 } 572 573 #ifdef RBD_DEBUG 574 #define rbd_assert(expr) \ 575 if (unlikely(!(expr))) { \ 576 printk(KERN_ERR "\nAssertion failure in %s() " \ 577 "at line %d:\n\n" \ 578 "\trbd_assert(%s);\n\n", \ 579 __func__, __LINE__, #expr); \ 580 BUG(); \ 581 } 582 #else /* !RBD_DEBUG */ 583 # define rbd_assert(expr) ((void) 0) 584 #endif /* !RBD_DEBUG */ 585 586 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request); 587 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 588 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 589 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 590 591 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 592 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 593 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 594 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 595 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 596 u64 snap_id); 597 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 598 u8 *order, u64 *snap_size); 599 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 600 u64 *snap_features); 601 602 static int rbd_open(struct block_device *bdev, fmode_t mode) 603 { 604 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 605 bool removing = false; 606 607 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 608 return -EROFS; 609 610 spin_lock_irq(&rbd_dev->lock); 611 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 612 removing = true; 613 else 614 rbd_dev->open_count++; 615 spin_unlock_irq(&rbd_dev->lock); 616 if (removing) 617 return -ENOENT; 618 619 (void) get_device(&rbd_dev->dev); 620 621 return 0; 622 } 623 624 static void rbd_release(struct gendisk *disk, fmode_t mode) 625 { 626 struct rbd_device *rbd_dev = disk->private_data; 627 unsigned long open_count_before; 628 629 spin_lock_irq(&rbd_dev->lock); 630 open_count_before = rbd_dev->open_count--; 631 spin_unlock_irq(&rbd_dev->lock); 632 rbd_assert(open_count_before > 0); 633 634 put_device(&rbd_dev->dev); 635 } 636 637 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 638 { 639 int ret = 0; 640 int val; 641 bool ro; 642 bool ro_changed = false; 643 644 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 645 if (get_user(val, (int __user *)(arg))) 646 return -EFAULT; 647 648 ro = val ? true : false; 649 /* Snapshot doesn't allow to write*/ 650 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 651 return -EROFS; 652 653 spin_lock_irq(&rbd_dev->lock); 654 /* prevent others open this device */ 655 if (rbd_dev->open_count > 1) { 656 ret = -EBUSY; 657 goto out; 658 } 659 660 if (rbd_dev->mapping.read_only != ro) { 661 rbd_dev->mapping.read_only = ro; 662 ro_changed = true; 663 } 664 665 out: 666 spin_unlock_irq(&rbd_dev->lock); 667 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 668 if (ret == 0 && ro_changed) 669 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 670 671 return ret; 672 } 673 674 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 675 unsigned int cmd, unsigned long arg) 676 { 677 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 678 int ret = 0; 679 680 switch (cmd) { 681 case BLKROSET: 682 ret = rbd_ioctl_set_ro(rbd_dev, arg); 683 break; 684 default: 685 ret = -ENOTTY; 686 } 687 688 return ret; 689 } 690 691 #ifdef CONFIG_COMPAT 692 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 693 unsigned int cmd, unsigned long arg) 694 { 695 return rbd_ioctl(bdev, mode, cmd, arg); 696 } 697 #endif /* CONFIG_COMPAT */ 698 699 static const struct block_device_operations rbd_bd_ops = { 700 .owner = THIS_MODULE, 701 .open = rbd_open, 702 .release = rbd_release, 703 .ioctl = rbd_ioctl, 704 #ifdef CONFIG_COMPAT 705 .compat_ioctl = rbd_compat_ioctl, 706 #endif 707 }; 708 709 /* 710 * Initialize an rbd client instance. Success or not, this function 711 * consumes ceph_opts. Caller holds client_mutex. 712 */ 713 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 714 { 715 struct rbd_client *rbdc; 716 int ret = -ENOMEM; 717 718 dout("%s:\n", __func__); 719 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 720 if (!rbdc) 721 goto out_opt; 722 723 kref_init(&rbdc->kref); 724 INIT_LIST_HEAD(&rbdc->node); 725 726 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 727 if (IS_ERR(rbdc->client)) 728 goto out_rbdc; 729 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 730 731 ret = ceph_open_session(rbdc->client); 732 if (ret < 0) 733 goto out_client; 734 735 spin_lock(&rbd_client_list_lock); 736 list_add_tail(&rbdc->node, &rbd_client_list); 737 spin_unlock(&rbd_client_list_lock); 738 739 dout("%s: rbdc %p\n", __func__, rbdc); 740 741 return rbdc; 742 out_client: 743 ceph_destroy_client(rbdc->client); 744 out_rbdc: 745 kfree(rbdc); 746 out_opt: 747 if (ceph_opts) 748 ceph_destroy_options(ceph_opts); 749 dout("%s: error %d\n", __func__, ret); 750 751 return ERR_PTR(ret); 752 } 753 754 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 755 { 756 kref_get(&rbdc->kref); 757 758 return rbdc; 759 } 760 761 /* 762 * Find a ceph client with specific addr and configuration. If 763 * found, bump its reference count. 764 */ 765 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 766 { 767 struct rbd_client *client_node; 768 bool found = false; 769 770 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 771 return NULL; 772 773 spin_lock(&rbd_client_list_lock); 774 list_for_each_entry(client_node, &rbd_client_list, node) { 775 if (!ceph_compare_options(ceph_opts, client_node->client)) { 776 __rbd_get_client(client_node); 777 778 found = true; 779 break; 780 } 781 } 782 spin_unlock(&rbd_client_list_lock); 783 784 return found ? client_node : NULL; 785 } 786 787 /* 788 * (Per device) rbd map options 789 */ 790 enum { 791 Opt_queue_depth, 792 Opt_last_int, 793 /* int args above */ 794 Opt_last_string, 795 /* string args above */ 796 Opt_read_only, 797 Opt_read_write, 798 Opt_lock_on_read, 799 Opt_err 800 }; 801 802 static match_table_t rbd_opts_tokens = { 803 {Opt_queue_depth, "queue_depth=%d"}, 804 /* int args above */ 805 /* string args above */ 806 {Opt_read_only, "read_only"}, 807 {Opt_read_only, "ro"}, /* Alternate spelling */ 808 {Opt_read_write, "read_write"}, 809 {Opt_read_write, "rw"}, /* Alternate spelling */ 810 {Opt_lock_on_read, "lock_on_read"}, 811 {Opt_err, NULL} 812 }; 813 814 struct rbd_options { 815 int queue_depth; 816 bool read_only; 817 bool lock_on_read; 818 }; 819 820 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 821 #define RBD_READ_ONLY_DEFAULT false 822 #define RBD_LOCK_ON_READ_DEFAULT false 823 824 static int parse_rbd_opts_token(char *c, void *private) 825 { 826 struct rbd_options *rbd_opts = private; 827 substring_t argstr[MAX_OPT_ARGS]; 828 int token, intval, ret; 829 830 token = match_token(c, rbd_opts_tokens, argstr); 831 if (token < Opt_last_int) { 832 ret = match_int(&argstr[0], &intval); 833 if (ret < 0) { 834 pr_err("bad mount option arg (not int) at '%s'\n", c); 835 return ret; 836 } 837 dout("got int token %d val %d\n", token, intval); 838 } else if (token > Opt_last_int && token < Opt_last_string) { 839 dout("got string token %d val %s\n", token, argstr[0].from); 840 } else { 841 dout("got token %d\n", token); 842 } 843 844 switch (token) { 845 case Opt_queue_depth: 846 if (intval < 1) { 847 pr_err("queue_depth out of range\n"); 848 return -EINVAL; 849 } 850 rbd_opts->queue_depth = intval; 851 break; 852 case Opt_read_only: 853 rbd_opts->read_only = true; 854 break; 855 case Opt_read_write: 856 rbd_opts->read_only = false; 857 break; 858 case Opt_lock_on_read: 859 rbd_opts->lock_on_read = true; 860 break; 861 default: 862 /* libceph prints "bad option" msg */ 863 return -EINVAL; 864 } 865 866 return 0; 867 } 868 869 static char* obj_op_name(enum obj_operation_type op_type) 870 { 871 switch (op_type) { 872 case OBJ_OP_READ: 873 return "read"; 874 case OBJ_OP_WRITE: 875 return "write"; 876 case OBJ_OP_DISCARD: 877 return "discard"; 878 default: 879 return "???"; 880 } 881 } 882 883 /* 884 * Get a ceph client with specific addr and configuration, if one does 885 * not exist create it. Either way, ceph_opts is consumed by this 886 * function. 887 */ 888 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 889 { 890 struct rbd_client *rbdc; 891 892 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 893 rbdc = rbd_client_find(ceph_opts); 894 if (rbdc) /* using an existing client */ 895 ceph_destroy_options(ceph_opts); 896 else 897 rbdc = rbd_client_create(ceph_opts); 898 mutex_unlock(&client_mutex); 899 900 return rbdc; 901 } 902 903 /* 904 * Destroy ceph client 905 * 906 * Caller must hold rbd_client_list_lock. 907 */ 908 static void rbd_client_release(struct kref *kref) 909 { 910 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 911 912 dout("%s: rbdc %p\n", __func__, rbdc); 913 spin_lock(&rbd_client_list_lock); 914 list_del(&rbdc->node); 915 spin_unlock(&rbd_client_list_lock); 916 917 ceph_destroy_client(rbdc->client); 918 kfree(rbdc); 919 } 920 921 /* 922 * Drop reference to ceph client node. If it's not referenced anymore, release 923 * it. 924 */ 925 static void rbd_put_client(struct rbd_client *rbdc) 926 { 927 if (rbdc) 928 kref_put(&rbdc->kref, rbd_client_release); 929 } 930 931 static bool rbd_image_format_valid(u32 image_format) 932 { 933 return image_format == 1 || image_format == 2; 934 } 935 936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 937 { 938 size_t size; 939 u32 snap_count; 940 941 /* The header has to start with the magic rbd header text */ 942 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 943 return false; 944 945 /* The bio layer requires at least sector-sized I/O */ 946 947 if (ondisk->options.order < SECTOR_SHIFT) 948 return false; 949 950 /* If we use u64 in a few spots we may be able to loosen this */ 951 952 if (ondisk->options.order > 8 * sizeof (int) - 1) 953 return false; 954 955 /* 956 * The size of a snapshot header has to fit in a size_t, and 957 * that limits the number of snapshots. 958 */ 959 snap_count = le32_to_cpu(ondisk->snap_count); 960 size = SIZE_MAX - sizeof (struct ceph_snap_context); 961 if (snap_count > size / sizeof (__le64)) 962 return false; 963 964 /* 965 * Not only that, but the size of the entire the snapshot 966 * header must also be representable in a size_t. 967 */ 968 size -= snap_count * sizeof (__le64); 969 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 970 return false; 971 972 return true; 973 } 974 975 /* 976 * returns the size of an object in the image 977 */ 978 static u32 rbd_obj_bytes(struct rbd_image_header *header) 979 { 980 return 1U << header->obj_order; 981 } 982 983 static void rbd_init_layout(struct rbd_device *rbd_dev) 984 { 985 if (rbd_dev->header.stripe_unit == 0 || 986 rbd_dev->header.stripe_count == 0) { 987 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 988 rbd_dev->header.stripe_count = 1; 989 } 990 991 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 992 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 993 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 994 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 995 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 996 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 997 } 998 999 /* 1000 * Fill an rbd image header with information from the given format 1 1001 * on-disk header. 1002 */ 1003 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1004 struct rbd_image_header_ondisk *ondisk) 1005 { 1006 struct rbd_image_header *header = &rbd_dev->header; 1007 bool first_time = header->object_prefix == NULL; 1008 struct ceph_snap_context *snapc; 1009 char *object_prefix = NULL; 1010 char *snap_names = NULL; 1011 u64 *snap_sizes = NULL; 1012 u32 snap_count; 1013 int ret = -ENOMEM; 1014 u32 i; 1015 1016 /* Allocate this now to avoid having to handle failure below */ 1017 1018 if (first_time) { 1019 object_prefix = kstrndup(ondisk->object_prefix, 1020 sizeof(ondisk->object_prefix), 1021 GFP_KERNEL); 1022 if (!object_prefix) 1023 return -ENOMEM; 1024 } 1025 1026 /* Allocate the snapshot context and fill it in */ 1027 1028 snap_count = le32_to_cpu(ondisk->snap_count); 1029 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1030 if (!snapc) 1031 goto out_err; 1032 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1033 if (snap_count) { 1034 struct rbd_image_snap_ondisk *snaps; 1035 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1036 1037 /* We'll keep a copy of the snapshot names... */ 1038 1039 if (snap_names_len > (u64)SIZE_MAX) 1040 goto out_2big; 1041 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1042 if (!snap_names) 1043 goto out_err; 1044 1045 /* ...as well as the array of their sizes. */ 1046 snap_sizes = kmalloc_array(snap_count, 1047 sizeof(*header->snap_sizes), 1048 GFP_KERNEL); 1049 if (!snap_sizes) 1050 goto out_err; 1051 1052 /* 1053 * Copy the names, and fill in each snapshot's id 1054 * and size. 1055 * 1056 * Note that rbd_dev_v1_header_info() guarantees the 1057 * ondisk buffer we're working with has 1058 * snap_names_len bytes beyond the end of the 1059 * snapshot id array, this memcpy() is safe. 1060 */ 1061 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1062 snaps = ondisk->snaps; 1063 for (i = 0; i < snap_count; i++) { 1064 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1065 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1066 } 1067 } 1068 1069 /* We won't fail any more, fill in the header */ 1070 1071 if (first_time) { 1072 header->object_prefix = object_prefix; 1073 header->obj_order = ondisk->options.order; 1074 rbd_init_layout(rbd_dev); 1075 } else { 1076 ceph_put_snap_context(header->snapc); 1077 kfree(header->snap_names); 1078 kfree(header->snap_sizes); 1079 } 1080 1081 /* The remaining fields always get updated (when we refresh) */ 1082 1083 header->image_size = le64_to_cpu(ondisk->image_size); 1084 header->snapc = snapc; 1085 header->snap_names = snap_names; 1086 header->snap_sizes = snap_sizes; 1087 1088 return 0; 1089 out_2big: 1090 ret = -EIO; 1091 out_err: 1092 kfree(snap_sizes); 1093 kfree(snap_names); 1094 ceph_put_snap_context(snapc); 1095 kfree(object_prefix); 1096 1097 return ret; 1098 } 1099 1100 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1101 { 1102 const char *snap_name; 1103 1104 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1105 1106 /* Skip over names until we find the one we are looking for */ 1107 1108 snap_name = rbd_dev->header.snap_names; 1109 while (which--) 1110 snap_name += strlen(snap_name) + 1; 1111 1112 return kstrdup(snap_name, GFP_KERNEL); 1113 } 1114 1115 /* 1116 * Snapshot id comparison function for use with qsort()/bsearch(). 1117 * Note that result is for snapshots in *descending* order. 1118 */ 1119 static int snapid_compare_reverse(const void *s1, const void *s2) 1120 { 1121 u64 snap_id1 = *(u64 *)s1; 1122 u64 snap_id2 = *(u64 *)s2; 1123 1124 if (snap_id1 < snap_id2) 1125 return 1; 1126 return snap_id1 == snap_id2 ? 0 : -1; 1127 } 1128 1129 /* 1130 * Search a snapshot context to see if the given snapshot id is 1131 * present. 1132 * 1133 * Returns the position of the snapshot id in the array if it's found, 1134 * or BAD_SNAP_INDEX otherwise. 1135 * 1136 * Note: The snapshot array is in kept sorted (by the osd) in 1137 * reverse order, highest snapshot id first. 1138 */ 1139 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1140 { 1141 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1142 u64 *found; 1143 1144 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1145 sizeof (snap_id), snapid_compare_reverse); 1146 1147 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1148 } 1149 1150 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1151 u64 snap_id) 1152 { 1153 u32 which; 1154 const char *snap_name; 1155 1156 which = rbd_dev_snap_index(rbd_dev, snap_id); 1157 if (which == BAD_SNAP_INDEX) 1158 return ERR_PTR(-ENOENT); 1159 1160 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1161 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1162 } 1163 1164 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1165 { 1166 if (snap_id == CEPH_NOSNAP) 1167 return RBD_SNAP_HEAD_NAME; 1168 1169 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1170 if (rbd_dev->image_format == 1) 1171 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1172 1173 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1174 } 1175 1176 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1177 u64 *snap_size) 1178 { 1179 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1180 if (snap_id == CEPH_NOSNAP) { 1181 *snap_size = rbd_dev->header.image_size; 1182 } else if (rbd_dev->image_format == 1) { 1183 u32 which; 1184 1185 which = rbd_dev_snap_index(rbd_dev, snap_id); 1186 if (which == BAD_SNAP_INDEX) 1187 return -ENOENT; 1188 1189 *snap_size = rbd_dev->header.snap_sizes[which]; 1190 } else { 1191 u64 size = 0; 1192 int ret; 1193 1194 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1195 if (ret) 1196 return ret; 1197 1198 *snap_size = size; 1199 } 1200 return 0; 1201 } 1202 1203 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1204 u64 *snap_features) 1205 { 1206 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1207 if (snap_id == CEPH_NOSNAP) { 1208 *snap_features = rbd_dev->header.features; 1209 } else if (rbd_dev->image_format == 1) { 1210 *snap_features = 0; /* No features for format 1 */ 1211 } else { 1212 u64 features = 0; 1213 int ret; 1214 1215 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1216 if (ret) 1217 return ret; 1218 1219 *snap_features = features; 1220 } 1221 return 0; 1222 } 1223 1224 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1225 { 1226 u64 snap_id = rbd_dev->spec->snap_id; 1227 u64 size = 0; 1228 u64 features = 0; 1229 int ret; 1230 1231 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1232 if (ret) 1233 return ret; 1234 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1235 if (ret) 1236 return ret; 1237 1238 rbd_dev->mapping.size = size; 1239 rbd_dev->mapping.features = features; 1240 1241 return 0; 1242 } 1243 1244 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1245 { 1246 rbd_dev->mapping.size = 0; 1247 rbd_dev->mapping.features = 0; 1248 } 1249 1250 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1251 { 1252 u64 segment_size = rbd_obj_bytes(&rbd_dev->header); 1253 1254 return offset & (segment_size - 1); 1255 } 1256 1257 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1258 u64 offset, u64 length) 1259 { 1260 u64 segment_size = rbd_obj_bytes(&rbd_dev->header); 1261 1262 offset &= segment_size - 1; 1263 1264 rbd_assert(length <= U64_MAX - offset); 1265 if (offset + length > segment_size) 1266 length = segment_size - offset; 1267 1268 return length; 1269 } 1270 1271 /* 1272 * bio helpers 1273 */ 1274 1275 static void bio_chain_put(struct bio *chain) 1276 { 1277 struct bio *tmp; 1278 1279 while (chain) { 1280 tmp = chain; 1281 chain = chain->bi_next; 1282 bio_put(tmp); 1283 } 1284 } 1285 1286 /* 1287 * zeros a bio chain, starting at specific offset 1288 */ 1289 static void zero_bio_chain(struct bio *chain, int start_ofs) 1290 { 1291 struct bio_vec bv; 1292 struct bvec_iter iter; 1293 unsigned long flags; 1294 void *buf; 1295 int pos = 0; 1296 1297 while (chain) { 1298 bio_for_each_segment(bv, chain, iter) { 1299 if (pos + bv.bv_len > start_ofs) { 1300 int remainder = max(start_ofs - pos, 0); 1301 buf = bvec_kmap_irq(&bv, &flags); 1302 memset(buf + remainder, 0, 1303 bv.bv_len - remainder); 1304 flush_dcache_page(bv.bv_page); 1305 bvec_kunmap_irq(buf, &flags); 1306 } 1307 pos += bv.bv_len; 1308 } 1309 1310 chain = chain->bi_next; 1311 } 1312 } 1313 1314 /* 1315 * similar to zero_bio_chain(), zeros data defined by a page array, 1316 * starting at the given byte offset from the start of the array and 1317 * continuing up to the given end offset. The pages array is 1318 * assumed to be big enough to hold all bytes up to the end. 1319 */ 1320 static void zero_pages(struct page **pages, u64 offset, u64 end) 1321 { 1322 struct page **page = &pages[offset >> PAGE_SHIFT]; 1323 1324 rbd_assert(end > offset); 1325 rbd_assert(end - offset <= (u64)SIZE_MAX); 1326 while (offset < end) { 1327 size_t page_offset; 1328 size_t length; 1329 unsigned long flags; 1330 void *kaddr; 1331 1332 page_offset = offset & ~PAGE_MASK; 1333 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1334 local_irq_save(flags); 1335 kaddr = kmap_atomic(*page); 1336 memset(kaddr + page_offset, 0, length); 1337 flush_dcache_page(*page); 1338 kunmap_atomic(kaddr); 1339 local_irq_restore(flags); 1340 1341 offset += length; 1342 page++; 1343 } 1344 } 1345 1346 /* 1347 * Clone a portion of a bio, starting at the given byte offset 1348 * and continuing for the number of bytes indicated. 1349 */ 1350 static struct bio *bio_clone_range(struct bio *bio_src, 1351 unsigned int offset, 1352 unsigned int len, 1353 gfp_t gfpmask) 1354 { 1355 struct bio *bio; 1356 1357 bio = bio_clone(bio_src, gfpmask); 1358 if (!bio) 1359 return NULL; /* ENOMEM */ 1360 1361 bio_advance(bio, offset); 1362 bio->bi_iter.bi_size = len; 1363 1364 return bio; 1365 } 1366 1367 /* 1368 * Clone a portion of a bio chain, starting at the given byte offset 1369 * into the first bio in the source chain and continuing for the 1370 * number of bytes indicated. The result is another bio chain of 1371 * exactly the given length, or a null pointer on error. 1372 * 1373 * The bio_src and offset parameters are both in-out. On entry they 1374 * refer to the first source bio and the offset into that bio where 1375 * the start of data to be cloned is located. 1376 * 1377 * On return, bio_src is updated to refer to the bio in the source 1378 * chain that contains first un-cloned byte, and *offset will 1379 * contain the offset of that byte within that bio. 1380 */ 1381 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1382 unsigned int *offset, 1383 unsigned int len, 1384 gfp_t gfpmask) 1385 { 1386 struct bio *bi = *bio_src; 1387 unsigned int off = *offset; 1388 struct bio *chain = NULL; 1389 struct bio **end; 1390 1391 /* Build up a chain of clone bios up to the limit */ 1392 1393 if (!bi || off >= bi->bi_iter.bi_size || !len) 1394 return NULL; /* Nothing to clone */ 1395 1396 end = &chain; 1397 while (len) { 1398 unsigned int bi_size; 1399 struct bio *bio; 1400 1401 if (!bi) { 1402 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1403 goto out_err; /* EINVAL; ran out of bio's */ 1404 } 1405 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1406 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1407 if (!bio) 1408 goto out_err; /* ENOMEM */ 1409 1410 *end = bio; 1411 end = &bio->bi_next; 1412 1413 off += bi_size; 1414 if (off == bi->bi_iter.bi_size) { 1415 bi = bi->bi_next; 1416 off = 0; 1417 } 1418 len -= bi_size; 1419 } 1420 *bio_src = bi; 1421 *offset = off; 1422 1423 return chain; 1424 out_err: 1425 bio_chain_put(chain); 1426 1427 return NULL; 1428 } 1429 1430 /* 1431 * The default/initial value for all object request flags is 0. For 1432 * each flag, once its value is set to 1 it is never reset to 0 1433 * again. 1434 */ 1435 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1436 { 1437 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1438 struct rbd_device *rbd_dev; 1439 1440 rbd_dev = obj_request->img_request->rbd_dev; 1441 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1442 obj_request); 1443 } 1444 } 1445 1446 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1447 { 1448 smp_mb(); 1449 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1450 } 1451 1452 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1453 { 1454 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1455 struct rbd_device *rbd_dev = NULL; 1456 1457 if (obj_request_img_data_test(obj_request)) 1458 rbd_dev = obj_request->img_request->rbd_dev; 1459 rbd_warn(rbd_dev, "obj_request %p already marked done", 1460 obj_request); 1461 } 1462 } 1463 1464 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1465 { 1466 smp_mb(); 1467 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1468 } 1469 1470 /* 1471 * This sets the KNOWN flag after (possibly) setting the EXISTS 1472 * flag. The latter is set based on the "exists" value provided. 1473 * 1474 * Note that for our purposes once an object exists it never goes 1475 * away again. It's possible that the response from two existence 1476 * checks are separated by the creation of the target object, and 1477 * the first ("doesn't exist") response arrives *after* the second 1478 * ("does exist"). In that case we ignore the second one. 1479 */ 1480 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1481 bool exists) 1482 { 1483 if (exists) 1484 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1485 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1486 smp_mb(); 1487 } 1488 1489 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1490 { 1491 smp_mb(); 1492 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1493 } 1494 1495 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1496 { 1497 smp_mb(); 1498 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1499 } 1500 1501 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1502 { 1503 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1504 1505 return obj_request->img_offset < 1506 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1507 } 1508 1509 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1510 { 1511 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1512 atomic_read(&obj_request->kref.refcount)); 1513 kref_get(&obj_request->kref); 1514 } 1515 1516 static void rbd_obj_request_destroy(struct kref *kref); 1517 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1518 { 1519 rbd_assert(obj_request != NULL); 1520 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1521 atomic_read(&obj_request->kref.refcount)); 1522 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1523 } 1524 1525 static void rbd_img_request_get(struct rbd_img_request *img_request) 1526 { 1527 dout("%s: img %p (was %d)\n", __func__, img_request, 1528 atomic_read(&img_request->kref.refcount)); 1529 kref_get(&img_request->kref); 1530 } 1531 1532 static bool img_request_child_test(struct rbd_img_request *img_request); 1533 static void rbd_parent_request_destroy(struct kref *kref); 1534 static void rbd_img_request_destroy(struct kref *kref); 1535 static void rbd_img_request_put(struct rbd_img_request *img_request) 1536 { 1537 rbd_assert(img_request != NULL); 1538 dout("%s: img %p (was %d)\n", __func__, img_request, 1539 atomic_read(&img_request->kref.refcount)); 1540 if (img_request_child_test(img_request)) 1541 kref_put(&img_request->kref, rbd_parent_request_destroy); 1542 else 1543 kref_put(&img_request->kref, rbd_img_request_destroy); 1544 } 1545 1546 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1547 struct rbd_obj_request *obj_request) 1548 { 1549 rbd_assert(obj_request->img_request == NULL); 1550 1551 /* Image request now owns object's original reference */ 1552 obj_request->img_request = img_request; 1553 obj_request->which = img_request->obj_request_count; 1554 rbd_assert(!obj_request_img_data_test(obj_request)); 1555 obj_request_img_data_set(obj_request); 1556 rbd_assert(obj_request->which != BAD_WHICH); 1557 img_request->obj_request_count++; 1558 list_add_tail(&obj_request->links, &img_request->obj_requests); 1559 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1560 obj_request->which); 1561 } 1562 1563 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1564 struct rbd_obj_request *obj_request) 1565 { 1566 rbd_assert(obj_request->which != BAD_WHICH); 1567 1568 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1569 obj_request->which); 1570 list_del(&obj_request->links); 1571 rbd_assert(img_request->obj_request_count > 0); 1572 img_request->obj_request_count--; 1573 rbd_assert(obj_request->which == img_request->obj_request_count); 1574 obj_request->which = BAD_WHICH; 1575 rbd_assert(obj_request_img_data_test(obj_request)); 1576 rbd_assert(obj_request->img_request == img_request); 1577 obj_request->img_request = NULL; 1578 obj_request->callback = NULL; 1579 rbd_obj_request_put(obj_request); 1580 } 1581 1582 static bool obj_request_type_valid(enum obj_request_type type) 1583 { 1584 switch (type) { 1585 case OBJ_REQUEST_NODATA: 1586 case OBJ_REQUEST_BIO: 1587 case OBJ_REQUEST_PAGES: 1588 return true; 1589 default: 1590 return false; 1591 } 1592 } 1593 1594 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request); 1595 1596 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request) 1597 { 1598 struct ceph_osd_request *osd_req = obj_request->osd_req; 1599 1600 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__, 1601 obj_request, obj_request->object_no, obj_request->offset, 1602 obj_request->length, osd_req); 1603 if (obj_request_img_data_test(obj_request)) { 1604 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1605 rbd_img_request_get(obj_request->img_request); 1606 } 1607 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1608 } 1609 1610 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1611 { 1612 1613 dout("%s: img %p\n", __func__, img_request); 1614 1615 /* 1616 * If no error occurred, compute the aggregate transfer 1617 * count for the image request. We could instead use 1618 * atomic64_cmpxchg() to update it as each object request 1619 * completes; not clear which way is better off hand. 1620 */ 1621 if (!img_request->result) { 1622 struct rbd_obj_request *obj_request; 1623 u64 xferred = 0; 1624 1625 for_each_obj_request(img_request, obj_request) 1626 xferred += obj_request->xferred; 1627 img_request->xferred = xferred; 1628 } 1629 1630 if (img_request->callback) 1631 img_request->callback(img_request); 1632 else 1633 rbd_img_request_put(img_request); 1634 } 1635 1636 /* 1637 * The default/initial value for all image request flags is 0. Each 1638 * is conditionally set to 1 at image request initialization time 1639 * and currently never change thereafter. 1640 */ 1641 static void img_request_write_set(struct rbd_img_request *img_request) 1642 { 1643 set_bit(IMG_REQ_WRITE, &img_request->flags); 1644 smp_mb(); 1645 } 1646 1647 static bool img_request_write_test(struct rbd_img_request *img_request) 1648 { 1649 smp_mb(); 1650 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1651 } 1652 1653 /* 1654 * Set the discard flag when the img_request is an discard request 1655 */ 1656 static void img_request_discard_set(struct rbd_img_request *img_request) 1657 { 1658 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1659 smp_mb(); 1660 } 1661 1662 static bool img_request_discard_test(struct rbd_img_request *img_request) 1663 { 1664 smp_mb(); 1665 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1666 } 1667 1668 static void img_request_child_set(struct rbd_img_request *img_request) 1669 { 1670 set_bit(IMG_REQ_CHILD, &img_request->flags); 1671 smp_mb(); 1672 } 1673 1674 static void img_request_child_clear(struct rbd_img_request *img_request) 1675 { 1676 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1677 smp_mb(); 1678 } 1679 1680 static bool img_request_child_test(struct rbd_img_request *img_request) 1681 { 1682 smp_mb(); 1683 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1684 } 1685 1686 static void img_request_layered_set(struct rbd_img_request *img_request) 1687 { 1688 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1689 smp_mb(); 1690 } 1691 1692 static void img_request_layered_clear(struct rbd_img_request *img_request) 1693 { 1694 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1695 smp_mb(); 1696 } 1697 1698 static bool img_request_layered_test(struct rbd_img_request *img_request) 1699 { 1700 smp_mb(); 1701 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1702 } 1703 1704 static enum obj_operation_type 1705 rbd_img_request_op_type(struct rbd_img_request *img_request) 1706 { 1707 if (img_request_write_test(img_request)) 1708 return OBJ_OP_WRITE; 1709 else if (img_request_discard_test(img_request)) 1710 return OBJ_OP_DISCARD; 1711 else 1712 return OBJ_OP_READ; 1713 } 1714 1715 static void 1716 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1717 { 1718 u64 xferred = obj_request->xferred; 1719 u64 length = obj_request->length; 1720 1721 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1722 obj_request, obj_request->img_request, obj_request->result, 1723 xferred, length); 1724 /* 1725 * ENOENT means a hole in the image. We zero-fill the entire 1726 * length of the request. A short read also implies zero-fill 1727 * to the end of the request. An error requires the whole 1728 * length of the request to be reported finished with an error 1729 * to the block layer. In each case we update the xferred 1730 * count to indicate the whole request was satisfied. 1731 */ 1732 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1733 if (obj_request->result == -ENOENT) { 1734 if (obj_request->type == OBJ_REQUEST_BIO) 1735 zero_bio_chain(obj_request->bio_list, 0); 1736 else 1737 zero_pages(obj_request->pages, 0, length); 1738 obj_request->result = 0; 1739 } else if (xferred < length && !obj_request->result) { 1740 if (obj_request->type == OBJ_REQUEST_BIO) 1741 zero_bio_chain(obj_request->bio_list, xferred); 1742 else 1743 zero_pages(obj_request->pages, xferred, length); 1744 } 1745 obj_request->xferred = length; 1746 obj_request_done_set(obj_request); 1747 } 1748 1749 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1750 { 1751 dout("%s: obj %p cb %p\n", __func__, obj_request, 1752 obj_request->callback); 1753 if (obj_request->callback) 1754 obj_request->callback(obj_request); 1755 else 1756 complete_all(&obj_request->completion); 1757 } 1758 1759 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err) 1760 { 1761 obj_request->result = err; 1762 obj_request->xferred = 0; 1763 /* 1764 * kludge - mirror rbd_obj_request_submit() to match a put in 1765 * rbd_img_obj_callback() 1766 */ 1767 if (obj_request_img_data_test(obj_request)) { 1768 WARN_ON(obj_request->callback != rbd_img_obj_callback); 1769 rbd_img_request_get(obj_request->img_request); 1770 } 1771 obj_request_done_set(obj_request); 1772 rbd_obj_request_complete(obj_request); 1773 } 1774 1775 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1776 { 1777 struct rbd_img_request *img_request = NULL; 1778 struct rbd_device *rbd_dev = NULL; 1779 bool layered = false; 1780 1781 if (obj_request_img_data_test(obj_request)) { 1782 img_request = obj_request->img_request; 1783 layered = img_request && img_request_layered_test(img_request); 1784 rbd_dev = img_request->rbd_dev; 1785 } 1786 1787 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1788 obj_request, img_request, obj_request->result, 1789 obj_request->xferred, obj_request->length); 1790 if (layered && obj_request->result == -ENOENT && 1791 obj_request->img_offset < rbd_dev->parent_overlap) 1792 rbd_img_parent_read(obj_request); 1793 else if (img_request) 1794 rbd_img_obj_request_read_callback(obj_request); 1795 else 1796 obj_request_done_set(obj_request); 1797 } 1798 1799 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1800 { 1801 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1802 obj_request->result, obj_request->length); 1803 /* 1804 * There is no such thing as a successful short write. Set 1805 * it to our originally-requested length. 1806 */ 1807 obj_request->xferred = obj_request->length; 1808 obj_request_done_set(obj_request); 1809 } 1810 1811 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1812 { 1813 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1814 obj_request->result, obj_request->length); 1815 /* 1816 * There is no such thing as a successful short discard. Set 1817 * it to our originally-requested length. 1818 */ 1819 obj_request->xferred = obj_request->length; 1820 /* discarding a non-existent object is not a problem */ 1821 if (obj_request->result == -ENOENT) 1822 obj_request->result = 0; 1823 obj_request_done_set(obj_request); 1824 } 1825 1826 /* 1827 * For a simple stat call there's nothing to do. We'll do more if 1828 * this is part of a write sequence for a layered image. 1829 */ 1830 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1831 { 1832 dout("%s: obj %p\n", __func__, obj_request); 1833 obj_request_done_set(obj_request); 1834 } 1835 1836 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request) 1837 { 1838 dout("%s: obj %p\n", __func__, obj_request); 1839 1840 if (obj_request_img_data_test(obj_request)) 1841 rbd_osd_copyup_callback(obj_request); 1842 else 1843 obj_request_done_set(obj_request); 1844 } 1845 1846 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1847 { 1848 struct rbd_obj_request *obj_request = osd_req->r_priv; 1849 u16 opcode; 1850 1851 dout("%s: osd_req %p\n", __func__, osd_req); 1852 rbd_assert(osd_req == obj_request->osd_req); 1853 if (obj_request_img_data_test(obj_request)) { 1854 rbd_assert(obj_request->img_request); 1855 rbd_assert(obj_request->which != BAD_WHICH); 1856 } else { 1857 rbd_assert(obj_request->which == BAD_WHICH); 1858 } 1859 1860 if (osd_req->r_result < 0) 1861 obj_request->result = osd_req->r_result; 1862 1863 /* 1864 * We support a 64-bit length, but ultimately it has to be 1865 * passed to the block layer, which just supports a 32-bit 1866 * length field. 1867 */ 1868 obj_request->xferred = osd_req->r_ops[0].outdata_len; 1869 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1870 1871 opcode = osd_req->r_ops[0].op; 1872 switch (opcode) { 1873 case CEPH_OSD_OP_READ: 1874 rbd_osd_read_callback(obj_request); 1875 break; 1876 case CEPH_OSD_OP_SETALLOCHINT: 1877 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE || 1878 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL); 1879 /* fall through */ 1880 case CEPH_OSD_OP_WRITE: 1881 case CEPH_OSD_OP_WRITEFULL: 1882 rbd_osd_write_callback(obj_request); 1883 break; 1884 case CEPH_OSD_OP_STAT: 1885 rbd_osd_stat_callback(obj_request); 1886 break; 1887 case CEPH_OSD_OP_DELETE: 1888 case CEPH_OSD_OP_TRUNCATE: 1889 case CEPH_OSD_OP_ZERO: 1890 rbd_osd_discard_callback(obj_request); 1891 break; 1892 case CEPH_OSD_OP_CALL: 1893 rbd_osd_call_callback(obj_request); 1894 break; 1895 default: 1896 rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d", 1897 obj_request->object_no, opcode); 1898 break; 1899 } 1900 1901 if (obj_request_done_test(obj_request)) 1902 rbd_obj_request_complete(obj_request); 1903 } 1904 1905 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1906 { 1907 struct ceph_osd_request *osd_req = obj_request->osd_req; 1908 1909 rbd_assert(obj_request_img_data_test(obj_request)); 1910 osd_req->r_snapid = obj_request->img_request->snap_id; 1911 } 1912 1913 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1914 { 1915 struct ceph_osd_request *osd_req = obj_request->osd_req; 1916 1917 osd_req->r_mtime = CURRENT_TIME; 1918 osd_req->r_data_offset = obj_request->offset; 1919 } 1920 1921 static struct ceph_osd_request * 1922 __rbd_osd_req_create(struct rbd_device *rbd_dev, 1923 struct ceph_snap_context *snapc, 1924 int num_ops, unsigned int flags, 1925 struct rbd_obj_request *obj_request) 1926 { 1927 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1928 struct ceph_osd_request *req; 1929 const char *name_format = rbd_dev->image_format == 1 ? 1930 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1931 1932 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1933 if (!req) 1934 return NULL; 1935 1936 req->r_flags = flags; 1937 req->r_callback = rbd_osd_req_callback; 1938 req->r_priv = obj_request; 1939 1940 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1941 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1942 rbd_dev->header.object_prefix, obj_request->object_no)) 1943 goto err_req; 1944 1945 if (ceph_osdc_alloc_messages(req, GFP_NOIO)) 1946 goto err_req; 1947 1948 return req; 1949 1950 err_req: 1951 ceph_osdc_put_request(req); 1952 return NULL; 1953 } 1954 1955 /* 1956 * Create an osd request. A read request has one osd op (read). 1957 * A write request has either one (watch) or two (hint+write) osd ops. 1958 * (All rbd data writes are prefixed with an allocation hint op, but 1959 * technically osd watch is a write request, hence this distinction.) 1960 */ 1961 static struct ceph_osd_request *rbd_osd_req_create( 1962 struct rbd_device *rbd_dev, 1963 enum obj_operation_type op_type, 1964 unsigned int num_ops, 1965 struct rbd_obj_request *obj_request) 1966 { 1967 struct ceph_snap_context *snapc = NULL; 1968 1969 if (obj_request_img_data_test(obj_request) && 1970 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1971 struct rbd_img_request *img_request = obj_request->img_request; 1972 if (op_type == OBJ_OP_WRITE) { 1973 rbd_assert(img_request_write_test(img_request)); 1974 } else { 1975 rbd_assert(img_request_discard_test(img_request)); 1976 } 1977 snapc = img_request->snapc; 1978 } 1979 1980 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1981 1982 return __rbd_osd_req_create(rbd_dev, snapc, num_ops, 1983 (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ? 1984 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK : CEPH_OSD_FLAG_READ, 1985 obj_request); 1986 } 1987 1988 /* 1989 * Create a copyup osd request based on the information in the object 1990 * request supplied. A copyup request has two or three osd ops, a 1991 * copyup method call, potentially a hint op, and a write or truncate 1992 * or zero op. 1993 */ 1994 static struct ceph_osd_request * 1995 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1996 { 1997 struct rbd_img_request *img_request; 1998 int num_osd_ops = 3; 1999 2000 rbd_assert(obj_request_img_data_test(obj_request)); 2001 img_request = obj_request->img_request; 2002 rbd_assert(img_request); 2003 rbd_assert(img_request_write_test(img_request) || 2004 img_request_discard_test(img_request)); 2005 2006 if (img_request_discard_test(img_request)) 2007 num_osd_ops = 2; 2008 2009 return __rbd_osd_req_create(img_request->rbd_dev, 2010 img_request->snapc, num_osd_ops, 2011 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK, 2012 obj_request); 2013 } 2014 2015 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 2016 { 2017 ceph_osdc_put_request(osd_req); 2018 } 2019 2020 static struct rbd_obj_request * 2021 rbd_obj_request_create(enum obj_request_type type) 2022 { 2023 struct rbd_obj_request *obj_request; 2024 2025 rbd_assert(obj_request_type_valid(type)); 2026 2027 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2028 if (!obj_request) 2029 return NULL; 2030 2031 obj_request->which = BAD_WHICH; 2032 obj_request->type = type; 2033 INIT_LIST_HEAD(&obj_request->links); 2034 init_completion(&obj_request->completion); 2035 kref_init(&obj_request->kref); 2036 2037 dout("%s %p\n", __func__, obj_request); 2038 return obj_request; 2039 } 2040 2041 static void rbd_obj_request_destroy(struct kref *kref) 2042 { 2043 struct rbd_obj_request *obj_request; 2044 2045 obj_request = container_of(kref, struct rbd_obj_request, kref); 2046 2047 dout("%s: obj %p\n", __func__, obj_request); 2048 2049 rbd_assert(obj_request->img_request == NULL); 2050 rbd_assert(obj_request->which == BAD_WHICH); 2051 2052 if (obj_request->osd_req) 2053 rbd_osd_req_destroy(obj_request->osd_req); 2054 2055 rbd_assert(obj_request_type_valid(obj_request->type)); 2056 switch (obj_request->type) { 2057 case OBJ_REQUEST_NODATA: 2058 break; /* Nothing to do */ 2059 case OBJ_REQUEST_BIO: 2060 if (obj_request->bio_list) 2061 bio_chain_put(obj_request->bio_list); 2062 break; 2063 case OBJ_REQUEST_PAGES: 2064 /* img_data requests don't own their page array */ 2065 if (obj_request->pages && 2066 !obj_request_img_data_test(obj_request)) 2067 ceph_release_page_vector(obj_request->pages, 2068 obj_request->page_count); 2069 break; 2070 } 2071 2072 kmem_cache_free(rbd_obj_request_cache, obj_request); 2073 } 2074 2075 /* It's OK to call this for a device with no parent */ 2076 2077 static void rbd_spec_put(struct rbd_spec *spec); 2078 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2079 { 2080 rbd_dev_remove_parent(rbd_dev); 2081 rbd_spec_put(rbd_dev->parent_spec); 2082 rbd_dev->parent_spec = NULL; 2083 rbd_dev->parent_overlap = 0; 2084 } 2085 2086 /* 2087 * Parent image reference counting is used to determine when an 2088 * image's parent fields can be safely torn down--after there are no 2089 * more in-flight requests to the parent image. When the last 2090 * reference is dropped, cleaning them up is safe. 2091 */ 2092 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2093 { 2094 int counter; 2095 2096 if (!rbd_dev->parent_spec) 2097 return; 2098 2099 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2100 if (counter > 0) 2101 return; 2102 2103 /* Last reference; clean up parent data structures */ 2104 2105 if (!counter) 2106 rbd_dev_unparent(rbd_dev); 2107 else 2108 rbd_warn(rbd_dev, "parent reference underflow"); 2109 } 2110 2111 /* 2112 * If an image has a non-zero parent overlap, get a reference to its 2113 * parent. 2114 * 2115 * Returns true if the rbd device has a parent with a non-zero 2116 * overlap and a reference for it was successfully taken, or 2117 * false otherwise. 2118 */ 2119 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2120 { 2121 int counter = 0; 2122 2123 if (!rbd_dev->parent_spec) 2124 return false; 2125 2126 down_read(&rbd_dev->header_rwsem); 2127 if (rbd_dev->parent_overlap) 2128 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2129 up_read(&rbd_dev->header_rwsem); 2130 2131 if (counter < 0) 2132 rbd_warn(rbd_dev, "parent reference overflow"); 2133 2134 return counter > 0; 2135 } 2136 2137 /* 2138 * Caller is responsible for filling in the list of object requests 2139 * that comprises the image request, and the Linux request pointer 2140 * (if there is one). 2141 */ 2142 static struct rbd_img_request *rbd_img_request_create( 2143 struct rbd_device *rbd_dev, 2144 u64 offset, u64 length, 2145 enum obj_operation_type op_type, 2146 struct ceph_snap_context *snapc) 2147 { 2148 struct rbd_img_request *img_request; 2149 2150 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2151 if (!img_request) 2152 return NULL; 2153 2154 img_request->rq = NULL; 2155 img_request->rbd_dev = rbd_dev; 2156 img_request->offset = offset; 2157 img_request->length = length; 2158 img_request->flags = 0; 2159 if (op_type == OBJ_OP_DISCARD) { 2160 img_request_discard_set(img_request); 2161 img_request->snapc = snapc; 2162 } else if (op_type == OBJ_OP_WRITE) { 2163 img_request_write_set(img_request); 2164 img_request->snapc = snapc; 2165 } else { 2166 img_request->snap_id = rbd_dev->spec->snap_id; 2167 } 2168 if (rbd_dev_parent_get(rbd_dev)) 2169 img_request_layered_set(img_request); 2170 spin_lock_init(&img_request->completion_lock); 2171 img_request->next_completion = 0; 2172 img_request->callback = NULL; 2173 img_request->result = 0; 2174 img_request->obj_request_count = 0; 2175 INIT_LIST_HEAD(&img_request->obj_requests); 2176 kref_init(&img_request->kref); 2177 2178 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2179 obj_op_name(op_type), offset, length, img_request); 2180 2181 return img_request; 2182 } 2183 2184 static void rbd_img_request_destroy(struct kref *kref) 2185 { 2186 struct rbd_img_request *img_request; 2187 struct rbd_obj_request *obj_request; 2188 struct rbd_obj_request *next_obj_request; 2189 2190 img_request = container_of(kref, struct rbd_img_request, kref); 2191 2192 dout("%s: img %p\n", __func__, img_request); 2193 2194 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2195 rbd_img_obj_request_del(img_request, obj_request); 2196 rbd_assert(img_request->obj_request_count == 0); 2197 2198 if (img_request_layered_test(img_request)) { 2199 img_request_layered_clear(img_request); 2200 rbd_dev_parent_put(img_request->rbd_dev); 2201 } 2202 2203 if (img_request_write_test(img_request) || 2204 img_request_discard_test(img_request)) 2205 ceph_put_snap_context(img_request->snapc); 2206 2207 kmem_cache_free(rbd_img_request_cache, img_request); 2208 } 2209 2210 static struct rbd_img_request *rbd_parent_request_create( 2211 struct rbd_obj_request *obj_request, 2212 u64 img_offset, u64 length) 2213 { 2214 struct rbd_img_request *parent_request; 2215 struct rbd_device *rbd_dev; 2216 2217 rbd_assert(obj_request->img_request); 2218 rbd_dev = obj_request->img_request->rbd_dev; 2219 2220 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2221 length, OBJ_OP_READ, NULL); 2222 if (!parent_request) 2223 return NULL; 2224 2225 img_request_child_set(parent_request); 2226 rbd_obj_request_get(obj_request); 2227 parent_request->obj_request = obj_request; 2228 2229 return parent_request; 2230 } 2231 2232 static void rbd_parent_request_destroy(struct kref *kref) 2233 { 2234 struct rbd_img_request *parent_request; 2235 struct rbd_obj_request *orig_request; 2236 2237 parent_request = container_of(kref, struct rbd_img_request, kref); 2238 orig_request = parent_request->obj_request; 2239 2240 parent_request->obj_request = NULL; 2241 rbd_obj_request_put(orig_request); 2242 img_request_child_clear(parent_request); 2243 2244 rbd_img_request_destroy(kref); 2245 } 2246 2247 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2248 { 2249 struct rbd_img_request *img_request; 2250 unsigned int xferred; 2251 int result; 2252 bool more; 2253 2254 rbd_assert(obj_request_img_data_test(obj_request)); 2255 img_request = obj_request->img_request; 2256 2257 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2258 xferred = (unsigned int)obj_request->xferred; 2259 result = obj_request->result; 2260 if (result) { 2261 struct rbd_device *rbd_dev = img_request->rbd_dev; 2262 enum obj_operation_type op_type; 2263 2264 if (img_request_discard_test(img_request)) 2265 op_type = OBJ_OP_DISCARD; 2266 else if (img_request_write_test(img_request)) 2267 op_type = OBJ_OP_WRITE; 2268 else 2269 op_type = OBJ_OP_READ; 2270 2271 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2272 obj_op_name(op_type), obj_request->length, 2273 obj_request->img_offset, obj_request->offset); 2274 rbd_warn(rbd_dev, " result %d xferred %x", 2275 result, xferred); 2276 if (!img_request->result) 2277 img_request->result = result; 2278 /* 2279 * Need to end I/O on the entire obj_request worth of 2280 * bytes in case of error. 2281 */ 2282 xferred = obj_request->length; 2283 } 2284 2285 if (img_request_child_test(img_request)) { 2286 rbd_assert(img_request->obj_request != NULL); 2287 more = obj_request->which < img_request->obj_request_count - 1; 2288 } else { 2289 rbd_assert(img_request->rq != NULL); 2290 2291 more = blk_update_request(img_request->rq, result, xferred); 2292 if (!more) 2293 __blk_mq_end_request(img_request->rq, result); 2294 } 2295 2296 return more; 2297 } 2298 2299 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2300 { 2301 struct rbd_img_request *img_request; 2302 u32 which = obj_request->which; 2303 bool more = true; 2304 2305 rbd_assert(obj_request_img_data_test(obj_request)); 2306 img_request = obj_request->img_request; 2307 2308 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2309 rbd_assert(img_request != NULL); 2310 rbd_assert(img_request->obj_request_count > 0); 2311 rbd_assert(which != BAD_WHICH); 2312 rbd_assert(which < img_request->obj_request_count); 2313 2314 spin_lock_irq(&img_request->completion_lock); 2315 if (which != img_request->next_completion) 2316 goto out; 2317 2318 for_each_obj_request_from(img_request, obj_request) { 2319 rbd_assert(more); 2320 rbd_assert(which < img_request->obj_request_count); 2321 2322 if (!obj_request_done_test(obj_request)) 2323 break; 2324 more = rbd_img_obj_end_request(obj_request); 2325 which++; 2326 } 2327 2328 rbd_assert(more ^ (which == img_request->obj_request_count)); 2329 img_request->next_completion = which; 2330 out: 2331 spin_unlock_irq(&img_request->completion_lock); 2332 rbd_img_request_put(img_request); 2333 2334 if (!more) 2335 rbd_img_request_complete(img_request); 2336 } 2337 2338 /* 2339 * Add individual osd ops to the given ceph_osd_request and prepare 2340 * them for submission. num_ops is the current number of 2341 * osd operations already to the object request. 2342 */ 2343 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2344 struct ceph_osd_request *osd_request, 2345 enum obj_operation_type op_type, 2346 unsigned int num_ops) 2347 { 2348 struct rbd_img_request *img_request = obj_request->img_request; 2349 struct rbd_device *rbd_dev = img_request->rbd_dev; 2350 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2351 u64 offset = obj_request->offset; 2352 u64 length = obj_request->length; 2353 u64 img_end; 2354 u16 opcode; 2355 2356 if (op_type == OBJ_OP_DISCARD) { 2357 if (!offset && length == object_size && 2358 (!img_request_layered_test(img_request) || 2359 !obj_request_overlaps_parent(obj_request))) { 2360 opcode = CEPH_OSD_OP_DELETE; 2361 } else if ((offset + length == object_size)) { 2362 opcode = CEPH_OSD_OP_TRUNCATE; 2363 } else { 2364 down_read(&rbd_dev->header_rwsem); 2365 img_end = rbd_dev->header.image_size; 2366 up_read(&rbd_dev->header_rwsem); 2367 2368 if (obj_request->img_offset + length == img_end) 2369 opcode = CEPH_OSD_OP_TRUNCATE; 2370 else 2371 opcode = CEPH_OSD_OP_ZERO; 2372 } 2373 } else if (op_type == OBJ_OP_WRITE) { 2374 if (!offset && length == object_size) 2375 opcode = CEPH_OSD_OP_WRITEFULL; 2376 else 2377 opcode = CEPH_OSD_OP_WRITE; 2378 osd_req_op_alloc_hint_init(osd_request, num_ops, 2379 object_size, object_size); 2380 num_ops++; 2381 } else { 2382 opcode = CEPH_OSD_OP_READ; 2383 } 2384 2385 if (opcode == CEPH_OSD_OP_DELETE) 2386 osd_req_op_init(osd_request, num_ops, opcode, 0); 2387 else 2388 osd_req_op_extent_init(osd_request, num_ops, opcode, 2389 offset, length, 0, 0); 2390 2391 if (obj_request->type == OBJ_REQUEST_BIO) 2392 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2393 obj_request->bio_list, length); 2394 else if (obj_request->type == OBJ_REQUEST_PAGES) 2395 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2396 obj_request->pages, length, 2397 offset & ~PAGE_MASK, false, false); 2398 2399 /* Discards are also writes */ 2400 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2401 rbd_osd_req_format_write(obj_request); 2402 else 2403 rbd_osd_req_format_read(obj_request); 2404 } 2405 2406 /* 2407 * Split up an image request into one or more object requests, each 2408 * to a different object. The "type" parameter indicates whether 2409 * "data_desc" is the pointer to the head of a list of bio 2410 * structures, or the base of a page array. In either case this 2411 * function assumes data_desc describes memory sufficient to hold 2412 * all data described by the image request. 2413 */ 2414 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2415 enum obj_request_type type, 2416 void *data_desc) 2417 { 2418 struct rbd_device *rbd_dev = img_request->rbd_dev; 2419 struct rbd_obj_request *obj_request = NULL; 2420 struct rbd_obj_request *next_obj_request; 2421 struct bio *bio_list = NULL; 2422 unsigned int bio_offset = 0; 2423 struct page **pages = NULL; 2424 enum obj_operation_type op_type; 2425 u64 img_offset; 2426 u64 resid; 2427 2428 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2429 (int)type, data_desc); 2430 2431 img_offset = img_request->offset; 2432 resid = img_request->length; 2433 rbd_assert(resid > 0); 2434 op_type = rbd_img_request_op_type(img_request); 2435 2436 if (type == OBJ_REQUEST_BIO) { 2437 bio_list = data_desc; 2438 rbd_assert(img_offset == 2439 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2440 } else if (type == OBJ_REQUEST_PAGES) { 2441 pages = data_desc; 2442 } 2443 2444 while (resid) { 2445 struct ceph_osd_request *osd_req; 2446 u64 object_no = img_offset >> rbd_dev->header.obj_order; 2447 u64 offset = rbd_segment_offset(rbd_dev, img_offset); 2448 u64 length = rbd_segment_length(rbd_dev, img_offset, resid); 2449 2450 obj_request = rbd_obj_request_create(type); 2451 if (!obj_request) 2452 goto out_unwind; 2453 2454 obj_request->object_no = object_no; 2455 obj_request->offset = offset; 2456 obj_request->length = length; 2457 2458 /* 2459 * set obj_request->img_request before creating the 2460 * osd_request so that it gets the right snapc 2461 */ 2462 rbd_img_obj_request_add(img_request, obj_request); 2463 2464 if (type == OBJ_REQUEST_BIO) { 2465 unsigned int clone_size; 2466 2467 rbd_assert(length <= (u64)UINT_MAX); 2468 clone_size = (unsigned int)length; 2469 obj_request->bio_list = 2470 bio_chain_clone_range(&bio_list, 2471 &bio_offset, 2472 clone_size, 2473 GFP_NOIO); 2474 if (!obj_request->bio_list) 2475 goto out_unwind; 2476 } else if (type == OBJ_REQUEST_PAGES) { 2477 unsigned int page_count; 2478 2479 obj_request->pages = pages; 2480 page_count = (u32)calc_pages_for(offset, length); 2481 obj_request->page_count = page_count; 2482 if ((offset + length) & ~PAGE_MASK) 2483 page_count--; /* more on last page */ 2484 pages += page_count; 2485 } 2486 2487 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2488 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2489 obj_request); 2490 if (!osd_req) 2491 goto out_unwind; 2492 2493 obj_request->osd_req = osd_req; 2494 obj_request->callback = rbd_img_obj_callback; 2495 obj_request->img_offset = img_offset; 2496 2497 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2498 2499 img_offset += length; 2500 resid -= length; 2501 } 2502 2503 return 0; 2504 2505 out_unwind: 2506 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2507 rbd_img_obj_request_del(img_request, obj_request); 2508 2509 return -ENOMEM; 2510 } 2511 2512 static void 2513 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request) 2514 { 2515 struct rbd_img_request *img_request; 2516 struct rbd_device *rbd_dev; 2517 struct page **pages; 2518 u32 page_count; 2519 2520 dout("%s: obj %p\n", __func__, obj_request); 2521 2522 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2523 obj_request->type == OBJ_REQUEST_NODATA); 2524 rbd_assert(obj_request_img_data_test(obj_request)); 2525 img_request = obj_request->img_request; 2526 rbd_assert(img_request); 2527 2528 rbd_dev = img_request->rbd_dev; 2529 rbd_assert(rbd_dev); 2530 2531 pages = obj_request->copyup_pages; 2532 rbd_assert(pages != NULL); 2533 obj_request->copyup_pages = NULL; 2534 page_count = obj_request->copyup_page_count; 2535 rbd_assert(page_count); 2536 obj_request->copyup_page_count = 0; 2537 ceph_release_page_vector(pages, page_count); 2538 2539 /* 2540 * We want the transfer count to reflect the size of the 2541 * original write request. There is no such thing as a 2542 * successful short write, so if the request was successful 2543 * we can just set it to the originally-requested length. 2544 */ 2545 if (!obj_request->result) 2546 obj_request->xferred = obj_request->length; 2547 2548 obj_request_done_set(obj_request); 2549 } 2550 2551 static void 2552 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2553 { 2554 struct rbd_obj_request *orig_request; 2555 struct ceph_osd_request *osd_req; 2556 struct rbd_device *rbd_dev; 2557 struct page **pages; 2558 enum obj_operation_type op_type; 2559 u32 page_count; 2560 int img_result; 2561 u64 parent_length; 2562 2563 rbd_assert(img_request_child_test(img_request)); 2564 2565 /* First get what we need from the image request */ 2566 2567 pages = img_request->copyup_pages; 2568 rbd_assert(pages != NULL); 2569 img_request->copyup_pages = NULL; 2570 page_count = img_request->copyup_page_count; 2571 rbd_assert(page_count); 2572 img_request->copyup_page_count = 0; 2573 2574 orig_request = img_request->obj_request; 2575 rbd_assert(orig_request != NULL); 2576 rbd_assert(obj_request_type_valid(orig_request->type)); 2577 img_result = img_request->result; 2578 parent_length = img_request->length; 2579 rbd_assert(img_result || parent_length == img_request->xferred); 2580 rbd_img_request_put(img_request); 2581 2582 rbd_assert(orig_request->img_request); 2583 rbd_dev = orig_request->img_request->rbd_dev; 2584 rbd_assert(rbd_dev); 2585 2586 /* 2587 * If the overlap has become 0 (most likely because the 2588 * image has been flattened) we need to free the pages 2589 * and re-submit the original write request. 2590 */ 2591 if (!rbd_dev->parent_overlap) { 2592 ceph_release_page_vector(pages, page_count); 2593 rbd_obj_request_submit(orig_request); 2594 return; 2595 } 2596 2597 if (img_result) 2598 goto out_err; 2599 2600 /* 2601 * The original osd request is of no use to use any more. 2602 * We need a new one that can hold the three ops in a copyup 2603 * request. Allocate the new copyup osd request for the 2604 * original request, and release the old one. 2605 */ 2606 img_result = -ENOMEM; 2607 osd_req = rbd_osd_req_create_copyup(orig_request); 2608 if (!osd_req) 2609 goto out_err; 2610 rbd_osd_req_destroy(orig_request->osd_req); 2611 orig_request->osd_req = osd_req; 2612 orig_request->copyup_pages = pages; 2613 orig_request->copyup_page_count = page_count; 2614 2615 /* Initialize the copyup op */ 2616 2617 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2618 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2619 false, false); 2620 2621 /* Add the other op(s) */ 2622 2623 op_type = rbd_img_request_op_type(orig_request->img_request); 2624 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2625 2626 /* All set, send it off. */ 2627 2628 rbd_obj_request_submit(orig_request); 2629 return; 2630 2631 out_err: 2632 ceph_release_page_vector(pages, page_count); 2633 rbd_obj_request_error(orig_request, img_result); 2634 } 2635 2636 /* 2637 * Read from the parent image the range of data that covers the 2638 * entire target of the given object request. This is used for 2639 * satisfying a layered image write request when the target of an 2640 * object request from the image request does not exist. 2641 * 2642 * A page array big enough to hold the returned data is allocated 2643 * and supplied to rbd_img_request_fill() as the "data descriptor." 2644 * When the read completes, this page array will be transferred to 2645 * the original object request for the copyup operation. 2646 * 2647 * If an error occurs, it is recorded as the result of the original 2648 * object request in rbd_img_obj_exists_callback(). 2649 */ 2650 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2651 { 2652 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2653 struct rbd_img_request *parent_request = NULL; 2654 u64 img_offset; 2655 u64 length; 2656 struct page **pages = NULL; 2657 u32 page_count; 2658 int result; 2659 2660 rbd_assert(rbd_dev->parent != NULL); 2661 2662 /* 2663 * Determine the byte range covered by the object in the 2664 * child image to which the original request was to be sent. 2665 */ 2666 img_offset = obj_request->img_offset - obj_request->offset; 2667 length = rbd_obj_bytes(&rbd_dev->header); 2668 2669 /* 2670 * There is no defined parent data beyond the parent 2671 * overlap, so limit what we read at that boundary if 2672 * necessary. 2673 */ 2674 if (img_offset + length > rbd_dev->parent_overlap) { 2675 rbd_assert(img_offset < rbd_dev->parent_overlap); 2676 length = rbd_dev->parent_overlap - img_offset; 2677 } 2678 2679 /* 2680 * Allocate a page array big enough to receive the data read 2681 * from the parent. 2682 */ 2683 page_count = (u32)calc_pages_for(0, length); 2684 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2685 if (IS_ERR(pages)) { 2686 result = PTR_ERR(pages); 2687 pages = NULL; 2688 goto out_err; 2689 } 2690 2691 result = -ENOMEM; 2692 parent_request = rbd_parent_request_create(obj_request, 2693 img_offset, length); 2694 if (!parent_request) 2695 goto out_err; 2696 2697 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2698 if (result) 2699 goto out_err; 2700 2701 parent_request->copyup_pages = pages; 2702 parent_request->copyup_page_count = page_count; 2703 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2704 2705 result = rbd_img_request_submit(parent_request); 2706 if (!result) 2707 return 0; 2708 2709 parent_request->copyup_pages = NULL; 2710 parent_request->copyup_page_count = 0; 2711 parent_request->obj_request = NULL; 2712 rbd_obj_request_put(obj_request); 2713 out_err: 2714 if (pages) 2715 ceph_release_page_vector(pages, page_count); 2716 if (parent_request) 2717 rbd_img_request_put(parent_request); 2718 return result; 2719 } 2720 2721 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2722 { 2723 struct rbd_obj_request *orig_request; 2724 struct rbd_device *rbd_dev; 2725 int result; 2726 2727 rbd_assert(!obj_request_img_data_test(obj_request)); 2728 2729 /* 2730 * All we need from the object request is the original 2731 * request and the result of the STAT op. Grab those, then 2732 * we're done with the request. 2733 */ 2734 orig_request = obj_request->obj_request; 2735 obj_request->obj_request = NULL; 2736 rbd_obj_request_put(orig_request); 2737 rbd_assert(orig_request); 2738 rbd_assert(orig_request->img_request); 2739 2740 result = obj_request->result; 2741 obj_request->result = 0; 2742 2743 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2744 obj_request, orig_request, result, 2745 obj_request->xferred, obj_request->length); 2746 rbd_obj_request_put(obj_request); 2747 2748 /* 2749 * If the overlap has become 0 (most likely because the 2750 * image has been flattened) we need to re-submit the 2751 * original request. 2752 */ 2753 rbd_dev = orig_request->img_request->rbd_dev; 2754 if (!rbd_dev->parent_overlap) { 2755 rbd_obj_request_submit(orig_request); 2756 return; 2757 } 2758 2759 /* 2760 * Our only purpose here is to determine whether the object 2761 * exists, and we don't want to treat the non-existence as 2762 * an error. If something else comes back, transfer the 2763 * error to the original request and complete it now. 2764 */ 2765 if (!result) { 2766 obj_request_existence_set(orig_request, true); 2767 } else if (result == -ENOENT) { 2768 obj_request_existence_set(orig_request, false); 2769 } else { 2770 goto fail_orig_request; 2771 } 2772 2773 /* 2774 * Resubmit the original request now that we have recorded 2775 * whether the target object exists. 2776 */ 2777 result = rbd_img_obj_request_submit(orig_request); 2778 if (result) 2779 goto fail_orig_request; 2780 2781 return; 2782 2783 fail_orig_request: 2784 rbd_obj_request_error(orig_request, result); 2785 } 2786 2787 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2788 { 2789 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 2790 struct rbd_obj_request *stat_request; 2791 struct page **pages; 2792 u32 page_count; 2793 size_t size; 2794 int ret; 2795 2796 stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES); 2797 if (!stat_request) 2798 return -ENOMEM; 2799 2800 stat_request->object_no = obj_request->object_no; 2801 2802 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2803 stat_request); 2804 if (!stat_request->osd_req) { 2805 ret = -ENOMEM; 2806 goto fail_stat_request; 2807 } 2808 2809 /* 2810 * The response data for a STAT call consists of: 2811 * le64 length; 2812 * struct { 2813 * le32 tv_sec; 2814 * le32 tv_nsec; 2815 * } mtime; 2816 */ 2817 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2818 page_count = (u32)calc_pages_for(0, size); 2819 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2820 if (IS_ERR(pages)) { 2821 ret = PTR_ERR(pages); 2822 goto fail_stat_request; 2823 } 2824 2825 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2826 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2827 false, false); 2828 2829 rbd_obj_request_get(obj_request); 2830 stat_request->obj_request = obj_request; 2831 stat_request->pages = pages; 2832 stat_request->page_count = page_count; 2833 stat_request->callback = rbd_img_obj_exists_callback; 2834 2835 rbd_obj_request_submit(stat_request); 2836 return 0; 2837 2838 fail_stat_request: 2839 rbd_obj_request_put(stat_request); 2840 return ret; 2841 } 2842 2843 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2844 { 2845 struct rbd_img_request *img_request = obj_request->img_request; 2846 struct rbd_device *rbd_dev = img_request->rbd_dev; 2847 2848 /* Reads */ 2849 if (!img_request_write_test(img_request) && 2850 !img_request_discard_test(img_request)) 2851 return true; 2852 2853 /* Non-layered writes */ 2854 if (!img_request_layered_test(img_request)) 2855 return true; 2856 2857 /* 2858 * Layered writes outside of the parent overlap range don't 2859 * share any data with the parent. 2860 */ 2861 if (!obj_request_overlaps_parent(obj_request)) 2862 return true; 2863 2864 /* 2865 * Entire-object layered writes - we will overwrite whatever 2866 * parent data there is anyway. 2867 */ 2868 if (!obj_request->offset && 2869 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2870 return true; 2871 2872 /* 2873 * If the object is known to already exist, its parent data has 2874 * already been copied. 2875 */ 2876 if (obj_request_known_test(obj_request) && 2877 obj_request_exists_test(obj_request)) 2878 return true; 2879 2880 return false; 2881 } 2882 2883 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2884 { 2885 rbd_assert(obj_request_img_data_test(obj_request)); 2886 rbd_assert(obj_request_type_valid(obj_request->type)); 2887 rbd_assert(obj_request->img_request); 2888 2889 if (img_obj_request_simple(obj_request)) { 2890 rbd_obj_request_submit(obj_request); 2891 return 0; 2892 } 2893 2894 /* 2895 * It's a layered write. The target object might exist but 2896 * we may not know that yet. If we know it doesn't exist, 2897 * start by reading the data for the full target object from 2898 * the parent so we can use it for a copyup to the target. 2899 */ 2900 if (obj_request_known_test(obj_request)) 2901 return rbd_img_obj_parent_read_full(obj_request); 2902 2903 /* We don't know whether the target exists. Go find out. */ 2904 2905 return rbd_img_obj_exists_submit(obj_request); 2906 } 2907 2908 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2909 { 2910 struct rbd_obj_request *obj_request; 2911 struct rbd_obj_request *next_obj_request; 2912 int ret = 0; 2913 2914 dout("%s: img %p\n", __func__, img_request); 2915 2916 rbd_img_request_get(img_request); 2917 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2918 ret = rbd_img_obj_request_submit(obj_request); 2919 if (ret) 2920 goto out_put_ireq; 2921 } 2922 2923 out_put_ireq: 2924 rbd_img_request_put(img_request); 2925 return ret; 2926 } 2927 2928 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2929 { 2930 struct rbd_obj_request *obj_request; 2931 struct rbd_device *rbd_dev; 2932 u64 obj_end; 2933 u64 img_xferred; 2934 int img_result; 2935 2936 rbd_assert(img_request_child_test(img_request)); 2937 2938 /* First get what we need from the image request and release it */ 2939 2940 obj_request = img_request->obj_request; 2941 img_xferred = img_request->xferred; 2942 img_result = img_request->result; 2943 rbd_img_request_put(img_request); 2944 2945 /* 2946 * If the overlap has become 0 (most likely because the 2947 * image has been flattened) we need to re-submit the 2948 * original request. 2949 */ 2950 rbd_assert(obj_request); 2951 rbd_assert(obj_request->img_request); 2952 rbd_dev = obj_request->img_request->rbd_dev; 2953 if (!rbd_dev->parent_overlap) { 2954 rbd_obj_request_submit(obj_request); 2955 return; 2956 } 2957 2958 obj_request->result = img_result; 2959 if (obj_request->result) 2960 goto out; 2961 2962 /* 2963 * We need to zero anything beyond the parent overlap 2964 * boundary. Since rbd_img_obj_request_read_callback() 2965 * will zero anything beyond the end of a short read, an 2966 * easy way to do this is to pretend the data from the 2967 * parent came up short--ending at the overlap boundary. 2968 */ 2969 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2970 obj_end = obj_request->img_offset + obj_request->length; 2971 if (obj_end > rbd_dev->parent_overlap) { 2972 u64 xferred = 0; 2973 2974 if (obj_request->img_offset < rbd_dev->parent_overlap) 2975 xferred = rbd_dev->parent_overlap - 2976 obj_request->img_offset; 2977 2978 obj_request->xferred = min(img_xferred, xferred); 2979 } else { 2980 obj_request->xferred = img_xferred; 2981 } 2982 out: 2983 rbd_img_obj_request_read_callback(obj_request); 2984 rbd_obj_request_complete(obj_request); 2985 } 2986 2987 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2988 { 2989 struct rbd_img_request *img_request; 2990 int result; 2991 2992 rbd_assert(obj_request_img_data_test(obj_request)); 2993 rbd_assert(obj_request->img_request != NULL); 2994 rbd_assert(obj_request->result == (s32) -ENOENT); 2995 rbd_assert(obj_request_type_valid(obj_request->type)); 2996 2997 /* rbd_read_finish(obj_request, obj_request->length); */ 2998 img_request = rbd_parent_request_create(obj_request, 2999 obj_request->img_offset, 3000 obj_request->length); 3001 result = -ENOMEM; 3002 if (!img_request) 3003 goto out_err; 3004 3005 if (obj_request->type == OBJ_REQUEST_BIO) 3006 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3007 obj_request->bio_list); 3008 else 3009 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3010 obj_request->pages); 3011 if (result) 3012 goto out_err; 3013 3014 img_request->callback = rbd_img_parent_read_callback; 3015 result = rbd_img_request_submit(img_request); 3016 if (result) 3017 goto out_err; 3018 3019 return; 3020 out_err: 3021 if (img_request) 3022 rbd_img_request_put(img_request); 3023 obj_request->result = result; 3024 obj_request->xferred = 0; 3025 obj_request_done_set(obj_request); 3026 } 3027 3028 static const struct rbd_client_id rbd_empty_cid; 3029 3030 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3031 const struct rbd_client_id *rhs) 3032 { 3033 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3034 } 3035 3036 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3037 { 3038 struct rbd_client_id cid; 3039 3040 mutex_lock(&rbd_dev->watch_mutex); 3041 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3042 cid.handle = rbd_dev->watch_cookie; 3043 mutex_unlock(&rbd_dev->watch_mutex); 3044 return cid; 3045 } 3046 3047 /* 3048 * lock_rwsem must be held for write 3049 */ 3050 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3051 const struct rbd_client_id *cid) 3052 { 3053 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3054 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3055 cid->gid, cid->handle); 3056 rbd_dev->owner_cid = *cid; /* struct */ 3057 } 3058 3059 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3060 { 3061 mutex_lock(&rbd_dev->watch_mutex); 3062 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3063 mutex_unlock(&rbd_dev->watch_mutex); 3064 } 3065 3066 /* 3067 * lock_rwsem must be held for write 3068 */ 3069 static int rbd_lock(struct rbd_device *rbd_dev) 3070 { 3071 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3072 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3073 char cookie[32]; 3074 int ret; 3075 3076 WARN_ON(__rbd_is_lock_owner(rbd_dev)); 3077 3078 format_lock_cookie(rbd_dev, cookie); 3079 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3080 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3081 RBD_LOCK_TAG, "", 0); 3082 if (ret) 3083 return ret; 3084 3085 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3086 rbd_set_owner_cid(rbd_dev, &cid); 3087 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3088 return 0; 3089 } 3090 3091 /* 3092 * lock_rwsem must be held for write 3093 */ 3094 static int rbd_unlock(struct rbd_device *rbd_dev) 3095 { 3096 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3097 char cookie[32]; 3098 int ret; 3099 3100 WARN_ON(!__rbd_is_lock_owner(rbd_dev)); 3101 3102 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3103 3104 format_lock_cookie(rbd_dev, cookie); 3105 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3106 RBD_LOCK_NAME, cookie); 3107 if (ret && ret != -ENOENT) { 3108 rbd_warn(rbd_dev, "cls_unlock failed: %d", ret); 3109 return ret; 3110 } 3111 3112 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3113 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3114 return 0; 3115 } 3116 3117 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3118 enum rbd_notify_op notify_op, 3119 struct page ***preply_pages, 3120 size_t *preply_len) 3121 { 3122 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3123 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3124 int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN; 3125 char buf[buf_size]; 3126 void *p = buf; 3127 3128 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3129 3130 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3131 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3132 ceph_encode_32(&p, notify_op); 3133 ceph_encode_64(&p, cid.gid); 3134 ceph_encode_64(&p, cid.handle); 3135 3136 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3137 &rbd_dev->header_oloc, buf, buf_size, 3138 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3139 } 3140 3141 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3142 enum rbd_notify_op notify_op) 3143 { 3144 struct page **reply_pages; 3145 size_t reply_len; 3146 3147 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len); 3148 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3149 } 3150 3151 static void rbd_notify_acquired_lock(struct work_struct *work) 3152 { 3153 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3154 acquired_lock_work); 3155 3156 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3157 } 3158 3159 static void rbd_notify_released_lock(struct work_struct *work) 3160 { 3161 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3162 released_lock_work); 3163 3164 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3165 } 3166 3167 static int rbd_request_lock(struct rbd_device *rbd_dev) 3168 { 3169 struct page **reply_pages; 3170 size_t reply_len; 3171 bool lock_owner_responded = false; 3172 int ret; 3173 3174 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3175 3176 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3177 &reply_pages, &reply_len); 3178 if (ret && ret != -ETIMEDOUT) { 3179 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3180 goto out; 3181 } 3182 3183 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3184 void *p = page_address(reply_pages[0]); 3185 void *const end = p + reply_len; 3186 u32 n; 3187 3188 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3189 while (n--) { 3190 u8 struct_v; 3191 u32 len; 3192 3193 ceph_decode_need(&p, end, 8 + 8, e_inval); 3194 p += 8 + 8; /* skip gid and cookie */ 3195 3196 ceph_decode_32_safe(&p, end, len, e_inval); 3197 if (!len) 3198 continue; 3199 3200 if (lock_owner_responded) { 3201 rbd_warn(rbd_dev, 3202 "duplicate lock owners detected"); 3203 ret = -EIO; 3204 goto out; 3205 } 3206 3207 lock_owner_responded = true; 3208 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3209 &struct_v, &len); 3210 if (ret) { 3211 rbd_warn(rbd_dev, 3212 "failed to decode ResponseMessage: %d", 3213 ret); 3214 goto e_inval; 3215 } 3216 3217 ret = ceph_decode_32(&p); 3218 } 3219 } 3220 3221 if (!lock_owner_responded) { 3222 rbd_warn(rbd_dev, "no lock owners detected"); 3223 ret = -ETIMEDOUT; 3224 } 3225 3226 out: 3227 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3228 return ret; 3229 3230 e_inval: 3231 ret = -EINVAL; 3232 goto out; 3233 } 3234 3235 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all) 3236 { 3237 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all); 3238 3239 cancel_delayed_work(&rbd_dev->lock_dwork); 3240 if (wake_all) 3241 wake_up_all(&rbd_dev->lock_waitq); 3242 else 3243 wake_up(&rbd_dev->lock_waitq); 3244 } 3245 3246 static int get_lock_owner_info(struct rbd_device *rbd_dev, 3247 struct ceph_locker **lockers, u32 *num_lockers) 3248 { 3249 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3250 u8 lock_type; 3251 char *lock_tag; 3252 int ret; 3253 3254 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3255 3256 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3257 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3258 &lock_type, &lock_tag, lockers, num_lockers); 3259 if (ret) 3260 return ret; 3261 3262 if (*num_lockers == 0) { 3263 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3264 goto out; 3265 } 3266 3267 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3268 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3269 lock_tag); 3270 ret = -EBUSY; 3271 goto out; 3272 } 3273 3274 if (lock_type == CEPH_CLS_LOCK_SHARED) { 3275 rbd_warn(rbd_dev, "shared lock type detected"); 3276 ret = -EBUSY; 3277 goto out; 3278 } 3279 3280 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 3281 strlen(RBD_LOCK_COOKIE_PREFIX))) { 3282 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3283 (*lockers)[0].id.cookie); 3284 ret = -EBUSY; 3285 goto out; 3286 } 3287 3288 out: 3289 kfree(lock_tag); 3290 return ret; 3291 } 3292 3293 static int find_watcher(struct rbd_device *rbd_dev, 3294 const struct ceph_locker *locker) 3295 { 3296 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3297 struct ceph_watch_item *watchers; 3298 u32 num_watchers; 3299 u64 cookie; 3300 int i; 3301 int ret; 3302 3303 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3304 &rbd_dev->header_oloc, &watchers, 3305 &num_watchers); 3306 if (ret) 3307 return ret; 3308 3309 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3310 for (i = 0; i < num_watchers; i++) { 3311 if (!memcmp(&watchers[i].addr, &locker->info.addr, 3312 sizeof(locker->info.addr)) && 3313 watchers[i].cookie == cookie) { 3314 struct rbd_client_id cid = { 3315 .gid = le64_to_cpu(watchers[i].name.num), 3316 .handle = cookie, 3317 }; 3318 3319 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3320 rbd_dev, cid.gid, cid.handle); 3321 rbd_set_owner_cid(rbd_dev, &cid); 3322 ret = 1; 3323 goto out; 3324 } 3325 } 3326 3327 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3328 ret = 0; 3329 out: 3330 kfree(watchers); 3331 return ret; 3332 } 3333 3334 /* 3335 * lock_rwsem must be held for write 3336 */ 3337 static int rbd_try_lock(struct rbd_device *rbd_dev) 3338 { 3339 struct ceph_client *client = rbd_dev->rbd_client->client; 3340 struct ceph_locker *lockers; 3341 u32 num_lockers; 3342 int ret; 3343 3344 for (;;) { 3345 ret = rbd_lock(rbd_dev); 3346 if (ret != -EBUSY) 3347 return ret; 3348 3349 /* determine if the current lock holder is still alive */ 3350 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 3351 if (ret) 3352 return ret; 3353 3354 if (num_lockers == 0) 3355 goto again; 3356 3357 ret = find_watcher(rbd_dev, lockers); 3358 if (ret) { 3359 if (ret > 0) 3360 ret = 0; /* have to request lock */ 3361 goto out; 3362 } 3363 3364 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock", 3365 ENTITY_NAME(lockers[0].id.name)); 3366 3367 ret = ceph_monc_blacklist_add(&client->monc, 3368 &lockers[0].info.addr); 3369 if (ret) { 3370 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 3371 ENTITY_NAME(lockers[0].id.name), ret); 3372 goto out; 3373 } 3374 3375 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 3376 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3377 lockers[0].id.cookie, 3378 &lockers[0].id.name); 3379 if (ret && ret != -ENOENT) 3380 goto out; 3381 3382 again: 3383 ceph_free_lockers(lockers, num_lockers); 3384 } 3385 3386 out: 3387 ceph_free_lockers(lockers, num_lockers); 3388 return ret; 3389 } 3390 3391 /* 3392 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED 3393 */ 3394 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev, 3395 int *pret) 3396 { 3397 enum rbd_lock_state lock_state; 3398 3399 down_read(&rbd_dev->lock_rwsem); 3400 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3401 rbd_dev->lock_state); 3402 if (__rbd_is_lock_owner(rbd_dev)) { 3403 lock_state = rbd_dev->lock_state; 3404 up_read(&rbd_dev->lock_rwsem); 3405 return lock_state; 3406 } 3407 3408 up_read(&rbd_dev->lock_rwsem); 3409 down_write(&rbd_dev->lock_rwsem); 3410 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3411 rbd_dev->lock_state); 3412 if (!__rbd_is_lock_owner(rbd_dev)) { 3413 *pret = rbd_try_lock(rbd_dev); 3414 if (*pret) 3415 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret); 3416 } 3417 3418 lock_state = rbd_dev->lock_state; 3419 up_write(&rbd_dev->lock_rwsem); 3420 return lock_state; 3421 } 3422 3423 static void rbd_acquire_lock(struct work_struct *work) 3424 { 3425 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3426 struct rbd_device, lock_dwork); 3427 enum rbd_lock_state lock_state; 3428 int ret; 3429 3430 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3431 again: 3432 lock_state = rbd_try_acquire_lock(rbd_dev, &ret); 3433 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) { 3434 if (lock_state == RBD_LOCK_STATE_LOCKED) 3435 wake_requests(rbd_dev, true); 3436 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__, 3437 rbd_dev, lock_state, ret); 3438 return; 3439 } 3440 3441 ret = rbd_request_lock(rbd_dev); 3442 if (ret == -ETIMEDOUT) { 3443 goto again; /* treat this as a dead client */ 3444 } else if (ret < 0) { 3445 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 3446 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3447 RBD_RETRY_DELAY); 3448 } else { 3449 /* 3450 * lock owner acked, but resend if we don't see them 3451 * release the lock 3452 */ 3453 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__, 3454 rbd_dev); 3455 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3456 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 3457 } 3458 } 3459 3460 /* 3461 * lock_rwsem must be held for write 3462 */ 3463 static bool rbd_release_lock(struct rbd_device *rbd_dev) 3464 { 3465 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3466 rbd_dev->lock_state); 3467 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 3468 return false; 3469 3470 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 3471 downgrade_write(&rbd_dev->lock_rwsem); 3472 /* 3473 * Ensure that all in-flight IO is flushed. 3474 * 3475 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which 3476 * may be shared with other devices. 3477 */ 3478 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc); 3479 up_read(&rbd_dev->lock_rwsem); 3480 3481 down_write(&rbd_dev->lock_rwsem); 3482 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3483 rbd_dev->lock_state); 3484 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 3485 return false; 3486 3487 if (!rbd_unlock(rbd_dev)) 3488 /* 3489 * Give others a chance to grab the lock - we would re-acquire 3490 * almost immediately if we got new IO during ceph_osdc_sync() 3491 * otherwise. We need to ack our own notifications, so this 3492 * lock_dwork will be requeued from rbd_wait_state_locked() 3493 * after wake_requests() in rbd_handle_released_lock(). 3494 */ 3495 cancel_delayed_work(&rbd_dev->lock_dwork); 3496 3497 return true; 3498 } 3499 3500 static void rbd_release_lock_work(struct work_struct *work) 3501 { 3502 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3503 unlock_work); 3504 3505 down_write(&rbd_dev->lock_rwsem); 3506 rbd_release_lock(rbd_dev); 3507 up_write(&rbd_dev->lock_rwsem); 3508 } 3509 3510 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 3511 void **p) 3512 { 3513 struct rbd_client_id cid = { 0 }; 3514 3515 if (struct_v >= 2) { 3516 cid.gid = ceph_decode_64(p); 3517 cid.handle = ceph_decode_64(p); 3518 } 3519 3520 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3521 cid.handle); 3522 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3523 down_write(&rbd_dev->lock_rwsem); 3524 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3525 /* 3526 * we already know that the remote client is 3527 * the owner 3528 */ 3529 up_write(&rbd_dev->lock_rwsem); 3530 return; 3531 } 3532 3533 rbd_set_owner_cid(rbd_dev, &cid); 3534 downgrade_write(&rbd_dev->lock_rwsem); 3535 } else { 3536 down_read(&rbd_dev->lock_rwsem); 3537 } 3538 3539 if (!__rbd_is_lock_owner(rbd_dev)) 3540 wake_requests(rbd_dev, false); 3541 up_read(&rbd_dev->lock_rwsem); 3542 } 3543 3544 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 3545 void **p) 3546 { 3547 struct rbd_client_id cid = { 0 }; 3548 3549 if (struct_v >= 2) { 3550 cid.gid = ceph_decode_64(p); 3551 cid.handle = ceph_decode_64(p); 3552 } 3553 3554 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3555 cid.handle); 3556 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3557 down_write(&rbd_dev->lock_rwsem); 3558 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3559 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 3560 __func__, rbd_dev, cid.gid, cid.handle, 3561 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 3562 up_write(&rbd_dev->lock_rwsem); 3563 return; 3564 } 3565 3566 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3567 downgrade_write(&rbd_dev->lock_rwsem); 3568 } else { 3569 down_read(&rbd_dev->lock_rwsem); 3570 } 3571 3572 if (!__rbd_is_lock_owner(rbd_dev)) 3573 wake_requests(rbd_dev, false); 3574 up_read(&rbd_dev->lock_rwsem); 3575 } 3576 3577 static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 3578 void **p) 3579 { 3580 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 3581 struct rbd_client_id cid = { 0 }; 3582 bool need_to_send; 3583 3584 if (struct_v >= 2) { 3585 cid.gid = ceph_decode_64(p); 3586 cid.handle = ceph_decode_64(p); 3587 } 3588 3589 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3590 cid.handle); 3591 if (rbd_cid_equal(&cid, &my_cid)) 3592 return false; 3593 3594 down_read(&rbd_dev->lock_rwsem); 3595 need_to_send = __rbd_is_lock_owner(rbd_dev); 3596 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 3597 if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) { 3598 dout("%s rbd_dev %p queueing unlock_work\n", __func__, 3599 rbd_dev); 3600 queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work); 3601 } 3602 } 3603 up_read(&rbd_dev->lock_rwsem); 3604 return need_to_send; 3605 } 3606 3607 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 3608 u64 notify_id, u64 cookie, s32 *result) 3609 { 3610 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3611 int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN; 3612 char buf[buf_size]; 3613 int ret; 3614 3615 if (result) { 3616 void *p = buf; 3617 3618 /* encode ResponseMessage */ 3619 ceph_start_encoding(&p, 1, 1, 3620 buf_size - CEPH_ENCODING_START_BLK_LEN); 3621 ceph_encode_32(&p, *result); 3622 } else { 3623 buf_size = 0; 3624 } 3625 3626 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 3627 &rbd_dev->header_oloc, notify_id, cookie, 3628 buf, buf_size); 3629 if (ret) 3630 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 3631 } 3632 3633 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 3634 u64 cookie) 3635 { 3636 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3637 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 3638 } 3639 3640 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 3641 u64 notify_id, u64 cookie, s32 result) 3642 { 3643 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3644 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 3645 } 3646 3647 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 3648 u64 notifier_id, void *data, size_t data_len) 3649 { 3650 struct rbd_device *rbd_dev = arg; 3651 void *p = data; 3652 void *const end = p + data_len; 3653 u8 struct_v = 0; 3654 u32 len; 3655 u32 notify_op; 3656 int ret; 3657 3658 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 3659 __func__, rbd_dev, cookie, notify_id, data_len); 3660 if (data_len) { 3661 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 3662 &struct_v, &len); 3663 if (ret) { 3664 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 3665 ret); 3666 return; 3667 } 3668 3669 notify_op = ceph_decode_32(&p); 3670 } else { 3671 /* legacy notification for header updates */ 3672 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 3673 len = 0; 3674 } 3675 3676 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 3677 switch (notify_op) { 3678 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 3679 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 3680 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3681 break; 3682 case RBD_NOTIFY_OP_RELEASED_LOCK: 3683 rbd_handle_released_lock(rbd_dev, struct_v, &p); 3684 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3685 break; 3686 case RBD_NOTIFY_OP_REQUEST_LOCK: 3687 if (rbd_handle_request_lock(rbd_dev, struct_v, &p)) 3688 /* 3689 * send ResponseMessage(0) back so the client 3690 * can detect a missing owner 3691 */ 3692 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3693 cookie, 0); 3694 else 3695 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3696 break; 3697 case RBD_NOTIFY_OP_HEADER_UPDATE: 3698 ret = rbd_dev_refresh(rbd_dev); 3699 if (ret) 3700 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3701 3702 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3703 break; 3704 default: 3705 if (rbd_is_lock_owner(rbd_dev)) 3706 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3707 cookie, -EOPNOTSUPP); 3708 else 3709 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3710 break; 3711 } 3712 } 3713 3714 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 3715 3716 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 3717 { 3718 struct rbd_device *rbd_dev = arg; 3719 3720 rbd_warn(rbd_dev, "encountered watch error: %d", err); 3721 3722 down_write(&rbd_dev->lock_rwsem); 3723 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3724 up_write(&rbd_dev->lock_rwsem); 3725 3726 mutex_lock(&rbd_dev->watch_mutex); 3727 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 3728 __rbd_unregister_watch(rbd_dev); 3729 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 3730 3731 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 3732 } 3733 mutex_unlock(&rbd_dev->watch_mutex); 3734 } 3735 3736 /* 3737 * watch_mutex must be locked 3738 */ 3739 static int __rbd_register_watch(struct rbd_device *rbd_dev) 3740 { 3741 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3742 struct ceph_osd_linger_request *handle; 3743 3744 rbd_assert(!rbd_dev->watch_handle); 3745 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3746 3747 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 3748 &rbd_dev->header_oloc, rbd_watch_cb, 3749 rbd_watch_errcb, rbd_dev); 3750 if (IS_ERR(handle)) 3751 return PTR_ERR(handle); 3752 3753 rbd_dev->watch_handle = handle; 3754 return 0; 3755 } 3756 3757 /* 3758 * watch_mutex must be locked 3759 */ 3760 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 3761 { 3762 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3763 int ret; 3764 3765 rbd_assert(rbd_dev->watch_handle); 3766 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3767 3768 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 3769 if (ret) 3770 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 3771 3772 rbd_dev->watch_handle = NULL; 3773 } 3774 3775 static int rbd_register_watch(struct rbd_device *rbd_dev) 3776 { 3777 int ret; 3778 3779 mutex_lock(&rbd_dev->watch_mutex); 3780 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 3781 ret = __rbd_register_watch(rbd_dev); 3782 if (ret) 3783 goto out; 3784 3785 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3786 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3787 3788 out: 3789 mutex_unlock(&rbd_dev->watch_mutex); 3790 return ret; 3791 } 3792 3793 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 3794 { 3795 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3796 3797 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 3798 cancel_work_sync(&rbd_dev->acquired_lock_work); 3799 cancel_work_sync(&rbd_dev->released_lock_work); 3800 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 3801 cancel_work_sync(&rbd_dev->unlock_work); 3802 } 3803 3804 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 3805 { 3806 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq)); 3807 cancel_tasks_sync(rbd_dev); 3808 3809 mutex_lock(&rbd_dev->watch_mutex); 3810 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 3811 __rbd_unregister_watch(rbd_dev); 3812 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 3813 mutex_unlock(&rbd_dev->watch_mutex); 3814 3815 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 3816 } 3817 3818 static void rbd_reregister_watch(struct work_struct *work) 3819 { 3820 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3821 struct rbd_device, watch_dwork); 3822 bool was_lock_owner = false; 3823 bool need_to_wake = false; 3824 int ret; 3825 3826 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3827 3828 down_write(&rbd_dev->lock_rwsem); 3829 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3830 was_lock_owner = rbd_release_lock(rbd_dev); 3831 3832 mutex_lock(&rbd_dev->watch_mutex); 3833 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 3834 mutex_unlock(&rbd_dev->watch_mutex); 3835 goto out; 3836 } 3837 3838 ret = __rbd_register_watch(rbd_dev); 3839 if (ret) { 3840 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 3841 if (ret == -EBLACKLISTED || ret == -ENOENT) { 3842 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3843 need_to_wake = true; 3844 } else { 3845 queue_delayed_work(rbd_dev->task_wq, 3846 &rbd_dev->watch_dwork, 3847 RBD_RETRY_DELAY); 3848 } 3849 mutex_unlock(&rbd_dev->watch_mutex); 3850 goto out; 3851 } 3852 3853 need_to_wake = true; 3854 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3855 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3856 mutex_unlock(&rbd_dev->watch_mutex); 3857 3858 ret = rbd_dev_refresh(rbd_dev); 3859 if (ret) 3860 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret); 3861 3862 if (was_lock_owner) { 3863 ret = rbd_try_lock(rbd_dev); 3864 if (ret) 3865 rbd_warn(rbd_dev, "reregisteration lock failed: %d", 3866 ret); 3867 } 3868 3869 out: 3870 up_write(&rbd_dev->lock_rwsem); 3871 if (need_to_wake) 3872 wake_requests(rbd_dev, true); 3873 } 3874 3875 /* 3876 * Synchronous osd object method call. Returns the number of bytes 3877 * returned in the outbound buffer, or a negative error code. 3878 */ 3879 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3880 struct ceph_object_id *oid, 3881 struct ceph_object_locator *oloc, 3882 const char *method_name, 3883 const void *outbound, 3884 size_t outbound_size, 3885 void *inbound, 3886 size_t inbound_size) 3887 { 3888 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3889 struct page *req_page = NULL; 3890 struct page *reply_page; 3891 int ret; 3892 3893 /* 3894 * Method calls are ultimately read operations. The result 3895 * should placed into the inbound buffer provided. They 3896 * also supply outbound data--parameters for the object 3897 * method. Currently if this is present it will be a 3898 * snapshot id. 3899 */ 3900 if (outbound) { 3901 if (outbound_size > PAGE_SIZE) 3902 return -E2BIG; 3903 3904 req_page = alloc_page(GFP_KERNEL); 3905 if (!req_page) 3906 return -ENOMEM; 3907 3908 memcpy(page_address(req_page), outbound, outbound_size); 3909 } 3910 3911 reply_page = alloc_page(GFP_KERNEL); 3912 if (!reply_page) { 3913 if (req_page) 3914 __free_page(req_page); 3915 return -ENOMEM; 3916 } 3917 3918 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 3919 CEPH_OSD_FLAG_READ, req_page, outbound_size, 3920 reply_page, &inbound_size); 3921 if (!ret) { 3922 memcpy(inbound, page_address(reply_page), inbound_size); 3923 ret = inbound_size; 3924 } 3925 3926 if (req_page) 3927 __free_page(req_page); 3928 __free_page(reply_page); 3929 return ret; 3930 } 3931 3932 /* 3933 * lock_rwsem must be held for read 3934 */ 3935 static void rbd_wait_state_locked(struct rbd_device *rbd_dev) 3936 { 3937 DEFINE_WAIT(wait); 3938 3939 do { 3940 /* 3941 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3942 * and cancel_delayed_work() in wake_requests(). 3943 */ 3944 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3945 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3946 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait, 3947 TASK_UNINTERRUPTIBLE); 3948 up_read(&rbd_dev->lock_rwsem); 3949 schedule(); 3950 down_read(&rbd_dev->lock_rwsem); 3951 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 3952 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)); 3953 3954 finish_wait(&rbd_dev->lock_waitq, &wait); 3955 } 3956 3957 static void rbd_queue_workfn(struct work_struct *work) 3958 { 3959 struct request *rq = blk_mq_rq_from_pdu(work); 3960 struct rbd_device *rbd_dev = rq->q->queuedata; 3961 struct rbd_img_request *img_request; 3962 struct ceph_snap_context *snapc = NULL; 3963 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3964 u64 length = blk_rq_bytes(rq); 3965 enum obj_operation_type op_type; 3966 u64 mapping_size; 3967 bool must_be_locked; 3968 int result; 3969 3970 if (rq->cmd_type != REQ_TYPE_FS) { 3971 dout("%s: non-fs request type %d\n", __func__, 3972 (int) rq->cmd_type); 3973 result = -EIO; 3974 goto err; 3975 } 3976 3977 if (req_op(rq) == REQ_OP_DISCARD) 3978 op_type = OBJ_OP_DISCARD; 3979 else if (req_op(rq) == REQ_OP_WRITE) 3980 op_type = OBJ_OP_WRITE; 3981 else 3982 op_type = OBJ_OP_READ; 3983 3984 /* Ignore/skip any zero-length requests */ 3985 3986 if (!length) { 3987 dout("%s: zero-length request\n", __func__); 3988 result = 0; 3989 goto err_rq; 3990 } 3991 3992 /* Only reads are allowed to a read-only device */ 3993 3994 if (op_type != OBJ_OP_READ) { 3995 if (rbd_dev->mapping.read_only) { 3996 result = -EROFS; 3997 goto err_rq; 3998 } 3999 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 4000 } 4001 4002 /* 4003 * Quit early if the mapped snapshot no longer exists. It's 4004 * still possible the snapshot will have disappeared by the 4005 * time our request arrives at the osd, but there's no sense in 4006 * sending it if we already know. 4007 */ 4008 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 4009 dout("request for non-existent snapshot"); 4010 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 4011 result = -ENXIO; 4012 goto err_rq; 4013 } 4014 4015 if (offset && length > U64_MAX - offset + 1) { 4016 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 4017 length); 4018 result = -EINVAL; 4019 goto err_rq; /* Shouldn't happen */ 4020 } 4021 4022 blk_mq_start_request(rq); 4023 4024 down_read(&rbd_dev->header_rwsem); 4025 mapping_size = rbd_dev->mapping.size; 4026 if (op_type != OBJ_OP_READ) { 4027 snapc = rbd_dev->header.snapc; 4028 ceph_get_snap_context(snapc); 4029 must_be_locked = rbd_is_lock_supported(rbd_dev); 4030 } else { 4031 must_be_locked = rbd_dev->opts->lock_on_read && 4032 rbd_is_lock_supported(rbd_dev); 4033 } 4034 up_read(&rbd_dev->header_rwsem); 4035 4036 if (offset + length > mapping_size) { 4037 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4038 length, mapping_size); 4039 result = -EIO; 4040 goto err_rq; 4041 } 4042 4043 if (must_be_locked) { 4044 down_read(&rbd_dev->lock_rwsem); 4045 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED && 4046 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) 4047 rbd_wait_state_locked(rbd_dev); 4048 4049 WARN_ON((rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) ^ 4050 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)); 4051 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 4052 result = -EBLACKLISTED; 4053 goto err_unlock; 4054 } 4055 } 4056 4057 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 4058 snapc); 4059 if (!img_request) { 4060 result = -ENOMEM; 4061 goto err_unlock; 4062 } 4063 img_request->rq = rq; 4064 snapc = NULL; /* img_request consumes a ref */ 4065 4066 if (op_type == OBJ_OP_DISCARD) 4067 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 4068 NULL); 4069 else 4070 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 4071 rq->bio); 4072 if (result) 4073 goto err_img_request; 4074 4075 result = rbd_img_request_submit(img_request); 4076 if (result) 4077 goto err_img_request; 4078 4079 if (must_be_locked) 4080 up_read(&rbd_dev->lock_rwsem); 4081 return; 4082 4083 err_img_request: 4084 rbd_img_request_put(img_request); 4085 err_unlock: 4086 if (must_be_locked) 4087 up_read(&rbd_dev->lock_rwsem); 4088 err_rq: 4089 if (result) 4090 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4091 obj_op_name(op_type), length, offset, result); 4092 ceph_put_snap_context(snapc); 4093 err: 4094 blk_mq_end_request(rq, result); 4095 } 4096 4097 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4098 const struct blk_mq_queue_data *bd) 4099 { 4100 struct request *rq = bd->rq; 4101 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4102 4103 queue_work(rbd_wq, work); 4104 return BLK_MQ_RQ_QUEUE_OK; 4105 } 4106 4107 static void rbd_free_disk(struct rbd_device *rbd_dev) 4108 { 4109 struct gendisk *disk = rbd_dev->disk; 4110 4111 if (!disk) 4112 return; 4113 4114 rbd_dev->disk = NULL; 4115 if (disk->flags & GENHD_FL_UP) { 4116 del_gendisk(disk); 4117 if (disk->queue) 4118 blk_cleanup_queue(disk->queue); 4119 blk_mq_free_tag_set(&rbd_dev->tag_set); 4120 } 4121 put_disk(disk); 4122 } 4123 4124 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4125 struct ceph_object_id *oid, 4126 struct ceph_object_locator *oloc, 4127 void *buf, int buf_len) 4128 4129 { 4130 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4131 struct ceph_osd_request *req; 4132 struct page **pages; 4133 int num_pages = calc_pages_for(0, buf_len); 4134 int ret; 4135 4136 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4137 if (!req) 4138 return -ENOMEM; 4139 4140 ceph_oid_copy(&req->r_base_oid, oid); 4141 ceph_oloc_copy(&req->r_base_oloc, oloc); 4142 req->r_flags = CEPH_OSD_FLAG_READ; 4143 4144 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4145 if (ret) 4146 goto out_req; 4147 4148 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4149 if (IS_ERR(pages)) { 4150 ret = PTR_ERR(pages); 4151 goto out_req; 4152 } 4153 4154 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4155 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4156 true); 4157 4158 ceph_osdc_start_request(osdc, req, false); 4159 ret = ceph_osdc_wait_request(osdc, req); 4160 if (ret >= 0) 4161 ceph_copy_from_page_vector(pages, buf, 0, ret); 4162 4163 out_req: 4164 ceph_osdc_put_request(req); 4165 return ret; 4166 } 4167 4168 /* 4169 * Read the complete header for the given rbd device. On successful 4170 * return, the rbd_dev->header field will contain up-to-date 4171 * information about the image. 4172 */ 4173 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4174 { 4175 struct rbd_image_header_ondisk *ondisk = NULL; 4176 u32 snap_count = 0; 4177 u64 names_size = 0; 4178 u32 want_count; 4179 int ret; 4180 4181 /* 4182 * The complete header will include an array of its 64-bit 4183 * snapshot ids, followed by the names of those snapshots as 4184 * a contiguous block of NUL-terminated strings. Note that 4185 * the number of snapshots could change by the time we read 4186 * it in, in which case we re-read it. 4187 */ 4188 do { 4189 size_t size; 4190 4191 kfree(ondisk); 4192 4193 size = sizeof (*ondisk); 4194 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4195 size += names_size; 4196 ondisk = kmalloc(size, GFP_KERNEL); 4197 if (!ondisk) 4198 return -ENOMEM; 4199 4200 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4201 &rbd_dev->header_oloc, ondisk, size); 4202 if (ret < 0) 4203 goto out; 4204 if ((size_t)ret < size) { 4205 ret = -ENXIO; 4206 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4207 size, ret); 4208 goto out; 4209 } 4210 if (!rbd_dev_ondisk_valid(ondisk)) { 4211 ret = -ENXIO; 4212 rbd_warn(rbd_dev, "invalid header"); 4213 goto out; 4214 } 4215 4216 names_size = le64_to_cpu(ondisk->snap_names_len); 4217 want_count = snap_count; 4218 snap_count = le32_to_cpu(ondisk->snap_count); 4219 } while (snap_count != want_count); 4220 4221 ret = rbd_header_from_disk(rbd_dev, ondisk); 4222 out: 4223 kfree(ondisk); 4224 4225 return ret; 4226 } 4227 4228 /* 4229 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 4230 * has disappeared from the (just updated) snapshot context. 4231 */ 4232 static void rbd_exists_validate(struct rbd_device *rbd_dev) 4233 { 4234 u64 snap_id; 4235 4236 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 4237 return; 4238 4239 snap_id = rbd_dev->spec->snap_id; 4240 if (snap_id == CEPH_NOSNAP) 4241 return; 4242 4243 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 4244 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 4245 } 4246 4247 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4248 { 4249 sector_t size; 4250 4251 /* 4252 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4253 * try to update its size. If REMOVING is set, updating size 4254 * is just useless work since the device can't be opened. 4255 */ 4256 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4257 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4258 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4259 dout("setting size to %llu sectors", (unsigned long long)size); 4260 set_capacity(rbd_dev->disk, size); 4261 revalidate_disk(rbd_dev->disk); 4262 } 4263 } 4264 4265 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 4266 { 4267 u64 mapping_size; 4268 int ret; 4269 4270 down_write(&rbd_dev->header_rwsem); 4271 mapping_size = rbd_dev->mapping.size; 4272 4273 ret = rbd_dev_header_info(rbd_dev); 4274 if (ret) 4275 goto out; 4276 4277 /* 4278 * If there is a parent, see if it has disappeared due to the 4279 * mapped image getting flattened. 4280 */ 4281 if (rbd_dev->parent) { 4282 ret = rbd_dev_v2_parent_info(rbd_dev); 4283 if (ret) 4284 goto out; 4285 } 4286 4287 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 4288 rbd_dev->mapping.size = rbd_dev->header.image_size; 4289 } else { 4290 /* validate mapped snapshot's EXISTS flag */ 4291 rbd_exists_validate(rbd_dev); 4292 } 4293 4294 out: 4295 up_write(&rbd_dev->header_rwsem); 4296 if (!ret && mapping_size != rbd_dev->mapping.size) 4297 rbd_dev_update_size(rbd_dev); 4298 4299 return ret; 4300 } 4301 4302 static int rbd_init_request(void *data, struct request *rq, 4303 unsigned int hctx_idx, unsigned int request_idx, 4304 unsigned int numa_node) 4305 { 4306 struct work_struct *work = blk_mq_rq_to_pdu(rq); 4307 4308 INIT_WORK(work, rbd_queue_workfn); 4309 return 0; 4310 } 4311 4312 static struct blk_mq_ops rbd_mq_ops = { 4313 .queue_rq = rbd_queue_rq, 4314 .init_request = rbd_init_request, 4315 }; 4316 4317 static int rbd_init_disk(struct rbd_device *rbd_dev) 4318 { 4319 struct gendisk *disk; 4320 struct request_queue *q; 4321 u64 segment_size; 4322 int err; 4323 4324 /* create gendisk info */ 4325 disk = alloc_disk(single_major ? 4326 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 4327 RBD_MINORS_PER_MAJOR); 4328 if (!disk) 4329 return -ENOMEM; 4330 4331 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4332 rbd_dev->dev_id); 4333 disk->major = rbd_dev->major; 4334 disk->first_minor = rbd_dev->minor; 4335 if (single_major) 4336 disk->flags |= GENHD_FL_EXT_DEVT; 4337 disk->fops = &rbd_bd_ops; 4338 disk->private_data = rbd_dev; 4339 4340 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4341 rbd_dev->tag_set.ops = &rbd_mq_ops; 4342 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4343 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4344 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 4345 rbd_dev->tag_set.nr_hw_queues = 1; 4346 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 4347 4348 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4349 if (err) 4350 goto out_disk; 4351 4352 q = blk_mq_init_queue(&rbd_dev->tag_set); 4353 if (IS_ERR(q)) { 4354 err = PTR_ERR(q); 4355 goto out_tag_set; 4356 } 4357 4358 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 4359 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4360 4361 /* set io sizes to object size */ 4362 segment_size = rbd_obj_bytes(&rbd_dev->header); 4363 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 4364 q->limits.max_sectors = queue_max_hw_sectors(q); 4365 blk_queue_max_segments(q, segment_size / SECTOR_SIZE); 4366 blk_queue_max_segment_size(q, segment_size); 4367 blk_queue_io_min(q, segment_size); 4368 blk_queue_io_opt(q, segment_size); 4369 4370 /* enable the discard support */ 4371 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 4372 q->limits.discard_granularity = segment_size; 4373 q->limits.discard_alignment = segment_size; 4374 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE); 4375 q->limits.discard_zeroes_data = 1; 4376 4377 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4378 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES; 4379 4380 disk->queue = q; 4381 4382 q->queuedata = rbd_dev; 4383 4384 rbd_dev->disk = disk; 4385 4386 return 0; 4387 out_tag_set: 4388 blk_mq_free_tag_set(&rbd_dev->tag_set); 4389 out_disk: 4390 put_disk(disk); 4391 return err; 4392 } 4393 4394 /* 4395 sysfs 4396 */ 4397 4398 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4399 { 4400 return container_of(dev, struct rbd_device, dev); 4401 } 4402 4403 static ssize_t rbd_size_show(struct device *dev, 4404 struct device_attribute *attr, char *buf) 4405 { 4406 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4407 4408 return sprintf(buf, "%llu\n", 4409 (unsigned long long)rbd_dev->mapping.size); 4410 } 4411 4412 /* 4413 * Note this shows the features for whatever's mapped, which is not 4414 * necessarily the base image. 4415 */ 4416 static ssize_t rbd_features_show(struct device *dev, 4417 struct device_attribute *attr, char *buf) 4418 { 4419 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4420 4421 return sprintf(buf, "0x%016llx\n", 4422 (unsigned long long)rbd_dev->mapping.features); 4423 } 4424 4425 static ssize_t rbd_major_show(struct device *dev, 4426 struct device_attribute *attr, char *buf) 4427 { 4428 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4429 4430 if (rbd_dev->major) 4431 return sprintf(buf, "%d\n", rbd_dev->major); 4432 4433 return sprintf(buf, "(none)\n"); 4434 } 4435 4436 static ssize_t rbd_minor_show(struct device *dev, 4437 struct device_attribute *attr, char *buf) 4438 { 4439 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4440 4441 return sprintf(buf, "%d\n", rbd_dev->minor); 4442 } 4443 4444 static ssize_t rbd_client_addr_show(struct device *dev, 4445 struct device_attribute *attr, char *buf) 4446 { 4447 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4448 struct ceph_entity_addr *client_addr = 4449 ceph_client_addr(rbd_dev->rbd_client->client); 4450 4451 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 4452 le32_to_cpu(client_addr->nonce)); 4453 } 4454 4455 static ssize_t rbd_client_id_show(struct device *dev, 4456 struct device_attribute *attr, char *buf) 4457 { 4458 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4459 4460 return sprintf(buf, "client%lld\n", 4461 ceph_client_gid(rbd_dev->rbd_client->client)); 4462 } 4463 4464 static ssize_t rbd_cluster_fsid_show(struct device *dev, 4465 struct device_attribute *attr, char *buf) 4466 { 4467 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4468 4469 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 4470 } 4471 4472 static ssize_t rbd_config_info_show(struct device *dev, 4473 struct device_attribute *attr, char *buf) 4474 { 4475 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4476 4477 return sprintf(buf, "%s\n", rbd_dev->config_info); 4478 } 4479 4480 static ssize_t rbd_pool_show(struct device *dev, 4481 struct device_attribute *attr, char *buf) 4482 { 4483 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4484 4485 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 4486 } 4487 4488 static ssize_t rbd_pool_id_show(struct device *dev, 4489 struct device_attribute *attr, char *buf) 4490 { 4491 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4492 4493 return sprintf(buf, "%llu\n", 4494 (unsigned long long) rbd_dev->spec->pool_id); 4495 } 4496 4497 static ssize_t rbd_name_show(struct device *dev, 4498 struct device_attribute *attr, char *buf) 4499 { 4500 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4501 4502 if (rbd_dev->spec->image_name) 4503 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 4504 4505 return sprintf(buf, "(unknown)\n"); 4506 } 4507 4508 static ssize_t rbd_image_id_show(struct device *dev, 4509 struct device_attribute *attr, char *buf) 4510 { 4511 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4512 4513 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 4514 } 4515 4516 /* 4517 * Shows the name of the currently-mapped snapshot (or 4518 * RBD_SNAP_HEAD_NAME for the base image). 4519 */ 4520 static ssize_t rbd_snap_show(struct device *dev, 4521 struct device_attribute *attr, 4522 char *buf) 4523 { 4524 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4525 4526 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 4527 } 4528 4529 static ssize_t rbd_snap_id_show(struct device *dev, 4530 struct device_attribute *attr, char *buf) 4531 { 4532 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4533 4534 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 4535 } 4536 4537 /* 4538 * For a v2 image, shows the chain of parent images, separated by empty 4539 * lines. For v1 images or if there is no parent, shows "(no parent 4540 * image)". 4541 */ 4542 static ssize_t rbd_parent_show(struct device *dev, 4543 struct device_attribute *attr, 4544 char *buf) 4545 { 4546 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4547 ssize_t count = 0; 4548 4549 if (!rbd_dev->parent) 4550 return sprintf(buf, "(no parent image)\n"); 4551 4552 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 4553 struct rbd_spec *spec = rbd_dev->parent_spec; 4554 4555 count += sprintf(&buf[count], "%s" 4556 "pool_id %llu\npool_name %s\n" 4557 "image_id %s\nimage_name %s\n" 4558 "snap_id %llu\nsnap_name %s\n" 4559 "overlap %llu\n", 4560 !count ? "" : "\n", /* first? */ 4561 spec->pool_id, spec->pool_name, 4562 spec->image_id, spec->image_name ?: "(unknown)", 4563 spec->snap_id, spec->snap_name, 4564 rbd_dev->parent_overlap); 4565 } 4566 4567 return count; 4568 } 4569 4570 static ssize_t rbd_image_refresh(struct device *dev, 4571 struct device_attribute *attr, 4572 const char *buf, 4573 size_t size) 4574 { 4575 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4576 int ret; 4577 4578 ret = rbd_dev_refresh(rbd_dev); 4579 if (ret) 4580 return ret; 4581 4582 return size; 4583 } 4584 4585 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 4586 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 4587 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 4588 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 4589 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL); 4590 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 4591 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL); 4592 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL); 4593 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 4594 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 4595 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 4596 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 4597 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 4598 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 4599 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL); 4600 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 4601 4602 static struct attribute *rbd_attrs[] = { 4603 &dev_attr_size.attr, 4604 &dev_attr_features.attr, 4605 &dev_attr_major.attr, 4606 &dev_attr_minor.attr, 4607 &dev_attr_client_addr.attr, 4608 &dev_attr_client_id.attr, 4609 &dev_attr_cluster_fsid.attr, 4610 &dev_attr_config_info.attr, 4611 &dev_attr_pool.attr, 4612 &dev_attr_pool_id.attr, 4613 &dev_attr_name.attr, 4614 &dev_attr_image_id.attr, 4615 &dev_attr_current_snap.attr, 4616 &dev_attr_snap_id.attr, 4617 &dev_attr_parent.attr, 4618 &dev_attr_refresh.attr, 4619 NULL 4620 }; 4621 4622 static struct attribute_group rbd_attr_group = { 4623 .attrs = rbd_attrs, 4624 }; 4625 4626 static const struct attribute_group *rbd_attr_groups[] = { 4627 &rbd_attr_group, 4628 NULL 4629 }; 4630 4631 static void rbd_dev_release(struct device *dev); 4632 4633 static const struct device_type rbd_device_type = { 4634 .name = "rbd", 4635 .groups = rbd_attr_groups, 4636 .release = rbd_dev_release, 4637 }; 4638 4639 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4640 { 4641 kref_get(&spec->kref); 4642 4643 return spec; 4644 } 4645 4646 static void rbd_spec_free(struct kref *kref); 4647 static void rbd_spec_put(struct rbd_spec *spec) 4648 { 4649 if (spec) 4650 kref_put(&spec->kref, rbd_spec_free); 4651 } 4652 4653 static struct rbd_spec *rbd_spec_alloc(void) 4654 { 4655 struct rbd_spec *spec; 4656 4657 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4658 if (!spec) 4659 return NULL; 4660 4661 spec->pool_id = CEPH_NOPOOL; 4662 spec->snap_id = CEPH_NOSNAP; 4663 kref_init(&spec->kref); 4664 4665 return spec; 4666 } 4667 4668 static void rbd_spec_free(struct kref *kref) 4669 { 4670 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4671 4672 kfree(spec->pool_name); 4673 kfree(spec->image_id); 4674 kfree(spec->image_name); 4675 kfree(spec->snap_name); 4676 kfree(spec); 4677 } 4678 4679 static void rbd_dev_free(struct rbd_device *rbd_dev) 4680 { 4681 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 4682 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 4683 4684 ceph_oid_destroy(&rbd_dev->header_oid); 4685 ceph_oloc_destroy(&rbd_dev->header_oloc); 4686 kfree(rbd_dev->config_info); 4687 4688 rbd_put_client(rbd_dev->rbd_client); 4689 rbd_spec_put(rbd_dev->spec); 4690 kfree(rbd_dev->opts); 4691 kfree(rbd_dev); 4692 } 4693 4694 static void rbd_dev_release(struct device *dev) 4695 { 4696 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4697 bool need_put = !!rbd_dev->opts; 4698 4699 if (need_put) { 4700 destroy_workqueue(rbd_dev->task_wq); 4701 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4702 } 4703 4704 rbd_dev_free(rbd_dev); 4705 4706 /* 4707 * This is racy, but way better than putting module outside of 4708 * the release callback. The race window is pretty small, so 4709 * doing something similar to dm (dm-builtin.c) is overkill. 4710 */ 4711 if (need_put) 4712 module_put(THIS_MODULE); 4713 } 4714 4715 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 4716 struct rbd_spec *spec) 4717 { 4718 struct rbd_device *rbd_dev; 4719 4720 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 4721 if (!rbd_dev) 4722 return NULL; 4723 4724 spin_lock_init(&rbd_dev->lock); 4725 INIT_LIST_HEAD(&rbd_dev->node); 4726 init_rwsem(&rbd_dev->header_rwsem); 4727 4728 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 4729 ceph_oid_init(&rbd_dev->header_oid); 4730 rbd_dev->header_oloc.pool = spec->pool_id; 4731 4732 mutex_init(&rbd_dev->watch_mutex); 4733 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4734 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 4735 4736 init_rwsem(&rbd_dev->lock_rwsem); 4737 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 4738 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 4739 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 4740 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 4741 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 4742 init_waitqueue_head(&rbd_dev->lock_waitq); 4743 4744 rbd_dev->dev.bus = &rbd_bus_type; 4745 rbd_dev->dev.type = &rbd_device_type; 4746 rbd_dev->dev.parent = &rbd_root_dev; 4747 device_initialize(&rbd_dev->dev); 4748 4749 rbd_dev->rbd_client = rbdc; 4750 rbd_dev->spec = spec; 4751 4752 return rbd_dev; 4753 } 4754 4755 /* 4756 * Create a mapping rbd_dev. 4757 */ 4758 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4759 struct rbd_spec *spec, 4760 struct rbd_options *opts) 4761 { 4762 struct rbd_device *rbd_dev; 4763 4764 rbd_dev = __rbd_dev_create(rbdc, spec); 4765 if (!rbd_dev) 4766 return NULL; 4767 4768 rbd_dev->opts = opts; 4769 4770 /* get an id and fill in device name */ 4771 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 4772 minor_to_rbd_dev_id(1 << MINORBITS), 4773 GFP_KERNEL); 4774 if (rbd_dev->dev_id < 0) 4775 goto fail_rbd_dev; 4776 4777 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 4778 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 4779 rbd_dev->name); 4780 if (!rbd_dev->task_wq) 4781 goto fail_dev_id; 4782 4783 /* we have a ref from do_rbd_add() */ 4784 __module_get(THIS_MODULE); 4785 4786 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 4787 return rbd_dev; 4788 4789 fail_dev_id: 4790 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4791 fail_rbd_dev: 4792 rbd_dev_free(rbd_dev); 4793 return NULL; 4794 } 4795 4796 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4797 { 4798 if (rbd_dev) 4799 put_device(&rbd_dev->dev); 4800 } 4801 4802 /* 4803 * Get the size and object order for an image snapshot, or if 4804 * snap_id is CEPH_NOSNAP, gets this information for the base 4805 * image. 4806 */ 4807 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4808 u8 *order, u64 *snap_size) 4809 { 4810 __le64 snapid = cpu_to_le64(snap_id); 4811 int ret; 4812 struct { 4813 u8 order; 4814 __le64 size; 4815 } __attribute__ ((packed)) size_buf = { 0 }; 4816 4817 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4818 &rbd_dev->header_oloc, "get_size", 4819 &snapid, sizeof(snapid), 4820 &size_buf, sizeof(size_buf)); 4821 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4822 if (ret < 0) 4823 return ret; 4824 if (ret < sizeof (size_buf)) 4825 return -ERANGE; 4826 4827 if (order) { 4828 *order = size_buf.order; 4829 dout(" order %u", (unsigned int)*order); 4830 } 4831 *snap_size = le64_to_cpu(size_buf.size); 4832 4833 dout(" snap_id 0x%016llx snap_size = %llu\n", 4834 (unsigned long long)snap_id, 4835 (unsigned long long)*snap_size); 4836 4837 return 0; 4838 } 4839 4840 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4841 { 4842 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4843 &rbd_dev->header.obj_order, 4844 &rbd_dev->header.image_size); 4845 } 4846 4847 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4848 { 4849 void *reply_buf; 4850 int ret; 4851 void *p; 4852 4853 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4854 if (!reply_buf) 4855 return -ENOMEM; 4856 4857 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4858 &rbd_dev->header_oloc, "get_object_prefix", 4859 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4860 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4861 if (ret < 0) 4862 goto out; 4863 4864 p = reply_buf; 4865 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4866 p + ret, NULL, GFP_NOIO); 4867 ret = 0; 4868 4869 if (IS_ERR(rbd_dev->header.object_prefix)) { 4870 ret = PTR_ERR(rbd_dev->header.object_prefix); 4871 rbd_dev->header.object_prefix = NULL; 4872 } else { 4873 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4874 } 4875 out: 4876 kfree(reply_buf); 4877 4878 return ret; 4879 } 4880 4881 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4882 u64 *snap_features) 4883 { 4884 __le64 snapid = cpu_to_le64(snap_id); 4885 struct { 4886 __le64 features; 4887 __le64 incompat; 4888 } __attribute__ ((packed)) features_buf = { 0 }; 4889 u64 unsup; 4890 int ret; 4891 4892 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4893 &rbd_dev->header_oloc, "get_features", 4894 &snapid, sizeof(snapid), 4895 &features_buf, sizeof(features_buf)); 4896 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4897 if (ret < 0) 4898 return ret; 4899 if (ret < sizeof (features_buf)) 4900 return -ERANGE; 4901 4902 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 4903 if (unsup) { 4904 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 4905 unsup); 4906 return -ENXIO; 4907 } 4908 4909 *snap_features = le64_to_cpu(features_buf.features); 4910 4911 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4912 (unsigned long long)snap_id, 4913 (unsigned long long)*snap_features, 4914 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4915 4916 return 0; 4917 } 4918 4919 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4920 { 4921 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4922 &rbd_dev->header.features); 4923 } 4924 4925 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4926 { 4927 struct rbd_spec *parent_spec; 4928 size_t size; 4929 void *reply_buf = NULL; 4930 __le64 snapid; 4931 void *p; 4932 void *end; 4933 u64 pool_id; 4934 char *image_id; 4935 u64 snap_id; 4936 u64 overlap; 4937 int ret; 4938 4939 parent_spec = rbd_spec_alloc(); 4940 if (!parent_spec) 4941 return -ENOMEM; 4942 4943 size = sizeof (__le64) + /* pool_id */ 4944 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4945 sizeof (__le64) + /* snap_id */ 4946 sizeof (__le64); /* overlap */ 4947 reply_buf = kmalloc(size, GFP_KERNEL); 4948 if (!reply_buf) { 4949 ret = -ENOMEM; 4950 goto out_err; 4951 } 4952 4953 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4954 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4955 &rbd_dev->header_oloc, "get_parent", 4956 &snapid, sizeof(snapid), reply_buf, size); 4957 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4958 if (ret < 0) 4959 goto out_err; 4960 4961 p = reply_buf; 4962 end = reply_buf + ret; 4963 ret = -ERANGE; 4964 ceph_decode_64_safe(&p, end, pool_id, out_err); 4965 if (pool_id == CEPH_NOPOOL) { 4966 /* 4967 * Either the parent never existed, or we have 4968 * record of it but the image got flattened so it no 4969 * longer has a parent. When the parent of a 4970 * layered image disappears we immediately set the 4971 * overlap to 0. The effect of this is that all new 4972 * requests will be treated as if the image had no 4973 * parent. 4974 */ 4975 if (rbd_dev->parent_overlap) { 4976 rbd_dev->parent_overlap = 0; 4977 rbd_dev_parent_put(rbd_dev); 4978 pr_info("%s: clone image has been flattened\n", 4979 rbd_dev->disk->disk_name); 4980 } 4981 4982 goto out; /* No parent? No problem. */ 4983 } 4984 4985 /* The ceph file layout needs to fit pool id in 32 bits */ 4986 4987 ret = -EIO; 4988 if (pool_id > (u64)U32_MAX) { 4989 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4990 (unsigned long long)pool_id, U32_MAX); 4991 goto out_err; 4992 } 4993 4994 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4995 if (IS_ERR(image_id)) { 4996 ret = PTR_ERR(image_id); 4997 goto out_err; 4998 } 4999 ceph_decode_64_safe(&p, end, snap_id, out_err); 5000 ceph_decode_64_safe(&p, end, overlap, out_err); 5001 5002 /* 5003 * The parent won't change (except when the clone is 5004 * flattened, already handled that). So we only need to 5005 * record the parent spec we have not already done so. 5006 */ 5007 if (!rbd_dev->parent_spec) { 5008 parent_spec->pool_id = pool_id; 5009 parent_spec->image_id = image_id; 5010 parent_spec->snap_id = snap_id; 5011 rbd_dev->parent_spec = parent_spec; 5012 parent_spec = NULL; /* rbd_dev now owns this */ 5013 } else { 5014 kfree(image_id); 5015 } 5016 5017 /* 5018 * We always update the parent overlap. If it's zero we issue 5019 * a warning, as we will proceed as if there was no parent. 5020 */ 5021 if (!overlap) { 5022 if (parent_spec) { 5023 /* refresh, careful to warn just once */ 5024 if (rbd_dev->parent_overlap) 5025 rbd_warn(rbd_dev, 5026 "clone now standalone (overlap became 0)"); 5027 } else { 5028 /* initial probe */ 5029 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5030 } 5031 } 5032 rbd_dev->parent_overlap = overlap; 5033 5034 out: 5035 ret = 0; 5036 out_err: 5037 kfree(reply_buf); 5038 rbd_spec_put(parent_spec); 5039 5040 return ret; 5041 } 5042 5043 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 5044 { 5045 struct { 5046 __le64 stripe_unit; 5047 __le64 stripe_count; 5048 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5049 size_t size = sizeof (striping_info_buf); 5050 void *p; 5051 u64 obj_size; 5052 u64 stripe_unit; 5053 u64 stripe_count; 5054 int ret; 5055 5056 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5057 &rbd_dev->header_oloc, "get_stripe_unit_count", 5058 NULL, 0, &striping_info_buf, size); 5059 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5060 if (ret < 0) 5061 return ret; 5062 if (ret < size) 5063 return -ERANGE; 5064 5065 /* 5066 * We don't actually support the "fancy striping" feature 5067 * (STRIPINGV2) yet, but if the striping sizes are the 5068 * defaults the behavior is the same as before. So find 5069 * out, and only fail if the image has non-default values. 5070 */ 5071 ret = -EINVAL; 5072 obj_size = rbd_obj_bytes(&rbd_dev->header); 5073 p = &striping_info_buf; 5074 stripe_unit = ceph_decode_64(&p); 5075 if (stripe_unit != obj_size) { 5076 rbd_warn(rbd_dev, "unsupported stripe unit " 5077 "(got %llu want %llu)", 5078 stripe_unit, obj_size); 5079 return -EINVAL; 5080 } 5081 stripe_count = ceph_decode_64(&p); 5082 if (stripe_count != 1) { 5083 rbd_warn(rbd_dev, "unsupported stripe count " 5084 "(got %llu want 1)", stripe_count); 5085 return -EINVAL; 5086 } 5087 rbd_dev->header.stripe_unit = stripe_unit; 5088 rbd_dev->header.stripe_count = stripe_count; 5089 5090 return 0; 5091 } 5092 5093 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 5094 { 5095 __le64 data_pool_id; 5096 int ret; 5097 5098 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5099 &rbd_dev->header_oloc, "get_data_pool", 5100 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 5101 if (ret < 0) 5102 return ret; 5103 if (ret < sizeof(data_pool_id)) 5104 return -EBADMSG; 5105 5106 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 5107 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 5108 return 0; 5109 } 5110 5111 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5112 { 5113 CEPH_DEFINE_OID_ONSTACK(oid); 5114 size_t image_id_size; 5115 char *image_id; 5116 void *p; 5117 void *end; 5118 size_t size; 5119 void *reply_buf = NULL; 5120 size_t len = 0; 5121 char *image_name = NULL; 5122 int ret; 5123 5124 rbd_assert(!rbd_dev->spec->image_name); 5125 5126 len = strlen(rbd_dev->spec->image_id); 5127 image_id_size = sizeof (__le32) + len; 5128 image_id = kmalloc(image_id_size, GFP_KERNEL); 5129 if (!image_id) 5130 return NULL; 5131 5132 p = image_id; 5133 end = image_id + image_id_size; 5134 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5135 5136 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5137 reply_buf = kmalloc(size, GFP_KERNEL); 5138 if (!reply_buf) 5139 goto out; 5140 5141 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5142 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5143 "dir_get_name", image_id, image_id_size, 5144 reply_buf, size); 5145 if (ret < 0) 5146 goto out; 5147 p = reply_buf; 5148 end = reply_buf + ret; 5149 5150 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5151 if (IS_ERR(image_name)) 5152 image_name = NULL; 5153 else 5154 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5155 out: 5156 kfree(reply_buf); 5157 kfree(image_id); 5158 5159 return image_name; 5160 } 5161 5162 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5163 { 5164 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5165 const char *snap_name; 5166 u32 which = 0; 5167 5168 /* Skip over names until we find the one we are looking for */ 5169 5170 snap_name = rbd_dev->header.snap_names; 5171 while (which < snapc->num_snaps) { 5172 if (!strcmp(name, snap_name)) 5173 return snapc->snaps[which]; 5174 snap_name += strlen(snap_name) + 1; 5175 which++; 5176 } 5177 return CEPH_NOSNAP; 5178 } 5179 5180 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5181 { 5182 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5183 u32 which; 5184 bool found = false; 5185 u64 snap_id; 5186 5187 for (which = 0; !found && which < snapc->num_snaps; which++) { 5188 const char *snap_name; 5189 5190 snap_id = snapc->snaps[which]; 5191 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5192 if (IS_ERR(snap_name)) { 5193 /* ignore no-longer existing snapshots */ 5194 if (PTR_ERR(snap_name) == -ENOENT) 5195 continue; 5196 else 5197 break; 5198 } 5199 found = !strcmp(name, snap_name); 5200 kfree(snap_name); 5201 } 5202 return found ? snap_id : CEPH_NOSNAP; 5203 } 5204 5205 /* 5206 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5207 * no snapshot by that name is found, or if an error occurs. 5208 */ 5209 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5210 { 5211 if (rbd_dev->image_format == 1) 5212 return rbd_v1_snap_id_by_name(rbd_dev, name); 5213 5214 return rbd_v2_snap_id_by_name(rbd_dev, name); 5215 } 5216 5217 /* 5218 * An image being mapped will have everything but the snap id. 5219 */ 5220 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5221 { 5222 struct rbd_spec *spec = rbd_dev->spec; 5223 5224 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5225 rbd_assert(spec->image_id && spec->image_name); 5226 rbd_assert(spec->snap_name); 5227 5228 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5229 u64 snap_id; 5230 5231 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5232 if (snap_id == CEPH_NOSNAP) 5233 return -ENOENT; 5234 5235 spec->snap_id = snap_id; 5236 } else { 5237 spec->snap_id = CEPH_NOSNAP; 5238 } 5239 5240 return 0; 5241 } 5242 5243 /* 5244 * A parent image will have all ids but none of the names. 5245 * 5246 * All names in an rbd spec are dynamically allocated. It's OK if we 5247 * can't figure out the name for an image id. 5248 */ 5249 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 5250 { 5251 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5252 struct rbd_spec *spec = rbd_dev->spec; 5253 const char *pool_name; 5254 const char *image_name; 5255 const char *snap_name; 5256 int ret; 5257 5258 rbd_assert(spec->pool_id != CEPH_NOPOOL); 5259 rbd_assert(spec->image_id); 5260 rbd_assert(spec->snap_id != CEPH_NOSNAP); 5261 5262 /* Get the pool name; we have to make our own copy of this */ 5263 5264 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 5265 if (!pool_name) { 5266 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 5267 return -EIO; 5268 } 5269 pool_name = kstrdup(pool_name, GFP_KERNEL); 5270 if (!pool_name) 5271 return -ENOMEM; 5272 5273 /* Fetch the image name; tolerate failure here */ 5274 5275 image_name = rbd_dev_image_name(rbd_dev); 5276 if (!image_name) 5277 rbd_warn(rbd_dev, "unable to get image name"); 5278 5279 /* Fetch the snapshot name */ 5280 5281 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 5282 if (IS_ERR(snap_name)) { 5283 ret = PTR_ERR(snap_name); 5284 goto out_err; 5285 } 5286 5287 spec->pool_name = pool_name; 5288 spec->image_name = image_name; 5289 spec->snap_name = snap_name; 5290 5291 return 0; 5292 5293 out_err: 5294 kfree(image_name); 5295 kfree(pool_name); 5296 return ret; 5297 } 5298 5299 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 5300 { 5301 size_t size; 5302 int ret; 5303 void *reply_buf; 5304 void *p; 5305 void *end; 5306 u64 seq; 5307 u32 snap_count; 5308 struct ceph_snap_context *snapc; 5309 u32 i; 5310 5311 /* 5312 * We'll need room for the seq value (maximum snapshot id), 5313 * snapshot count, and array of that many snapshot ids. 5314 * For now we have a fixed upper limit on the number we're 5315 * prepared to receive. 5316 */ 5317 size = sizeof (__le64) + sizeof (__le32) + 5318 RBD_MAX_SNAP_COUNT * sizeof (__le64); 5319 reply_buf = kzalloc(size, GFP_KERNEL); 5320 if (!reply_buf) 5321 return -ENOMEM; 5322 5323 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5324 &rbd_dev->header_oloc, "get_snapcontext", 5325 NULL, 0, reply_buf, size); 5326 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5327 if (ret < 0) 5328 goto out; 5329 5330 p = reply_buf; 5331 end = reply_buf + ret; 5332 ret = -ERANGE; 5333 ceph_decode_64_safe(&p, end, seq, out); 5334 ceph_decode_32_safe(&p, end, snap_count, out); 5335 5336 /* 5337 * Make sure the reported number of snapshot ids wouldn't go 5338 * beyond the end of our buffer. But before checking that, 5339 * make sure the computed size of the snapshot context we 5340 * allocate is representable in a size_t. 5341 */ 5342 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 5343 / sizeof (u64)) { 5344 ret = -EINVAL; 5345 goto out; 5346 } 5347 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 5348 goto out; 5349 ret = 0; 5350 5351 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 5352 if (!snapc) { 5353 ret = -ENOMEM; 5354 goto out; 5355 } 5356 snapc->seq = seq; 5357 for (i = 0; i < snap_count; i++) 5358 snapc->snaps[i] = ceph_decode_64(&p); 5359 5360 ceph_put_snap_context(rbd_dev->header.snapc); 5361 rbd_dev->header.snapc = snapc; 5362 5363 dout(" snap context seq = %llu, snap_count = %u\n", 5364 (unsigned long long)seq, (unsigned int)snap_count); 5365 out: 5366 kfree(reply_buf); 5367 5368 return ret; 5369 } 5370 5371 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 5372 u64 snap_id) 5373 { 5374 size_t size; 5375 void *reply_buf; 5376 __le64 snapid; 5377 int ret; 5378 void *p; 5379 void *end; 5380 char *snap_name; 5381 5382 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 5383 reply_buf = kmalloc(size, GFP_KERNEL); 5384 if (!reply_buf) 5385 return ERR_PTR(-ENOMEM); 5386 5387 snapid = cpu_to_le64(snap_id); 5388 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5389 &rbd_dev->header_oloc, "get_snapshot_name", 5390 &snapid, sizeof(snapid), reply_buf, size); 5391 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5392 if (ret < 0) { 5393 snap_name = ERR_PTR(ret); 5394 goto out; 5395 } 5396 5397 p = reply_buf; 5398 end = reply_buf + ret; 5399 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5400 if (IS_ERR(snap_name)) 5401 goto out; 5402 5403 dout(" snap_id 0x%016llx snap_name = %s\n", 5404 (unsigned long long)snap_id, snap_name); 5405 out: 5406 kfree(reply_buf); 5407 5408 return snap_name; 5409 } 5410 5411 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 5412 { 5413 bool first_time = rbd_dev->header.object_prefix == NULL; 5414 int ret; 5415 5416 ret = rbd_dev_v2_image_size(rbd_dev); 5417 if (ret) 5418 return ret; 5419 5420 if (first_time) { 5421 ret = rbd_dev_v2_header_onetime(rbd_dev); 5422 if (ret) 5423 return ret; 5424 } 5425 5426 ret = rbd_dev_v2_snap_context(rbd_dev); 5427 if (ret && first_time) { 5428 kfree(rbd_dev->header.object_prefix); 5429 rbd_dev->header.object_prefix = NULL; 5430 } 5431 5432 return ret; 5433 } 5434 5435 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 5436 { 5437 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5438 5439 if (rbd_dev->image_format == 1) 5440 return rbd_dev_v1_header_info(rbd_dev); 5441 5442 return rbd_dev_v2_header_info(rbd_dev); 5443 } 5444 5445 /* 5446 * Skips over white space at *buf, and updates *buf to point to the 5447 * first found non-space character (if any). Returns the length of 5448 * the token (string of non-white space characters) found. Note 5449 * that *buf must be terminated with '\0'. 5450 */ 5451 static inline size_t next_token(const char **buf) 5452 { 5453 /* 5454 * These are the characters that produce nonzero for 5455 * isspace() in the "C" and "POSIX" locales. 5456 */ 5457 const char *spaces = " \f\n\r\t\v"; 5458 5459 *buf += strspn(*buf, spaces); /* Find start of token */ 5460 5461 return strcspn(*buf, spaces); /* Return token length */ 5462 } 5463 5464 /* 5465 * Finds the next token in *buf, dynamically allocates a buffer big 5466 * enough to hold a copy of it, and copies the token into the new 5467 * buffer. The copy is guaranteed to be terminated with '\0'. Note 5468 * that a duplicate buffer is created even for a zero-length token. 5469 * 5470 * Returns a pointer to the newly-allocated duplicate, or a null 5471 * pointer if memory for the duplicate was not available. If 5472 * the lenp argument is a non-null pointer, the length of the token 5473 * (not including the '\0') is returned in *lenp. 5474 * 5475 * If successful, the *buf pointer will be updated to point beyond 5476 * the end of the found token. 5477 * 5478 * Note: uses GFP_KERNEL for allocation. 5479 */ 5480 static inline char *dup_token(const char **buf, size_t *lenp) 5481 { 5482 char *dup; 5483 size_t len; 5484 5485 len = next_token(buf); 5486 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 5487 if (!dup) 5488 return NULL; 5489 *(dup + len) = '\0'; 5490 *buf += len; 5491 5492 if (lenp) 5493 *lenp = len; 5494 5495 return dup; 5496 } 5497 5498 /* 5499 * Parse the options provided for an "rbd add" (i.e., rbd image 5500 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 5501 * and the data written is passed here via a NUL-terminated buffer. 5502 * Returns 0 if successful or an error code otherwise. 5503 * 5504 * The information extracted from these options is recorded in 5505 * the other parameters which return dynamically-allocated 5506 * structures: 5507 * ceph_opts 5508 * The address of a pointer that will refer to a ceph options 5509 * structure. Caller must release the returned pointer using 5510 * ceph_destroy_options() when it is no longer needed. 5511 * rbd_opts 5512 * Address of an rbd options pointer. Fully initialized by 5513 * this function; caller must release with kfree(). 5514 * spec 5515 * Address of an rbd image specification pointer. Fully 5516 * initialized by this function based on parsed options. 5517 * Caller must release with rbd_spec_put(). 5518 * 5519 * The options passed take this form: 5520 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 5521 * where: 5522 * <mon_addrs> 5523 * A comma-separated list of one or more monitor addresses. 5524 * A monitor address is an ip address, optionally followed 5525 * by a port number (separated by a colon). 5526 * I.e.: ip1[:port1][,ip2[:port2]...] 5527 * <options> 5528 * A comma-separated list of ceph and/or rbd options. 5529 * <pool_name> 5530 * The name of the rados pool containing the rbd image. 5531 * <image_name> 5532 * The name of the image in that pool to map. 5533 * <snap_id> 5534 * An optional snapshot id. If provided, the mapping will 5535 * present data from the image at the time that snapshot was 5536 * created. The image head is used if no snapshot id is 5537 * provided. Snapshot mappings are always read-only. 5538 */ 5539 static int rbd_add_parse_args(const char *buf, 5540 struct ceph_options **ceph_opts, 5541 struct rbd_options **opts, 5542 struct rbd_spec **rbd_spec) 5543 { 5544 size_t len; 5545 char *options; 5546 const char *mon_addrs; 5547 char *snap_name; 5548 size_t mon_addrs_size; 5549 struct rbd_spec *spec = NULL; 5550 struct rbd_options *rbd_opts = NULL; 5551 struct ceph_options *copts; 5552 int ret; 5553 5554 /* The first four tokens are required */ 5555 5556 len = next_token(&buf); 5557 if (!len) { 5558 rbd_warn(NULL, "no monitor address(es) provided"); 5559 return -EINVAL; 5560 } 5561 mon_addrs = buf; 5562 mon_addrs_size = len + 1; 5563 buf += len; 5564 5565 ret = -EINVAL; 5566 options = dup_token(&buf, NULL); 5567 if (!options) 5568 return -ENOMEM; 5569 if (!*options) { 5570 rbd_warn(NULL, "no options provided"); 5571 goto out_err; 5572 } 5573 5574 spec = rbd_spec_alloc(); 5575 if (!spec) 5576 goto out_mem; 5577 5578 spec->pool_name = dup_token(&buf, NULL); 5579 if (!spec->pool_name) 5580 goto out_mem; 5581 if (!*spec->pool_name) { 5582 rbd_warn(NULL, "no pool name provided"); 5583 goto out_err; 5584 } 5585 5586 spec->image_name = dup_token(&buf, NULL); 5587 if (!spec->image_name) 5588 goto out_mem; 5589 if (!*spec->image_name) { 5590 rbd_warn(NULL, "no image name provided"); 5591 goto out_err; 5592 } 5593 5594 /* 5595 * Snapshot name is optional; default is to use "-" 5596 * (indicating the head/no snapshot). 5597 */ 5598 len = next_token(&buf); 5599 if (!len) { 5600 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 5601 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 5602 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 5603 ret = -ENAMETOOLONG; 5604 goto out_err; 5605 } 5606 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 5607 if (!snap_name) 5608 goto out_mem; 5609 *(snap_name + len) = '\0'; 5610 spec->snap_name = snap_name; 5611 5612 /* Initialize all rbd options to the defaults */ 5613 5614 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 5615 if (!rbd_opts) 5616 goto out_mem; 5617 5618 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 5619 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 5620 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 5621 5622 copts = ceph_parse_options(options, mon_addrs, 5623 mon_addrs + mon_addrs_size - 1, 5624 parse_rbd_opts_token, rbd_opts); 5625 if (IS_ERR(copts)) { 5626 ret = PTR_ERR(copts); 5627 goto out_err; 5628 } 5629 kfree(options); 5630 5631 *ceph_opts = copts; 5632 *opts = rbd_opts; 5633 *rbd_spec = spec; 5634 5635 return 0; 5636 out_mem: 5637 ret = -ENOMEM; 5638 out_err: 5639 kfree(rbd_opts); 5640 rbd_spec_put(spec); 5641 kfree(options); 5642 5643 return ret; 5644 } 5645 5646 /* 5647 * Return pool id (>= 0) or a negative error code. 5648 */ 5649 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 5650 { 5651 struct ceph_options *opts = rbdc->client->options; 5652 u64 newest_epoch; 5653 int tries = 0; 5654 int ret; 5655 5656 again: 5657 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 5658 if (ret == -ENOENT && tries++ < 1) { 5659 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap", 5660 &newest_epoch); 5661 if (ret < 0) 5662 return ret; 5663 5664 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 5665 ceph_osdc_maybe_request_map(&rbdc->client->osdc); 5666 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 5667 newest_epoch, 5668 opts->mount_timeout); 5669 goto again; 5670 } else { 5671 /* the osdmap we have is new enough */ 5672 return -ENOENT; 5673 } 5674 } 5675 5676 return ret; 5677 } 5678 5679 /* 5680 * An rbd format 2 image has a unique identifier, distinct from the 5681 * name given to it by the user. Internally, that identifier is 5682 * what's used to specify the names of objects related to the image. 5683 * 5684 * A special "rbd id" object is used to map an rbd image name to its 5685 * id. If that object doesn't exist, then there is no v2 rbd image 5686 * with the supplied name. 5687 * 5688 * This function will record the given rbd_dev's image_id field if 5689 * it can be determined, and in that case will return 0. If any 5690 * errors occur a negative errno will be returned and the rbd_dev's 5691 * image_id field will be unchanged (and should be NULL). 5692 */ 5693 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5694 { 5695 int ret; 5696 size_t size; 5697 CEPH_DEFINE_OID_ONSTACK(oid); 5698 void *response; 5699 char *image_id; 5700 5701 /* 5702 * When probing a parent image, the image id is already 5703 * known (and the image name likely is not). There's no 5704 * need to fetch the image id again in this case. We 5705 * do still need to set the image format though. 5706 */ 5707 if (rbd_dev->spec->image_id) { 5708 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5709 5710 return 0; 5711 } 5712 5713 /* 5714 * First, see if the format 2 image id file exists, and if 5715 * so, get the image's persistent id from it. 5716 */ 5717 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 5718 rbd_dev->spec->image_name); 5719 if (ret) 5720 return ret; 5721 5722 dout("rbd id object name is %s\n", oid.name); 5723 5724 /* Response will be an encoded string, which includes a length */ 5725 5726 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5727 response = kzalloc(size, GFP_NOIO); 5728 if (!response) { 5729 ret = -ENOMEM; 5730 goto out; 5731 } 5732 5733 /* If it doesn't exist we'll assume it's a format 1 image */ 5734 5735 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5736 "get_id", NULL, 0, 5737 response, RBD_IMAGE_ID_LEN_MAX); 5738 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5739 if (ret == -ENOENT) { 5740 image_id = kstrdup("", GFP_KERNEL); 5741 ret = image_id ? 0 : -ENOMEM; 5742 if (!ret) 5743 rbd_dev->image_format = 1; 5744 } else if (ret >= 0) { 5745 void *p = response; 5746 5747 image_id = ceph_extract_encoded_string(&p, p + ret, 5748 NULL, GFP_NOIO); 5749 ret = PTR_ERR_OR_ZERO(image_id); 5750 if (!ret) 5751 rbd_dev->image_format = 2; 5752 } 5753 5754 if (!ret) { 5755 rbd_dev->spec->image_id = image_id; 5756 dout("image_id is %s\n", image_id); 5757 } 5758 out: 5759 kfree(response); 5760 ceph_oid_destroy(&oid); 5761 return ret; 5762 } 5763 5764 /* 5765 * Undo whatever state changes are made by v1 or v2 header info 5766 * call. 5767 */ 5768 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5769 { 5770 struct rbd_image_header *header; 5771 5772 rbd_dev_parent_put(rbd_dev); 5773 5774 /* Free dynamic fields from the header, then zero it out */ 5775 5776 header = &rbd_dev->header; 5777 ceph_put_snap_context(header->snapc); 5778 kfree(header->snap_sizes); 5779 kfree(header->snap_names); 5780 kfree(header->object_prefix); 5781 memset(header, 0, sizeof (*header)); 5782 } 5783 5784 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5785 { 5786 int ret; 5787 5788 ret = rbd_dev_v2_object_prefix(rbd_dev); 5789 if (ret) 5790 goto out_err; 5791 5792 /* 5793 * Get the and check features for the image. Currently the 5794 * features are assumed to never change. 5795 */ 5796 ret = rbd_dev_v2_features(rbd_dev); 5797 if (ret) 5798 goto out_err; 5799 5800 /* If the image supports fancy striping, get its parameters */ 5801 5802 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5803 ret = rbd_dev_v2_striping_info(rbd_dev); 5804 if (ret < 0) 5805 goto out_err; 5806 } 5807 5808 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 5809 ret = rbd_dev_v2_data_pool(rbd_dev); 5810 if (ret) 5811 goto out_err; 5812 } 5813 5814 rbd_init_layout(rbd_dev); 5815 return 0; 5816 5817 out_err: 5818 rbd_dev->header.features = 0; 5819 kfree(rbd_dev->header.object_prefix); 5820 rbd_dev->header.object_prefix = NULL; 5821 return ret; 5822 } 5823 5824 /* 5825 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5826 * rbd_dev_image_probe() recursion depth, which means it's also the 5827 * length of the already discovered part of the parent chain. 5828 */ 5829 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5830 { 5831 struct rbd_device *parent = NULL; 5832 int ret; 5833 5834 if (!rbd_dev->parent_spec) 5835 return 0; 5836 5837 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5838 pr_info("parent chain is too long (%d)\n", depth); 5839 ret = -EINVAL; 5840 goto out_err; 5841 } 5842 5843 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 5844 if (!parent) { 5845 ret = -ENOMEM; 5846 goto out_err; 5847 } 5848 5849 /* 5850 * Images related by parent/child relationships always share 5851 * rbd_client and spec/parent_spec, so bump their refcounts. 5852 */ 5853 __rbd_get_client(rbd_dev->rbd_client); 5854 rbd_spec_get(rbd_dev->parent_spec); 5855 5856 ret = rbd_dev_image_probe(parent, depth); 5857 if (ret < 0) 5858 goto out_err; 5859 5860 rbd_dev->parent = parent; 5861 atomic_set(&rbd_dev->parent_ref, 1); 5862 return 0; 5863 5864 out_err: 5865 rbd_dev_unparent(rbd_dev); 5866 rbd_dev_destroy(parent); 5867 return ret; 5868 } 5869 5870 /* 5871 * rbd_dev->header_rwsem must be locked for write and will be unlocked 5872 * upon return. 5873 */ 5874 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5875 { 5876 int ret; 5877 5878 /* Record our major and minor device numbers. */ 5879 5880 if (!single_major) { 5881 ret = register_blkdev(0, rbd_dev->name); 5882 if (ret < 0) 5883 goto err_out_unlock; 5884 5885 rbd_dev->major = ret; 5886 rbd_dev->minor = 0; 5887 } else { 5888 rbd_dev->major = rbd_major; 5889 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5890 } 5891 5892 /* Set up the blkdev mapping. */ 5893 5894 ret = rbd_init_disk(rbd_dev); 5895 if (ret) 5896 goto err_out_blkdev; 5897 5898 ret = rbd_dev_mapping_set(rbd_dev); 5899 if (ret) 5900 goto err_out_disk; 5901 5902 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5903 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5904 5905 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 5906 ret = device_add(&rbd_dev->dev); 5907 if (ret) 5908 goto err_out_mapping; 5909 5910 /* Everything's ready. Announce the disk to the world. */ 5911 5912 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5913 up_write(&rbd_dev->header_rwsem); 5914 5915 spin_lock(&rbd_dev_list_lock); 5916 list_add_tail(&rbd_dev->node, &rbd_dev_list); 5917 spin_unlock(&rbd_dev_list_lock); 5918 5919 add_disk(rbd_dev->disk); 5920 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 5921 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 5922 rbd_dev->header.features); 5923 5924 return ret; 5925 5926 err_out_mapping: 5927 rbd_dev_mapping_clear(rbd_dev); 5928 err_out_disk: 5929 rbd_free_disk(rbd_dev); 5930 err_out_blkdev: 5931 if (!single_major) 5932 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5933 err_out_unlock: 5934 up_write(&rbd_dev->header_rwsem); 5935 return ret; 5936 } 5937 5938 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5939 { 5940 struct rbd_spec *spec = rbd_dev->spec; 5941 int ret; 5942 5943 /* Record the header object name for this rbd image. */ 5944 5945 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5946 if (rbd_dev->image_format == 1) 5947 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5948 spec->image_name, RBD_SUFFIX); 5949 else 5950 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5951 RBD_HEADER_PREFIX, spec->image_id); 5952 5953 return ret; 5954 } 5955 5956 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5957 { 5958 rbd_dev_unprobe(rbd_dev); 5959 rbd_dev->image_format = 0; 5960 kfree(rbd_dev->spec->image_id); 5961 rbd_dev->spec->image_id = NULL; 5962 5963 rbd_dev_destroy(rbd_dev); 5964 } 5965 5966 /* 5967 * Probe for the existence of the header object for the given rbd 5968 * device. If this image is the one being mapped (i.e., not a 5969 * parent), initiate a watch on its header object before using that 5970 * object to get detailed information about the rbd image. 5971 */ 5972 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 5973 { 5974 int ret; 5975 5976 /* 5977 * Get the id from the image id object. Unless there's an 5978 * error, rbd_dev->spec->image_id will be filled in with 5979 * a dynamically-allocated string, and rbd_dev->image_format 5980 * will be set to either 1 or 2. 5981 */ 5982 ret = rbd_dev_image_id(rbd_dev); 5983 if (ret) 5984 return ret; 5985 5986 ret = rbd_dev_header_name(rbd_dev); 5987 if (ret) 5988 goto err_out_format; 5989 5990 if (!depth) { 5991 ret = rbd_register_watch(rbd_dev); 5992 if (ret) { 5993 if (ret == -ENOENT) 5994 pr_info("image %s/%s does not exist\n", 5995 rbd_dev->spec->pool_name, 5996 rbd_dev->spec->image_name); 5997 goto err_out_format; 5998 } 5999 } 6000 6001 ret = rbd_dev_header_info(rbd_dev); 6002 if (ret) 6003 goto err_out_watch; 6004 6005 /* 6006 * If this image is the one being mapped, we have pool name and 6007 * id, image name and id, and snap name - need to fill snap id. 6008 * Otherwise this is a parent image, identified by pool, image 6009 * and snap ids - need to fill in names for those ids. 6010 */ 6011 if (!depth) 6012 ret = rbd_spec_fill_snap_id(rbd_dev); 6013 else 6014 ret = rbd_spec_fill_names(rbd_dev); 6015 if (ret) { 6016 if (ret == -ENOENT) 6017 pr_info("snap %s/%s@%s does not exist\n", 6018 rbd_dev->spec->pool_name, 6019 rbd_dev->spec->image_name, 6020 rbd_dev->spec->snap_name); 6021 goto err_out_probe; 6022 } 6023 6024 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6025 ret = rbd_dev_v2_parent_info(rbd_dev); 6026 if (ret) 6027 goto err_out_probe; 6028 6029 /* 6030 * Need to warn users if this image is the one being 6031 * mapped and has a parent. 6032 */ 6033 if (!depth && rbd_dev->parent_spec) 6034 rbd_warn(rbd_dev, 6035 "WARNING: kernel layering is EXPERIMENTAL!"); 6036 } 6037 6038 ret = rbd_dev_probe_parent(rbd_dev, depth); 6039 if (ret) 6040 goto err_out_probe; 6041 6042 dout("discovered format %u image, header name is %s\n", 6043 rbd_dev->image_format, rbd_dev->header_oid.name); 6044 return 0; 6045 6046 err_out_probe: 6047 rbd_dev_unprobe(rbd_dev); 6048 err_out_watch: 6049 if (!depth) 6050 rbd_unregister_watch(rbd_dev); 6051 err_out_format: 6052 rbd_dev->image_format = 0; 6053 kfree(rbd_dev->spec->image_id); 6054 rbd_dev->spec->image_id = NULL; 6055 return ret; 6056 } 6057 6058 static ssize_t do_rbd_add(struct bus_type *bus, 6059 const char *buf, 6060 size_t count) 6061 { 6062 struct rbd_device *rbd_dev = NULL; 6063 struct ceph_options *ceph_opts = NULL; 6064 struct rbd_options *rbd_opts = NULL; 6065 struct rbd_spec *spec = NULL; 6066 struct rbd_client *rbdc; 6067 bool read_only; 6068 int rc; 6069 6070 if (!try_module_get(THIS_MODULE)) 6071 return -ENODEV; 6072 6073 /* parse add command */ 6074 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 6075 if (rc < 0) 6076 goto out; 6077 6078 rbdc = rbd_get_client(ceph_opts); 6079 if (IS_ERR(rbdc)) { 6080 rc = PTR_ERR(rbdc); 6081 goto err_out_args; 6082 } 6083 6084 /* pick the pool */ 6085 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 6086 if (rc < 0) { 6087 if (rc == -ENOENT) 6088 pr_info("pool %s does not exist\n", spec->pool_name); 6089 goto err_out_client; 6090 } 6091 spec->pool_id = (u64)rc; 6092 6093 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 6094 if (!rbd_dev) { 6095 rc = -ENOMEM; 6096 goto err_out_client; 6097 } 6098 rbdc = NULL; /* rbd_dev now owns this */ 6099 spec = NULL; /* rbd_dev now owns this */ 6100 rbd_opts = NULL; /* rbd_dev now owns this */ 6101 6102 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 6103 if (!rbd_dev->config_info) { 6104 rc = -ENOMEM; 6105 goto err_out_rbd_dev; 6106 } 6107 6108 down_write(&rbd_dev->header_rwsem); 6109 rc = rbd_dev_image_probe(rbd_dev, 0); 6110 if (rc < 0) { 6111 up_write(&rbd_dev->header_rwsem); 6112 goto err_out_rbd_dev; 6113 } 6114 6115 /* If we are mapping a snapshot it must be marked read-only */ 6116 6117 read_only = rbd_dev->opts->read_only; 6118 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 6119 read_only = true; 6120 rbd_dev->mapping.read_only = read_only; 6121 6122 rc = rbd_dev_device_setup(rbd_dev); 6123 if (rc) { 6124 /* 6125 * rbd_unregister_watch() can't be moved into 6126 * rbd_dev_image_release() without refactoring, see 6127 * commit 1f3ef78861ac. 6128 */ 6129 rbd_unregister_watch(rbd_dev); 6130 rbd_dev_image_release(rbd_dev); 6131 goto out; 6132 } 6133 6134 rc = count; 6135 out: 6136 module_put(THIS_MODULE); 6137 return rc; 6138 6139 err_out_rbd_dev: 6140 rbd_dev_destroy(rbd_dev); 6141 err_out_client: 6142 rbd_put_client(rbdc); 6143 err_out_args: 6144 rbd_spec_put(spec); 6145 kfree(rbd_opts); 6146 goto out; 6147 } 6148 6149 static ssize_t rbd_add(struct bus_type *bus, 6150 const char *buf, 6151 size_t count) 6152 { 6153 if (single_major) 6154 return -EINVAL; 6155 6156 return do_rbd_add(bus, buf, count); 6157 } 6158 6159 static ssize_t rbd_add_single_major(struct bus_type *bus, 6160 const char *buf, 6161 size_t count) 6162 { 6163 return do_rbd_add(bus, buf, count); 6164 } 6165 6166 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6167 { 6168 rbd_free_disk(rbd_dev); 6169 6170 spin_lock(&rbd_dev_list_lock); 6171 list_del_init(&rbd_dev->node); 6172 spin_unlock(&rbd_dev_list_lock); 6173 6174 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6175 device_del(&rbd_dev->dev); 6176 rbd_dev_mapping_clear(rbd_dev); 6177 if (!single_major) 6178 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6179 } 6180 6181 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 6182 { 6183 while (rbd_dev->parent) { 6184 struct rbd_device *first = rbd_dev; 6185 struct rbd_device *second = first->parent; 6186 struct rbd_device *third; 6187 6188 /* 6189 * Follow to the parent with no grandparent and 6190 * remove it. 6191 */ 6192 while (second && (third = second->parent)) { 6193 first = second; 6194 second = third; 6195 } 6196 rbd_assert(second); 6197 rbd_dev_image_release(second); 6198 first->parent = NULL; 6199 first->parent_overlap = 0; 6200 6201 rbd_assert(first->parent_spec); 6202 rbd_spec_put(first->parent_spec); 6203 first->parent_spec = NULL; 6204 } 6205 } 6206 6207 static ssize_t do_rbd_remove(struct bus_type *bus, 6208 const char *buf, 6209 size_t count) 6210 { 6211 struct rbd_device *rbd_dev = NULL; 6212 struct list_head *tmp; 6213 int dev_id; 6214 char opt_buf[6]; 6215 bool already = false; 6216 bool force = false; 6217 int ret; 6218 6219 dev_id = -1; 6220 opt_buf[0] = '\0'; 6221 sscanf(buf, "%d %5s", &dev_id, opt_buf); 6222 if (dev_id < 0) { 6223 pr_err("dev_id out of range\n"); 6224 return -EINVAL; 6225 } 6226 if (opt_buf[0] != '\0') { 6227 if (!strcmp(opt_buf, "force")) { 6228 force = true; 6229 } else { 6230 pr_err("bad remove option at '%s'\n", opt_buf); 6231 return -EINVAL; 6232 } 6233 } 6234 6235 ret = -ENOENT; 6236 spin_lock(&rbd_dev_list_lock); 6237 list_for_each(tmp, &rbd_dev_list) { 6238 rbd_dev = list_entry(tmp, struct rbd_device, node); 6239 if (rbd_dev->dev_id == dev_id) { 6240 ret = 0; 6241 break; 6242 } 6243 } 6244 if (!ret) { 6245 spin_lock_irq(&rbd_dev->lock); 6246 if (rbd_dev->open_count && !force) 6247 ret = -EBUSY; 6248 else 6249 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 6250 &rbd_dev->flags); 6251 spin_unlock_irq(&rbd_dev->lock); 6252 } 6253 spin_unlock(&rbd_dev_list_lock); 6254 if (ret < 0 || already) 6255 return ret; 6256 6257 if (force) { 6258 /* 6259 * Prevent new IO from being queued and wait for existing 6260 * IO to complete/fail. 6261 */ 6262 blk_mq_freeze_queue(rbd_dev->disk->queue); 6263 blk_set_queue_dying(rbd_dev->disk->queue); 6264 } 6265 6266 down_write(&rbd_dev->lock_rwsem); 6267 if (__rbd_is_lock_owner(rbd_dev)) 6268 rbd_unlock(rbd_dev); 6269 up_write(&rbd_dev->lock_rwsem); 6270 rbd_unregister_watch(rbd_dev); 6271 6272 /* 6273 * Don't free anything from rbd_dev->disk until after all 6274 * notifies are completely processed. Otherwise 6275 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 6276 * in a potential use after free of rbd_dev->disk or rbd_dev. 6277 */ 6278 rbd_dev_device_release(rbd_dev); 6279 rbd_dev_image_release(rbd_dev); 6280 6281 return count; 6282 } 6283 6284 static ssize_t rbd_remove(struct bus_type *bus, 6285 const char *buf, 6286 size_t count) 6287 { 6288 if (single_major) 6289 return -EINVAL; 6290 6291 return do_rbd_remove(bus, buf, count); 6292 } 6293 6294 static ssize_t rbd_remove_single_major(struct bus_type *bus, 6295 const char *buf, 6296 size_t count) 6297 { 6298 return do_rbd_remove(bus, buf, count); 6299 } 6300 6301 /* 6302 * create control files in sysfs 6303 * /sys/bus/rbd/... 6304 */ 6305 static int rbd_sysfs_init(void) 6306 { 6307 int ret; 6308 6309 ret = device_register(&rbd_root_dev); 6310 if (ret < 0) 6311 return ret; 6312 6313 ret = bus_register(&rbd_bus_type); 6314 if (ret < 0) 6315 device_unregister(&rbd_root_dev); 6316 6317 return ret; 6318 } 6319 6320 static void rbd_sysfs_cleanup(void) 6321 { 6322 bus_unregister(&rbd_bus_type); 6323 device_unregister(&rbd_root_dev); 6324 } 6325 6326 static int rbd_slab_init(void) 6327 { 6328 rbd_assert(!rbd_img_request_cache); 6329 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 6330 if (!rbd_img_request_cache) 6331 return -ENOMEM; 6332 6333 rbd_assert(!rbd_obj_request_cache); 6334 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 6335 if (!rbd_obj_request_cache) 6336 goto out_err; 6337 6338 return 0; 6339 6340 out_err: 6341 kmem_cache_destroy(rbd_img_request_cache); 6342 rbd_img_request_cache = NULL; 6343 return -ENOMEM; 6344 } 6345 6346 static void rbd_slab_exit(void) 6347 { 6348 rbd_assert(rbd_obj_request_cache); 6349 kmem_cache_destroy(rbd_obj_request_cache); 6350 rbd_obj_request_cache = NULL; 6351 6352 rbd_assert(rbd_img_request_cache); 6353 kmem_cache_destroy(rbd_img_request_cache); 6354 rbd_img_request_cache = NULL; 6355 } 6356 6357 static int __init rbd_init(void) 6358 { 6359 int rc; 6360 6361 if (!libceph_compatible(NULL)) { 6362 rbd_warn(NULL, "libceph incompatibility (quitting)"); 6363 return -EINVAL; 6364 } 6365 6366 rc = rbd_slab_init(); 6367 if (rc) 6368 return rc; 6369 6370 /* 6371 * The number of active work items is limited by the number of 6372 * rbd devices * queue depth, so leave @max_active at default. 6373 */ 6374 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 6375 if (!rbd_wq) { 6376 rc = -ENOMEM; 6377 goto err_out_slab; 6378 } 6379 6380 if (single_major) { 6381 rbd_major = register_blkdev(0, RBD_DRV_NAME); 6382 if (rbd_major < 0) { 6383 rc = rbd_major; 6384 goto err_out_wq; 6385 } 6386 } 6387 6388 rc = rbd_sysfs_init(); 6389 if (rc) 6390 goto err_out_blkdev; 6391 6392 if (single_major) 6393 pr_info("loaded (major %d)\n", rbd_major); 6394 else 6395 pr_info("loaded\n"); 6396 6397 return 0; 6398 6399 err_out_blkdev: 6400 if (single_major) 6401 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6402 err_out_wq: 6403 destroy_workqueue(rbd_wq); 6404 err_out_slab: 6405 rbd_slab_exit(); 6406 return rc; 6407 } 6408 6409 static void __exit rbd_exit(void) 6410 { 6411 ida_destroy(&rbd_dev_id_ida); 6412 rbd_sysfs_cleanup(); 6413 if (single_major) 6414 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6415 destroy_workqueue(rbd_wq); 6416 rbd_slab_exit(); 6417 } 6418 6419 module_init(rbd_init); 6420 module_exit(rbd_exit); 6421 6422 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 6423 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 6424 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 6425 /* following authorship retained from original osdblk.c */ 6426 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 6427 6428 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 6429 MODULE_LICENSE("GPL"); 6430