1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/fs.h> 42 #include <linux/blkdev.h> 43 #include <linux/slab.h> 44 #include <linux/idr.h> 45 #include <linux/workqueue.h> 46 47 #include "rbd_types.h" 48 49 #define RBD_DEBUG /* Activate rbd_assert() calls */ 50 51 /* 52 * The basic unit of block I/O is a sector. It is interpreted in a 53 * number of contexts in Linux (blk, bio, genhd), but the default is 54 * universally 512 bytes. These symbols are just slightly more 55 * meaningful than the bare numbers they represent. 56 */ 57 #define SECTOR_SHIFT 9 58 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 59 60 /* 61 * Increment the given counter and return its updated value. 62 * If the counter is already 0 it will not be incremented. 63 * If the counter is already at its maximum value returns 64 * -EINVAL without updating it. 65 */ 66 static int atomic_inc_return_safe(atomic_t *v) 67 { 68 unsigned int counter; 69 70 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 71 if (counter <= (unsigned int)INT_MAX) 72 return (int)counter; 73 74 atomic_dec(v); 75 76 return -EINVAL; 77 } 78 79 /* Decrement the counter. Return the resulting value, or -EINVAL */ 80 static int atomic_dec_return_safe(atomic_t *v) 81 { 82 int counter; 83 84 counter = atomic_dec_return(v); 85 if (counter >= 0) 86 return counter; 87 88 atomic_inc(v); 89 90 return -EINVAL; 91 } 92 93 #define RBD_DRV_NAME "rbd" 94 95 #define RBD_MINORS_PER_MAJOR 256 96 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 97 98 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 99 #define RBD_MAX_SNAP_NAME_LEN \ 100 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 101 102 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 103 104 #define RBD_SNAP_HEAD_NAME "-" 105 106 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 107 108 /* This allows a single page to hold an image name sent by OSD */ 109 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 110 #define RBD_IMAGE_ID_LEN_MAX 64 111 112 #define RBD_OBJ_PREFIX_LEN_MAX 64 113 114 /* Feature bits */ 115 116 #define RBD_FEATURE_LAYERING (1<<0) 117 #define RBD_FEATURE_STRIPINGV2 (1<<1) 118 #define RBD_FEATURES_ALL \ 119 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 120 121 /* Features supported by this (client software) implementation. */ 122 123 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 124 125 /* 126 * An RBD device name will be "rbd#", where the "rbd" comes from 127 * RBD_DRV_NAME above, and # is a unique integer identifier. 128 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 129 * enough to hold all possible device names. 130 */ 131 #define DEV_NAME_LEN 32 132 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 133 134 /* 135 * block device image metadata (in-memory version) 136 */ 137 struct rbd_image_header { 138 /* These six fields never change for a given rbd image */ 139 char *object_prefix; 140 __u8 obj_order; 141 __u8 crypt_type; 142 __u8 comp_type; 143 u64 stripe_unit; 144 u64 stripe_count; 145 u64 features; /* Might be changeable someday? */ 146 147 /* The remaining fields need to be updated occasionally */ 148 u64 image_size; 149 struct ceph_snap_context *snapc; 150 char *snap_names; /* format 1 only */ 151 u64 *snap_sizes; /* format 1 only */ 152 }; 153 154 /* 155 * An rbd image specification. 156 * 157 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 158 * identify an image. Each rbd_dev structure includes a pointer to 159 * an rbd_spec structure that encapsulates this identity. 160 * 161 * Each of the id's in an rbd_spec has an associated name. For a 162 * user-mapped image, the names are supplied and the id's associated 163 * with them are looked up. For a layered image, a parent image is 164 * defined by the tuple, and the names are looked up. 165 * 166 * An rbd_dev structure contains a parent_spec pointer which is 167 * non-null if the image it represents is a child in a layered 168 * image. This pointer will refer to the rbd_spec structure used 169 * by the parent rbd_dev for its own identity (i.e., the structure 170 * is shared between the parent and child). 171 * 172 * Since these structures are populated once, during the discovery 173 * phase of image construction, they are effectively immutable so 174 * we make no effort to synchronize access to them. 175 * 176 * Note that code herein does not assume the image name is known (it 177 * could be a null pointer). 178 */ 179 struct rbd_spec { 180 u64 pool_id; 181 const char *pool_name; 182 183 const char *image_id; 184 const char *image_name; 185 186 u64 snap_id; 187 const char *snap_name; 188 189 struct kref kref; 190 }; 191 192 /* 193 * an instance of the client. multiple devices may share an rbd client. 194 */ 195 struct rbd_client { 196 struct ceph_client *client; 197 struct kref kref; 198 struct list_head node; 199 }; 200 201 struct rbd_img_request; 202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 203 204 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 205 206 struct rbd_obj_request; 207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 208 209 enum obj_request_type { 210 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 211 }; 212 213 enum obj_operation_type { 214 OBJ_OP_WRITE, 215 OBJ_OP_READ, 216 OBJ_OP_DISCARD, 217 }; 218 219 enum obj_req_flags { 220 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 221 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 222 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 223 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 224 }; 225 226 struct rbd_obj_request { 227 const char *object_name; 228 u64 offset; /* object start byte */ 229 u64 length; /* bytes from offset */ 230 unsigned long flags; 231 232 /* 233 * An object request associated with an image will have its 234 * img_data flag set; a standalone object request will not. 235 * 236 * A standalone object request will have which == BAD_WHICH 237 * and a null obj_request pointer. 238 * 239 * An object request initiated in support of a layered image 240 * object (to check for its existence before a write) will 241 * have which == BAD_WHICH and a non-null obj_request pointer. 242 * 243 * Finally, an object request for rbd image data will have 244 * which != BAD_WHICH, and will have a non-null img_request 245 * pointer. The value of which will be in the range 246 * 0..(img_request->obj_request_count-1). 247 */ 248 union { 249 struct rbd_obj_request *obj_request; /* STAT op */ 250 struct { 251 struct rbd_img_request *img_request; 252 u64 img_offset; 253 /* links for img_request->obj_requests list */ 254 struct list_head links; 255 }; 256 }; 257 u32 which; /* posn image request list */ 258 259 enum obj_request_type type; 260 union { 261 struct bio *bio_list; 262 struct { 263 struct page **pages; 264 u32 page_count; 265 }; 266 }; 267 struct page **copyup_pages; 268 u32 copyup_page_count; 269 270 struct ceph_osd_request *osd_req; 271 272 u64 xferred; /* bytes transferred */ 273 int result; 274 275 rbd_obj_callback_t callback; 276 struct completion completion; 277 278 struct kref kref; 279 }; 280 281 enum img_req_flags { 282 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 283 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 284 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 285 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 286 }; 287 288 struct rbd_img_request { 289 struct rbd_device *rbd_dev; 290 u64 offset; /* starting image byte offset */ 291 u64 length; /* byte count from offset */ 292 unsigned long flags; 293 union { 294 u64 snap_id; /* for reads */ 295 struct ceph_snap_context *snapc; /* for writes */ 296 }; 297 union { 298 struct request *rq; /* block request */ 299 struct rbd_obj_request *obj_request; /* obj req initiator */ 300 }; 301 struct page **copyup_pages; 302 u32 copyup_page_count; 303 spinlock_t completion_lock;/* protects next_completion */ 304 u32 next_completion; 305 rbd_img_callback_t callback; 306 u64 xferred;/* aggregate bytes transferred */ 307 int result; /* first nonzero obj_request result */ 308 309 u32 obj_request_count; 310 struct list_head obj_requests; /* rbd_obj_request structs */ 311 312 struct kref kref; 313 }; 314 315 #define for_each_obj_request(ireq, oreq) \ 316 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 317 #define for_each_obj_request_from(ireq, oreq) \ 318 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 319 #define for_each_obj_request_safe(ireq, oreq, n) \ 320 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 321 322 struct rbd_mapping { 323 u64 size; 324 u64 features; 325 bool read_only; 326 }; 327 328 /* 329 * a single device 330 */ 331 struct rbd_device { 332 int dev_id; /* blkdev unique id */ 333 334 int major; /* blkdev assigned major */ 335 int minor; 336 struct gendisk *disk; /* blkdev's gendisk and rq */ 337 338 u32 image_format; /* Either 1 or 2 */ 339 struct rbd_client *rbd_client; 340 341 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 342 343 struct list_head rq_queue; /* incoming rq queue */ 344 spinlock_t lock; /* queue, flags, open_count */ 345 struct work_struct rq_work; 346 347 struct rbd_image_header header; 348 unsigned long flags; /* possibly lock protected */ 349 struct rbd_spec *spec; 350 351 char *header_name; 352 353 struct ceph_file_layout layout; 354 355 struct ceph_osd_event *watch_event; 356 struct rbd_obj_request *watch_request; 357 358 struct rbd_spec *parent_spec; 359 u64 parent_overlap; 360 atomic_t parent_ref; 361 struct rbd_device *parent; 362 363 /* protects updating the header */ 364 struct rw_semaphore header_rwsem; 365 366 struct rbd_mapping mapping; 367 368 struct list_head node; 369 370 /* sysfs related */ 371 struct device dev; 372 unsigned long open_count; /* protected by lock */ 373 }; 374 375 /* 376 * Flag bits for rbd_dev->flags. If atomicity is required, 377 * rbd_dev->lock is used to protect access. 378 * 379 * Currently, only the "removing" flag (which is coupled with the 380 * "open_count" field) requires atomic access. 381 */ 382 enum rbd_dev_flags { 383 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 384 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 385 }; 386 387 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 388 389 static LIST_HEAD(rbd_dev_list); /* devices */ 390 static DEFINE_SPINLOCK(rbd_dev_list_lock); 391 392 static LIST_HEAD(rbd_client_list); /* clients */ 393 static DEFINE_SPINLOCK(rbd_client_list_lock); 394 395 /* Slab caches for frequently-allocated structures */ 396 397 static struct kmem_cache *rbd_img_request_cache; 398 static struct kmem_cache *rbd_obj_request_cache; 399 static struct kmem_cache *rbd_segment_name_cache; 400 401 static int rbd_major; 402 static DEFINE_IDA(rbd_dev_id_ida); 403 404 static struct workqueue_struct *rbd_wq; 405 406 /* 407 * Default to false for now, as single-major requires >= 0.75 version of 408 * userspace rbd utility. 409 */ 410 static bool single_major = false; 411 module_param(single_major, bool, S_IRUGO); 412 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 413 414 static int rbd_img_request_submit(struct rbd_img_request *img_request); 415 416 static void rbd_dev_device_release(struct device *dev); 417 418 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 419 size_t count); 420 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 421 size_t count); 422 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 423 size_t count); 424 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 425 size_t count); 426 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping); 427 static void rbd_spec_put(struct rbd_spec *spec); 428 429 static int rbd_dev_id_to_minor(int dev_id) 430 { 431 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 432 } 433 434 static int minor_to_rbd_dev_id(int minor) 435 { 436 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 437 } 438 439 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 440 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 441 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 442 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 443 444 static struct attribute *rbd_bus_attrs[] = { 445 &bus_attr_add.attr, 446 &bus_attr_remove.attr, 447 &bus_attr_add_single_major.attr, 448 &bus_attr_remove_single_major.attr, 449 NULL, 450 }; 451 452 static umode_t rbd_bus_is_visible(struct kobject *kobj, 453 struct attribute *attr, int index) 454 { 455 if (!single_major && 456 (attr == &bus_attr_add_single_major.attr || 457 attr == &bus_attr_remove_single_major.attr)) 458 return 0; 459 460 return attr->mode; 461 } 462 463 static const struct attribute_group rbd_bus_group = { 464 .attrs = rbd_bus_attrs, 465 .is_visible = rbd_bus_is_visible, 466 }; 467 __ATTRIBUTE_GROUPS(rbd_bus); 468 469 static struct bus_type rbd_bus_type = { 470 .name = "rbd", 471 .bus_groups = rbd_bus_groups, 472 }; 473 474 static void rbd_root_dev_release(struct device *dev) 475 { 476 } 477 478 static struct device rbd_root_dev = { 479 .init_name = "rbd", 480 .release = rbd_root_dev_release, 481 }; 482 483 static __printf(2, 3) 484 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 485 { 486 struct va_format vaf; 487 va_list args; 488 489 va_start(args, fmt); 490 vaf.fmt = fmt; 491 vaf.va = &args; 492 493 if (!rbd_dev) 494 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 495 else if (rbd_dev->disk) 496 printk(KERN_WARNING "%s: %s: %pV\n", 497 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 498 else if (rbd_dev->spec && rbd_dev->spec->image_name) 499 printk(KERN_WARNING "%s: image %s: %pV\n", 500 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 501 else if (rbd_dev->spec && rbd_dev->spec->image_id) 502 printk(KERN_WARNING "%s: id %s: %pV\n", 503 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 504 else /* punt */ 505 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 506 RBD_DRV_NAME, rbd_dev, &vaf); 507 va_end(args); 508 } 509 510 #ifdef RBD_DEBUG 511 #define rbd_assert(expr) \ 512 if (unlikely(!(expr))) { \ 513 printk(KERN_ERR "\nAssertion failure in %s() " \ 514 "at line %d:\n\n" \ 515 "\trbd_assert(%s);\n\n", \ 516 __func__, __LINE__, #expr); \ 517 BUG(); \ 518 } 519 #else /* !RBD_DEBUG */ 520 # define rbd_assert(expr) ((void) 0) 521 #endif /* !RBD_DEBUG */ 522 523 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 524 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 525 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 526 527 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 528 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 529 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 530 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 531 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 532 u64 snap_id); 533 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 534 u8 *order, u64 *snap_size); 535 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 536 u64 *snap_features); 537 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 538 539 static int rbd_open(struct block_device *bdev, fmode_t mode) 540 { 541 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 542 bool removing = false; 543 544 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 545 return -EROFS; 546 547 spin_lock_irq(&rbd_dev->lock); 548 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 549 removing = true; 550 else 551 rbd_dev->open_count++; 552 spin_unlock_irq(&rbd_dev->lock); 553 if (removing) 554 return -ENOENT; 555 556 (void) get_device(&rbd_dev->dev); 557 558 return 0; 559 } 560 561 static void rbd_release(struct gendisk *disk, fmode_t mode) 562 { 563 struct rbd_device *rbd_dev = disk->private_data; 564 unsigned long open_count_before; 565 566 spin_lock_irq(&rbd_dev->lock); 567 open_count_before = rbd_dev->open_count--; 568 spin_unlock_irq(&rbd_dev->lock); 569 rbd_assert(open_count_before > 0); 570 571 put_device(&rbd_dev->dev); 572 } 573 574 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 575 { 576 int ret = 0; 577 int val; 578 bool ro; 579 bool ro_changed = false; 580 581 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 582 if (get_user(val, (int __user *)(arg))) 583 return -EFAULT; 584 585 ro = val ? true : false; 586 /* Snapshot doesn't allow to write*/ 587 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 588 return -EROFS; 589 590 spin_lock_irq(&rbd_dev->lock); 591 /* prevent others open this device */ 592 if (rbd_dev->open_count > 1) { 593 ret = -EBUSY; 594 goto out; 595 } 596 597 if (rbd_dev->mapping.read_only != ro) { 598 rbd_dev->mapping.read_only = ro; 599 ro_changed = true; 600 } 601 602 out: 603 spin_unlock_irq(&rbd_dev->lock); 604 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 605 if (ret == 0 && ro_changed) 606 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 607 608 return ret; 609 } 610 611 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 612 unsigned int cmd, unsigned long arg) 613 { 614 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 615 int ret = 0; 616 617 switch (cmd) { 618 case BLKROSET: 619 ret = rbd_ioctl_set_ro(rbd_dev, arg); 620 break; 621 default: 622 ret = -ENOTTY; 623 } 624 625 return ret; 626 } 627 628 #ifdef CONFIG_COMPAT 629 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 630 unsigned int cmd, unsigned long arg) 631 { 632 return rbd_ioctl(bdev, mode, cmd, arg); 633 } 634 #endif /* CONFIG_COMPAT */ 635 636 static const struct block_device_operations rbd_bd_ops = { 637 .owner = THIS_MODULE, 638 .open = rbd_open, 639 .release = rbd_release, 640 .ioctl = rbd_ioctl, 641 #ifdef CONFIG_COMPAT 642 .compat_ioctl = rbd_compat_ioctl, 643 #endif 644 }; 645 646 /* 647 * Initialize an rbd client instance. Success or not, this function 648 * consumes ceph_opts. Caller holds client_mutex. 649 */ 650 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 651 { 652 struct rbd_client *rbdc; 653 int ret = -ENOMEM; 654 655 dout("%s:\n", __func__); 656 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 657 if (!rbdc) 658 goto out_opt; 659 660 kref_init(&rbdc->kref); 661 INIT_LIST_HEAD(&rbdc->node); 662 663 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 664 if (IS_ERR(rbdc->client)) 665 goto out_rbdc; 666 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 667 668 ret = ceph_open_session(rbdc->client); 669 if (ret < 0) 670 goto out_client; 671 672 spin_lock(&rbd_client_list_lock); 673 list_add_tail(&rbdc->node, &rbd_client_list); 674 spin_unlock(&rbd_client_list_lock); 675 676 dout("%s: rbdc %p\n", __func__, rbdc); 677 678 return rbdc; 679 out_client: 680 ceph_destroy_client(rbdc->client); 681 out_rbdc: 682 kfree(rbdc); 683 out_opt: 684 if (ceph_opts) 685 ceph_destroy_options(ceph_opts); 686 dout("%s: error %d\n", __func__, ret); 687 688 return ERR_PTR(ret); 689 } 690 691 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 692 { 693 kref_get(&rbdc->kref); 694 695 return rbdc; 696 } 697 698 /* 699 * Find a ceph client with specific addr and configuration. If 700 * found, bump its reference count. 701 */ 702 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 703 { 704 struct rbd_client *client_node; 705 bool found = false; 706 707 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 708 return NULL; 709 710 spin_lock(&rbd_client_list_lock); 711 list_for_each_entry(client_node, &rbd_client_list, node) { 712 if (!ceph_compare_options(ceph_opts, client_node->client)) { 713 __rbd_get_client(client_node); 714 715 found = true; 716 break; 717 } 718 } 719 spin_unlock(&rbd_client_list_lock); 720 721 return found ? client_node : NULL; 722 } 723 724 /* 725 * mount options 726 */ 727 enum { 728 Opt_last_int, 729 /* int args above */ 730 Opt_last_string, 731 /* string args above */ 732 Opt_read_only, 733 Opt_read_write, 734 /* Boolean args above */ 735 Opt_last_bool, 736 }; 737 738 static match_table_t rbd_opts_tokens = { 739 /* int args above */ 740 /* string args above */ 741 {Opt_read_only, "read_only"}, 742 {Opt_read_only, "ro"}, /* Alternate spelling */ 743 {Opt_read_write, "read_write"}, 744 {Opt_read_write, "rw"}, /* Alternate spelling */ 745 /* Boolean args above */ 746 {-1, NULL} 747 }; 748 749 struct rbd_options { 750 bool read_only; 751 }; 752 753 #define RBD_READ_ONLY_DEFAULT false 754 755 static int parse_rbd_opts_token(char *c, void *private) 756 { 757 struct rbd_options *rbd_opts = private; 758 substring_t argstr[MAX_OPT_ARGS]; 759 int token, intval, ret; 760 761 token = match_token(c, rbd_opts_tokens, argstr); 762 if (token < 0) 763 return -EINVAL; 764 765 if (token < Opt_last_int) { 766 ret = match_int(&argstr[0], &intval); 767 if (ret < 0) { 768 pr_err("bad mount option arg (not int) " 769 "at '%s'\n", c); 770 return ret; 771 } 772 dout("got int token %d val %d\n", token, intval); 773 } else if (token > Opt_last_int && token < Opt_last_string) { 774 dout("got string token %d val %s\n", token, 775 argstr[0].from); 776 } else if (token > Opt_last_string && token < Opt_last_bool) { 777 dout("got Boolean token %d\n", token); 778 } else { 779 dout("got token %d\n", token); 780 } 781 782 switch (token) { 783 case Opt_read_only: 784 rbd_opts->read_only = true; 785 break; 786 case Opt_read_write: 787 rbd_opts->read_only = false; 788 break; 789 default: 790 rbd_assert(false); 791 break; 792 } 793 return 0; 794 } 795 796 static char* obj_op_name(enum obj_operation_type op_type) 797 { 798 switch (op_type) { 799 case OBJ_OP_READ: 800 return "read"; 801 case OBJ_OP_WRITE: 802 return "write"; 803 case OBJ_OP_DISCARD: 804 return "discard"; 805 default: 806 return "???"; 807 } 808 } 809 810 /* 811 * Get a ceph client with specific addr and configuration, if one does 812 * not exist create it. Either way, ceph_opts is consumed by this 813 * function. 814 */ 815 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 816 { 817 struct rbd_client *rbdc; 818 819 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 820 rbdc = rbd_client_find(ceph_opts); 821 if (rbdc) /* using an existing client */ 822 ceph_destroy_options(ceph_opts); 823 else 824 rbdc = rbd_client_create(ceph_opts); 825 mutex_unlock(&client_mutex); 826 827 return rbdc; 828 } 829 830 /* 831 * Destroy ceph client 832 * 833 * Caller must hold rbd_client_list_lock. 834 */ 835 static void rbd_client_release(struct kref *kref) 836 { 837 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 838 839 dout("%s: rbdc %p\n", __func__, rbdc); 840 spin_lock(&rbd_client_list_lock); 841 list_del(&rbdc->node); 842 spin_unlock(&rbd_client_list_lock); 843 844 ceph_destroy_client(rbdc->client); 845 kfree(rbdc); 846 } 847 848 /* 849 * Drop reference to ceph client node. If it's not referenced anymore, release 850 * it. 851 */ 852 static void rbd_put_client(struct rbd_client *rbdc) 853 { 854 if (rbdc) 855 kref_put(&rbdc->kref, rbd_client_release); 856 } 857 858 static bool rbd_image_format_valid(u32 image_format) 859 { 860 return image_format == 1 || image_format == 2; 861 } 862 863 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 864 { 865 size_t size; 866 u32 snap_count; 867 868 /* The header has to start with the magic rbd header text */ 869 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 870 return false; 871 872 /* The bio layer requires at least sector-sized I/O */ 873 874 if (ondisk->options.order < SECTOR_SHIFT) 875 return false; 876 877 /* If we use u64 in a few spots we may be able to loosen this */ 878 879 if (ondisk->options.order > 8 * sizeof (int) - 1) 880 return false; 881 882 /* 883 * The size of a snapshot header has to fit in a size_t, and 884 * that limits the number of snapshots. 885 */ 886 snap_count = le32_to_cpu(ondisk->snap_count); 887 size = SIZE_MAX - sizeof (struct ceph_snap_context); 888 if (snap_count > size / sizeof (__le64)) 889 return false; 890 891 /* 892 * Not only that, but the size of the entire the snapshot 893 * header must also be representable in a size_t. 894 */ 895 size -= snap_count * sizeof (__le64); 896 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 897 return false; 898 899 return true; 900 } 901 902 /* 903 * Fill an rbd image header with information from the given format 1 904 * on-disk header. 905 */ 906 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 907 struct rbd_image_header_ondisk *ondisk) 908 { 909 struct rbd_image_header *header = &rbd_dev->header; 910 bool first_time = header->object_prefix == NULL; 911 struct ceph_snap_context *snapc; 912 char *object_prefix = NULL; 913 char *snap_names = NULL; 914 u64 *snap_sizes = NULL; 915 u32 snap_count; 916 size_t size; 917 int ret = -ENOMEM; 918 u32 i; 919 920 /* Allocate this now to avoid having to handle failure below */ 921 922 if (first_time) { 923 size_t len; 924 925 len = strnlen(ondisk->object_prefix, 926 sizeof (ondisk->object_prefix)); 927 object_prefix = kmalloc(len + 1, GFP_KERNEL); 928 if (!object_prefix) 929 return -ENOMEM; 930 memcpy(object_prefix, ondisk->object_prefix, len); 931 object_prefix[len] = '\0'; 932 } 933 934 /* Allocate the snapshot context and fill it in */ 935 936 snap_count = le32_to_cpu(ondisk->snap_count); 937 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 938 if (!snapc) 939 goto out_err; 940 snapc->seq = le64_to_cpu(ondisk->snap_seq); 941 if (snap_count) { 942 struct rbd_image_snap_ondisk *snaps; 943 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 944 945 /* We'll keep a copy of the snapshot names... */ 946 947 if (snap_names_len > (u64)SIZE_MAX) 948 goto out_2big; 949 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 950 if (!snap_names) 951 goto out_err; 952 953 /* ...as well as the array of their sizes. */ 954 955 size = snap_count * sizeof (*header->snap_sizes); 956 snap_sizes = kmalloc(size, GFP_KERNEL); 957 if (!snap_sizes) 958 goto out_err; 959 960 /* 961 * Copy the names, and fill in each snapshot's id 962 * and size. 963 * 964 * Note that rbd_dev_v1_header_info() guarantees the 965 * ondisk buffer we're working with has 966 * snap_names_len bytes beyond the end of the 967 * snapshot id array, this memcpy() is safe. 968 */ 969 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 970 snaps = ondisk->snaps; 971 for (i = 0; i < snap_count; i++) { 972 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 973 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 974 } 975 } 976 977 /* We won't fail any more, fill in the header */ 978 979 if (first_time) { 980 header->object_prefix = object_prefix; 981 header->obj_order = ondisk->options.order; 982 header->crypt_type = ondisk->options.crypt_type; 983 header->comp_type = ondisk->options.comp_type; 984 /* The rest aren't used for format 1 images */ 985 header->stripe_unit = 0; 986 header->stripe_count = 0; 987 header->features = 0; 988 } else { 989 ceph_put_snap_context(header->snapc); 990 kfree(header->snap_names); 991 kfree(header->snap_sizes); 992 } 993 994 /* The remaining fields always get updated (when we refresh) */ 995 996 header->image_size = le64_to_cpu(ondisk->image_size); 997 header->snapc = snapc; 998 header->snap_names = snap_names; 999 header->snap_sizes = snap_sizes; 1000 1001 return 0; 1002 out_2big: 1003 ret = -EIO; 1004 out_err: 1005 kfree(snap_sizes); 1006 kfree(snap_names); 1007 ceph_put_snap_context(snapc); 1008 kfree(object_prefix); 1009 1010 return ret; 1011 } 1012 1013 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1014 { 1015 const char *snap_name; 1016 1017 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1018 1019 /* Skip over names until we find the one we are looking for */ 1020 1021 snap_name = rbd_dev->header.snap_names; 1022 while (which--) 1023 snap_name += strlen(snap_name) + 1; 1024 1025 return kstrdup(snap_name, GFP_KERNEL); 1026 } 1027 1028 /* 1029 * Snapshot id comparison function for use with qsort()/bsearch(). 1030 * Note that result is for snapshots in *descending* order. 1031 */ 1032 static int snapid_compare_reverse(const void *s1, const void *s2) 1033 { 1034 u64 snap_id1 = *(u64 *)s1; 1035 u64 snap_id2 = *(u64 *)s2; 1036 1037 if (snap_id1 < snap_id2) 1038 return 1; 1039 return snap_id1 == snap_id2 ? 0 : -1; 1040 } 1041 1042 /* 1043 * Search a snapshot context to see if the given snapshot id is 1044 * present. 1045 * 1046 * Returns the position of the snapshot id in the array if it's found, 1047 * or BAD_SNAP_INDEX otherwise. 1048 * 1049 * Note: The snapshot array is in kept sorted (by the osd) in 1050 * reverse order, highest snapshot id first. 1051 */ 1052 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1053 { 1054 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1055 u64 *found; 1056 1057 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1058 sizeof (snap_id), snapid_compare_reverse); 1059 1060 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1061 } 1062 1063 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1064 u64 snap_id) 1065 { 1066 u32 which; 1067 const char *snap_name; 1068 1069 which = rbd_dev_snap_index(rbd_dev, snap_id); 1070 if (which == BAD_SNAP_INDEX) 1071 return ERR_PTR(-ENOENT); 1072 1073 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1074 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1075 } 1076 1077 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1078 { 1079 if (snap_id == CEPH_NOSNAP) 1080 return RBD_SNAP_HEAD_NAME; 1081 1082 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1083 if (rbd_dev->image_format == 1) 1084 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1085 1086 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1087 } 1088 1089 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1090 u64 *snap_size) 1091 { 1092 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1093 if (snap_id == CEPH_NOSNAP) { 1094 *snap_size = rbd_dev->header.image_size; 1095 } else if (rbd_dev->image_format == 1) { 1096 u32 which; 1097 1098 which = rbd_dev_snap_index(rbd_dev, snap_id); 1099 if (which == BAD_SNAP_INDEX) 1100 return -ENOENT; 1101 1102 *snap_size = rbd_dev->header.snap_sizes[which]; 1103 } else { 1104 u64 size = 0; 1105 int ret; 1106 1107 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1108 if (ret) 1109 return ret; 1110 1111 *snap_size = size; 1112 } 1113 return 0; 1114 } 1115 1116 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1117 u64 *snap_features) 1118 { 1119 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1120 if (snap_id == CEPH_NOSNAP) { 1121 *snap_features = rbd_dev->header.features; 1122 } else if (rbd_dev->image_format == 1) { 1123 *snap_features = 0; /* No features for format 1 */ 1124 } else { 1125 u64 features = 0; 1126 int ret; 1127 1128 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1129 if (ret) 1130 return ret; 1131 1132 *snap_features = features; 1133 } 1134 return 0; 1135 } 1136 1137 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1138 { 1139 u64 snap_id = rbd_dev->spec->snap_id; 1140 u64 size = 0; 1141 u64 features = 0; 1142 int ret; 1143 1144 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1145 if (ret) 1146 return ret; 1147 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1148 if (ret) 1149 return ret; 1150 1151 rbd_dev->mapping.size = size; 1152 rbd_dev->mapping.features = features; 1153 1154 return 0; 1155 } 1156 1157 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1158 { 1159 rbd_dev->mapping.size = 0; 1160 rbd_dev->mapping.features = 0; 1161 } 1162 1163 static void rbd_segment_name_free(const char *name) 1164 { 1165 /* The explicit cast here is needed to drop the const qualifier */ 1166 1167 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1168 } 1169 1170 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1171 { 1172 char *name; 1173 u64 segment; 1174 int ret; 1175 char *name_format; 1176 1177 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1178 if (!name) 1179 return NULL; 1180 segment = offset >> rbd_dev->header.obj_order; 1181 name_format = "%s.%012llx"; 1182 if (rbd_dev->image_format == 2) 1183 name_format = "%s.%016llx"; 1184 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1185 rbd_dev->header.object_prefix, segment); 1186 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1187 pr_err("error formatting segment name for #%llu (%d)\n", 1188 segment, ret); 1189 rbd_segment_name_free(name); 1190 name = NULL; 1191 } 1192 1193 return name; 1194 } 1195 1196 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1197 { 1198 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1199 1200 return offset & (segment_size - 1); 1201 } 1202 1203 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1204 u64 offset, u64 length) 1205 { 1206 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1207 1208 offset &= segment_size - 1; 1209 1210 rbd_assert(length <= U64_MAX - offset); 1211 if (offset + length > segment_size) 1212 length = segment_size - offset; 1213 1214 return length; 1215 } 1216 1217 /* 1218 * returns the size of an object in the image 1219 */ 1220 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1221 { 1222 return 1 << header->obj_order; 1223 } 1224 1225 /* 1226 * bio helpers 1227 */ 1228 1229 static void bio_chain_put(struct bio *chain) 1230 { 1231 struct bio *tmp; 1232 1233 while (chain) { 1234 tmp = chain; 1235 chain = chain->bi_next; 1236 bio_put(tmp); 1237 } 1238 } 1239 1240 /* 1241 * zeros a bio chain, starting at specific offset 1242 */ 1243 static void zero_bio_chain(struct bio *chain, int start_ofs) 1244 { 1245 struct bio_vec bv; 1246 struct bvec_iter iter; 1247 unsigned long flags; 1248 void *buf; 1249 int pos = 0; 1250 1251 while (chain) { 1252 bio_for_each_segment(bv, chain, iter) { 1253 if (pos + bv.bv_len > start_ofs) { 1254 int remainder = max(start_ofs - pos, 0); 1255 buf = bvec_kmap_irq(&bv, &flags); 1256 memset(buf + remainder, 0, 1257 bv.bv_len - remainder); 1258 flush_dcache_page(bv.bv_page); 1259 bvec_kunmap_irq(buf, &flags); 1260 } 1261 pos += bv.bv_len; 1262 } 1263 1264 chain = chain->bi_next; 1265 } 1266 } 1267 1268 /* 1269 * similar to zero_bio_chain(), zeros data defined by a page array, 1270 * starting at the given byte offset from the start of the array and 1271 * continuing up to the given end offset. The pages array is 1272 * assumed to be big enough to hold all bytes up to the end. 1273 */ 1274 static void zero_pages(struct page **pages, u64 offset, u64 end) 1275 { 1276 struct page **page = &pages[offset >> PAGE_SHIFT]; 1277 1278 rbd_assert(end > offset); 1279 rbd_assert(end - offset <= (u64)SIZE_MAX); 1280 while (offset < end) { 1281 size_t page_offset; 1282 size_t length; 1283 unsigned long flags; 1284 void *kaddr; 1285 1286 page_offset = offset & ~PAGE_MASK; 1287 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1288 local_irq_save(flags); 1289 kaddr = kmap_atomic(*page); 1290 memset(kaddr + page_offset, 0, length); 1291 flush_dcache_page(*page); 1292 kunmap_atomic(kaddr); 1293 local_irq_restore(flags); 1294 1295 offset += length; 1296 page++; 1297 } 1298 } 1299 1300 /* 1301 * Clone a portion of a bio, starting at the given byte offset 1302 * and continuing for the number of bytes indicated. 1303 */ 1304 static struct bio *bio_clone_range(struct bio *bio_src, 1305 unsigned int offset, 1306 unsigned int len, 1307 gfp_t gfpmask) 1308 { 1309 struct bio *bio; 1310 1311 bio = bio_clone(bio_src, gfpmask); 1312 if (!bio) 1313 return NULL; /* ENOMEM */ 1314 1315 bio_advance(bio, offset); 1316 bio->bi_iter.bi_size = len; 1317 1318 return bio; 1319 } 1320 1321 /* 1322 * Clone a portion of a bio chain, starting at the given byte offset 1323 * into the first bio in the source chain and continuing for the 1324 * number of bytes indicated. The result is another bio chain of 1325 * exactly the given length, or a null pointer on error. 1326 * 1327 * The bio_src and offset parameters are both in-out. On entry they 1328 * refer to the first source bio and the offset into that bio where 1329 * the start of data to be cloned is located. 1330 * 1331 * On return, bio_src is updated to refer to the bio in the source 1332 * chain that contains first un-cloned byte, and *offset will 1333 * contain the offset of that byte within that bio. 1334 */ 1335 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1336 unsigned int *offset, 1337 unsigned int len, 1338 gfp_t gfpmask) 1339 { 1340 struct bio *bi = *bio_src; 1341 unsigned int off = *offset; 1342 struct bio *chain = NULL; 1343 struct bio **end; 1344 1345 /* Build up a chain of clone bios up to the limit */ 1346 1347 if (!bi || off >= bi->bi_iter.bi_size || !len) 1348 return NULL; /* Nothing to clone */ 1349 1350 end = &chain; 1351 while (len) { 1352 unsigned int bi_size; 1353 struct bio *bio; 1354 1355 if (!bi) { 1356 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1357 goto out_err; /* EINVAL; ran out of bio's */ 1358 } 1359 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1360 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1361 if (!bio) 1362 goto out_err; /* ENOMEM */ 1363 1364 *end = bio; 1365 end = &bio->bi_next; 1366 1367 off += bi_size; 1368 if (off == bi->bi_iter.bi_size) { 1369 bi = bi->bi_next; 1370 off = 0; 1371 } 1372 len -= bi_size; 1373 } 1374 *bio_src = bi; 1375 *offset = off; 1376 1377 return chain; 1378 out_err: 1379 bio_chain_put(chain); 1380 1381 return NULL; 1382 } 1383 1384 /* 1385 * The default/initial value for all object request flags is 0. For 1386 * each flag, once its value is set to 1 it is never reset to 0 1387 * again. 1388 */ 1389 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1390 { 1391 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1392 struct rbd_device *rbd_dev; 1393 1394 rbd_dev = obj_request->img_request->rbd_dev; 1395 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1396 obj_request); 1397 } 1398 } 1399 1400 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1401 { 1402 smp_mb(); 1403 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1404 } 1405 1406 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1407 { 1408 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1409 struct rbd_device *rbd_dev = NULL; 1410 1411 if (obj_request_img_data_test(obj_request)) 1412 rbd_dev = obj_request->img_request->rbd_dev; 1413 rbd_warn(rbd_dev, "obj_request %p already marked done", 1414 obj_request); 1415 } 1416 } 1417 1418 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1419 { 1420 smp_mb(); 1421 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1422 } 1423 1424 /* 1425 * This sets the KNOWN flag after (possibly) setting the EXISTS 1426 * flag. The latter is set based on the "exists" value provided. 1427 * 1428 * Note that for our purposes once an object exists it never goes 1429 * away again. It's possible that the response from two existence 1430 * checks are separated by the creation of the target object, and 1431 * the first ("doesn't exist") response arrives *after* the second 1432 * ("does exist"). In that case we ignore the second one. 1433 */ 1434 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1435 bool exists) 1436 { 1437 if (exists) 1438 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1439 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1440 smp_mb(); 1441 } 1442 1443 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1444 { 1445 smp_mb(); 1446 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1447 } 1448 1449 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1450 { 1451 smp_mb(); 1452 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1453 } 1454 1455 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1456 { 1457 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1458 1459 return obj_request->img_offset < 1460 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1461 } 1462 1463 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1464 { 1465 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1466 atomic_read(&obj_request->kref.refcount)); 1467 kref_get(&obj_request->kref); 1468 } 1469 1470 static void rbd_obj_request_destroy(struct kref *kref); 1471 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1472 { 1473 rbd_assert(obj_request != NULL); 1474 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1475 atomic_read(&obj_request->kref.refcount)); 1476 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1477 } 1478 1479 static void rbd_img_request_get(struct rbd_img_request *img_request) 1480 { 1481 dout("%s: img %p (was %d)\n", __func__, img_request, 1482 atomic_read(&img_request->kref.refcount)); 1483 kref_get(&img_request->kref); 1484 } 1485 1486 static bool img_request_child_test(struct rbd_img_request *img_request); 1487 static void rbd_parent_request_destroy(struct kref *kref); 1488 static void rbd_img_request_destroy(struct kref *kref); 1489 static void rbd_img_request_put(struct rbd_img_request *img_request) 1490 { 1491 rbd_assert(img_request != NULL); 1492 dout("%s: img %p (was %d)\n", __func__, img_request, 1493 atomic_read(&img_request->kref.refcount)); 1494 if (img_request_child_test(img_request)) 1495 kref_put(&img_request->kref, rbd_parent_request_destroy); 1496 else 1497 kref_put(&img_request->kref, rbd_img_request_destroy); 1498 } 1499 1500 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1501 struct rbd_obj_request *obj_request) 1502 { 1503 rbd_assert(obj_request->img_request == NULL); 1504 1505 /* Image request now owns object's original reference */ 1506 obj_request->img_request = img_request; 1507 obj_request->which = img_request->obj_request_count; 1508 rbd_assert(!obj_request_img_data_test(obj_request)); 1509 obj_request_img_data_set(obj_request); 1510 rbd_assert(obj_request->which != BAD_WHICH); 1511 img_request->obj_request_count++; 1512 list_add_tail(&obj_request->links, &img_request->obj_requests); 1513 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1514 obj_request->which); 1515 } 1516 1517 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1518 struct rbd_obj_request *obj_request) 1519 { 1520 rbd_assert(obj_request->which != BAD_WHICH); 1521 1522 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1523 obj_request->which); 1524 list_del(&obj_request->links); 1525 rbd_assert(img_request->obj_request_count > 0); 1526 img_request->obj_request_count--; 1527 rbd_assert(obj_request->which == img_request->obj_request_count); 1528 obj_request->which = BAD_WHICH; 1529 rbd_assert(obj_request_img_data_test(obj_request)); 1530 rbd_assert(obj_request->img_request == img_request); 1531 obj_request->img_request = NULL; 1532 obj_request->callback = NULL; 1533 rbd_obj_request_put(obj_request); 1534 } 1535 1536 static bool obj_request_type_valid(enum obj_request_type type) 1537 { 1538 switch (type) { 1539 case OBJ_REQUEST_NODATA: 1540 case OBJ_REQUEST_BIO: 1541 case OBJ_REQUEST_PAGES: 1542 return true; 1543 default: 1544 return false; 1545 } 1546 } 1547 1548 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1549 struct rbd_obj_request *obj_request) 1550 { 1551 dout("%s %p\n", __func__, obj_request); 1552 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1553 } 1554 1555 static void rbd_obj_request_end(struct rbd_obj_request *obj_request) 1556 { 1557 dout("%s %p\n", __func__, obj_request); 1558 ceph_osdc_cancel_request(obj_request->osd_req); 1559 } 1560 1561 /* 1562 * Wait for an object request to complete. If interrupted, cancel the 1563 * underlying osd request. 1564 */ 1565 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1566 { 1567 int ret; 1568 1569 dout("%s %p\n", __func__, obj_request); 1570 1571 ret = wait_for_completion_interruptible(&obj_request->completion); 1572 if (ret < 0) { 1573 dout("%s %p interrupted\n", __func__, obj_request); 1574 rbd_obj_request_end(obj_request); 1575 return ret; 1576 } 1577 1578 dout("%s %p done\n", __func__, obj_request); 1579 return 0; 1580 } 1581 1582 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1583 { 1584 1585 dout("%s: img %p\n", __func__, img_request); 1586 1587 /* 1588 * If no error occurred, compute the aggregate transfer 1589 * count for the image request. We could instead use 1590 * atomic64_cmpxchg() to update it as each object request 1591 * completes; not clear which way is better off hand. 1592 */ 1593 if (!img_request->result) { 1594 struct rbd_obj_request *obj_request; 1595 u64 xferred = 0; 1596 1597 for_each_obj_request(img_request, obj_request) 1598 xferred += obj_request->xferred; 1599 img_request->xferred = xferred; 1600 } 1601 1602 if (img_request->callback) 1603 img_request->callback(img_request); 1604 else 1605 rbd_img_request_put(img_request); 1606 } 1607 1608 /* 1609 * The default/initial value for all image request flags is 0. Each 1610 * is conditionally set to 1 at image request initialization time 1611 * and currently never change thereafter. 1612 */ 1613 static void img_request_write_set(struct rbd_img_request *img_request) 1614 { 1615 set_bit(IMG_REQ_WRITE, &img_request->flags); 1616 smp_mb(); 1617 } 1618 1619 static bool img_request_write_test(struct rbd_img_request *img_request) 1620 { 1621 smp_mb(); 1622 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1623 } 1624 1625 /* 1626 * Set the discard flag when the img_request is an discard request 1627 */ 1628 static void img_request_discard_set(struct rbd_img_request *img_request) 1629 { 1630 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1631 smp_mb(); 1632 } 1633 1634 static bool img_request_discard_test(struct rbd_img_request *img_request) 1635 { 1636 smp_mb(); 1637 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1638 } 1639 1640 static void img_request_child_set(struct rbd_img_request *img_request) 1641 { 1642 set_bit(IMG_REQ_CHILD, &img_request->flags); 1643 smp_mb(); 1644 } 1645 1646 static void img_request_child_clear(struct rbd_img_request *img_request) 1647 { 1648 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1649 smp_mb(); 1650 } 1651 1652 static bool img_request_child_test(struct rbd_img_request *img_request) 1653 { 1654 smp_mb(); 1655 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1656 } 1657 1658 static void img_request_layered_set(struct rbd_img_request *img_request) 1659 { 1660 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1661 smp_mb(); 1662 } 1663 1664 static void img_request_layered_clear(struct rbd_img_request *img_request) 1665 { 1666 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1667 smp_mb(); 1668 } 1669 1670 static bool img_request_layered_test(struct rbd_img_request *img_request) 1671 { 1672 smp_mb(); 1673 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1674 } 1675 1676 static enum obj_operation_type 1677 rbd_img_request_op_type(struct rbd_img_request *img_request) 1678 { 1679 if (img_request_write_test(img_request)) 1680 return OBJ_OP_WRITE; 1681 else if (img_request_discard_test(img_request)) 1682 return OBJ_OP_DISCARD; 1683 else 1684 return OBJ_OP_READ; 1685 } 1686 1687 static void 1688 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1689 { 1690 u64 xferred = obj_request->xferred; 1691 u64 length = obj_request->length; 1692 1693 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1694 obj_request, obj_request->img_request, obj_request->result, 1695 xferred, length); 1696 /* 1697 * ENOENT means a hole in the image. We zero-fill the entire 1698 * length of the request. A short read also implies zero-fill 1699 * to the end of the request. An error requires the whole 1700 * length of the request to be reported finished with an error 1701 * to the block layer. In each case we update the xferred 1702 * count to indicate the whole request was satisfied. 1703 */ 1704 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1705 if (obj_request->result == -ENOENT) { 1706 if (obj_request->type == OBJ_REQUEST_BIO) 1707 zero_bio_chain(obj_request->bio_list, 0); 1708 else 1709 zero_pages(obj_request->pages, 0, length); 1710 obj_request->result = 0; 1711 } else if (xferred < length && !obj_request->result) { 1712 if (obj_request->type == OBJ_REQUEST_BIO) 1713 zero_bio_chain(obj_request->bio_list, xferred); 1714 else 1715 zero_pages(obj_request->pages, xferred, length); 1716 } 1717 obj_request->xferred = length; 1718 obj_request_done_set(obj_request); 1719 } 1720 1721 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1722 { 1723 dout("%s: obj %p cb %p\n", __func__, obj_request, 1724 obj_request->callback); 1725 if (obj_request->callback) 1726 obj_request->callback(obj_request); 1727 else 1728 complete_all(&obj_request->completion); 1729 } 1730 1731 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1732 { 1733 dout("%s: obj %p\n", __func__, obj_request); 1734 obj_request_done_set(obj_request); 1735 } 1736 1737 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1738 { 1739 struct rbd_img_request *img_request = NULL; 1740 struct rbd_device *rbd_dev = NULL; 1741 bool layered = false; 1742 1743 if (obj_request_img_data_test(obj_request)) { 1744 img_request = obj_request->img_request; 1745 layered = img_request && img_request_layered_test(img_request); 1746 rbd_dev = img_request->rbd_dev; 1747 } 1748 1749 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1750 obj_request, img_request, obj_request->result, 1751 obj_request->xferred, obj_request->length); 1752 if (layered && obj_request->result == -ENOENT && 1753 obj_request->img_offset < rbd_dev->parent_overlap) 1754 rbd_img_parent_read(obj_request); 1755 else if (img_request) 1756 rbd_img_obj_request_read_callback(obj_request); 1757 else 1758 obj_request_done_set(obj_request); 1759 } 1760 1761 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1762 { 1763 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1764 obj_request->result, obj_request->length); 1765 /* 1766 * There is no such thing as a successful short write. Set 1767 * it to our originally-requested length. 1768 */ 1769 obj_request->xferred = obj_request->length; 1770 obj_request_done_set(obj_request); 1771 } 1772 1773 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1774 { 1775 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1776 obj_request->result, obj_request->length); 1777 /* 1778 * There is no such thing as a successful short discard. Set 1779 * it to our originally-requested length. 1780 */ 1781 obj_request->xferred = obj_request->length; 1782 /* discarding a non-existent object is not a problem */ 1783 if (obj_request->result == -ENOENT) 1784 obj_request->result = 0; 1785 obj_request_done_set(obj_request); 1786 } 1787 1788 /* 1789 * For a simple stat call there's nothing to do. We'll do more if 1790 * this is part of a write sequence for a layered image. 1791 */ 1792 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1793 { 1794 dout("%s: obj %p\n", __func__, obj_request); 1795 obj_request_done_set(obj_request); 1796 } 1797 1798 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1799 struct ceph_msg *msg) 1800 { 1801 struct rbd_obj_request *obj_request = osd_req->r_priv; 1802 u16 opcode; 1803 1804 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1805 rbd_assert(osd_req == obj_request->osd_req); 1806 if (obj_request_img_data_test(obj_request)) { 1807 rbd_assert(obj_request->img_request); 1808 rbd_assert(obj_request->which != BAD_WHICH); 1809 } else { 1810 rbd_assert(obj_request->which == BAD_WHICH); 1811 } 1812 1813 if (osd_req->r_result < 0) 1814 obj_request->result = osd_req->r_result; 1815 1816 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP); 1817 1818 /* 1819 * We support a 64-bit length, but ultimately it has to be 1820 * passed to blk_end_request(), which takes an unsigned int. 1821 */ 1822 obj_request->xferred = osd_req->r_reply_op_len[0]; 1823 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1824 1825 opcode = osd_req->r_ops[0].op; 1826 switch (opcode) { 1827 case CEPH_OSD_OP_READ: 1828 rbd_osd_read_callback(obj_request); 1829 break; 1830 case CEPH_OSD_OP_SETALLOCHINT: 1831 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE); 1832 /* fall through */ 1833 case CEPH_OSD_OP_WRITE: 1834 rbd_osd_write_callback(obj_request); 1835 break; 1836 case CEPH_OSD_OP_STAT: 1837 rbd_osd_stat_callback(obj_request); 1838 break; 1839 case CEPH_OSD_OP_DELETE: 1840 case CEPH_OSD_OP_TRUNCATE: 1841 case CEPH_OSD_OP_ZERO: 1842 rbd_osd_discard_callback(obj_request); 1843 break; 1844 case CEPH_OSD_OP_CALL: 1845 case CEPH_OSD_OP_NOTIFY_ACK: 1846 case CEPH_OSD_OP_WATCH: 1847 rbd_osd_trivial_callback(obj_request); 1848 break; 1849 default: 1850 rbd_warn(NULL, "%s: unsupported op %hu", 1851 obj_request->object_name, (unsigned short) opcode); 1852 break; 1853 } 1854 1855 if (obj_request_done_test(obj_request)) 1856 rbd_obj_request_complete(obj_request); 1857 } 1858 1859 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1860 { 1861 struct rbd_img_request *img_request = obj_request->img_request; 1862 struct ceph_osd_request *osd_req = obj_request->osd_req; 1863 u64 snap_id; 1864 1865 rbd_assert(osd_req != NULL); 1866 1867 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1868 ceph_osdc_build_request(osd_req, obj_request->offset, 1869 NULL, snap_id, NULL); 1870 } 1871 1872 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1873 { 1874 struct rbd_img_request *img_request = obj_request->img_request; 1875 struct ceph_osd_request *osd_req = obj_request->osd_req; 1876 struct ceph_snap_context *snapc; 1877 struct timespec mtime = CURRENT_TIME; 1878 1879 rbd_assert(osd_req != NULL); 1880 1881 snapc = img_request ? img_request->snapc : NULL; 1882 ceph_osdc_build_request(osd_req, obj_request->offset, 1883 snapc, CEPH_NOSNAP, &mtime); 1884 } 1885 1886 /* 1887 * Create an osd request. A read request has one osd op (read). 1888 * A write request has either one (watch) or two (hint+write) osd ops. 1889 * (All rbd data writes are prefixed with an allocation hint op, but 1890 * technically osd watch is a write request, hence this distinction.) 1891 */ 1892 static struct ceph_osd_request *rbd_osd_req_create( 1893 struct rbd_device *rbd_dev, 1894 enum obj_operation_type op_type, 1895 unsigned int num_ops, 1896 struct rbd_obj_request *obj_request) 1897 { 1898 struct ceph_snap_context *snapc = NULL; 1899 struct ceph_osd_client *osdc; 1900 struct ceph_osd_request *osd_req; 1901 1902 if (obj_request_img_data_test(obj_request) && 1903 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1904 struct rbd_img_request *img_request = obj_request->img_request; 1905 if (op_type == OBJ_OP_WRITE) { 1906 rbd_assert(img_request_write_test(img_request)); 1907 } else { 1908 rbd_assert(img_request_discard_test(img_request)); 1909 } 1910 snapc = img_request->snapc; 1911 } 1912 1913 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1914 1915 /* Allocate and initialize the request, for the num_ops ops */ 1916 1917 osdc = &rbd_dev->rbd_client->client->osdc; 1918 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1919 GFP_ATOMIC); 1920 if (!osd_req) 1921 return NULL; /* ENOMEM */ 1922 1923 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 1924 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1925 else 1926 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1927 1928 osd_req->r_callback = rbd_osd_req_callback; 1929 osd_req->r_priv = obj_request; 1930 1931 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1932 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1933 1934 return osd_req; 1935 } 1936 1937 /* 1938 * Create a copyup osd request based on the information in the object 1939 * request supplied. A copyup request has two or three osd ops, a 1940 * copyup method call, potentially a hint op, and a write or truncate 1941 * or zero op. 1942 */ 1943 static struct ceph_osd_request * 1944 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1945 { 1946 struct rbd_img_request *img_request; 1947 struct ceph_snap_context *snapc; 1948 struct rbd_device *rbd_dev; 1949 struct ceph_osd_client *osdc; 1950 struct ceph_osd_request *osd_req; 1951 int num_osd_ops = 3; 1952 1953 rbd_assert(obj_request_img_data_test(obj_request)); 1954 img_request = obj_request->img_request; 1955 rbd_assert(img_request); 1956 rbd_assert(img_request_write_test(img_request) || 1957 img_request_discard_test(img_request)); 1958 1959 if (img_request_discard_test(img_request)) 1960 num_osd_ops = 2; 1961 1962 /* Allocate and initialize the request, for all the ops */ 1963 1964 snapc = img_request->snapc; 1965 rbd_dev = img_request->rbd_dev; 1966 osdc = &rbd_dev->rbd_client->client->osdc; 1967 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops, 1968 false, GFP_ATOMIC); 1969 if (!osd_req) 1970 return NULL; /* ENOMEM */ 1971 1972 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1973 osd_req->r_callback = rbd_osd_req_callback; 1974 osd_req->r_priv = obj_request; 1975 1976 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1977 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1978 1979 return osd_req; 1980 } 1981 1982 1983 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1984 { 1985 ceph_osdc_put_request(osd_req); 1986 } 1987 1988 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 1989 1990 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 1991 u64 offset, u64 length, 1992 enum obj_request_type type) 1993 { 1994 struct rbd_obj_request *obj_request; 1995 size_t size; 1996 char *name; 1997 1998 rbd_assert(obj_request_type_valid(type)); 1999 2000 size = strlen(object_name) + 1; 2001 name = kmalloc(size, GFP_KERNEL); 2002 if (!name) 2003 return NULL; 2004 2005 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL); 2006 if (!obj_request) { 2007 kfree(name); 2008 return NULL; 2009 } 2010 2011 obj_request->object_name = memcpy(name, object_name, size); 2012 obj_request->offset = offset; 2013 obj_request->length = length; 2014 obj_request->flags = 0; 2015 obj_request->which = BAD_WHICH; 2016 obj_request->type = type; 2017 INIT_LIST_HEAD(&obj_request->links); 2018 init_completion(&obj_request->completion); 2019 kref_init(&obj_request->kref); 2020 2021 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 2022 offset, length, (int)type, obj_request); 2023 2024 return obj_request; 2025 } 2026 2027 static void rbd_obj_request_destroy(struct kref *kref) 2028 { 2029 struct rbd_obj_request *obj_request; 2030 2031 obj_request = container_of(kref, struct rbd_obj_request, kref); 2032 2033 dout("%s: obj %p\n", __func__, obj_request); 2034 2035 rbd_assert(obj_request->img_request == NULL); 2036 rbd_assert(obj_request->which == BAD_WHICH); 2037 2038 if (obj_request->osd_req) 2039 rbd_osd_req_destroy(obj_request->osd_req); 2040 2041 rbd_assert(obj_request_type_valid(obj_request->type)); 2042 switch (obj_request->type) { 2043 case OBJ_REQUEST_NODATA: 2044 break; /* Nothing to do */ 2045 case OBJ_REQUEST_BIO: 2046 if (obj_request->bio_list) 2047 bio_chain_put(obj_request->bio_list); 2048 break; 2049 case OBJ_REQUEST_PAGES: 2050 if (obj_request->pages) 2051 ceph_release_page_vector(obj_request->pages, 2052 obj_request->page_count); 2053 break; 2054 } 2055 2056 kfree(obj_request->object_name); 2057 obj_request->object_name = NULL; 2058 kmem_cache_free(rbd_obj_request_cache, obj_request); 2059 } 2060 2061 /* It's OK to call this for a device with no parent */ 2062 2063 static void rbd_spec_put(struct rbd_spec *spec); 2064 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2065 { 2066 rbd_dev_remove_parent(rbd_dev); 2067 rbd_spec_put(rbd_dev->parent_spec); 2068 rbd_dev->parent_spec = NULL; 2069 rbd_dev->parent_overlap = 0; 2070 } 2071 2072 /* 2073 * Parent image reference counting is used to determine when an 2074 * image's parent fields can be safely torn down--after there are no 2075 * more in-flight requests to the parent image. When the last 2076 * reference is dropped, cleaning them up is safe. 2077 */ 2078 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2079 { 2080 int counter; 2081 2082 if (!rbd_dev->parent_spec) 2083 return; 2084 2085 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2086 if (counter > 0) 2087 return; 2088 2089 /* Last reference; clean up parent data structures */ 2090 2091 if (!counter) 2092 rbd_dev_unparent(rbd_dev); 2093 else 2094 rbd_warn(rbd_dev, "parent reference underflow"); 2095 } 2096 2097 /* 2098 * If an image has a non-zero parent overlap, get a reference to its 2099 * parent. 2100 * 2101 * We must get the reference before checking for the overlap to 2102 * coordinate properly with zeroing the parent overlap in 2103 * rbd_dev_v2_parent_info() when an image gets flattened. We 2104 * drop it again if there is no overlap. 2105 * 2106 * Returns true if the rbd device has a parent with a non-zero 2107 * overlap and a reference for it was successfully taken, or 2108 * false otherwise. 2109 */ 2110 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2111 { 2112 int counter; 2113 2114 if (!rbd_dev->parent_spec) 2115 return false; 2116 2117 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2118 if (counter > 0 && rbd_dev->parent_overlap) 2119 return true; 2120 2121 /* Image was flattened, but parent is not yet torn down */ 2122 2123 if (counter < 0) 2124 rbd_warn(rbd_dev, "parent reference overflow"); 2125 2126 return false; 2127 } 2128 2129 /* 2130 * Caller is responsible for filling in the list of object requests 2131 * that comprises the image request, and the Linux request pointer 2132 * (if there is one). 2133 */ 2134 static struct rbd_img_request *rbd_img_request_create( 2135 struct rbd_device *rbd_dev, 2136 u64 offset, u64 length, 2137 enum obj_operation_type op_type, 2138 struct ceph_snap_context *snapc) 2139 { 2140 struct rbd_img_request *img_request; 2141 2142 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2143 if (!img_request) 2144 return NULL; 2145 2146 img_request->rq = NULL; 2147 img_request->rbd_dev = rbd_dev; 2148 img_request->offset = offset; 2149 img_request->length = length; 2150 img_request->flags = 0; 2151 if (op_type == OBJ_OP_DISCARD) { 2152 img_request_discard_set(img_request); 2153 img_request->snapc = snapc; 2154 } else if (op_type == OBJ_OP_WRITE) { 2155 img_request_write_set(img_request); 2156 img_request->snapc = snapc; 2157 } else { 2158 img_request->snap_id = rbd_dev->spec->snap_id; 2159 } 2160 if (rbd_dev_parent_get(rbd_dev)) 2161 img_request_layered_set(img_request); 2162 spin_lock_init(&img_request->completion_lock); 2163 img_request->next_completion = 0; 2164 img_request->callback = NULL; 2165 img_request->result = 0; 2166 img_request->obj_request_count = 0; 2167 INIT_LIST_HEAD(&img_request->obj_requests); 2168 kref_init(&img_request->kref); 2169 2170 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2171 obj_op_name(op_type), offset, length, img_request); 2172 2173 return img_request; 2174 } 2175 2176 static void rbd_img_request_destroy(struct kref *kref) 2177 { 2178 struct rbd_img_request *img_request; 2179 struct rbd_obj_request *obj_request; 2180 struct rbd_obj_request *next_obj_request; 2181 2182 img_request = container_of(kref, struct rbd_img_request, kref); 2183 2184 dout("%s: img %p\n", __func__, img_request); 2185 2186 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2187 rbd_img_obj_request_del(img_request, obj_request); 2188 rbd_assert(img_request->obj_request_count == 0); 2189 2190 if (img_request_layered_test(img_request)) { 2191 img_request_layered_clear(img_request); 2192 rbd_dev_parent_put(img_request->rbd_dev); 2193 } 2194 2195 if (img_request_write_test(img_request) || 2196 img_request_discard_test(img_request)) 2197 ceph_put_snap_context(img_request->snapc); 2198 2199 kmem_cache_free(rbd_img_request_cache, img_request); 2200 } 2201 2202 static struct rbd_img_request *rbd_parent_request_create( 2203 struct rbd_obj_request *obj_request, 2204 u64 img_offset, u64 length) 2205 { 2206 struct rbd_img_request *parent_request; 2207 struct rbd_device *rbd_dev; 2208 2209 rbd_assert(obj_request->img_request); 2210 rbd_dev = obj_request->img_request->rbd_dev; 2211 2212 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2213 length, OBJ_OP_READ, NULL); 2214 if (!parent_request) 2215 return NULL; 2216 2217 img_request_child_set(parent_request); 2218 rbd_obj_request_get(obj_request); 2219 parent_request->obj_request = obj_request; 2220 2221 return parent_request; 2222 } 2223 2224 static void rbd_parent_request_destroy(struct kref *kref) 2225 { 2226 struct rbd_img_request *parent_request; 2227 struct rbd_obj_request *orig_request; 2228 2229 parent_request = container_of(kref, struct rbd_img_request, kref); 2230 orig_request = parent_request->obj_request; 2231 2232 parent_request->obj_request = NULL; 2233 rbd_obj_request_put(orig_request); 2234 img_request_child_clear(parent_request); 2235 2236 rbd_img_request_destroy(kref); 2237 } 2238 2239 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2240 { 2241 struct rbd_img_request *img_request; 2242 unsigned int xferred; 2243 int result; 2244 bool more; 2245 2246 rbd_assert(obj_request_img_data_test(obj_request)); 2247 img_request = obj_request->img_request; 2248 2249 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2250 xferred = (unsigned int)obj_request->xferred; 2251 result = obj_request->result; 2252 if (result) { 2253 struct rbd_device *rbd_dev = img_request->rbd_dev; 2254 enum obj_operation_type op_type; 2255 2256 if (img_request_discard_test(img_request)) 2257 op_type = OBJ_OP_DISCARD; 2258 else if (img_request_write_test(img_request)) 2259 op_type = OBJ_OP_WRITE; 2260 else 2261 op_type = OBJ_OP_READ; 2262 2263 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2264 obj_op_name(op_type), obj_request->length, 2265 obj_request->img_offset, obj_request->offset); 2266 rbd_warn(rbd_dev, " result %d xferred %x", 2267 result, xferred); 2268 if (!img_request->result) 2269 img_request->result = result; 2270 } 2271 2272 /* Image object requests don't own their page array */ 2273 2274 if (obj_request->type == OBJ_REQUEST_PAGES) { 2275 obj_request->pages = NULL; 2276 obj_request->page_count = 0; 2277 } 2278 2279 if (img_request_child_test(img_request)) { 2280 rbd_assert(img_request->obj_request != NULL); 2281 more = obj_request->which < img_request->obj_request_count - 1; 2282 } else { 2283 rbd_assert(img_request->rq != NULL); 2284 more = blk_end_request(img_request->rq, result, xferred); 2285 } 2286 2287 return more; 2288 } 2289 2290 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2291 { 2292 struct rbd_img_request *img_request; 2293 u32 which = obj_request->which; 2294 bool more = true; 2295 2296 rbd_assert(obj_request_img_data_test(obj_request)); 2297 img_request = obj_request->img_request; 2298 2299 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2300 rbd_assert(img_request != NULL); 2301 rbd_assert(img_request->obj_request_count > 0); 2302 rbd_assert(which != BAD_WHICH); 2303 rbd_assert(which < img_request->obj_request_count); 2304 2305 spin_lock_irq(&img_request->completion_lock); 2306 if (which != img_request->next_completion) 2307 goto out; 2308 2309 for_each_obj_request_from(img_request, obj_request) { 2310 rbd_assert(more); 2311 rbd_assert(which < img_request->obj_request_count); 2312 2313 if (!obj_request_done_test(obj_request)) 2314 break; 2315 more = rbd_img_obj_end_request(obj_request); 2316 which++; 2317 } 2318 2319 rbd_assert(more ^ (which == img_request->obj_request_count)); 2320 img_request->next_completion = which; 2321 out: 2322 spin_unlock_irq(&img_request->completion_lock); 2323 rbd_img_request_put(img_request); 2324 2325 if (!more) 2326 rbd_img_request_complete(img_request); 2327 } 2328 2329 /* 2330 * Add individual osd ops to the given ceph_osd_request and prepare 2331 * them for submission. num_ops is the current number of 2332 * osd operations already to the object request. 2333 */ 2334 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2335 struct ceph_osd_request *osd_request, 2336 enum obj_operation_type op_type, 2337 unsigned int num_ops) 2338 { 2339 struct rbd_img_request *img_request = obj_request->img_request; 2340 struct rbd_device *rbd_dev = img_request->rbd_dev; 2341 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2342 u64 offset = obj_request->offset; 2343 u64 length = obj_request->length; 2344 u64 img_end; 2345 u16 opcode; 2346 2347 if (op_type == OBJ_OP_DISCARD) { 2348 if (!offset && length == object_size && 2349 (!img_request_layered_test(img_request) || 2350 !obj_request_overlaps_parent(obj_request))) { 2351 opcode = CEPH_OSD_OP_DELETE; 2352 } else if ((offset + length == object_size)) { 2353 opcode = CEPH_OSD_OP_TRUNCATE; 2354 } else { 2355 down_read(&rbd_dev->header_rwsem); 2356 img_end = rbd_dev->header.image_size; 2357 up_read(&rbd_dev->header_rwsem); 2358 2359 if (obj_request->img_offset + length == img_end) 2360 opcode = CEPH_OSD_OP_TRUNCATE; 2361 else 2362 opcode = CEPH_OSD_OP_ZERO; 2363 } 2364 } else if (op_type == OBJ_OP_WRITE) { 2365 opcode = CEPH_OSD_OP_WRITE; 2366 osd_req_op_alloc_hint_init(osd_request, num_ops, 2367 object_size, object_size); 2368 num_ops++; 2369 } else { 2370 opcode = CEPH_OSD_OP_READ; 2371 } 2372 2373 if (opcode == CEPH_OSD_OP_DELETE) 2374 osd_req_op_init(osd_request, num_ops, opcode); 2375 else 2376 osd_req_op_extent_init(osd_request, num_ops, opcode, 2377 offset, length, 0, 0); 2378 2379 if (obj_request->type == OBJ_REQUEST_BIO) 2380 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2381 obj_request->bio_list, length); 2382 else if (obj_request->type == OBJ_REQUEST_PAGES) 2383 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2384 obj_request->pages, length, 2385 offset & ~PAGE_MASK, false, false); 2386 2387 /* Discards are also writes */ 2388 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2389 rbd_osd_req_format_write(obj_request); 2390 else 2391 rbd_osd_req_format_read(obj_request); 2392 } 2393 2394 /* 2395 * Split up an image request into one or more object requests, each 2396 * to a different object. The "type" parameter indicates whether 2397 * "data_desc" is the pointer to the head of a list of bio 2398 * structures, or the base of a page array. In either case this 2399 * function assumes data_desc describes memory sufficient to hold 2400 * all data described by the image request. 2401 */ 2402 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2403 enum obj_request_type type, 2404 void *data_desc) 2405 { 2406 struct rbd_device *rbd_dev = img_request->rbd_dev; 2407 struct rbd_obj_request *obj_request = NULL; 2408 struct rbd_obj_request *next_obj_request; 2409 struct bio *bio_list = NULL; 2410 unsigned int bio_offset = 0; 2411 struct page **pages = NULL; 2412 enum obj_operation_type op_type; 2413 u64 img_offset; 2414 u64 resid; 2415 2416 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2417 (int)type, data_desc); 2418 2419 img_offset = img_request->offset; 2420 resid = img_request->length; 2421 rbd_assert(resid > 0); 2422 op_type = rbd_img_request_op_type(img_request); 2423 2424 if (type == OBJ_REQUEST_BIO) { 2425 bio_list = data_desc; 2426 rbd_assert(img_offset == 2427 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2428 } else if (type == OBJ_REQUEST_PAGES) { 2429 pages = data_desc; 2430 } 2431 2432 while (resid) { 2433 struct ceph_osd_request *osd_req; 2434 const char *object_name; 2435 u64 offset; 2436 u64 length; 2437 2438 object_name = rbd_segment_name(rbd_dev, img_offset); 2439 if (!object_name) 2440 goto out_unwind; 2441 offset = rbd_segment_offset(rbd_dev, img_offset); 2442 length = rbd_segment_length(rbd_dev, img_offset, resid); 2443 obj_request = rbd_obj_request_create(object_name, 2444 offset, length, type); 2445 /* object request has its own copy of the object name */ 2446 rbd_segment_name_free(object_name); 2447 if (!obj_request) 2448 goto out_unwind; 2449 2450 /* 2451 * set obj_request->img_request before creating the 2452 * osd_request so that it gets the right snapc 2453 */ 2454 rbd_img_obj_request_add(img_request, obj_request); 2455 2456 if (type == OBJ_REQUEST_BIO) { 2457 unsigned int clone_size; 2458 2459 rbd_assert(length <= (u64)UINT_MAX); 2460 clone_size = (unsigned int)length; 2461 obj_request->bio_list = 2462 bio_chain_clone_range(&bio_list, 2463 &bio_offset, 2464 clone_size, 2465 GFP_ATOMIC); 2466 if (!obj_request->bio_list) 2467 goto out_unwind; 2468 } else if (type == OBJ_REQUEST_PAGES) { 2469 unsigned int page_count; 2470 2471 obj_request->pages = pages; 2472 page_count = (u32)calc_pages_for(offset, length); 2473 obj_request->page_count = page_count; 2474 if ((offset + length) & ~PAGE_MASK) 2475 page_count--; /* more on last page */ 2476 pages += page_count; 2477 } 2478 2479 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2480 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2481 obj_request); 2482 if (!osd_req) 2483 goto out_unwind; 2484 2485 obj_request->osd_req = osd_req; 2486 obj_request->callback = rbd_img_obj_callback; 2487 obj_request->img_offset = img_offset; 2488 2489 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2490 2491 rbd_img_request_get(img_request); 2492 2493 img_offset += length; 2494 resid -= length; 2495 } 2496 2497 return 0; 2498 2499 out_unwind: 2500 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2501 rbd_img_obj_request_del(img_request, obj_request); 2502 2503 return -ENOMEM; 2504 } 2505 2506 static void 2507 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request) 2508 { 2509 struct rbd_img_request *img_request; 2510 struct rbd_device *rbd_dev; 2511 struct page **pages; 2512 u32 page_count; 2513 2514 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2515 obj_request->type == OBJ_REQUEST_NODATA); 2516 rbd_assert(obj_request_img_data_test(obj_request)); 2517 img_request = obj_request->img_request; 2518 rbd_assert(img_request); 2519 2520 rbd_dev = img_request->rbd_dev; 2521 rbd_assert(rbd_dev); 2522 2523 pages = obj_request->copyup_pages; 2524 rbd_assert(pages != NULL); 2525 obj_request->copyup_pages = NULL; 2526 page_count = obj_request->copyup_page_count; 2527 rbd_assert(page_count); 2528 obj_request->copyup_page_count = 0; 2529 ceph_release_page_vector(pages, page_count); 2530 2531 /* 2532 * We want the transfer count to reflect the size of the 2533 * original write request. There is no such thing as a 2534 * successful short write, so if the request was successful 2535 * we can just set it to the originally-requested length. 2536 */ 2537 if (!obj_request->result) 2538 obj_request->xferred = obj_request->length; 2539 2540 /* Finish up with the normal image object callback */ 2541 2542 rbd_img_obj_callback(obj_request); 2543 } 2544 2545 static void 2546 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2547 { 2548 struct rbd_obj_request *orig_request; 2549 struct ceph_osd_request *osd_req; 2550 struct ceph_osd_client *osdc; 2551 struct rbd_device *rbd_dev; 2552 struct page **pages; 2553 enum obj_operation_type op_type; 2554 u32 page_count; 2555 int img_result; 2556 u64 parent_length; 2557 2558 rbd_assert(img_request_child_test(img_request)); 2559 2560 /* First get what we need from the image request */ 2561 2562 pages = img_request->copyup_pages; 2563 rbd_assert(pages != NULL); 2564 img_request->copyup_pages = NULL; 2565 page_count = img_request->copyup_page_count; 2566 rbd_assert(page_count); 2567 img_request->copyup_page_count = 0; 2568 2569 orig_request = img_request->obj_request; 2570 rbd_assert(orig_request != NULL); 2571 rbd_assert(obj_request_type_valid(orig_request->type)); 2572 img_result = img_request->result; 2573 parent_length = img_request->length; 2574 rbd_assert(parent_length == img_request->xferred); 2575 rbd_img_request_put(img_request); 2576 2577 rbd_assert(orig_request->img_request); 2578 rbd_dev = orig_request->img_request->rbd_dev; 2579 rbd_assert(rbd_dev); 2580 2581 /* 2582 * If the overlap has become 0 (most likely because the 2583 * image has been flattened) we need to free the pages 2584 * and re-submit the original write request. 2585 */ 2586 if (!rbd_dev->parent_overlap) { 2587 struct ceph_osd_client *osdc; 2588 2589 ceph_release_page_vector(pages, page_count); 2590 osdc = &rbd_dev->rbd_client->client->osdc; 2591 img_result = rbd_obj_request_submit(osdc, orig_request); 2592 if (!img_result) 2593 return; 2594 } 2595 2596 if (img_result) 2597 goto out_err; 2598 2599 /* 2600 * The original osd request is of no use to use any more. 2601 * We need a new one that can hold the three ops in a copyup 2602 * request. Allocate the new copyup osd request for the 2603 * original request, and release the old one. 2604 */ 2605 img_result = -ENOMEM; 2606 osd_req = rbd_osd_req_create_copyup(orig_request); 2607 if (!osd_req) 2608 goto out_err; 2609 rbd_osd_req_destroy(orig_request->osd_req); 2610 orig_request->osd_req = osd_req; 2611 orig_request->copyup_pages = pages; 2612 orig_request->copyup_page_count = page_count; 2613 2614 /* Initialize the copyup op */ 2615 2616 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2617 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2618 false, false); 2619 2620 /* Add the other op(s) */ 2621 2622 op_type = rbd_img_request_op_type(orig_request->img_request); 2623 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2624 2625 /* All set, send it off. */ 2626 2627 orig_request->callback = rbd_img_obj_copyup_callback; 2628 osdc = &rbd_dev->rbd_client->client->osdc; 2629 img_result = rbd_obj_request_submit(osdc, orig_request); 2630 if (!img_result) 2631 return; 2632 out_err: 2633 /* Record the error code and complete the request */ 2634 2635 orig_request->result = img_result; 2636 orig_request->xferred = 0; 2637 obj_request_done_set(orig_request); 2638 rbd_obj_request_complete(orig_request); 2639 } 2640 2641 /* 2642 * Read from the parent image the range of data that covers the 2643 * entire target of the given object request. This is used for 2644 * satisfying a layered image write request when the target of an 2645 * object request from the image request does not exist. 2646 * 2647 * A page array big enough to hold the returned data is allocated 2648 * and supplied to rbd_img_request_fill() as the "data descriptor." 2649 * When the read completes, this page array will be transferred to 2650 * the original object request for the copyup operation. 2651 * 2652 * If an error occurs, record it as the result of the original 2653 * object request and mark it done so it gets completed. 2654 */ 2655 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2656 { 2657 struct rbd_img_request *img_request = NULL; 2658 struct rbd_img_request *parent_request = NULL; 2659 struct rbd_device *rbd_dev; 2660 u64 img_offset; 2661 u64 length; 2662 struct page **pages = NULL; 2663 u32 page_count; 2664 int result; 2665 2666 rbd_assert(obj_request_img_data_test(obj_request)); 2667 rbd_assert(obj_request_type_valid(obj_request->type)); 2668 2669 img_request = obj_request->img_request; 2670 rbd_assert(img_request != NULL); 2671 rbd_dev = img_request->rbd_dev; 2672 rbd_assert(rbd_dev->parent != NULL); 2673 2674 /* 2675 * Determine the byte range covered by the object in the 2676 * child image to which the original request was to be sent. 2677 */ 2678 img_offset = obj_request->img_offset - obj_request->offset; 2679 length = (u64)1 << rbd_dev->header.obj_order; 2680 2681 /* 2682 * There is no defined parent data beyond the parent 2683 * overlap, so limit what we read at that boundary if 2684 * necessary. 2685 */ 2686 if (img_offset + length > rbd_dev->parent_overlap) { 2687 rbd_assert(img_offset < rbd_dev->parent_overlap); 2688 length = rbd_dev->parent_overlap - img_offset; 2689 } 2690 2691 /* 2692 * Allocate a page array big enough to receive the data read 2693 * from the parent. 2694 */ 2695 page_count = (u32)calc_pages_for(0, length); 2696 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2697 if (IS_ERR(pages)) { 2698 result = PTR_ERR(pages); 2699 pages = NULL; 2700 goto out_err; 2701 } 2702 2703 result = -ENOMEM; 2704 parent_request = rbd_parent_request_create(obj_request, 2705 img_offset, length); 2706 if (!parent_request) 2707 goto out_err; 2708 2709 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2710 if (result) 2711 goto out_err; 2712 parent_request->copyup_pages = pages; 2713 parent_request->copyup_page_count = page_count; 2714 2715 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2716 result = rbd_img_request_submit(parent_request); 2717 if (!result) 2718 return 0; 2719 2720 parent_request->copyup_pages = NULL; 2721 parent_request->copyup_page_count = 0; 2722 parent_request->obj_request = NULL; 2723 rbd_obj_request_put(obj_request); 2724 out_err: 2725 if (pages) 2726 ceph_release_page_vector(pages, page_count); 2727 if (parent_request) 2728 rbd_img_request_put(parent_request); 2729 obj_request->result = result; 2730 obj_request->xferred = 0; 2731 obj_request_done_set(obj_request); 2732 2733 return result; 2734 } 2735 2736 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2737 { 2738 struct rbd_obj_request *orig_request; 2739 struct rbd_device *rbd_dev; 2740 int result; 2741 2742 rbd_assert(!obj_request_img_data_test(obj_request)); 2743 2744 /* 2745 * All we need from the object request is the original 2746 * request and the result of the STAT op. Grab those, then 2747 * we're done with the request. 2748 */ 2749 orig_request = obj_request->obj_request; 2750 obj_request->obj_request = NULL; 2751 rbd_obj_request_put(orig_request); 2752 rbd_assert(orig_request); 2753 rbd_assert(orig_request->img_request); 2754 2755 result = obj_request->result; 2756 obj_request->result = 0; 2757 2758 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2759 obj_request, orig_request, result, 2760 obj_request->xferred, obj_request->length); 2761 rbd_obj_request_put(obj_request); 2762 2763 /* 2764 * If the overlap has become 0 (most likely because the 2765 * image has been flattened) we need to free the pages 2766 * and re-submit the original write request. 2767 */ 2768 rbd_dev = orig_request->img_request->rbd_dev; 2769 if (!rbd_dev->parent_overlap) { 2770 struct ceph_osd_client *osdc; 2771 2772 osdc = &rbd_dev->rbd_client->client->osdc; 2773 result = rbd_obj_request_submit(osdc, orig_request); 2774 if (!result) 2775 return; 2776 } 2777 2778 /* 2779 * Our only purpose here is to determine whether the object 2780 * exists, and we don't want to treat the non-existence as 2781 * an error. If something else comes back, transfer the 2782 * error to the original request and complete it now. 2783 */ 2784 if (!result) { 2785 obj_request_existence_set(orig_request, true); 2786 } else if (result == -ENOENT) { 2787 obj_request_existence_set(orig_request, false); 2788 } else if (result) { 2789 orig_request->result = result; 2790 goto out; 2791 } 2792 2793 /* 2794 * Resubmit the original request now that we have recorded 2795 * whether the target object exists. 2796 */ 2797 orig_request->result = rbd_img_obj_request_submit(orig_request); 2798 out: 2799 if (orig_request->result) 2800 rbd_obj_request_complete(orig_request); 2801 } 2802 2803 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2804 { 2805 struct rbd_obj_request *stat_request; 2806 struct rbd_device *rbd_dev; 2807 struct ceph_osd_client *osdc; 2808 struct page **pages = NULL; 2809 u32 page_count; 2810 size_t size; 2811 int ret; 2812 2813 /* 2814 * The response data for a STAT call consists of: 2815 * le64 length; 2816 * struct { 2817 * le32 tv_sec; 2818 * le32 tv_nsec; 2819 * } mtime; 2820 */ 2821 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2822 page_count = (u32)calc_pages_for(0, size); 2823 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2824 if (IS_ERR(pages)) 2825 return PTR_ERR(pages); 2826 2827 ret = -ENOMEM; 2828 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2829 OBJ_REQUEST_PAGES); 2830 if (!stat_request) 2831 goto out; 2832 2833 rbd_obj_request_get(obj_request); 2834 stat_request->obj_request = obj_request; 2835 stat_request->pages = pages; 2836 stat_request->page_count = page_count; 2837 2838 rbd_assert(obj_request->img_request); 2839 rbd_dev = obj_request->img_request->rbd_dev; 2840 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2841 stat_request); 2842 if (!stat_request->osd_req) 2843 goto out; 2844 stat_request->callback = rbd_img_obj_exists_callback; 2845 2846 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT); 2847 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2848 false, false); 2849 rbd_osd_req_format_read(stat_request); 2850 2851 osdc = &rbd_dev->rbd_client->client->osdc; 2852 ret = rbd_obj_request_submit(osdc, stat_request); 2853 out: 2854 if (ret) 2855 rbd_obj_request_put(obj_request); 2856 2857 return ret; 2858 } 2859 2860 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2861 { 2862 struct rbd_img_request *img_request; 2863 struct rbd_device *rbd_dev; 2864 2865 rbd_assert(obj_request_img_data_test(obj_request)); 2866 2867 img_request = obj_request->img_request; 2868 rbd_assert(img_request); 2869 rbd_dev = img_request->rbd_dev; 2870 2871 /* Reads */ 2872 if (!img_request_write_test(img_request) && 2873 !img_request_discard_test(img_request)) 2874 return true; 2875 2876 /* Non-layered writes */ 2877 if (!img_request_layered_test(img_request)) 2878 return true; 2879 2880 /* 2881 * Layered writes outside of the parent overlap range don't 2882 * share any data with the parent. 2883 */ 2884 if (!obj_request_overlaps_parent(obj_request)) 2885 return true; 2886 2887 /* 2888 * Entire-object layered writes - we will overwrite whatever 2889 * parent data there is anyway. 2890 */ 2891 if (!obj_request->offset && 2892 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2893 return true; 2894 2895 /* 2896 * If the object is known to already exist, its parent data has 2897 * already been copied. 2898 */ 2899 if (obj_request_known_test(obj_request) && 2900 obj_request_exists_test(obj_request)) 2901 return true; 2902 2903 return false; 2904 } 2905 2906 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2907 { 2908 if (img_obj_request_simple(obj_request)) { 2909 struct rbd_device *rbd_dev; 2910 struct ceph_osd_client *osdc; 2911 2912 rbd_dev = obj_request->img_request->rbd_dev; 2913 osdc = &rbd_dev->rbd_client->client->osdc; 2914 2915 return rbd_obj_request_submit(osdc, obj_request); 2916 } 2917 2918 /* 2919 * It's a layered write. The target object might exist but 2920 * we may not know that yet. If we know it doesn't exist, 2921 * start by reading the data for the full target object from 2922 * the parent so we can use it for a copyup to the target. 2923 */ 2924 if (obj_request_known_test(obj_request)) 2925 return rbd_img_obj_parent_read_full(obj_request); 2926 2927 /* We don't know whether the target exists. Go find out. */ 2928 2929 return rbd_img_obj_exists_submit(obj_request); 2930 } 2931 2932 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2933 { 2934 struct rbd_obj_request *obj_request; 2935 struct rbd_obj_request *next_obj_request; 2936 2937 dout("%s: img %p\n", __func__, img_request); 2938 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2939 int ret; 2940 2941 ret = rbd_img_obj_request_submit(obj_request); 2942 if (ret) 2943 return ret; 2944 } 2945 2946 return 0; 2947 } 2948 2949 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2950 { 2951 struct rbd_obj_request *obj_request; 2952 struct rbd_device *rbd_dev; 2953 u64 obj_end; 2954 u64 img_xferred; 2955 int img_result; 2956 2957 rbd_assert(img_request_child_test(img_request)); 2958 2959 /* First get what we need from the image request and release it */ 2960 2961 obj_request = img_request->obj_request; 2962 img_xferred = img_request->xferred; 2963 img_result = img_request->result; 2964 rbd_img_request_put(img_request); 2965 2966 /* 2967 * If the overlap has become 0 (most likely because the 2968 * image has been flattened) we need to re-submit the 2969 * original request. 2970 */ 2971 rbd_assert(obj_request); 2972 rbd_assert(obj_request->img_request); 2973 rbd_dev = obj_request->img_request->rbd_dev; 2974 if (!rbd_dev->parent_overlap) { 2975 struct ceph_osd_client *osdc; 2976 2977 osdc = &rbd_dev->rbd_client->client->osdc; 2978 img_result = rbd_obj_request_submit(osdc, obj_request); 2979 if (!img_result) 2980 return; 2981 } 2982 2983 obj_request->result = img_result; 2984 if (obj_request->result) 2985 goto out; 2986 2987 /* 2988 * We need to zero anything beyond the parent overlap 2989 * boundary. Since rbd_img_obj_request_read_callback() 2990 * will zero anything beyond the end of a short read, an 2991 * easy way to do this is to pretend the data from the 2992 * parent came up short--ending at the overlap boundary. 2993 */ 2994 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2995 obj_end = obj_request->img_offset + obj_request->length; 2996 if (obj_end > rbd_dev->parent_overlap) { 2997 u64 xferred = 0; 2998 2999 if (obj_request->img_offset < rbd_dev->parent_overlap) 3000 xferred = rbd_dev->parent_overlap - 3001 obj_request->img_offset; 3002 3003 obj_request->xferred = min(img_xferred, xferred); 3004 } else { 3005 obj_request->xferred = img_xferred; 3006 } 3007 out: 3008 rbd_img_obj_request_read_callback(obj_request); 3009 rbd_obj_request_complete(obj_request); 3010 } 3011 3012 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 3013 { 3014 struct rbd_img_request *img_request; 3015 int result; 3016 3017 rbd_assert(obj_request_img_data_test(obj_request)); 3018 rbd_assert(obj_request->img_request != NULL); 3019 rbd_assert(obj_request->result == (s32) -ENOENT); 3020 rbd_assert(obj_request_type_valid(obj_request->type)); 3021 3022 /* rbd_read_finish(obj_request, obj_request->length); */ 3023 img_request = rbd_parent_request_create(obj_request, 3024 obj_request->img_offset, 3025 obj_request->length); 3026 result = -ENOMEM; 3027 if (!img_request) 3028 goto out_err; 3029 3030 if (obj_request->type == OBJ_REQUEST_BIO) 3031 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3032 obj_request->bio_list); 3033 else 3034 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3035 obj_request->pages); 3036 if (result) 3037 goto out_err; 3038 3039 img_request->callback = rbd_img_parent_read_callback; 3040 result = rbd_img_request_submit(img_request); 3041 if (result) 3042 goto out_err; 3043 3044 return; 3045 out_err: 3046 if (img_request) 3047 rbd_img_request_put(img_request); 3048 obj_request->result = result; 3049 obj_request->xferred = 0; 3050 obj_request_done_set(obj_request); 3051 } 3052 3053 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 3054 { 3055 struct rbd_obj_request *obj_request; 3056 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3057 int ret; 3058 3059 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3060 OBJ_REQUEST_NODATA); 3061 if (!obj_request) 3062 return -ENOMEM; 3063 3064 ret = -ENOMEM; 3065 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3066 obj_request); 3067 if (!obj_request->osd_req) 3068 goto out; 3069 3070 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 3071 notify_id, 0, 0); 3072 rbd_osd_req_format_read(obj_request); 3073 3074 ret = rbd_obj_request_submit(osdc, obj_request); 3075 if (ret) 3076 goto out; 3077 ret = rbd_obj_request_wait(obj_request); 3078 out: 3079 rbd_obj_request_put(obj_request); 3080 3081 return ret; 3082 } 3083 3084 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 3085 { 3086 struct rbd_device *rbd_dev = (struct rbd_device *)data; 3087 int ret; 3088 3089 if (!rbd_dev) 3090 return; 3091 3092 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 3093 rbd_dev->header_name, (unsigned long long)notify_id, 3094 (unsigned int)opcode); 3095 3096 /* 3097 * Until adequate refresh error handling is in place, there is 3098 * not much we can do here, except warn. 3099 * 3100 * See http://tracker.ceph.com/issues/5040 3101 */ 3102 ret = rbd_dev_refresh(rbd_dev); 3103 if (ret) 3104 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3105 3106 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id); 3107 if (ret) 3108 rbd_warn(rbd_dev, "notify_ack ret %d", ret); 3109 } 3110 3111 /* 3112 * Send a (un)watch request and wait for the ack. Return a request 3113 * with a ref held on success or error. 3114 */ 3115 static struct rbd_obj_request *rbd_obj_watch_request_helper( 3116 struct rbd_device *rbd_dev, 3117 bool watch) 3118 { 3119 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3120 struct rbd_obj_request *obj_request; 3121 int ret; 3122 3123 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3124 OBJ_REQUEST_NODATA); 3125 if (!obj_request) 3126 return ERR_PTR(-ENOMEM); 3127 3128 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1, 3129 obj_request); 3130 if (!obj_request->osd_req) { 3131 ret = -ENOMEM; 3132 goto out; 3133 } 3134 3135 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 3136 rbd_dev->watch_event->cookie, 0, watch); 3137 rbd_osd_req_format_write(obj_request); 3138 3139 if (watch) 3140 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 3141 3142 ret = rbd_obj_request_submit(osdc, obj_request); 3143 if (ret) 3144 goto out; 3145 3146 ret = rbd_obj_request_wait(obj_request); 3147 if (ret) 3148 goto out; 3149 3150 ret = obj_request->result; 3151 if (ret) { 3152 if (watch) 3153 rbd_obj_request_end(obj_request); 3154 goto out; 3155 } 3156 3157 return obj_request; 3158 3159 out: 3160 rbd_obj_request_put(obj_request); 3161 return ERR_PTR(ret); 3162 } 3163 3164 /* 3165 * Initiate a watch request, synchronously. 3166 */ 3167 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 3168 { 3169 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3170 struct rbd_obj_request *obj_request; 3171 int ret; 3172 3173 rbd_assert(!rbd_dev->watch_event); 3174 rbd_assert(!rbd_dev->watch_request); 3175 3176 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 3177 &rbd_dev->watch_event); 3178 if (ret < 0) 3179 return ret; 3180 3181 obj_request = rbd_obj_watch_request_helper(rbd_dev, true); 3182 if (IS_ERR(obj_request)) { 3183 ceph_osdc_cancel_event(rbd_dev->watch_event); 3184 rbd_dev->watch_event = NULL; 3185 return PTR_ERR(obj_request); 3186 } 3187 3188 /* 3189 * A watch request is set to linger, so the underlying osd 3190 * request won't go away until we unregister it. We retain 3191 * a pointer to the object request during that time (in 3192 * rbd_dev->watch_request), so we'll keep a reference to it. 3193 * We'll drop that reference after we've unregistered it in 3194 * rbd_dev_header_unwatch_sync(). 3195 */ 3196 rbd_dev->watch_request = obj_request; 3197 3198 return 0; 3199 } 3200 3201 /* 3202 * Tear down a watch request, synchronously. 3203 */ 3204 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3205 { 3206 struct rbd_obj_request *obj_request; 3207 3208 rbd_assert(rbd_dev->watch_event); 3209 rbd_assert(rbd_dev->watch_request); 3210 3211 rbd_obj_request_end(rbd_dev->watch_request); 3212 rbd_obj_request_put(rbd_dev->watch_request); 3213 rbd_dev->watch_request = NULL; 3214 3215 obj_request = rbd_obj_watch_request_helper(rbd_dev, false); 3216 if (!IS_ERR(obj_request)) 3217 rbd_obj_request_put(obj_request); 3218 else 3219 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)", 3220 PTR_ERR(obj_request)); 3221 3222 ceph_osdc_cancel_event(rbd_dev->watch_event); 3223 rbd_dev->watch_event = NULL; 3224 } 3225 3226 /* 3227 * Synchronous osd object method call. Returns the number of bytes 3228 * returned in the outbound buffer, or a negative error code. 3229 */ 3230 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3231 const char *object_name, 3232 const char *class_name, 3233 const char *method_name, 3234 const void *outbound, 3235 size_t outbound_size, 3236 void *inbound, 3237 size_t inbound_size) 3238 { 3239 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3240 struct rbd_obj_request *obj_request; 3241 struct page **pages; 3242 u32 page_count; 3243 int ret; 3244 3245 /* 3246 * Method calls are ultimately read operations. The result 3247 * should placed into the inbound buffer provided. They 3248 * also supply outbound data--parameters for the object 3249 * method. Currently if this is present it will be a 3250 * snapshot id. 3251 */ 3252 page_count = (u32)calc_pages_for(0, inbound_size); 3253 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3254 if (IS_ERR(pages)) 3255 return PTR_ERR(pages); 3256 3257 ret = -ENOMEM; 3258 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3259 OBJ_REQUEST_PAGES); 3260 if (!obj_request) 3261 goto out; 3262 3263 obj_request->pages = pages; 3264 obj_request->page_count = page_count; 3265 3266 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3267 obj_request); 3268 if (!obj_request->osd_req) 3269 goto out; 3270 3271 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3272 class_name, method_name); 3273 if (outbound_size) { 3274 struct ceph_pagelist *pagelist; 3275 3276 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3277 if (!pagelist) 3278 goto out; 3279 3280 ceph_pagelist_init(pagelist); 3281 ceph_pagelist_append(pagelist, outbound, outbound_size); 3282 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3283 pagelist); 3284 } 3285 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3286 obj_request->pages, inbound_size, 3287 0, false, false); 3288 rbd_osd_req_format_read(obj_request); 3289 3290 ret = rbd_obj_request_submit(osdc, obj_request); 3291 if (ret) 3292 goto out; 3293 ret = rbd_obj_request_wait(obj_request); 3294 if (ret) 3295 goto out; 3296 3297 ret = obj_request->result; 3298 if (ret < 0) 3299 goto out; 3300 3301 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3302 ret = (int)obj_request->xferred; 3303 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3304 out: 3305 if (obj_request) 3306 rbd_obj_request_put(obj_request); 3307 else 3308 ceph_release_page_vector(pages, page_count); 3309 3310 return ret; 3311 } 3312 3313 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq) 3314 { 3315 struct rbd_img_request *img_request; 3316 struct ceph_snap_context *snapc = NULL; 3317 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3318 u64 length = blk_rq_bytes(rq); 3319 enum obj_operation_type op_type; 3320 u64 mapping_size; 3321 int result; 3322 3323 if (rq->cmd_flags & REQ_DISCARD) 3324 op_type = OBJ_OP_DISCARD; 3325 else if (rq->cmd_flags & REQ_WRITE) 3326 op_type = OBJ_OP_WRITE; 3327 else 3328 op_type = OBJ_OP_READ; 3329 3330 /* Ignore/skip any zero-length requests */ 3331 3332 if (!length) { 3333 dout("%s: zero-length request\n", __func__); 3334 result = 0; 3335 goto err_rq; 3336 } 3337 3338 /* Only reads are allowed to a read-only device */ 3339 3340 if (op_type != OBJ_OP_READ) { 3341 if (rbd_dev->mapping.read_only) { 3342 result = -EROFS; 3343 goto err_rq; 3344 } 3345 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3346 } 3347 3348 /* 3349 * Quit early if the mapped snapshot no longer exists. It's 3350 * still possible the snapshot will have disappeared by the 3351 * time our request arrives at the osd, but there's no sense in 3352 * sending it if we already know. 3353 */ 3354 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3355 dout("request for non-existent snapshot"); 3356 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3357 result = -ENXIO; 3358 goto err_rq; 3359 } 3360 3361 if (offset && length > U64_MAX - offset + 1) { 3362 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3363 length); 3364 result = -EINVAL; 3365 goto err_rq; /* Shouldn't happen */ 3366 } 3367 3368 down_read(&rbd_dev->header_rwsem); 3369 mapping_size = rbd_dev->mapping.size; 3370 if (op_type != OBJ_OP_READ) { 3371 snapc = rbd_dev->header.snapc; 3372 ceph_get_snap_context(snapc); 3373 } 3374 up_read(&rbd_dev->header_rwsem); 3375 3376 if (offset + length > mapping_size) { 3377 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3378 length, mapping_size); 3379 result = -EIO; 3380 goto err_rq; 3381 } 3382 3383 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 3384 snapc); 3385 if (!img_request) { 3386 result = -ENOMEM; 3387 goto err_rq; 3388 } 3389 img_request->rq = rq; 3390 3391 if (op_type == OBJ_OP_DISCARD) 3392 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 3393 NULL); 3394 else 3395 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3396 rq->bio); 3397 if (result) 3398 goto err_img_request; 3399 3400 result = rbd_img_request_submit(img_request); 3401 if (result) 3402 goto err_img_request; 3403 3404 return; 3405 3406 err_img_request: 3407 rbd_img_request_put(img_request); 3408 err_rq: 3409 if (result) 3410 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3411 obj_op_name(op_type), length, offset, result); 3412 ceph_put_snap_context(snapc); 3413 blk_end_request_all(rq, result); 3414 } 3415 3416 static void rbd_request_workfn(struct work_struct *work) 3417 { 3418 struct rbd_device *rbd_dev = 3419 container_of(work, struct rbd_device, rq_work); 3420 struct request *rq, *next; 3421 LIST_HEAD(requests); 3422 3423 spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */ 3424 list_splice_init(&rbd_dev->rq_queue, &requests); 3425 spin_unlock_irq(&rbd_dev->lock); 3426 3427 list_for_each_entry_safe(rq, next, &requests, queuelist) { 3428 list_del_init(&rq->queuelist); 3429 rbd_handle_request(rbd_dev, rq); 3430 } 3431 } 3432 3433 /* 3434 * Called with q->queue_lock held and interrupts disabled, possibly on 3435 * the way to schedule(). Do not sleep here! 3436 */ 3437 static void rbd_request_fn(struct request_queue *q) 3438 { 3439 struct rbd_device *rbd_dev = q->queuedata; 3440 struct request *rq; 3441 int queued = 0; 3442 3443 rbd_assert(rbd_dev); 3444 3445 while ((rq = blk_fetch_request(q))) { 3446 /* Ignore any non-FS requests that filter through. */ 3447 if (rq->cmd_type != REQ_TYPE_FS) { 3448 dout("%s: non-fs request type %d\n", __func__, 3449 (int) rq->cmd_type); 3450 __blk_end_request_all(rq, 0); 3451 continue; 3452 } 3453 3454 list_add_tail(&rq->queuelist, &rbd_dev->rq_queue); 3455 queued++; 3456 } 3457 3458 if (queued) 3459 queue_work(rbd_wq, &rbd_dev->rq_work); 3460 } 3461 3462 /* 3463 * a queue callback. Makes sure that we don't create a bio that spans across 3464 * multiple osd objects. One exception would be with a single page bios, 3465 * which we handle later at bio_chain_clone_range() 3466 */ 3467 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 3468 struct bio_vec *bvec) 3469 { 3470 struct rbd_device *rbd_dev = q->queuedata; 3471 sector_t sector_offset; 3472 sector_t sectors_per_obj; 3473 sector_t obj_sector_offset; 3474 int ret; 3475 3476 /* 3477 * Find how far into its rbd object the partition-relative 3478 * bio start sector is to offset relative to the enclosing 3479 * device. 3480 */ 3481 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector; 3482 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT); 3483 obj_sector_offset = sector_offset & (sectors_per_obj - 1); 3484 3485 /* 3486 * Compute the number of bytes from that offset to the end 3487 * of the object. Account for what's already used by the bio. 3488 */ 3489 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT; 3490 if (ret > bmd->bi_size) 3491 ret -= bmd->bi_size; 3492 else 3493 ret = 0; 3494 3495 /* 3496 * Don't send back more than was asked for. And if the bio 3497 * was empty, let the whole thing through because: "Note 3498 * that a block device *must* allow a single page to be 3499 * added to an empty bio." 3500 */ 3501 rbd_assert(bvec->bv_len <= PAGE_SIZE); 3502 if (ret > (int) bvec->bv_len || !bmd->bi_size) 3503 ret = (int) bvec->bv_len; 3504 3505 return ret; 3506 } 3507 3508 static void rbd_free_disk(struct rbd_device *rbd_dev) 3509 { 3510 struct gendisk *disk = rbd_dev->disk; 3511 3512 if (!disk) 3513 return; 3514 3515 rbd_dev->disk = NULL; 3516 if (disk->flags & GENHD_FL_UP) { 3517 del_gendisk(disk); 3518 if (disk->queue) 3519 blk_cleanup_queue(disk->queue); 3520 } 3521 put_disk(disk); 3522 } 3523 3524 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3525 const char *object_name, 3526 u64 offset, u64 length, void *buf) 3527 3528 { 3529 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3530 struct rbd_obj_request *obj_request; 3531 struct page **pages = NULL; 3532 u32 page_count; 3533 size_t size; 3534 int ret; 3535 3536 page_count = (u32) calc_pages_for(offset, length); 3537 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3538 if (IS_ERR(pages)) 3539 return PTR_ERR(pages); 3540 3541 ret = -ENOMEM; 3542 obj_request = rbd_obj_request_create(object_name, offset, length, 3543 OBJ_REQUEST_PAGES); 3544 if (!obj_request) 3545 goto out; 3546 3547 obj_request->pages = pages; 3548 obj_request->page_count = page_count; 3549 3550 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3551 obj_request); 3552 if (!obj_request->osd_req) 3553 goto out; 3554 3555 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3556 offset, length, 0, 0); 3557 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3558 obj_request->pages, 3559 obj_request->length, 3560 obj_request->offset & ~PAGE_MASK, 3561 false, false); 3562 rbd_osd_req_format_read(obj_request); 3563 3564 ret = rbd_obj_request_submit(osdc, obj_request); 3565 if (ret) 3566 goto out; 3567 ret = rbd_obj_request_wait(obj_request); 3568 if (ret) 3569 goto out; 3570 3571 ret = obj_request->result; 3572 if (ret < 0) 3573 goto out; 3574 3575 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3576 size = (size_t) obj_request->xferred; 3577 ceph_copy_from_page_vector(pages, buf, 0, size); 3578 rbd_assert(size <= (size_t)INT_MAX); 3579 ret = (int)size; 3580 out: 3581 if (obj_request) 3582 rbd_obj_request_put(obj_request); 3583 else 3584 ceph_release_page_vector(pages, page_count); 3585 3586 return ret; 3587 } 3588 3589 /* 3590 * Read the complete header for the given rbd device. On successful 3591 * return, the rbd_dev->header field will contain up-to-date 3592 * information about the image. 3593 */ 3594 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3595 { 3596 struct rbd_image_header_ondisk *ondisk = NULL; 3597 u32 snap_count = 0; 3598 u64 names_size = 0; 3599 u32 want_count; 3600 int ret; 3601 3602 /* 3603 * The complete header will include an array of its 64-bit 3604 * snapshot ids, followed by the names of those snapshots as 3605 * a contiguous block of NUL-terminated strings. Note that 3606 * the number of snapshots could change by the time we read 3607 * it in, in which case we re-read it. 3608 */ 3609 do { 3610 size_t size; 3611 3612 kfree(ondisk); 3613 3614 size = sizeof (*ondisk); 3615 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3616 size += names_size; 3617 ondisk = kmalloc(size, GFP_KERNEL); 3618 if (!ondisk) 3619 return -ENOMEM; 3620 3621 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3622 0, size, ondisk); 3623 if (ret < 0) 3624 goto out; 3625 if ((size_t)ret < size) { 3626 ret = -ENXIO; 3627 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3628 size, ret); 3629 goto out; 3630 } 3631 if (!rbd_dev_ondisk_valid(ondisk)) { 3632 ret = -ENXIO; 3633 rbd_warn(rbd_dev, "invalid header"); 3634 goto out; 3635 } 3636 3637 names_size = le64_to_cpu(ondisk->snap_names_len); 3638 want_count = snap_count; 3639 snap_count = le32_to_cpu(ondisk->snap_count); 3640 } while (snap_count != want_count); 3641 3642 ret = rbd_header_from_disk(rbd_dev, ondisk); 3643 out: 3644 kfree(ondisk); 3645 3646 return ret; 3647 } 3648 3649 /* 3650 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3651 * has disappeared from the (just updated) snapshot context. 3652 */ 3653 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3654 { 3655 u64 snap_id; 3656 3657 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3658 return; 3659 3660 snap_id = rbd_dev->spec->snap_id; 3661 if (snap_id == CEPH_NOSNAP) 3662 return; 3663 3664 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3665 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3666 } 3667 3668 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3669 { 3670 sector_t size; 3671 bool removing; 3672 3673 /* 3674 * Don't hold the lock while doing disk operations, 3675 * or lock ordering will conflict with the bdev mutex via: 3676 * rbd_add() -> blkdev_get() -> rbd_open() 3677 */ 3678 spin_lock_irq(&rbd_dev->lock); 3679 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3680 spin_unlock_irq(&rbd_dev->lock); 3681 /* 3682 * If the device is being removed, rbd_dev->disk has 3683 * been destroyed, so don't try to update its size 3684 */ 3685 if (!removing) { 3686 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3687 dout("setting size to %llu sectors", (unsigned long long)size); 3688 set_capacity(rbd_dev->disk, size); 3689 revalidate_disk(rbd_dev->disk); 3690 } 3691 } 3692 3693 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3694 { 3695 u64 mapping_size; 3696 int ret; 3697 3698 down_write(&rbd_dev->header_rwsem); 3699 mapping_size = rbd_dev->mapping.size; 3700 3701 ret = rbd_dev_header_info(rbd_dev); 3702 if (ret) 3703 return ret; 3704 3705 /* 3706 * If there is a parent, see if it has disappeared due to the 3707 * mapped image getting flattened. 3708 */ 3709 if (rbd_dev->parent) { 3710 ret = rbd_dev_v2_parent_info(rbd_dev); 3711 if (ret) 3712 return ret; 3713 } 3714 3715 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3716 if (rbd_dev->mapping.size != rbd_dev->header.image_size) 3717 rbd_dev->mapping.size = rbd_dev->header.image_size; 3718 } else { 3719 /* validate mapped snapshot's EXISTS flag */ 3720 rbd_exists_validate(rbd_dev); 3721 } 3722 3723 up_write(&rbd_dev->header_rwsem); 3724 3725 if (mapping_size != rbd_dev->mapping.size) 3726 rbd_dev_update_size(rbd_dev); 3727 3728 return 0; 3729 } 3730 3731 static int rbd_init_disk(struct rbd_device *rbd_dev) 3732 { 3733 struct gendisk *disk; 3734 struct request_queue *q; 3735 u64 segment_size; 3736 3737 /* create gendisk info */ 3738 disk = alloc_disk(single_major ? 3739 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3740 RBD_MINORS_PER_MAJOR); 3741 if (!disk) 3742 return -ENOMEM; 3743 3744 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3745 rbd_dev->dev_id); 3746 disk->major = rbd_dev->major; 3747 disk->first_minor = rbd_dev->minor; 3748 if (single_major) 3749 disk->flags |= GENHD_FL_EXT_DEVT; 3750 disk->fops = &rbd_bd_ops; 3751 disk->private_data = rbd_dev; 3752 3753 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock); 3754 if (!q) 3755 goto out_disk; 3756 3757 /* We use the default size, but let's be explicit about it. */ 3758 blk_queue_physical_block_size(q, SECTOR_SIZE); 3759 3760 /* set io sizes to object size */ 3761 segment_size = rbd_obj_bytes(&rbd_dev->header); 3762 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3763 blk_queue_max_segment_size(q, segment_size); 3764 blk_queue_io_min(q, segment_size); 3765 blk_queue_io_opt(q, segment_size); 3766 3767 /* enable the discard support */ 3768 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 3769 q->limits.discard_granularity = segment_size; 3770 q->limits.discard_alignment = segment_size; 3771 q->limits.max_discard_sectors = segment_size / SECTOR_SIZE; 3772 q->limits.discard_zeroes_data = 1; 3773 3774 blk_queue_merge_bvec(q, rbd_merge_bvec); 3775 disk->queue = q; 3776 3777 q->queuedata = rbd_dev; 3778 3779 rbd_dev->disk = disk; 3780 3781 return 0; 3782 out_disk: 3783 put_disk(disk); 3784 3785 return -ENOMEM; 3786 } 3787 3788 /* 3789 sysfs 3790 */ 3791 3792 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3793 { 3794 return container_of(dev, struct rbd_device, dev); 3795 } 3796 3797 static ssize_t rbd_size_show(struct device *dev, 3798 struct device_attribute *attr, char *buf) 3799 { 3800 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3801 3802 return sprintf(buf, "%llu\n", 3803 (unsigned long long)rbd_dev->mapping.size); 3804 } 3805 3806 /* 3807 * Note this shows the features for whatever's mapped, which is not 3808 * necessarily the base image. 3809 */ 3810 static ssize_t rbd_features_show(struct device *dev, 3811 struct device_attribute *attr, char *buf) 3812 { 3813 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3814 3815 return sprintf(buf, "0x%016llx\n", 3816 (unsigned long long)rbd_dev->mapping.features); 3817 } 3818 3819 static ssize_t rbd_major_show(struct device *dev, 3820 struct device_attribute *attr, char *buf) 3821 { 3822 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3823 3824 if (rbd_dev->major) 3825 return sprintf(buf, "%d\n", rbd_dev->major); 3826 3827 return sprintf(buf, "(none)\n"); 3828 } 3829 3830 static ssize_t rbd_minor_show(struct device *dev, 3831 struct device_attribute *attr, char *buf) 3832 { 3833 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3834 3835 return sprintf(buf, "%d\n", rbd_dev->minor); 3836 } 3837 3838 static ssize_t rbd_client_id_show(struct device *dev, 3839 struct device_attribute *attr, char *buf) 3840 { 3841 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3842 3843 return sprintf(buf, "client%lld\n", 3844 ceph_client_id(rbd_dev->rbd_client->client)); 3845 } 3846 3847 static ssize_t rbd_pool_show(struct device *dev, 3848 struct device_attribute *attr, char *buf) 3849 { 3850 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3851 3852 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3853 } 3854 3855 static ssize_t rbd_pool_id_show(struct device *dev, 3856 struct device_attribute *attr, char *buf) 3857 { 3858 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3859 3860 return sprintf(buf, "%llu\n", 3861 (unsigned long long) rbd_dev->spec->pool_id); 3862 } 3863 3864 static ssize_t rbd_name_show(struct device *dev, 3865 struct device_attribute *attr, char *buf) 3866 { 3867 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3868 3869 if (rbd_dev->spec->image_name) 3870 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3871 3872 return sprintf(buf, "(unknown)\n"); 3873 } 3874 3875 static ssize_t rbd_image_id_show(struct device *dev, 3876 struct device_attribute *attr, char *buf) 3877 { 3878 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3879 3880 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3881 } 3882 3883 /* 3884 * Shows the name of the currently-mapped snapshot (or 3885 * RBD_SNAP_HEAD_NAME for the base image). 3886 */ 3887 static ssize_t rbd_snap_show(struct device *dev, 3888 struct device_attribute *attr, 3889 char *buf) 3890 { 3891 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3892 3893 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3894 } 3895 3896 /* 3897 * For a v2 image, shows the chain of parent images, separated by empty 3898 * lines. For v1 images or if there is no parent, shows "(no parent 3899 * image)". 3900 */ 3901 static ssize_t rbd_parent_show(struct device *dev, 3902 struct device_attribute *attr, 3903 char *buf) 3904 { 3905 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3906 ssize_t count = 0; 3907 3908 if (!rbd_dev->parent) 3909 return sprintf(buf, "(no parent image)\n"); 3910 3911 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 3912 struct rbd_spec *spec = rbd_dev->parent_spec; 3913 3914 count += sprintf(&buf[count], "%s" 3915 "pool_id %llu\npool_name %s\n" 3916 "image_id %s\nimage_name %s\n" 3917 "snap_id %llu\nsnap_name %s\n" 3918 "overlap %llu\n", 3919 !count ? "" : "\n", /* first? */ 3920 spec->pool_id, spec->pool_name, 3921 spec->image_id, spec->image_name ?: "(unknown)", 3922 spec->snap_id, spec->snap_name, 3923 rbd_dev->parent_overlap); 3924 } 3925 3926 return count; 3927 } 3928 3929 static ssize_t rbd_image_refresh(struct device *dev, 3930 struct device_attribute *attr, 3931 const char *buf, 3932 size_t size) 3933 { 3934 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3935 int ret; 3936 3937 ret = rbd_dev_refresh(rbd_dev); 3938 if (ret) 3939 return ret; 3940 3941 return size; 3942 } 3943 3944 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3945 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3946 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3947 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3948 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3949 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3950 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3951 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3952 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3953 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3954 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3955 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3956 3957 static struct attribute *rbd_attrs[] = { 3958 &dev_attr_size.attr, 3959 &dev_attr_features.attr, 3960 &dev_attr_major.attr, 3961 &dev_attr_minor.attr, 3962 &dev_attr_client_id.attr, 3963 &dev_attr_pool.attr, 3964 &dev_attr_pool_id.attr, 3965 &dev_attr_name.attr, 3966 &dev_attr_image_id.attr, 3967 &dev_attr_current_snap.attr, 3968 &dev_attr_parent.attr, 3969 &dev_attr_refresh.attr, 3970 NULL 3971 }; 3972 3973 static struct attribute_group rbd_attr_group = { 3974 .attrs = rbd_attrs, 3975 }; 3976 3977 static const struct attribute_group *rbd_attr_groups[] = { 3978 &rbd_attr_group, 3979 NULL 3980 }; 3981 3982 static void rbd_sysfs_dev_release(struct device *dev) 3983 { 3984 } 3985 3986 static struct device_type rbd_device_type = { 3987 .name = "rbd", 3988 .groups = rbd_attr_groups, 3989 .release = rbd_sysfs_dev_release, 3990 }; 3991 3992 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 3993 { 3994 kref_get(&spec->kref); 3995 3996 return spec; 3997 } 3998 3999 static void rbd_spec_free(struct kref *kref); 4000 static void rbd_spec_put(struct rbd_spec *spec) 4001 { 4002 if (spec) 4003 kref_put(&spec->kref, rbd_spec_free); 4004 } 4005 4006 static struct rbd_spec *rbd_spec_alloc(void) 4007 { 4008 struct rbd_spec *spec; 4009 4010 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4011 if (!spec) 4012 return NULL; 4013 4014 spec->pool_id = CEPH_NOPOOL; 4015 spec->snap_id = CEPH_NOSNAP; 4016 kref_init(&spec->kref); 4017 4018 return spec; 4019 } 4020 4021 static void rbd_spec_free(struct kref *kref) 4022 { 4023 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4024 4025 kfree(spec->pool_name); 4026 kfree(spec->image_id); 4027 kfree(spec->image_name); 4028 kfree(spec->snap_name); 4029 kfree(spec); 4030 } 4031 4032 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4033 struct rbd_spec *spec) 4034 { 4035 struct rbd_device *rbd_dev; 4036 4037 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 4038 if (!rbd_dev) 4039 return NULL; 4040 4041 spin_lock_init(&rbd_dev->lock); 4042 INIT_LIST_HEAD(&rbd_dev->rq_queue); 4043 INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn); 4044 rbd_dev->flags = 0; 4045 atomic_set(&rbd_dev->parent_ref, 0); 4046 INIT_LIST_HEAD(&rbd_dev->node); 4047 init_rwsem(&rbd_dev->header_rwsem); 4048 4049 rbd_dev->spec = spec; 4050 rbd_dev->rbd_client = rbdc; 4051 4052 /* Initialize the layout used for all rbd requests */ 4053 4054 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4055 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 4056 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4057 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 4058 4059 return rbd_dev; 4060 } 4061 4062 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4063 { 4064 rbd_put_client(rbd_dev->rbd_client); 4065 rbd_spec_put(rbd_dev->spec); 4066 kfree(rbd_dev); 4067 } 4068 4069 /* 4070 * Get the size and object order for an image snapshot, or if 4071 * snap_id is CEPH_NOSNAP, gets this information for the base 4072 * image. 4073 */ 4074 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4075 u8 *order, u64 *snap_size) 4076 { 4077 __le64 snapid = cpu_to_le64(snap_id); 4078 int ret; 4079 struct { 4080 u8 order; 4081 __le64 size; 4082 } __attribute__ ((packed)) size_buf = { 0 }; 4083 4084 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4085 "rbd", "get_size", 4086 &snapid, sizeof (snapid), 4087 &size_buf, sizeof (size_buf)); 4088 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4089 if (ret < 0) 4090 return ret; 4091 if (ret < sizeof (size_buf)) 4092 return -ERANGE; 4093 4094 if (order) { 4095 *order = size_buf.order; 4096 dout(" order %u", (unsigned int)*order); 4097 } 4098 *snap_size = le64_to_cpu(size_buf.size); 4099 4100 dout(" snap_id 0x%016llx snap_size = %llu\n", 4101 (unsigned long long)snap_id, 4102 (unsigned long long)*snap_size); 4103 4104 return 0; 4105 } 4106 4107 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4108 { 4109 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4110 &rbd_dev->header.obj_order, 4111 &rbd_dev->header.image_size); 4112 } 4113 4114 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4115 { 4116 void *reply_buf; 4117 int ret; 4118 void *p; 4119 4120 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4121 if (!reply_buf) 4122 return -ENOMEM; 4123 4124 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4125 "rbd", "get_object_prefix", NULL, 0, 4126 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4127 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4128 if (ret < 0) 4129 goto out; 4130 4131 p = reply_buf; 4132 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4133 p + ret, NULL, GFP_NOIO); 4134 ret = 0; 4135 4136 if (IS_ERR(rbd_dev->header.object_prefix)) { 4137 ret = PTR_ERR(rbd_dev->header.object_prefix); 4138 rbd_dev->header.object_prefix = NULL; 4139 } else { 4140 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4141 } 4142 out: 4143 kfree(reply_buf); 4144 4145 return ret; 4146 } 4147 4148 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4149 u64 *snap_features) 4150 { 4151 __le64 snapid = cpu_to_le64(snap_id); 4152 struct { 4153 __le64 features; 4154 __le64 incompat; 4155 } __attribute__ ((packed)) features_buf = { 0 }; 4156 u64 incompat; 4157 int ret; 4158 4159 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4160 "rbd", "get_features", 4161 &snapid, sizeof (snapid), 4162 &features_buf, sizeof (features_buf)); 4163 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4164 if (ret < 0) 4165 return ret; 4166 if (ret < sizeof (features_buf)) 4167 return -ERANGE; 4168 4169 incompat = le64_to_cpu(features_buf.incompat); 4170 if (incompat & ~RBD_FEATURES_SUPPORTED) 4171 return -ENXIO; 4172 4173 *snap_features = le64_to_cpu(features_buf.features); 4174 4175 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4176 (unsigned long long)snap_id, 4177 (unsigned long long)*snap_features, 4178 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4179 4180 return 0; 4181 } 4182 4183 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4184 { 4185 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4186 &rbd_dev->header.features); 4187 } 4188 4189 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4190 { 4191 struct rbd_spec *parent_spec; 4192 size_t size; 4193 void *reply_buf = NULL; 4194 __le64 snapid; 4195 void *p; 4196 void *end; 4197 u64 pool_id; 4198 char *image_id; 4199 u64 snap_id; 4200 u64 overlap; 4201 int ret; 4202 4203 parent_spec = rbd_spec_alloc(); 4204 if (!parent_spec) 4205 return -ENOMEM; 4206 4207 size = sizeof (__le64) + /* pool_id */ 4208 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4209 sizeof (__le64) + /* snap_id */ 4210 sizeof (__le64); /* overlap */ 4211 reply_buf = kmalloc(size, GFP_KERNEL); 4212 if (!reply_buf) { 4213 ret = -ENOMEM; 4214 goto out_err; 4215 } 4216 4217 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4218 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4219 "rbd", "get_parent", 4220 &snapid, sizeof (snapid), 4221 reply_buf, size); 4222 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4223 if (ret < 0) 4224 goto out_err; 4225 4226 p = reply_buf; 4227 end = reply_buf + ret; 4228 ret = -ERANGE; 4229 ceph_decode_64_safe(&p, end, pool_id, out_err); 4230 if (pool_id == CEPH_NOPOOL) { 4231 /* 4232 * Either the parent never existed, or we have 4233 * record of it but the image got flattened so it no 4234 * longer has a parent. When the parent of a 4235 * layered image disappears we immediately set the 4236 * overlap to 0. The effect of this is that all new 4237 * requests will be treated as if the image had no 4238 * parent. 4239 */ 4240 if (rbd_dev->parent_overlap) { 4241 rbd_dev->parent_overlap = 0; 4242 smp_mb(); 4243 rbd_dev_parent_put(rbd_dev); 4244 pr_info("%s: clone image has been flattened\n", 4245 rbd_dev->disk->disk_name); 4246 } 4247 4248 goto out; /* No parent? No problem. */ 4249 } 4250 4251 /* The ceph file layout needs to fit pool id in 32 bits */ 4252 4253 ret = -EIO; 4254 if (pool_id > (u64)U32_MAX) { 4255 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4256 (unsigned long long)pool_id, U32_MAX); 4257 goto out_err; 4258 } 4259 4260 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4261 if (IS_ERR(image_id)) { 4262 ret = PTR_ERR(image_id); 4263 goto out_err; 4264 } 4265 ceph_decode_64_safe(&p, end, snap_id, out_err); 4266 ceph_decode_64_safe(&p, end, overlap, out_err); 4267 4268 /* 4269 * The parent won't change (except when the clone is 4270 * flattened, already handled that). So we only need to 4271 * record the parent spec we have not already done so. 4272 */ 4273 if (!rbd_dev->parent_spec) { 4274 parent_spec->pool_id = pool_id; 4275 parent_spec->image_id = image_id; 4276 parent_spec->snap_id = snap_id; 4277 rbd_dev->parent_spec = parent_spec; 4278 parent_spec = NULL; /* rbd_dev now owns this */ 4279 } else { 4280 kfree(image_id); 4281 } 4282 4283 /* 4284 * We always update the parent overlap. If it's zero we 4285 * treat it specially. 4286 */ 4287 rbd_dev->parent_overlap = overlap; 4288 smp_mb(); 4289 if (!overlap) { 4290 4291 /* A null parent_spec indicates it's the initial probe */ 4292 4293 if (parent_spec) { 4294 /* 4295 * The overlap has become zero, so the clone 4296 * must have been resized down to 0 at some 4297 * point. Treat this the same as a flatten. 4298 */ 4299 rbd_dev_parent_put(rbd_dev); 4300 pr_info("%s: clone image now standalone\n", 4301 rbd_dev->disk->disk_name); 4302 } else { 4303 /* 4304 * For the initial probe, if we find the 4305 * overlap is zero we just pretend there was 4306 * no parent image. 4307 */ 4308 rbd_warn(rbd_dev, "ignoring parent with overlap 0"); 4309 } 4310 } 4311 out: 4312 ret = 0; 4313 out_err: 4314 kfree(reply_buf); 4315 rbd_spec_put(parent_spec); 4316 4317 return ret; 4318 } 4319 4320 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4321 { 4322 struct { 4323 __le64 stripe_unit; 4324 __le64 stripe_count; 4325 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4326 size_t size = sizeof (striping_info_buf); 4327 void *p; 4328 u64 obj_size; 4329 u64 stripe_unit; 4330 u64 stripe_count; 4331 int ret; 4332 4333 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4334 "rbd", "get_stripe_unit_count", NULL, 0, 4335 (char *)&striping_info_buf, size); 4336 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4337 if (ret < 0) 4338 return ret; 4339 if (ret < size) 4340 return -ERANGE; 4341 4342 /* 4343 * We don't actually support the "fancy striping" feature 4344 * (STRIPINGV2) yet, but if the striping sizes are the 4345 * defaults the behavior is the same as before. So find 4346 * out, and only fail if the image has non-default values. 4347 */ 4348 ret = -EINVAL; 4349 obj_size = (u64)1 << rbd_dev->header.obj_order; 4350 p = &striping_info_buf; 4351 stripe_unit = ceph_decode_64(&p); 4352 if (stripe_unit != obj_size) { 4353 rbd_warn(rbd_dev, "unsupported stripe unit " 4354 "(got %llu want %llu)", 4355 stripe_unit, obj_size); 4356 return -EINVAL; 4357 } 4358 stripe_count = ceph_decode_64(&p); 4359 if (stripe_count != 1) { 4360 rbd_warn(rbd_dev, "unsupported stripe count " 4361 "(got %llu want 1)", stripe_count); 4362 return -EINVAL; 4363 } 4364 rbd_dev->header.stripe_unit = stripe_unit; 4365 rbd_dev->header.stripe_count = stripe_count; 4366 4367 return 0; 4368 } 4369 4370 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4371 { 4372 size_t image_id_size; 4373 char *image_id; 4374 void *p; 4375 void *end; 4376 size_t size; 4377 void *reply_buf = NULL; 4378 size_t len = 0; 4379 char *image_name = NULL; 4380 int ret; 4381 4382 rbd_assert(!rbd_dev->spec->image_name); 4383 4384 len = strlen(rbd_dev->spec->image_id); 4385 image_id_size = sizeof (__le32) + len; 4386 image_id = kmalloc(image_id_size, GFP_KERNEL); 4387 if (!image_id) 4388 return NULL; 4389 4390 p = image_id; 4391 end = image_id + image_id_size; 4392 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4393 4394 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4395 reply_buf = kmalloc(size, GFP_KERNEL); 4396 if (!reply_buf) 4397 goto out; 4398 4399 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4400 "rbd", "dir_get_name", 4401 image_id, image_id_size, 4402 reply_buf, size); 4403 if (ret < 0) 4404 goto out; 4405 p = reply_buf; 4406 end = reply_buf + ret; 4407 4408 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4409 if (IS_ERR(image_name)) 4410 image_name = NULL; 4411 else 4412 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4413 out: 4414 kfree(reply_buf); 4415 kfree(image_id); 4416 4417 return image_name; 4418 } 4419 4420 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4421 { 4422 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4423 const char *snap_name; 4424 u32 which = 0; 4425 4426 /* Skip over names until we find the one we are looking for */ 4427 4428 snap_name = rbd_dev->header.snap_names; 4429 while (which < snapc->num_snaps) { 4430 if (!strcmp(name, snap_name)) 4431 return snapc->snaps[which]; 4432 snap_name += strlen(snap_name) + 1; 4433 which++; 4434 } 4435 return CEPH_NOSNAP; 4436 } 4437 4438 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4439 { 4440 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4441 u32 which; 4442 bool found = false; 4443 u64 snap_id; 4444 4445 for (which = 0; !found && which < snapc->num_snaps; which++) { 4446 const char *snap_name; 4447 4448 snap_id = snapc->snaps[which]; 4449 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4450 if (IS_ERR(snap_name)) { 4451 /* ignore no-longer existing snapshots */ 4452 if (PTR_ERR(snap_name) == -ENOENT) 4453 continue; 4454 else 4455 break; 4456 } 4457 found = !strcmp(name, snap_name); 4458 kfree(snap_name); 4459 } 4460 return found ? snap_id : CEPH_NOSNAP; 4461 } 4462 4463 /* 4464 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4465 * no snapshot by that name is found, or if an error occurs. 4466 */ 4467 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4468 { 4469 if (rbd_dev->image_format == 1) 4470 return rbd_v1_snap_id_by_name(rbd_dev, name); 4471 4472 return rbd_v2_snap_id_by_name(rbd_dev, name); 4473 } 4474 4475 /* 4476 * An image being mapped will have everything but the snap id. 4477 */ 4478 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4479 { 4480 struct rbd_spec *spec = rbd_dev->spec; 4481 4482 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4483 rbd_assert(spec->image_id && spec->image_name); 4484 rbd_assert(spec->snap_name); 4485 4486 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4487 u64 snap_id; 4488 4489 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4490 if (snap_id == CEPH_NOSNAP) 4491 return -ENOENT; 4492 4493 spec->snap_id = snap_id; 4494 } else { 4495 spec->snap_id = CEPH_NOSNAP; 4496 } 4497 4498 return 0; 4499 } 4500 4501 /* 4502 * A parent image will have all ids but none of the names. 4503 * 4504 * All names in an rbd spec are dynamically allocated. It's OK if we 4505 * can't figure out the name for an image id. 4506 */ 4507 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4508 { 4509 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4510 struct rbd_spec *spec = rbd_dev->spec; 4511 const char *pool_name; 4512 const char *image_name; 4513 const char *snap_name; 4514 int ret; 4515 4516 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4517 rbd_assert(spec->image_id); 4518 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4519 4520 /* Get the pool name; we have to make our own copy of this */ 4521 4522 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4523 if (!pool_name) { 4524 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4525 return -EIO; 4526 } 4527 pool_name = kstrdup(pool_name, GFP_KERNEL); 4528 if (!pool_name) 4529 return -ENOMEM; 4530 4531 /* Fetch the image name; tolerate failure here */ 4532 4533 image_name = rbd_dev_image_name(rbd_dev); 4534 if (!image_name) 4535 rbd_warn(rbd_dev, "unable to get image name"); 4536 4537 /* Fetch the snapshot name */ 4538 4539 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4540 if (IS_ERR(snap_name)) { 4541 ret = PTR_ERR(snap_name); 4542 goto out_err; 4543 } 4544 4545 spec->pool_name = pool_name; 4546 spec->image_name = image_name; 4547 spec->snap_name = snap_name; 4548 4549 return 0; 4550 4551 out_err: 4552 kfree(image_name); 4553 kfree(pool_name); 4554 return ret; 4555 } 4556 4557 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4558 { 4559 size_t size; 4560 int ret; 4561 void *reply_buf; 4562 void *p; 4563 void *end; 4564 u64 seq; 4565 u32 snap_count; 4566 struct ceph_snap_context *snapc; 4567 u32 i; 4568 4569 /* 4570 * We'll need room for the seq value (maximum snapshot id), 4571 * snapshot count, and array of that many snapshot ids. 4572 * For now we have a fixed upper limit on the number we're 4573 * prepared to receive. 4574 */ 4575 size = sizeof (__le64) + sizeof (__le32) + 4576 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4577 reply_buf = kzalloc(size, GFP_KERNEL); 4578 if (!reply_buf) 4579 return -ENOMEM; 4580 4581 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4582 "rbd", "get_snapcontext", NULL, 0, 4583 reply_buf, size); 4584 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4585 if (ret < 0) 4586 goto out; 4587 4588 p = reply_buf; 4589 end = reply_buf + ret; 4590 ret = -ERANGE; 4591 ceph_decode_64_safe(&p, end, seq, out); 4592 ceph_decode_32_safe(&p, end, snap_count, out); 4593 4594 /* 4595 * Make sure the reported number of snapshot ids wouldn't go 4596 * beyond the end of our buffer. But before checking that, 4597 * make sure the computed size of the snapshot context we 4598 * allocate is representable in a size_t. 4599 */ 4600 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4601 / sizeof (u64)) { 4602 ret = -EINVAL; 4603 goto out; 4604 } 4605 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4606 goto out; 4607 ret = 0; 4608 4609 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4610 if (!snapc) { 4611 ret = -ENOMEM; 4612 goto out; 4613 } 4614 snapc->seq = seq; 4615 for (i = 0; i < snap_count; i++) 4616 snapc->snaps[i] = ceph_decode_64(&p); 4617 4618 ceph_put_snap_context(rbd_dev->header.snapc); 4619 rbd_dev->header.snapc = snapc; 4620 4621 dout(" snap context seq = %llu, snap_count = %u\n", 4622 (unsigned long long)seq, (unsigned int)snap_count); 4623 out: 4624 kfree(reply_buf); 4625 4626 return ret; 4627 } 4628 4629 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4630 u64 snap_id) 4631 { 4632 size_t size; 4633 void *reply_buf; 4634 __le64 snapid; 4635 int ret; 4636 void *p; 4637 void *end; 4638 char *snap_name; 4639 4640 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4641 reply_buf = kmalloc(size, GFP_KERNEL); 4642 if (!reply_buf) 4643 return ERR_PTR(-ENOMEM); 4644 4645 snapid = cpu_to_le64(snap_id); 4646 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4647 "rbd", "get_snapshot_name", 4648 &snapid, sizeof (snapid), 4649 reply_buf, size); 4650 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4651 if (ret < 0) { 4652 snap_name = ERR_PTR(ret); 4653 goto out; 4654 } 4655 4656 p = reply_buf; 4657 end = reply_buf + ret; 4658 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4659 if (IS_ERR(snap_name)) 4660 goto out; 4661 4662 dout(" snap_id 0x%016llx snap_name = %s\n", 4663 (unsigned long long)snap_id, snap_name); 4664 out: 4665 kfree(reply_buf); 4666 4667 return snap_name; 4668 } 4669 4670 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4671 { 4672 bool first_time = rbd_dev->header.object_prefix == NULL; 4673 int ret; 4674 4675 ret = rbd_dev_v2_image_size(rbd_dev); 4676 if (ret) 4677 return ret; 4678 4679 if (first_time) { 4680 ret = rbd_dev_v2_header_onetime(rbd_dev); 4681 if (ret) 4682 return ret; 4683 } 4684 4685 ret = rbd_dev_v2_snap_context(rbd_dev); 4686 dout("rbd_dev_v2_snap_context returned %d\n", ret); 4687 4688 return ret; 4689 } 4690 4691 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 4692 { 4693 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4694 4695 if (rbd_dev->image_format == 1) 4696 return rbd_dev_v1_header_info(rbd_dev); 4697 4698 return rbd_dev_v2_header_info(rbd_dev); 4699 } 4700 4701 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4702 { 4703 struct device *dev; 4704 int ret; 4705 4706 dev = &rbd_dev->dev; 4707 dev->bus = &rbd_bus_type; 4708 dev->type = &rbd_device_type; 4709 dev->parent = &rbd_root_dev; 4710 dev->release = rbd_dev_device_release; 4711 dev_set_name(dev, "%d", rbd_dev->dev_id); 4712 ret = device_register(dev); 4713 4714 return ret; 4715 } 4716 4717 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4718 { 4719 device_unregister(&rbd_dev->dev); 4720 } 4721 4722 /* 4723 * Get a unique rbd identifier for the given new rbd_dev, and add 4724 * the rbd_dev to the global list. 4725 */ 4726 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4727 { 4728 int new_dev_id; 4729 4730 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4731 0, minor_to_rbd_dev_id(1 << MINORBITS), 4732 GFP_KERNEL); 4733 if (new_dev_id < 0) 4734 return new_dev_id; 4735 4736 rbd_dev->dev_id = new_dev_id; 4737 4738 spin_lock(&rbd_dev_list_lock); 4739 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4740 spin_unlock(&rbd_dev_list_lock); 4741 4742 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4743 4744 return 0; 4745 } 4746 4747 /* 4748 * Remove an rbd_dev from the global list, and record that its 4749 * identifier is no longer in use. 4750 */ 4751 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4752 { 4753 spin_lock(&rbd_dev_list_lock); 4754 list_del_init(&rbd_dev->node); 4755 spin_unlock(&rbd_dev_list_lock); 4756 4757 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4758 4759 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4760 } 4761 4762 /* 4763 * Skips over white space at *buf, and updates *buf to point to the 4764 * first found non-space character (if any). Returns the length of 4765 * the token (string of non-white space characters) found. Note 4766 * that *buf must be terminated with '\0'. 4767 */ 4768 static inline size_t next_token(const char **buf) 4769 { 4770 /* 4771 * These are the characters that produce nonzero for 4772 * isspace() in the "C" and "POSIX" locales. 4773 */ 4774 const char *spaces = " \f\n\r\t\v"; 4775 4776 *buf += strspn(*buf, spaces); /* Find start of token */ 4777 4778 return strcspn(*buf, spaces); /* Return token length */ 4779 } 4780 4781 /* 4782 * Finds the next token in *buf, and if the provided token buffer is 4783 * big enough, copies the found token into it. The result, if 4784 * copied, is guaranteed to be terminated with '\0'. Note that *buf 4785 * must be terminated with '\0' on entry. 4786 * 4787 * Returns the length of the token found (not including the '\0'). 4788 * Return value will be 0 if no token is found, and it will be >= 4789 * token_size if the token would not fit. 4790 * 4791 * The *buf pointer will be updated to point beyond the end of the 4792 * found token. Note that this occurs even if the token buffer is 4793 * too small to hold it. 4794 */ 4795 static inline size_t copy_token(const char **buf, 4796 char *token, 4797 size_t token_size) 4798 { 4799 size_t len; 4800 4801 len = next_token(buf); 4802 if (len < token_size) { 4803 memcpy(token, *buf, len); 4804 *(token + len) = '\0'; 4805 } 4806 *buf += len; 4807 4808 return len; 4809 } 4810 4811 /* 4812 * Finds the next token in *buf, dynamically allocates a buffer big 4813 * enough to hold a copy of it, and copies the token into the new 4814 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4815 * that a duplicate buffer is created even for a zero-length token. 4816 * 4817 * Returns a pointer to the newly-allocated duplicate, or a null 4818 * pointer if memory for the duplicate was not available. If 4819 * the lenp argument is a non-null pointer, the length of the token 4820 * (not including the '\0') is returned in *lenp. 4821 * 4822 * If successful, the *buf pointer will be updated to point beyond 4823 * the end of the found token. 4824 * 4825 * Note: uses GFP_KERNEL for allocation. 4826 */ 4827 static inline char *dup_token(const char **buf, size_t *lenp) 4828 { 4829 char *dup; 4830 size_t len; 4831 4832 len = next_token(buf); 4833 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4834 if (!dup) 4835 return NULL; 4836 *(dup + len) = '\0'; 4837 *buf += len; 4838 4839 if (lenp) 4840 *lenp = len; 4841 4842 return dup; 4843 } 4844 4845 /* 4846 * Parse the options provided for an "rbd add" (i.e., rbd image 4847 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4848 * and the data written is passed here via a NUL-terminated buffer. 4849 * Returns 0 if successful or an error code otherwise. 4850 * 4851 * The information extracted from these options is recorded in 4852 * the other parameters which return dynamically-allocated 4853 * structures: 4854 * ceph_opts 4855 * The address of a pointer that will refer to a ceph options 4856 * structure. Caller must release the returned pointer using 4857 * ceph_destroy_options() when it is no longer needed. 4858 * rbd_opts 4859 * Address of an rbd options pointer. Fully initialized by 4860 * this function; caller must release with kfree(). 4861 * spec 4862 * Address of an rbd image specification pointer. Fully 4863 * initialized by this function based on parsed options. 4864 * Caller must release with rbd_spec_put(). 4865 * 4866 * The options passed take this form: 4867 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4868 * where: 4869 * <mon_addrs> 4870 * A comma-separated list of one or more monitor addresses. 4871 * A monitor address is an ip address, optionally followed 4872 * by a port number (separated by a colon). 4873 * I.e.: ip1[:port1][,ip2[:port2]...] 4874 * <options> 4875 * A comma-separated list of ceph and/or rbd options. 4876 * <pool_name> 4877 * The name of the rados pool containing the rbd image. 4878 * <image_name> 4879 * The name of the image in that pool to map. 4880 * <snap_id> 4881 * An optional snapshot id. If provided, the mapping will 4882 * present data from the image at the time that snapshot was 4883 * created. The image head is used if no snapshot id is 4884 * provided. Snapshot mappings are always read-only. 4885 */ 4886 static int rbd_add_parse_args(const char *buf, 4887 struct ceph_options **ceph_opts, 4888 struct rbd_options **opts, 4889 struct rbd_spec **rbd_spec) 4890 { 4891 size_t len; 4892 char *options; 4893 const char *mon_addrs; 4894 char *snap_name; 4895 size_t mon_addrs_size; 4896 struct rbd_spec *spec = NULL; 4897 struct rbd_options *rbd_opts = NULL; 4898 struct ceph_options *copts; 4899 int ret; 4900 4901 /* The first four tokens are required */ 4902 4903 len = next_token(&buf); 4904 if (!len) { 4905 rbd_warn(NULL, "no monitor address(es) provided"); 4906 return -EINVAL; 4907 } 4908 mon_addrs = buf; 4909 mon_addrs_size = len + 1; 4910 buf += len; 4911 4912 ret = -EINVAL; 4913 options = dup_token(&buf, NULL); 4914 if (!options) 4915 return -ENOMEM; 4916 if (!*options) { 4917 rbd_warn(NULL, "no options provided"); 4918 goto out_err; 4919 } 4920 4921 spec = rbd_spec_alloc(); 4922 if (!spec) 4923 goto out_mem; 4924 4925 spec->pool_name = dup_token(&buf, NULL); 4926 if (!spec->pool_name) 4927 goto out_mem; 4928 if (!*spec->pool_name) { 4929 rbd_warn(NULL, "no pool name provided"); 4930 goto out_err; 4931 } 4932 4933 spec->image_name = dup_token(&buf, NULL); 4934 if (!spec->image_name) 4935 goto out_mem; 4936 if (!*spec->image_name) { 4937 rbd_warn(NULL, "no image name provided"); 4938 goto out_err; 4939 } 4940 4941 /* 4942 * Snapshot name is optional; default is to use "-" 4943 * (indicating the head/no snapshot). 4944 */ 4945 len = next_token(&buf); 4946 if (!len) { 4947 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4948 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4949 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4950 ret = -ENAMETOOLONG; 4951 goto out_err; 4952 } 4953 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4954 if (!snap_name) 4955 goto out_mem; 4956 *(snap_name + len) = '\0'; 4957 spec->snap_name = snap_name; 4958 4959 /* Initialize all rbd options to the defaults */ 4960 4961 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4962 if (!rbd_opts) 4963 goto out_mem; 4964 4965 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4966 4967 copts = ceph_parse_options(options, mon_addrs, 4968 mon_addrs + mon_addrs_size - 1, 4969 parse_rbd_opts_token, rbd_opts); 4970 if (IS_ERR(copts)) { 4971 ret = PTR_ERR(copts); 4972 goto out_err; 4973 } 4974 kfree(options); 4975 4976 *ceph_opts = copts; 4977 *opts = rbd_opts; 4978 *rbd_spec = spec; 4979 4980 return 0; 4981 out_mem: 4982 ret = -ENOMEM; 4983 out_err: 4984 kfree(rbd_opts); 4985 rbd_spec_put(spec); 4986 kfree(options); 4987 4988 return ret; 4989 } 4990 4991 /* 4992 * Return pool id (>= 0) or a negative error code. 4993 */ 4994 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 4995 { 4996 u64 newest_epoch; 4997 unsigned long timeout = rbdc->client->options->mount_timeout * HZ; 4998 int tries = 0; 4999 int ret; 5000 5001 again: 5002 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 5003 if (ret == -ENOENT && tries++ < 1) { 5004 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap", 5005 &newest_epoch); 5006 if (ret < 0) 5007 return ret; 5008 5009 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 5010 ceph_monc_request_next_osdmap(&rbdc->client->monc); 5011 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 5012 newest_epoch, timeout); 5013 goto again; 5014 } else { 5015 /* the osdmap we have is new enough */ 5016 return -ENOENT; 5017 } 5018 } 5019 5020 return ret; 5021 } 5022 5023 /* 5024 * An rbd format 2 image has a unique identifier, distinct from the 5025 * name given to it by the user. Internally, that identifier is 5026 * what's used to specify the names of objects related to the image. 5027 * 5028 * A special "rbd id" object is used to map an rbd image name to its 5029 * id. If that object doesn't exist, then there is no v2 rbd image 5030 * with the supplied name. 5031 * 5032 * This function will record the given rbd_dev's image_id field if 5033 * it can be determined, and in that case will return 0. If any 5034 * errors occur a negative errno will be returned and the rbd_dev's 5035 * image_id field will be unchanged (and should be NULL). 5036 */ 5037 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5038 { 5039 int ret; 5040 size_t size; 5041 char *object_name; 5042 void *response; 5043 char *image_id; 5044 5045 /* 5046 * When probing a parent image, the image id is already 5047 * known (and the image name likely is not). There's no 5048 * need to fetch the image id again in this case. We 5049 * do still need to set the image format though. 5050 */ 5051 if (rbd_dev->spec->image_id) { 5052 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5053 5054 return 0; 5055 } 5056 5057 /* 5058 * First, see if the format 2 image id file exists, and if 5059 * so, get the image's persistent id from it. 5060 */ 5061 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 5062 object_name = kmalloc(size, GFP_NOIO); 5063 if (!object_name) 5064 return -ENOMEM; 5065 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 5066 dout("rbd id object name is %s\n", object_name); 5067 5068 /* Response will be an encoded string, which includes a length */ 5069 5070 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5071 response = kzalloc(size, GFP_NOIO); 5072 if (!response) { 5073 ret = -ENOMEM; 5074 goto out; 5075 } 5076 5077 /* If it doesn't exist we'll assume it's a format 1 image */ 5078 5079 ret = rbd_obj_method_sync(rbd_dev, object_name, 5080 "rbd", "get_id", NULL, 0, 5081 response, RBD_IMAGE_ID_LEN_MAX); 5082 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5083 if (ret == -ENOENT) { 5084 image_id = kstrdup("", GFP_KERNEL); 5085 ret = image_id ? 0 : -ENOMEM; 5086 if (!ret) 5087 rbd_dev->image_format = 1; 5088 } else if (ret >= 0) { 5089 void *p = response; 5090 5091 image_id = ceph_extract_encoded_string(&p, p + ret, 5092 NULL, GFP_NOIO); 5093 ret = PTR_ERR_OR_ZERO(image_id); 5094 if (!ret) 5095 rbd_dev->image_format = 2; 5096 } 5097 5098 if (!ret) { 5099 rbd_dev->spec->image_id = image_id; 5100 dout("image_id is %s\n", image_id); 5101 } 5102 out: 5103 kfree(response); 5104 kfree(object_name); 5105 5106 return ret; 5107 } 5108 5109 /* 5110 * Undo whatever state changes are made by v1 or v2 header info 5111 * call. 5112 */ 5113 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5114 { 5115 struct rbd_image_header *header; 5116 5117 /* Drop parent reference unless it's already been done (or none) */ 5118 5119 if (rbd_dev->parent_overlap) 5120 rbd_dev_parent_put(rbd_dev); 5121 5122 /* Free dynamic fields from the header, then zero it out */ 5123 5124 header = &rbd_dev->header; 5125 ceph_put_snap_context(header->snapc); 5126 kfree(header->snap_sizes); 5127 kfree(header->snap_names); 5128 kfree(header->object_prefix); 5129 memset(header, 0, sizeof (*header)); 5130 } 5131 5132 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5133 { 5134 int ret; 5135 5136 ret = rbd_dev_v2_object_prefix(rbd_dev); 5137 if (ret) 5138 goto out_err; 5139 5140 /* 5141 * Get the and check features for the image. Currently the 5142 * features are assumed to never change. 5143 */ 5144 ret = rbd_dev_v2_features(rbd_dev); 5145 if (ret) 5146 goto out_err; 5147 5148 /* If the image supports fancy striping, get its parameters */ 5149 5150 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5151 ret = rbd_dev_v2_striping_info(rbd_dev); 5152 if (ret < 0) 5153 goto out_err; 5154 } 5155 /* No support for crypto and compression type format 2 images */ 5156 5157 return 0; 5158 out_err: 5159 rbd_dev->header.features = 0; 5160 kfree(rbd_dev->header.object_prefix); 5161 rbd_dev->header.object_prefix = NULL; 5162 5163 return ret; 5164 } 5165 5166 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 5167 { 5168 struct rbd_device *parent = NULL; 5169 struct rbd_spec *parent_spec; 5170 struct rbd_client *rbdc; 5171 int ret; 5172 5173 if (!rbd_dev->parent_spec) 5174 return 0; 5175 /* 5176 * We need to pass a reference to the client and the parent 5177 * spec when creating the parent rbd_dev. Images related by 5178 * parent/child relationships always share both. 5179 */ 5180 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 5181 rbdc = __rbd_get_client(rbd_dev->rbd_client); 5182 5183 ret = -ENOMEM; 5184 parent = rbd_dev_create(rbdc, parent_spec); 5185 if (!parent) 5186 goto out_err; 5187 5188 ret = rbd_dev_image_probe(parent, false); 5189 if (ret < 0) 5190 goto out_err; 5191 rbd_dev->parent = parent; 5192 atomic_set(&rbd_dev->parent_ref, 1); 5193 5194 return 0; 5195 out_err: 5196 if (parent) { 5197 rbd_dev_unparent(rbd_dev); 5198 kfree(rbd_dev->header_name); 5199 rbd_dev_destroy(parent); 5200 } else { 5201 rbd_put_client(rbdc); 5202 rbd_spec_put(parent_spec); 5203 } 5204 5205 return ret; 5206 } 5207 5208 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5209 { 5210 int ret; 5211 5212 /* Get an id and fill in device name. */ 5213 5214 ret = rbd_dev_id_get(rbd_dev); 5215 if (ret) 5216 return ret; 5217 5218 BUILD_BUG_ON(DEV_NAME_LEN 5219 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 5220 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 5221 5222 /* Record our major and minor device numbers. */ 5223 5224 if (!single_major) { 5225 ret = register_blkdev(0, rbd_dev->name); 5226 if (ret < 0) 5227 goto err_out_id; 5228 5229 rbd_dev->major = ret; 5230 rbd_dev->minor = 0; 5231 } else { 5232 rbd_dev->major = rbd_major; 5233 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5234 } 5235 5236 /* Set up the blkdev mapping. */ 5237 5238 ret = rbd_init_disk(rbd_dev); 5239 if (ret) 5240 goto err_out_blkdev; 5241 5242 ret = rbd_dev_mapping_set(rbd_dev); 5243 if (ret) 5244 goto err_out_disk; 5245 5246 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5247 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5248 5249 ret = rbd_bus_add_dev(rbd_dev); 5250 if (ret) 5251 goto err_out_mapping; 5252 5253 /* Everything's ready. Announce the disk to the world. */ 5254 5255 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5256 add_disk(rbd_dev->disk); 5257 5258 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 5259 (unsigned long long) rbd_dev->mapping.size); 5260 5261 return ret; 5262 5263 err_out_mapping: 5264 rbd_dev_mapping_clear(rbd_dev); 5265 err_out_disk: 5266 rbd_free_disk(rbd_dev); 5267 err_out_blkdev: 5268 if (!single_major) 5269 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5270 err_out_id: 5271 rbd_dev_id_put(rbd_dev); 5272 rbd_dev_mapping_clear(rbd_dev); 5273 5274 return ret; 5275 } 5276 5277 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5278 { 5279 struct rbd_spec *spec = rbd_dev->spec; 5280 size_t size; 5281 5282 /* Record the header object name for this rbd image. */ 5283 5284 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5285 5286 if (rbd_dev->image_format == 1) 5287 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 5288 else 5289 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 5290 5291 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 5292 if (!rbd_dev->header_name) 5293 return -ENOMEM; 5294 5295 if (rbd_dev->image_format == 1) 5296 sprintf(rbd_dev->header_name, "%s%s", 5297 spec->image_name, RBD_SUFFIX); 5298 else 5299 sprintf(rbd_dev->header_name, "%s%s", 5300 RBD_HEADER_PREFIX, spec->image_id); 5301 return 0; 5302 } 5303 5304 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5305 { 5306 rbd_dev_unprobe(rbd_dev); 5307 kfree(rbd_dev->header_name); 5308 rbd_dev->header_name = NULL; 5309 rbd_dev->image_format = 0; 5310 kfree(rbd_dev->spec->image_id); 5311 rbd_dev->spec->image_id = NULL; 5312 5313 rbd_dev_destroy(rbd_dev); 5314 } 5315 5316 /* 5317 * Probe for the existence of the header object for the given rbd 5318 * device. If this image is the one being mapped (i.e., not a 5319 * parent), initiate a watch on its header object before using that 5320 * object to get detailed information about the rbd image. 5321 */ 5322 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping) 5323 { 5324 int ret; 5325 5326 /* 5327 * Get the id from the image id object. Unless there's an 5328 * error, rbd_dev->spec->image_id will be filled in with 5329 * a dynamically-allocated string, and rbd_dev->image_format 5330 * will be set to either 1 or 2. 5331 */ 5332 ret = rbd_dev_image_id(rbd_dev); 5333 if (ret) 5334 return ret; 5335 5336 ret = rbd_dev_header_name(rbd_dev); 5337 if (ret) 5338 goto err_out_format; 5339 5340 if (mapping) { 5341 ret = rbd_dev_header_watch_sync(rbd_dev); 5342 if (ret) 5343 goto out_header_name; 5344 } 5345 5346 ret = rbd_dev_header_info(rbd_dev); 5347 if (ret) 5348 goto err_out_watch; 5349 5350 /* 5351 * If this image is the one being mapped, we have pool name and 5352 * id, image name and id, and snap name - need to fill snap id. 5353 * Otherwise this is a parent image, identified by pool, image 5354 * and snap ids - need to fill in names for those ids. 5355 */ 5356 if (mapping) 5357 ret = rbd_spec_fill_snap_id(rbd_dev); 5358 else 5359 ret = rbd_spec_fill_names(rbd_dev); 5360 if (ret) 5361 goto err_out_probe; 5362 5363 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5364 ret = rbd_dev_v2_parent_info(rbd_dev); 5365 if (ret) 5366 goto err_out_probe; 5367 5368 /* 5369 * Need to warn users if this image is the one being 5370 * mapped and has a parent. 5371 */ 5372 if (mapping && rbd_dev->parent_spec) 5373 rbd_warn(rbd_dev, 5374 "WARNING: kernel layering is EXPERIMENTAL!"); 5375 } 5376 5377 ret = rbd_dev_probe_parent(rbd_dev); 5378 if (ret) 5379 goto err_out_probe; 5380 5381 dout("discovered format %u image, header name is %s\n", 5382 rbd_dev->image_format, rbd_dev->header_name); 5383 return 0; 5384 5385 err_out_probe: 5386 rbd_dev_unprobe(rbd_dev); 5387 err_out_watch: 5388 if (mapping) 5389 rbd_dev_header_unwatch_sync(rbd_dev); 5390 out_header_name: 5391 kfree(rbd_dev->header_name); 5392 rbd_dev->header_name = NULL; 5393 err_out_format: 5394 rbd_dev->image_format = 0; 5395 kfree(rbd_dev->spec->image_id); 5396 rbd_dev->spec->image_id = NULL; 5397 return ret; 5398 } 5399 5400 static ssize_t do_rbd_add(struct bus_type *bus, 5401 const char *buf, 5402 size_t count) 5403 { 5404 struct rbd_device *rbd_dev = NULL; 5405 struct ceph_options *ceph_opts = NULL; 5406 struct rbd_options *rbd_opts = NULL; 5407 struct rbd_spec *spec = NULL; 5408 struct rbd_client *rbdc; 5409 bool read_only; 5410 int rc = -ENOMEM; 5411 5412 if (!try_module_get(THIS_MODULE)) 5413 return -ENODEV; 5414 5415 /* parse add command */ 5416 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5417 if (rc < 0) 5418 goto err_out_module; 5419 read_only = rbd_opts->read_only; 5420 kfree(rbd_opts); 5421 rbd_opts = NULL; /* done with this */ 5422 5423 rbdc = rbd_get_client(ceph_opts); 5424 if (IS_ERR(rbdc)) { 5425 rc = PTR_ERR(rbdc); 5426 goto err_out_args; 5427 } 5428 5429 /* pick the pool */ 5430 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 5431 if (rc < 0) 5432 goto err_out_client; 5433 spec->pool_id = (u64)rc; 5434 5435 /* The ceph file layout needs to fit pool id in 32 bits */ 5436 5437 if (spec->pool_id > (u64)U32_MAX) { 5438 rbd_warn(NULL, "pool id too large (%llu > %u)", 5439 (unsigned long long)spec->pool_id, U32_MAX); 5440 rc = -EIO; 5441 goto err_out_client; 5442 } 5443 5444 rbd_dev = rbd_dev_create(rbdc, spec); 5445 if (!rbd_dev) 5446 goto err_out_client; 5447 rbdc = NULL; /* rbd_dev now owns this */ 5448 spec = NULL; /* rbd_dev now owns this */ 5449 5450 rc = rbd_dev_image_probe(rbd_dev, true); 5451 if (rc < 0) 5452 goto err_out_rbd_dev; 5453 5454 /* If we are mapping a snapshot it must be marked read-only */ 5455 5456 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5457 read_only = true; 5458 rbd_dev->mapping.read_only = read_only; 5459 5460 rc = rbd_dev_device_setup(rbd_dev); 5461 if (rc) { 5462 /* 5463 * rbd_dev_header_unwatch_sync() can't be moved into 5464 * rbd_dev_image_release() without refactoring, see 5465 * commit 1f3ef78861ac. 5466 */ 5467 rbd_dev_header_unwatch_sync(rbd_dev); 5468 rbd_dev_image_release(rbd_dev); 5469 goto err_out_module; 5470 } 5471 5472 return count; 5473 5474 err_out_rbd_dev: 5475 rbd_dev_destroy(rbd_dev); 5476 err_out_client: 5477 rbd_put_client(rbdc); 5478 err_out_args: 5479 rbd_spec_put(spec); 5480 err_out_module: 5481 module_put(THIS_MODULE); 5482 5483 dout("Error adding device %s\n", buf); 5484 5485 return (ssize_t)rc; 5486 } 5487 5488 static ssize_t rbd_add(struct bus_type *bus, 5489 const char *buf, 5490 size_t count) 5491 { 5492 if (single_major) 5493 return -EINVAL; 5494 5495 return do_rbd_add(bus, buf, count); 5496 } 5497 5498 static ssize_t rbd_add_single_major(struct bus_type *bus, 5499 const char *buf, 5500 size_t count) 5501 { 5502 return do_rbd_add(bus, buf, count); 5503 } 5504 5505 static void rbd_dev_device_release(struct device *dev) 5506 { 5507 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5508 5509 rbd_free_disk(rbd_dev); 5510 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5511 rbd_dev_mapping_clear(rbd_dev); 5512 if (!single_major) 5513 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5514 rbd_dev_id_put(rbd_dev); 5515 rbd_dev_mapping_clear(rbd_dev); 5516 } 5517 5518 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5519 { 5520 while (rbd_dev->parent) { 5521 struct rbd_device *first = rbd_dev; 5522 struct rbd_device *second = first->parent; 5523 struct rbd_device *third; 5524 5525 /* 5526 * Follow to the parent with no grandparent and 5527 * remove it. 5528 */ 5529 while (second && (third = second->parent)) { 5530 first = second; 5531 second = third; 5532 } 5533 rbd_assert(second); 5534 rbd_dev_image_release(second); 5535 first->parent = NULL; 5536 first->parent_overlap = 0; 5537 5538 rbd_assert(first->parent_spec); 5539 rbd_spec_put(first->parent_spec); 5540 first->parent_spec = NULL; 5541 } 5542 } 5543 5544 static ssize_t do_rbd_remove(struct bus_type *bus, 5545 const char *buf, 5546 size_t count) 5547 { 5548 struct rbd_device *rbd_dev = NULL; 5549 struct list_head *tmp; 5550 int dev_id; 5551 unsigned long ul; 5552 bool already = false; 5553 int ret; 5554 5555 ret = kstrtoul(buf, 10, &ul); 5556 if (ret) 5557 return ret; 5558 5559 /* convert to int; abort if we lost anything in the conversion */ 5560 dev_id = (int)ul; 5561 if (dev_id != ul) 5562 return -EINVAL; 5563 5564 ret = -ENOENT; 5565 spin_lock(&rbd_dev_list_lock); 5566 list_for_each(tmp, &rbd_dev_list) { 5567 rbd_dev = list_entry(tmp, struct rbd_device, node); 5568 if (rbd_dev->dev_id == dev_id) { 5569 ret = 0; 5570 break; 5571 } 5572 } 5573 if (!ret) { 5574 spin_lock_irq(&rbd_dev->lock); 5575 if (rbd_dev->open_count) 5576 ret = -EBUSY; 5577 else 5578 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5579 &rbd_dev->flags); 5580 spin_unlock_irq(&rbd_dev->lock); 5581 } 5582 spin_unlock(&rbd_dev_list_lock); 5583 if (ret < 0 || already) 5584 return ret; 5585 5586 rbd_dev_header_unwatch_sync(rbd_dev); 5587 /* 5588 * flush remaining watch callbacks - these must be complete 5589 * before the osd_client is shutdown 5590 */ 5591 dout("%s: flushing notifies", __func__); 5592 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5593 5594 /* 5595 * Don't free anything from rbd_dev->disk until after all 5596 * notifies are completely processed. Otherwise 5597 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5598 * in a potential use after free of rbd_dev->disk or rbd_dev. 5599 */ 5600 rbd_bus_del_dev(rbd_dev); 5601 rbd_dev_image_release(rbd_dev); 5602 module_put(THIS_MODULE); 5603 5604 return count; 5605 } 5606 5607 static ssize_t rbd_remove(struct bus_type *bus, 5608 const char *buf, 5609 size_t count) 5610 { 5611 if (single_major) 5612 return -EINVAL; 5613 5614 return do_rbd_remove(bus, buf, count); 5615 } 5616 5617 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5618 const char *buf, 5619 size_t count) 5620 { 5621 return do_rbd_remove(bus, buf, count); 5622 } 5623 5624 /* 5625 * create control files in sysfs 5626 * /sys/bus/rbd/... 5627 */ 5628 static int rbd_sysfs_init(void) 5629 { 5630 int ret; 5631 5632 ret = device_register(&rbd_root_dev); 5633 if (ret < 0) 5634 return ret; 5635 5636 ret = bus_register(&rbd_bus_type); 5637 if (ret < 0) 5638 device_unregister(&rbd_root_dev); 5639 5640 return ret; 5641 } 5642 5643 static void rbd_sysfs_cleanup(void) 5644 { 5645 bus_unregister(&rbd_bus_type); 5646 device_unregister(&rbd_root_dev); 5647 } 5648 5649 static int rbd_slab_init(void) 5650 { 5651 rbd_assert(!rbd_img_request_cache); 5652 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5653 sizeof (struct rbd_img_request), 5654 __alignof__(struct rbd_img_request), 5655 0, NULL); 5656 if (!rbd_img_request_cache) 5657 return -ENOMEM; 5658 5659 rbd_assert(!rbd_obj_request_cache); 5660 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5661 sizeof (struct rbd_obj_request), 5662 __alignof__(struct rbd_obj_request), 5663 0, NULL); 5664 if (!rbd_obj_request_cache) 5665 goto out_err; 5666 5667 rbd_assert(!rbd_segment_name_cache); 5668 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5669 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5670 if (rbd_segment_name_cache) 5671 return 0; 5672 out_err: 5673 if (rbd_obj_request_cache) { 5674 kmem_cache_destroy(rbd_obj_request_cache); 5675 rbd_obj_request_cache = NULL; 5676 } 5677 5678 kmem_cache_destroy(rbd_img_request_cache); 5679 rbd_img_request_cache = NULL; 5680 5681 return -ENOMEM; 5682 } 5683 5684 static void rbd_slab_exit(void) 5685 { 5686 rbd_assert(rbd_segment_name_cache); 5687 kmem_cache_destroy(rbd_segment_name_cache); 5688 rbd_segment_name_cache = NULL; 5689 5690 rbd_assert(rbd_obj_request_cache); 5691 kmem_cache_destroy(rbd_obj_request_cache); 5692 rbd_obj_request_cache = NULL; 5693 5694 rbd_assert(rbd_img_request_cache); 5695 kmem_cache_destroy(rbd_img_request_cache); 5696 rbd_img_request_cache = NULL; 5697 } 5698 5699 static int __init rbd_init(void) 5700 { 5701 int rc; 5702 5703 if (!libceph_compatible(NULL)) { 5704 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5705 return -EINVAL; 5706 } 5707 5708 rc = rbd_slab_init(); 5709 if (rc) 5710 return rc; 5711 5712 /* 5713 * The number of active work items is limited by the number of 5714 * rbd devices, so leave @max_active at default. 5715 */ 5716 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 5717 if (!rbd_wq) { 5718 rc = -ENOMEM; 5719 goto err_out_slab; 5720 } 5721 5722 if (single_major) { 5723 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5724 if (rbd_major < 0) { 5725 rc = rbd_major; 5726 goto err_out_wq; 5727 } 5728 } 5729 5730 rc = rbd_sysfs_init(); 5731 if (rc) 5732 goto err_out_blkdev; 5733 5734 if (single_major) 5735 pr_info("loaded (major %d)\n", rbd_major); 5736 else 5737 pr_info("loaded\n"); 5738 5739 return 0; 5740 5741 err_out_blkdev: 5742 if (single_major) 5743 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5744 err_out_wq: 5745 destroy_workqueue(rbd_wq); 5746 err_out_slab: 5747 rbd_slab_exit(); 5748 return rc; 5749 } 5750 5751 static void __exit rbd_exit(void) 5752 { 5753 ida_destroy(&rbd_dev_id_ida); 5754 rbd_sysfs_cleanup(); 5755 if (single_major) 5756 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5757 destroy_workqueue(rbd_wq); 5758 rbd_slab_exit(); 5759 } 5760 5761 module_init(rbd_init); 5762 module_exit(rbd_exit); 5763 5764 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5765 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5766 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5767 /* following authorship retained from original osdblk.c */ 5768 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5769 5770 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5771 MODULE_LICENSE("GPL"); 5772