xref: /linux/drivers/block/rbd.c (revision 8f529795bace5d6263b134f4ff3adccfc0a0cce6)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
100 #define RBD_MAX_SNAP_NAME_LEN	\
101 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
102 
103 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
104 
105 #define RBD_SNAP_HEAD_NAME	"-"
106 
107 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
108 
109 /* This allows a single page to hold an image name sent by OSD */
110 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
111 #define RBD_IMAGE_ID_LEN_MAX	64
112 
113 #define RBD_OBJ_PREFIX_LEN_MAX	64
114 
115 /* Feature bits */
116 
117 #define RBD_FEATURE_LAYERING	(1<<0)
118 #define RBD_FEATURE_STRIPINGV2	(1<<1)
119 #define RBD_FEATURES_ALL \
120 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
121 
122 /* Features supported by this (client software) implementation. */
123 
124 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
125 
126 /*
127  * An RBD device name will be "rbd#", where the "rbd" comes from
128  * RBD_DRV_NAME above, and # is a unique integer identifier.
129  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
130  * enough to hold all possible device names.
131  */
132 #define DEV_NAME_LEN		32
133 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
134 
135 /*
136  * block device image metadata (in-memory version)
137  */
138 struct rbd_image_header {
139 	/* These six fields never change for a given rbd image */
140 	char *object_prefix;
141 	__u8 obj_order;
142 	__u8 crypt_type;
143 	__u8 comp_type;
144 	u64 stripe_unit;
145 	u64 stripe_count;
146 	u64 features;		/* Might be changeable someday? */
147 
148 	/* The remaining fields need to be updated occasionally */
149 	u64 image_size;
150 	struct ceph_snap_context *snapc;
151 	char *snap_names;	/* format 1 only */
152 	u64 *snap_sizes;	/* format 1 only */
153 };
154 
155 /*
156  * An rbd image specification.
157  *
158  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
159  * identify an image.  Each rbd_dev structure includes a pointer to
160  * an rbd_spec structure that encapsulates this identity.
161  *
162  * Each of the id's in an rbd_spec has an associated name.  For a
163  * user-mapped image, the names are supplied and the id's associated
164  * with them are looked up.  For a layered image, a parent image is
165  * defined by the tuple, and the names are looked up.
166  *
167  * An rbd_dev structure contains a parent_spec pointer which is
168  * non-null if the image it represents is a child in a layered
169  * image.  This pointer will refer to the rbd_spec structure used
170  * by the parent rbd_dev for its own identity (i.e., the structure
171  * is shared between the parent and child).
172  *
173  * Since these structures are populated once, during the discovery
174  * phase of image construction, they are effectively immutable so
175  * we make no effort to synchronize access to them.
176  *
177  * Note that code herein does not assume the image name is known (it
178  * could be a null pointer).
179  */
180 struct rbd_spec {
181 	u64		pool_id;
182 	const char	*pool_name;
183 
184 	const char	*image_id;
185 	const char	*image_name;
186 
187 	u64		snap_id;
188 	const char	*snap_name;
189 
190 	struct kref	kref;
191 };
192 
193 /*
194  * an instance of the client.  multiple devices may share an rbd client.
195  */
196 struct rbd_client {
197 	struct ceph_client	*client;
198 	struct kref		kref;
199 	struct list_head	node;
200 };
201 
202 struct rbd_img_request;
203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
204 
205 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
206 
207 struct rbd_obj_request;
208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
209 
210 enum obj_request_type {
211 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
212 };
213 
214 enum obj_operation_type {
215 	OBJ_OP_WRITE,
216 	OBJ_OP_READ,
217 	OBJ_OP_DISCARD,
218 };
219 
220 enum obj_req_flags {
221 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
222 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
223 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
224 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
225 };
226 
227 struct rbd_obj_request {
228 	const char		*object_name;
229 	u64			offset;		/* object start byte */
230 	u64			length;		/* bytes from offset */
231 	unsigned long		flags;
232 
233 	/*
234 	 * An object request associated with an image will have its
235 	 * img_data flag set; a standalone object request will not.
236 	 *
237 	 * A standalone object request will have which == BAD_WHICH
238 	 * and a null obj_request pointer.
239 	 *
240 	 * An object request initiated in support of a layered image
241 	 * object (to check for its existence before a write) will
242 	 * have which == BAD_WHICH and a non-null obj_request pointer.
243 	 *
244 	 * Finally, an object request for rbd image data will have
245 	 * which != BAD_WHICH, and will have a non-null img_request
246 	 * pointer.  The value of which will be in the range
247 	 * 0..(img_request->obj_request_count-1).
248 	 */
249 	union {
250 		struct rbd_obj_request	*obj_request;	/* STAT op */
251 		struct {
252 			struct rbd_img_request	*img_request;
253 			u64			img_offset;
254 			/* links for img_request->obj_requests list */
255 			struct list_head	links;
256 		};
257 	};
258 	u32			which;		/* posn image request list */
259 
260 	enum obj_request_type	type;
261 	union {
262 		struct bio	*bio_list;
263 		struct {
264 			struct page	**pages;
265 			u32		page_count;
266 		};
267 	};
268 	struct page		**copyup_pages;
269 	u32			copyup_page_count;
270 
271 	struct ceph_osd_request	*osd_req;
272 
273 	u64			xferred;	/* bytes transferred */
274 	int			result;
275 
276 	rbd_obj_callback_t	callback;
277 	struct completion	completion;
278 
279 	struct kref		kref;
280 };
281 
282 enum img_req_flags {
283 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
284 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
285 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
286 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
287 };
288 
289 struct rbd_img_request {
290 	struct rbd_device	*rbd_dev;
291 	u64			offset;	/* starting image byte offset */
292 	u64			length;	/* byte count from offset */
293 	unsigned long		flags;
294 	union {
295 		u64			snap_id;	/* for reads */
296 		struct ceph_snap_context *snapc;	/* for writes */
297 	};
298 	union {
299 		struct request		*rq;		/* block request */
300 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
301 	};
302 	struct page		**copyup_pages;
303 	u32			copyup_page_count;
304 	spinlock_t		completion_lock;/* protects next_completion */
305 	u32			next_completion;
306 	rbd_img_callback_t	callback;
307 	u64			xferred;/* aggregate bytes transferred */
308 	int			result;	/* first nonzero obj_request result */
309 
310 	u32			obj_request_count;
311 	struct list_head	obj_requests;	/* rbd_obj_request structs */
312 
313 	struct kref		kref;
314 };
315 
316 #define for_each_obj_request(ireq, oreq) \
317 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
318 #define for_each_obj_request_from(ireq, oreq) \
319 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_safe(ireq, oreq, n) \
321 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
322 
323 struct rbd_mapping {
324 	u64                     size;
325 	u64                     features;
326 	bool			read_only;
327 };
328 
329 /*
330  * a single device
331  */
332 struct rbd_device {
333 	int			dev_id;		/* blkdev unique id */
334 
335 	int			major;		/* blkdev assigned major */
336 	int			minor;
337 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
338 
339 	u32			image_format;	/* Either 1 or 2 */
340 	struct rbd_client	*rbd_client;
341 
342 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
343 
344 	spinlock_t		lock;		/* queue, flags, open_count */
345 
346 	struct rbd_image_header	header;
347 	unsigned long		flags;		/* possibly lock protected */
348 	struct rbd_spec		*spec;
349 
350 	char			*header_name;
351 
352 	struct ceph_file_layout	layout;
353 
354 	struct ceph_osd_event   *watch_event;
355 	struct rbd_obj_request	*watch_request;
356 
357 	struct rbd_spec		*parent_spec;
358 	u64			parent_overlap;
359 	atomic_t		parent_ref;
360 	struct rbd_device	*parent;
361 
362 	/* Block layer tags. */
363 	struct blk_mq_tag_set	tag_set;
364 
365 	/* protects updating the header */
366 	struct rw_semaphore     header_rwsem;
367 
368 	struct rbd_mapping	mapping;
369 
370 	struct list_head	node;
371 
372 	/* sysfs related */
373 	struct device		dev;
374 	unsigned long		open_count;	/* protected by lock */
375 };
376 
377 /*
378  * Flag bits for rbd_dev->flags.  If atomicity is required,
379  * rbd_dev->lock is used to protect access.
380  *
381  * Currently, only the "removing" flag (which is coupled with the
382  * "open_count" field) requires atomic access.
383  */
384 enum rbd_dev_flags {
385 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
386 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
387 };
388 
389 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
390 
391 static LIST_HEAD(rbd_dev_list);    /* devices */
392 static DEFINE_SPINLOCK(rbd_dev_list_lock);
393 
394 static LIST_HEAD(rbd_client_list);		/* clients */
395 static DEFINE_SPINLOCK(rbd_client_list_lock);
396 
397 /* Slab caches for frequently-allocated structures */
398 
399 static struct kmem_cache	*rbd_img_request_cache;
400 static struct kmem_cache	*rbd_obj_request_cache;
401 static struct kmem_cache	*rbd_segment_name_cache;
402 
403 static int rbd_major;
404 static DEFINE_IDA(rbd_dev_id_ida);
405 
406 static struct workqueue_struct *rbd_wq;
407 
408 /*
409  * Default to false for now, as single-major requires >= 0.75 version of
410  * userspace rbd utility.
411  */
412 static bool single_major = false;
413 module_param(single_major, bool, S_IRUGO);
414 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
415 
416 static int rbd_img_request_submit(struct rbd_img_request *img_request);
417 
418 static void rbd_dev_device_release(struct device *dev);
419 
420 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
421 		       size_t count);
422 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
423 			  size_t count);
424 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
425 				    size_t count);
426 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
427 				       size_t count);
428 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
429 static void rbd_spec_put(struct rbd_spec *spec);
430 
431 static int rbd_dev_id_to_minor(int dev_id)
432 {
433 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
434 }
435 
436 static int minor_to_rbd_dev_id(int minor)
437 {
438 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
439 }
440 
441 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
442 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
443 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
444 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
445 
446 static struct attribute *rbd_bus_attrs[] = {
447 	&bus_attr_add.attr,
448 	&bus_attr_remove.attr,
449 	&bus_attr_add_single_major.attr,
450 	&bus_attr_remove_single_major.attr,
451 	NULL,
452 };
453 
454 static umode_t rbd_bus_is_visible(struct kobject *kobj,
455 				  struct attribute *attr, int index)
456 {
457 	if (!single_major &&
458 	    (attr == &bus_attr_add_single_major.attr ||
459 	     attr == &bus_attr_remove_single_major.attr))
460 		return 0;
461 
462 	return attr->mode;
463 }
464 
465 static const struct attribute_group rbd_bus_group = {
466 	.attrs = rbd_bus_attrs,
467 	.is_visible = rbd_bus_is_visible,
468 };
469 __ATTRIBUTE_GROUPS(rbd_bus);
470 
471 static struct bus_type rbd_bus_type = {
472 	.name		= "rbd",
473 	.bus_groups	= rbd_bus_groups,
474 };
475 
476 static void rbd_root_dev_release(struct device *dev)
477 {
478 }
479 
480 static struct device rbd_root_dev = {
481 	.init_name =    "rbd",
482 	.release =      rbd_root_dev_release,
483 };
484 
485 static __printf(2, 3)
486 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
487 {
488 	struct va_format vaf;
489 	va_list args;
490 
491 	va_start(args, fmt);
492 	vaf.fmt = fmt;
493 	vaf.va = &args;
494 
495 	if (!rbd_dev)
496 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
497 	else if (rbd_dev->disk)
498 		printk(KERN_WARNING "%s: %s: %pV\n",
499 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
500 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
501 		printk(KERN_WARNING "%s: image %s: %pV\n",
502 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
503 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
504 		printk(KERN_WARNING "%s: id %s: %pV\n",
505 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
506 	else	/* punt */
507 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
508 			RBD_DRV_NAME, rbd_dev, &vaf);
509 	va_end(args);
510 }
511 
512 #ifdef RBD_DEBUG
513 #define rbd_assert(expr)						\
514 		if (unlikely(!(expr))) {				\
515 			printk(KERN_ERR "\nAssertion failure in %s() "	\
516 						"at line %d:\n\n"	\
517 					"\trbd_assert(%s);\n\n",	\
518 					__func__, __LINE__, #expr);	\
519 			BUG();						\
520 		}
521 #else /* !RBD_DEBUG */
522 #  define rbd_assert(expr)	((void) 0)
523 #endif /* !RBD_DEBUG */
524 
525 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
526 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
527 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
528 
529 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
530 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
531 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
533 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
534 					u64 snap_id);
535 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
536 				u8 *order, u64 *snap_size);
537 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
538 		u64 *snap_features);
539 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
540 
541 static int rbd_open(struct block_device *bdev, fmode_t mode)
542 {
543 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
544 	bool removing = false;
545 
546 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
547 		return -EROFS;
548 
549 	spin_lock_irq(&rbd_dev->lock);
550 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
551 		removing = true;
552 	else
553 		rbd_dev->open_count++;
554 	spin_unlock_irq(&rbd_dev->lock);
555 	if (removing)
556 		return -ENOENT;
557 
558 	(void) get_device(&rbd_dev->dev);
559 
560 	return 0;
561 }
562 
563 static void rbd_release(struct gendisk *disk, fmode_t mode)
564 {
565 	struct rbd_device *rbd_dev = disk->private_data;
566 	unsigned long open_count_before;
567 
568 	spin_lock_irq(&rbd_dev->lock);
569 	open_count_before = rbd_dev->open_count--;
570 	spin_unlock_irq(&rbd_dev->lock);
571 	rbd_assert(open_count_before > 0);
572 
573 	put_device(&rbd_dev->dev);
574 }
575 
576 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
577 {
578 	int ret = 0;
579 	int val;
580 	bool ro;
581 	bool ro_changed = false;
582 
583 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
584 	if (get_user(val, (int __user *)(arg)))
585 		return -EFAULT;
586 
587 	ro = val ? true : false;
588 	/* Snapshot doesn't allow to write*/
589 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
590 		return -EROFS;
591 
592 	spin_lock_irq(&rbd_dev->lock);
593 	/* prevent others open this device */
594 	if (rbd_dev->open_count > 1) {
595 		ret = -EBUSY;
596 		goto out;
597 	}
598 
599 	if (rbd_dev->mapping.read_only != ro) {
600 		rbd_dev->mapping.read_only = ro;
601 		ro_changed = true;
602 	}
603 
604 out:
605 	spin_unlock_irq(&rbd_dev->lock);
606 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
607 	if (ret == 0 && ro_changed)
608 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
609 
610 	return ret;
611 }
612 
613 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
614 			unsigned int cmd, unsigned long arg)
615 {
616 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
617 	int ret = 0;
618 
619 	switch (cmd) {
620 	case BLKROSET:
621 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
622 		break;
623 	default:
624 		ret = -ENOTTY;
625 	}
626 
627 	return ret;
628 }
629 
630 #ifdef CONFIG_COMPAT
631 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
632 				unsigned int cmd, unsigned long arg)
633 {
634 	return rbd_ioctl(bdev, mode, cmd, arg);
635 }
636 #endif /* CONFIG_COMPAT */
637 
638 static const struct block_device_operations rbd_bd_ops = {
639 	.owner			= THIS_MODULE,
640 	.open			= rbd_open,
641 	.release		= rbd_release,
642 	.ioctl			= rbd_ioctl,
643 #ifdef CONFIG_COMPAT
644 	.compat_ioctl		= rbd_compat_ioctl,
645 #endif
646 };
647 
648 /*
649  * Initialize an rbd client instance.  Success or not, this function
650  * consumes ceph_opts.  Caller holds client_mutex.
651  */
652 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
653 {
654 	struct rbd_client *rbdc;
655 	int ret = -ENOMEM;
656 
657 	dout("%s:\n", __func__);
658 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
659 	if (!rbdc)
660 		goto out_opt;
661 
662 	kref_init(&rbdc->kref);
663 	INIT_LIST_HEAD(&rbdc->node);
664 
665 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
666 	if (IS_ERR(rbdc->client))
667 		goto out_rbdc;
668 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
669 
670 	ret = ceph_open_session(rbdc->client);
671 	if (ret < 0)
672 		goto out_client;
673 
674 	spin_lock(&rbd_client_list_lock);
675 	list_add_tail(&rbdc->node, &rbd_client_list);
676 	spin_unlock(&rbd_client_list_lock);
677 
678 	dout("%s: rbdc %p\n", __func__, rbdc);
679 
680 	return rbdc;
681 out_client:
682 	ceph_destroy_client(rbdc->client);
683 out_rbdc:
684 	kfree(rbdc);
685 out_opt:
686 	if (ceph_opts)
687 		ceph_destroy_options(ceph_opts);
688 	dout("%s: error %d\n", __func__, ret);
689 
690 	return ERR_PTR(ret);
691 }
692 
693 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
694 {
695 	kref_get(&rbdc->kref);
696 
697 	return rbdc;
698 }
699 
700 /*
701  * Find a ceph client with specific addr and configuration.  If
702  * found, bump its reference count.
703  */
704 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
705 {
706 	struct rbd_client *client_node;
707 	bool found = false;
708 
709 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
710 		return NULL;
711 
712 	spin_lock(&rbd_client_list_lock);
713 	list_for_each_entry(client_node, &rbd_client_list, node) {
714 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
715 			__rbd_get_client(client_node);
716 
717 			found = true;
718 			break;
719 		}
720 	}
721 	spin_unlock(&rbd_client_list_lock);
722 
723 	return found ? client_node : NULL;
724 }
725 
726 /*
727  * mount options
728  */
729 enum {
730 	Opt_last_int,
731 	/* int args above */
732 	Opt_last_string,
733 	/* string args above */
734 	Opt_read_only,
735 	Opt_read_write,
736 	/* Boolean args above */
737 	Opt_last_bool,
738 };
739 
740 static match_table_t rbd_opts_tokens = {
741 	/* int args above */
742 	/* string args above */
743 	{Opt_read_only, "read_only"},
744 	{Opt_read_only, "ro"},		/* Alternate spelling */
745 	{Opt_read_write, "read_write"},
746 	{Opt_read_write, "rw"},		/* Alternate spelling */
747 	/* Boolean args above */
748 	{-1, NULL}
749 };
750 
751 struct rbd_options {
752 	bool	read_only;
753 };
754 
755 #define RBD_READ_ONLY_DEFAULT	false
756 
757 static int parse_rbd_opts_token(char *c, void *private)
758 {
759 	struct rbd_options *rbd_opts = private;
760 	substring_t argstr[MAX_OPT_ARGS];
761 	int token, intval, ret;
762 
763 	token = match_token(c, rbd_opts_tokens, argstr);
764 	if (token < 0)
765 		return -EINVAL;
766 
767 	if (token < Opt_last_int) {
768 		ret = match_int(&argstr[0], &intval);
769 		if (ret < 0) {
770 			pr_err("bad mount option arg (not int) "
771 			       "at '%s'\n", c);
772 			return ret;
773 		}
774 		dout("got int token %d val %d\n", token, intval);
775 	} else if (token > Opt_last_int && token < Opt_last_string) {
776 		dout("got string token %d val %s\n", token,
777 		     argstr[0].from);
778 	} else if (token > Opt_last_string && token < Opt_last_bool) {
779 		dout("got Boolean token %d\n", token);
780 	} else {
781 		dout("got token %d\n", token);
782 	}
783 
784 	switch (token) {
785 	case Opt_read_only:
786 		rbd_opts->read_only = true;
787 		break;
788 	case Opt_read_write:
789 		rbd_opts->read_only = false;
790 		break;
791 	default:
792 		rbd_assert(false);
793 		break;
794 	}
795 	return 0;
796 }
797 
798 static char* obj_op_name(enum obj_operation_type op_type)
799 {
800 	switch (op_type) {
801 	case OBJ_OP_READ:
802 		return "read";
803 	case OBJ_OP_WRITE:
804 		return "write";
805 	case OBJ_OP_DISCARD:
806 		return "discard";
807 	default:
808 		return "???";
809 	}
810 }
811 
812 /*
813  * Get a ceph client with specific addr and configuration, if one does
814  * not exist create it.  Either way, ceph_opts is consumed by this
815  * function.
816  */
817 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
818 {
819 	struct rbd_client *rbdc;
820 
821 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
822 	rbdc = rbd_client_find(ceph_opts);
823 	if (rbdc)	/* using an existing client */
824 		ceph_destroy_options(ceph_opts);
825 	else
826 		rbdc = rbd_client_create(ceph_opts);
827 	mutex_unlock(&client_mutex);
828 
829 	return rbdc;
830 }
831 
832 /*
833  * Destroy ceph client
834  *
835  * Caller must hold rbd_client_list_lock.
836  */
837 static void rbd_client_release(struct kref *kref)
838 {
839 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
840 
841 	dout("%s: rbdc %p\n", __func__, rbdc);
842 	spin_lock(&rbd_client_list_lock);
843 	list_del(&rbdc->node);
844 	spin_unlock(&rbd_client_list_lock);
845 
846 	ceph_destroy_client(rbdc->client);
847 	kfree(rbdc);
848 }
849 
850 /*
851  * Drop reference to ceph client node. If it's not referenced anymore, release
852  * it.
853  */
854 static void rbd_put_client(struct rbd_client *rbdc)
855 {
856 	if (rbdc)
857 		kref_put(&rbdc->kref, rbd_client_release);
858 }
859 
860 static bool rbd_image_format_valid(u32 image_format)
861 {
862 	return image_format == 1 || image_format == 2;
863 }
864 
865 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
866 {
867 	size_t size;
868 	u32 snap_count;
869 
870 	/* The header has to start with the magic rbd header text */
871 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
872 		return false;
873 
874 	/* The bio layer requires at least sector-sized I/O */
875 
876 	if (ondisk->options.order < SECTOR_SHIFT)
877 		return false;
878 
879 	/* If we use u64 in a few spots we may be able to loosen this */
880 
881 	if (ondisk->options.order > 8 * sizeof (int) - 1)
882 		return false;
883 
884 	/*
885 	 * The size of a snapshot header has to fit in a size_t, and
886 	 * that limits the number of snapshots.
887 	 */
888 	snap_count = le32_to_cpu(ondisk->snap_count);
889 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
890 	if (snap_count > size / sizeof (__le64))
891 		return false;
892 
893 	/*
894 	 * Not only that, but the size of the entire the snapshot
895 	 * header must also be representable in a size_t.
896 	 */
897 	size -= snap_count * sizeof (__le64);
898 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
899 		return false;
900 
901 	return true;
902 }
903 
904 /*
905  * Fill an rbd image header with information from the given format 1
906  * on-disk header.
907  */
908 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
909 				 struct rbd_image_header_ondisk *ondisk)
910 {
911 	struct rbd_image_header *header = &rbd_dev->header;
912 	bool first_time = header->object_prefix == NULL;
913 	struct ceph_snap_context *snapc;
914 	char *object_prefix = NULL;
915 	char *snap_names = NULL;
916 	u64 *snap_sizes = NULL;
917 	u32 snap_count;
918 	size_t size;
919 	int ret = -ENOMEM;
920 	u32 i;
921 
922 	/* Allocate this now to avoid having to handle failure below */
923 
924 	if (first_time) {
925 		size_t len;
926 
927 		len = strnlen(ondisk->object_prefix,
928 				sizeof (ondisk->object_prefix));
929 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
930 		if (!object_prefix)
931 			return -ENOMEM;
932 		memcpy(object_prefix, ondisk->object_prefix, len);
933 		object_prefix[len] = '\0';
934 	}
935 
936 	/* Allocate the snapshot context and fill it in */
937 
938 	snap_count = le32_to_cpu(ondisk->snap_count);
939 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
940 	if (!snapc)
941 		goto out_err;
942 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
943 	if (snap_count) {
944 		struct rbd_image_snap_ondisk *snaps;
945 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
946 
947 		/* We'll keep a copy of the snapshot names... */
948 
949 		if (snap_names_len > (u64)SIZE_MAX)
950 			goto out_2big;
951 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
952 		if (!snap_names)
953 			goto out_err;
954 
955 		/* ...as well as the array of their sizes. */
956 
957 		size = snap_count * sizeof (*header->snap_sizes);
958 		snap_sizes = kmalloc(size, GFP_KERNEL);
959 		if (!snap_sizes)
960 			goto out_err;
961 
962 		/*
963 		 * Copy the names, and fill in each snapshot's id
964 		 * and size.
965 		 *
966 		 * Note that rbd_dev_v1_header_info() guarantees the
967 		 * ondisk buffer we're working with has
968 		 * snap_names_len bytes beyond the end of the
969 		 * snapshot id array, this memcpy() is safe.
970 		 */
971 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
972 		snaps = ondisk->snaps;
973 		for (i = 0; i < snap_count; i++) {
974 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
975 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
976 		}
977 	}
978 
979 	/* We won't fail any more, fill in the header */
980 
981 	if (first_time) {
982 		header->object_prefix = object_prefix;
983 		header->obj_order = ondisk->options.order;
984 		header->crypt_type = ondisk->options.crypt_type;
985 		header->comp_type = ondisk->options.comp_type;
986 		/* The rest aren't used for format 1 images */
987 		header->stripe_unit = 0;
988 		header->stripe_count = 0;
989 		header->features = 0;
990 	} else {
991 		ceph_put_snap_context(header->snapc);
992 		kfree(header->snap_names);
993 		kfree(header->snap_sizes);
994 	}
995 
996 	/* The remaining fields always get updated (when we refresh) */
997 
998 	header->image_size = le64_to_cpu(ondisk->image_size);
999 	header->snapc = snapc;
1000 	header->snap_names = snap_names;
1001 	header->snap_sizes = snap_sizes;
1002 
1003 	return 0;
1004 out_2big:
1005 	ret = -EIO;
1006 out_err:
1007 	kfree(snap_sizes);
1008 	kfree(snap_names);
1009 	ceph_put_snap_context(snapc);
1010 	kfree(object_prefix);
1011 
1012 	return ret;
1013 }
1014 
1015 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1016 {
1017 	const char *snap_name;
1018 
1019 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1020 
1021 	/* Skip over names until we find the one we are looking for */
1022 
1023 	snap_name = rbd_dev->header.snap_names;
1024 	while (which--)
1025 		snap_name += strlen(snap_name) + 1;
1026 
1027 	return kstrdup(snap_name, GFP_KERNEL);
1028 }
1029 
1030 /*
1031  * Snapshot id comparison function for use with qsort()/bsearch().
1032  * Note that result is for snapshots in *descending* order.
1033  */
1034 static int snapid_compare_reverse(const void *s1, const void *s2)
1035 {
1036 	u64 snap_id1 = *(u64 *)s1;
1037 	u64 snap_id2 = *(u64 *)s2;
1038 
1039 	if (snap_id1 < snap_id2)
1040 		return 1;
1041 	return snap_id1 == snap_id2 ? 0 : -1;
1042 }
1043 
1044 /*
1045  * Search a snapshot context to see if the given snapshot id is
1046  * present.
1047  *
1048  * Returns the position of the snapshot id in the array if it's found,
1049  * or BAD_SNAP_INDEX otherwise.
1050  *
1051  * Note: The snapshot array is in kept sorted (by the osd) in
1052  * reverse order, highest snapshot id first.
1053  */
1054 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1055 {
1056 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1057 	u64 *found;
1058 
1059 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1060 				sizeof (snap_id), snapid_compare_reverse);
1061 
1062 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1063 }
1064 
1065 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1066 					u64 snap_id)
1067 {
1068 	u32 which;
1069 	const char *snap_name;
1070 
1071 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1072 	if (which == BAD_SNAP_INDEX)
1073 		return ERR_PTR(-ENOENT);
1074 
1075 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1076 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1077 }
1078 
1079 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1080 {
1081 	if (snap_id == CEPH_NOSNAP)
1082 		return RBD_SNAP_HEAD_NAME;
1083 
1084 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1085 	if (rbd_dev->image_format == 1)
1086 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1087 
1088 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1089 }
1090 
1091 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1092 				u64 *snap_size)
1093 {
1094 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1095 	if (snap_id == CEPH_NOSNAP) {
1096 		*snap_size = rbd_dev->header.image_size;
1097 	} else if (rbd_dev->image_format == 1) {
1098 		u32 which;
1099 
1100 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1101 		if (which == BAD_SNAP_INDEX)
1102 			return -ENOENT;
1103 
1104 		*snap_size = rbd_dev->header.snap_sizes[which];
1105 	} else {
1106 		u64 size = 0;
1107 		int ret;
1108 
1109 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1110 		if (ret)
1111 			return ret;
1112 
1113 		*snap_size = size;
1114 	}
1115 	return 0;
1116 }
1117 
1118 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1119 			u64 *snap_features)
1120 {
1121 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1122 	if (snap_id == CEPH_NOSNAP) {
1123 		*snap_features = rbd_dev->header.features;
1124 	} else if (rbd_dev->image_format == 1) {
1125 		*snap_features = 0;	/* No features for format 1 */
1126 	} else {
1127 		u64 features = 0;
1128 		int ret;
1129 
1130 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1131 		if (ret)
1132 			return ret;
1133 
1134 		*snap_features = features;
1135 	}
1136 	return 0;
1137 }
1138 
1139 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1140 {
1141 	u64 snap_id = rbd_dev->spec->snap_id;
1142 	u64 size = 0;
1143 	u64 features = 0;
1144 	int ret;
1145 
1146 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1147 	if (ret)
1148 		return ret;
1149 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1150 	if (ret)
1151 		return ret;
1152 
1153 	rbd_dev->mapping.size = size;
1154 	rbd_dev->mapping.features = features;
1155 
1156 	return 0;
1157 }
1158 
1159 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1160 {
1161 	rbd_dev->mapping.size = 0;
1162 	rbd_dev->mapping.features = 0;
1163 }
1164 
1165 static void rbd_segment_name_free(const char *name)
1166 {
1167 	/* The explicit cast here is needed to drop the const qualifier */
1168 
1169 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1170 }
1171 
1172 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1173 {
1174 	char *name;
1175 	u64 segment;
1176 	int ret;
1177 	char *name_format;
1178 
1179 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1180 	if (!name)
1181 		return NULL;
1182 	segment = offset >> rbd_dev->header.obj_order;
1183 	name_format = "%s.%012llx";
1184 	if (rbd_dev->image_format == 2)
1185 		name_format = "%s.%016llx";
1186 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1187 			rbd_dev->header.object_prefix, segment);
1188 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1189 		pr_err("error formatting segment name for #%llu (%d)\n",
1190 			segment, ret);
1191 		rbd_segment_name_free(name);
1192 		name = NULL;
1193 	}
1194 
1195 	return name;
1196 }
1197 
1198 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1199 {
1200 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1201 
1202 	return offset & (segment_size - 1);
1203 }
1204 
1205 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1206 				u64 offset, u64 length)
1207 {
1208 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1209 
1210 	offset &= segment_size - 1;
1211 
1212 	rbd_assert(length <= U64_MAX - offset);
1213 	if (offset + length > segment_size)
1214 		length = segment_size - offset;
1215 
1216 	return length;
1217 }
1218 
1219 /*
1220  * returns the size of an object in the image
1221  */
1222 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1223 {
1224 	return 1 << header->obj_order;
1225 }
1226 
1227 /*
1228  * bio helpers
1229  */
1230 
1231 static void bio_chain_put(struct bio *chain)
1232 {
1233 	struct bio *tmp;
1234 
1235 	while (chain) {
1236 		tmp = chain;
1237 		chain = chain->bi_next;
1238 		bio_put(tmp);
1239 	}
1240 }
1241 
1242 /*
1243  * zeros a bio chain, starting at specific offset
1244  */
1245 static void zero_bio_chain(struct bio *chain, int start_ofs)
1246 {
1247 	struct bio_vec bv;
1248 	struct bvec_iter iter;
1249 	unsigned long flags;
1250 	void *buf;
1251 	int pos = 0;
1252 
1253 	while (chain) {
1254 		bio_for_each_segment(bv, chain, iter) {
1255 			if (pos + bv.bv_len > start_ofs) {
1256 				int remainder = max(start_ofs - pos, 0);
1257 				buf = bvec_kmap_irq(&bv, &flags);
1258 				memset(buf + remainder, 0,
1259 				       bv.bv_len - remainder);
1260 				flush_dcache_page(bv.bv_page);
1261 				bvec_kunmap_irq(buf, &flags);
1262 			}
1263 			pos += bv.bv_len;
1264 		}
1265 
1266 		chain = chain->bi_next;
1267 	}
1268 }
1269 
1270 /*
1271  * similar to zero_bio_chain(), zeros data defined by a page array,
1272  * starting at the given byte offset from the start of the array and
1273  * continuing up to the given end offset.  The pages array is
1274  * assumed to be big enough to hold all bytes up to the end.
1275  */
1276 static void zero_pages(struct page **pages, u64 offset, u64 end)
1277 {
1278 	struct page **page = &pages[offset >> PAGE_SHIFT];
1279 
1280 	rbd_assert(end > offset);
1281 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1282 	while (offset < end) {
1283 		size_t page_offset;
1284 		size_t length;
1285 		unsigned long flags;
1286 		void *kaddr;
1287 
1288 		page_offset = offset & ~PAGE_MASK;
1289 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1290 		local_irq_save(flags);
1291 		kaddr = kmap_atomic(*page);
1292 		memset(kaddr + page_offset, 0, length);
1293 		flush_dcache_page(*page);
1294 		kunmap_atomic(kaddr);
1295 		local_irq_restore(flags);
1296 
1297 		offset += length;
1298 		page++;
1299 	}
1300 }
1301 
1302 /*
1303  * Clone a portion of a bio, starting at the given byte offset
1304  * and continuing for the number of bytes indicated.
1305  */
1306 static struct bio *bio_clone_range(struct bio *bio_src,
1307 					unsigned int offset,
1308 					unsigned int len,
1309 					gfp_t gfpmask)
1310 {
1311 	struct bio *bio;
1312 
1313 	bio = bio_clone(bio_src, gfpmask);
1314 	if (!bio)
1315 		return NULL;	/* ENOMEM */
1316 
1317 	bio_advance(bio, offset);
1318 	bio->bi_iter.bi_size = len;
1319 
1320 	return bio;
1321 }
1322 
1323 /*
1324  * Clone a portion of a bio chain, starting at the given byte offset
1325  * into the first bio in the source chain and continuing for the
1326  * number of bytes indicated.  The result is another bio chain of
1327  * exactly the given length, or a null pointer on error.
1328  *
1329  * The bio_src and offset parameters are both in-out.  On entry they
1330  * refer to the first source bio and the offset into that bio where
1331  * the start of data to be cloned is located.
1332  *
1333  * On return, bio_src is updated to refer to the bio in the source
1334  * chain that contains first un-cloned byte, and *offset will
1335  * contain the offset of that byte within that bio.
1336  */
1337 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1338 					unsigned int *offset,
1339 					unsigned int len,
1340 					gfp_t gfpmask)
1341 {
1342 	struct bio *bi = *bio_src;
1343 	unsigned int off = *offset;
1344 	struct bio *chain = NULL;
1345 	struct bio **end;
1346 
1347 	/* Build up a chain of clone bios up to the limit */
1348 
1349 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1350 		return NULL;		/* Nothing to clone */
1351 
1352 	end = &chain;
1353 	while (len) {
1354 		unsigned int bi_size;
1355 		struct bio *bio;
1356 
1357 		if (!bi) {
1358 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1359 			goto out_err;	/* EINVAL; ran out of bio's */
1360 		}
1361 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1362 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1363 		if (!bio)
1364 			goto out_err;	/* ENOMEM */
1365 
1366 		*end = bio;
1367 		end = &bio->bi_next;
1368 
1369 		off += bi_size;
1370 		if (off == bi->bi_iter.bi_size) {
1371 			bi = bi->bi_next;
1372 			off = 0;
1373 		}
1374 		len -= bi_size;
1375 	}
1376 	*bio_src = bi;
1377 	*offset = off;
1378 
1379 	return chain;
1380 out_err:
1381 	bio_chain_put(chain);
1382 
1383 	return NULL;
1384 }
1385 
1386 /*
1387  * The default/initial value for all object request flags is 0.  For
1388  * each flag, once its value is set to 1 it is never reset to 0
1389  * again.
1390  */
1391 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1392 {
1393 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1394 		struct rbd_device *rbd_dev;
1395 
1396 		rbd_dev = obj_request->img_request->rbd_dev;
1397 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1398 			obj_request);
1399 	}
1400 }
1401 
1402 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1403 {
1404 	smp_mb();
1405 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1406 }
1407 
1408 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1409 {
1410 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1411 		struct rbd_device *rbd_dev = NULL;
1412 
1413 		if (obj_request_img_data_test(obj_request))
1414 			rbd_dev = obj_request->img_request->rbd_dev;
1415 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1416 			obj_request);
1417 	}
1418 }
1419 
1420 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1421 {
1422 	smp_mb();
1423 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1424 }
1425 
1426 /*
1427  * This sets the KNOWN flag after (possibly) setting the EXISTS
1428  * flag.  The latter is set based on the "exists" value provided.
1429  *
1430  * Note that for our purposes once an object exists it never goes
1431  * away again.  It's possible that the response from two existence
1432  * checks are separated by the creation of the target object, and
1433  * the first ("doesn't exist") response arrives *after* the second
1434  * ("does exist").  In that case we ignore the second one.
1435  */
1436 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1437 				bool exists)
1438 {
1439 	if (exists)
1440 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1441 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1442 	smp_mb();
1443 }
1444 
1445 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1446 {
1447 	smp_mb();
1448 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1449 }
1450 
1451 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1452 {
1453 	smp_mb();
1454 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1455 }
1456 
1457 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1458 {
1459 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1460 
1461 	return obj_request->img_offset <
1462 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1463 }
1464 
1465 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1466 {
1467 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1468 		atomic_read(&obj_request->kref.refcount));
1469 	kref_get(&obj_request->kref);
1470 }
1471 
1472 static void rbd_obj_request_destroy(struct kref *kref);
1473 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1474 {
1475 	rbd_assert(obj_request != NULL);
1476 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1477 		atomic_read(&obj_request->kref.refcount));
1478 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1479 }
1480 
1481 static void rbd_img_request_get(struct rbd_img_request *img_request)
1482 {
1483 	dout("%s: img %p (was %d)\n", __func__, img_request,
1484 	     atomic_read(&img_request->kref.refcount));
1485 	kref_get(&img_request->kref);
1486 }
1487 
1488 static bool img_request_child_test(struct rbd_img_request *img_request);
1489 static void rbd_parent_request_destroy(struct kref *kref);
1490 static void rbd_img_request_destroy(struct kref *kref);
1491 static void rbd_img_request_put(struct rbd_img_request *img_request)
1492 {
1493 	rbd_assert(img_request != NULL);
1494 	dout("%s: img %p (was %d)\n", __func__, img_request,
1495 		atomic_read(&img_request->kref.refcount));
1496 	if (img_request_child_test(img_request))
1497 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1498 	else
1499 		kref_put(&img_request->kref, rbd_img_request_destroy);
1500 }
1501 
1502 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1503 					struct rbd_obj_request *obj_request)
1504 {
1505 	rbd_assert(obj_request->img_request == NULL);
1506 
1507 	/* Image request now owns object's original reference */
1508 	obj_request->img_request = img_request;
1509 	obj_request->which = img_request->obj_request_count;
1510 	rbd_assert(!obj_request_img_data_test(obj_request));
1511 	obj_request_img_data_set(obj_request);
1512 	rbd_assert(obj_request->which != BAD_WHICH);
1513 	img_request->obj_request_count++;
1514 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1515 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1516 		obj_request->which);
1517 }
1518 
1519 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1520 					struct rbd_obj_request *obj_request)
1521 {
1522 	rbd_assert(obj_request->which != BAD_WHICH);
1523 
1524 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1525 		obj_request->which);
1526 	list_del(&obj_request->links);
1527 	rbd_assert(img_request->obj_request_count > 0);
1528 	img_request->obj_request_count--;
1529 	rbd_assert(obj_request->which == img_request->obj_request_count);
1530 	obj_request->which = BAD_WHICH;
1531 	rbd_assert(obj_request_img_data_test(obj_request));
1532 	rbd_assert(obj_request->img_request == img_request);
1533 	obj_request->img_request = NULL;
1534 	obj_request->callback = NULL;
1535 	rbd_obj_request_put(obj_request);
1536 }
1537 
1538 static bool obj_request_type_valid(enum obj_request_type type)
1539 {
1540 	switch (type) {
1541 	case OBJ_REQUEST_NODATA:
1542 	case OBJ_REQUEST_BIO:
1543 	case OBJ_REQUEST_PAGES:
1544 		return true;
1545 	default:
1546 		return false;
1547 	}
1548 }
1549 
1550 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1551 				struct rbd_obj_request *obj_request)
1552 {
1553 	dout("%s %p\n", __func__, obj_request);
1554 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1555 }
1556 
1557 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1558 {
1559 	dout("%s %p\n", __func__, obj_request);
1560 	ceph_osdc_cancel_request(obj_request->osd_req);
1561 }
1562 
1563 /*
1564  * Wait for an object request to complete.  If interrupted, cancel the
1565  * underlying osd request.
1566  *
1567  * @timeout: in jiffies, 0 means "wait forever"
1568  */
1569 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1570 				  unsigned long timeout)
1571 {
1572 	long ret;
1573 
1574 	dout("%s %p\n", __func__, obj_request);
1575 	ret = wait_for_completion_interruptible_timeout(
1576 					&obj_request->completion,
1577 					ceph_timeout_jiffies(timeout));
1578 	if (ret <= 0) {
1579 		if (ret == 0)
1580 			ret = -ETIMEDOUT;
1581 		rbd_obj_request_end(obj_request);
1582 	} else {
1583 		ret = 0;
1584 	}
1585 
1586 	dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1587 	return ret;
1588 }
1589 
1590 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1591 {
1592 	return __rbd_obj_request_wait(obj_request, 0);
1593 }
1594 
1595 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1596 					unsigned long timeout)
1597 {
1598 	return __rbd_obj_request_wait(obj_request, timeout);
1599 }
1600 
1601 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1602 {
1603 
1604 	dout("%s: img %p\n", __func__, img_request);
1605 
1606 	/*
1607 	 * If no error occurred, compute the aggregate transfer
1608 	 * count for the image request.  We could instead use
1609 	 * atomic64_cmpxchg() to update it as each object request
1610 	 * completes; not clear which way is better off hand.
1611 	 */
1612 	if (!img_request->result) {
1613 		struct rbd_obj_request *obj_request;
1614 		u64 xferred = 0;
1615 
1616 		for_each_obj_request(img_request, obj_request)
1617 			xferred += obj_request->xferred;
1618 		img_request->xferred = xferred;
1619 	}
1620 
1621 	if (img_request->callback)
1622 		img_request->callback(img_request);
1623 	else
1624 		rbd_img_request_put(img_request);
1625 }
1626 
1627 /*
1628  * The default/initial value for all image request flags is 0.  Each
1629  * is conditionally set to 1 at image request initialization time
1630  * and currently never change thereafter.
1631  */
1632 static void img_request_write_set(struct rbd_img_request *img_request)
1633 {
1634 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1635 	smp_mb();
1636 }
1637 
1638 static bool img_request_write_test(struct rbd_img_request *img_request)
1639 {
1640 	smp_mb();
1641 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1642 }
1643 
1644 /*
1645  * Set the discard flag when the img_request is an discard request
1646  */
1647 static void img_request_discard_set(struct rbd_img_request *img_request)
1648 {
1649 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1650 	smp_mb();
1651 }
1652 
1653 static bool img_request_discard_test(struct rbd_img_request *img_request)
1654 {
1655 	smp_mb();
1656 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1657 }
1658 
1659 static void img_request_child_set(struct rbd_img_request *img_request)
1660 {
1661 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1662 	smp_mb();
1663 }
1664 
1665 static void img_request_child_clear(struct rbd_img_request *img_request)
1666 {
1667 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1668 	smp_mb();
1669 }
1670 
1671 static bool img_request_child_test(struct rbd_img_request *img_request)
1672 {
1673 	smp_mb();
1674 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1675 }
1676 
1677 static void img_request_layered_set(struct rbd_img_request *img_request)
1678 {
1679 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1680 	smp_mb();
1681 }
1682 
1683 static void img_request_layered_clear(struct rbd_img_request *img_request)
1684 {
1685 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1686 	smp_mb();
1687 }
1688 
1689 static bool img_request_layered_test(struct rbd_img_request *img_request)
1690 {
1691 	smp_mb();
1692 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1693 }
1694 
1695 static enum obj_operation_type
1696 rbd_img_request_op_type(struct rbd_img_request *img_request)
1697 {
1698 	if (img_request_write_test(img_request))
1699 		return OBJ_OP_WRITE;
1700 	else if (img_request_discard_test(img_request))
1701 		return OBJ_OP_DISCARD;
1702 	else
1703 		return OBJ_OP_READ;
1704 }
1705 
1706 static void
1707 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1708 {
1709 	u64 xferred = obj_request->xferred;
1710 	u64 length = obj_request->length;
1711 
1712 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1713 		obj_request, obj_request->img_request, obj_request->result,
1714 		xferred, length);
1715 	/*
1716 	 * ENOENT means a hole in the image.  We zero-fill the entire
1717 	 * length of the request.  A short read also implies zero-fill
1718 	 * to the end of the request.  An error requires the whole
1719 	 * length of the request to be reported finished with an error
1720 	 * to the block layer.  In each case we update the xferred
1721 	 * count to indicate the whole request was satisfied.
1722 	 */
1723 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1724 	if (obj_request->result == -ENOENT) {
1725 		if (obj_request->type == OBJ_REQUEST_BIO)
1726 			zero_bio_chain(obj_request->bio_list, 0);
1727 		else
1728 			zero_pages(obj_request->pages, 0, length);
1729 		obj_request->result = 0;
1730 	} else if (xferred < length && !obj_request->result) {
1731 		if (obj_request->type == OBJ_REQUEST_BIO)
1732 			zero_bio_chain(obj_request->bio_list, xferred);
1733 		else
1734 			zero_pages(obj_request->pages, xferred, length);
1735 	}
1736 	obj_request->xferred = length;
1737 	obj_request_done_set(obj_request);
1738 }
1739 
1740 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1741 {
1742 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1743 		obj_request->callback);
1744 	if (obj_request->callback)
1745 		obj_request->callback(obj_request);
1746 	else
1747 		complete_all(&obj_request->completion);
1748 }
1749 
1750 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1751 {
1752 	dout("%s: obj %p\n", __func__, obj_request);
1753 	obj_request_done_set(obj_request);
1754 }
1755 
1756 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1757 {
1758 	struct rbd_img_request *img_request = NULL;
1759 	struct rbd_device *rbd_dev = NULL;
1760 	bool layered = false;
1761 
1762 	if (obj_request_img_data_test(obj_request)) {
1763 		img_request = obj_request->img_request;
1764 		layered = img_request && img_request_layered_test(img_request);
1765 		rbd_dev = img_request->rbd_dev;
1766 	}
1767 
1768 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1769 		obj_request, img_request, obj_request->result,
1770 		obj_request->xferred, obj_request->length);
1771 	if (layered && obj_request->result == -ENOENT &&
1772 			obj_request->img_offset < rbd_dev->parent_overlap)
1773 		rbd_img_parent_read(obj_request);
1774 	else if (img_request)
1775 		rbd_img_obj_request_read_callback(obj_request);
1776 	else
1777 		obj_request_done_set(obj_request);
1778 }
1779 
1780 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1781 {
1782 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1783 		obj_request->result, obj_request->length);
1784 	/*
1785 	 * There is no such thing as a successful short write.  Set
1786 	 * it to our originally-requested length.
1787 	 */
1788 	obj_request->xferred = obj_request->length;
1789 	obj_request_done_set(obj_request);
1790 }
1791 
1792 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1793 {
1794 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1795 		obj_request->result, obj_request->length);
1796 	/*
1797 	 * There is no such thing as a successful short discard.  Set
1798 	 * it to our originally-requested length.
1799 	 */
1800 	obj_request->xferred = obj_request->length;
1801 	/* discarding a non-existent object is not a problem */
1802 	if (obj_request->result == -ENOENT)
1803 		obj_request->result = 0;
1804 	obj_request_done_set(obj_request);
1805 }
1806 
1807 /*
1808  * For a simple stat call there's nothing to do.  We'll do more if
1809  * this is part of a write sequence for a layered image.
1810  */
1811 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1812 {
1813 	dout("%s: obj %p\n", __func__, obj_request);
1814 	obj_request_done_set(obj_request);
1815 }
1816 
1817 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1818 				struct ceph_msg *msg)
1819 {
1820 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1821 	u16 opcode;
1822 
1823 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1824 	rbd_assert(osd_req == obj_request->osd_req);
1825 	if (obj_request_img_data_test(obj_request)) {
1826 		rbd_assert(obj_request->img_request);
1827 		rbd_assert(obj_request->which != BAD_WHICH);
1828 	} else {
1829 		rbd_assert(obj_request->which == BAD_WHICH);
1830 	}
1831 
1832 	if (osd_req->r_result < 0)
1833 		obj_request->result = osd_req->r_result;
1834 
1835 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1836 
1837 	/*
1838 	 * We support a 64-bit length, but ultimately it has to be
1839 	 * passed to the block layer, which just supports a 32-bit
1840 	 * length field.
1841 	 */
1842 	obj_request->xferred = osd_req->r_reply_op_len[0];
1843 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1844 
1845 	opcode = osd_req->r_ops[0].op;
1846 	switch (opcode) {
1847 	case CEPH_OSD_OP_READ:
1848 		rbd_osd_read_callback(obj_request);
1849 		break;
1850 	case CEPH_OSD_OP_SETALLOCHINT:
1851 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1852 		/* fall through */
1853 	case CEPH_OSD_OP_WRITE:
1854 		rbd_osd_write_callback(obj_request);
1855 		break;
1856 	case CEPH_OSD_OP_STAT:
1857 		rbd_osd_stat_callback(obj_request);
1858 		break;
1859 	case CEPH_OSD_OP_DELETE:
1860 	case CEPH_OSD_OP_TRUNCATE:
1861 	case CEPH_OSD_OP_ZERO:
1862 		rbd_osd_discard_callback(obj_request);
1863 		break;
1864 	case CEPH_OSD_OP_CALL:
1865 	case CEPH_OSD_OP_NOTIFY_ACK:
1866 	case CEPH_OSD_OP_WATCH:
1867 		rbd_osd_trivial_callback(obj_request);
1868 		break;
1869 	default:
1870 		rbd_warn(NULL, "%s: unsupported op %hu",
1871 			obj_request->object_name, (unsigned short) opcode);
1872 		break;
1873 	}
1874 
1875 	if (obj_request_done_test(obj_request))
1876 		rbd_obj_request_complete(obj_request);
1877 }
1878 
1879 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1880 {
1881 	struct rbd_img_request *img_request = obj_request->img_request;
1882 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1883 	u64 snap_id;
1884 
1885 	rbd_assert(osd_req != NULL);
1886 
1887 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1888 	ceph_osdc_build_request(osd_req, obj_request->offset,
1889 			NULL, snap_id, NULL);
1890 }
1891 
1892 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1893 {
1894 	struct rbd_img_request *img_request = obj_request->img_request;
1895 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1896 	struct ceph_snap_context *snapc;
1897 	struct timespec mtime = CURRENT_TIME;
1898 
1899 	rbd_assert(osd_req != NULL);
1900 
1901 	snapc = img_request ? img_request->snapc : NULL;
1902 	ceph_osdc_build_request(osd_req, obj_request->offset,
1903 			snapc, CEPH_NOSNAP, &mtime);
1904 }
1905 
1906 /*
1907  * Create an osd request.  A read request has one osd op (read).
1908  * A write request has either one (watch) or two (hint+write) osd ops.
1909  * (All rbd data writes are prefixed with an allocation hint op, but
1910  * technically osd watch is a write request, hence this distinction.)
1911  */
1912 static struct ceph_osd_request *rbd_osd_req_create(
1913 					struct rbd_device *rbd_dev,
1914 					enum obj_operation_type op_type,
1915 					unsigned int num_ops,
1916 					struct rbd_obj_request *obj_request)
1917 {
1918 	struct ceph_snap_context *snapc = NULL;
1919 	struct ceph_osd_client *osdc;
1920 	struct ceph_osd_request *osd_req;
1921 
1922 	if (obj_request_img_data_test(obj_request) &&
1923 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1924 		struct rbd_img_request *img_request = obj_request->img_request;
1925 		if (op_type == OBJ_OP_WRITE) {
1926 			rbd_assert(img_request_write_test(img_request));
1927 		} else {
1928 			rbd_assert(img_request_discard_test(img_request));
1929 		}
1930 		snapc = img_request->snapc;
1931 	}
1932 
1933 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1934 
1935 	/* Allocate and initialize the request, for the num_ops ops */
1936 
1937 	osdc = &rbd_dev->rbd_client->client->osdc;
1938 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1939 					  GFP_ATOMIC);
1940 	if (!osd_req)
1941 		return NULL;	/* ENOMEM */
1942 
1943 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1944 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1945 	else
1946 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1947 
1948 	osd_req->r_callback = rbd_osd_req_callback;
1949 	osd_req->r_priv = obj_request;
1950 
1951 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1952 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1953 
1954 	return osd_req;
1955 }
1956 
1957 /*
1958  * Create a copyup osd request based on the information in the object
1959  * request supplied.  A copyup request has two or three osd ops, a
1960  * copyup method call, potentially a hint op, and a write or truncate
1961  * or zero op.
1962  */
1963 static struct ceph_osd_request *
1964 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1965 {
1966 	struct rbd_img_request *img_request;
1967 	struct ceph_snap_context *snapc;
1968 	struct rbd_device *rbd_dev;
1969 	struct ceph_osd_client *osdc;
1970 	struct ceph_osd_request *osd_req;
1971 	int num_osd_ops = 3;
1972 
1973 	rbd_assert(obj_request_img_data_test(obj_request));
1974 	img_request = obj_request->img_request;
1975 	rbd_assert(img_request);
1976 	rbd_assert(img_request_write_test(img_request) ||
1977 			img_request_discard_test(img_request));
1978 
1979 	if (img_request_discard_test(img_request))
1980 		num_osd_ops = 2;
1981 
1982 	/* Allocate and initialize the request, for all the ops */
1983 
1984 	snapc = img_request->snapc;
1985 	rbd_dev = img_request->rbd_dev;
1986 	osdc = &rbd_dev->rbd_client->client->osdc;
1987 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1988 						false, GFP_ATOMIC);
1989 	if (!osd_req)
1990 		return NULL;	/* ENOMEM */
1991 
1992 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1993 	osd_req->r_callback = rbd_osd_req_callback;
1994 	osd_req->r_priv = obj_request;
1995 
1996 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1997 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1998 
1999 	return osd_req;
2000 }
2001 
2002 
2003 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2004 {
2005 	ceph_osdc_put_request(osd_req);
2006 }
2007 
2008 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2009 
2010 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2011 						u64 offset, u64 length,
2012 						enum obj_request_type type)
2013 {
2014 	struct rbd_obj_request *obj_request;
2015 	size_t size;
2016 	char *name;
2017 
2018 	rbd_assert(obj_request_type_valid(type));
2019 
2020 	size = strlen(object_name) + 1;
2021 	name = kmalloc(size, GFP_KERNEL);
2022 	if (!name)
2023 		return NULL;
2024 
2025 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2026 	if (!obj_request) {
2027 		kfree(name);
2028 		return NULL;
2029 	}
2030 
2031 	obj_request->object_name = memcpy(name, object_name, size);
2032 	obj_request->offset = offset;
2033 	obj_request->length = length;
2034 	obj_request->flags = 0;
2035 	obj_request->which = BAD_WHICH;
2036 	obj_request->type = type;
2037 	INIT_LIST_HEAD(&obj_request->links);
2038 	init_completion(&obj_request->completion);
2039 	kref_init(&obj_request->kref);
2040 
2041 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2042 		offset, length, (int)type, obj_request);
2043 
2044 	return obj_request;
2045 }
2046 
2047 static void rbd_obj_request_destroy(struct kref *kref)
2048 {
2049 	struct rbd_obj_request *obj_request;
2050 
2051 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2052 
2053 	dout("%s: obj %p\n", __func__, obj_request);
2054 
2055 	rbd_assert(obj_request->img_request == NULL);
2056 	rbd_assert(obj_request->which == BAD_WHICH);
2057 
2058 	if (obj_request->osd_req)
2059 		rbd_osd_req_destroy(obj_request->osd_req);
2060 
2061 	rbd_assert(obj_request_type_valid(obj_request->type));
2062 	switch (obj_request->type) {
2063 	case OBJ_REQUEST_NODATA:
2064 		break;		/* Nothing to do */
2065 	case OBJ_REQUEST_BIO:
2066 		if (obj_request->bio_list)
2067 			bio_chain_put(obj_request->bio_list);
2068 		break;
2069 	case OBJ_REQUEST_PAGES:
2070 		if (obj_request->pages)
2071 			ceph_release_page_vector(obj_request->pages,
2072 						obj_request->page_count);
2073 		break;
2074 	}
2075 
2076 	kfree(obj_request->object_name);
2077 	obj_request->object_name = NULL;
2078 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2079 }
2080 
2081 /* It's OK to call this for a device with no parent */
2082 
2083 static void rbd_spec_put(struct rbd_spec *spec);
2084 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2085 {
2086 	rbd_dev_remove_parent(rbd_dev);
2087 	rbd_spec_put(rbd_dev->parent_spec);
2088 	rbd_dev->parent_spec = NULL;
2089 	rbd_dev->parent_overlap = 0;
2090 }
2091 
2092 /*
2093  * Parent image reference counting is used to determine when an
2094  * image's parent fields can be safely torn down--after there are no
2095  * more in-flight requests to the parent image.  When the last
2096  * reference is dropped, cleaning them up is safe.
2097  */
2098 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2099 {
2100 	int counter;
2101 
2102 	if (!rbd_dev->parent_spec)
2103 		return;
2104 
2105 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2106 	if (counter > 0)
2107 		return;
2108 
2109 	/* Last reference; clean up parent data structures */
2110 
2111 	if (!counter)
2112 		rbd_dev_unparent(rbd_dev);
2113 	else
2114 		rbd_warn(rbd_dev, "parent reference underflow");
2115 }
2116 
2117 /*
2118  * If an image has a non-zero parent overlap, get a reference to its
2119  * parent.
2120  *
2121  * Returns true if the rbd device has a parent with a non-zero
2122  * overlap and a reference for it was successfully taken, or
2123  * false otherwise.
2124  */
2125 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2126 {
2127 	int counter = 0;
2128 
2129 	if (!rbd_dev->parent_spec)
2130 		return false;
2131 
2132 	down_read(&rbd_dev->header_rwsem);
2133 	if (rbd_dev->parent_overlap)
2134 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2135 	up_read(&rbd_dev->header_rwsem);
2136 
2137 	if (counter < 0)
2138 		rbd_warn(rbd_dev, "parent reference overflow");
2139 
2140 	return counter > 0;
2141 }
2142 
2143 /*
2144  * Caller is responsible for filling in the list of object requests
2145  * that comprises the image request, and the Linux request pointer
2146  * (if there is one).
2147  */
2148 static struct rbd_img_request *rbd_img_request_create(
2149 					struct rbd_device *rbd_dev,
2150 					u64 offset, u64 length,
2151 					enum obj_operation_type op_type,
2152 					struct ceph_snap_context *snapc)
2153 {
2154 	struct rbd_img_request *img_request;
2155 
2156 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2157 	if (!img_request)
2158 		return NULL;
2159 
2160 	img_request->rq = NULL;
2161 	img_request->rbd_dev = rbd_dev;
2162 	img_request->offset = offset;
2163 	img_request->length = length;
2164 	img_request->flags = 0;
2165 	if (op_type == OBJ_OP_DISCARD) {
2166 		img_request_discard_set(img_request);
2167 		img_request->snapc = snapc;
2168 	} else if (op_type == OBJ_OP_WRITE) {
2169 		img_request_write_set(img_request);
2170 		img_request->snapc = snapc;
2171 	} else {
2172 		img_request->snap_id = rbd_dev->spec->snap_id;
2173 	}
2174 	if (rbd_dev_parent_get(rbd_dev))
2175 		img_request_layered_set(img_request);
2176 	spin_lock_init(&img_request->completion_lock);
2177 	img_request->next_completion = 0;
2178 	img_request->callback = NULL;
2179 	img_request->result = 0;
2180 	img_request->obj_request_count = 0;
2181 	INIT_LIST_HEAD(&img_request->obj_requests);
2182 	kref_init(&img_request->kref);
2183 
2184 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2185 		obj_op_name(op_type), offset, length, img_request);
2186 
2187 	return img_request;
2188 }
2189 
2190 static void rbd_img_request_destroy(struct kref *kref)
2191 {
2192 	struct rbd_img_request *img_request;
2193 	struct rbd_obj_request *obj_request;
2194 	struct rbd_obj_request *next_obj_request;
2195 
2196 	img_request = container_of(kref, struct rbd_img_request, kref);
2197 
2198 	dout("%s: img %p\n", __func__, img_request);
2199 
2200 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2201 		rbd_img_obj_request_del(img_request, obj_request);
2202 	rbd_assert(img_request->obj_request_count == 0);
2203 
2204 	if (img_request_layered_test(img_request)) {
2205 		img_request_layered_clear(img_request);
2206 		rbd_dev_parent_put(img_request->rbd_dev);
2207 	}
2208 
2209 	if (img_request_write_test(img_request) ||
2210 		img_request_discard_test(img_request))
2211 		ceph_put_snap_context(img_request->snapc);
2212 
2213 	kmem_cache_free(rbd_img_request_cache, img_request);
2214 }
2215 
2216 static struct rbd_img_request *rbd_parent_request_create(
2217 					struct rbd_obj_request *obj_request,
2218 					u64 img_offset, u64 length)
2219 {
2220 	struct rbd_img_request *parent_request;
2221 	struct rbd_device *rbd_dev;
2222 
2223 	rbd_assert(obj_request->img_request);
2224 	rbd_dev = obj_request->img_request->rbd_dev;
2225 
2226 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2227 						length, OBJ_OP_READ, NULL);
2228 	if (!parent_request)
2229 		return NULL;
2230 
2231 	img_request_child_set(parent_request);
2232 	rbd_obj_request_get(obj_request);
2233 	parent_request->obj_request = obj_request;
2234 
2235 	return parent_request;
2236 }
2237 
2238 static void rbd_parent_request_destroy(struct kref *kref)
2239 {
2240 	struct rbd_img_request *parent_request;
2241 	struct rbd_obj_request *orig_request;
2242 
2243 	parent_request = container_of(kref, struct rbd_img_request, kref);
2244 	orig_request = parent_request->obj_request;
2245 
2246 	parent_request->obj_request = NULL;
2247 	rbd_obj_request_put(orig_request);
2248 	img_request_child_clear(parent_request);
2249 
2250 	rbd_img_request_destroy(kref);
2251 }
2252 
2253 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2254 {
2255 	struct rbd_img_request *img_request;
2256 	unsigned int xferred;
2257 	int result;
2258 	bool more;
2259 
2260 	rbd_assert(obj_request_img_data_test(obj_request));
2261 	img_request = obj_request->img_request;
2262 
2263 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2264 	xferred = (unsigned int)obj_request->xferred;
2265 	result = obj_request->result;
2266 	if (result) {
2267 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2268 		enum obj_operation_type op_type;
2269 
2270 		if (img_request_discard_test(img_request))
2271 			op_type = OBJ_OP_DISCARD;
2272 		else if (img_request_write_test(img_request))
2273 			op_type = OBJ_OP_WRITE;
2274 		else
2275 			op_type = OBJ_OP_READ;
2276 
2277 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2278 			obj_op_name(op_type), obj_request->length,
2279 			obj_request->img_offset, obj_request->offset);
2280 		rbd_warn(rbd_dev, "  result %d xferred %x",
2281 			result, xferred);
2282 		if (!img_request->result)
2283 			img_request->result = result;
2284 		/*
2285 		 * Need to end I/O on the entire obj_request worth of
2286 		 * bytes in case of error.
2287 		 */
2288 		xferred = obj_request->length;
2289 	}
2290 
2291 	/* Image object requests don't own their page array */
2292 
2293 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2294 		obj_request->pages = NULL;
2295 		obj_request->page_count = 0;
2296 	}
2297 
2298 	if (img_request_child_test(img_request)) {
2299 		rbd_assert(img_request->obj_request != NULL);
2300 		more = obj_request->which < img_request->obj_request_count - 1;
2301 	} else {
2302 		rbd_assert(img_request->rq != NULL);
2303 
2304 		more = blk_update_request(img_request->rq, result, xferred);
2305 		if (!more)
2306 			__blk_mq_end_request(img_request->rq, result);
2307 	}
2308 
2309 	return more;
2310 }
2311 
2312 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2313 {
2314 	struct rbd_img_request *img_request;
2315 	u32 which = obj_request->which;
2316 	bool more = true;
2317 
2318 	rbd_assert(obj_request_img_data_test(obj_request));
2319 	img_request = obj_request->img_request;
2320 
2321 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2322 	rbd_assert(img_request != NULL);
2323 	rbd_assert(img_request->obj_request_count > 0);
2324 	rbd_assert(which != BAD_WHICH);
2325 	rbd_assert(which < img_request->obj_request_count);
2326 
2327 	spin_lock_irq(&img_request->completion_lock);
2328 	if (which != img_request->next_completion)
2329 		goto out;
2330 
2331 	for_each_obj_request_from(img_request, obj_request) {
2332 		rbd_assert(more);
2333 		rbd_assert(which < img_request->obj_request_count);
2334 
2335 		if (!obj_request_done_test(obj_request))
2336 			break;
2337 		more = rbd_img_obj_end_request(obj_request);
2338 		which++;
2339 	}
2340 
2341 	rbd_assert(more ^ (which == img_request->obj_request_count));
2342 	img_request->next_completion = which;
2343 out:
2344 	spin_unlock_irq(&img_request->completion_lock);
2345 	rbd_img_request_put(img_request);
2346 
2347 	if (!more)
2348 		rbd_img_request_complete(img_request);
2349 }
2350 
2351 /*
2352  * Add individual osd ops to the given ceph_osd_request and prepare
2353  * them for submission. num_ops is the current number of
2354  * osd operations already to the object request.
2355  */
2356 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2357 				struct ceph_osd_request *osd_request,
2358 				enum obj_operation_type op_type,
2359 				unsigned int num_ops)
2360 {
2361 	struct rbd_img_request *img_request = obj_request->img_request;
2362 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2363 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2364 	u64 offset = obj_request->offset;
2365 	u64 length = obj_request->length;
2366 	u64 img_end;
2367 	u16 opcode;
2368 
2369 	if (op_type == OBJ_OP_DISCARD) {
2370 		if (!offset && length == object_size &&
2371 		    (!img_request_layered_test(img_request) ||
2372 		     !obj_request_overlaps_parent(obj_request))) {
2373 			opcode = CEPH_OSD_OP_DELETE;
2374 		} else if ((offset + length == object_size)) {
2375 			opcode = CEPH_OSD_OP_TRUNCATE;
2376 		} else {
2377 			down_read(&rbd_dev->header_rwsem);
2378 			img_end = rbd_dev->header.image_size;
2379 			up_read(&rbd_dev->header_rwsem);
2380 
2381 			if (obj_request->img_offset + length == img_end)
2382 				opcode = CEPH_OSD_OP_TRUNCATE;
2383 			else
2384 				opcode = CEPH_OSD_OP_ZERO;
2385 		}
2386 	} else if (op_type == OBJ_OP_WRITE) {
2387 		opcode = CEPH_OSD_OP_WRITE;
2388 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2389 					object_size, object_size);
2390 		num_ops++;
2391 	} else {
2392 		opcode = CEPH_OSD_OP_READ;
2393 	}
2394 
2395 	if (opcode == CEPH_OSD_OP_DELETE)
2396 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2397 	else
2398 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2399 				       offset, length, 0, 0);
2400 
2401 	if (obj_request->type == OBJ_REQUEST_BIO)
2402 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2403 					obj_request->bio_list, length);
2404 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2405 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2406 					obj_request->pages, length,
2407 					offset & ~PAGE_MASK, false, false);
2408 
2409 	/* Discards are also writes */
2410 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2411 		rbd_osd_req_format_write(obj_request);
2412 	else
2413 		rbd_osd_req_format_read(obj_request);
2414 }
2415 
2416 /*
2417  * Split up an image request into one or more object requests, each
2418  * to a different object.  The "type" parameter indicates whether
2419  * "data_desc" is the pointer to the head of a list of bio
2420  * structures, or the base of a page array.  In either case this
2421  * function assumes data_desc describes memory sufficient to hold
2422  * all data described by the image request.
2423  */
2424 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2425 					enum obj_request_type type,
2426 					void *data_desc)
2427 {
2428 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2429 	struct rbd_obj_request *obj_request = NULL;
2430 	struct rbd_obj_request *next_obj_request;
2431 	struct bio *bio_list = NULL;
2432 	unsigned int bio_offset = 0;
2433 	struct page **pages = NULL;
2434 	enum obj_operation_type op_type;
2435 	u64 img_offset;
2436 	u64 resid;
2437 
2438 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2439 		(int)type, data_desc);
2440 
2441 	img_offset = img_request->offset;
2442 	resid = img_request->length;
2443 	rbd_assert(resid > 0);
2444 	op_type = rbd_img_request_op_type(img_request);
2445 
2446 	if (type == OBJ_REQUEST_BIO) {
2447 		bio_list = data_desc;
2448 		rbd_assert(img_offset ==
2449 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2450 	} else if (type == OBJ_REQUEST_PAGES) {
2451 		pages = data_desc;
2452 	}
2453 
2454 	while (resid) {
2455 		struct ceph_osd_request *osd_req;
2456 		const char *object_name;
2457 		u64 offset;
2458 		u64 length;
2459 
2460 		object_name = rbd_segment_name(rbd_dev, img_offset);
2461 		if (!object_name)
2462 			goto out_unwind;
2463 		offset = rbd_segment_offset(rbd_dev, img_offset);
2464 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2465 		obj_request = rbd_obj_request_create(object_name,
2466 						offset, length, type);
2467 		/* object request has its own copy of the object name */
2468 		rbd_segment_name_free(object_name);
2469 		if (!obj_request)
2470 			goto out_unwind;
2471 
2472 		/*
2473 		 * set obj_request->img_request before creating the
2474 		 * osd_request so that it gets the right snapc
2475 		 */
2476 		rbd_img_obj_request_add(img_request, obj_request);
2477 
2478 		if (type == OBJ_REQUEST_BIO) {
2479 			unsigned int clone_size;
2480 
2481 			rbd_assert(length <= (u64)UINT_MAX);
2482 			clone_size = (unsigned int)length;
2483 			obj_request->bio_list =
2484 					bio_chain_clone_range(&bio_list,
2485 								&bio_offset,
2486 								clone_size,
2487 								GFP_ATOMIC);
2488 			if (!obj_request->bio_list)
2489 				goto out_unwind;
2490 		} else if (type == OBJ_REQUEST_PAGES) {
2491 			unsigned int page_count;
2492 
2493 			obj_request->pages = pages;
2494 			page_count = (u32)calc_pages_for(offset, length);
2495 			obj_request->page_count = page_count;
2496 			if ((offset + length) & ~PAGE_MASK)
2497 				page_count--;	/* more on last page */
2498 			pages += page_count;
2499 		}
2500 
2501 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2502 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2503 					obj_request);
2504 		if (!osd_req)
2505 			goto out_unwind;
2506 
2507 		obj_request->osd_req = osd_req;
2508 		obj_request->callback = rbd_img_obj_callback;
2509 		obj_request->img_offset = img_offset;
2510 
2511 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2512 
2513 		rbd_img_request_get(img_request);
2514 
2515 		img_offset += length;
2516 		resid -= length;
2517 	}
2518 
2519 	return 0;
2520 
2521 out_unwind:
2522 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2523 		rbd_img_obj_request_del(img_request, obj_request);
2524 
2525 	return -ENOMEM;
2526 }
2527 
2528 static void
2529 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2530 {
2531 	struct rbd_img_request *img_request;
2532 	struct rbd_device *rbd_dev;
2533 	struct page **pages;
2534 	u32 page_count;
2535 
2536 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2537 		obj_request->type == OBJ_REQUEST_NODATA);
2538 	rbd_assert(obj_request_img_data_test(obj_request));
2539 	img_request = obj_request->img_request;
2540 	rbd_assert(img_request);
2541 
2542 	rbd_dev = img_request->rbd_dev;
2543 	rbd_assert(rbd_dev);
2544 
2545 	pages = obj_request->copyup_pages;
2546 	rbd_assert(pages != NULL);
2547 	obj_request->copyup_pages = NULL;
2548 	page_count = obj_request->copyup_page_count;
2549 	rbd_assert(page_count);
2550 	obj_request->copyup_page_count = 0;
2551 	ceph_release_page_vector(pages, page_count);
2552 
2553 	/*
2554 	 * We want the transfer count to reflect the size of the
2555 	 * original write request.  There is no such thing as a
2556 	 * successful short write, so if the request was successful
2557 	 * we can just set it to the originally-requested length.
2558 	 */
2559 	if (!obj_request->result)
2560 		obj_request->xferred = obj_request->length;
2561 
2562 	/* Finish up with the normal image object callback */
2563 
2564 	rbd_img_obj_callback(obj_request);
2565 }
2566 
2567 static void
2568 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2569 {
2570 	struct rbd_obj_request *orig_request;
2571 	struct ceph_osd_request *osd_req;
2572 	struct ceph_osd_client *osdc;
2573 	struct rbd_device *rbd_dev;
2574 	struct page **pages;
2575 	enum obj_operation_type op_type;
2576 	u32 page_count;
2577 	int img_result;
2578 	u64 parent_length;
2579 
2580 	rbd_assert(img_request_child_test(img_request));
2581 
2582 	/* First get what we need from the image request */
2583 
2584 	pages = img_request->copyup_pages;
2585 	rbd_assert(pages != NULL);
2586 	img_request->copyup_pages = NULL;
2587 	page_count = img_request->copyup_page_count;
2588 	rbd_assert(page_count);
2589 	img_request->copyup_page_count = 0;
2590 
2591 	orig_request = img_request->obj_request;
2592 	rbd_assert(orig_request != NULL);
2593 	rbd_assert(obj_request_type_valid(orig_request->type));
2594 	img_result = img_request->result;
2595 	parent_length = img_request->length;
2596 	rbd_assert(parent_length == img_request->xferred);
2597 	rbd_img_request_put(img_request);
2598 
2599 	rbd_assert(orig_request->img_request);
2600 	rbd_dev = orig_request->img_request->rbd_dev;
2601 	rbd_assert(rbd_dev);
2602 
2603 	/*
2604 	 * If the overlap has become 0 (most likely because the
2605 	 * image has been flattened) we need to free the pages
2606 	 * and re-submit the original write request.
2607 	 */
2608 	if (!rbd_dev->parent_overlap) {
2609 		struct ceph_osd_client *osdc;
2610 
2611 		ceph_release_page_vector(pages, page_count);
2612 		osdc = &rbd_dev->rbd_client->client->osdc;
2613 		img_result = rbd_obj_request_submit(osdc, orig_request);
2614 		if (!img_result)
2615 			return;
2616 	}
2617 
2618 	if (img_result)
2619 		goto out_err;
2620 
2621 	/*
2622 	 * The original osd request is of no use to use any more.
2623 	 * We need a new one that can hold the three ops in a copyup
2624 	 * request.  Allocate the new copyup osd request for the
2625 	 * original request, and release the old one.
2626 	 */
2627 	img_result = -ENOMEM;
2628 	osd_req = rbd_osd_req_create_copyup(orig_request);
2629 	if (!osd_req)
2630 		goto out_err;
2631 	rbd_osd_req_destroy(orig_request->osd_req);
2632 	orig_request->osd_req = osd_req;
2633 	orig_request->copyup_pages = pages;
2634 	orig_request->copyup_page_count = page_count;
2635 
2636 	/* Initialize the copyup op */
2637 
2638 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2639 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2640 						false, false);
2641 
2642 	/* Add the other op(s) */
2643 
2644 	op_type = rbd_img_request_op_type(orig_request->img_request);
2645 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2646 
2647 	/* All set, send it off. */
2648 
2649 	orig_request->callback = rbd_img_obj_copyup_callback;
2650 	osdc = &rbd_dev->rbd_client->client->osdc;
2651 	img_result = rbd_obj_request_submit(osdc, orig_request);
2652 	if (!img_result)
2653 		return;
2654 out_err:
2655 	/* Record the error code and complete the request */
2656 
2657 	orig_request->result = img_result;
2658 	orig_request->xferred = 0;
2659 	obj_request_done_set(orig_request);
2660 	rbd_obj_request_complete(orig_request);
2661 }
2662 
2663 /*
2664  * Read from the parent image the range of data that covers the
2665  * entire target of the given object request.  This is used for
2666  * satisfying a layered image write request when the target of an
2667  * object request from the image request does not exist.
2668  *
2669  * A page array big enough to hold the returned data is allocated
2670  * and supplied to rbd_img_request_fill() as the "data descriptor."
2671  * When the read completes, this page array will be transferred to
2672  * the original object request for the copyup operation.
2673  *
2674  * If an error occurs, record it as the result of the original
2675  * object request and mark it done so it gets completed.
2676  */
2677 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2678 {
2679 	struct rbd_img_request *img_request = NULL;
2680 	struct rbd_img_request *parent_request = NULL;
2681 	struct rbd_device *rbd_dev;
2682 	u64 img_offset;
2683 	u64 length;
2684 	struct page **pages = NULL;
2685 	u32 page_count;
2686 	int result;
2687 
2688 	rbd_assert(obj_request_img_data_test(obj_request));
2689 	rbd_assert(obj_request_type_valid(obj_request->type));
2690 
2691 	img_request = obj_request->img_request;
2692 	rbd_assert(img_request != NULL);
2693 	rbd_dev = img_request->rbd_dev;
2694 	rbd_assert(rbd_dev->parent != NULL);
2695 
2696 	/*
2697 	 * Determine the byte range covered by the object in the
2698 	 * child image to which the original request was to be sent.
2699 	 */
2700 	img_offset = obj_request->img_offset - obj_request->offset;
2701 	length = (u64)1 << rbd_dev->header.obj_order;
2702 
2703 	/*
2704 	 * There is no defined parent data beyond the parent
2705 	 * overlap, so limit what we read at that boundary if
2706 	 * necessary.
2707 	 */
2708 	if (img_offset + length > rbd_dev->parent_overlap) {
2709 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2710 		length = rbd_dev->parent_overlap - img_offset;
2711 	}
2712 
2713 	/*
2714 	 * Allocate a page array big enough to receive the data read
2715 	 * from the parent.
2716 	 */
2717 	page_count = (u32)calc_pages_for(0, length);
2718 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2719 	if (IS_ERR(pages)) {
2720 		result = PTR_ERR(pages);
2721 		pages = NULL;
2722 		goto out_err;
2723 	}
2724 
2725 	result = -ENOMEM;
2726 	parent_request = rbd_parent_request_create(obj_request,
2727 						img_offset, length);
2728 	if (!parent_request)
2729 		goto out_err;
2730 
2731 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2732 	if (result)
2733 		goto out_err;
2734 	parent_request->copyup_pages = pages;
2735 	parent_request->copyup_page_count = page_count;
2736 
2737 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2738 	result = rbd_img_request_submit(parent_request);
2739 	if (!result)
2740 		return 0;
2741 
2742 	parent_request->copyup_pages = NULL;
2743 	parent_request->copyup_page_count = 0;
2744 	parent_request->obj_request = NULL;
2745 	rbd_obj_request_put(obj_request);
2746 out_err:
2747 	if (pages)
2748 		ceph_release_page_vector(pages, page_count);
2749 	if (parent_request)
2750 		rbd_img_request_put(parent_request);
2751 	obj_request->result = result;
2752 	obj_request->xferred = 0;
2753 	obj_request_done_set(obj_request);
2754 
2755 	return result;
2756 }
2757 
2758 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2759 {
2760 	struct rbd_obj_request *orig_request;
2761 	struct rbd_device *rbd_dev;
2762 	int result;
2763 
2764 	rbd_assert(!obj_request_img_data_test(obj_request));
2765 
2766 	/*
2767 	 * All we need from the object request is the original
2768 	 * request and the result of the STAT op.  Grab those, then
2769 	 * we're done with the request.
2770 	 */
2771 	orig_request = obj_request->obj_request;
2772 	obj_request->obj_request = NULL;
2773 	rbd_obj_request_put(orig_request);
2774 	rbd_assert(orig_request);
2775 	rbd_assert(orig_request->img_request);
2776 
2777 	result = obj_request->result;
2778 	obj_request->result = 0;
2779 
2780 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2781 		obj_request, orig_request, result,
2782 		obj_request->xferred, obj_request->length);
2783 	rbd_obj_request_put(obj_request);
2784 
2785 	/*
2786 	 * If the overlap has become 0 (most likely because the
2787 	 * image has been flattened) we need to free the pages
2788 	 * and re-submit the original write request.
2789 	 */
2790 	rbd_dev = orig_request->img_request->rbd_dev;
2791 	if (!rbd_dev->parent_overlap) {
2792 		struct ceph_osd_client *osdc;
2793 
2794 		osdc = &rbd_dev->rbd_client->client->osdc;
2795 		result = rbd_obj_request_submit(osdc, orig_request);
2796 		if (!result)
2797 			return;
2798 	}
2799 
2800 	/*
2801 	 * Our only purpose here is to determine whether the object
2802 	 * exists, and we don't want to treat the non-existence as
2803 	 * an error.  If something else comes back, transfer the
2804 	 * error to the original request and complete it now.
2805 	 */
2806 	if (!result) {
2807 		obj_request_existence_set(orig_request, true);
2808 	} else if (result == -ENOENT) {
2809 		obj_request_existence_set(orig_request, false);
2810 	} else if (result) {
2811 		orig_request->result = result;
2812 		goto out;
2813 	}
2814 
2815 	/*
2816 	 * Resubmit the original request now that we have recorded
2817 	 * whether the target object exists.
2818 	 */
2819 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2820 out:
2821 	if (orig_request->result)
2822 		rbd_obj_request_complete(orig_request);
2823 }
2824 
2825 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2826 {
2827 	struct rbd_obj_request *stat_request;
2828 	struct rbd_device *rbd_dev;
2829 	struct ceph_osd_client *osdc;
2830 	struct page **pages = NULL;
2831 	u32 page_count;
2832 	size_t size;
2833 	int ret;
2834 
2835 	/*
2836 	 * The response data for a STAT call consists of:
2837 	 *     le64 length;
2838 	 *     struct {
2839 	 *         le32 tv_sec;
2840 	 *         le32 tv_nsec;
2841 	 *     } mtime;
2842 	 */
2843 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2844 	page_count = (u32)calc_pages_for(0, size);
2845 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2846 	if (IS_ERR(pages))
2847 		return PTR_ERR(pages);
2848 
2849 	ret = -ENOMEM;
2850 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2851 							OBJ_REQUEST_PAGES);
2852 	if (!stat_request)
2853 		goto out;
2854 
2855 	rbd_obj_request_get(obj_request);
2856 	stat_request->obj_request = obj_request;
2857 	stat_request->pages = pages;
2858 	stat_request->page_count = page_count;
2859 
2860 	rbd_assert(obj_request->img_request);
2861 	rbd_dev = obj_request->img_request->rbd_dev;
2862 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2863 						   stat_request);
2864 	if (!stat_request->osd_req)
2865 		goto out;
2866 	stat_request->callback = rbd_img_obj_exists_callback;
2867 
2868 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2869 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2870 					false, false);
2871 	rbd_osd_req_format_read(stat_request);
2872 
2873 	osdc = &rbd_dev->rbd_client->client->osdc;
2874 	ret = rbd_obj_request_submit(osdc, stat_request);
2875 out:
2876 	if (ret)
2877 		rbd_obj_request_put(obj_request);
2878 
2879 	return ret;
2880 }
2881 
2882 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2883 {
2884 	struct rbd_img_request *img_request;
2885 	struct rbd_device *rbd_dev;
2886 
2887 	rbd_assert(obj_request_img_data_test(obj_request));
2888 
2889 	img_request = obj_request->img_request;
2890 	rbd_assert(img_request);
2891 	rbd_dev = img_request->rbd_dev;
2892 
2893 	/* Reads */
2894 	if (!img_request_write_test(img_request) &&
2895 	    !img_request_discard_test(img_request))
2896 		return true;
2897 
2898 	/* Non-layered writes */
2899 	if (!img_request_layered_test(img_request))
2900 		return true;
2901 
2902 	/*
2903 	 * Layered writes outside of the parent overlap range don't
2904 	 * share any data with the parent.
2905 	 */
2906 	if (!obj_request_overlaps_parent(obj_request))
2907 		return true;
2908 
2909 	/*
2910 	 * Entire-object layered writes - we will overwrite whatever
2911 	 * parent data there is anyway.
2912 	 */
2913 	if (!obj_request->offset &&
2914 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2915 		return true;
2916 
2917 	/*
2918 	 * If the object is known to already exist, its parent data has
2919 	 * already been copied.
2920 	 */
2921 	if (obj_request_known_test(obj_request) &&
2922 	    obj_request_exists_test(obj_request))
2923 		return true;
2924 
2925 	return false;
2926 }
2927 
2928 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2929 {
2930 	if (img_obj_request_simple(obj_request)) {
2931 		struct rbd_device *rbd_dev;
2932 		struct ceph_osd_client *osdc;
2933 
2934 		rbd_dev = obj_request->img_request->rbd_dev;
2935 		osdc = &rbd_dev->rbd_client->client->osdc;
2936 
2937 		return rbd_obj_request_submit(osdc, obj_request);
2938 	}
2939 
2940 	/*
2941 	 * It's a layered write.  The target object might exist but
2942 	 * we may not know that yet.  If we know it doesn't exist,
2943 	 * start by reading the data for the full target object from
2944 	 * the parent so we can use it for a copyup to the target.
2945 	 */
2946 	if (obj_request_known_test(obj_request))
2947 		return rbd_img_obj_parent_read_full(obj_request);
2948 
2949 	/* We don't know whether the target exists.  Go find out. */
2950 
2951 	return rbd_img_obj_exists_submit(obj_request);
2952 }
2953 
2954 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2955 {
2956 	struct rbd_obj_request *obj_request;
2957 	struct rbd_obj_request *next_obj_request;
2958 
2959 	dout("%s: img %p\n", __func__, img_request);
2960 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2961 		int ret;
2962 
2963 		ret = rbd_img_obj_request_submit(obj_request);
2964 		if (ret)
2965 			return ret;
2966 	}
2967 
2968 	return 0;
2969 }
2970 
2971 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2972 {
2973 	struct rbd_obj_request *obj_request;
2974 	struct rbd_device *rbd_dev;
2975 	u64 obj_end;
2976 	u64 img_xferred;
2977 	int img_result;
2978 
2979 	rbd_assert(img_request_child_test(img_request));
2980 
2981 	/* First get what we need from the image request and release it */
2982 
2983 	obj_request = img_request->obj_request;
2984 	img_xferred = img_request->xferred;
2985 	img_result = img_request->result;
2986 	rbd_img_request_put(img_request);
2987 
2988 	/*
2989 	 * If the overlap has become 0 (most likely because the
2990 	 * image has been flattened) we need to re-submit the
2991 	 * original request.
2992 	 */
2993 	rbd_assert(obj_request);
2994 	rbd_assert(obj_request->img_request);
2995 	rbd_dev = obj_request->img_request->rbd_dev;
2996 	if (!rbd_dev->parent_overlap) {
2997 		struct ceph_osd_client *osdc;
2998 
2999 		osdc = &rbd_dev->rbd_client->client->osdc;
3000 		img_result = rbd_obj_request_submit(osdc, obj_request);
3001 		if (!img_result)
3002 			return;
3003 	}
3004 
3005 	obj_request->result = img_result;
3006 	if (obj_request->result)
3007 		goto out;
3008 
3009 	/*
3010 	 * We need to zero anything beyond the parent overlap
3011 	 * boundary.  Since rbd_img_obj_request_read_callback()
3012 	 * will zero anything beyond the end of a short read, an
3013 	 * easy way to do this is to pretend the data from the
3014 	 * parent came up short--ending at the overlap boundary.
3015 	 */
3016 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3017 	obj_end = obj_request->img_offset + obj_request->length;
3018 	if (obj_end > rbd_dev->parent_overlap) {
3019 		u64 xferred = 0;
3020 
3021 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3022 			xferred = rbd_dev->parent_overlap -
3023 					obj_request->img_offset;
3024 
3025 		obj_request->xferred = min(img_xferred, xferred);
3026 	} else {
3027 		obj_request->xferred = img_xferred;
3028 	}
3029 out:
3030 	rbd_img_obj_request_read_callback(obj_request);
3031 	rbd_obj_request_complete(obj_request);
3032 }
3033 
3034 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3035 {
3036 	struct rbd_img_request *img_request;
3037 	int result;
3038 
3039 	rbd_assert(obj_request_img_data_test(obj_request));
3040 	rbd_assert(obj_request->img_request != NULL);
3041 	rbd_assert(obj_request->result == (s32) -ENOENT);
3042 	rbd_assert(obj_request_type_valid(obj_request->type));
3043 
3044 	/* rbd_read_finish(obj_request, obj_request->length); */
3045 	img_request = rbd_parent_request_create(obj_request,
3046 						obj_request->img_offset,
3047 						obj_request->length);
3048 	result = -ENOMEM;
3049 	if (!img_request)
3050 		goto out_err;
3051 
3052 	if (obj_request->type == OBJ_REQUEST_BIO)
3053 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3054 						obj_request->bio_list);
3055 	else
3056 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3057 						obj_request->pages);
3058 	if (result)
3059 		goto out_err;
3060 
3061 	img_request->callback = rbd_img_parent_read_callback;
3062 	result = rbd_img_request_submit(img_request);
3063 	if (result)
3064 		goto out_err;
3065 
3066 	return;
3067 out_err:
3068 	if (img_request)
3069 		rbd_img_request_put(img_request);
3070 	obj_request->result = result;
3071 	obj_request->xferred = 0;
3072 	obj_request_done_set(obj_request);
3073 }
3074 
3075 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3076 {
3077 	struct rbd_obj_request *obj_request;
3078 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3079 	int ret;
3080 
3081 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3082 							OBJ_REQUEST_NODATA);
3083 	if (!obj_request)
3084 		return -ENOMEM;
3085 
3086 	ret = -ENOMEM;
3087 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3088 						  obj_request);
3089 	if (!obj_request->osd_req)
3090 		goto out;
3091 
3092 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3093 					notify_id, 0, 0);
3094 	rbd_osd_req_format_read(obj_request);
3095 
3096 	ret = rbd_obj_request_submit(osdc, obj_request);
3097 	if (ret)
3098 		goto out;
3099 	ret = rbd_obj_request_wait(obj_request);
3100 out:
3101 	rbd_obj_request_put(obj_request);
3102 
3103 	return ret;
3104 }
3105 
3106 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3107 {
3108 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3109 	int ret;
3110 
3111 	if (!rbd_dev)
3112 		return;
3113 
3114 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3115 		rbd_dev->header_name, (unsigned long long)notify_id,
3116 		(unsigned int)opcode);
3117 
3118 	/*
3119 	 * Until adequate refresh error handling is in place, there is
3120 	 * not much we can do here, except warn.
3121 	 *
3122 	 * See http://tracker.ceph.com/issues/5040
3123 	 */
3124 	ret = rbd_dev_refresh(rbd_dev);
3125 	if (ret)
3126 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3127 
3128 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3129 	if (ret)
3130 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3131 }
3132 
3133 /*
3134  * Send a (un)watch request and wait for the ack.  Return a request
3135  * with a ref held on success or error.
3136  */
3137 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3138 						struct rbd_device *rbd_dev,
3139 						bool watch)
3140 {
3141 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3142 	struct ceph_options *opts = osdc->client->options;
3143 	struct rbd_obj_request *obj_request;
3144 	int ret;
3145 
3146 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3147 					     OBJ_REQUEST_NODATA);
3148 	if (!obj_request)
3149 		return ERR_PTR(-ENOMEM);
3150 
3151 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3152 						  obj_request);
3153 	if (!obj_request->osd_req) {
3154 		ret = -ENOMEM;
3155 		goto out;
3156 	}
3157 
3158 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3159 			      rbd_dev->watch_event->cookie, 0, watch);
3160 	rbd_osd_req_format_write(obj_request);
3161 
3162 	if (watch)
3163 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3164 
3165 	ret = rbd_obj_request_submit(osdc, obj_request);
3166 	if (ret)
3167 		goto out;
3168 
3169 	ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3170 	if (ret)
3171 		goto out;
3172 
3173 	ret = obj_request->result;
3174 	if (ret) {
3175 		if (watch)
3176 			rbd_obj_request_end(obj_request);
3177 		goto out;
3178 	}
3179 
3180 	return obj_request;
3181 
3182 out:
3183 	rbd_obj_request_put(obj_request);
3184 	return ERR_PTR(ret);
3185 }
3186 
3187 /*
3188  * Initiate a watch request, synchronously.
3189  */
3190 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3191 {
3192 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3193 	struct rbd_obj_request *obj_request;
3194 	int ret;
3195 
3196 	rbd_assert(!rbd_dev->watch_event);
3197 	rbd_assert(!rbd_dev->watch_request);
3198 
3199 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3200 				     &rbd_dev->watch_event);
3201 	if (ret < 0)
3202 		return ret;
3203 
3204 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3205 	if (IS_ERR(obj_request)) {
3206 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3207 		rbd_dev->watch_event = NULL;
3208 		return PTR_ERR(obj_request);
3209 	}
3210 
3211 	/*
3212 	 * A watch request is set to linger, so the underlying osd
3213 	 * request won't go away until we unregister it.  We retain
3214 	 * a pointer to the object request during that time (in
3215 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3216 	 * We'll drop that reference after we've unregistered it in
3217 	 * rbd_dev_header_unwatch_sync().
3218 	 */
3219 	rbd_dev->watch_request = obj_request;
3220 
3221 	return 0;
3222 }
3223 
3224 /*
3225  * Tear down a watch request, synchronously.
3226  */
3227 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3228 {
3229 	struct rbd_obj_request *obj_request;
3230 
3231 	rbd_assert(rbd_dev->watch_event);
3232 	rbd_assert(rbd_dev->watch_request);
3233 
3234 	rbd_obj_request_end(rbd_dev->watch_request);
3235 	rbd_obj_request_put(rbd_dev->watch_request);
3236 	rbd_dev->watch_request = NULL;
3237 
3238 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3239 	if (!IS_ERR(obj_request))
3240 		rbd_obj_request_put(obj_request);
3241 	else
3242 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3243 			 PTR_ERR(obj_request));
3244 
3245 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3246 	rbd_dev->watch_event = NULL;
3247 }
3248 
3249 /*
3250  * Synchronous osd object method call.  Returns the number of bytes
3251  * returned in the outbound buffer, or a negative error code.
3252  */
3253 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3254 			     const char *object_name,
3255 			     const char *class_name,
3256 			     const char *method_name,
3257 			     const void *outbound,
3258 			     size_t outbound_size,
3259 			     void *inbound,
3260 			     size_t inbound_size)
3261 {
3262 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3263 	struct rbd_obj_request *obj_request;
3264 	struct page **pages;
3265 	u32 page_count;
3266 	int ret;
3267 
3268 	/*
3269 	 * Method calls are ultimately read operations.  The result
3270 	 * should placed into the inbound buffer provided.  They
3271 	 * also supply outbound data--parameters for the object
3272 	 * method.  Currently if this is present it will be a
3273 	 * snapshot id.
3274 	 */
3275 	page_count = (u32)calc_pages_for(0, inbound_size);
3276 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3277 	if (IS_ERR(pages))
3278 		return PTR_ERR(pages);
3279 
3280 	ret = -ENOMEM;
3281 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3282 							OBJ_REQUEST_PAGES);
3283 	if (!obj_request)
3284 		goto out;
3285 
3286 	obj_request->pages = pages;
3287 	obj_request->page_count = page_count;
3288 
3289 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3290 						  obj_request);
3291 	if (!obj_request->osd_req)
3292 		goto out;
3293 
3294 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3295 					class_name, method_name);
3296 	if (outbound_size) {
3297 		struct ceph_pagelist *pagelist;
3298 
3299 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3300 		if (!pagelist)
3301 			goto out;
3302 
3303 		ceph_pagelist_init(pagelist);
3304 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3305 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3306 						pagelist);
3307 	}
3308 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3309 					obj_request->pages, inbound_size,
3310 					0, false, false);
3311 	rbd_osd_req_format_read(obj_request);
3312 
3313 	ret = rbd_obj_request_submit(osdc, obj_request);
3314 	if (ret)
3315 		goto out;
3316 	ret = rbd_obj_request_wait(obj_request);
3317 	if (ret)
3318 		goto out;
3319 
3320 	ret = obj_request->result;
3321 	if (ret < 0)
3322 		goto out;
3323 
3324 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3325 	ret = (int)obj_request->xferred;
3326 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3327 out:
3328 	if (obj_request)
3329 		rbd_obj_request_put(obj_request);
3330 	else
3331 		ceph_release_page_vector(pages, page_count);
3332 
3333 	return ret;
3334 }
3335 
3336 static void rbd_queue_workfn(struct work_struct *work)
3337 {
3338 	struct request *rq = blk_mq_rq_from_pdu(work);
3339 	struct rbd_device *rbd_dev = rq->q->queuedata;
3340 	struct rbd_img_request *img_request;
3341 	struct ceph_snap_context *snapc = NULL;
3342 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3343 	u64 length = blk_rq_bytes(rq);
3344 	enum obj_operation_type op_type;
3345 	u64 mapping_size;
3346 	int result;
3347 
3348 	if (rq->cmd_type != REQ_TYPE_FS) {
3349 		dout("%s: non-fs request type %d\n", __func__,
3350 			(int) rq->cmd_type);
3351 		result = -EIO;
3352 		goto err;
3353 	}
3354 
3355 	if (rq->cmd_flags & REQ_DISCARD)
3356 		op_type = OBJ_OP_DISCARD;
3357 	else if (rq->cmd_flags & REQ_WRITE)
3358 		op_type = OBJ_OP_WRITE;
3359 	else
3360 		op_type = OBJ_OP_READ;
3361 
3362 	/* Ignore/skip any zero-length requests */
3363 
3364 	if (!length) {
3365 		dout("%s: zero-length request\n", __func__);
3366 		result = 0;
3367 		goto err_rq;
3368 	}
3369 
3370 	/* Only reads are allowed to a read-only device */
3371 
3372 	if (op_type != OBJ_OP_READ) {
3373 		if (rbd_dev->mapping.read_only) {
3374 			result = -EROFS;
3375 			goto err_rq;
3376 		}
3377 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3378 	}
3379 
3380 	/*
3381 	 * Quit early if the mapped snapshot no longer exists.  It's
3382 	 * still possible the snapshot will have disappeared by the
3383 	 * time our request arrives at the osd, but there's no sense in
3384 	 * sending it if we already know.
3385 	 */
3386 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3387 		dout("request for non-existent snapshot");
3388 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3389 		result = -ENXIO;
3390 		goto err_rq;
3391 	}
3392 
3393 	if (offset && length > U64_MAX - offset + 1) {
3394 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3395 			 length);
3396 		result = -EINVAL;
3397 		goto err_rq;	/* Shouldn't happen */
3398 	}
3399 
3400 	blk_mq_start_request(rq);
3401 
3402 	down_read(&rbd_dev->header_rwsem);
3403 	mapping_size = rbd_dev->mapping.size;
3404 	if (op_type != OBJ_OP_READ) {
3405 		snapc = rbd_dev->header.snapc;
3406 		ceph_get_snap_context(snapc);
3407 	}
3408 	up_read(&rbd_dev->header_rwsem);
3409 
3410 	if (offset + length > mapping_size) {
3411 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3412 			 length, mapping_size);
3413 		result = -EIO;
3414 		goto err_rq;
3415 	}
3416 
3417 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3418 					     snapc);
3419 	if (!img_request) {
3420 		result = -ENOMEM;
3421 		goto err_rq;
3422 	}
3423 	img_request->rq = rq;
3424 
3425 	if (op_type == OBJ_OP_DISCARD)
3426 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3427 					      NULL);
3428 	else
3429 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3430 					      rq->bio);
3431 	if (result)
3432 		goto err_img_request;
3433 
3434 	result = rbd_img_request_submit(img_request);
3435 	if (result)
3436 		goto err_img_request;
3437 
3438 	return;
3439 
3440 err_img_request:
3441 	rbd_img_request_put(img_request);
3442 err_rq:
3443 	if (result)
3444 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3445 			 obj_op_name(op_type), length, offset, result);
3446 	ceph_put_snap_context(snapc);
3447 err:
3448 	blk_mq_end_request(rq, result);
3449 }
3450 
3451 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3452 		const struct blk_mq_queue_data *bd)
3453 {
3454 	struct request *rq = bd->rq;
3455 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3456 
3457 	queue_work(rbd_wq, work);
3458 	return BLK_MQ_RQ_QUEUE_OK;
3459 }
3460 
3461 /*
3462  * a queue callback. Makes sure that we don't create a bio that spans across
3463  * multiple osd objects. One exception would be with a single page bios,
3464  * which we handle later at bio_chain_clone_range()
3465  */
3466 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3467 			  struct bio_vec *bvec)
3468 {
3469 	struct rbd_device *rbd_dev = q->queuedata;
3470 	sector_t sector_offset;
3471 	sector_t sectors_per_obj;
3472 	sector_t obj_sector_offset;
3473 	int ret;
3474 
3475 	/*
3476 	 * Find how far into its rbd object the partition-relative
3477 	 * bio start sector is to offset relative to the enclosing
3478 	 * device.
3479 	 */
3480 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3481 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3482 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3483 
3484 	/*
3485 	 * Compute the number of bytes from that offset to the end
3486 	 * of the object.  Account for what's already used by the bio.
3487 	 */
3488 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3489 	if (ret > bmd->bi_size)
3490 		ret -= bmd->bi_size;
3491 	else
3492 		ret = 0;
3493 
3494 	/*
3495 	 * Don't send back more than was asked for.  And if the bio
3496 	 * was empty, let the whole thing through because:  "Note
3497 	 * that a block device *must* allow a single page to be
3498 	 * added to an empty bio."
3499 	 */
3500 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3501 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3502 		ret = (int) bvec->bv_len;
3503 
3504 	return ret;
3505 }
3506 
3507 static void rbd_free_disk(struct rbd_device *rbd_dev)
3508 {
3509 	struct gendisk *disk = rbd_dev->disk;
3510 
3511 	if (!disk)
3512 		return;
3513 
3514 	rbd_dev->disk = NULL;
3515 	if (disk->flags & GENHD_FL_UP) {
3516 		del_gendisk(disk);
3517 		if (disk->queue)
3518 			blk_cleanup_queue(disk->queue);
3519 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3520 	}
3521 	put_disk(disk);
3522 }
3523 
3524 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3525 				const char *object_name,
3526 				u64 offset, u64 length, void *buf)
3527 
3528 {
3529 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3530 	struct rbd_obj_request *obj_request;
3531 	struct page **pages = NULL;
3532 	u32 page_count;
3533 	size_t size;
3534 	int ret;
3535 
3536 	page_count = (u32) calc_pages_for(offset, length);
3537 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3538 	if (IS_ERR(pages))
3539 		return PTR_ERR(pages);
3540 
3541 	ret = -ENOMEM;
3542 	obj_request = rbd_obj_request_create(object_name, offset, length,
3543 							OBJ_REQUEST_PAGES);
3544 	if (!obj_request)
3545 		goto out;
3546 
3547 	obj_request->pages = pages;
3548 	obj_request->page_count = page_count;
3549 
3550 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3551 						  obj_request);
3552 	if (!obj_request->osd_req)
3553 		goto out;
3554 
3555 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3556 					offset, length, 0, 0);
3557 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3558 					obj_request->pages,
3559 					obj_request->length,
3560 					obj_request->offset & ~PAGE_MASK,
3561 					false, false);
3562 	rbd_osd_req_format_read(obj_request);
3563 
3564 	ret = rbd_obj_request_submit(osdc, obj_request);
3565 	if (ret)
3566 		goto out;
3567 	ret = rbd_obj_request_wait(obj_request);
3568 	if (ret)
3569 		goto out;
3570 
3571 	ret = obj_request->result;
3572 	if (ret < 0)
3573 		goto out;
3574 
3575 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3576 	size = (size_t) obj_request->xferred;
3577 	ceph_copy_from_page_vector(pages, buf, 0, size);
3578 	rbd_assert(size <= (size_t)INT_MAX);
3579 	ret = (int)size;
3580 out:
3581 	if (obj_request)
3582 		rbd_obj_request_put(obj_request);
3583 	else
3584 		ceph_release_page_vector(pages, page_count);
3585 
3586 	return ret;
3587 }
3588 
3589 /*
3590  * Read the complete header for the given rbd device.  On successful
3591  * return, the rbd_dev->header field will contain up-to-date
3592  * information about the image.
3593  */
3594 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3595 {
3596 	struct rbd_image_header_ondisk *ondisk = NULL;
3597 	u32 snap_count = 0;
3598 	u64 names_size = 0;
3599 	u32 want_count;
3600 	int ret;
3601 
3602 	/*
3603 	 * The complete header will include an array of its 64-bit
3604 	 * snapshot ids, followed by the names of those snapshots as
3605 	 * a contiguous block of NUL-terminated strings.  Note that
3606 	 * the number of snapshots could change by the time we read
3607 	 * it in, in which case we re-read it.
3608 	 */
3609 	do {
3610 		size_t size;
3611 
3612 		kfree(ondisk);
3613 
3614 		size = sizeof (*ondisk);
3615 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3616 		size += names_size;
3617 		ondisk = kmalloc(size, GFP_KERNEL);
3618 		if (!ondisk)
3619 			return -ENOMEM;
3620 
3621 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3622 				       0, size, ondisk);
3623 		if (ret < 0)
3624 			goto out;
3625 		if ((size_t)ret < size) {
3626 			ret = -ENXIO;
3627 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3628 				size, ret);
3629 			goto out;
3630 		}
3631 		if (!rbd_dev_ondisk_valid(ondisk)) {
3632 			ret = -ENXIO;
3633 			rbd_warn(rbd_dev, "invalid header");
3634 			goto out;
3635 		}
3636 
3637 		names_size = le64_to_cpu(ondisk->snap_names_len);
3638 		want_count = snap_count;
3639 		snap_count = le32_to_cpu(ondisk->snap_count);
3640 	} while (snap_count != want_count);
3641 
3642 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3643 out:
3644 	kfree(ondisk);
3645 
3646 	return ret;
3647 }
3648 
3649 /*
3650  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3651  * has disappeared from the (just updated) snapshot context.
3652  */
3653 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3654 {
3655 	u64 snap_id;
3656 
3657 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3658 		return;
3659 
3660 	snap_id = rbd_dev->spec->snap_id;
3661 	if (snap_id == CEPH_NOSNAP)
3662 		return;
3663 
3664 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3665 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3666 }
3667 
3668 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3669 {
3670 	sector_t size;
3671 	bool removing;
3672 
3673 	/*
3674 	 * Don't hold the lock while doing disk operations,
3675 	 * or lock ordering will conflict with the bdev mutex via:
3676 	 * rbd_add() -> blkdev_get() -> rbd_open()
3677 	 */
3678 	spin_lock_irq(&rbd_dev->lock);
3679 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3680 	spin_unlock_irq(&rbd_dev->lock);
3681 	/*
3682 	 * If the device is being removed, rbd_dev->disk has
3683 	 * been destroyed, so don't try to update its size
3684 	 */
3685 	if (!removing) {
3686 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3687 		dout("setting size to %llu sectors", (unsigned long long)size);
3688 		set_capacity(rbd_dev->disk, size);
3689 		revalidate_disk(rbd_dev->disk);
3690 	}
3691 }
3692 
3693 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3694 {
3695 	u64 mapping_size;
3696 	int ret;
3697 
3698 	down_write(&rbd_dev->header_rwsem);
3699 	mapping_size = rbd_dev->mapping.size;
3700 
3701 	ret = rbd_dev_header_info(rbd_dev);
3702 	if (ret)
3703 		goto out;
3704 
3705 	/*
3706 	 * If there is a parent, see if it has disappeared due to the
3707 	 * mapped image getting flattened.
3708 	 */
3709 	if (rbd_dev->parent) {
3710 		ret = rbd_dev_v2_parent_info(rbd_dev);
3711 		if (ret)
3712 			goto out;
3713 	}
3714 
3715 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3716 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3717 	} else {
3718 		/* validate mapped snapshot's EXISTS flag */
3719 		rbd_exists_validate(rbd_dev);
3720 	}
3721 
3722 out:
3723 	up_write(&rbd_dev->header_rwsem);
3724 	if (!ret && mapping_size != rbd_dev->mapping.size)
3725 		rbd_dev_update_size(rbd_dev);
3726 
3727 	return ret;
3728 }
3729 
3730 static int rbd_init_request(void *data, struct request *rq,
3731 		unsigned int hctx_idx, unsigned int request_idx,
3732 		unsigned int numa_node)
3733 {
3734 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3735 
3736 	INIT_WORK(work, rbd_queue_workfn);
3737 	return 0;
3738 }
3739 
3740 static struct blk_mq_ops rbd_mq_ops = {
3741 	.queue_rq	= rbd_queue_rq,
3742 	.map_queue	= blk_mq_map_queue,
3743 	.init_request	= rbd_init_request,
3744 };
3745 
3746 static int rbd_init_disk(struct rbd_device *rbd_dev)
3747 {
3748 	struct gendisk *disk;
3749 	struct request_queue *q;
3750 	u64 segment_size;
3751 	int err;
3752 
3753 	/* create gendisk info */
3754 	disk = alloc_disk(single_major ?
3755 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3756 			  RBD_MINORS_PER_MAJOR);
3757 	if (!disk)
3758 		return -ENOMEM;
3759 
3760 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3761 		 rbd_dev->dev_id);
3762 	disk->major = rbd_dev->major;
3763 	disk->first_minor = rbd_dev->minor;
3764 	if (single_major)
3765 		disk->flags |= GENHD_FL_EXT_DEVT;
3766 	disk->fops = &rbd_bd_ops;
3767 	disk->private_data = rbd_dev;
3768 
3769 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3770 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3771 	rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ;
3772 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3773 	rbd_dev->tag_set.flags =
3774 		BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3775 	rbd_dev->tag_set.nr_hw_queues = 1;
3776 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3777 
3778 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3779 	if (err)
3780 		goto out_disk;
3781 
3782 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3783 	if (IS_ERR(q)) {
3784 		err = PTR_ERR(q);
3785 		goto out_tag_set;
3786 	}
3787 
3788 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3789 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3790 
3791 	/* set io sizes to object size */
3792 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3793 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3794 	blk_queue_max_segment_size(q, segment_size);
3795 	blk_queue_io_min(q, segment_size);
3796 	blk_queue_io_opt(q, segment_size);
3797 
3798 	/* enable the discard support */
3799 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3800 	q->limits.discard_granularity = segment_size;
3801 	q->limits.discard_alignment = segment_size;
3802 	q->limits.max_discard_sectors = segment_size / SECTOR_SIZE;
3803 	q->limits.discard_zeroes_data = 1;
3804 
3805 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3806 	disk->queue = q;
3807 
3808 	q->queuedata = rbd_dev;
3809 
3810 	rbd_dev->disk = disk;
3811 
3812 	return 0;
3813 out_tag_set:
3814 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3815 out_disk:
3816 	put_disk(disk);
3817 	return err;
3818 }
3819 
3820 /*
3821   sysfs
3822 */
3823 
3824 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3825 {
3826 	return container_of(dev, struct rbd_device, dev);
3827 }
3828 
3829 static ssize_t rbd_size_show(struct device *dev,
3830 			     struct device_attribute *attr, char *buf)
3831 {
3832 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3833 
3834 	return sprintf(buf, "%llu\n",
3835 		(unsigned long long)rbd_dev->mapping.size);
3836 }
3837 
3838 /*
3839  * Note this shows the features for whatever's mapped, which is not
3840  * necessarily the base image.
3841  */
3842 static ssize_t rbd_features_show(struct device *dev,
3843 			     struct device_attribute *attr, char *buf)
3844 {
3845 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3846 
3847 	return sprintf(buf, "0x%016llx\n",
3848 			(unsigned long long)rbd_dev->mapping.features);
3849 }
3850 
3851 static ssize_t rbd_major_show(struct device *dev,
3852 			      struct device_attribute *attr, char *buf)
3853 {
3854 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3855 
3856 	if (rbd_dev->major)
3857 		return sprintf(buf, "%d\n", rbd_dev->major);
3858 
3859 	return sprintf(buf, "(none)\n");
3860 }
3861 
3862 static ssize_t rbd_minor_show(struct device *dev,
3863 			      struct device_attribute *attr, char *buf)
3864 {
3865 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3866 
3867 	return sprintf(buf, "%d\n", rbd_dev->minor);
3868 }
3869 
3870 static ssize_t rbd_client_id_show(struct device *dev,
3871 				  struct device_attribute *attr, char *buf)
3872 {
3873 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3874 
3875 	return sprintf(buf, "client%lld\n",
3876 			ceph_client_id(rbd_dev->rbd_client->client));
3877 }
3878 
3879 static ssize_t rbd_pool_show(struct device *dev,
3880 			     struct device_attribute *attr, char *buf)
3881 {
3882 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3883 
3884 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3885 }
3886 
3887 static ssize_t rbd_pool_id_show(struct device *dev,
3888 			     struct device_attribute *attr, char *buf)
3889 {
3890 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3891 
3892 	return sprintf(buf, "%llu\n",
3893 			(unsigned long long) rbd_dev->spec->pool_id);
3894 }
3895 
3896 static ssize_t rbd_name_show(struct device *dev,
3897 			     struct device_attribute *attr, char *buf)
3898 {
3899 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3900 
3901 	if (rbd_dev->spec->image_name)
3902 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3903 
3904 	return sprintf(buf, "(unknown)\n");
3905 }
3906 
3907 static ssize_t rbd_image_id_show(struct device *dev,
3908 			     struct device_attribute *attr, char *buf)
3909 {
3910 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3911 
3912 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3913 }
3914 
3915 /*
3916  * Shows the name of the currently-mapped snapshot (or
3917  * RBD_SNAP_HEAD_NAME for the base image).
3918  */
3919 static ssize_t rbd_snap_show(struct device *dev,
3920 			     struct device_attribute *attr,
3921 			     char *buf)
3922 {
3923 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3924 
3925 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3926 }
3927 
3928 /*
3929  * For a v2 image, shows the chain of parent images, separated by empty
3930  * lines.  For v1 images or if there is no parent, shows "(no parent
3931  * image)".
3932  */
3933 static ssize_t rbd_parent_show(struct device *dev,
3934 			       struct device_attribute *attr,
3935 			       char *buf)
3936 {
3937 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3938 	ssize_t count = 0;
3939 
3940 	if (!rbd_dev->parent)
3941 		return sprintf(buf, "(no parent image)\n");
3942 
3943 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3944 		struct rbd_spec *spec = rbd_dev->parent_spec;
3945 
3946 		count += sprintf(&buf[count], "%s"
3947 			    "pool_id %llu\npool_name %s\n"
3948 			    "image_id %s\nimage_name %s\n"
3949 			    "snap_id %llu\nsnap_name %s\n"
3950 			    "overlap %llu\n",
3951 			    !count ? "" : "\n", /* first? */
3952 			    spec->pool_id, spec->pool_name,
3953 			    spec->image_id, spec->image_name ?: "(unknown)",
3954 			    spec->snap_id, spec->snap_name,
3955 			    rbd_dev->parent_overlap);
3956 	}
3957 
3958 	return count;
3959 }
3960 
3961 static ssize_t rbd_image_refresh(struct device *dev,
3962 				 struct device_attribute *attr,
3963 				 const char *buf,
3964 				 size_t size)
3965 {
3966 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3967 	int ret;
3968 
3969 	ret = rbd_dev_refresh(rbd_dev);
3970 	if (ret)
3971 		return ret;
3972 
3973 	return size;
3974 }
3975 
3976 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3977 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3978 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3979 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3980 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3981 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3982 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3983 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3984 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3985 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3986 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3987 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3988 
3989 static struct attribute *rbd_attrs[] = {
3990 	&dev_attr_size.attr,
3991 	&dev_attr_features.attr,
3992 	&dev_attr_major.attr,
3993 	&dev_attr_minor.attr,
3994 	&dev_attr_client_id.attr,
3995 	&dev_attr_pool.attr,
3996 	&dev_attr_pool_id.attr,
3997 	&dev_attr_name.attr,
3998 	&dev_attr_image_id.attr,
3999 	&dev_attr_current_snap.attr,
4000 	&dev_attr_parent.attr,
4001 	&dev_attr_refresh.attr,
4002 	NULL
4003 };
4004 
4005 static struct attribute_group rbd_attr_group = {
4006 	.attrs = rbd_attrs,
4007 };
4008 
4009 static const struct attribute_group *rbd_attr_groups[] = {
4010 	&rbd_attr_group,
4011 	NULL
4012 };
4013 
4014 static void rbd_sysfs_dev_release(struct device *dev)
4015 {
4016 }
4017 
4018 static struct device_type rbd_device_type = {
4019 	.name		= "rbd",
4020 	.groups		= rbd_attr_groups,
4021 	.release	= rbd_sysfs_dev_release,
4022 };
4023 
4024 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4025 {
4026 	kref_get(&spec->kref);
4027 
4028 	return spec;
4029 }
4030 
4031 static void rbd_spec_free(struct kref *kref);
4032 static void rbd_spec_put(struct rbd_spec *spec)
4033 {
4034 	if (spec)
4035 		kref_put(&spec->kref, rbd_spec_free);
4036 }
4037 
4038 static struct rbd_spec *rbd_spec_alloc(void)
4039 {
4040 	struct rbd_spec *spec;
4041 
4042 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4043 	if (!spec)
4044 		return NULL;
4045 
4046 	spec->pool_id = CEPH_NOPOOL;
4047 	spec->snap_id = CEPH_NOSNAP;
4048 	kref_init(&spec->kref);
4049 
4050 	return spec;
4051 }
4052 
4053 static void rbd_spec_free(struct kref *kref)
4054 {
4055 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4056 
4057 	kfree(spec->pool_name);
4058 	kfree(spec->image_id);
4059 	kfree(spec->image_name);
4060 	kfree(spec->snap_name);
4061 	kfree(spec);
4062 }
4063 
4064 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4065 				struct rbd_spec *spec)
4066 {
4067 	struct rbd_device *rbd_dev;
4068 
4069 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4070 	if (!rbd_dev)
4071 		return NULL;
4072 
4073 	spin_lock_init(&rbd_dev->lock);
4074 	rbd_dev->flags = 0;
4075 	atomic_set(&rbd_dev->parent_ref, 0);
4076 	INIT_LIST_HEAD(&rbd_dev->node);
4077 	init_rwsem(&rbd_dev->header_rwsem);
4078 
4079 	rbd_dev->spec = spec;
4080 	rbd_dev->rbd_client = rbdc;
4081 
4082 	/* Initialize the layout used for all rbd requests */
4083 
4084 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4085 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4086 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4087 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4088 
4089 	return rbd_dev;
4090 }
4091 
4092 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4093 {
4094 	rbd_put_client(rbd_dev->rbd_client);
4095 	rbd_spec_put(rbd_dev->spec);
4096 	kfree(rbd_dev);
4097 }
4098 
4099 /*
4100  * Get the size and object order for an image snapshot, or if
4101  * snap_id is CEPH_NOSNAP, gets this information for the base
4102  * image.
4103  */
4104 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4105 				u8 *order, u64 *snap_size)
4106 {
4107 	__le64 snapid = cpu_to_le64(snap_id);
4108 	int ret;
4109 	struct {
4110 		u8 order;
4111 		__le64 size;
4112 	} __attribute__ ((packed)) size_buf = { 0 };
4113 
4114 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4115 				"rbd", "get_size",
4116 				&snapid, sizeof (snapid),
4117 				&size_buf, sizeof (size_buf));
4118 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4119 	if (ret < 0)
4120 		return ret;
4121 	if (ret < sizeof (size_buf))
4122 		return -ERANGE;
4123 
4124 	if (order) {
4125 		*order = size_buf.order;
4126 		dout("  order %u", (unsigned int)*order);
4127 	}
4128 	*snap_size = le64_to_cpu(size_buf.size);
4129 
4130 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4131 		(unsigned long long)snap_id,
4132 		(unsigned long long)*snap_size);
4133 
4134 	return 0;
4135 }
4136 
4137 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4138 {
4139 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4140 					&rbd_dev->header.obj_order,
4141 					&rbd_dev->header.image_size);
4142 }
4143 
4144 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4145 {
4146 	void *reply_buf;
4147 	int ret;
4148 	void *p;
4149 
4150 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4151 	if (!reply_buf)
4152 		return -ENOMEM;
4153 
4154 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4155 				"rbd", "get_object_prefix", NULL, 0,
4156 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4157 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158 	if (ret < 0)
4159 		goto out;
4160 
4161 	p = reply_buf;
4162 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4163 						p + ret, NULL, GFP_NOIO);
4164 	ret = 0;
4165 
4166 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4167 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4168 		rbd_dev->header.object_prefix = NULL;
4169 	} else {
4170 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4171 	}
4172 out:
4173 	kfree(reply_buf);
4174 
4175 	return ret;
4176 }
4177 
4178 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4179 		u64 *snap_features)
4180 {
4181 	__le64 snapid = cpu_to_le64(snap_id);
4182 	struct {
4183 		__le64 features;
4184 		__le64 incompat;
4185 	} __attribute__ ((packed)) features_buf = { 0 };
4186 	u64 incompat;
4187 	int ret;
4188 
4189 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4190 				"rbd", "get_features",
4191 				&snapid, sizeof (snapid),
4192 				&features_buf, sizeof (features_buf));
4193 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4194 	if (ret < 0)
4195 		return ret;
4196 	if (ret < sizeof (features_buf))
4197 		return -ERANGE;
4198 
4199 	incompat = le64_to_cpu(features_buf.incompat);
4200 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4201 		return -ENXIO;
4202 
4203 	*snap_features = le64_to_cpu(features_buf.features);
4204 
4205 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4206 		(unsigned long long)snap_id,
4207 		(unsigned long long)*snap_features,
4208 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4209 
4210 	return 0;
4211 }
4212 
4213 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4214 {
4215 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4216 						&rbd_dev->header.features);
4217 }
4218 
4219 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4220 {
4221 	struct rbd_spec *parent_spec;
4222 	size_t size;
4223 	void *reply_buf = NULL;
4224 	__le64 snapid;
4225 	void *p;
4226 	void *end;
4227 	u64 pool_id;
4228 	char *image_id;
4229 	u64 snap_id;
4230 	u64 overlap;
4231 	int ret;
4232 
4233 	parent_spec = rbd_spec_alloc();
4234 	if (!parent_spec)
4235 		return -ENOMEM;
4236 
4237 	size = sizeof (__le64) +				/* pool_id */
4238 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4239 		sizeof (__le64) +				/* snap_id */
4240 		sizeof (__le64);				/* overlap */
4241 	reply_buf = kmalloc(size, GFP_KERNEL);
4242 	if (!reply_buf) {
4243 		ret = -ENOMEM;
4244 		goto out_err;
4245 	}
4246 
4247 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4248 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4249 				"rbd", "get_parent",
4250 				&snapid, sizeof (snapid),
4251 				reply_buf, size);
4252 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4253 	if (ret < 0)
4254 		goto out_err;
4255 
4256 	p = reply_buf;
4257 	end = reply_buf + ret;
4258 	ret = -ERANGE;
4259 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4260 	if (pool_id == CEPH_NOPOOL) {
4261 		/*
4262 		 * Either the parent never existed, or we have
4263 		 * record of it but the image got flattened so it no
4264 		 * longer has a parent.  When the parent of a
4265 		 * layered image disappears we immediately set the
4266 		 * overlap to 0.  The effect of this is that all new
4267 		 * requests will be treated as if the image had no
4268 		 * parent.
4269 		 */
4270 		if (rbd_dev->parent_overlap) {
4271 			rbd_dev->parent_overlap = 0;
4272 			rbd_dev_parent_put(rbd_dev);
4273 			pr_info("%s: clone image has been flattened\n",
4274 				rbd_dev->disk->disk_name);
4275 		}
4276 
4277 		goto out;	/* No parent?  No problem. */
4278 	}
4279 
4280 	/* The ceph file layout needs to fit pool id in 32 bits */
4281 
4282 	ret = -EIO;
4283 	if (pool_id > (u64)U32_MAX) {
4284 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4285 			(unsigned long long)pool_id, U32_MAX);
4286 		goto out_err;
4287 	}
4288 
4289 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4290 	if (IS_ERR(image_id)) {
4291 		ret = PTR_ERR(image_id);
4292 		goto out_err;
4293 	}
4294 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4295 	ceph_decode_64_safe(&p, end, overlap, out_err);
4296 
4297 	/*
4298 	 * The parent won't change (except when the clone is
4299 	 * flattened, already handled that).  So we only need to
4300 	 * record the parent spec we have not already done so.
4301 	 */
4302 	if (!rbd_dev->parent_spec) {
4303 		parent_spec->pool_id = pool_id;
4304 		parent_spec->image_id = image_id;
4305 		parent_spec->snap_id = snap_id;
4306 		rbd_dev->parent_spec = parent_spec;
4307 		parent_spec = NULL;	/* rbd_dev now owns this */
4308 	} else {
4309 		kfree(image_id);
4310 	}
4311 
4312 	/*
4313 	 * We always update the parent overlap.  If it's zero we issue
4314 	 * a warning, as we will proceed as if there was no parent.
4315 	 */
4316 	if (!overlap) {
4317 		if (parent_spec) {
4318 			/* refresh, careful to warn just once */
4319 			if (rbd_dev->parent_overlap)
4320 				rbd_warn(rbd_dev,
4321 				    "clone now standalone (overlap became 0)");
4322 		} else {
4323 			/* initial probe */
4324 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4325 		}
4326 	}
4327 	rbd_dev->parent_overlap = overlap;
4328 
4329 out:
4330 	ret = 0;
4331 out_err:
4332 	kfree(reply_buf);
4333 	rbd_spec_put(parent_spec);
4334 
4335 	return ret;
4336 }
4337 
4338 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4339 {
4340 	struct {
4341 		__le64 stripe_unit;
4342 		__le64 stripe_count;
4343 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4344 	size_t size = sizeof (striping_info_buf);
4345 	void *p;
4346 	u64 obj_size;
4347 	u64 stripe_unit;
4348 	u64 stripe_count;
4349 	int ret;
4350 
4351 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4352 				"rbd", "get_stripe_unit_count", NULL, 0,
4353 				(char *)&striping_info_buf, size);
4354 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4355 	if (ret < 0)
4356 		return ret;
4357 	if (ret < size)
4358 		return -ERANGE;
4359 
4360 	/*
4361 	 * We don't actually support the "fancy striping" feature
4362 	 * (STRIPINGV2) yet, but if the striping sizes are the
4363 	 * defaults the behavior is the same as before.  So find
4364 	 * out, and only fail if the image has non-default values.
4365 	 */
4366 	ret = -EINVAL;
4367 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4368 	p = &striping_info_buf;
4369 	stripe_unit = ceph_decode_64(&p);
4370 	if (stripe_unit != obj_size) {
4371 		rbd_warn(rbd_dev, "unsupported stripe unit "
4372 				"(got %llu want %llu)",
4373 				stripe_unit, obj_size);
4374 		return -EINVAL;
4375 	}
4376 	stripe_count = ceph_decode_64(&p);
4377 	if (stripe_count != 1) {
4378 		rbd_warn(rbd_dev, "unsupported stripe count "
4379 				"(got %llu want 1)", stripe_count);
4380 		return -EINVAL;
4381 	}
4382 	rbd_dev->header.stripe_unit = stripe_unit;
4383 	rbd_dev->header.stripe_count = stripe_count;
4384 
4385 	return 0;
4386 }
4387 
4388 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4389 {
4390 	size_t image_id_size;
4391 	char *image_id;
4392 	void *p;
4393 	void *end;
4394 	size_t size;
4395 	void *reply_buf = NULL;
4396 	size_t len = 0;
4397 	char *image_name = NULL;
4398 	int ret;
4399 
4400 	rbd_assert(!rbd_dev->spec->image_name);
4401 
4402 	len = strlen(rbd_dev->spec->image_id);
4403 	image_id_size = sizeof (__le32) + len;
4404 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4405 	if (!image_id)
4406 		return NULL;
4407 
4408 	p = image_id;
4409 	end = image_id + image_id_size;
4410 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4411 
4412 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4413 	reply_buf = kmalloc(size, GFP_KERNEL);
4414 	if (!reply_buf)
4415 		goto out;
4416 
4417 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4418 				"rbd", "dir_get_name",
4419 				image_id, image_id_size,
4420 				reply_buf, size);
4421 	if (ret < 0)
4422 		goto out;
4423 	p = reply_buf;
4424 	end = reply_buf + ret;
4425 
4426 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4427 	if (IS_ERR(image_name))
4428 		image_name = NULL;
4429 	else
4430 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4431 out:
4432 	kfree(reply_buf);
4433 	kfree(image_id);
4434 
4435 	return image_name;
4436 }
4437 
4438 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4439 {
4440 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4441 	const char *snap_name;
4442 	u32 which = 0;
4443 
4444 	/* Skip over names until we find the one we are looking for */
4445 
4446 	snap_name = rbd_dev->header.snap_names;
4447 	while (which < snapc->num_snaps) {
4448 		if (!strcmp(name, snap_name))
4449 			return snapc->snaps[which];
4450 		snap_name += strlen(snap_name) + 1;
4451 		which++;
4452 	}
4453 	return CEPH_NOSNAP;
4454 }
4455 
4456 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4457 {
4458 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4459 	u32 which;
4460 	bool found = false;
4461 	u64 snap_id;
4462 
4463 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4464 		const char *snap_name;
4465 
4466 		snap_id = snapc->snaps[which];
4467 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4468 		if (IS_ERR(snap_name)) {
4469 			/* ignore no-longer existing snapshots */
4470 			if (PTR_ERR(snap_name) == -ENOENT)
4471 				continue;
4472 			else
4473 				break;
4474 		}
4475 		found = !strcmp(name, snap_name);
4476 		kfree(snap_name);
4477 	}
4478 	return found ? snap_id : CEPH_NOSNAP;
4479 }
4480 
4481 /*
4482  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4483  * no snapshot by that name is found, or if an error occurs.
4484  */
4485 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4486 {
4487 	if (rbd_dev->image_format == 1)
4488 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4489 
4490 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4491 }
4492 
4493 /*
4494  * An image being mapped will have everything but the snap id.
4495  */
4496 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4497 {
4498 	struct rbd_spec *spec = rbd_dev->spec;
4499 
4500 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4501 	rbd_assert(spec->image_id && spec->image_name);
4502 	rbd_assert(spec->snap_name);
4503 
4504 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4505 		u64 snap_id;
4506 
4507 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4508 		if (snap_id == CEPH_NOSNAP)
4509 			return -ENOENT;
4510 
4511 		spec->snap_id = snap_id;
4512 	} else {
4513 		spec->snap_id = CEPH_NOSNAP;
4514 	}
4515 
4516 	return 0;
4517 }
4518 
4519 /*
4520  * A parent image will have all ids but none of the names.
4521  *
4522  * All names in an rbd spec are dynamically allocated.  It's OK if we
4523  * can't figure out the name for an image id.
4524  */
4525 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4526 {
4527 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4528 	struct rbd_spec *spec = rbd_dev->spec;
4529 	const char *pool_name;
4530 	const char *image_name;
4531 	const char *snap_name;
4532 	int ret;
4533 
4534 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4535 	rbd_assert(spec->image_id);
4536 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4537 
4538 	/* Get the pool name; we have to make our own copy of this */
4539 
4540 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4541 	if (!pool_name) {
4542 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4543 		return -EIO;
4544 	}
4545 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4546 	if (!pool_name)
4547 		return -ENOMEM;
4548 
4549 	/* Fetch the image name; tolerate failure here */
4550 
4551 	image_name = rbd_dev_image_name(rbd_dev);
4552 	if (!image_name)
4553 		rbd_warn(rbd_dev, "unable to get image name");
4554 
4555 	/* Fetch the snapshot name */
4556 
4557 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4558 	if (IS_ERR(snap_name)) {
4559 		ret = PTR_ERR(snap_name);
4560 		goto out_err;
4561 	}
4562 
4563 	spec->pool_name = pool_name;
4564 	spec->image_name = image_name;
4565 	spec->snap_name = snap_name;
4566 
4567 	return 0;
4568 
4569 out_err:
4570 	kfree(image_name);
4571 	kfree(pool_name);
4572 	return ret;
4573 }
4574 
4575 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4576 {
4577 	size_t size;
4578 	int ret;
4579 	void *reply_buf;
4580 	void *p;
4581 	void *end;
4582 	u64 seq;
4583 	u32 snap_count;
4584 	struct ceph_snap_context *snapc;
4585 	u32 i;
4586 
4587 	/*
4588 	 * We'll need room for the seq value (maximum snapshot id),
4589 	 * snapshot count, and array of that many snapshot ids.
4590 	 * For now we have a fixed upper limit on the number we're
4591 	 * prepared to receive.
4592 	 */
4593 	size = sizeof (__le64) + sizeof (__le32) +
4594 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4595 	reply_buf = kzalloc(size, GFP_KERNEL);
4596 	if (!reply_buf)
4597 		return -ENOMEM;
4598 
4599 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4600 				"rbd", "get_snapcontext", NULL, 0,
4601 				reply_buf, size);
4602 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4603 	if (ret < 0)
4604 		goto out;
4605 
4606 	p = reply_buf;
4607 	end = reply_buf + ret;
4608 	ret = -ERANGE;
4609 	ceph_decode_64_safe(&p, end, seq, out);
4610 	ceph_decode_32_safe(&p, end, snap_count, out);
4611 
4612 	/*
4613 	 * Make sure the reported number of snapshot ids wouldn't go
4614 	 * beyond the end of our buffer.  But before checking that,
4615 	 * make sure the computed size of the snapshot context we
4616 	 * allocate is representable in a size_t.
4617 	 */
4618 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4619 				 / sizeof (u64)) {
4620 		ret = -EINVAL;
4621 		goto out;
4622 	}
4623 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4624 		goto out;
4625 	ret = 0;
4626 
4627 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4628 	if (!snapc) {
4629 		ret = -ENOMEM;
4630 		goto out;
4631 	}
4632 	snapc->seq = seq;
4633 	for (i = 0; i < snap_count; i++)
4634 		snapc->snaps[i] = ceph_decode_64(&p);
4635 
4636 	ceph_put_snap_context(rbd_dev->header.snapc);
4637 	rbd_dev->header.snapc = snapc;
4638 
4639 	dout("  snap context seq = %llu, snap_count = %u\n",
4640 		(unsigned long long)seq, (unsigned int)snap_count);
4641 out:
4642 	kfree(reply_buf);
4643 
4644 	return ret;
4645 }
4646 
4647 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4648 					u64 snap_id)
4649 {
4650 	size_t size;
4651 	void *reply_buf;
4652 	__le64 snapid;
4653 	int ret;
4654 	void *p;
4655 	void *end;
4656 	char *snap_name;
4657 
4658 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4659 	reply_buf = kmalloc(size, GFP_KERNEL);
4660 	if (!reply_buf)
4661 		return ERR_PTR(-ENOMEM);
4662 
4663 	snapid = cpu_to_le64(snap_id);
4664 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4665 				"rbd", "get_snapshot_name",
4666 				&snapid, sizeof (snapid),
4667 				reply_buf, size);
4668 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4669 	if (ret < 0) {
4670 		snap_name = ERR_PTR(ret);
4671 		goto out;
4672 	}
4673 
4674 	p = reply_buf;
4675 	end = reply_buf + ret;
4676 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4677 	if (IS_ERR(snap_name))
4678 		goto out;
4679 
4680 	dout("  snap_id 0x%016llx snap_name = %s\n",
4681 		(unsigned long long)snap_id, snap_name);
4682 out:
4683 	kfree(reply_buf);
4684 
4685 	return snap_name;
4686 }
4687 
4688 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4689 {
4690 	bool first_time = rbd_dev->header.object_prefix == NULL;
4691 	int ret;
4692 
4693 	ret = rbd_dev_v2_image_size(rbd_dev);
4694 	if (ret)
4695 		return ret;
4696 
4697 	if (first_time) {
4698 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4699 		if (ret)
4700 			return ret;
4701 	}
4702 
4703 	ret = rbd_dev_v2_snap_context(rbd_dev);
4704 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4705 
4706 	return ret;
4707 }
4708 
4709 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4710 {
4711 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4712 
4713 	if (rbd_dev->image_format == 1)
4714 		return rbd_dev_v1_header_info(rbd_dev);
4715 
4716 	return rbd_dev_v2_header_info(rbd_dev);
4717 }
4718 
4719 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4720 {
4721 	struct device *dev;
4722 	int ret;
4723 
4724 	dev = &rbd_dev->dev;
4725 	dev->bus = &rbd_bus_type;
4726 	dev->type = &rbd_device_type;
4727 	dev->parent = &rbd_root_dev;
4728 	dev->release = rbd_dev_device_release;
4729 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4730 	ret = device_register(dev);
4731 
4732 	return ret;
4733 }
4734 
4735 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4736 {
4737 	device_unregister(&rbd_dev->dev);
4738 }
4739 
4740 /*
4741  * Get a unique rbd identifier for the given new rbd_dev, and add
4742  * the rbd_dev to the global list.
4743  */
4744 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4745 {
4746 	int new_dev_id;
4747 
4748 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4749 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4750 				    GFP_KERNEL);
4751 	if (new_dev_id < 0)
4752 		return new_dev_id;
4753 
4754 	rbd_dev->dev_id = new_dev_id;
4755 
4756 	spin_lock(&rbd_dev_list_lock);
4757 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4758 	spin_unlock(&rbd_dev_list_lock);
4759 
4760 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4761 
4762 	return 0;
4763 }
4764 
4765 /*
4766  * Remove an rbd_dev from the global list, and record that its
4767  * identifier is no longer in use.
4768  */
4769 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4770 {
4771 	spin_lock(&rbd_dev_list_lock);
4772 	list_del_init(&rbd_dev->node);
4773 	spin_unlock(&rbd_dev_list_lock);
4774 
4775 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4776 
4777 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4778 }
4779 
4780 /*
4781  * Skips over white space at *buf, and updates *buf to point to the
4782  * first found non-space character (if any). Returns the length of
4783  * the token (string of non-white space characters) found.  Note
4784  * that *buf must be terminated with '\0'.
4785  */
4786 static inline size_t next_token(const char **buf)
4787 {
4788         /*
4789         * These are the characters that produce nonzero for
4790         * isspace() in the "C" and "POSIX" locales.
4791         */
4792         const char *spaces = " \f\n\r\t\v";
4793 
4794         *buf += strspn(*buf, spaces);	/* Find start of token */
4795 
4796 	return strcspn(*buf, spaces);   /* Return token length */
4797 }
4798 
4799 /*
4800  * Finds the next token in *buf, dynamically allocates a buffer big
4801  * enough to hold a copy of it, and copies the token into the new
4802  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4803  * that a duplicate buffer is created even for a zero-length token.
4804  *
4805  * Returns a pointer to the newly-allocated duplicate, or a null
4806  * pointer if memory for the duplicate was not available.  If
4807  * the lenp argument is a non-null pointer, the length of the token
4808  * (not including the '\0') is returned in *lenp.
4809  *
4810  * If successful, the *buf pointer will be updated to point beyond
4811  * the end of the found token.
4812  *
4813  * Note: uses GFP_KERNEL for allocation.
4814  */
4815 static inline char *dup_token(const char **buf, size_t *lenp)
4816 {
4817 	char *dup;
4818 	size_t len;
4819 
4820 	len = next_token(buf);
4821 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4822 	if (!dup)
4823 		return NULL;
4824 	*(dup + len) = '\0';
4825 	*buf += len;
4826 
4827 	if (lenp)
4828 		*lenp = len;
4829 
4830 	return dup;
4831 }
4832 
4833 /*
4834  * Parse the options provided for an "rbd add" (i.e., rbd image
4835  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4836  * and the data written is passed here via a NUL-terminated buffer.
4837  * Returns 0 if successful or an error code otherwise.
4838  *
4839  * The information extracted from these options is recorded in
4840  * the other parameters which return dynamically-allocated
4841  * structures:
4842  *  ceph_opts
4843  *      The address of a pointer that will refer to a ceph options
4844  *      structure.  Caller must release the returned pointer using
4845  *      ceph_destroy_options() when it is no longer needed.
4846  *  rbd_opts
4847  *	Address of an rbd options pointer.  Fully initialized by
4848  *	this function; caller must release with kfree().
4849  *  spec
4850  *	Address of an rbd image specification pointer.  Fully
4851  *	initialized by this function based on parsed options.
4852  *	Caller must release with rbd_spec_put().
4853  *
4854  * The options passed take this form:
4855  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4856  * where:
4857  *  <mon_addrs>
4858  *      A comma-separated list of one or more monitor addresses.
4859  *      A monitor address is an ip address, optionally followed
4860  *      by a port number (separated by a colon).
4861  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4862  *  <options>
4863  *      A comma-separated list of ceph and/or rbd options.
4864  *  <pool_name>
4865  *      The name of the rados pool containing the rbd image.
4866  *  <image_name>
4867  *      The name of the image in that pool to map.
4868  *  <snap_id>
4869  *      An optional snapshot id.  If provided, the mapping will
4870  *      present data from the image at the time that snapshot was
4871  *      created.  The image head is used if no snapshot id is
4872  *      provided.  Snapshot mappings are always read-only.
4873  */
4874 static int rbd_add_parse_args(const char *buf,
4875 				struct ceph_options **ceph_opts,
4876 				struct rbd_options **opts,
4877 				struct rbd_spec **rbd_spec)
4878 {
4879 	size_t len;
4880 	char *options;
4881 	const char *mon_addrs;
4882 	char *snap_name;
4883 	size_t mon_addrs_size;
4884 	struct rbd_spec *spec = NULL;
4885 	struct rbd_options *rbd_opts = NULL;
4886 	struct ceph_options *copts;
4887 	int ret;
4888 
4889 	/* The first four tokens are required */
4890 
4891 	len = next_token(&buf);
4892 	if (!len) {
4893 		rbd_warn(NULL, "no monitor address(es) provided");
4894 		return -EINVAL;
4895 	}
4896 	mon_addrs = buf;
4897 	mon_addrs_size = len + 1;
4898 	buf += len;
4899 
4900 	ret = -EINVAL;
4901 	options = dup_token(&buf, NULL);
4902 	if (!options)
4903 		return -ENOMEM;
4904 	if (!*options) {
4905 		rbd_warn(NULL, "no options provided");
4906 		goto out_err;
4907 	}
4908 
4909 	spec = rbd_spec_alloc();
4910 	if (!spec)
4911 		goto out_mem;
4912 
4913 	spec->pool_name = dup_token(&buf, NULL);
4914 	if (!spec->pool_name)
4915 		goto out_mem;
4916 	if (!*spec->pool_name) {
4917 		rbd_warn(NULL, "no pool name provided");
4918 		goto out_err;
4919 	}
4920 
4921 	spec->image_name = dup_token(&buf, NULL);
4922 	if (!spec->image_name)
4923 		goto out_mem;
4924 	if (!*spec->image_name) {
4925 		rbd_warn(NULL, "no image name provided");
4926 		goto out_err;
4927 	}
4928 
4929 	/*
4930 	 * Snapshot name is optional; default is to use "-"
4931 	 * (indicating the head/no snapshot).
4932 	 */
4933 	len = next_token(&buf);
4934 	if (!len) {
4935 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4936 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4937 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4938 		ret = -ENAMETOOLONG;
4939 		goto out_err;
4940 	}
4941 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4942 	if (!snap_name)
4943 		goto out_mem;
4944 	*(snap_name + len) = '\0';
4945 	spec->snap_name = snap_name;
4946 
4947 	/* Initialize all rbd options to the defaults */
4948 
4949 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4950 	if (!rbd_opts)
4951 		goto out_mem;
4952 
4953 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4954 
4955 	copts = ceph_parse_options(options, mon_addrs,
4956 					mon_addrs + mon_addrs_size - 1,
4957 					parse_rbd_opts_token, rbd_opts);
4958 	if (IS_ERR(copts)) {
4959 		ret = PTR_ERR(copts);
4960 		goto out_err;
4961 	}
4962 	kfree(options);
4963 
4964 	*ceph_opts = copts;
4965 	*opts = rbd_opts;
4966 	*rbd_spec = spec;
4967 
4968 	return 0;
4969 out_mem:
4970 	ret = -ENOMEM;
4971 out_err:
4972 	kfree(rbd_opts);
4973 	rbd_spec_put(spec);
4974 	kfree(options);
4975 
4976 	return ret;
4977 }
4978 
4979 /*
4980  * Return pool id (>= 0) or a negative error code.
4981  */
4982 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4983 {
4984 	struct ceph_options *opts = rbdc->client->options;
4985 	u64 newest_epoch;
4986 	int tries = 0;
4987 	int ret;
4988 
4989 again:
4990 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4991 	if (ret == -ENOENT && tries++ < 1) {
4992 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4993 					       &newest_epoch);
4994 		if (ret < 0)
4995 			return ret;
4996 
4997 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4998 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4999 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5000 						     newest_epoch,
5001 						     opts->mount_timeout);
5002 			goto again;
5003 		} else {
5004 			/* the osdmap we have is new enough */
5005 			return -ENOENT;
5006 		}
5007 	}
5008 
5009 	return ret;
5010 }
5011 
5012 /*
5013  * An rbd format 2 image has a unique identifier, distinct from the
5014  * name given to it by the user.  Internally, that identifier is
5015  * what's used to specify the names of objects related to the image.
5016  *
5017  * A special "rbd id" object is used to map an rbd image name to its
5018  * id.  If that object doesn't exist, then there is no v2 rbd image
5019  * with the supplied name.
5020  *
5021  * This function will record the given rbd_dev's image_id field if
5022  * it can be determined, and in that case will return 0.  If any
5023  * errors occur a negative errno will be returned and the rbd_dev's
5024  * image_id field will be unchanged (and should be NULL).
5025  */
5026 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5027 {
5028 	int ret;
5029 	size_t size;
5030 	char *object_name;
5031 	void *response;
5032 	char *image_id;
5033 
5034 	/*
5035 	 * When probing a parent image, the image id is already
5036 	 * known (and the image name likely is not).  There's no
5037 	 * need to fetch the image id again in this case.  We
5038 	 * do still need to set the image format though.
5039 	 */
5040 	if (rbd_dev->spec->image_id) {
5041 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5042 
5043 		return 0;
5044 	}
5045 
5046 	/*
5047 	 * First, see if the format 2 image id file exists, and if
5048 	 * so, get the image's persistent id from it.
5049 	 */
5050 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5051 	object_name = kmalloc(size, GFP_NOIO);
5052 	if (!object_name)
5053 		return -ENOMEM;
5054 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5055 	dout("rbd id object name is %s\n", object_name);
5056 
5057 	/* Response will be an encoded string, which includes a length */
5058 
5059 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5060 	response = kzalloc(size, GFP_NOIO);
5061 	if (!response) {
5062 		ret = -ENOMEM;
5063 		goto out;
5064 	}
5065 
5066 	/* If it doesn't exist we'll assume it's a format 1 image */
5067 
5068 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5069 				"rbd", "get_id", NULL, 0,
5070 				response, RBD_IMAGE_ID_LEN_MAX);
5071 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5072 	if (ret == -ENOENT) {
5073 		image_id = kstrdup("", GFP_KERNEL);
5074 		ret = image_id ? 0 : -ENOMEM;
5075 		if (!ret)
5076 			rbd_dev->image_format = 1;
5077 	} else if (ret >= 0) {
5078 		void *p = response;
5079 
5080 		image_id = ceph_extract_encoded_string(&p, p + ret,
5081 						NULL, GFP_NOIO);
5082 		ret = PTR_ERR_OR_ZERO(image_id);
5083 		if (!ret)
5084 			rbd_dev->image_format = 2;
5085 	}
5086 
5087 	if (!ret) {
5088 		rbd_dev->spec->image_id = image_id;
5089 		dout("image_id is %s\n", image_id);
5090 	}
5091 out:
5092 	kfree(response);
5093 	kfree(object_name);
5094 
5095 	return ret;
5096 }
5097 
5098 /*
5099  * Undo whatever state changes are made by v1 or v2 header info
5100  * call.
5101  */
5102 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5103 {
5104 	struct rbd_image_header	*header;
5105 
5106 	rbd_dev_parent_put(rbd_dev);
5107 
5108 	/* Free dynamic fields from the header, then zero it out */
5109 
5110 	header = &rbd_dev->header;
5111 	ceph_put_snap_context(header->snapc);
5112 	kfree(header->snap_sizes);
5113 	kfree(header->snap_names);
5114 	kfree(header->object_prefix);
5115 	memset(header, 0, sizeof (*header));
5116 }
5117 
5118 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5119 {
5120 	int ret;
5121 
5122 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5123 	if (ret)
5124 		goto out_err;
5125 
5126 	/*
5127 	 * Get the and check features for the image.  Currently the
5128 	 * features are assumed to never change.
5129 	 */
5130 	ret = rbd_dev_v2_features(rbd_dev);
5131 	if (ret)
5132 		goto out_err;
5133 
5134 	/* If the image supports fancy striping, get its parameters */
5135 
5136 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5137 		ret = rbd_dev_v2_striping_info(rbd_dev);
5138 		if (ret < 0)
5139 			goto out_err;
5140 	}
5141 	/* No support for crypto and compression type format 2 images */
5142 
5143 	return 0;
5144 out_err:
5145 	rbd_dev->header.features = 0;
5146 	kfree(rbd_dev->header.object_prefix);
5147 	rbd_dev->header.object_prefix = NULL;
5148 
5149 	return ret;
5150 }
5151 
5152 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5153 {
5154 	struct rbd_device *parent = NULL;
5155 	struct rbd_spec *parent_spec;
5156 	struct rbd_client *rbdc;
5157 	int ret;
5158 
5159 	if (!rbd_dev->parent_spec)
5160 		return 0;
5161 	/*
5162 	 * We need to pass a reference to the client and the parent
5163 	 * spec when creating the parent rbd_dev.  Images related by
5164 	 * parent/child relationships always share both.
5165 	 */
5166 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5167 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
5168 
5169 	ret = -ENOMEM;
5170 	parent = rbd_dev_create(rbdc, parent_spec);
5171 	if (!parent)
5172 		goto out_err;
5173 
5174 	ret = rbd_dev_image_probe(parent, false);
5175 	if (ret < 0)
5176 		goto out_err;
5177 	rbd_dev->parent = parent;
5178 	atomic_set(&rbd_dev->parent_ref, 1);
5179 
5180 	return 0;
5181 out_err:
5182 	if (parent) {
5183 		rbd_dev_unparent(rbd_dev);
5184 		kfree(rbd_dev->header_name);
5185 		rbd_dev_destroy(parent);
5186 	} else {
5187 		rbd_put_client(rbdc);
5188 		rbd_spec_put(parent_spec);
5189 	}
5190 
5191 	return ret;
5192 }
5193 
5194 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5195 {
5196 	int ret;
5197 
5198 	/* Get an id and fill in device name. */
5199 
5200 	ret = rbd_dev_id_get(rbd_dev);
5201 	if (ret)
5202 		return ret;
5203 
5204 	BUILD_BUG_ON(DEV_NAME_LEN
5205 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5206 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5207 
5208 	/* Record our major and minor device numbers. */
5209 
5210 	if (!single_major) {
5211 		ret = register_blkdev(0, rbd_dev->name);
5212 		if (ret < 0)
5213 			goto err_out_id;
5214 
5215 		rbd_dev->major = ret;
5216 		rbd_dev->minor = 0;
5217 	} else {
5218 		rbd_dev->major = rbd_major;
5219 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5220 	}
5221 
5222 	/* Set up the blkdev mapping. */
5223 
5224 	ret = rbd_init_disk(rbd_dev);
5225 	if (ret)
5226 		goto err_out_blkdev;
5227 
5228 	ret = rbd_dev_mapping_set(rbd_dev);
5229 	if (ret)
5230 		goto err_out_disk;
5231 
5232 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5233 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5234 
5235 	ret = rbd_bus_add_dev(rbd_dev);
5236 	if (ret)
5237 		goto err_out_mapping;
5238 
5239 	/* Everything's ready.  Announce the disk to the world. */
5240 
5241 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5242 	add_disk(rbd_dev->disk);
5243 
5244 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5245 		(unsigned long long) rbd_dev->mapping.size);
5246 
5247 	return ret;
5248 
5249 err_out_mapping:
5250 	rbd_dev_mapping_clear(rbd_dev);
5251 err_out_disk:
5252 	rbd_free_disk(rbd_dev);
5253 err_out_blkdev:
5254 	if (!single_major)
5255 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5256 err_out_id:
5257 	rbd_dev_id_put(rbd_dev);
5258 	rbd_dev_mapping_clear(rbd_dev);
5259 
5260 	return ret;
5261 }
5262 
5263 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5264 {
5265 	struct rbd_spec *spec = rbd_dev->spec;
5266 	size_t size;
5267 
5268 	/* Record the header object name for this rbd image. */
5269 
5270 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5271 
5272 	if (rbd_dev->image_format == 1)
5273 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5274 	else
5275 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5276 
5277 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5278 	if (!rbd_dev->header_name)
5279 		return -ENOMEM;
5280 
5281 	if (rbd_dev->image_format == 1)
5282 		sprintf(rbd_dev->header_name, "%s%s",
5283 			spec->image_name, RBD_SUFFIX);
5284 	else
5285 		sprintf(rbd_dev->header_name, "%s%s",
5286 			RBD_HEADER_PREFIX, spec->image_id);
5287 	return 0;
5288 }
5289 
5290 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5291 {
5292 	rbd_dev_unprobe(rbd_dev);
5293 	kfree(rbd_dev->header_name);
5294 	rbd_dev->header_name = NULL;
5295 	rbd_dev->image_format = 0;
5296 	kfree(rbd_dev->spec->image_id);
5297 	rbd_dev->spec->image_id = NULL;
5298 
5299 	rbd_dev_destroy(rbd_dev);
5300 }
5301 
5302 /*
5303  * Probe for the existence of the header object for the given rbd
5304  * device.  If this image is the one being mapped (i.e., not a
5305  * parent), initiate a watch on its header object before using that
5306  * object to get detailed information about the rbd image.
5307  */
5308 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5309 {
5310 	int ret;
5311 
5312 	/*
5313 	 * Get the id from the image id object.  Unless there's an
5314 	 * error, rbd_dev->spec->image_id will be filled in with
5315 	 * a dynamically-allocated string, and rbd_dev->image_format
5316 	 * will be set to either 1 or 2.
5317 	 */
5318 	ret = rbd_dev_image_id(rbd_dev);
5319 	if (ret)
5320 		return ret;
5321 
5322 	ret = rbd_dev_header_name(rbd_dev);
5323 	if (ret)
5324 		goto err_out_format;
5325 
5326 	if (mapping) {
5327 		ret = rbd_dev_header_watch_sync(rbd_dev);
5328 		if (ret) {
5329 			if (ret == -ENOENT)
5330 				pr_info("image %s/%s does not exist\n",
5331 					rbd_dev->spec->pool_name,
5332 					rbd_dev->spec->image_name);
5333 			goto out_header_name;
5334 		}
5335 	}
5336 
5337 	ret = rbd_dev_header_info(rbd_dev);
5338 	if (ret)
5339 		goto err_out_watch;
5340 
5341 	/*
5342 	 * If this image is the one being mapped, we have pool name and
5343 	 * id, image name and id, and snap name - need to fill snap id.
5344 	 * Otherwise this is a parent image, identified by pool, image
5345 	 * and snap ids - need to fill in names for those ids.
5346 	 */
5347 	if (mapping)
5348 		ret = rbd_spec_fill_snap_id(rbd_dev);
5349 	else
5350 		ret = rbd_spec_fill_names(rbd_dev);
5351 	if (ret) {
5352 		if (ret == -ENOENT)
5353 			pr_info("snap %s/%s@%s does not exist\n",
5354 				rbd_dev->spec->pool_name,
5355 				rbd_dev->spec->image_name,
5356 				rbd_dev->spec->snap_name);
5357 		goto err_out_probe;
5358 	}
5359 
5360 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5361 		ret = rbd_dev_v2_parent_info(rbd_dev);
5362 		if (ret)
5363 			goto err_out_probe;
5364 
5365 		/*
5366 		 * Need to warn users if this image is the one being
5367 		 * mapped and has a parent.
5368 		 */
5369 		if (mapping && rbd_dev->parent_spec)
5370 			rbd_warn(rbd_dev,
5371 				 "WARNING: kernel layering is EXPERIMENTAL!");
5372 	}
5373 
5374 	ret = rbd_dev_probe_parent(rbd_dev);
5375 	if (ret)
5376 		goto err_out_probe;
5377 
5378 	dout("discovered format %u image, header name is %s\n",
5379 		rbd_dev->image_format, rbd_dev->header_name);
5380 	return 0;
5381 
5382 err_out_probe:
5383 	rbd_dev_unprobe(rbd_dev);
5384 err_out_watch:
5385 	if (mapping)
5386 		rbd_dev_header_unwatch_sync(rbd_dev);
5387 out_header_name:
5388 	kfree(rbd_dev->header_name);
5389 	rbd_dev->header_name = NULL;
5390 err_out_format:
5391 	rbd_dev->image_format = 0;
5392 	kfree(rbd_dev->spec->image_id);
5393 	rbd_dev->spec->image_id = NULL;
5394 	return ret;
5395 }
5396 
5397 static ssize_t do_rbd_add(struct bus_type *bus,
5398 			  const char *buf,
5399 			  size_t count)
5400 {
5401 	struct rbd_device *rbd_dev = NULL;
5402 	struct ceph_options *ceph_opts = NULL;
5403 	struct rbd_options *rbd_opts = NULL;
5404 	struct rbd_spec *spec = NULL;
5405 	struct rbd_client *rbdc;
5406 	bool read_only;
5407 	int rc = -ENOMEM;
5408 
5409 	if (!try_module_get(THIS_MODULE))
5410 		return -ENODEV;
5411 
5412 	/* parse add command */
5413 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5414 	if (rc < 0)
5415 		goto err_out_module;
5416 	read_only = rbd_opts->read_only;
5417 	kfree(rbd_opts);
5418 	rbd_opts = NULL;	/* done with this */
5419 
5420 	rbdc = rbd_get_client(ceph_opts);
5421 	if (IS_ERR(rbdc)) {
5422 		rc = PTR_ERR(rbdc);
5423 		goto err_out_args;
5424 	}
5425 
5426 	/* pick the pool */
5427 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5428 	if (rc < 0) {
5429 		if (rc == -ENOENT)
5430 			pr_info("pool %s does not exist\n", spec->pool_name);
5431 		goto err_out_client;
5432 	}
5433 	spec->pool_id = (u64)rc;
5434 
5435 	/* The ceph file layout needs to fit pool id in 32 bits */
5436 
5437 	if (spec->pool_id > (u64)U32_MAX) {
5438 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5439 				(unsigned long long)spec->pool_id, U32_MAX);
5440 		rc = -EIO;
5441 		goto err_out_client;
5442 	}
5443 
5444 	rbd_dev = rbd_dev_create(rbdc, spec);
5445 	if (!rbd_dev)
5446 		goto err_out_client;
5447 	rbdc = NULL;		/* rbd_dev now owns this */
5448 	spec = NULL;		/* rbd_dev now owns this */
5449 
5450 	rc = rbd_dev_image_probe(rbd_dev, true);
5451 	if (rc < 0)
5452 		goto err_out_rbd_dev;
5453 
5454 	/* If we are mapping a snapshot it must be marked read-only */
5455 
5456 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5457 		read_only = true;
5458 	rbd_dev->mapping.read_only = read_only;
5459 
5460 	rc = rbd_dev_device_setup(rbd_dev);
5461 	if (rc) {
5462 		/*
5463 		 * rbd_dev_header_unwatch_sync() can't be moved into
5464 		 * rbd_dev_image_release() without refactoring, see
5465 		 * commit 1f3ef78861ac.
5466 		 */
5467 		rbd_dev_header_unwatch_sync(rbd_dev);
5468 		rbd_dev_image_release(rbd_dev);
5469 		goto err_out_module;
5470 	}
5471 
5472 	return count;
5473 
5474 err_out_rbd_dev:
5475 	rbd_dev_destroy(rbd_dev);
5476 err_out_client:
5477 	rbd_put_client(rbdc);
5478 err_out_args:
5479 	rbd_spec_put(spec);
5480 err_out_module:
5481 	module_put(THIS_MODULE);
5482 
5483 	dout("Error adding device %s\n", buf);
5484 
5485 	return (ssize_t)rc;
5486 }
5487 
5488 static ssize_t rbd_add(struct bus_type *bus,
5489 		       const char *buf,
5490 		       size_t count)
5491 {
5492 	if (single_major)
5493 		return -EINVAL;
5494 
5495 	return do_rbd_add(bus, buf, count);
5496 }
5497 
5498 static ssize_t rbd_add_single_major(struct bus_type *bus,
5499 				    const char *buf,
5500 				    size_t count)
5501 {
5502 	return do_rbd_add(bus, buf, count);
5503 }
5504 
5505 static void rbd_dev_device_release(struct device *dev)
5506 {
5507 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5508 
5509 	rbd_free_disk(rbd_dev);
5510 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5511 	rbd_dev_mapping_clear(rbd_dev);
5512 	if (!single_major)
5513 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5514 	rbd_dev_id_put(rbd_dev);
5515 	rbd_dev_mapping_clear(rbd_dev);
5516 }
5517 
5518 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5519 {
5520 	while (rbd_dev->parent) {
5521 		struct rbd_device *first = rbd_dev;
5522 		struct rbd_device *second = first->parent;
5523 		struct rbd_device *third;
5524 
5525 		/*
5526 		 * Follow to the parent with no grandparent and
5527 		 * remove it.
5528 		 */
5529 		while (second && (third = second->parent)) {
5530 			first = second;
5531 			second = third;
5532 		}
5533 		rbd_assert(second);
5534 		rbd_dev_image_release(second);
5535 		first->parent = NULL;
5536 		first->parent_overlap = 0;
5537 
5538 		rbd_assert(first->parent_spec);
5539 		rbd_spec_put(first->parent_spec);
5540 		first->parent_spec = NULL;
5541 	}
5542 }
5543 
5544 static ssize_t do_rbd_remove(struct bus_type *bus,
5545 			     const char *buf,
5546 			     size_t count)
5547 {
5548 	struct rbd_device *rbd_dev = NULL;
5549 	struct list_head *tmp;
5550 	int dev_id;
5551 	unsigned long ul;
5552 	bool already = false;
5553 	int ret;
5554 
5555 	ret = kstrtoul(buf, 10, &ul);
5556 	if (ret)
5557 		return ret;
5558 
5559 	/* convert to int; abort if we lost anything in the conversion */
5560 	dev_id = (int)ul;
5561 	if (dev_id != ul)
5562 		return -EINVAL;
5563 
5564 	ret = -ENOENT;
5565 	spin_lock(&rbd_dev_list_lock);
5566 	list_for_each(tmp, &rbd_dev_list) {
5567 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5568 		if (rbd_dev->dev_id == dev_id) {
5569 			ret = 0;
5570 			break;
5571 		}
5572 	}
5573 	if (!ret) {
5574 		spin_lock_irq(&rbd_dev->lock);
5575 		if (rbd_dev->open_count)
5576 			ret = -EBUSY;
5577 		else
5578 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5579 							&rbd_dev->flags);
5580 		spin_unlock_irq(&rbd_dev->lock);
5581 	}
5582 	spin_unlock(&rbd_dev_list_lock);
5583 	if (ret < 0 || already)
5584 		return ret;
5585 
5586 	rbd_dev_header_unwatch_sync(rbd_dev);
5587 	/*
5588 	 * flush remaining watch callbacks - these must be complete
5589 	 * before the osd_client is shutdown
5590 	 */
5591 	dout("%s: flushing notifies", __func__);
5592 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5593 
5594 	/*
5595 	 * Don't free anything from rbd_dev->disk until after all
5596 	 * notifies are completely processed. Otherwise
5597 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5598 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5599 	 */
5600 	rbd_bus_del_dev(rbd_dev);
5601 	rbd_dev_image_release(rbd_dev);
5602 	module_put(THIS_MODULE);
5603 
5604 	return count;
5605 }
5606 
5607 static ssize_t rbd_remove(struct bus_type *bus,
5608 			  const char *buf,
5609 			  size_t count)
5610 {
5611 	if (single_major)
5612 		return -EINVAL;
5613 
5614 	return do_rbd_remove(bus, buf, count);
5615 }
5616 
5617 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5618 				       const char *buf,
5619 				       size_t count)
5620 {
5621 	return do_rbd_remove(bus, buf, count);
5622 }
5623 
5624 /*
5625  * create control files in sysfs
5626  * /sys/bus/rbd/...
5627  */
5628 static int rbd_sysfs_init(void)
5629 {
5630 	int ret;
5631 
5632 	ret = device_register(&rbd_root_dev);
5633 	if (ret < 0)
5634 		return ret;
5635 
5636 	ret = bus_register(&rbd_bus_type);
5637 	if (ret < 0)
5638 		device_unregister(&rbd_root_dev);
5639 
5640 	return ret;
5641 }
5642 
5643 static void rbd_sysfs_cleanup(void)
5644 {
5645 	bus_unregister(&rbd_bus_type);
5646 	device_unregister(&rbd_root_dev);
5647 }
5648 
5649 static int rbd_slab_init(void)
5650 {
5651 	rbd_assert(!rbd_img_request_cache);
5652 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5653 					sizeof (struct rbd_img_request),
5654 					__alignof__(struct rbd_img_request),
5655 					0, NULL);
5656 	if (!rbd_img_request_cache)
5657 		return -ENOMEM;
5658 
5659 	rbd_assert(!rbd_obj_request_cache);
5660 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5661 					sizeof (struct rbd_obj_request),
5662 					__alignof__(struct rbd_obj_request),
5663 					0, NULL);
5664 	if (!rbd_obj_request_cache)
5665 		goto out_err;
5666 
5667 	rbd_assert(!rbd_segment_name_cache);
5668 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5669 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5670 	if (rbd_segment_name_cache)
5671 		return 0;
5672 out_err:
5673 	if (rbd_obj_request_cache) {
5674 		kmem_cache_destroy(rbd_obj_request_cache);
5675 		rbd_obj_request_cache = NULL;
5676 	}
5677 
5678 	kmem_cache_destroy(rbd_img_request_cache);
5679 	rbd_img_request_cache = NULL;
5680 
5681 	return -ENOMEM;
5682 }
5683 
5684 static void rbd_slab_exit(void)
5685 {
5686 	rbd_assert(rbd_segment_name_cache);
5687 	kmem_cache_destroy(rbd_segment_name_cache);
5688 	rbd_segment_name_cache = NULL;
5689 
5690 	rbd_assert(rbd_obj_request_cache);
5691 	kmem_cache_destroy(rbd_obj_request_cache);
5692 	rbd_obj_request_cache = NULL;
5693 
5694 	rbd_assert(rbd_img_request_cache);
5695 	kmem_cache_destroy(rbd_img_request_cache);
5696 	rbd_img_request_cache = NULL;
5697 }
5698 
5699 static int __init rbd_init(void)
5700 {
5701 	int rc;
5702 
5703 	if (!libceph_compatible(NULL)) {
5704 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5705 		return -EINVAL;
5706 	}
5707 
5708 	rc = rbd_slab_init();
5709 	if (rc)
5710 		return rc;
5711 
5712 	/*
5713 	 * The number of active work items is limited by the number of
5714 	 * rbd devices * queue depth, so leave @max_active at default.
5715 	 */
5716 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5717 	if (!rbd_wq) {
5718 		rc = -ENOMEM;
5719 		goto err_out_slab;
5720 	}
5721 
5722 	if (single_major) {
5723 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5724 		if (rbd_major < 0) {
5725 			rc = rbd_major;
5726 			goto err_out_wq;
5727 		}
5728 	}
5729 
5730 	rc = rbd_sysfs_init();
5731 	if (rc)
5732 		goto err_out_blkdev;
5733 
5734 	if (single_major)
5735 		pr_info("loaded (major %d)\n", rbd_major);
5736 	else
5737 		pr_info("loaded\n");
5738 
5739 	return 0;
5740 
5741 err_out_blkdev:
5742 	if (single_major)
5743 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5744 err_out_wq:
5745 	destroy_workqueue(rbd_wq);
5746 err_out_slab:
5747 	rbd_slab_exit();
5748 	return rc;
5749 }
5750 
5751 static void __exit rbd_exit(void)
5752 {
5753 	ida_destroy(&rbd_dev_id_ida);
5754 	rbd_sysfs_cleanup();
5755 	if (single_major)
5756 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5757 	destroy_workqueue(rbd_wq);
5758 	rbd_slab_exit();
5759 }
5760 
5761 module_init(rbd_init);
5762 module_exit(rbd_exit);
5763 
5764 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5765 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5766 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5767 /* following authorship retained from original osdblk.c */
5768 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5769 
5770 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5771 MODULE_LICENSE("GPL");
5772