1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/blk-mq.h> 42 #include <linux/fs.h> 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/idr.h> 46 #include <linux/workqueue.h> 47 48 #include "rbd_types.h" 49 50 #define RBD_DEBUG /* Activate rbd_assert() calls */ 51 52 /* 53 * The basic unit of block I/O is a sector. It is interpreted in a 54 * number of contexts in Linux (blk, bio, genhd), but the default is 55 * universally 512 bytes. These symbols are just slightly more 56 * meaningful than the bare numbers they represent. 57 */ 58 #define SECTOR_SHIFT 9 59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 60 61 /* 62 * Increment the given counter and return its updated value. 63 * If the counter is already 0 it will not be incremented. 64 * If the counter is already at its maximum value returns 65 * -EINVAL without updating it. 66 */ 67 static int atomic_inc_return_safe(atomic_t *v) 68 { 69 unsigned int counter; 70 71 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 72 if (counter <= (unsigned int)INT_MAX) 73 return (int)counter; 74 75 atomic_dec(v); 76 77 return -EINVAL; 78 } 79 80 /* Decrement the counter. Return the resulting value, or -EINVAL */ 81 static int atomic_dec_return_safe(atomic_t *v) 82 { 83 int counter; 84 85 counter = atomic_dec_return(v); 86 if (counter >= 0) 87 return counter; 88 89 atomic_inc(v); 90 91 return -EINVAL; 92 } 93 94 #define RBD_DRV_NAME "rbd" 95 96 #define RBD_MINORS_PER_MAJOR 256 97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 98 99 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 100 #define RBD_MAX_SNAP_NAME_LEN \ 101 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 102 103 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 104 105 #define RBD_SNAP_HEAD_NAME "-" 106 107 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 108 109 /* This allows a single page to hold an image name sent by OSD */ 110 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 111 #define RBD_IMAGE_ID_LEN_MAX 64 112 113 #define RBD_OBJ_PREFIX_LEN_MAX 64 114 115 /* Feature bits */ 116 117 #define RBD_FEATURE_LAYERING (1<<0) 118 #define RBD_FEATURE_STRIPINGV2 (1<<1) 119 #define RBD_FEATURES_ALL \ 120 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 121 122 /* Features supported by this (client software) implementation. */ 123 124 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 125 126 /* 127 * An RBD device name will be "rbd#", where the "rbd" comes from 128 * RBD_DRV_NAME above, and # is a unique integer identifier. 129 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 130 * enough to hold all possible device names. 131 */ 132 #define DEV_NAME_LEN 32 133 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 134 135 /* 136 * block device image metadata (in-memory version) 137 */ 138 struct rbd_image_header { 139 /* These six fields never change for a given rbd image */ 140 char *object_prefix; 141 __u8 obj_order; 142 __u8 crypt_type; 143 __u8 comp_type; 144 u64 stripe_unit; 145 u64 stripe_count; 146 u64 features; /* Might be changeable someday? */ 147 148 /* The remaining fields need to be updated occasionally */ 149 u64 image_size; 150 struct ceph_snap_context *snapc; 151 char *snap_names; /* format 1 only */ 152 u64 *snap_sizes; /* format 1 only */ 153 }; 154 155 /* 156 * An rbd image specification. 157 * 158 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 159 * identify an image. Each rbd_dev structure includes a pointer to 160 * an rbd_spec structure that encapsulates this identity. 161 * 162 * Each of the id's in an rbd_spec has an associated name. For a 163 * user-mapped image, the names are supplied and the id's associated 164 * with them are looked up. For a layered image, a parent image is 165 * defined by the tuple, and the names are looked up. 166 * 167 * An rbd_dev structure contains a parent_spec pointer which is 168 * non-null if the image it represents is a child in a layered 169 * image. This pointer will refer to the rbd_spec structure used 170 * by the parent rbd_dev for its own identity (i.e., the structure 171 * is shared between the parent and child). 172 * 173 * Since these structures are populated once, during the discovery 174 * phase of image construction, they are effectively immutable so 175 * we make no effort to synchronize access to them. 176 * 177 * Note that code herein does not assume the image name is known (it 178 * could be a null pointer). 179 */ 180 struct rbd_spec { 181 u64 pool_id; 182 const char *pool_name; 183 184 const char *image_id; 185 const char *image_name; 186 187 u64 snap_id; 188 const char *snap_name; 189 190 struct kref kref; 191 }; 192 193 /* 194 * an instance of the client. multiple devices may share an rbd client. 195 */ 196 struct rbd_client { 197 struct ceph_client *client; 198 struct kref kref; 199 struct list_head node; 200 }; 201 202 struct rbd_img_request; 203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 204 205 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 206 207 struct rbd_obj_request; 208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 209 210 enum obj_request_type { 211 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 212 }; 213 214 enum obj_operation_type { 215 OBJ_OP_WRITE, 216 OBJ_OP_READ, 217 OBJ_OP_DISCARD, 218 }; 219 220 enum obj_req_flags { 221 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 222 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 223 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 224 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 225 }; 226 227 struct rbd_obj_request { 228 const char *object_name; 229 u64 offset; /* object start byte */ 230 u64 length; /* bytes from offset */ 231 unsigned long flags; 232 233 /* 234 * An object request associated with an image will have its 235 * img_data flag set; a standalone object request will not. 236 * 237 * A standalone object request will have which == BAD_WHICH 238 * and a null obj_request pointer. 239 * 240 * An object request initiated in support of a layered image 241 * object (to check for its existence before a write) will 242 * have which == BAD_WHICH and a non-null obj_request pointer. 243 * 244 * Finally, an object request for rbd image data will have 245 * which != BAD_WHICH, and will have a non-null img_request 246 * pointer. The value of which will be in the range 247 * 0..(img_request->obj_request_count-1). 248 */ 249 union { 250 struct rbd_obj_request *obj_request; /* STAT op */ 251 struct { 252 struct rbd_img_request *img_request; 253 u64 img_offset; 254 /* links for img_request->obj_requests list */ 255 struct list_head links; 256 }; 257 }; 258 u32 which; /* posn image request list */ 259 260 enum obj_request_type type; 261 union { 262 struct bio *bio_list; 263 struct { 264 struct page **pages; 265 u32 page_count; 266 }; 267 }; 268 struct page **copyup_pages; 269 u32 copyup_page_count; 270 271 struct ceph_osd_request *osd_req; 272 273 u64 xferred; /* bytes transferred */ 274 int result; 275 276 rbd_obj_callback_t callback; 277 struct completion completion; 278 279 struct kref kref; 280 }; 281 282 enum img_req_flags { 283 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 284 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 285 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 286 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 287 }; 288 289 struct rbd_img_request { 290 struct rbd_device *rbd_dev; 291 u64 offset; /* starting image byte offset */ 292 u64 length; /* byte count from offset */ 293 unsigned long flags; 294 union { 295 u64 snap_id; /* for reads */ 296 struct ceph_snap_context *snapc; /* for writes */ 297 }; 298 union { 299 struct request *rq; /* block request */ 300 struct rbd_obj_request *obj_request; /* obj req initiator */ 301 }; 302 struct page **copyup_pages; 303 u32 copyup_page_count; 304 spinlock_t completion_lock;/* protects next_completion */ 305 u32 next_completion; 306 rbd_img_callback_t callback; 307 u64 xferred;/* aggregate bytes transferred */ 308 int result; /* first nonzero obj_request result */ 309 310 u32 obj_request_count; 311 struct list_head obj_requests; /* rbd_obj_request structs */ 312 313 struct kref kref; 314 }; 315 316 #define for_each_obj_request(ireq, oreq) \ 317 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 318 #define for_each_obj_request_from(ireq, oreq) \ 319 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 320 #define for_each_obj_request_safe(ireq, oreq, n) \ 321 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 322 323 struct rbd_mapping { 324 u64 size; 325 u64 features; 326 bool read_only; 327 }; 328 329 /* 330 * a single device 331 */ 332 struct rbd_device { 333 int dev_id; /* blkdev unique id */ 334 335 int major; /* blkdev assigned major */ 336 int minor; 337 struct gendisk *disk; /* blkdev's gendisk and rq */ 338 339 u32 image_format; /* Either 1 or 2 */ 340 struct rbd_client *rbd_client; 341 342 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 343 344 spinlock_t lock; /* queue, flags, open_count */ 345 346 struct rbd_image_header header; 347 unsigned long flags; /* possibly lock protected */ 348 struct rbd_spec *spec; 349 350 char *header_name; 351 352 struct ceph_file_layout layout; 353 354 struct ceph_osd_event *watch_event; 355 struct rbd_obj_request *watch_request; 356 357 struct rbd_spec *parent_spec; 358 u64 parent_overlap; 359 atomic_t parent_ref; 360 struct rbd_device *parent; 361 362 /* Block layer tags. */ 363 struct blk_mq_tag_set tag_set; 364 365 /* protects updating the header */ 366 struct rw_semaphore header_rwsem; 367 368 struct rbd_mapping mapping; 369 370 struct list_head node; 371 372 /* sysfs related */ 373 struct device dev; 374 unsigned long open_count; /* protected by lock */ 375 }; 376 377 /* 378 * Flag bits for rbd_dev->flags. If atomicity is required, 379 * rbd_dev->lock is used to protect access. 380 * 381 * Currently, only the "removing" flag (which is coupled with the 382 * "open_count" field) requires atomic access. 383 */ 384 enum rbd_dev_flags { 385 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 386 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 387 }; 388 389 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 390 391 static LIST_HEAD(rbd_dev_list); /* devices */ 392 static DEFINE_SPINLOCK(rbd_dev_list_lock); 393 394 static LIST_HEAD(rbd_client_list); /* clients */ 395 static DEFINE_SPINLOCK(rbd_client_list_lock); 396 397 /* Slab caches for frequently-allocated structures */ 398 399 static struct kmem_cache *rbd_img_request_cache; 400 static struct kmem_cache *rbd_obj_request_cache; 401 static struct kmem_cache *rbd_segment_name_cache; 402 403 static int rbd_major; 404 static DEFINE_IDA(rbd_dev_id_ida); 405 406 static struct workqueue_struct *rbd_wq; 407 408 /* 409 * Default to false for now, as single-major requires >= 0.75 version of 410 * userspace rbd utility. 411 */ 412 static bool single_major = false; 413 module_param(single_major, bool, S_IRUGO); 414 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 415 416 static int rbd_img_request_submit(struct rbd_img_request *img_request); 417 418 static void rbd_dev_device_release(struct device *dev); 419 420 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 421 size_t count); 422 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 423 size_t count); 424 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 425 size_t count); 426 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 427 size_t count); 428 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping); 429 static void rbd_spec_put(struct rbd_spec *spec); 430 431 static int rbd_dev_id_to_minor(int dev_id) 432 { 433 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 434 } 435 436 static int minor_to_rbd_dev_id(int minor) 437 { 438 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 439 } 440 441 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 442 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 443 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 444 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 445 446 static struct attribute *rbd_bus_attrs[] = { 447 &bus_attr_add.attr, 448 &bus_attr_remove.attr, 449 &bus_attr_add_single_major.attr, 450 &bus_attr_remove_single_major.attr, 451 NULL, 452 }; 453 454 static umode_t rbd_bus_is_visible(struct kobject *kobj, 455 struct attribute *attr, int index) 456 { 457 if (!single_major && 458 (attr == &bus_attr_add_single_major.attr || 459 attr == &bus_attr_remove_single_major.attr)) 460 return 0; 461 462 return attr->mode; 463 } 464 465 static const struct attribute_group rbd_bus_group = { 466 .attrs = rbd_bus_attrs, 467 .is_visible = rbd_bus_is_visible, 468 }; 469 __ATTRIBUTE_GROUPS(rbd_bus); 470 471 static struct bus_type rbd_bus_type = { 472 .name = "rbd", 473 .bus_groups = rbd_bus_groups, 474 }; 475 476 static void rbd_root_dev_release(struct device *dev) 477 { 478 } 479 480 static struct device rbd_root_dev = { 481 .init_name = "rbd", 482 .release = rbd_root_dev_release, 483 }; 484 485 static __printf(2, 3) 486 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 487 { 488 struct va_format vaf; 489 va_list args; 490 491 va_start(args, fmt); 492 vaf.fmt = fmt; 493 vaf.va = &args; 494 495 if (!rbd_dev) 496 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 497 else if (rbd_dev->disk) 498 printk(KERN_WARNING "%s: %s: %pV\n", 499 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 500 else if (rbd_dev->spec && rbd_dev->spec->image_name) 501 printk(KERN_WARNING "%s: image %s: %pV\n", 502 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 503 else if (rbd_dev->spec && rbd_dev->spec->image_id) 504 printk(KERN_WARNING "%s: id %s: %pV\n", 505 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 506 else /* punt */ 507 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 508 RBD_DRV_NAME, rbd_dev, &vaf); 509 va_end(args); 510 } 511 512 #ifdef RBD_DEBUG 513 #define rbd_assert(expr) \ 514 if (unlikely(!(expr))) { \ 515 printk(KERN_ERR "\nAssertion failure in %s() " \ 516 "at line %d:\n\n" \ 517 "\trbd_assert(%s);\n\n", \ 518 __func__, __LINE__, #expr); \ 519 BUG(); \ 520 } 521 #else /* !RBD_DEBUG */ 522 # define rbd_assert(expr) ((void) 0) 523 #endif /* !RBD_DEBUG */ 524 525 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 526 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 527 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 528 529 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 530 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 531 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 532 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 533 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 534 u64 snap_id); 535 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 536 u8 *order, u64 *snap_size); 537 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 538 u64 *snap_features); 539 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 540 541 static int rbd_open(struct block_device *bdev, fmode_t mode) 542 { 543 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 544 bool removing = false; 545 546 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 547 return -EROFS; 548 549 spin_lock_irq(&rbd_dev->lock); 550 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 551 removing = true; 552 else 553 rbd_dev->open_count++; 554 spin_unlock_irq(&rbd_dev->lock); 555 if (removing) 556 return -ENOENT; 557 558 (void) get_device(&rbd_dev->dev); 559 560 return 0; 561 } 562 563 static void rbd_release(struct gendisk *disk, fmode_t mode) 564 { 565 struct rbd_device *rbd_dev = disk->private_data; 566 unsigned long open_count_before; 567 568 spin_lock_irq(&rbd_dev->lock); 569 open_count_before = rbd_dev->open_count--; 570 spin_unlock_irq(&rbd_dev->lock); 571 rbd_assert(open_count_before > 0); 572 573 put_device(&rbd_dev->dev); 574 } 575 576 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 577 { 578 int ret = 0; 579 int val; 580 bool ro; 581 bool ro_changed = false; 582 583 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 584 if (get_user(val, (int __user *)(arg))) 585 return -EFAULT; 586 587 ro = val ? true : false; 588 /* Snapshot doesn't allow to write*/ 589 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 590 return -EROFS; 591 592 spin_lock_irq(&rbd_dev->lock); 593 /* prevent others open this device */ 594 if (rbd_dev->open_count > 1) { 595 ret = -EBUSY; 596 goto out; 597 } 598 599 if (rbd_dev->mapping.read_only != ro) { 600 rbd_dev->mapping.read_only = ro; 601 ro_changed = true; 602 } 603 604 out: 605 spin_unlock_irq(&rbd_dev->lock); 606 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 607 if (ret == 0 && ro_changed) 608 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 609 610 return ret; 611 } 612 613 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 614 unsigned int cmd, unsigned long arg) 615 { 616 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 617 int ret = 0; 618 619 switch (cmd) { 620 case BLKROSET: 621 ret = rbd_ioctl_set_ro(rbd_dev, arg); 622 break; 623 default: 624 ret = -ENOTTY; 625 } 626 627 return ret; 628 } 629 630 #ifdef CONFIG_COMPAT 631 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 632 unsigned int cmd, unsigned long arg) 633 { 634 return rbd_ioctl(bdev, mode, cmd, arg); 635 } 636 #endif /* CONFIG_COMPAT */ 637 638 static const struct block_device_operations rbd_bd_ops = { 639 .owner = THIS_MODULE, 640 .open = rbd_open, 641 .release = rbd_release, 642 .ioctl = rbd_ioctl, 643 #ifdef CONFIG_COMPAT 644 .compat_ioctl = rbd_compat_ioctl, 645 #endif 646 }; 647 648 /* 649 * Initialize an rbd client instance. Success or not, this function 650 * consumes ceph_opts. Caller holds client_mutex. 651 */ 652 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 653 { 654 struct rbd_client *rbdc; 655 int ret = -ENOMEM; 656 657 dout("%s:\n", __func__); 658 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 659 if (!rbdc) 660 goto out_opt; 661 662 kref_init(&rbdc->kref); 663 INIT_LIST_HEAD(&rbdc->node); 664 665 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 666 if (IS_ERR(rbdc->client)) 667 goto out_rbdc; 668 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 669 670 ret = ceph_open_session(rbdc->client); 671 if (ret < 0) 672 goto out_client; 673 674 spin_lock(&rbd_client_list_lock); 675 list_add_tail(&rbdc->node, &rbd_client_list); 676 spin_unlock(&rbd_client_list_lock); 677 678 dout("%s: rbdc %p\n", __func__, rbdc); 679 680 return rbdc; 681 out_client: 682 ceph_destroy_client(rbdc->client); 683 out_rbdc: 684 kfree(rbdc); 685 out_opt: 686 if (ceph_opts) 687 ceph_destroy_options(ceph_opts); 688 dout("%s: error %d\n", __func__, ret); 689 690 return ERR_PTR(ret); 691 } 692 693 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 694 { 695 kref_get(&rbdc->kref); 696 697 return rbdc; 698 } 699 700 /* 701 * Find a ceph client with specific addr and configuration. If 702 * found, bump its reference count. 703 */ 704 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 705 { 706 struct rbd_client *client_node; 707 bool found = false; 708 709 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 710 return NULL; 711 712 spin_lock(&rbd_client_list_lock); 713 list_for_each_entry(client_node, &rbd_client_list, node) { 714 if (!ceph_compare_options(ceph_opts, client_node->client)) { 715 __rbd_get_client(client_node); 716 717 found = true; 718 break; 719 } 720 } 721 spin_unlock(&rbd_client_list_lock); 722 723 return found ? client_node : NULL; 724 } 725 726 /* 727 * mount options 728 */ 729 enum { 730 Opt_last_int, 731 /* int args above */ 732 Opt_last_string, 733 /* string args above */ 734 Opt_read_only, 735 Opt_read_write, 736 /* Boolean args above */ 737 Opt_last_bool, 738 }; 739 740 static match_table_t rbd_opts_tokens = { 741 /* int args above */ 742 /* string args above */ 743 {Opt_read_only, "read_only"}, 744 {Opt_read_only, "ro"}, /* Alternate spelling */ 745 {Opt_read_write, "read_write"}, 746 {Opt_read_write, "rw"}, /* Alternate spelling */ 747 /* Boolean args above */ 748 {-1, NULL} 749 }; 750 751 struct rbd_options { 752 bool read_only; 753 }; 754 755 #define RBD_READ_ONLY_DEFAULT false 756 757 static int parse_rbd_opts_token(char *c, void *private) 758 { 759 struct rbd_options *rbd_opts = private; 760 substring_t argstr[MAX_OPT_ARGS]; 761 int token, intval, ret; 762 763 token = match_token(c, rbd_opts_tokens, argstr); 764 if (token < 0) 765 return -EINVAL; 766 767 if (token < Opt_last_int) { 768 ret = match_int(&argstr[0], &intval); 769 if (ret < 0) { 770 pr_err("bad mount option arg (not int) " 771 "at '%s'\n", c); 772 return ret; 773 } 774 dout("got int token %d val %d\n", token, intval); 775 } else if (token > Opt_last_int && token < Opt_last_string) { 776 dout("got string token %d val %s\n", token, 777 argstr[0].from); 778 } else if (token > Opt_last_string && token < Opt_last_bool) { 779 dout("got Boolean token %d\n", token); 780 } else { 781 dout("got token %d\n", token); 782 } 783 784 switch (token) { 785 case Opt_read_only: 786 rbd_opts->read_only = true; 787 break; 788 case Opt_read_write: 789 rbd_opts->read_only = false; 790 break; 791 default: 792 rbd_assert(false); 793 break; 794 } 795 return 0; 796 } 797 798 static char* obj_op_name(enum obj_operation_type op_type) 799 { 800 switch (op_type) { 801 case OBJ_OP_READ: 802 return "read"; 803 case OBJ_OP_WRITE: 804 return "write"; 805 case OBJ_OP_DISCARD: 806 return "discard"; 807 default: 808 return "???"; 809 } 810 } 811 812 /* 813 * Get a ceph client with specific addr and configuration, if one does 814 * not exist create it. Either way, ceph_opts is consumed by this 815 * function. 816 */ 817 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 818 { 819 struct rbd_client *rbdc; 820 821 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 822 rbdc = rbd_client_find(ceph_opts); 823 if (rbdc) /* using an existing client */ 824 ceph_destroy_options(ceph_opts); 825 else 826 rbdc = rbd_client_create(ceph_opts); 827 mutex_unlock(&client_mutex); 828 829 return rbdc; 830 } 831 832 /* 833 * Destroy ceph client 834 * 835 * Caller must hold rbd_client_list_lock. 836 */ 837 static void rbd_client_release(struct kref *kref) 838 { 839 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 840 841 dout("%s: rbdc %p\n", __func__, rbdc); 842 spin_lock(&rbd_client_list_lock); 843 list_del(&rbdc->node); 844 spin_unlock(&rbd_client_list_lock); 845 846 ceph_destroy_client(rbdc->client); 847 kfree(rbdc); 848 } 849 850 /* 851 * Drop reference to ceph client node. If it's not referenced anymore, release 852 * it. 853 */ 854 static void rbd_put_client(struct rbd_client *rbdc) 855 { 856 if (rbdc) 857 kref_put(&rbdc->kref, rbd_client_release); 858 } 859 860 static bool rbd_image_format_valid(u32 image_format) 861 { 862 return image_format == 1 || image_format == 2; 863 } 864 865 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 866 { 867 size_t size; 868 u32 snap_count; 869 870 /* The header has to start with the magic rbd header text */ 871 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 872 return false; 873 874 /* The bio layer requires at least sector-sized I/O */ 875 876 if (ondisk->options.order < SECTOR_SHIFT) 877 return false; 878 879 /* If we use u64 in a few spots we may be able to loosen this */ 880 881 if (ondisk->options.order > 8 * sizeof (int) - 1) 882 return false; 883 884 /* 885 * The size of a snapshot header has to fit in a size_t, and 886 * that limits the number of snapshots. 887 */ 888 snap_count = le32_to_cpu(ondisk->snap_count); 889 size = SIZE_MAX - sizeof (struct ceph_snap_context); 890 if (snap_count > size / sizeof (__le64)) 891 return false; 892 893 /* 894 * Not only that, but the size of the entire the snapshot 895 * header must also be representable in a size_t. 896 */ 897 size -= snap_count * sizeof (__le64); 898 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 899 return false; 900 901 return true; 902 } 903 904 /* 905 * Fill an rbd image header with information from the given format 1 906 * on-disk header. 907 */ 908 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 909 struct rbd_image_header_ondisk *ondisk) 910 { 911 struct rbd_image_header *header = &rbd_dev->header; 912 bool first_time = header->object_prefix == NULL; 913 struct ceph_snap_context *snapc; 914 char *object_prefix = NULL; 915 char *snap_names = NULL; 916 u64 *snap_sizes = NULL; 917 u32 snap_count; 918 size_t size; 919 int ret = -ENOMEM; 920 u32 i; 921 922 /* Allocate this now to avoid having to handle failure below */ 923 924 if (first_time) { 925 size_t len; 926 927 len = strnlen(ondisk->object_prefix, 928 sizeof (ondisk->object_prefix)); 929 object_prefix = kmalloc(len + 1, GFP_KERNEL); 930 if (!object_prefix) 931 return -ENOMEM; 932 memcpy(object_prefix, ondisk->object_prefix, len); 933 object_prefix[len] = '\0'; 934 } 935 936 /* Allocate the snapshot context and fill it in */ 937 938 snap_count = le32_to_cpu(ondisk->snap_count); 939 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 940 if (!snapc) 941 goto out_err; 942 snapc->seq = le64_to_cpu(ondisk->snap_seq); 943 if (snap_count) { 944 struct rbd_image_snap_ondisk *snaps; 945 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 946 947 /* We'll keep a copy of the snapshot names... */ 948 949 if (snap_names_len > (u64)SIZE_MAX) 950 goto out_2big; 951 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 952 if (!snap_names) 953 goto out_err; 954 955 /* ...as well as the array of their sizes. */ 956 957 size = snap_count * sizeof (*header->snap_sizes); 958 snap_sizes = kmalloc(size, GFP_KERNEL); 959 if (!snap_sizes) 960 goto out_err; 961 962 /* 963 * Copy the names, and fill in each snapshot's id 964 * and size. 965 * 966 * Note that rbd_dev_v1_header_info() guarantees the 967 * ondisk buffer we're working with has 968 * snap_names_len bytes beyond the end of the 969 * snapshot id array, this memcpy() is safe. 970 */ 971 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 972 snaps = ondisk->snaps; 973 for (i = 0; i < snap_count; i++) { 974 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 975 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 976 } 977 } 978 979 /* We won't fail any more, fill in the header */ 980 981 if (first_time) { 982 header->object_prefix = object_prefix; 983 header->obj_order = ondisk->options.order; 984 header->crypt_type = ondisk->options.crypt_type; 985 header->comp_type = ondisk->options.comp_type; 986 /* The rest aren't used for format 1 images */ 987 header->stripe_unit = 0; 988 header->stripe_count = 0; 989 header->features = 0; 990 } else { 991 ceph_put_snap_context(header->snapc); 992 kfree(header->snap_names); 993 kfree(header->snap_sizes); 994 } 995 996 /* The remaining fields always get updated (when we refresh) */ 997 998 header->image_size = le64_to_cpu(ondisk->image_size); 999 header->snapc = snapc; 1000 header->snap_names = snap_names; 1001 header->snap_sizes = snap_sizes; 1002 1003 return 0; 1004 out_2big: 1005 ret = -EIO; 1006 out_err: 1007 kfree(snap_sizes); 1008 kfree(snap_names); 1009 ceph_put_snap_context(snapc); 1010 kfree(object_prefix); 1011 1012 return ret; 1013 } 1014 1015 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1016 { 1017 const char *snap_name; 1018 1019 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1020 1021 /* Skip over names until we find the one we are looking for */ 1022 1023 snap_name = rbd_dev->header.snap_names; 1024 while (which--) 1025 snap_name += strlen(snap_name) + 1; 1026 1027 return kstrdup(snap_name, GFP_KERNEL); 1028 } 1029 1030 /* 1031 * Snapshot id comparison function for use with qsort()/bsearch(). 1032 * Note that result is for snapshots in *descending* order. 1033 */ 1034 static int snapid_compare_reverse(const void *s1, const void *s2) 1035 { 1036 u64 snap_id1 = *(u64 *)s1; 1037 u64 snap_id2 = *(u64 *)s2; 1038 1039 if (snap_id1 < snap_id2) 1040 return 1; 1041 return snap_id1 == snap_id2 ? 0 : -1; 1042 } 1043 1044 /* 1045 * Search a snapshot context to see if the given snapshot id is 1046 * present. 1047 * 1048 * Returns the position of the snapshot id in the array if it's found, 1049 * or BAD_SNAP_INDEX otherwise. 1050 * 1051 * Note: The snapshot array is in kept sorted (by the osd) in 1052 * reverse order, highest snapshot id first. 1053 */ 1054 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1055 { 1056 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1057 u64 *found; 1058 1059 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1060 sizeof (snap_id), snapid_compare_reverse); 1061 1062 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1063 } 1064 1065 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1066 u64 snap_id) 1067 { 1068 u32 which; 1069 const char *snap_name; 1070 1071 which = rbd_dev_snap_index(rbd_dev, snap_id); 1072 if (which == BAD_SNAP_INDEX) 1073 return ERR_PTR(-ENOENT); 1074 1075 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1076 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1077 } 1078 1079 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1080 { 1081 if (snap_id == CEPH_NOSNAP) 1082 return RBD_SNAP_HEAD_NAME; 1083 1084 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1085 if (rbd_dev->image_format == 1) 1086 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1087 1088 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1089 } 1090 1091 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1092 u64 *snap_size) 1093 { 1094 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1095 if (snap_id == CEPH_NOSNAP) { 1096 *snap_size = rbd_dev->header.image_size; 1097 } else if (rbd_dev->image_format == 1) { 1098 u32 which; 1099 1100 which = rbd_dev_snap_index(rbd_dev, snap_id); 1101 if (which == BAD_SNAP_INDEX) 1102 return -ENOENT; 1103 1104 *snap_size = rbd_dev->header.snap_sizes[which]; 1105 } else { 1106 u64 size = 0; 1107 int ret; 1108 1109 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1110 if (ret) 1111 return ret; 1112 1113 *snap_size = size; 1114 } 1115 return 0; 1116 } 1117 1118 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1119 u64 *snap_features) 1120 { 1121 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1122 if (snap_id == CEPH_NOSNAP) { 1123 *snap_features = rbd_dev->header.features; 1124 } else if (rbd_dev->image_format == 1) { 1125 *snap_features = 0; /* No features for format 1 */ 1126 } else { 1127 u64 features = 0; 1128 int ret; 1129 1130 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1131 if (ret) 1132 return ret; 1133 1134 *snap_features = features; 1135 } 1136 return 0; 1137 } 1138 1139 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1140 { 1141 u64 snap_id = rbd_dev->spec->snap_id; 1142 u64 size = 0; 1143 u64 features = 0; 1144 int ret; 1145 1146 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1147 if (ret) 1148 return ret; 1149 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1150 if (ret) 1151 return ret; 1152 1153 rbd_dev->mapping.size = size; 1154 rbd_dev->mapping.features = features; 1155 1156 return 0; 1157 } 1158 1159 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1160 { 1161 rbd_dev->mapping.size = 0; 1162 rbd_dev->mapping.features = 0; 1163 } 1164 1165 static void rbd_segment_name_free(const char *name) 1166 { 1167 /* The explicit cast here is needed to drop the const qualifier */ 1168 1169 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1170 } 1171 1172 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1173 { 1174 char *name; 1175 u64 segment; 1176 int ret; 1177 char *name_format; 1178 1179 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1180 if (!name) 1181 return NULL; 1182 segment = offset >> rbd_dev->header.obj_order; 1183 name_format = "%s.%012llx"; 1184 if (rbd_dev->image_format == 2) 1185 name_format = "%s.%016llx"; 1186 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1187 rbd_dev->header.object_prefix, segment); 1188 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1189 pr_err("error formatting segment name for #%llu (%d)\n", 1190 segment, ret); 1191 rbd_segment_name_free(name); 1192 name = NULL; 1193 } 1194 1195 return name; 1196 } 1197 1198 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1199 { 1200 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1201 1202 return offset & (segment_size - 1); 1203 } 1204 1205 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1206 u64 offset, u64 length) 1207 { 1208 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1209 1210 offset &= segment_size - 1; 1211 1212 rbd_assert(length <= U64_MAX - offset); 1213 if (offset + length > segment_size) 1214 length = segment_size - offset; 1215 1216 return length; 1217 } 1218 1219 /* 1220 * returns the size of an object in the image 1221 */ 1222 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1223 { 1224 return 1 << header->obj_order; 1225 } 1226 1227 /* 1228 * bio helpers 1229 */ 1230 1231 static void bio_chain_put(struct bio *chain) 1232 { 1233 struct bio *tmp; 1234 1235 while (chain) { 1236 tmp = chain; 1237 chain = chain->bi_next; 1238 bio_put(tmp); 1239 } 1240 } 1241 1242 /* 1243 * zeros a bio chain, starting at specific offset 1244 */ 1245 static void zero_bio_chain(struct bio *chain, int start_ofs) 1246 { 1247 struct bio_vec bv; 1248 struct bvec_iter iter; 1249 unsigned long flags; 1250 void *buf; 1251 int pos = 0; 1252 1253 while (chain) { 1254 bio_for_each_segment(bv, chain, iter) { 1255 if (pos + bv.bv_len > start_ofs) { 1256 int remainder = max(start_ofs - pos, 0); 1257 buf = bvec_kmap_irq(&bv, &flags); 1258 memset(buf + remainder, 0, 1259 bv.bv_len - remainder); 1260 flush_dcache_page(bv.bv_page); 1261 bvec_kunmap_irq(buf, &flags); 1262 } 1263 pos += bv.bv_len; 1264 } 1265 1266 chain = chain->bi_next; 1267 } 1268 } 1269 1270 /* 1271 * similar to zero_bio_chain(), zeros data defined by a page array, 1272 * starting at the given byte offset from the start of the array and 1273 * continuing up to the given end offset. The pages array is 1274 * assumed to be big enough to hold all bytes up to the end. 1275 */ 1276 static void zero_pages(struct page **pages, u64 offset, u64 end) 1277 { 1278 struct page **page = &pages[offset >> PAGE_SHIFT]; 1279 1280 rbd_assert(end > offset); 1281 rbd_assert(end - offset <= (u64)SIZE_MAX); 1282 while (offset < end) { 1283 size_t page_offset; 1284 size_t length; 1285 unsigned long flags; 1286 void *kaddr; 1287 1288 page_offset = offset & ~PAGE_MASK; 1289 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1290 local_irq_save(flags); 1291 kaddr = kmap_atomic(*page); 1292 memset(kaddr + page_offset, 0, length); 1293 flush_dcache_page(*page); 1294 kunmap_atomic(kaddr); 1295 local_irq_restore(flags); 1296 1297 offset += length; 1298 page++; 1299 } 1300 } 1301 1302 /* 1303 * Clone a portion of a bio, starting at the given byte offset 1304 * and continuing for the number of bytes indicated. 1305 */ 1306 static struct bio *bio_clone_range(struct bio *bio_src, 1307 unsigned int offset, 1308 unsigned int len, 1309 gfp_t gfpmask) 1310 { 1311 struct bio *bio; 1312 1313 bio = bio_clone(bio_src, gfpmask); 1314 if (!bio) 1315 return NULL; /* ENOMEM */ 1316 1317 bio_advance(bio, offset); 1318 bio->bi_iter.bi_size = len; 1319 1320 return bio; 1321 } 1322 1323 /* 1324 * Clone a portion of a bio chain, starting at the given byte offset 1325 * into the first bio in the source chain and continuing for the 1326 * number of bytes indicated. The result is another bio chain of 1327 * exactly the given length, or a null pointer on error. 1328 * 1329 * The bio_src and offset parameters are both in-out. On entry they 1330 * refer to the first source bio and the offset into that bio where 1331 * the start of data to be cloned is located. 1332 * 1333 * On return, bio_src is updated to refer to the bio in the source 1334 * chain that contains first un-cloned byte, and *offset will 1335 * contain the offset of that byte within that bio. 1336 */ 1337 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1338 unsigned int *offset, 1339 unsigned int len, 1340 gfp_t gfpmask) 1341 { 1342 struct bio *bi = *bio_src; 1343 unsigned int off = *offset; 1344 struct bio *chain = NULL; 1345 struct bio **end; 1346 1347 /* Build up a chain of clone bios up to the limit */ 1348 1349 if (!bi || off >= bi->bi_iter.bi_size || !len) 1350 return NULL; /* Nothing to clone */ 1351 1352 end = &chain; 1353 while (len) { 1354 unsigned int bi_size; 1355 struct bio *bio; 1356 1357 if (!bi) { 1358 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1359 goto out_err; /* EINVAL; ran out of bio's */ 1360 } 1361 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1362 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1363 if (!bio) 1364 goto out_err; /* ENOMEM */ 1365 1366 *end = bio; 1367 end = &bio->bi_next; 1368 1369 off += bi_size; 1370 if (off == bi->bi_iter.bi_size) { 1371 bi = bi->bi_next; 1372 off = 0; 1373 } 1374 len -= bi_size; 1375 } 1376 *bio_src = bi; 1377 *offset = off; 1378 1379 return chain; 1380 out_err: 1381 bio_chain_put(chain); 1382 1383 return NULL; 1384 } 1385 1386 /* 1387 * The default/initial value for all object request flags is 0. For 1388 * each flag, once its value is set to 1 it is never reset to 0 1389 * again. 1390 */ 1391 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1392 { 1393 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1394 struct rbd_device *rbd_dev; 1395 1396 rbd_dev = obj_request->img_request->rbd_dev; 1397 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1398 obj_request); 1399 } 1400 } 1401 1402 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1403 { 1404 smp_mb(); 1405 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1406 } 1407 1408 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1409 { 1410 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1411 struct rbd_device *rbd_dev = NULL; 1412 1413 if (obj_request_img_data_test(obj_request)) 1414 rbd_dev = obj_request->img_request->rbd_dev; 1415 rbd_warn(rbd_dev, "obj_request %p already marked done", 1416 obj_request); 1417 } 1418 } 1419 1420 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1421 { 1422 smp_mb(); 1423 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1424 } 1425 1426 /* 1427 * This sets the KNOWN flag after (possibly) setting the EXISTS 1428 * flag. The latter is set based on the "exists" value provided. 1429 * 1430 * Note that for our purposes once an object exists it never goes 1431 * away again. It's possible that the response from two existence 1432 * checks are separated by the creation of the target object, and 1433 * the first ("doesn't exist") response arrives *after* the second 1434 * ("does exist"). In that case we ignore the second one. 1435 */ 1436 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1437 bool exists) 1438 { 1439 if (exists) 1440 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1441 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1442 smp_mb(); 1443 } 1444 1445 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1446 { 1447 smp_mb(); 1448 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1449 } 1450 1451 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1452 { 1453 smp_mb(); 1454 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1455 } 1456 1457 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1458 { 1459 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1460 1461 return obj_request->img_offset < 1462 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1463 } 1464 1465 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1466 { 1467 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1468 atomic_read(&obj_request->kref.refcount)); 1469 kref_get(&obj_request->kref); 1470 } 1471 1472 static void rbd_obj_request_destroy(struct kref *kref); 1473 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1474 { 1475 rbd_assert(obj_request != NULL); 1476 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1477 atomic_read(&obj_request->kref.refcount)); 1478 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1479 } 1480 1481 static void rbd_img_request_get(struct rbd_img_request *img_request) 1482 { 1483 dout("%s: img %p (was %d)\n", __func__, img_request, 1484 atomic_read(&img_request->kref.refcount)); 1485 kref_get(&img_request->kref); 1486 } 1487 1488 static bool img_request_child_test(struct rbd_img_request *img_request); 1489 static void rbd_parent_request_destroy(struct kref *kref); 1490 static void rbd_img_request_destroy(struct kref *kref); 1491 static void rbd_img_request_put(struct rbd_img_request *img_request) 1492 { 1493 rbd_assert(img_request != NULL); 1494 dout("%s: img %p (was %d)\n", __func__, img_request, 1495 atomic_read(&img_request->kref.refcount)); 1496 if (img_request_child_test(img_request)) 1497 kref_put(&img_request->kref, rbd_parent_request_destroy); 1498 else 1499 kref_put(&img_request->kref, rbd_img_request_destroy); 1500 } 1501 1502 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1503 struct rbd_obj_request *obj_request) 1504 { 1505 rbd_assert(obj_request->img_request == NULL); 1506 1507 /* Image request now owns object's original reference */ 1508 obj_request->img_request = img_request; 1509 obj_request->which = img_request->obj_request_count; 1510 rbd_assert(!obj_request_img_data_test(obj_request)); 1511 obj_request_img_data_set(obj_request); 1512 rbd_assert(obj_request->which != BAD_WHICH); 1513 img_request->obj_request_count++; 1514 list_add_tail(&obj_request->links, &img_request->obj_requests); 1515 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1516 obj_request->which); 1517 } 1518 1519 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1520 struct rbd_obj_request *obj_request) 1521 { 1522 rbd_assert(obj_request->which != BAD_WHICH); 1523 1524 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1525 obj_request->which); 1526 list_del(&obj_request->links); 1527 rbd_assert(img_request->obj_request_count > 0); 1528 img_request->obj_request_count--; 1529 rbd_assert(obj_request->which == img_request->obj_request_count); 1530 obj_request->which = BAD_WHICH; 1531 rbd_assert(obj_request_img_data_test(obj_request)); 1532 rbd_assert(obj_request->img_request == img_request); 1533 obj_request->img_request = NULL; 1534 obj_request->callback = NULL; 1535 rbd_obj_request_put(obj_request); 1536 } 1537 1538 static bool obj_request_type_valid(enum obj_request_type type) 1539 { 1540 switch (type) { 1541 case OBJ_REQUEST_NODATA: 1542 case OBJ_REQUEST_BIO: 1543 case OBJ_REQUEST_PAGES: 1544 return true; 1545 default: 1546 return false; 1547 } 1548 } 1549 1550 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1551 struct rbd_obj_request *obj_request) 1552 { 1553 dout("%s %p\n", __func__, obj_request); 1554 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1555 } 1556 1557 static void rbd_obj_request_end(struct rbd_obj_request *obj_request) 1558 { 1559 dout("%s %p\n", __func__, obj_request); 1560 ceph_osdc_cancel_request(obj_request->osd_req); 1561 } 1562 1563 /* 1564 * Wait for an object request to complete. If interrupted, cancel the 1565 * underlying osd request. 1566 * 1567 * @timeout: in jiffies, 0 means "wait forever" 1568 */ 1569 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request, 1570 unsigned long timeout) 1571 { 1572 long ret; 1573 1574 dout("%s %p\n", __func__, obj_request); 1575 ret = wait_for_completion_interruptible_timeout( 1576 &obj_request->completion, 1577 ceph_timeout_jiffies(timeout)); 1578 if (ret <= 0) { 1579 if (ret == 0) 1580 ret = -ETIMEDOUT; 1581 rbd_obj_request_end(obj_request); 1582 } else { 1583 ret = 0; 1584 } 1585 1586 dout("%s %p ret %d\n", __func__, obj_request, (int)ret); 1587 return ret; 1588 } 1589 1590 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1591 { 1592 return __rbd_obj_request_wait(obj_request, 0); 1593 } 1594 1595 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request, 1596 unsigned long timeout) 1597 { 1598 return __rbd_obj_request_wait(obj_request, timeout); 1599 } 1600 1601 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1602 { 1603 1604 dout("%s: img %p\n", __func__, img_request); 1605 1606 /* 1607 * If no error occurred, compute the aggregate transfer 1608 * count for the image request. We could instead use 1609 * atomic64_cmpxchg() to update it as each object request 1610 * completes; not clear which way is better off hand. 1611 */ 1612 if (!img_request->result) { 1613 struct rbd_obj_request *obj_request; 1614 u64 xferred = 0; 1615 1616 for_each_obj_request(img_request, obj_request) 1617 xferred += obj_request->xferred; 1618 img_request->xferred = xferred; 1619 } 1620 1621 if (img_request->callback) 1622 img_request->callback(img_request); 1623 else 1624 rbd_img_request_put(img_request); 1625 } 1626 1627 /* 1628 * The default/initial value for all image request flags is 0. Each 1629 * is conditionally set to 1 at image request initialization time 1630 * and currently never change thereafter. 1631 */ 1632 static void img_request_write_set(struct rbd_img_request *img_request) 1633 { 1634 set_bit(IMG_REQ_WRITE, &img_request->flags); 1635 smp_mb(); 1636 } 1637 1638 static bool img_request_write_test(struct rbd_img_request *img_request) 1639 { 1640 smp_mb(); 1641 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1642 } 1643 1644 /* 1645 * Set the discard flag when the img_request is an discard request 1646 */ 1647 static void img_request_discard_set(struct rbd_img_request *img_request) 1648 { 1649 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1650 smp_mb(); 1651 } 1652 1653 static bool img_request_discard_test(struct rbd_img_request *img_request) 1654 { 1655 smp_mb(); 1656 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1657 } 1658 1659 static void img_request_child_set(struct rbd_img_request *img_request) 1660 { 1661 set_bit(IMG_REQ_CHILD, &img_request->flags); 1662 smp_mb(); 1663 } 1664 1665 static void img_request_child_clear(struct rbd_img_request *img_request) 1666 { 1667 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1668 smp_mb(); 1669 } 1670 1671 static bool img_request_child_test(struct rbd_img_request *img_request) 1672 { 1673 smp_mb(); 1674 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1675 } 1676 1677 static void img_request_layered_set(struct rbd_img_request *img_request) 1678 { 1679 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1680 smp_mb(); 1681 } 1682 1683 static void img_request_layered_clear(struct rbd_img_request *img_request) 1684 { 1685 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1686 smp_mb(); 1687 } 1688 1689 static bool img_request_layered_test(struct rbd_img_request *img_request) 1690 { 1691 smp_mb(); 1692 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1693 } 1694 1695 static enum obj_operation_type 1696 rbd_img_request_op_type(struct rbd_img_request *img_request) 1697 { 1698 if (img_request_write_test(img_request)) 1699 return OBJ_OP_WRITE; 1700 else if (img_request_discard_test(img_request)) 1701 return OBJ_OP_DISCARD; 1702 else 1703 return OBJ_OP_READ; 1704 } 1705 1706 static void 1707 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1708 { 1709 u64 xferred = obj_request->xferred; 1710 u64 length = obj_request->length; 1711 1712 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1713 obj_request, obj_request->img_request, obj_request->result, 1714 xferred, length); 1715 /* 1716 * ENOENT means a hole in the image. We zero-fill the entire 1717 * length of the request. A short read also implies zero-fill 1718 * to the end of the request. An error requires the whole 1719 * length of the request to be reported finished with an error 1720 * to the block layer. In each case we update the xferred 1721 * count to indicate the whole request was satisfied. 1722 */ 1723 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1724 if (obj_request->result == -ENOENT) { 1725 if (obj_request->type == OBJ_REQUEST_BIO) 1726 zero_bio_chain(obj_request->bio_list, 0); 1727 else 1728 zero_pages(obj_request->pages, 0, length); 1729 obj_request->result = 0; 1730 } else if (xferred < length && !obj_request->result) { 1731 if (obj_request->type == OBJ_REQUEST_BIO) 1732 zero_bio_chain(obj_request->bio_list, xferred); 1733 else 1734 zero_pages(obj_request->pages, xferred, length); 1735 } 1736 obj_request->xferred = length; 1737 obj_request_done_set(obj_request); 1738 } 1739 1740 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1741 { 1742 dout("%s: obj %p cb %p\n", __func__, obj_request, 1743 obj_request->callback); 1744 if (obj_request->callback) 1745 obj_request->callback(obj_request); 1746 else 1747 complete_all(&obj_request->completion); 1748 } 1749 1750 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1751 { 1752 dout("%s: obj %p\n", __func__, obj_request); 1753 obj_request_done_set(obj_request); 1754 } 1755 1756 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1757 { 1758 struct rbd_img_request *img_request = NULL; 1759 struct rbd_device *rbd_dev = NULL; 1760 bool layered = false; 1761 1762 if (obj_request_img_data_test(obj_request)) { 1763 img_request = obj_request->img_request; 1764 layered = img_request && img_request_layered_test(img_request); 1765 rbd_dev = img_request->rbd_dev; 1766 } 1767 1768 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1769 obj_request, img_request, obj_request->result, 1770 obj_request->xferred, obj_request->length); 1771 if (layered && obj_request->result == -ENOENT && 1772 obj_request->img_offset < rbd_dev->parent_overlap) 1773 rbd_img_parent_read(obj_request); 1774 else if (img_request) 1775 rbd_img_obj_request_read_callback(obj_request); 1776 else 1777 obj_request_done_set(obj_request); 1778 } 1779 1780 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1781 { 1782 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1783 obj_request->result, obj_request->length); 1784 /* 1785 * There is no such thing as a successful short write. Set 1786 * it to our originally-requested length. 1787 */ 1788 obj_request->xferred = obj_request->length; 1789 obj_request_done_set(obj_request); 1790 } 1791 1792 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1793 { 1794 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1795 obj_request->result, obj_request->length); 1796 /* 1797 * There is no such thing as a successful short discard. Set 1798 * it to our originally-requested length. 1799 */ 1800 obj_request->xferred = obj_request->length; 1801 /* discarding a non-existent object is not a problem */ 1802 if (obj_request->result == -ENOENT) 1803 obj_request->result = 0; 1804 obj_request_done_set(obj_request); 1805 } 1806 1807 /* 1808 * For a simple stat call there's nothing to do. We'll do more if 1809 * this is part of a write sequence for a layered image. 1810 */ 1811 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1812 { 1813 dout("%s: obj %p\n", __func__, obj_request); 1814 obj_request_done_set(obj_request); 1815 } 1816 1817 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1818 struct ceph_msg *msg) 1819 { 1820 struct rbd_obj_request *obj_request = osd_req->r_priv; 1821 u16 opcode; 1822 1823 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1824 rbd_assert(osd_req == obj_request->osd_req); 1825 if (obj_request_img_data_test(obj_request)) { 1826 rbd_assert(obj_request->img_request); 1827 rbd_assert(obj_request->which != BAD_WHICH); 1828 } else { 1829 rbd_assert(obj_request->which == BAD_WHICH); 1830 } 1831 1832 if (osd_req->r_result < 0) 1833 obj_request->result = osd_req->r_result; 1834 1835 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP); 1836 1837 /* 1838 * We support a 64-bit length, but ultimately it has to be 1839 * passed to the block layer, which just supports a 32-bit 1840 * length field. 1841 */ 1842 obj_request->xferred = osd_req->r_reply_op_len[0]; 1843 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1844 1845 opcode = osd_req->r_ops[0].op; 1846 switch (opcode) { 1847 case CEPH_OSD_OP_READ: 1848 rbd_osd_read_callback(obj_request); 1849 break; 1850 case CEPH_OSD_OP_SETALLOCHINT: 1851 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE); 1852 /* fall through */ 1853 case CEPH_OSD_OP_WRITE: 1854 rbd_osd_write_callback(obj_request); 1855 break; 1856 case CEPH_OSD_OP_STAT: 1857 rbd_osd_stat_callback(obj_request); 1858 break; 1859 case CEPH_OSD_OP_DELETE: 1860 case CEPH_OSD_OP_TRUNCATE: 1861 case CEPH_OSD_OP_ZERO: 1862 rbd_osd_discard_callback(obj_request); 1863 break; 1864 case CEPH_OSD_OP_CALL: 1865 case CEPH_OSD_OP_NOTIFY_ACK: 1866 case CEPH_OSD_OP_WATCH: 1867 rbd_osd_trivial_callback(obj_request); 1868 break; 1869 default: 1870 rbd_warn(NULL, "%s: unsupported op %hu", 1871 obj_request->object_name, (unsigned short) opcode); 1872 break; 1873 } 1874 1875 if (obj_request_done_test(obj_request)) 1876 rbd_obj_request_complete(obj_request); 1877 } 1878 1879 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1880 { 1881 struct rbd_img_request *img_request = obj_request->img_request; 1882 struct ceph_osd_request *osd_req = obj_request->osd_req; 1883 u64 snap_id; 1884 1885 rbd_assert(osd_req != NULL); 1886 1887 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1888 ceph_osdc_build_request(osd_req, obj_request->offset, 1889 NULL, snap_id, NULL); 1890 } 1891 1892 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1893 { 1894 struct rbd_img_request *img_request = obj_request->img_request; 1895 struct ceph_osd_request *osd_req = obj_request->osd_req; 1896 struct ceph_snap_context *snapc; 1897 struct timespec mtime = CURRENT_TIME; 1898 1899 rbd_assert(osd_req != NULL); 1900 1901 snapc = img_request ? img_request->snapc : NULL; 1902 ceph_osdc_build_request(osd_req, obj_request->offset, 1903 snapc, CEPH_NOSNAP, &mtime); 1904 } 1905 1906 /* 1907 * Create an osd request. A read request has one osd op (read). 1908 * A write request has either one (watch) or two (hint+write) osd ops. 1909 * (All rbd data writes are prefixed with an allocation hint op, but 1910 * technically osd watch is a write request, hence this distinction.) 1911 */ 1912 static struct ceph_osd_request *rbd_osd_req_create( 1913 struct rbd_device *rbd_dev, 1914 enum obj_operation_type op_type, 1915 unsigned int num_ops, 1916 struct rbd_obj_request *obj_request) 1917 { 1918 struct ceph_snap_context *snapc = NULL; 1919 struct ceph_osd_client *osdc; 1920 struct ceph_osd_request *osd_req; 1921 1922 if (obj_request_img_data_test(obj_request) && 1923 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1924 struct rbd_img_request *img_request = obj_request->img_request; 1925 if (op_type == OBJ_OP_WRITE) { 1926 rbd_assert(img_request_write_test(img_request)); 1927 } else { 1928 rbd_assert(img_request_discard_test(img_request)); 1929 } 1930 snapc = img_request->snapc; 1931 } 1932 1933 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1934 1935 /* Allocate and initialize the request, for the num_ops ops */ 1936 1937 osdc = &rbd_dev->rbd_client->client->osdc; 1938 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1939 GFP_ATOMIC); 1940 if (!osd_req) 1941 return NULL; /* ENOMEM */ 1942 1943 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 1944 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1945 else 1946 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1947 1948 osd_req->r_callback = rbd_osd_req_callback; 1949 osd_req->r_priv = obj_request; 1950 1951 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1952 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1953 1954 return osd_req; 1955 } 1956 1957 /* 1958 * Create a copyup osd request based on the information in the object 1959 * request supplied. A copyup request has two or three osd ops, a 1960 * copyup method call, potentially a hint op, and a write or truncate 1961 * or zero op. 1962 */ 1963 static struct ceph_osd_request * 1964 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1965 { 1966 struct rbd_img_request *img_request; 1967 struct ceph_snap_context *snapc; 1968 struct rbd_device *rbd_dev; 1969 struct ceph_osd_client *osdc; 1970 struct ceph_osd_request *osd_req; 1971 int num_osd_ops = 3; 1972 1973 rbd_assert(obj_request_img_data_test(obj_request)); 1974 img_request = obj_request->img_request; 1975 rbd_assert(img_request); 1976 rbd_assert(img_request_write_test(img_request) || 1977 img_request_discard_test(img_request)); 1978 1979 if (img_request_discard_test(img_request)) 1980 num_osd_ops = 2; 1981 1982 /* Allocate and initialize the request, for all the ops */ 1983 1984 snapc = img_request->snapc; 1985 rbd_dev = img_request->rbd_dev; 1986 osdc = &rbd_dev->rbd_client->client->osdc; 1987 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops, 1988 false, GFP_ATOMIC); 1989 if (!osd_req) 1990 return NULL; /* ENOMEM */ 1991 1992 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1993 osd_req->r_callback = rbd_osd_req_callback; 1994 osd_req->r_priv = obj_request; 1995 1996 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1997 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1998 1999 return osd_req; 2000 } 2001 2002 2003 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 2004 { 2005 ceph_osdc_put_request(osd_req); 2006 } 2007 2008 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 2009 2010 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 2011 u64 offset, u64 length, 2012 enum obj_request_type type) 2013 { 2014 struct rbd_obj_request *obj_request; 2015 size_t size; 2016 char *name; 2017 2018 rbd_assert(obj_request_type_valid(type)); 2019 2020 size = strlen(object_name) + 1; 2021 name = kmalloc(size, GFP_KERNEL); 2022 if (!name) 2023 return NULL; 2024 2025 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL); 2026 if (!obj_request) { 2027 kfree(name); 2028 return NULL; 2029 } 2030 2031 obj_request->object_name = memcpy(name, object_name, size); 2032 obj_request->offset = offset; 2033 obj_request->length = length; 2034 obj_request->flags = 0; 2035 obj_request->which = BAD_WHICH; 2036 obj_request->type = type; 2037 INIT_LIST_HEAD(&obj_request->links); 2038 init_completion(&obj_request->completion); 2039 kref_init(&obj_request->kref); 2040 2041 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 2042 offset, length, (int)type, obj_request); 2043 2044 return obj_request; 2045 } 2046 2047 static void rbd_obj_request_destroy(struct kref *kref) 2048 { 2049 struct rbd_obj_request *obj_request; 2050 2051 obj_request = container_of(kref, struct rbd_obj_request, kref); 2052 2053 dout("%s: obj %p\n", __func__, obj_request); 2054 2055 rbd_assert(obj_request->img_request == NULL); 2056 rbd_assert(obj_request->which == BAD_WHICH); 2057 2058 if (obj_request->osd_req) 2059 rbd_osd_req_destroy(obj_request->osd_req); 2060 2061 rbd_assert(obj_request_type_valid(obj_request->type)); 2062 switch (obj_request->type) { 2063 case OBJ_REQUEST_NODATA: 2064 break; /* Nothing to do */ 2065 case OBJ_REQUEST_BIO: 2066 if (obj_request->bio_list) 2067 bio_chain_put(obj_request->bio_list); 2068 break; 2069 case OBJ_REQUEST_PAGES: 2070 if (obj_request->pages) 2071 ceph_release_page_vector(obj_request->pages, 2072 obj_request->page_count); 2073 break; 2074 } 2075 2076 kfree(obj_request->object_name); 2077 obj_request->object_name = NULL; 2078 kmem_cache_free(rbd_obj_request_cache, obj_request); 2079 } 2080 2081 /* It's OK to call this for a device with no parent */ 2082 2083 static void rbd_spec_put(struct rbd_spec *spec); 2084 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2085 { 2086 rbd_dev_remove_parent(rbd_dev); 2087 rbd_spec_put(rbd_dev->parent_spec); 2088 rbd_dev->parent_spec = NULL; 2089 rbd_dev->parent_overlap = 0; 2090 } 2091 2092 /* 2093 * Parent image reference counting is used to determine when an 2094 * image's parent fields can be safely torn down--after there are no 2095 * more in-flight requests to the parent image. When the last 2096 * reference is dropped, cleaning them up is safe. 2097 */ 2098 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2099 { 2100 int counter; 2101 2102 if (!rbd_dev->parent_spec) 2103 return; 2104 2105 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2106 if (counter > 0) 2107 return; 2108 2109 /* Last reference; clean up parent data structures */ 2110 2111 if (!counter) 2112 rbd_dev_unparent(rbd_dev); 2113 else 2114 rbd_warn(rbd_dev, "parent reference underflow"); 2115 } 2116 2117 /* 2118 * If an image has a non-zero parent overlap, get a reference to its 2119 * parent. 2120 * 2121 * Returns true if the rbd device has a parent with a non-zero 2122 * overlap and a reference for it was successfully taken, or 2123 * false otherwise. 2124 */ 2125 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2126 { 2127 int counter = 0; 2128 2129 if (!rbd_dev->parent_spec) 2130 return false; 2131 2132 down_read(&rbd_dev->header_rwsem); 2133 if (rbd_dev->parent_overlap) 2134 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2135 up_read(&rbd_dev->header_rwsem); 2136 2137 if (counter < 0) 2138 rbd_warn(rbd_dev, "parent reference overflow"); 2139 2140 return counter > 0; 2141 } 2142 2143 /* 2144 * Caller is responsible for filling in the list of object requests 2145 * that comprises the image request, and the Linux request pointer 2146 * (if there is one). 2147 */ 2148 static struct rbd_img_request *rbd_img_request_create( 2149 struct rbd_device *rbd_dev, 2150 u64 offset, u64 length, 2151 enum obj_operation_type op_type, 2152 struct ceph_snap_context *snapc) 2153 { 2154 struct rbd_img_request *img_request; 2155 2156 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2157 if (!img_request) 2158 return NULL; 2159 2160 img_request->rq = NULL; 2161 img_request->rbd_dev = rbd_dev; 2162 img_request->offset = offset; 2163 img_request->length = length; 2164 img_request->flags = 0; 2165 if (op_type == OBJ_OP_DISCARD) { 2166 img_request_discard_set(img_request); 2167 img_request->snapc = snapc; 2168 } else if (op_type == OBJ_OP_WRITE) { 2169 img_request_write_set(img_request); 2170 img_request->snapc = snapc; 2171 } else { 2172 img_request->snap_id = rbd_dev->spec->snap_id; 2173 } 2174 if (rbd_dev_parent_get(rbd_dev)) 2175 img_request_layered_set(img_request); 2176 spin_lock_init(&img_request->completion_lock); 2177 img_request->next_completion = 0; 2178 img_request->callback = NULL; 2179 img_request->result = 0; 2180 img_request->obj_request_count = 0; 2181 INIT_LIST_HEAD(&img_request->obj_requests); 2182 kref_init(&img_request->kref); 2183 2184 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2185 obj_op_name(op_type), offset, length, img_request); 2186 2187 return img_request; 2188 } 2189 2190 static void rbd_img_request_destroy(struct kref *kref) 2191 { 2192 struct rbd_img_request *img_request; 2193 struct rbd_obj_request *obj_request; 2194 struct rbd_obj_request *next_obj_request; 2195 2196 img_request = container_of(kref, struct rbd_img_request, kref); 2197 2198 dout("%s: img %p\n", __func__, img_request); 2199 2200 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2201 rbd_img_obj_request_del(img_request, obj_request); 2202 rbd_assert(img_request->obj_request_count == 0); 2203 2204 if (img_request_layered_test(img_request)) { 2205 img_request_layered_clear(img_request); 2206 rbd_dev_parent_put(img_request->rbd_dev); 2207 } 2208 2209 if (img_request_write_test(img_request) || 2210 img_request_discard_test(img_request)) 2211 ceph_put_snap_context(img_request->snapc); 2212 2213 kmem_cache_free(rbd_img_request_cache, img_request); 2214 } 2215 2216 static struct rbd_img_request *rbd_parent_request_create( 2217 struct rbd_obj_request *obj_request, 2218 u64 img_offset, u64 length) 2219 { 2220 struct rbd_img_request *parent_request; 2221 struct rbd_device *rbd_dev; 2222 2223 rbd_assert(obj_request->img_request); 2224 rbd_dev = obj_request->img_request->rbd_dev; 2225 2226 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2227 length, OBJ_OP_READ, NULL); 2228 if (!parent_request) 2229 return NULL; 2230 2231 img_request_child_set(parent_request); 2232 rbd_obj_request_get(obj_request); 2233 parent_request->obj_request = obj_request; 2234 2235 return parent_request; 2236 } 2237 2238 static void rbd_parent_request_destroy(struct kref *kref) 2239 { 2240 struct rbd_img_request *parent_request; 2241 struct rbd_obj_request *orig_request; 2242 2243 parent_request = container_of(kref, struct rbd_img_request, kref); 2244 orig_request = parent_request->obj_request; 2245 2246 parent_request->obj_request = NULL; 2247 rbd_obj_request_put(orig_request); 2248 img_request_child_clear(parent_request); 2249 2250 rbd_img_request_destroy(kref); 2251 } 2252 2253 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2254 { 2255 struct rbd_img_request *img_request; 2256 unsigned int xferred; 2257 int result; 2258 bool more; 2259 2260 rbd_assert(obj_request_img_data_test(obj_request)); 2261 img_request = obj_request->img_request; 2262 2263 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2264 xferred = (unsigned int)obj_request->xferred; 2265 result = obj_request->result; 2266 if (result) { 2267 struct rbd_device *rbd_dev = img_request->rbd_dev; 2268 enum obj_operation_type op_type; 2269 2270 if (img_request_discard_test(img_request)) 2271 op_type = OBJ_OP_DISCARD; 2272 else if (img_request_write_test(img_request)) 2273 op_type = OBJ_OP_WRITE; 2274 else 2275 op_type = OBJ_OP_READ; 2276 2277 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2278 obj_op_name(op_type), obj_request->length, 2279 obj_request->img_offset, obj_request->offset); 2280 rbd_warn(rbd_dev, " result %d xferred %x", 2281 result, xferred); 2282 if (!img_request->result) 2283 img_request->result = result; 2284 /* 2285 * Need to end I/O on the entire obj_request worth of 2286 * bytes in case of error. 2287 */ 2288 xferred = obj_request->length; 2289 } 2290 2291 /* Image object requests don't own their page array */ 2292 2293 if (obj_request->type == OBJ_REQUEST_PAGES) { 2294 obj_request->pages = NULL; 2295 obj_request->page_count = 0; 2296 } 2297 2298 if (img_request_child_test(img_request)) { 2299 rbd_assert(img_request->obj_request != NULL); 2300 more = obj_request->which < img_request->obj_request_count - 1; 2301 } else { 2302 rbd_assert(img_request->rq != NULL); 2303 2304 more = blk_update_request(img_request->rq, result, xferred); 2305 if (!more) 2306 __blk_mq_end_request(img_request->rq, result); 2307 } 2308 2309 return more; 2310 } 2311 2312 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2313 { 2314 struct rbd_img_request *img_request; 2315 u32 which = obj_request->which; 2316 bool more = true; 2317 2318 rbd_assert(obj_request_img_data_test(obj_request)); 2319 img_request = obj_request->img_request; 2320 2321 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2322 rbd_assert(img_request != NULL); 2323 rbd_assert(img_request->obj_request_count > 0); 2324 rbd_assert(which != BAD_WHICH); 2325 rbd_assert(which < img_request->obj_request_count); 2326 2327 spin_lock_irq(&img_request->completion_lock); 2328 if (which != img_request->next_completion) 2329 goto out; 2330 2331 for_each_obj_request_from(img_request, obj_request) { 2332 rbd_assert(more); 2333 rbd_assert(which < img_request->obj_request_count); 2334 2335 if (!obj_request_done_test(obj_request)) 2336 break; 2337 more = rbd_img_obj_end_request(obj_request); 2338 which++; 2339 } 2340 2341 rbd_assert(more ^ (which == img_request->obj_request_count)); 2342 img_request->next_completion = which; 2343 out: 2344 spin_unlock_irq(&img_request->completion_lock); 2345 rbd_img_request_put(img_request); 2346 2347 if (!more) 2348 rbd_img_request_complete(img_request); 2349 } 2350 2351 /* 2352 * Add individual osd ops to the given ceph_osd_request and prepare 2353 * them for submission. num_ops is the current number of 2354 * osd operations already to the object request. 2355 */ 2356 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2357 struct ceph_osd_request *osd_request, 2358 enum obj_operation_type op_type, 2359 unsigned int num_ops) 2360 { 2361 struct rbd_img_request *img_request = obj_request->img_request; 2362 struct rbd_device *rbd_dev = img_request->rbd_dev; 2363 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2364 u64 offset = obj_request->offset; 2365 u64 length = obj_request->length; 2366 u64 img_end; 2367 u16 opcode; 2368 2369 if (op_type == OBJ_OP_DISCARD) { 2370 if (!offset && length == object_size && 2371 (!img_request_layered_test(img_request) || 2372 !obj_request_overlaps_parent(obj_request))) { 2373 opcode = CEPH_OSD_OP_DELETE; 2374 } else if ((offset + length == object_size)) { 2375 opcode = CEPH_OSD_OP_TRUNCATE; 2376 } else { 2377 down_read(&rbd_dev->header_rwsem); 2378 img_end = rbd_dev->header.image_size; 2379 up_read(&rbd_dev->header_rwsem); 2380 2381 if (obj_request->img_offset + length == img_end) 2382 opcode = CEPH_OSD_OP_TRUNCATE; 2383 else 2384 opcode = CEPH_OSD_OP_ZERO; 2385 } 2386 } else if (op_type == OBJ_OP_WRITE) { 2387 opcode = CEPH_OSD_OP_WRITE; 2388 osd_req_op_alloc_hint_init(osd_request, num_ops, 2389 object_size, object_size); 2390 num_ops++; 2391 } else { 2392 opcode = CEPH_OSD_OP_READ; 2393 } 2394 2395 if (opcode == CEPH_OSD_OP_DELETE) 2396 osd_req_op_init(osd_request, num_ops, opcode, 0); 2397 else 2398 osd_req_op_extent_init(osd_request, num_ops, opcode, 2399 offset, length, 0, 0); 2400 2401 if (obj_request->type == OBJ_REQUEST_BIO) 2402 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2403 obj_request->bio_list, length); 2404 else if (obj_request->type == OBJ_REQUEST_PAGES) 2405 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2406 obj_request->pages, length, 2407 offset & ~PAGE_MASK, false, false); 2408 2409 /* Discards are also writes */ 2410 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2411 rbd_osd_req_format_write(obj_request); 2412 else 2413 rbd_osd_req_format_read(obj_request); 2414 } 2415 2416 /* 2417 * Split up an image request into one or more object requests, each 2418 * to a different object. The "type" parameter indicates whether 2419 * "data_desc" is the pointer to the head of a list of bio 2420 * structures, or the base of a page array. In either case this 2421 * function assumes data_desc describes memory sufficient to hold 2422 * all data described by the image request. 2423 */ 2424 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2425 enum obj_request_type type, 2426 void *data_desc) 2427 { 2428 struct rbd_device *rbd_dev = img_request->rbd_dev; 2429 struct rbd_obj_request *obj_request = NULL; 2430 struct rbd_obj_request *next_obj_request; 2431 struct bio *bio_list = NULL; 2432 unsigned int bio_offset = 0; 2433 struct page **pages = NULL; 2434 enum obj_operation_type op_type; 2435 u64 img_offset; 2436 u64 resid; 2437 2438 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2439 (int)type, data_desc); 2440 2441 img_offset = img_request->offset; 2442 resid = img_request->length; 2443 rbd_assert(resid > 0); 2444 op_type = rbd_img_request_op_type(img_request); 2445 2446 if (type == OBJ_REQUEST_BIO) { 2447 bio_list = data_desc; 2448 rbd_assert(img_offset == 2449 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2450 } else if (type == OBJ_REQUEST_PAGES) { 2451 pages = data_desc; 2452 } 2453 2454 while (resid) { 2455 struct ceph_osd_request *osd_req; 2456 const char *object_name; 2457 u64 offset; 2458 u64 length; 2459 2460 object_name = rbd_segment_name(rbd_dev, img_offset); 2461 if (!object_name) 2462 goto out_unwind; 2463 offset = rbd_segment_offset(rbd_dev, img_offset); 2464 length = rbd_segment_length(rbd_dev, img_offset, resid); 2465 obj_request = rbd_obj_request_create(object_name, 2466 offset, length, type); 2467 /* object request has its own copy of the object name */ 2468 rbd_segment_name_free(object_name); 2469 if (!obj_request) 2470 goto out_unwind; 2471 2472 /* 2473 * set obj_request->img_request before creating the 2474 * osd_request so that it gets the right snapc 2475 */ 2476 rbd_img_obj_request_add(img_request, obj_request); 2477 2478 if (type == OBJ_REQUEST_BIO) { 2479 unsigned int clone_size; 2480 2481 rbd_assert(length <= (u64)UINT_MAX); 2482 clone_size = (unsigned int)length; 2483 obj_request->bio_list = 2484 bio_chain_clone_range(&bio_list, 2485 &bio_offset, 2486 clone_size, 2487 GFP_ATOMIC); 2488 if (!obj_request->bio_list) 2489 goto out_unwind; 2490 } else if (type == OBJ_REQUEST_PAGES) { 2491 unsigned int page_count; 2492 2493 obj_request->pages = pages; 2494 page_count = (u32)calc_pages_for(offset, length); 2495 obj_request->page_count = page_count; 2496 if ((offset + length) & ~PAGE_MASK) 2497 page_count--; /* more on last page */ 2498 pages += page_count; 2499 } 2500 2501 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2502 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2503 obj_request); 2504 if (!osd_req) 2505 goto out_unwind; 2506 2507 obj_request->osd_req = osd_req; 2508 obj_request->callback = rbd_img_obj_callback; 2509 obj_request->img_offset = img_offset; 2510 2511 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2512 2513 rbd_img_request_get(img_request); 2514 2515 img_offset += length; 2516 resid -= length; 2517 } 2518 2519 return 0; 2520 2521 out_unwind: 2522 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2523 rbd_img_obj_request_del(img_request, obj_request); 2524 2525 return -ENOMEM; 2526 } 2527 2528 static void 2529 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request) 2530 { 2531 struct rbd_img_request *img_request; 2532 struct rbd_device *rbd_dev; 2533 struct page **pages; 2534 u32 page_count; 2535 2536 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2537 obj_request->type == OBJ_REQUEST_NODATA); 2538 rbd_assert(obj_request_img_data_test(obj_request)); 2539 img_request = obj_request->img_request; 2540 rbd_assert(img_request); 2541 2542 rbd_dev = img_request->rbd_dev; 2543 rbd_assert(rbd_dev); 2544 2545 pages = obj_request->copyup_pages; 2546 rbd_assert(pages != NULL); 2547 obj_request->copyup_pages = NULL; 2548 page_count = obj_request->copyup_page_count; 2549 rbd_assert(page_count); 2550 obj_request->copyup_page_count = 0; 2551 ceph_release_page_vector(pages, page_count); 2552 2553 /* 2554 * We want the transfer count to reflect the size of the 2555 * original write request. There is no such thing as a 2556 * successful short write, so if the request was successful 2557 * we can just set it to the originally-requested length. 2558 */ 2559 if (!obj_request->result) 2560 obj_request->xferred = obj_request->length; 2561 2562 /* Finish up with the normal image object callback */ 2563 2564 rbd_img_obj_callback(obj_request); 2565 } 2566 2567 static void 2568 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2569 { 2570 struct rbd_obj_request *orig_request; 2571 struct ceph_osd_request *osd_req; 2572 struct ceph_osd_client *osdc; 2573 struct rbd_device *rbd_dev; 2574 struct page **pages; 2575 enum obj_operation_type op_type; 2576 u32 page_count; 2577 int img_result; 2578 u64 parent_length; 2579 2580 rbd_assert(img_request_child_test(img_request)); 2581 2582 /* First get what we need from the image request */ 2583 2584 pages = img_request->copyup_pages; 2585 rbd_assert(pages != NULL); 2586 img_request->copyup_pages = NULL; 2587 page_count = img_request->copyup_page_count; 2588 rbd_assert(page_count); 2589 img_request->copyup_page_count = 0; 2590 2591 orig_request = img_request->obj_request; 2592 rbd_assert(orig_request != NULL); 2593 rbd_assert(obj_request_type_valid(orig_request->type)); 2594 img_result = img_request->result; 2595 parent_length = img_request->length; 2596 rbd_assert(parent_length == img_request->xferred); 2597 rbd_img_request_put(img_request); 2598 2599 rbd_assert(orig_request->img_request); 2600 rbd_dev = orig_request->img_request->rbd_dev; 2601 rbd_assert(rbd_dev); 2602 2603 /* 2604 * If the overlap has become 0 (most likely because the 2605 * image has been flattened) we need to free the pages 2606 * and re-submit the original write request. 2607 */ 2608 if (!rbd_dev->parent_overlap) { 2609 struct ceph_osd_client *osdc; 2610 2611 ceph_release_page_vector(pages, page_count); 2612 osdc = &rbd_dev->rbd_client->client->osdc; 2613 img_result = rbd_obj_request_submit(osdc, orig_request); 2614 if (!img_result) 2615 return; 2616 } 2617 2618 if (img_result) 2619 goto out_err; 2620 2621 /* 2622 * The original osd request is of no use to use any more. 2623 * We need a new one that can hold the three ops in a copyup 2624 * request. Allocate the new copyup osd request for the 2625 * original request, and release the old one. 2626 */ 2627 img_result = -ENOMEM; 2628 osd_req = rbd_osd_req_create_copyup(orig_request); 2629 if (!osd_req) 2630 goto out_err; 2631 rbd_osd_req_destroy(orig_request->osd_req); 2632 orig_request->osd_req = osd_req; 2633 orig_request->copyup_pages = pages; 2634 orig_request->copyup_page_count = page_count; 2635 2636 /* Initialize the copyup op */ 2637 2638 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2639 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2640 false, false); 2641 2642 /* Add the other op(s) */ 2643 2644 op_type = rbd_img_request_op_type(orig_request->img_request); 2645 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2646 2647 /* All set, send it off. */ 2648 2649 orig_request->callback = rbd_img_obj_copyup_callback; 2650 osdc = &rbd_dev->rbd_client->client->osdc; 2651 img_result = rbd_obj_request_submit(osdc, orig_request); 2652 if (!img_result) 2653 return; 2654 out_err: 2655 /* Record the error code and complete the request */ 2656 2657 orig_request->result = img_result; 2658 orig_request->xferred = 0; 2659 obj_request_done_set(orig_request); 2660 rbd_obj_request_complete(orig_request); 2661 } 2662 2663 /* 2664 * Read from the parent image the range of data that covers the 2665 * entire target of the given object request. This is used for 2666 * satisfying a layered image write request when the target of an 2667 * object request from the image request does not exist. 2668 * 2669 * A page array big enough to hold the returned data is allocated 2670 * and supplied to rbd_img_request_fill() as the "data descriptor." 2671 * When the read completes, this page array will be transferred to 2672 * the original object request for the copyup operation. 2673 * 2674 * If an error occurs, record it as the result of the original 2675 * object request and mark it done so it gets completed. 2676 */ 2677 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2678 { 2679 struct rbd_img_request *img_request = NULL; 2680 struct rbd_img_request *parent_request = NULL; 2681 struct rbd_device *rbd_dev; 2682 u64 img_offset; 2683 u64 length; 2684 struct page **pages = NULL; 2685 u32 page_count; 2686 int result; 2687 2688 rbd_assert(obj_request_img_data_test(obj_request)); 2689 rbd_assert(obj_request_type_valid(obj_request->type)); 2690 2691 img_request = obj_request->img_request; 2692 rbd_assert(img_request != NULL); 2693 rbd_dev = img_request->rbd_dev; 2694 rbd_assert(rbd_dev->parent != NULL); 2695 2696 /* 2697 * Determine the byte range covered by the object in the 2698 * child image to which the original request was to be sent. 2699 */ 2700 img_offset = obj_request->img_offset - obj_request->offset; 2701 length = (u64)1 << rbd_dev->header.obj_order; 2702 2703 /* 2704 * There is no defined parent data beyond the parent 2705 * overlap, so limit what we read at that boundary if 2706 * necessary. 2707 */ 2708 if (img_offset + length > rbd_dev->parent_overlap) { 2709 rbd_assert(img_offset < rbd_dev->parent_overlap); 2710 length = rbd_dev->parent_overlap - img_offset; 2711 } 2712 2713 /* 2714 * Allocate a page array big enough to receive the data read 2715 * from the parent. 2716 */ 2717 page_count = (u32)calc_pages_for(0, length); 2718 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2719 if (IS_ERR(pages)) { 2720 result = PTR_ERR(pages); 2721 pages = NULL; 2722 goto out_err; 2723 } 2724 2725 result = -ENOMEM; 2726 parent_request = rbd_parent_request_create(obj_request, 2727 img_offset, length); 2728 if (!parent_request) 2729 goto out_err; 2730 2731 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2732 if (result) 2733 goto out_err; 2734 parent_request->copyup_pages = pages; 2735 parent_request->copyup_page_count = page_count; 2736 2737 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2738 result = rbd_img_request_submit(parent_request); 2739 if (!result) 2740 return 0; 2741 2742 parent_request->copyup_pages = NULL; 2743 parent_request->copyup_page_count = 0; 2744 parent_request->obj_request = NULL; 2745 rbd_obj_request_put(obj_request); 2746 out_err: 2747 if (pages) 2748 ceph_release_page_vector(pages, page_count); 2749 if (parent_request) 2750 rbd_img_request_put(parent_request); 2751 obj_request->result = result; 2752 obj_request->xferred = 0; 2753 obj_request_done_set(obj_request); 2754 2755 return result; 2756 } 2757 2758 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2759 { 2760 struct rbd_obj_request *orig_request; 2761 struct rbd_device *rbd_dev; 2762 int result; 2763 2764 rbd_assert(!obj_request_img_data_test(obj_request)); 2765 2766 /* 2767 * All we need from the object request is the original 2768 * request and the result of the STAT op. Grab those, then 2769 * we're done with the request. 2770 */ 2771 orig_request = obj_request->obj_request; 2772 obj_request->obj_request = NULL; 2773 rbd_obj_request_put(orig_request); 2774 rbd_assert(orig_request); 2775 rbd_assert(orig_request->img_request); 2776 2777 result = obj_request->result; 2778 obj_request->result = 0; 2779 2780 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2781 obj_request, orig_request, result, 2782 obj_request->xferred, obj_request->length); 2783 rbd_obj_request_put(obj_request); 2784 2785 /* 2786 * If the overlap has become 0 (most likely because the 2787 * image has been flattened) we need to free the pages 2788 * and re-submit the original write request. 2789 */ 2790 rbd_dev = orig_request->img_request->rbd_dev; 2791 if (!rbd_dev->parent_overlap) { 2792 struct ceph_osd_client *osdc; 2793 2794 osdc = &rbd_dev->rbd_client->client->osdc; 2795 result = rbd_obj_request_submit(osdc, orig_request); 2796 if (!result) 2797 return; 2798 } 2799 2800 /* 2801 * Our only purpose here is to determine whether the object 2802 * exists, and we don't want to treat the non-existence as 2803 * an error. If something else comes back, transfer the 2804 * error to the original request and complete it now. 2805 */ 2806 if (!result) { 2807 obj_request_existence_set(orig_request, true); 2808 } else if (result == -ENOENT) { 2809 obj_request_existence_set(orig_request, false); 2810 } else if (result) { 2811 orig_request->result = result; 2812 goto out; 2813 } 2814 2815 /* 2816 * Resubmit the original request now that we have recorded 2817 * whether the target object exists. 2818 */ 2819 orig_request->result = rbd_img_obj_request_submit(orig_request); 2820 out: 2821 if (orig_request->result) 2822 rbd_obj_request_complete(orig_request); 2823 } 2824 2825 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2826 { 2827 struct rbd_obj_request *stat_request; 2828 struct rbd_device *rbd_dev; 2829 struct ceph_osd_client *osdc; 2830 struct page **pages = NULL; 2831 u32 page_count; 2832 size_t size; 2833 int ret; 2834 2835 /* 2836 * The response data for a STAT call consists of: 2837 * le64 length; 2838 * struct { 2839 * le32 tv_sec; 2840 * le32 tv_nsec; 2841 * } mtime; 2842 */ 2843 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2844 page_count = (u32)calc_pages_for(0, size); 2845 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2846 if (IS_ERR(pages)) 2847 return PTR_ERR(pages); 2848 2849 ret = -ENOMEM; 2850 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2851 OBJ_REQUEST_PAGES); 2852 if (!stat_request) 2853 goto out; 2854 2855 rbd_obj_request_get(obj_request); 2856 stat_request->obj_request = obj_request; 2857 stat_request->pages = pages; 2858 stat_request->page_count = page_count; 2859 2860 rbd_assert(obj_request->img_request); 2861 rbd_dev = obj_request->img_request->rbd_dev; 2862 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2863 stat_request); 2864 if (!stat_request->osd_req) 2865 goto out; 2866 stat_request->callback = rbd_img_obj_exists_callback; 2867 2868 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2869 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2870 false, false); 2871 rbd_osd_req_format_read(stat_request); 2872 2873 osdc = &rbd_dev->rbd_client->client->osdc; 2874 ret = rbd_obj_request_submit(osdc, stat_request); 2875 out: 2876 if (ret) 2877 rbd_obj_request_put(obj_request); 2878 2879 return ret; 2880 } 2881 2882 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2883 { 2884 struct rbd_img_request *img_request; 2885 struct rbd_device *rbd_dev; 2886 2887 rbd_assert(obj_request_img_data_test(obj_request)); 2888 2889 img_request = obj_request->img_request; 2890 rbd_assert(img_request); 2891 rbd_dev = img_request->rbd_dev; 2892 2893 /* Reads */ 2894 if (!img_request_write_test(img_request) && 2895 !img_request_discard_test(img_request)) 2896 return true; 2897 2898 /* Non-layered writes */ 2899 if (!img_request_layered_test(img_request)) 2900 return true; 2901 2902 /* 2903 * Layered writes outside of the parent overlap range don't 2904 * share any data with the parent. 2905 */ 2906 if (!obj_request_overlaps_parent(obj_request)) 2907 return true; 2908 2909 /* 2910 * Entire-object layered writes - we will overwrite whatever 2911 * parent data there is anyway. 2912 */ 2913 if (!obj_request->offset && 2914 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2915 return true; 2916 2917 /* 2918 * If the object is known to already exist, its parent data has 2919 * already been copied. 2920 */ 2921 if (obj_request_known_test(obj_request) && 2922 obj_request_exists_test(obj_request)) 2923 return true; 2924 2925 return false; 2926 } 2927 2928 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2929 { 2930 if (img_obj_request_simple(obj_request)) { 2931 struct rbd_device *rbd_dev; 2932 struct ceph_osd_client *osdc; 2933 2934 rbd_dev = obj_request->img_request->rbd_dev; 2935 osdc = &rbd_dev->rbd_client->client->osdc; 2936 2937 return rbd_obj_request_submit(osdc, obj_request); 2938 } 2939 2940 /* 2941 * It's a layered write. The target object might exist but 2942 * we may not know that yet. If we know it doesn't exist, 2943 * start by reading the data for the full target object from 2944 * the parent so we can use it for a copyup to the target. 2945 */ 2946 if (obj_request_known_test(obj_request)) 2947 return rbd_img_obj_parent_read_full(obj_request); 2948 2949 /* We don't know whether the target exists. Go find out. */ 2950 2951 return rbd_img_obj_exists_submit(obj_request); 2952 } 2953 2954 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2955 { 2956 struct rbd_obj_request *obj_request; 2957 struct rbd_obj_request *next_obj_request; 2958 2959 dout("%s: img %p\n", __func__, img_request); 2960 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2961 int ret; 2962 2963 ret = rbd_img_obj_request_submit(obj_request); 2964 if (ret) 2965 return ret; 2966 } 2967 2968 return 0; 2969 } 2970 2971 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2972 { 2973 struct rbd_obj_request *obj_request; 2974 struct rbd_device *rbd_dev; 2975 u64 obj_end; 2976 u64 img_xferred; 2977 int img_result; 2978 2979 rbd_assert(img_request_child_test(img_request)); 2980 2981 /* First get what we need from the image request and release it */ 2982 2983 obj_request = img_request->obj_request; 2984 img_xferred = img_request->xferred; 2985 img_result = img_request->result; 2986 rbd_img_request_put(img_request); 2987 2988 /* 2989 * If the overlap has become 0 (most likely because the 2990 * image has been flattened) we need to re-submit the 2991 * original request. 2992 */ 2993 rbd_assert(obj_request); 2994 rbd_assert(obj_request->img_request); 2995 rbd_dev = obj_request->img_request->rbd_dev; 2996 if (!rbd_dev->parent_overlap) { 2997 struct ceph_osd_client *osdc; 2998 2999 osdc = &rbd_dev->rbd_client->client->osdc; 3000 img_result = rbd_obj_request_submit(osdc, obj_request); 3001 if (!img_result) 3002 return; 3003 } 3004 3005 obj_request->result = img_result; 3006 if (obj_request->result) 3007 goto out; 3008 3009 /* 3010 * We need to zero anything beyond the parent overlap 3011 * boundary. Since rbd_img_obj_request_read_callback() 3012 * will zero anything beyond the end of a short read, an 3013 * easy way to do this is to pretend the data from the 3014 * parent came up short--ending at the overlap boundary. 3015 */ 3016 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 3017 obj_end = obj_request->img_offset + obj_request->length; 3018 if (obj_end > rbd_dev->parent_overlap) { 3019 u64 xferred = 0; 3020 3021 if (obj_request->img_offset < rbd_dev->parent_overlap) 3022 xferred = rbd_dev->parent_overlap - 3023 obj_request->img_offset; 3024 3025 obj_request->xferred = min(img_xferred, xferred); 3026 } else { 3027 obj_request->xferred = img_xferred; 3028 } 3029 out: 3030 rbd_img_obj_request_read_callback(obj_request); 3031 rbd_obj_request_complete(obj_request); 3032 } 3033 3034 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 3035 { 3036 struct rbd_img_request *img_request; 3037 int result; 3038 3039 rbd_assert(obj_request_img_data_test(obj_request)); 3040 rbd_assert(obj_request->img_request != NULL); 3041 rbd_assert(obj_request->result == (s32) -ENOENT); 3042 rbd_assert(obj_request_type_valid(obj_request->type)); 3043 3044 /* rbd_read_finish(obj_request, obj_request->length); */ 3045 img_request = rbd_parent_request_create(obj_request, 3046 obj_request->img_offset, 3047 obj_request->length); 3048 result = -ENOMEM; 3049 if (!img_request) 3050 goto out_err; 3051 3052 if (obj_request->type == OBJ_REQUEST_BIO) 3053 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3054 obj_request->bio_list); 3055 else 3056 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3057 obj_request->pages); 3058 if (result) 3059 goto out_err; 3060 3061 img_request->callback = rbd_img_parent_read_callback; 3062 result = rbd_img_request_submit(img_request); 3063 if (result) 3064 goto out_err; 3065 3066 return; 3067 out_err: 3068 if (img_request) 3069 rbd_img_request_put(img_request); 3070 obj_request->result = result; 3071 obj_request->xferred = 0; 3072 obj_request_done_set(obj_request); 3073 } 3074 3075 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 3076 { 3077 struct rbd_obj_request *obj_request; 3078 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3079 int ret; 3080 3081 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3082 OBJ_REQUEST_NODATA); 3083 if (!obj_request) 3084 return -ENOMEM; 3085 3086 ret = -ENOMEM; 3087 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3088 obj_request); 3089 if (!obj_request->osd_req) 3090 goto out; 3091 3092 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 3093 notify_id, 0, 0); 3094 rbd_osd_req_format_read(obj_request); 3095 3096 ret = rbd_obj_request_submit(osdc, obj_request); 3097 if (ret) 3098 goto out; 3099 ret = rbd_obj_request_wait(obj_request); 3100 out: 3101 rbd_obj_request_put(obj_request); 3102 3103 return ret; 3104 } 3105 3106 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 3107 { 3108 struct rbd_device *rbd_dev = (struct rbd_device *)data; 3109 int ret; 3110 3111 if (!rbd_dev) 3112 return; 3113 3114 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 3115 rbd_dev->header_name, (unsigned long long)notify_id, 3116 (unsigned int)opcode); 3117 3118 /* 3119 * Until adequate refresh error handling is in place, there is 3120 * not much we can do here, except warn. 3121 * 3122 * See http://tracker.ceph.com/issues/5040 3123 */ 3124 ret = rbd_dev_refresh(rbd_dev); 3125 if (ret) 3126 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3127 3128 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id); 3129 if (ret) 3130 rbd_warn(rbd_dev, "notify_ack ret %d", ret); 3131 } 3132 3133 /* 3134 * Send a (un)watch request and wait for the ack. Return a request 3135 * with a ref held on success or error. 3136 */ 3137 static struct rbd_obj_request *rbd_obj_watch_request_helper( 3138 struct rbd_device *rbd_dev, 3139 bool watch) 3140 { 3141 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3142 struct ceph_options *opts = osdc->client->options; 3143 struct rbd_obj_request *obj_request; 3144 int ret; 3145 3146 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3147 OBJ_REQUEST_NODATA); 3148 if (!obj_request) 3149 return ERR_PTR(-ENOMEM); 3150 3151 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1, 3152 obj_request); 3153 if (!obj_request->osd_req) { 3154 ret = -ENOMEM; 3155 goto out; 3156 } 3157 3158 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 3159 rbd_dev->watch_event->cookie, 0, watch); 3160 rbd_osd_req_format_write(obj_request); 3161 3162 if (watch) 3163 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 3164 3165 ret = rbd_obj_request_submit(osdc, obj_request); 3166 if (ret) 3167 goto out; 3168 3169 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout); 3170 if (ret) 3171 goto out; 3172 3173 ret = obj_request->result; 3174 if (ret) { 3175 if (watch) 3176 rbd_obj_request_end(obj_request); 3177 goto out; 3178 } 3179 3180 return obj_request; 3181 3182 out: 3183 rbd_obj_request_put(obj_request); 3184 return ERR_PTR(ret); 3185 } 3186 3187 /* 3188 * Initiate a watch request, synchronously. 3189 */ 3190 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 3191 { 3192 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3193 struct rbd_obj_request *obj_request; 3194 int ret; 3195 3196 rbd_assert(!rbd_dev->watch_event); 3197 rbd_assert(!rbd_dev->watch_request); 3198 3199 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 3200 &rbd_dev->watch_event); 3201 if (ret < 0) 3202 return ret; 3203 3204 obj_request = rbd_obj_watch_request_helper(rbd_dev, true); 3205 if (IS_ERR(obj_request)) { 3206 ceph_osdc_cancel_event(rbd_dev->watch_event); 3207 rbd_dev->watch_event = NULL; 3208 return PTR_ERR(obj_request); 3209 } 3210 3211 /* 3212 * A watch request is set to linger, so the underlying osd 3213 * request won't go away until we unregister it. We retain 3214 * a pointer to the object request during that time (in 3215 * rbd_dev->watch_request), so we'll keep a reference to it. 3216 * We'll drop that reference after we've unregistered it in 3217 * rbd_dev_header_unwatch_sync(). 3218 */ 3219 rbd_dev->watch_request = obj_request; 3220 3221 return 0; 3222 } 3223 3224 /* 3225 * Tear down a watch request, synchronously. 3226 */ 3227 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3228 { 3229 struct rbd_obj_request *obj_request; 3230 3231 rbd_assert(rbd_dev->watch_event); 3232 rbd_assert(rbd_dev->watch_request); 3233 3234 rbd_obj_request_end(rbd_dev->watch_request); 3235 rbd_obj_request_put(rbd_dev->watch_request); 3236 rbd_dev->watch_request = NULL; 3237 3238 obj_request = rbd_obj_watch_request_helper(rbd_dev, false); 3239 if (!IS_ERR(obj_request)) 3240 rbd_obj_request_put(obj_request); 3241 else 3242 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)", 3243 PTR_ERR(obj_request)); 3244 3245 ceph_osdc_cancel_event(rbd_dev->watch_event); 3246 rbd_dev->watch_event = NULL; 3247 } 3248 3249 /* 3250 * Synchronous osd object method call. Returns the number of bytes 3251 * returned in the outbound buffer, or a negative error code. 3252 */ 3253 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3254 const char *object_name, 3255 const char *class_name, 3256 const char *method_name, 3257 const void *outbound, 3258 size_t outbound_size, 3259 void *inbound, 3260 size_t inbound_size) 3261 { 3262 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3263 struct rbd_obj_request *obj_request; 3264 struct page **pages; 3265 u32 page_count; 3266 int ret; 3267 3268 /* 3269 * Method calls are ultimately read operations. The result 3270 * should placed into the inbound buffer provided. They 3271 * also supply outbound data--parameters for the object 3272 * method. Currently if this is present it will be a 3273 * snapshot id. 3274 */ 3275 page_count = (u32)calc_pages_for(0, inbound_size); 3276 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3277 if (IS_ERR(pages)) 3278 return PTR_ERR(pages); 3279 3280 ret = -ENOMEM; 3281 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3282 OBJ_REQUEST_PAGES); 3283 if (!obj_request) 3284 goto out; 3285 3286 obj_request->pages = pages; 3287 obj_request->page_count = page_count; 3288 3289 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3290 obj_request); 3291 if (!obj_request->osd_req) 3292 goto out; 3293 3294 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3295 class_name, method_name); 3296 if (outbound_size) { 3297 struct ceph_pagelist *pagelist; 3298 3299 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3300 if (!pagelist) 3301 goto out; 3302 3303 ceph_pagelist_init(pagelist); 3304 ceph_pagelist_append(pagelist, outbound, outbound_size); 3305 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3306 pagelist); 3307 } 3308 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3309 obj_request->pages, inbound_size, 3310 0, false, false); 3311 rbd_osd_req_format_read(obj_request); 3312 3313 ret = rbd_obj_request_submit(osdc, obj_request); 3314 if (ret) 3315 goto out; 3316 ret = rbd_obj_request_wait(obj_request); 3317 if (ret) 3318 goto out; 3319 3320 ret = obj_request->result; 3321 if (ret < 0) 3322 goto out; 3323 3324 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3325 ret = (int)obj_request->xferred; 3326 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3327 out: 3328 if (obj_request) 3329 rbd_obj_request_put(obj_request); 3330 else 3331 ceph_release_page_vector(pages, page_count); 3332 3333 return ret; 3334 } 3335 3336 static void rbd_queue_workfn(struct work_struct *work) 3337 { 3338 struct request *rq = blk_mq_rq_from_pdu(work); 3339 struct rbd_device *rbd_dev = rq->q->queuedata; 3340 struct rbd_img_request *img_request; 3341 struct ceph_snap_context *snapc = NULL; 3342 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3343 u64 length = blk_rq_bytes(rq); 3344 enum obj_operation_type op_type; 3345 u64 mapping_size; 3346 int result; 3347 3348 if (rq->cmd_type != REQ_TYPE_FS) { 3349 dout("%s: non-fs request type %d\n", __func__, 3350 (int) rq->cmd_type); 3351 result = -EIO; 3352 goto err; 3353 } 3354 3355 if (rq->cmd_flags & REQ_DISCARD) 3356 op_type = OBJ_OP_DISCARD; 3357 else if (rq->cmd_flags & REQ_WRITE) 3358 op_type = OBJ_OP_WRITE; 3359 else 3360 op_type = OBJ_OP_READ; 3361 3362 /* Ignore/skip any zero-length requests */ 3363 3364 if (!length) { 3365 dout("%s: zero-length request\n", __func__); 3366 result = 0; 3367 goto err_rq; 3368 } 3369 3370 /* Only reads are allowed to a read-only device */ 3371 3372 if (op_type != OBJ_OP_READ) { 3373 if (rbd_dev->mapping.read_only) { 3374 result = -EROFS; 3375 goto err_rq; 3376 } 3377 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3378 } 3379 3380 /* 3381 * Quit early if the mapped snapshot no longer exists. It's 3382 * still possible the snapshot will have disappeared by the 3383 * time our request arrives at the osd, but there's no sense in 3384 * sending it if we already know. 3385 */ 3386 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3387 dout("request for non-existent snapshot"); 3388 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3389 result = -ENXIO; 3390 goto err_rq; 3391 } 3392 3393 if (offset && length > U64_MAX - offset + 1) { 3394 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3395 length); 3396 result = -EINVAL; 3397 goto err_rq; /* Shouldn't happen */ 3398 } 3399 3400 blk_mq_start_request(rq); 3401 3402 down_read(&rbd_dev->header_rwsem); 3403 mapping_size = rbd_dev->mapping.size; 3404 if (op_type != OBJ_OP_READ) { 3405 snapc = rbd_dev->header.snapc; 3406 ceph_get_snap_context(snapc); 3407 } 3408 up_read(&rbd_dev->header_rwsem); 3409 3410 if (offset + length > mapping_size) { 3411 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3412 length, mapping_size); 3413 result = -EIO; 3414 goto err_rq; 3415 } 3416 3417 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 3418 snapc); 3419 if (!img_request) { 3420 result = -ENOMEM; 3421 goto err_rq; 3422 } 3423 img_request->rq = rq; 3424 3425 if (op_type == OBJ_OP_DISCARD) 3426 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 3427 NULL); 3428 else 3429 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3430 rq->bio); 3431 if (result) 3432 goto err_img_request; 3433 3434 result = rbd_img_request_submit(img_request); 3435 if (result) 3436 goto err_img_request; 3437 3438 return; 3439 3440 err_img_request: 3441 rbd_img_request_put(img_request); 3442 err_rq: 3443 if (result) 3444 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3445 obj_op_name(op_type), length, offset, result); 3446 ceph_put_snap_context(snapc); 3447 err: 3448 blk_mq_end_request(rq, result); 3449 } 3450 3451 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 3452 const struct blk_mq_queue_data *bd) 3453 { 3454 struct request *rq = bd->rq; 3455 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3456 3457 queue_work(rbd_wq, work); 3458 return BLK_MQ_RQ_QUEUE_OK; 3459 } 3460 3461 /* 3462 * a queue callback. Makes sure that we don't create a bio that spans across 3463 * multiple osd objects. One exception would be with a single page bios, 3464 * which we handle later at bio_chain_clone_range() 3465 */ 3466 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 3467 struct bio_vec *bvec) 3468 { 3469 struct rbd_device *rbd_dev = q->queuedata; 3470 sector_t sector_offset; 3471 sector_t sectors_per_obj; 3472 sector_t obj_sector_offset; 3473 int ret; 3474 3475 /* 3476 * Find how far into its rbd object the partition-relative 3477 * bio start sector is to offset relative to the enclosing 3478 * device. 3479 */ 3480 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector; 3481 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT); 3482 obj_sector_offset = sector_offset & (sectors_per_obj - 1); 3483 3484 /* 3485 * Compute the number of bytes from that offset to the end 3486 * of the object. Account for what's already used by the bio. 3487 */ 3488 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT; 3489 if (ret > bmd->bi_size) 3490 ret -= bmd->bi_size; 3491 else 3492 ret = 0; 3493 3494 /* 3495 * Don't send back more than was asked for. And if the bio 3496 * was empty, let the whole thing through because: "Note 3497 * that a block device *must* allow a single page to be 3498 * added to an empty bio." 3499 */ 3500 rbd_assert(bvec->bv_len <= PAGE_SIZE); 3501 if (ret > (int) bvec->bv_len || !bmd->bi_size) 3502 ret = (int) bvec->bv_len; 3503 3504 return ret; 3505 } 3506 3507 static void rbd_free_disk(struct rbd_device *rbd_dev) 3508 { 3509 struct gendisk *disk = rbd_dev->disk; 3510 3511 if (!disk) 3512 return; 3513 3514 rbd_dev->disk = NULL; 3515 if (disk->flags & GENHD_FL_UP) { 3516 del_gendisk(disk); 3517 if (disk->queue) 3518 blk_cleanup_queue(disk->queue); 3519 blk_mq_free_tag_set(&rbd_dev->tag_set); 3520 } 3521 put_disk(disk); 3522 } 3523 3524 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3525 const char *object_name, 3526 u64 offset, u64 length, void *buf) 3527 3528 { 3529 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3530 struct rbd_obj_request *obj_request; 3531 struct page **pages = NULL; 3532 u32 page_count; 3533 size_t size; 3534 int ret; 3535 3536 page_count = (u32) calc_pages_for(offset, length); 3537 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3538 if (IS_ERR(pages)) 3539 return PTR_ERR(pages); 3540 3541 ret = -ENOMEM; 3542 obj_request = rbd_obj_request_create(object_name, offset, length, 3543 OBJ_REQUEST_PAGES); 3544 if (!obj_request) 3545 goto out; 3546 3547 obj_request->pages = pages; 3548 obj_request->page_count = page_count; 3549 3550 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3551 obj_request); 3552 if (!obj_request->osd_req) 3553 goto out; 3554 3555 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3556 offset, length, 0, 0); 3557 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3558 obj_request->pages, 3559 obj_request->length, 3560 obj_request->offset & ~PAGE_MASK, 3561 false, false); 3562 rbd_osd_req_format_read(obj_request); 3563 3564 ret = rbd_obj_request_submit(osdc, obj_request); 3565 if (ret) 3566 goto out; 3567 ret = rbd_obj_request_wait(obj_request); 3568 if (ret) 3569 goto out; 3570 3571 ret = obj_request->result; 3572 if (ret < 0) 3573 goto out; 3574 3575 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3576 size = (size_t) obj_request->xferred; 3577 ceph_copy_from_page_vector(pages, buf, 0, size); 3578 rbd_assert(size <= (size_t)INT_MAX); 3579 ret = (int)size; 3580 out: 3581 if (obj_request) 3582 rbd_obj_request_put(obj_request); 3583 else 3584 ceph_release_page_vector(pages, page_count); 3585 3586 return ret; 3587 } 3588 3589 /* 3590 * Read the complete header for the given rbd device. On successful 3591 * return, the rbd_dev->header field will contain up-to-date 3592 * information about the image. 3593 */ 3594 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3595 { 3596 struct rbd_image_header_ondisk *ondisk = NULL; 3597 u32 snap_count = 0; 3598 u64 names_size = 0; 3599 u32 want_count; 3600 int ret; 3601 3602 /* 3603 * The complete header will include an array of its 64-bit 3604 * snapshot ids, followed by the names of those snapshots as 3605 * a contiguous block of NUL-terminated strings. Note that 3606 * the number of snapshots could change by the time we read 3607 * it in, in which case we re-read it. 3608 */ 3609 do { 3610 size_t size; 3611 3612 kfree(ondisk); 3613 3614 size = sizeof (*ondisk); 3615 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3616 size += names_size; 3617 ondisk = kmalloc(size, GFP_KERNEL); 3618 if (!ondisk) 3619 return -ENOMEM; 3620 3621 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3622 0, size, ondisk); 3623 if (ret < 0) 3624 goto out; 3625 if ((size_t)ret < size) { 3626 ret = -ENXIO; 3627 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3628 size, ret); 3629 goto out; 3630 } 3631 if (!rbd_dev_ondisk_valid(ondisk)) { 3632 ret = -ENXIO; 3633 rbd_warn(rbd_dev, "invalid header"); 3634 goto out; 3635 } 3636 3637 names_size = le64_to_cpu(ondisk->snap_names_len); 3638 want_count = snap_count; 3639 snap_count = le32_to_cpu(ondisk->snap_count); 3640 } while (snap_count != want_count); 3641 3642 ret = rbd_header_from_disk(rbd_dev, ondisk); 3643 out: 3644 kfree(ondisk); 3645 3646 return ret; 3647 } 3648 3649 /* 3650 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3651 * has disappeared from the (just updated) snapshot context. 3652 */ 3653 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3654 { 3655 u64 snap_id; 3656 3657 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3658 return; 3659 3660 snap_id = rbd_dev->spec->snap_id; 3661 if (snap_id == CEPH_NOSNAP) 3662 return; 3663 3664 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3665 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3666 } 3667 3668 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3669 { 3670 sector_t size; 3671 bool removing; 3672 3673 /* 3674 * Don't hold the lock while doing disk operations, 3675 * or lock ordering will conflict with the bdev mutex via: 3676 * rbd_add() -> blkdev_get() -> rbd_open() 3677 */ 3678 spin_lock_irq(&rbd_dev->lock); 3679 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3680 spin_unlock_irq(&rbd_dev->lock); 3681 /* 3682 * If the device is being removed, rbd_dev->disk has 3683 * been destroyed, so don't try to update its size 3684 */ 3685 if (!removing) { 3686 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3687 dout("setting size to %llu sectors", (unsigned long long)size); 3688 set_capacity(rbd_dev->disk, size); 3689 revalidate_disk(rbd_dev->disk); 3690 } 3691 } 3692 3693 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3694 { 3695 u64 mapping_size; 3696 int ret; 3697 3698 down_write(&rbd_dev->header_rwsem); 3699 mapping_size = rbd_dev->mapping.size; 3700 3701 ret = rbd_dev_header_info(rbd_dev); 3702 if (ret) 3703 goto out; 3704 3705 /* 3706 * If there is a parent, see if it has disappeared due to the 3707 * mapped image getting flattened. 3708 */ 3709 if (rbd_dev->parent) { 3710 ret = rbd_dev_v2_parent_info(rbd_dev); 3711 if (ret) 3712 goto out; 3713 } 3714 3715 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3716 rbd_dev->mapping.size = rbd_dev->header.image_size; 3717 } else { 3718 /* validate mapped snapshot's EXISTS flag */ 3719 rbd_exists_validate(rbd_dev); 3720 } 3721 3722 out: 3723 up_write(&rbd_dev->header_rwsem); 3724 if (!ret && mapping_size != rbd_dev->mapping.size) 3725 rbd_dev_update_size(rbd_dev); 3726 3727 return ret; 3728 } 3729 3730 static int rbd_init_request(void *data, struct request *rq, 3731 unsigned int hctx_idx, unsigned int request_idx, 3732 unsigned int numa_node) 3733 { 3734 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3735 3736 INIT_WORK(work, rbd_queue_workfn); 3737 return 0; 3738 } 3739 3740 static struct blk_mq_ops rbd_mq_ops = { 3741 .queue_rq = rbd_queue_rq, 3742 .map_queue = blk_mq_map_queue, 3743 .init_request = rbd_init_request, 3744 }; 3745 3746 static int rbd_init_disk(struct rbd_device *rbd_dev) 3747 { 3748 struct gendisk *disk; 3749 struct request_queue *q; 3750 u64 segment_size; 3751 int err; 3752 3753 /* create gendisk info */ 3754 disk = alloc_disk(single_major ? 3755 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3756 RBD_MINORS_PER_MAJOR); 3757 if (!disk) 3758 return -ENOMEM; 3759 3760 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3761 rbd_dev->dev_id); 3762 disk->major = rbd_dev->major; 3763 disk->first_minor = rbd_dev->minor; 3764 if (single_major) 3765 disk->flags |= GENHD_FL_EXT_DEVT; 3766 disk->fops = &rbd_bd_ops; 3767 disk->private_data = rbd_dev; 3768 3769 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 3770 rbd_dev->tag_set.ops = &rbd_mq_ops; 3771 rbd_dev->tag_set.queue_depth = BLKDEV_MAX_RQ; 3772 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 3773 rbd_dev->tag_set.flags = 3774 BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 3775 rbd_dev->tag_set.nr_hw_queues = 1; 3776 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 3777 3778 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 3779 if (err) 3780 goto out_disk; 3781 3782 q = blk_mq_init_queue(&rbd_dev->tag_set); 3783 if (IS_ERR(q)) { 3784 err = PTR_ERR(q); 3785 goto out_tag_set; 3786 } 3787 3788 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 3789 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 3790 3791 /* set io sizes to object size */ 3792 segment_size = rbd_obj_bytes(&rbd_dev->header); 3793 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3794 blk_queue_max_segment_size(q, segment_size); 3795 blk_queue_io_min(q, segment_size); 3796 blk_queue_io_opt(q, segment_size); 3797 3798 /* enable the discard support */ 3799 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 3800 q->limits.discard_granularity = segment_size; 3801 q->limits.discard_alignment = segment_size; 3802 q->limits.max_discard_sectors = segment_size / SECTOR_SIZE; 3803 q->limits.discard_zeroes_data = 1; 3804 3805 blk_queue_merge_bvec(q, rbd_merge_bvec); 3806 disk->queue = q; 3807 3808 q->queuedata = rbd_dev; 3809 3810 rbd_dev->disk = disk; 3811 3812 return 0; 3813 out_tag_set: 3814 blk_mq_free_tag_set(&rbd_dev->tag_set); 3815 out_disk: 3816 put_disk(disk); 3817 return err; 3818 } 3819 3820 /* 3821 sysfs 3822 */ 3823 3824 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3825 { 3826 return container_of(dev, struct rbd_device, dev); 3827 } 3828 3829 static ssize_t rbd_size_show(struct device *dev, 3830 struct device_attribute *attr, char *buf) 3831 { 3832 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3833 3834 return sprintf(buf, "%llu\n", 3835 (unsigned long long)rbd_dev->mapping.size); 3836 } 3837 3838 /* 3839 * Note this shows the features for whatever's mapped, which is not 3840 * necessarily the base image. 3841 */ 3842 static ssize_t rbd_features_show(struct device *dev, 3843 struct device_attribute *attr, char *buf) 3844 { 3845 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3846 3847 return sprintf(buf, "0x%016llx\n", 3848 (unsigned long long)rbd_dev->mapping.features); 3849 } 3850 3851 static ssize_t rbd_major_show(struct device *dev, 3852 struct device_attribute *attr, char *buf) 3853 { 3854 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3855 3856 if (rbd_dev->major) 3857 return sprintf(buf, "%d\n", rbd_dev->major); 3858 3859 return sprintf(buf, "(none)\n"); 3860 } 3861 3862 static ssize_t rbd_minor_show(struct device *dev, 3863 struct device_attribute *attr, char *buf) 3864 { 3865 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3866 3867 return sprintf(buf, "%d\n", rbd_dev->minor); 3868 } 3869 3870 static ssize_t rbd_client_id_show(struct device *dev, 3871 struct device_attribute *attr, char *buf) 3872 { 3873 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3874 3875 return sprintf(buf, "client%lld\n", 3876 ceph_client_id(rbd_dev->rbd_client->client)); 3877 } 3878 3879 static ssize_t rbd_pool_show(struct device *dev, 3880 struct device_attribute *attr, char *buf) 3881 { 3882 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3883 3884 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3885 } 3886 3887 static ssize_t rbd_pool_id_show(struct device *dev, 3888 struct device_attribute *attr, char *buf) 3889 { 3890 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3891 3892 return sprintf(buf, "%llu\n", 3893 (unsigned long long) rbd_dev->spec->pool_id); 3894 } 3895 3896 static ssize_t rbd_name_show(struct device *dev, 3897 struct device_attribute *attr, char *buf) 3898 { 3899 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3900 3901 if (rbd_dev->spec->image_name) 3902 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3903 3904 return sprintf(buf, "(unknown)\n"); 3905 } 3906 3907 static ssize_t rbd_image_id_show(struct device *dev, 3908 struct device_attribute *attr, char *buf) 3909 { 3910 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3911 3912 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3913 } 3914 3915 /* 3916 * Shows the name of the currently-mapped snapshot (or 3917 * RBD_SNAP_HEAD_NAME for the base image). 3918 */ 3919 static ssize_t rbd_snap_show(struct device *dev, 3920 struct device_attribute *attr, 3921 char *buf) 3922 { 3923 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3924 3925 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3926 } 3927 3928 /* 3929 * For a v2 image, shows the chain of parent images, separated by empty 3930 * lines. For v1 images or if there is no parent, shows "(no parent 3931 * image)". 3932 */ 3933 static ssize_t rbd_parent_show(struct device *dev, 3934 struct device_attribute *attr, 3935 char *buf) 3936 { 3937 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3938 ssize_t count = 0; 3939 3940 if (!rbd_dev->parent) 3941 return sprintf(buf, "(no parent image)\n"); 3942 3943 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 3944 struct rbd_spec *spec = rbd_dev->parent_spec; 3945 3946 count += sprintf(&buf[count], "%s" 3947 "pool_id %llu\npool_name %s\n" 3948 "image_id %s\nimage_name %s\n" 3949 "snap_id %llu\nsnap_name %s\n" 3950 "overlap %llu\n", 3951 !count ? "" : "\n", /* first? */ 3952 spec->pool_id, spec->pool_name, 3953 spec->image_id, spec->image_name ?: "(unknown)", 3954 spec->snap_id, spec->snap_name, 3955 rbd_dev->parent_overlap); 3956 } 3957 3958 return count; 3959 } 3960 3961 static ssize_t rbd_image_refresh(struct device *dev, 3962 struct device_attribute *attr, 3963 const char *buf, 3964 size_t size) 3965 { 3966 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3967 int ret; 3968 3969 ret = rbd_dev_refresh(rbd_dev); 3970 if (ret) 3971 return ret; 3972 3973 return size; 3974 } 3975 3976 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3977 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3978 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3979 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3980 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3981 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3982 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3983 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3984 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3985 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3986 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3987 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3988 3989 static struct attribute *rbd_attrs[] = { 3990 &dev_attr_size.attr, 3991 &dev_attr_features.attr, 3992 &dev_attr_major.attr, 3993 &dev_attr_minor.attr, 3994 &dev_attr_client_id.attr, 3995 &dev_attr_pool.attr, 3996 &dev_attr_pool_id.attr, 3997 &dev_attr_name.attr, 3998 &dev_attr_image_id.attr, 3999 &dev_attr_current_snap.attr, 4000 &dev_attr_parent.attr, 4001 &dev_attr_refresh.attr, 4002 NULL 4003 }; 4004 4005 static struct attribute_group rbd_attr_group = { 4006 .attrs = rbd_attrs, 4007 }; 4008 4009 static const struct attribute_group *rbd_attr_groups[] = { 4010 &rbd_attr_group, 4011 NULL 4012 }; 4013 4014 static void rbd_sysfs_dev_release(struct device *dev) 4015 { 4016 } 4017 4018 static struct device_type rbd_device_type = { 4019 .name = "rbd", 4020 .groups = rbd_attr_groups, 4021 .release = rbd_sysfs_dev_release, 4022 }; 4023 4024 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4025 { 4026 kref_get(&spec->kref); 4027 4028 return spec; 4029 } 4030 4031 static void rbd_spec_free(struct kref *kref); 4032 static void rbd_spec_put(struct rbd_spec *spec) 4033 { 4034 if (spec) 4035 kref_put(&spec->kref, rbd_spec_free); 4036 } 4037 4038 static struct rbd_spec *rbd_spec_alloc(void) 4039 { 4040 struct rbd_spec *spec; 4041 4042 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4043 if (!spec) 4044 return NULL; 4045 4046 spec->pool_id = CEPH_NOPOOL; 4047 spec->snap_id = CEPH_NOSNAP; 4048 kref_init(&spec->kref); 4049 4050 return spec; 4051 } 4052 4053 static void rbd_spec_free(struct kref *kref) 4054 { 4055 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4056 4057 kfree(spec->pool_name); 4058 kfree(spec->image_id); 4059 kfree(spec->image_name); 4060 kfree(spec->snap_name); 4061 kfree(spec); 4062 } 4063 4064 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4065 struct rbd_spec *spec) 4066 { 4067 struct rbd_device *rbd_dev; 4068 4069 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 4070 if (!rbd_dev) 4071 return NULL; 4072 4073 spin_lock_init(&rbd_dev->lock); 4074 rbd_dev->flags = 0; 4075 atomic_set(&rbd_dev->parent_ref, 0); 4076 INIT_LIST_HEAD(&rbd_dev->node); 4077 init_rwsem(&rbd_dev->header_rwsem); 4078 4079 rbd_dev->spec = spec; 4080 rbd_dev->rbd_client = rbdc; 4081 4082 /* Initialize the layout used for all rbd requests */ 4083 4084 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4085 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 4086 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4087 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 4088 4089 return rbd_dev; 4090 } 4091 4092 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4093 { 4094 rbd_put_client(rbd_dev->rbd_client); 4095 rbd_spec_put(rbd_dev->spec); 4096 kfree(rbd_dev); 4097 } 4098 4099 /* 4100 * Get the size and object order for an image snapshot, or if 4101 * snap_id is CEPH_NOSNAP, gets this information for the base 4102 * image. 4103 */ 4104 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4105 u8 *order, u64 *snap_size) 4106 { 4107 __le64 snapid = cpu_to_le64(snap_id); 4108 int ret; 4109 struct { 4110 u8 order; 4111 __le64 size; 4112 } __attribute__ ((packed)) size_buf = { 0 }; 4113 4114 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4115 "rbd", "get_size", 4116 &snapid, sizeof (snapid), 4117 &size_buf, sizeof (size_buf)); 4118 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4119 if (ret < 0) 4120 return ret; 4121 if (ret < sizeof (size_buf)) 4122 return -ERANGE; 4123 4124 if (order) { 4125 *order = size_buf.order; 4126 dout(" order %u", (unsigned int)*order); 4127 } 4128 *snap_size = le64_to_cpu(size_buf.size); 4129 4130 dout(" snap_id 0x%016llx snap_size = %llu\n", 4131 (unsigned long long)snap_id, 4132 (unsigned long long)*snap_size); 4133 4134 return 0; 4135 } 4136 4137 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4138 { 4139 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4140 &rbd_dev->header.obj_order, 4141 &rbd_dev->header.image_size); 4142 } 4143 4144 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4145 { 4146 void *reply_buf; 4147 int ret; 4148 void *p; 4149 4150 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4151 if (!reply_buf) 4152 return -ENOMEM; 4153 4154 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4155 "rbd", "get_object_prefix", NULL, 0, 4156 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4157 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4158 if (ret < 0) 4159 goto out; 4160 4161 p = reply_buf; 4162 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4163 p + ret, NULL, GFP_NOIO); 4164 ret = 0; 4165 4166 if (IS_ERR(rbd_dev->header.object_prefix)) { 4167 ret = PTR_ERR(rbd_dev->header.object_prefix); 4168 rbd_dev->header.object_prefix = NULL; 4169 } else { 4170 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4171 } 4172 out: 4173 kfree(reply_buf); 4174 4175 return ret; 4176 } 4177 4178 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4179 u64 *snap_features) 4180 { 4181 __le64 snapid = cpu_to_le64(snap_id); 4182 struct { 4183 __le64 features; 4184 __le64 incompat; 4185 } __attribute__ ((packed)) features_buf = { 0 }; 4186 u64 incompat; 4187 int ret; 4188 4189 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4190 "rbd", "get_features", 4191 &snapid, sizeof (snapid), 4192 &features_buf, sizeof (features_buf)); 4193 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4194 if (ret < 0) 4195 return ret; 4196 if (ret < sizeof (features_buf)) 4197 return -ERANGE; 4198 4199 incompat = le64_to_cpu(features_buf.incompat); 4200 if (incompat & ~RBD_FEATURES_SUPPORTED) 4201 return -ENXIO; 4202 4203 *snap_features = le64_to_cpu(features_buf.features); 4204 4205 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4206 (unsigned long long)snap_id, 4207 (unsigned long long)*snap_features, 4208 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4209 4210 return 0; 4211 } 4212 4213 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4214 { 4215 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4216 &rbd_dev->header.features); 4217 } 4218 4219 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4220 { 4221 struct rbd_spec *parent_spec; 4222 size_t size; 4223 void *reply_buf = NULL; 4224 __le64 snapid; 4225 void *p; 4226 void *end; 4227 u64 pool_id; 4228 char *image_id; 4229 u64 snap_id; 4230 u64 overlap; 4231 int ret; 4232 4233 parent_spec = rbd_spec_alloc(); 4234 if (!parent_spec) 4235 return -ENOMEM; 4236 4237 size = sizeof (__le64) + /* pool_id */ 4238 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4239 sizeof (__le64) + /* snap_id */ 4240 sizeof (__le64); /* overlap */ 4241 reply_buf = kmalloc(size, GFP_KERNEL); 4242 if (!reply_buf) { 4243 ret = -ENOMEM; 4244 goto out_err; 4245 } 4246 4247 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4248 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4249 "rbd", "get_parent", 4250 &snapid, sizeof (snapid), 4251 reply_buf, size); 4252 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4253 if (ret < 0) 4254 goto out_err; 4255 4256 p = reply_buf; 4257 end = reply_buf + ret; 4258 ret = -ERANGE; 4259 ceph_decode_64_safe(&p, end, pool_id, out_err); 4260 if (pool_id == CEPH_NOPOOL) { 4261 /* 4262 * Either the parent never existed, or we have 4263 * record of it but the image got flattened so it no 4264 * longer has a parent. When the parent of a 4265 * layered image disappears we immediately set the 4266 * overlap to 0. The effect of this is that all new 4267 * requests will be treated as if the image had no 4268 * parent. 4269 */ 4270 if (rbd_dev->parent_overlap) { 4271 rbd_dev->parent_overlap = 0; 4272 rbd_dev_parent_put(rbd_dev); 4273 pr_info("%s: clone image has been flattened\n", 4274 rbd_dev->disk->disk_name); 4275 } 4276 4277 goto out; /* No parent? No problem. */ 4278 } 4279 4280 /* The ceph file layout needs to fit pool id in 32 bits */ 4281 4282 ret = -EIO; 4283 if (pool_id > (u64)U32_MAX) { 4284 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4285 (unsigned long long)pool_id, U32_MAX); 4286 goto out_err; 4287 } 4288 4289 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4290 if (IS_ERR(image_id)) { 4291 ret = PTR_ERR(image_id); 4292 goto out_err; 4293 } 4294 ceph_decode_64_safe(&p, end, snap_id, out_err); 4295 ceph_decode_64_safe(&p, end, overlap, out_err); 4296 4297 /* 4298 * The parent won't change (except when the clone is 4299 * flattened, already handled that). So we only need to 4300 * record the parent spec we have not already done so. 4301 */ 4302 if (!rbd_dev->parent_spec) { 4303 parent_spec->pool_id = pool_id; 4304 parent_spec->image_id = image_id; 4305 parent_spec->snap_id = snap_id; 4306 rbd_dev->parent_spec = parent_spec; 4307 parent_spec = NULL; /* rbd_dev now owns this */ 4308 } else { 4309 kfree(image_id); 4310 } 4311 4312 /* 4313 * We always update the parent overlap. If it's zero we issue 4314 * a warning, as we will proceed as if there was no parent. 4315 */ 4316 if (!overlap) { 4317 if (parent_spec) { 4318 /* refresh, careful to warn just once */ 4319 if (rbd_dev->parent_overlap) 4320 rbd_warn(rbd_dev, 4321 "clone now standalone (overlap became 0)"); 4322 } else { 4323 /* initial probe */ 4324 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 4325 } 4326 } 4327 rbd_dev->parent_overlap = overlap; 4328 4329 out: 4330 ret = 0; 4331 out_err: 4332 kfree(reply_buf); 4333 rbd_spec_put(parent_spec); 4334 4335 return ret; 4336 } 4337 4338 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4339 { 4340 struct { 4341 __le64 stripe_unit; 4342 __le64 stripe_count; 4343 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4344 size_t size = sizeof (striping_info_buf); 4345 void *p; 4346 u64 obj_size; 4347 u64 stripe_unit; 4348 u64 stripe_count; 4349 int ret; 4350 4351 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4352 "rbd", "get_stripe_unit_count", NULL, 0, 4353 (char *)&striping_info_buf, size); 4354 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4355 if (ret < 0) 4356 return ret; 4357 if (ret < size) 4358 return -ERANGE; 4359 4360 /* 4361 * We don't actually support the "fancy striping" feature 4362 * (STRIPINGV2) yet, but if the striping sizes are the 4363 * defaults the behavior is the same as before. So find 4364 * out, and only fail if the image has non-default values. 4365 */ 4366 ret = -EINVAL; 4367 obj_size = (u64)1 << rbd_dev->header.obj_order; 4368 p = &striping_info_buf; 4369 stripe_unit = ceph_decode_64(&p); 4370 if (stripe_unit != obj_size) { 4371 rbd_warn(rbd_dev, "unsupported stripe unit " 4372 "(got %llu want %llu)", 4373 stripe_unit, obj_size); 4374 return -EINVAL; 4375 } 4376 stripe_count = ceph_decode_64(&p); 4377 if (stripe_count != 1) { 4378 rbd_warn(rbd_dev, "unsupported stripe count " 4379 "(got %llu want 1)", stripe_count); 4380 return -EINVAL; 4381 } 4382 rbd_dev->header.stripe_unit = stripe_unit; 4383 rbd_dev->header.stripe_count = stripe_count; 4384 4385 return 0; 4386 } 4387 4388 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4389 { 4390 size_t image_id_size; 4391 char *image_id; 4392 void *p; 4393 void *end; 4394 size_t size; 4395 void *reply_buf = NULL; 4396 size_t len = 0; 4397 char *image_name = NULL; 4398 int ret; 4399 4400 rbd_assert(!rbd_dev->spec->image_name); 4401 4402 len = strlen(rbd_dev->spec->image_id); 4403 image_id_size = sizeof (__le32) + len; 4404 image_id = kmalloc(image_id_size, GFP_KERNEL); 4405 if (!image_id) 4406 return NULL; 4407 4408 p = image_id; 4409 end = image_id + image_id_size; 4410 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4411 4412 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4413 reply_buf = kmalloc(size, GFP_KERNEL); 4414 if (!reply_buf) 4415 goto out; 4416 4417 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4418 "rbd", "dir_get_name", 4419 image_id, image_id_size, 4420 reply_buf, size); 4421 if (ret < 0) 4422 goto out; 4423 p = reply_buf; 4424 end = reply_buf + ret; 4425 4426 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4427 if (IS_ERR(image_name)) 4428 image_name = NULL; 4429 else 4430 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4431 out: 4432 kfree(reply_buf); 4433 kfree(image_id); 4434 4435 return image_name; 4436 } 4437 4438 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4439 { 4440 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4441 const char *snap_name; 4442 u32 which = 0; 4443 4444 /* Skip over names until we find the one we are looking for */ 4445 4446 snap_name = rbd_dev->header.snap_names; 4447 while (which < snapc->num_snaps) { 4448 if (!strcmp(name, snap_name)) 4449 return snapc->snaps[which]; 4450 snap_name += strlen(snap_name) + 1; 4451 which++; 4452 } 4453 return CEPH_NOSNAP; 4454 } 4455 4456 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4457 { 4458 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4459 u32 which; 4460 bool found = false; 4461 u64 snap_id; 4462 4463 for (which = 0; !found && which < snapc->num_snaps; which++) { 4464 const char *snap_name; 4465 4466 snap_id = snapc->snaps[which]; 4467 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4468 if (IS_ERR(snap_name)) { 4469 /* ignore no-longer existing snapshots */ 4470 if (PTR_ERR(snap_name) == -ENOENT) 4471 continue; 4472 else 4473 break; 4474 } 4475 found = !strcmp(name, snap_name); 4476 kfree(snap_name); 4477 } 4478 return found ? snap_id : CEPH_NOSNAP; 4479 } 4480 4481 /* 4482 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4483 * no snapshot by that name is found, or if an error occurs. 4484 */ 4485 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4486 { 4487 if (rbd_dev->image_format == 1) 4488 return rbd_v1_snap_id_by_name(rbd_dev, name); 4489 4490 return rbd_v2_snap_id_by_name(rbd_dev, name); 4491 } 4492 4493 /* 4494 * An image being mapped will have everything but the snap id. 4495 */ 4496 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4497 { 4498 struct rbd_spec *spec = rbd_dev->spec; 4499 4500 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4501 rbd_assert(spec->image_id && spec->image_name); 4502 rbd_assert(spec->snap_name); 4503 4504 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4505 u64 snap_id; 4506 4507 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4508 if (snap_id == CEPH_NOSNAP) 4509 return -ENOENT; 4510 4511 spec->snap_id = snap_id; 4512 } else { 4513 spec->snap_id = CEPH_NOSNAP; 4514 } 4515 4516 return 0; 4517 } 4518 4519 /* 4520 * A parent image will have all ids but none of the names. 4521 * 4522 * All names in an rbd spec are dynamically allocated. It's OK if we 4523 * can't figure out the name for an image id. 4524 */ 4525 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4526 { 4527 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4528 struct rbd_spec *spec = rbd_dev->spec; 4529 const char *pool_name; 4530 const char *image_name; 4531 const char *snap_name; 4532 int ret; 4533 4534 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4535 rbd_assert(spec->image_id); 4536 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4537 4538 /* Get the pool name; we have to make our own copy of this */ 4539 4540 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4541 if (!pool_name) { 4542 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4543 return -EIO; 4544 } 4545 pool_name = kstrdup(pool_name, GFP_KERNEL); 4546 if (!pool_name) 4547 return -ENOMEM; 4548 4549 /* Fetch the image name; tolerate failure here */ 4550 4551 image_name = rbd_dev_image_name(rbd_dev); 4552 if (!image_name) 4553 rbd_warn(rbd_dev, "unable to get image name"); 4554 4555 /* Fetch the snapshot name */ 4556 4557 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4558 if (IS_ERR(snap_name)) { 4559 ret = PTR_ERR(snap_name); 4560 goto out_err; 4561 } 4562 4563 spec->pool_name = pool_name; 4564 spec->image_name = image_name; 4565 spec->snap_name = snap_name; 4566 4567 return 0; 4568 4569 out_err: 4570 kfree(image_name); 4571 kfree(pool_name); 4572 return ret; 4573 } 4574 4575 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4576 { 4577 size_t size; 4578 int ret; 4579 void *reply_buf; 4580 void *p; 4581 void *end; 4582 u64 seq; 4583 u32 snap_count; 4584 struct ceph_snap_context *snapc; 4585 u32 i; 4586 4587 /* 4588 * We'll need room for the seq value (maximum snapshot id), 4589 * snapshot count, and array of that many snapshot ids. 4590 * For now we have a fixed upper limit on the number we're 4591 * prepared to receive. 4592 */ 4593 size = sizeof (__le64) + sizeof (__le32) + 4594 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4595 reply_buf = kzalloc(size, GFP_KERNEL); 4596 if (!reply_buf) 4597 return -ENOMEM; 4598 4599 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4600 "rbd", "get_snapcontext", NULL, 0, 4601 reply_buf, size); 4602 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4603 if (ret < 0) 4604 goto out; 4605 4606 p = reply_buf; 4607 end = reply_buf + ret; 4608 ret = -ERANGE; 4609 ceph_decode_64_safe(&p, end, seq, out); 4610 ceph_decode_32_safe(&p, end, snap_count, out); 4611 4612 /* 4613 * Make sure the reported number of snapshot ids wouldn't go 4614 * beyond the end of our buffer. But before checking that, 4615 * make sure the computed size of the snapshot context we 4616 * allocate is representable in a size_t. 4617 */ 4618 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4619 / sizeof (u64)) { 4620 ret = -EINVAL; 4621 goto out; 4622 } 4623 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4624 goto out; 4625 ret = 0; 4626 4627 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4628 if (!snapc) { 4629 ret = -ENOMEM; 4630 goto out; 4631 } 4632 snapc->seq = seq; 4633 for (i = 0; i < snap_count; i++) 4634 snapc->snaps[i] = ceph_decode_64(&p); 4635 4636 ceph_put_snap_context(rbd_dev->header.snapc); 4637 rbd_dev->header.snapc = snapc; 4638 4639 dout(" snap context seq = %llu, snap_count = %u\n", 4640 (unsigned long long)seq, (unsigned int)snap_count); 4641 out: 4642 kfree(reply_buf); 4643 4644 return ret; 4645 } 4646 4647 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4648 u64 snap_id) 4649 { 4650 size_t size; 4651 void *reply_buf; 4652 __le64 snapid; 4653 int ret; 4654 void *p; 4655 void *end; 4656 char *snap_name; 4657 4658 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4659 reply_buf = kmalloc(size, GFP_KERNEL); 4660 if (!reply_buf) 4661 return ERR_PTR(-ENOMEM); 4662 4663 snapid = cpu_to_le64(snap_id); 4664 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4665 "rbd", "get_snapshot_name", 4666 &snapid, sizeof (snapid), 4667 reply_buf, size); 4668 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4669 if (ret < 0) { 4670 snap_name = ERR_PTR(ret); 4671 goto out; 4672 } 4673 4674 p = reply_buf; 4675 end = reply_buf + ret; 4676 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4677 if (IS_ERR(snap_name)) 4678 goto out; 4679 4680 dout(" snap_id 0x%016llx snap_name = %s\n", 4681 (unsigned long long)snap_id, snap_name); 4682 out: 4683 kfree(reply_buf); 4684 4685 return snap_name; 4686 } 4687 4688 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4689 { 4690 bool first_time = rbd_dev->header.object_prefix == NULL; 4691 int ret; 4692 4693 ret = rbd_dev_v2_image_size(rbd_dev); 4694 if (ret) 4695 return ret; 4696 4697 if (first_time) { 4698 ret = rbd_dev_v2_header_onetime(rbd_dev); 4699 if (ret) 4700 return ret; 4701 } 4702 4703 ret = rbd_dev_v2_snap_context(rbd_dev); 4704 dout("rbd_dev_v2_snap_context returned %d\n", ret); 4705 4706 return ret; 4707 } 4708 4709 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 4710 { 4711 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4712 4713 if (rbd_dev->image_format == 1) 4714 return rbd_dev_v1_header_info(rbd_dev); 4715 4716 return rbd_dev_v2_header_info(rbd_dev); 4717 } 4718 4719 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4720 { 4721 struct device *dev; 4722 int ret; 4723 4724 dev = &rbd_dev->dev; 4725 dev->bus = &rbd_bus_type; 4726 dev->type = &rbd_device_type; 4727 dev->parent = &rbd_root_dev; 4728 dev->release = rbd_dev_device_release; 4729 dev_set_name(dev, "%d", rbd_dev->dev_id); 4730 ret = device_register(dev); 4731 4732 return ret; 4733 } 4734 4735 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4736 { 4737 device_unregister(&rbd_dev->dev); 4738 } 4739 4740 /* 4741 * Get a unique rbd identifier for the given new rbd_dev, and add 4742 * the rbd_dev to the global list. 4743 */ 4744 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4745 { 4746 int new_dev_id; 4747 4748 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4749 0, minor_to_rbd_dev_id(1 << MINORBITS), 4750 GFP_KERNEL); 4751 if (new_dev_id < 0) 4752 return new_dev_id; 4753 4754 rbd_dev->dev_id = new_dev_id; 4755 4756 spin_lock(&rbd_dev_list_lock); 4757 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4758 spin_unlock(&rbd_dev_list_lock); 4759 4760 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4761 4762 return 0; 4763 } 4764 4765 /* 4766 * Remove an rbd_dev from the global list, and record that its 4767 * identifier is no longer in use. 4768 */ 4769 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4770 { 4771 spin_lock(&rbd_dev_list_lock); 4772 list_del_init(&rbd_dev->node); 4773 spin_unlock(&rbd_dev_list_lock); 4774 4775 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4776 4777 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4778 } 4779 4780 /* 4781 * Skips over white space at *buf, and updates *buf to point to the 4782 * first found non-space character (if any). Returns the length of 4783 * the token (string of non-white space characters) found. Note 4784 * that *buf must be terminated with '\0'. 4785 */ 4786 static inline size_t next_token(const char **buf) 4787 { 4788 /* 4789 * These are the characters that produce nonzero for 4790 * isspace() in the "C" and "POSIX" locales. 4791 */ 4792 const char *spaces = " \f\n\r\t\v"; 4793 4794 *buf += strspn(*buf, spaces); /* Find start of token */ 4795 4796 return strcspn(*buf, spaces); /* Return token length */ 4797 } 4798 4799 /* 4800 * Finds the next token in *buf, dynamically allocates a buffer big 4801 * enough to hold a copy of it, and copies the token into the new 4802 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4803 * that a duplicate buffer is created even for a zero-length token. 4804 * 4805 * Returns a pointer to the newly-allocated duplicate, or a null 4806 * pointer if memory for the duplicate was not available. If 4807 * the lenp argument is a non-null pointer, the length of the token 4808 * (not including the '\0') is returned in *lenp. 4809 * 4810 * If successful, the *buf pointer will be updated to point beyond 4811 * the end of the found token. 4812 * 4813 * Note: uses GFP_KERNEL for allocation. 4814 */ 4815 static inline char *dup_token(const char **buf, size_t *lenp) 4816 { 4817 char *dup; 4818 size_t len; 4819 4820 len = next_token(buf); 4821 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4822 if (!dup) 4823 return NULL; 4824 *(dup + len) = '\0'; 4825 *buf += len; 4826 4827 if (lenp) 4828 *lenp = len; 4829 4830 return dup; 4831 } 4832 4833 /* 4834 * Parse the options provided for an "rbd add" (i.e., rbd image 4835 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4836 * and the data written is passed here via a NUL-terminated buffer. 4837 * Returns 0 if successful or an error code otherwise. 4838 * 4839 * The information extracted from these options is recorded in 4840 * the other parameters which return dynamically-allocated 4841 * structures: 4842 * ceph_opts 4843 * The address of a pointer that will refer to a ceph options 4844 * structure. Caller must release the returned pointer using 4845 * ceph_destroy_options() when it is no longer needed. 4846 * rbd_opts 4847 * Address of an rbd options pointer. Fully initialized by 4848 * this function; caller must release with kfree(). 4849 * spec 4850 * Address of an rbd image specification pointer. Fully 4851 * initialized by this function based on parsed options. 4852 * Caller must release with rbd_spec_put(). 4853 * 4854 * The options passed take this form: 4855 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4856 * where: 4857 * <mon_addrs> 4858 * A comma-separated list of one or more monitor addresses. 4859 * A monitor address is an ip address, optionally followed 4860 * by a port number (separated by a colon). 4861 * I.e.: ip1[:port1][,ip2[:port2]...] 4862 * <options> 4863 * A comma-separated list of ceph and/or rbd options. 4864 * <pool_name> 4865 * The name of the rados pool containing the rbd image. 4866 * <image_name> 4867 * The name of the image in that pool to map. 4868 * <snap_id> 4869 * An optional snapshot id. If provided, the mapping will 4870 * present data from the image at the time that snapshot was 4871 * created. The image head is used if no snapshot id is 4872 * provided. Snapshot mappings are always read-only. 4873 */ 4874 static int rbd_add_parse_args(const char *buf, 4875 struct ceph_options **ceph_opts, 4876 struct rbd_options **opts, 4877 struct rbd_spec **rbd_spec) 4878 { 4879 size_t len; 4880 char *options; 4881 const char *mon_addrs; 4882 char *snap_name; 4883 size_t mon_addrs_size; 4884 struct rbd_spec *spec = NULL; 4885 struct rbd_options *rbd_opts = NULL; 4886 struct ceph_options *copts; 4887 int ret; 4888 4889 /* The first four tokens are required */ 4890 4891 len = next_token(&buf); 4892 if (!len) { 4893 rbd_warn(NULL, "no monitor address(es) provided"); 4894 return -EINVAL; 4895 } 4896 mon_addrs = buf; 4897 mon_addrs_size = len + 1; 4898 buf += len; 4899 4900 ret = -EINVAL; 4901 options = dup_token(&buf, NULL); 4902 if (!options) 4903 return -ENOMEM; 4904 if (!*options) { 4905 rbd_warn(NULL, "no options provided"); 4906 goto out_err; 4907 } 4908 4909 spec = rbd_spec_alloc(); 4910 if (!spec) 4911 goto out_mem; 4912 4913 spec->pool_name = dup_token(&buf, NULL); 4914 if (!spec->pool_name) 4915 goto out_mem; 4916 if (!*spec->pool_name) { 4917 rbd_warn(NULL, "no pool name provided"); 4918 goto out_err; 4919 } 4920 4921 spec->image_name = dup_token(&buf, NULL); 4922 if (!spec->image_name) 4923 goto out_mem; 4924 if (!*spec->image_name) { 4925 rbd_warn(NULL, "no image name provided"); 4926 goto out_err; 4927 } 4928 4929 /* 4930 * Snapshot name is optional; default is to use "-" 4931 * (indicating the head/no snapshot). 4932 */ 4933 len = next_token(&buf); 4934 if (!len) { 4935 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4936 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4937 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4938 ret = -ENAMETOOLONG; 4939 goto out_err; 4940 } 4941 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4942 if (!snap_name) 4943 goto out_mem; 4944 *(snap_name + len) = '\0'; 4945 spec->snap_name = snap_name; 4946 4947 /* Initialize all rbd options to the defaults */ 4948 4949 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4950 if (!rbd_opts) 4951 goto out_mem; 4952 4953 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4954 4955 copts = ceph_parse_options(options, mon_addrs, 4956 mon_addrs + mon_addrs_size - 1, 4957 parse_rbd_opts_token, rbd_opts); 4958 if (IS_ERR(copts)) { 4959 ret = PTR_ERR(copts); 4960 goto out_err; 4961 } 4962 kfree(options); 4963 4964 *ceph_opts = copts; 4965 *opts = rbd_opts; 4966 *rbd_spec = spec; 4967 4968 return 0; 4969 out_mem: 4970 ret = -ENOMEM; 4971 out_err: 4972 kfree(rbd_opts); 4973 rbd_spec_put(spec); 4974 kfree(options); 4975 4976 return ret; 4977 } 4978 4979 /* 4980 * Return pool id (>= 0) or a negative error code. 4981 */ 4982 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 4983 { 4984 struct ceph_options *opts = rbdc->client->options; 4985 u64 newest_epoch; 4986 int tries = 0; 4987 int ret; 4988 4989 again: 4990 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 4991 if (ret == -ENOENT && tries++ < 1) { 4992 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap", 4993 &newest_epoch); 4994 if (ret < 0) 4995 return ret; 4996 4997 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 4998 ceph_monc_request_next_osdmap(&rbdc->client->monc); 4999 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 5000 newest_epoch, 5001 opts->mount_timeout); 5002 goto again; 5003 } else { 5004 /* the osdmap we have is new enough */ 5005 return -ENOENT; 5006 } 5007 } 5008 5009 return ret; 5010 } 5011 5012 /* 5013 * An rbd format 2 image has a unique identifier, distinct from the 5014 * name given to it by the user. Internally, that identifier is 5015 * what's used to specify the names of objects related to the image. 5016 * 5017 * A special "rbd id" object is used to map an rbd image name to its 5018 * id. If that object doesn't exist, then there is no v2 rbd image 5019 * with the supplied name. 5020 * 5021 * This function will record the given rbd_dev's image_id field if 5022 * it can be determined, and in that case will return 0. If any 5023 * errors occur a negative errno will be returned and the rbd_dev's 5024 * image_id field will be unchanged (and should be NULL). 5025 */ 5026 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5027 { 5028 int ret; 5029 size_t size; 5030 char *object_name; 5031 void *response; 5032 char *image_id; 5033 5034 /* 5035 * When probing a parent image, the image id is already 5036 * known (and the image name likely is not). There's no 5037 * need to fetch the image id again in this case. We 5038 * do still need to set the image format though. 5039 */ 5040 if (rbd_dev->spec->image_id) { 5041 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5042 5043 return 0; 5044 } 5045 5046 /* 5047 * First, see if the format 2 image id file exists, and if 5048 * so, get the image's persistent id from it. 5049 */ 5050 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 5051 object_name = kmalloc(size, GFP_NOIO); 5052 if (!object_name) 5053 return -ENOMEM; 5054 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 5055 dout("rbd id object name is %s\n", object_name); 5056 5057 /* Response will be an encoded string, which includes a length */ 5058 5059 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5060 response = kzalloc(size, GFP_NOIO); 5061 if (!response) { 5062 ret = -ENOMEM; 5063 goto out; 5064 } 5065 5066 /* If it doesn't exist we'll assume it's a format 1 image */ 5067 5068 ret = rbd_obj_method_sync(rbd_dev, object_name, 5069 "rbd", "get_id", NULL, 0, 5070 response, RBD_IMAGE_ID_LEN_MAX); 5071 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5072 if (ret == -ENOENT) { 5073 image_id = kstrdup("", GFP_KERNEL); 5074 ret = image_id ? 0 : -ENOMEM; 5075 if (!ret) 5076 rbd_dev->image_format = 1; 5077 } else if (ret >= 0) { 5078 void *p = response; 5079 5080 image_id = ceph_extract_encoded_string(&p, p + ret, 5081 NULL, GFP_NOIO); 5082 ret = PTR_ERR_OR_ZERO(image_id); 5083 if (!ret) 5084 rbd_dev->image_format = 2; 5085 } 5086 5087 if (!ret) { 5088 rbd_dev->spec->image_id = image_id; 5089 dout("image_id is %s\n", image_id); 5090 } 5091 out: 5092 kfree(response); 5093 kfree(object_name); 5094 5095 return ret; 5096 } 5097 5098 /* 5099 * Undo whatever state changes are made by v1 or v2 header info 5100 * call. 5101 */ 5102 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5103 { 5104 struct rbd_image_header *header; 5105 5106 rbd_dev_parent_put(rbd_dev); 5107 5108 /* Free dynamic fields from the header, then zero it out */ 5109 5110 header = &rbd_dev->header; 5111 ceph_put_snap_context(header->snapc); 5112 kfree(header->snap_sizes); 5113 kfree(header->snap_names); 5114 kfree(header->object_prefix); 5115 memset(header, 0, sizeof (*header)); 5116 } 5117 5118 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5119 { 5120 int ret; 5121 5122 ret = rbd_dev_v2_object_prefix(rbd_dev); 5123 if (ret) 5124 goto out_err; 5125 5126 /* 5127 * Get the and check features for the image. Currently the 5128 * features are assumed to never change. 5129 */ 5130 ret = rbd_dev_v2_features(rbd_dev); 5131 if (ret) 5132 goto out_err; 5133 5134 /* If the image supports fancy striping, get its parameters */ 5135 5136 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5137 ret = rbd_dev_v2_striping_info(rbd_dev); 5138 if (ret < 0) 5139 goto out_err; 5140 } 5141 /* No support for crypto and compression type format 2 images */ 5142 5143 return 0; 5144 out_err: 5145 rbd_dev->header.features = 0; 5146 kfree(rbd_dev->header.object_prefix); 5147 rbd_dev->header.object_prefix = NULL; 5148 5149 return ret; 5150 } 5151 5152 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 5153 { 5154 struct rbd_device *parent = NULL; 5155 struct rbd_spec *parent_spec; 5156 struct rbd_client *rbdc; 5157 int ret; 5158 5159 if (!rbd_dev->parent_spec) 5160 return 0; 5161 /* 5162 * We need to pass a reference to the client and the parent 5163 * spec when creating the parent rbd_dev. Images related by 5164 * parent/child relationships always share both. 5165 */ 5166 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 5167 rbdc = __rbd_get_client(rbd_dev->rbd_client); 5168 5169 ret = -ENOMEM; 5170 parent = rbd_dev_create(rbdc, parent_spec); 5171 if (!parent) 5172 goto out_err; 5173 5174 ret = rbd_dev_image_probe(parent, false); 5175 if (ret < 0) 5176 goto out_err; 5177 rbd_dev->parent = parent; 5178 atomic_set(&rbd_dev->parent_ref, 1); 5179 5180 return 0; 5181 out_err: 5182 if (parent) { 5183 rbd_dev_unparent(rbd_dev); 5184 kfree(rbd_dev->header_name); 5185 rbd_dev_destroy(parent); 5186 } else { 5187 rbd_put_client(rbdc); 5188 rbd_spec_put(parent_spec); 5189 } 5190 5191 return ret; 5192 } 5193 5194 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5195 { 5196 int ret; 5197 5198 /* Get an id and fill in device name. */ 5199 5200 ret = rbd_dev_id_get(rbd_dev); 5201 if (ret) 5202 return ret; 5203 5204 BUILD_BUG_ON(DEV_NAME_LEN 5205 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 5206 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 5207 5208 /* Record our major and minor device numbers. */ 5209 5210 if (!single_major) { 5211 ret = register_blkdev(0, rbd_dev->name); 5212 if (ret < 0) 5213 goto err_out_id; 5214 5215 rbd_dev->major = ret; 5216 rbd_dev->minor = 0; 5217 } else { 5218 rbd_dev->major = rbd_major; 5219 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5220 } 5221 5222 /* Set up the blkdev mapping. */ 5223 5224 ret = rbd_init_disk(rbd_dev); 5225 if (ret) 5226 goto err_out_blkdev; 5227 5228 ret = rbd_dev_mapping_set(rbd_dev); 5229 if (ret) 5230 goto err_out_disk; 5231 5232 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5233 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5234 5235 ret = rbd_bus_add_dev(rbd_dev); 5236 if (ret) 5237 goto err_out_mapping; 5238 5239 /* Everything's ready. Announce the disk to the world. */ 5240 5241 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5242 add_disk(rbd_dev->disk); 5243 5244 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 5245 (unsigned long long) rbd_dev->mapping.size); 5246 5247 return ret; 5248 5249 err_out_mapping: 5250 rbd_dev_mapping_clear(rbd_dev); 5251 err_out_disk: 5252 rbd_free_disk(rbd_dev); 5253 err_out_blkdev: 5254 if (!single_major) 5255 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5256 err_out_id: 5257 rbd_dev_id_put(rbd_dev); 5258 rbd_dev_mapping_clear(rbd_dev); 5259 5260 return ret; 5261 } 5262 5263 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5264 { 5265 struct rbd_spec *spec = rbd_dev->spec; 5266 size_t size; 5267 5268 /* Record the header object name for this rbd image. */ 5269 5270 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5271 5272 if (rbd_dev->image_format == 1) 5273 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 5274 else 5275 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 5276 5277 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 5278 if (!rbd_dev->header_name) 5279 return -ENOMEM; 5280 5281 if (rbd_dev->image_format == 1) 5282 sprintf(rbd_dev->header_name, "%s%s", 5283 spec->image_name, RBD_SUFFIX); 5284 else 5285 sprintf(rbd_dev->header_name, "%s%s", 5286 RBD_HEADER_PREFIX, spec->image_id); 5287 return 0; 5288 } 5289 5290 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5291 { 5292 rbd_dev_unprobe(rbd_dev); 5293 kfree(rbd_dev->header_name); 5294 rbd_dev->header_name = NULL; 5295 rbd_dev->image_format = 0; 5296 kfree(rbd_dev->spec->image_id); 5297 rbd_dev->spec->image_id = NULL; 5298 5299 rbd_dev_destroy(rbd_dev); 5300 } 5301 5302 /* 5303 * Probe for the existence of the header object for the given rbd 5304 * device. If this image is the one being mapped (i.e., not a 5305 * parent), initiate a watch on its header object before using that 5306 * object to get detailed information about the rbd image. 5307 */ 5308 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping) 5309 { 5310 int ret; 5311 5312 /* 5313 * Get the id from the image id object. Unless there's an 5314 * error, rbd_dev->spec->image_id will be filled in with 5315 * a dynamically-allocated string, and rbd_dev->image_format 5316 * will be set to either 1 or 2. 5317 */ 5318 ret = rbd_dev_image_id(rbd_dev); 5319 if (ret) 5320 return ret; 5321 5322 ret = rbd_dev_header_name(rbd_dev); 5323 if (ret) 5324 goto err_out_format; 5325 5326 if (mapping) { 5327 ret = rbd_dev_header_watch_sync(rbd_dev); 5328 if (ret) { 5329 if (ret == -ENOENT) 5330 pr_info("image %s/%s does not exist\n", 5331 rbd_dev->spec->pool_name, 5332 rbd_dev->spec->image_name); 5333 goto out_header_name; 5334 } 5335 } 5336 5337 ret = rbd_dev_header_info(rbd_dev); 5338 if (ret) 5339 goto err_out_watch; 5340 5341 /* 5342 * If this image is the one being mapped, we have pool name and 5343 * id, image name and id, and snap name - need to fill snap id. 5344 * Otherwise this is a parent image, identified by pool, image 5345 * and snap ids - need to fill in names for those ids. 5346 */ 5347 if (mapping) 5348 ret = rbd_spec_fill_snap_id(rbd_dev); 5349 else 5350 ret = rbd_spec_fill_names(rbd_dev); 5351 if (ret) { 5352 if (ret == -ENOENT) 5353 pr_info("snap %s/%s@%s does not exist\n", 5354 rbd_dev->spec->pool_name, 5355 rbd_dev->spec->image_name, 5356 rbd_dev->spec->snap_name); 5357 goto err_out_probe; 5358 } 5359 5360 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5361 ret = rbd_dev_v2_parent_info(rbd_dev); 5362 if (ret) 5363 goto err_out_probe; 5364 5365 /* 5366 * Need to warn users if this image is the one being 5367 * mapped and has a parent. 5368 */ 5369 if (mapping && rbd_dev->parent_spec) 5370 rbd_warn(rbd_dev, 5371 "WARNING: kernel layering is EXPERIMENTAL!"); 5372 } 5373 5374 ret = rbd_dev_probe_parent(rbd_dev); 5375 if (ret) 5376 goto err_out_probe; 5377 5378 dout("discovered format %u image, header name is %s\n", 5379 rbd_dev->image_format, rbd_dev->header_name); 5380 return 0; 5381 5382 err_out_probe: 5383 rbd_dev_unprobe(rbd_dev); 5384 err_out_watch: 5385 if (mapping) 5386 rbd_dev_header_unwatch_sync(rbd_dev); 5387 out_header_name: 5388 kfree(rbd_dev->header_name); 5389 rbd_dev->header_name = NULL; 5390 err_out_format: 5391 rbd_dev->image_format = 0; 5392 kfree(rbd_dev->spec->image_id); 5393 rbd_dev->spec->image_id = NULL; 5394 return ret; 5395 } 5396 5397 static ssize_t do_rbd_add(struct bus_type *bus, 5398 const char *buf, 5399 size_t count) 5400 { 5401 struct rbd_device *rbd_dev = NULL; 5402 struct ceph_options *ceph_opts = NULL; 5403 struct rbd_options *rbd_opts = NULL; 5404 struct rbd_spec *spec = NULL; 5405 struct rbd_client *rbdc; 5406 bool read_only; 5407 int rc = -ENOMEM; 5408 5409 if (!try_module_get(THIS_MODULE)) 5410 return -ENODEV; 5411 5412 /* parse add command */ 5413 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5414 if (rc < 0) 5415 goto err_out_module; 5416 read_only = rbd_opts->read_only; 5417 kfree(rbd_opts); 5418 rbd_opts = NULL; /* done with this */ 5419 5420 rbdc = rbd_get_client(ceph_opts); 5421 if (IS_ERR(rbdc)) { 5422 rc = PTR_ERR(rbdc); 5423 goto err_out_args; 5424 } 5425 5426 /* pick the pool */ 5427 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 5428 if (rc < 0) { 5429 if (rc == -ENOENT) 5430 pr_info("pool %s does not exist\n", spec->pool_name); 5431 goto err_out_client; 5432 } 5433 spec->pool_id = (u64)rc; 5434 5435 /* The ceph file layout needs to fit pool id in 32 bits */ 5436 5437 if (spec->pool_id > (u64)U32_MAX) { 5438 rbd_warn(NULL, "pool id too large (%llu > %u)", 5439 (unsigned long long)spec->pool_id, U32_MAX); 5440 rc = -EIO; 5441 goto err_out_client; 5442 } 5443 5444 rbd_dev = rbd_dev_create(rbdc, spec); 5445 if (!rbd_dev) 5446 goto err_out_client; 5447 rbdc = NULL; /* rbd_dev now owns this */ 5448 spec = NULL; /* rbd_dev now owns this */ 5449 5450 rc = rbd_dev_image_probe(rbd_dev, true); 5451 if (rc < 0) 5452 goto err_out_rbd_dev; 5453 5454 /* If we are mapping a snapshot it must be marked read-only */ 5455 5456 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5457 read_only = true; 5458 rbd_dev->mapping.read_only = read_only; 5459 5460 rc = rbd_dev_device_setup(rbd_dev); 5461 if (rc) { 5462 /* 5463 * rbd_dev_header_unwatch_sync() can't be moved into 5464 * rbd_dev_image_release() without refactoring, see 5465 * commit 1f3ef78861ac. 5466 */ 5467 rbd_dev_header_unwatch_sync(rbd_dev); 5468 rbd_dev_image_release(rbd_dev); 5469 goto err_out_module; 5470 } 5471 5472 return count; 5473 5474 err_out_rbd_dev: 5475 rbd_dev_destroy(rbd_dev); 5476 err_out_client: 5477 rbd_put_client(rbdc); 5478 err_out_args: 5479 rbd_spec_put(spec); 5480 err_out_module: 5481 module_put(THIS_MODULE); 5482 5483 dout("Error adding device %s\n", buf); 5484 5485 return (ssize_t)rc; 5486 } 5487 5488 static ssize_t rbd_add(struct bus_type *bus, 5489 const char *buf, 5490 size_t count) 5491 { 5492 if (single_major) 5493 return -EINVAL; 5494 5495 return do_rbd_add(bus, buf, count); 5496 } 5497 5498 static ssize_t rbd_add_single_major(struct bus_type *bus, 5499 const char *buf, 5500 size_t count) 5501 { 5502 return do_rbd_add(bus, buf, count); 5503 } 5504 5505 static void rbd_dev_device_release(struct device *dev) 5506 { 5507 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5508 5509 rbd_free_disk(rbd_dev); 5510 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5511 rbd_dev_mapping_clear(rbd_dev); 5512 if (!single_major) 5513 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5514 rbd_dev_id_put(rbd_dev); 5515 rbd_dev_mapping_clear(rbd_dev); 5516 } 5517 5518 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5519 { 5520 while (rbd_dev->parent) { 5521 struct rbd_device *first = rbd_dev; 5522 struct rbd_device *second = first->parent; 5523 struct rbd_device *third; 5524 5525 /* 5526 * Follow to the parent with no grandparent and 5527 * remove it. 5528 */ 5529 while (second && (third = second->parent)) { 5530 first = second; 5531 second = third; 5532 } 5533 rbd_assert(second); 5534 rbd_dev_image_release(second); 5535 first->parent = NULL; 5536 first->parent_overlap = 0; 5537 5538 rbd_assert(first->parent_spec); 5539 rbd_spec_put(first->parent_spec); 5540 first->parent_spec = NULL; 5541 } 5542 } 5543 5544 static ssize_t do_rbd_remove(struct bus_type *bus, 5545 const char *buf, 5546 size_t count) 5547 { 5548 struct rbd_device *rbd_dev = NULL; 5549 struct list_head *tmp; 5550 int dev_id; 5551 unsigned long ul; 5552 bool already = false; 5553 int ret; 5554 5555 ret = kstrtoul(buf, 10, &ul); 5556 if (ret) 5557 return ret; 5558 5559 /* convert to int; abort if we lost anything in the conversion */ 5560 dev_id = (int)ul; 5561 if (dev_id != ul) 5562 return -EINVAL; 5563 5564 ret = -ENOENT; 5565 spin_lock(&rbd_dev_list_lock); 5566 list_for_each(tmp, &rbd_dev_list) { 5567 rbd_dev = list_entry(tmp, struct rbd_device, node); 5568 if (rbd_dev->dev_id == dev_id) { 5569 ret = 0; 5570 break; 5571 } 5572 } 5573 if (!ret) { 5574 spin_lock_irq(&rbd_dev->lock); 5575 if (rbd_dev->open_count) 5576 ret = -EBUSY; 5577 else 5578 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5579 &rbd_dev->flags); 5580 spin_unlock_irq(&rbd_dev->lock); 5581 } 5582 spin_unlock(&rbd_dev_list_lock); 5583 if (ret < 0 || already) 5584 return ret; 5585 5586 rbd_dev_header_unwatch_sync(rbd_dev); 5587 /* 5588 * flush remaining watch callbacks - these must be complete 5589 * before the osd_client is shutdown 5590 */ 5591 dout("%s: flushing notifies", __func__); 5592 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5593 5594 /* 5595 * Don't free anything from rbd_dev->disk until after all 5596 * notifies are completely processed. Otherwise 5597 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5598 * in a potential use after free of rbd_dev->disk or rbd_dev. 5599 */ 5600 rbd_bus_del_dev(rbd_dev); 5601 rbd_dev_image_release(rbd_dev); 5602 module_put(THIS_MODULE); 5603 5604 return count; 5605 } 5606 5607 static ssize_t rbd_remove(struct bus_type *bus, 5608 const char *buf, 5609 size_t count) 5610 { 5611 if (single_major) 5612 return -EINVAL; 5613 5614 return do_rbd_remove(bus, buf, count); 5615 } 5616 5617 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5618 const char *buf, 5619 size_t count) 5620 { 5621 return do_rbd_remove(bus, buf, count); 5622 } 5623 5624 /* 5625 * create control files in sysfs 5626 * /sys/bus/rbd/... 5627 */ 5628 static int rbd_sysfs_init(void) 5629 { 5630 int ret; 5631 5632 ret = device_register(&rbd_root_dev); 5633 if (ret < 0) 5634 return ret; 5635 5636 ret = bus_register(&rbd_bus_type); 5637 if (ret < 0) 5638 device_unregister(&rbd_root_dev); 5639 5640 return ret; 5641 } 5642 5643 static void rbd_sysfs_cleanup(void) 5644 { 5645 bus_unregister(&rbd_bus_type); 5646 device_unregister(&rbd_root_dev); 5647 } 5648 5649 static int rbd_slab_init(void) 5650 { 5651 rbd_assert(!rbd_img_request_cache); 5652 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5653 sizeof (struct rbd_img_request), 5654 __alignof__(struct rbd_img_request), 5655 0, NULL); 5656 if (!rbd_img_request_cache) 5657 return -ENOMEM; 5658 5659 rbd_assert(!rbd_obj_request_cache); 5660 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5661 sizeof (struct rbd_obj_request), 5662 __alignof__(struct rbd_obj_request), 5663 0, NULL); 5664 if (!rbd_obj_request_cache) 5665 goto out_err; 5666 5667 rbd_assert(!rbd_segment_name_cache); 5668 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5669 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5670 if (rbd_segment_name_cache) 5671 return 0; 5672 out_err: 5673 if (rbd_obj_request_cache) { 5674 kmem_cache_destroy(rbd_obj_request_cache); 5675 rbd_obj_request_cache = NULL; 5676 } 5677 5678 kmem_cache_destroy(rbd_img_request_cache); 5679 rbd_img_request_cache = NULL; 5680 5681 return -ENOMEM; 5682 } 5683 5684 static void rbd_slab_exit(void) 5685 { 5686 rbd_assert(rbd_segment_name_cache); 5687 kmem_cache_destroy(rbd_segment_name_cache); 5688 rbd_segment_name_cache = NULL; 5689 5690 rbd_assert(rbd_obj_request_cache); 5691 kmem_cache_destroy(rbd_obj_request_cache); 5692 rbd_obj_request_cache = NULL; 5693 5694 rbd_assert(rbd_img_request_cache); 5695 kmem_cache_destroy(rbd_img_request_cache); 5696 rbd_img_request_cache = NULL; 5697 } 5698 5699 static int __init rbd_init(void) 5700 { 5701 int rc; 5702 5703 if (!libceph_compatible(NULL)) { 5704 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5705 return -EINVAL; 5706 } 5707 5708 rc = rbd_slab_init(); 5709 if (rc) 5710 return rc; 5711 5712 /* 5713 * The number of active work items is limited by the number of 5714 * rbd devices * queue depth, so leave @max_active at default. 5715 */ 5716 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 5717 if (!rbd_wq) { 5718 rc = -ENOMEM; 5719 goto err_out_slab; 5720 } 5721 5722 if (single_major) { 5723 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5724 if (rbd_major < 0) { 5725 rc = rbd_major; 5726 goto err_out_wq; 5727 } 5728 } 5729 5730 rc = rbd_sysfs_init(); 5731 if (rc) 5732 goto err_out_blkdev; 5733 5734 if (single_major) 5735 pr_info("loaded (major %d)\n", rbd_major); 5736 else 5737 pr_info("loaded\n"); 5738 5739 return 0; 5740 5741 err_out_blkdev: 5742 if (single_major) 5743 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5744 err_out_wq: 5745 destroy_workqueue(rbd_wq); 5746 err_out_slab: 5747 rbd_slab_exit(); 5748 return rc; 5749 } 5750 5751 static void __exit rbd_exit(void) 5752 { 5753 ida_destroy(&rbd_dev_id_ida); 5754 rbd_sysfs_cleanup(); 5755 if (single_major) 5756 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5757 destroy_workqueue(rbd_wq); 5758 rbd_slab_exit(); 5759 } 5760 5761 module_init(rbd_init); 5762 module_exit(rbd_exit); 5763 5764 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5765 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5766 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5767 /* following authorship retained from original osdblk.c */ 5768 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5769 5770 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5771 MODULE_LICENSE("GPL"); 5772