xref: /linux/drivers/block/rbd.c (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
636 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
639 					u64 snap_id);
640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
641 				u8 *order, u64 *snap_size);
642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
643 
644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
646 
647 /*
648  * Return true if nothing else is pending.
649  */
650 static bool pending_result_dec(struct pending_result *pending, int *result)
651 {
652 	rbd_assert(pending->num_pending > 0);
653 
654 	if (*result && !pending->result)
655 		pending->result = *result;
656 	if (--pending->num_pending)
657 		return false;
658 
659 	*result = pending->result;
660 	return true;
661 }
662 
663 static int rbd_open(struct block_device *bdev, fmode_t mode)
664 {
665 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
666 	bool removing = false;
667 
668 	spin_lock_irq(&rbd_dev->lock);
669 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
670 		removing = true;
671 	else
672 		rbd_dev->open_count++;
673 	spin_unlock_irq(&rbd_dev->lock);
674 	if (removing)
675 		return -ENOENT;
676 
677 	(void) get_device(&rbd_dev->dev);
678 
679 	return 0;
680 }
681 
682 static void rbd_release(struct gendisk *disk, fmode_t mode)
683 {
684 	struct rbd_device *rbd_dev = disk->private_data;
685 	unsigned long open_count_before;
686 
687 	spin_lock_irq(&rbd_dev->lock);
688 	open_count_before = rbd_dev->open_count--;
689 	spin_unlock_irq(&rbd_dev->lock);
690 	rbd_assert(open_count_before > 0);
691 
692 	put_device(&rbd_dev->dev);
693 }
694 
695 static const struct block_device_operations rbd_bd_ops = {
696 	.owner			= THIS_MODULE,
697 	.open			= rbd_open,
698 	.release		= rbd_release,
699 };
700 
701 /*
702  * Initialize an rbd client instance.  Success or not, this function
703  * consumes ceph_opts.  Caller holds client_mutex.
704  */
705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
706 {
707 	struct rbd_client *rbdc;
708 	int ret = -ENOMEM;
709 
710 	dout("%s:\n", __func__);
711 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
712 	if (!rbdc)
713 		goto out_opt;
714 
715 	kref_init(&rbdc->kref);
716 	INIT_LIST_HEAD(&rbdc->node);
717 
718 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
719 	if (IS_ERR(rbdc->client))
720 		goto out_rbdc;
721 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
722 
723 	ret = ceph_open_session(rbdc->client);
724 	if (ret < 0)
725 		goto out_client;
726 
727 	spin_lock(&rbd_client_list_lock);
728 	list_add_tail(&rbdc->node, &rbd_client_list);
729 	spin_unlock(&rbd_client_list_lock);
730 
731 	dout("%s: rbdc %p\n", __func__, rbdc);
732 
733 	return rbdc;
734 out_client:
735 	ceph_destroy_client(rbdc->client);
736 out_rbdc:
737 	kfree(rbdc);
738 out_opt:
739 	if (ceph_opts)
740 		ceph_destroy_options(ceph_opts);
741 	dout("%s: error %d\n", __func__, ret);
742 
743 	return ERR_PTR(ret);
744 }
745 
746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
747 {
748 	kref_get(&rbdc->kref);
749 
750 	return rbdc;
751 }
752 
753 /*
754  * Find a ceph client with specific addr and configuration.  If
755  * found, bump its reference count.
756  */
757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
758 {
759 	struct rbd_client *client_node;
760 	bool found = false;
761 
762 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
763 		return NULL;
764 
765 	spin_lock(&rbd_client_list_lock);
766 	list_for_each_entry(client_node, &rbd_client_list, node) {
767 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
768 			__rbd_get_client(client_node);
769 
770 			found = true;
771 			break;
772 		}
773 	}
774 	spin_unlock(&rbd_client_list_lock);
775 
776 	return found ? client_node : NULL;
777 }
778 
779 /*
780  * (Per device) rbd map options
781  */
782 enum {
783 	Opt_queue_depth,
784 	Opt_alloc_size,
785 	Opt_lock_timeout,
786 	/* int args above */
787 	Opt_pool_ns,
788 	Opt_compression_hint,
789 	/* string args above */
790 	Opt_read_only,
791 	Opt_read_write,
792 	Opt_lock_on_read,
793 	Opt_exclusive,
794 	Opt_notrim,
795 };
796 
797 enum {
798 	Opt_compression_hint_none,
799 	Opt_compression_hint_compressible,
800 	Opt_compression_hint_incompressible,
801 };
802 
803 static const struct constant_table rbd_param_compression_hint[] = {
804 	{"none",		Opt_compression_hint_none},
805 	{"compressible",	Opt_compression_hint_compressible},
806 	{"incompressible",	Opt_compression_hint_incompressible},
807 	{}
808 };
809 
810 static const struct fs_parameter_spec rbd_parameters[] = {
811 	fsparam_u32	("alloc_size",			Opt_alloc_size),
812 	fsparam_enum	("compression_hint",		Opt_compression_hint,
813 			 rbd_param_compression_hint),
814 	fsparam_flag	("exclusive",			Opt_exclusive),
815 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
816 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
817 	fsparam_flag	("notrim",			Opt_notrim),
818 	fsparam_string	("_pool_ns",			Opt_pool_ns),
819 	fsparam_u32	("queue_depth",			Opt_queue_depth),
820 	fsparam_flag	("read_only",			Opt_read_only),
821 	fsparam_flag	("read_write",			Opt_read_write),
822 	fsparam_flag	("ro",				Opt_read_only),
823 	fsparam_flag	("rw",				Opt_read_write),
824 	{}
825 };
826 
827 struct rbd_options {
828 	int	queue_depth;
829 	int	alloc_size;
830 	unsigned long	lock_timeout;
831 	bool	read_only;
832 	bool	lock_on_read;
833 	bool	exclusive;
834 	bool	trim;
835 
836 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
837 };
838 
839 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
840 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
841 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
842 #define RBD_READ_ONLY_DEFAULT	false
843 #define RBD_LOCK_ON_READ_DEFAULT false
844 #define RBD_EXCLUSIVE_DEFAULT	false
845 #define RBD_TRIM_DEFAULT	true
846 
847 struct rbd_parse_opts_ctx {
848 	struct rbd_spec		*spec;
849 	struct ceph_options	*copts;
850 	struct rbd_options	*opts;
851 };
852 
853 static char* obj_op_name(enum obj_operation_type op_type)
854 {
855 	switch (op_type) {
856 	case OBJ_OP_READ:
857 		return "read";
858 	case OBJ_OP_WRITE:
859 		return "write";
860 	case OBJ_OP_DISCARD:
861 		return "discard";
862 	case OBJ_OP_ZEROOUT:
863 		return "zeroout";
864 	default:
865 		return "???";
866 	}
867 }
868 
869 /*
870  * Destroy ceph client
871  *
872  * Caller must hold rbd_client_list_lock.
873  */
874 static void rbd_client_release(struct kref *kref)
875 {
876 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
877 
878 	dout("%s: rbdc %p\n", __func__, rbdc);
879 	spin_lock(&rbd_client_list_lock);
880 	list_del(&rbdc->node);
881 	spin_unlock(&rbd_client_list_lock);
882 
883 	ceph_destroy_client(rbdc->client);
884 	kfree(rbdc);
885 }
886 
887 /*
888  * Drop reference to ceph client node. If it's not referenced anymore, release
889  * it.
890  */
891 static void rbd_put_client(struct rbd_client *rbdc)
892 {
893 	if (rbdc)
894 		kref_put(&rbdc->kref, rbd_client_release);
895 }
896 
897 /*
898  * Get a ceph client with specific addr and configuration, if one does
899  * not exist create it.  Either way, ceph_opts is consumed by this
900  * function.
901  */
902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
903 {
904 	struct rbd_client *rbdc;
905 	int ret;
906 
907 	mutex_lock(&client_mutex);
908 	rbdc = rbd_client_find(ceph_opts);
909 	if (rbdc) {
910 		ceph_destroy_options(ceph_opts);
911 
912 		/*
913 		 * Using an existing client.  Make sure ->pg_pools is up to
914 		 * date before we look up the pool id in do_rbd_add().
915 		 */
916 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
917 					rbdc->client->options->mount_timeout);
918 		if (ret) {
919 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
920 			rbd_put_client(rbdc);
921 			rbdc = ERR_PTR(ret);
922 		}
923 	} else {
924 		rbdc = rbd_client_create(ceph_opts);
925 	}
926 	mutex_unlock(&client_mutex);
927 
928 	return rbdc;
929 }
930 
931 static bool rbd_image_format_valid(u32 image_format)
932 {
933 	return image_format == 1 || image_format == 2;
934 }
935 
936 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
937 {
938 	size_t size;
939 	u32 snap_count;
940 
941 	/* The header has to start with the magic rbd header text */
942 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
943 		return false;
944 
945 	/* The bio layer requires at least sector-sized I/O */
946 
947 	if (ondisk->options.order < SECTOR_SHIFT)
948 		return false;
949 
950 	/* If we use u64 in a few spots we may be able to loosen this */
951 
952 	if (ondisk->options.order > 8 * sizeof (int) - 1)
953 		return false;
954 
955 	/*
956 	 * The size of a snapshot header has to fit in a size_t, and
957 	 * that limits the number of snapshots.
958 	 */
959 	snap_count = le32_to_cpu(ondisk->snap_count);
960 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
961 	if (snap_count > size / sizeof (__le64))
962 		return false;
963 
964 	/*
965 	 * Not only that, but the size of the entire the snapshot
966 	 * header must also be representable in a size_t.
967 	 */
968 	size -= snap_count * sizeof (__le64);
969 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
970 		return false;
971 
972 	return true;
973 }
974 
975 /*
976  * returns the size of an object in the image
977  */
978 static u32 rbd_obj_bytes(struct rbd_image_header *header)
979 {
980 	return 1U << header->obj_order;
981 }
982 
983 static void rbd_init_layout(struct rbd_device *rbd_dev)
984 {
985 	if (rbd_dev->header.stripe_unit == 0 ||
986 	    rbd_dev->header.stripe_count == 0) {
987 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
988 		rbd_dev->header.stripe_count = 1;
989 	}
990 
991 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
992 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
993 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
994 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
995 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
996 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
997 }
998 
999 /*
1000  * Fill an rbd image header with information from the given format 1
1001  * on-disk header.
1002  */
1003 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1004 				 struct rbd_image_header_ondisk *ondisk)
1005 {
1006 	struct rbd_image_header *header = &rbd_dev->header;
1007 	bool first_time = header->object_prefix == NULL;
1008 	struct ceph_snap_context *snapc;
1009 	char *object_prefix = NULL;
1010 	char *snap_names = NULL;
1011 	u64 *snap_sizes = NULL;
1012 	u32 snap_count;
1013 	int ret = -ENOMEM;
1014 	u32 i;
1015 
1016 	/* Allocate this now to avoid having to handle failure below */
1017 
1018 	if (first_time) {
1019 		object_prefix = kstrndup(ondisk->object_prefix,
1020 					 sizeof(ondisk->object_prefix),
1021 					 GFP_KERNEL);
1022 		if (!object_prefix)
1023 			return -ENOMEM;
1024 	}
1025 
1026 	/* Allocate the snapshot context and fill it in */
1027 
1028 	snap_count = le32_to_cpu(ondisk->snap_count);
1029 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1030 	if (!snapc)
1031 		goto out_err;
1032 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1033 	if (snap_count) {
1034 		struct rbd_image_snap_ondisk *snaps;
1035 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1036 
1037 		/* We'll keep a copy of the snapshot names... */
1038 
1039 		if (snap_names_len > (u64)SIZE_MAX)
1040 			goto out_2big;
1041 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1042 		if (!snap_names)
1043 			goto out_err;
1044 
1045 		/* ...as well as the array of their sizes. */
1046 		snap_sizes = kmalloc_array(snap_count,
1047 					   sizeof(*header->snap_sizes),
1048 					   GFP_KERNEL);
1049 		if (!snap_sizes)
1050 			goto out_err;
1051 
1052 		/*
1053 		 * Copy the names, and fill in each snapshot's id
1054 		 * and size.
1055 		 *
1056 		 * Note that rbd_dev_v1_header_info() guarantees the
1057 		 * ondisk buffer we're working with has
1058 		 * snap_names_len bytes beyond the end of the
1059 		 * snapshot id array, this memcpy() is safe.
1060 		 */
1061 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1062 		snaps = ondisk->snaps;
1063 		for (i = 0; i < snap_count; i++) {
1064 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1065 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1066 		}
1067 	}
1068 
1069 	/* We won't fail any more, fill in the header */
1070 
1071 	if (first_time) {
1072 		header->object_prefix = object_prefix;
1073 		header->obj_order = ondisk->options.order;
1074 		rbd_init_layout(rbd_dev);
1075 	} else {
1076 		ceph_put_snap_context(header->snapc);
1077 		kfree(header->snap_names);
1078 		kfree(header->snap_sizes);
1079 	}
1080 
1081 	/* The remaining fields always get updated (when we refresh) */
1082 
1083 	header->image_size = le64_to_cpu(ondisk->image_size);
1084 	header->snapc = snapc;
1085 	header->snap_names = snap_names;
1086 	header->snap_sizes = snap_sizes;
1087 
1088 	return 0;
1089 out_2big:
1090 	ret = -EIO;
1091 out_err:
1092 	kfree(snap_sizes);
1093 	kfree(snap_names);
1094 	ceph_put_snap_context(snapc);
1095 	kfree(object_prefix);
1096 
1097 	return ret;
1098 }
1099 
1100 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1101 {
1102 	const char *snap_name;
1103 
1104 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1105 
1106 	/* Skip over names until we find the one we are looking for */
1107 
1108 	snap_name = rbd_dev->header.snap_names;
1109 	while (which--)
1110 		snap_name += strlen(snap_name) + 1;
1111 
1112 	return kstrdup(snap_name, GFP_KERNEL);
1113 }
1114 
1115 /*
1116  * Snapshot id comparison function for use with qsort()/bsearch().
1117  * Note that result is for snapshots in *descending* order.
1118  */
1119 static int snapid_compare_reverse(const void *s1, const void *s2)
1120 {
1121 	u64 snap_id1 = *(u64 *)s1;
1122 	u64 snap_id2 = *(u64 *)s2;
1123 
1124 	if (snap_id1 < snap_id2)
1125 		return 1;
1126 	return snap_id1 == snap_id2 ? 0 : -1;
1127 }
1128 
1129 /*
1130  * Search a snapshot context to see if the given snapshot id is
1131  * present.
1132  *
1133  * Returns the position of the snapshot id in the array if it's found,
1134  * or BAD_SNAP_INDEX otherwise.
1135  *
1136  * Note: The snapshot array is in kept sorted (by the osd) in
1137  * reverse order, highest snapshot id first.
1138  */
1139 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1140 {
1141 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1142 	u64 *found;
1143 
1144 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1145 				sizeof (snap_id), snapid_compare_reverse);
1146 
1147 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1148 }
1149 
1150 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1151 					u64 snap_id)
1152 {
1153 	u32 which;
1154 	const char *snap_name;
1155 
1156 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1157 	if (which == BAD_SNAP_INDEX)
1158 		return ERR_PTR(-ENOENT);
1159 
1160 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1161 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1162 }
1163 
1164 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1165 {
1166 	if (snap_id == CEPH_NOSNAP)
1167 		return RBD_SNAP_HEAD_NAME;
1168 
1169 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1170 	if (rbd_dev->image_format == 1)
1171 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1172 
1173 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1174 }
1175 
1176 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1177 				u64 *snap_size)
1178 {
1179 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1180 	if (snap_id == CEPH_NOSNAP) {
1181 		*snap_size = rbd_dev->header.image_size;
1182 	} else if (rbd_dev->image_format == 1) {
1183 		u32 which;
1184 
1185 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1186 		if (which == BAD_SNAP_INDEX)
1187 			return -ENOENT;
1188 
1189 		*snap_size = rbd_dev->header.snap_sizes[which];
1190 	} else {
1191 		u64 size = 0;
1192 		int ret;
1193 
1194 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1195 		if (ret)
1196 			return ret;
1197 
1198 		*snap_size = size;
1199 	}
1200 	return 0;
1201 }
1202 
1203 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1204 {
1205 	u64 snap_id = rbd_dev->spec->snap_id;
1206 	u64 size = 0;
1207 	int ret;
1208 
1209 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1210 	if (ret)
1211 		return ret;
1212 
1213 	rbd_dev->mapping.size = size;
1214 	return 0;
1215 }
1216 
1217 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1218 {
1219 	rbd_dev->mapping.size = 0;
1220 }
1221 
1222 static void zero_bvec(struct bio_vec *bv)
1223 {
1224 	void *buf;
1225 	unsigned long flags;
1226 
1227 	buf = bvec_kmap_irq(bv, &flags);
1228 	memset(buf, 0, bv->bv_len);
1229 	flush_dcache_page(bv->bv_page);
1230 	bvec_kunmap_irq(buf, &flags);
1231 }
1232 
1233 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1234 {
1235 	struct ceph_bio_iter it = *bio_pos;
1236 
1237 	ceph_bio_iter_advance(&it, off);
1238 	ceph_bio_iter_advance_step(&it, bytes, ({
1239 		zero_bvec(&bv);
1240 	}));
1241 }
1242 
1243 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1244 {
1245 	struct ceph_bvec_iter it = *bvec_pos;
1246 
1247 	ceph_bvec_iter_advance(&it, off);
1248 	ceph_bvec_iter_advance_step(&it, bytes, ({
1249 		zero_bvec(&bv);
1250 	}));
1251 }
1252 
1253 /*
1254  * Zero a range in @obj_req data buffer defined by a bio (list) or
1255  * (private) bio_vec array.
1256  *
1257  * @off is relative to the start of the data buffer.
1258  */
1259 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1260 			       u32 bytes)
1261 {
1262 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1263 
1264 	switch (obj_req->img_request->data_type) {
1265 	case OBJ_REQUEST_BIO:
1266 		zero_bios(&obj_req->bio_pos, off, bytes);
1267 		break;
1268 	case OBJ_REQUEST_BVECS:
1269 	case OBJ_REQUEST_OWN_BVECS:
1270 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1271 		break;
1272 	default:
1273 		BUG();
1274 	}
1275 }
1276 
1277 static void rbd_obj_request_destroy(struct kref *kref);
1278 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1279 {
1280 	rbd_assert(obj_request != NULL);
1281 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1282 		kref_read(&obj_request->kref));
1283 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1284 }
1285 
1286 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1287 					struct rbd_obj_request *obj_request)
1288 {
1289 	rbd_assert(obj_request->img_request == NULL);
1290 
1291 	/* Image request now owns object's original reference */
1292 	obj_request->img_request = img_request;
1293 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1294 }
1295 
1296 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1297 					struct rbd_obj_request *obj_request)
1298 {
1299 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1300 	list_del(&obj_request->ex.oe_item);
1301 	rbd_assert(obj_request->img_request == img_request);
1302 	rbd_obj_request_put(obj_request);
1303 }
1304 
1305 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1306 {
1307 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1308 
1309 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1310 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1311 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1312 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1313 }
1314 
1315 /*
1316  * The default/initial value for all image request flags is 0.  Each
1317  * is conditionally set to 1 at image request initialization time
1318  * and currently never change thereafter.
1319  */
1320 static void img_request_layered_set(struct rbd_img_request *img_request)
1321 {
1322 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1323 }
1324 
1325 static bool img_request_layered_test(struct rbd_img_request *img_request)
1326 {
1327 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1328 }
1329 
1330 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1331 {
1332 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1333 
1334 	return !obj_req->ex.oe_off &&
1335 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1336 }
1337 
1338 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1339 {
1340 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1341 
1342 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1343 					rbd_dev->layout.object_size;
1344 }
1345 
1346 /*
1347  * Must be called after rbd_obj_calc_img_extents().
1348  */
1349 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1350 {
1351 	if (!obj_req->num_img_extents ||
1352 	    (rbd_obj_is_entire(obj_req) &&
1353 	     !obj_req->img_request->snapc->num_snaps))
1354 		return false;
1355 
1356 	return true;
1357 }
1358 
1359 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1360 {
1361 	return ceph_file_extents_bytes(obj_req->img_extents,
1362 				       obj_req->num_img_extents);
1363 }
1364 
1365 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1366 {
1367 	switch (img_req->op_type) {
1368 	case OBJ_OP_READ:
1369 		return false;
1370 	case OBJ_OP_WRITE:
1371 	case OBJ_OP_DISCARD:
1372 	case OBJ_OP_ZEROOUT:
1373 		return true;
1374 	default:
1375 		BUG();
1376 	}
1377 }
1378 
1379 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1380 {
1381 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1382 	int result;
1383 
1384 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1385 	     osd_req->r_result, obj_req);
1386 
1387 	/*
1388 	 * Writes aren't allowed to return a data payload.  In some
1389 	 * guarded write cases (e.g. stat + zero on an empty object)
1390 	 * a stat response makes it through, but we don't care.
1391 	 */
1392 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1393 		result = 0;
1394 	else
1395 		result = osd_req->r_result;
1396 
1397 	rbd_obj_handle_request(obj_req, result);
1398 }
1399 
1400 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1401 {
1402 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1403 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1404 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1405 
1406 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1407 	osd_req->r_snapid = obj_request->img_request->snap_id;
1408 }
1409 
1410 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1411 {
1412 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1413 
1414 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1415 	ktime_get_real_ts64(&osd_req->r_mtime);
1416 	osd_req->r_data_offset = obj_request->ex.oe_off;
1417 }
1418 
1419 static struct ceph_osd_request *
1420 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1421 			  struct ceph_snap_context *snapc, int num_ops)
1422 {
1423 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1424 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1425 	struct ceph_osd_request *req;
1426 	const char *name_format = rbd_dev->image_format == 1 ?
1427 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1428 	int ret;
1429 
1430 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1431 	if (!req)
1432 		return ERR_PTR(-ENOMEM);
1433 
1434 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1435 	req->r_callback = rbd_osd_req_callback;
1436 	req->r_priv = obj_req;
1437 
1438 	/*
1439 	 * Data objects may be stored in a separate pool, but always in
1440 	 * the same namespace in that pool as the header in its pool.
1441 	 */
1442 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1443 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1444 
1445 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1446 			       rbd_dev->header.object_prefix,
1447 			       obj_req->ex.oe_objno);
1448 	if (ret)
1449 		return ERR_PTR(ret);
1450 
1451 	return req;
1452 }
1453 
1454 static struct ceph_osd_request *
1455 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1456 {
1457 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1458 					 num_ops);
1459 }
1460 
1461 static struct rbd_obj_request *rbd_obj_request_create(void)
1462 {
1463 	struct rbd_obj_request *obj_request;
1464 
1465 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1466 	if (!obj_request)
1467 		return NULL;
1468 
1469 	ceph_object_extent_init(&obj_request->ex);
1470 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1471 	mutex_init(&obj_request->state_mutex);
1472 	kref_init(&obj_request->kref);
1473 
1474 	dout("%s %p\n", __func__, obj_request);
1475 	return obj_request;
1476 }
1477 
1478 static void rbd_obj_request_destroy(struct kref *kref)
1479 {
1480 	struct rbd_obj_request *obj_request;
1481 	struct ceph_osd_request *osd_req;
1482 	u32 i;
1483 
1484 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1485 
1486 	dout("%s: obj %p\n", __func__, obj_request);
1487 
1488 	while (!list_empty(&obj_request->osd_reqs)) {
1489 		osd_req = list_first_entry(&obj_request->osd_reqs,
1490 				    struct ceph_osd_request, r_private_item);
1491 		list_del_init(&osd_req->r_private_item);
1492 		ceph_osdc_put_request(osd_req);
1493 	}
1494 
1495 	switch (obj_request->img_request->data_type) {
1496 	case OBJ_REQUEST_NODATA:
1497 	case OBJ_REQUEST_BIO:
1498 	case OBJ_REQUEST_BVECS:
1499 		break;		/* Nothing to do */
1500 	case OBJ_REQUEST_OWN_BVECS:
1501 		kfree(obj_request->bvec_pos.bvecs);
1502 		break;
1503 	default:
1504 		BUG();
1505 	}
1506 
1507 	kfree(obj_request->img_extents);
1508 	if (obj_request->copyup_bvecs) {
1509 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1510 			if (obj_request->copyup_bvecs[i].bv_page)
1511 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1512 		}
1513 		kfree(obj_request->copyup_bvecs);
1514 	}
1515 
1516 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1517 }
1518 
1519 /* It's OK to call this for a device with no parent */
1520 
1521 static void rbd_spec_put(struct rbd_spec *spec);
1522 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1523 {
1524 	rbd_dev_remove_parent(rbd_dev);
1525 	rbd_spec_put(rbd_dev->parent_spec);
1526 	rbd_dev->parent_spec = NULL;
1527 	rbd_dev->parent_overlap = 0;
1528 }
1529 
1530 /*
1531  * Parent image reference counting is used to determine when an
1532  * image's parent fields can be safely torn down--after there are no
1533  * more in-flight requests to the parent image.  When the last
1534  * reference is dropped, cleaning them up is safe.
1535  */
1536 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1537 {
1538 	int counter;
1539 
1540 	if (!rbd_dev->parent_spec)
1541 		return;
1542 
1543 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1544 	if (counter > 0)
1545 		return;
1546 
1547 	/* Last reference; clean up parent data structures */
1548 
1549 	if (!counter)
1550 		rbd_dev_unparent(rbd_dev);
1551 	else
1552 		rbd_warn(rbd_dev, "parent reference underflow");
1553 }
1554 
1555 /*
1556  * If an image has a non-zero parent overlap, get a reference to its
1557  * parent.
1558  *
1559  * Returns true if the rbd device has a parent with a non-zero
1560  * overlap and a reference for it was successfully taken, or
1561  * false otherwise.
1562  */
1563 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1564 {
1565 	int counter = 0;
1566 
1567 	if (!rbd_dev->parent_spec)
1568 		return false;
1569 
1570 	if (rbd_dev->parent_overlap)
1571 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1572 
1573 	if (counter < 0)
1574 		rbd_warn(rbd_dev, "parent reference overflow");
1575 
1576 	return counter > 0;
1577 }
1578 
1579 static void rbd_img_request_init(struct rbd_img_request *img_request,
1580 				 struct rbd_device *rbd_dev,
1581 				 enum obj_operation_type op_type)
1582 {
1583 	memset(img_request, 0, sizeof(*img_request));
1584 
1585 	img_request->rbd_dev = rbd_dev;
1586 	img_request->op_type = op_type;
1587 
1588 	INIT_LIST_HEAD(&img_request->lock_item);
1589 	INIT_LIST_HEAD(&img_request->object_extents);
1590 	mutex_init(&img_request->state_mutex);
1591 }
1592 
1593 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1594 {
1595 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1596 
1597 	lockdep_assert_held(&rbd_dev->header_rwsem);
1598 
1599 	if (rbd_img_is_write(img_req))
1600 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1601 	else
1602 		img_req->snap_id = rbd_dev->spec->snap_id;
1603 
1604 	if (rbd_dev_parent_get(rbd_dev))
1605 		img_request_layered_set(img_req);
1606 }
1607 
1608 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1609 {
1610 	struct rbd_obj_request *obj_request;
1611 	struct rbd_obj_request *next_obj_request;
1612 
1613 	dout("%s: img %p\n", __func__, img_request);
1614 
1615 	WARN_ON(!list_empty(&img_request->lock_item));
1616 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1617 		rbd_img_obj_request_del(img_request, obj_request);
1618 
1619 	if (img_request_layered_test(img_request))
1620 		rbd_dev_parent_put(img_request->rbd_dev);
1621 
1622 	if (rbd_img_is_write(img_request))
1623 		ceph_put_snap_context(img_request->snapc);
1624 
1625 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1626 		kmem_cache_free(rbd_img_request_cache, img_request);
1627 }
1628 
1629 #define BITS_PER_OBJ	2
1630 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1631 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1632 
1633 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1634 				   u64 *index, u8 *shift)
1635 {
1636 	u32 off;
1637 
1638 	rbd_assert(objno < rbd_dev->object_map_size);
1639 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1640 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1641 }
1642 
1643 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1644 {
1645 	u64 index;
1646 	u8 shift;
1647 
1648 	lockdep_assert_held(&rbd_dev->object_map_lock);
1649 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1650 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1651 }
1652 
1653 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1654 {
1655 	u64 index;
1656 	u8 shift;
1657 	u8 *p;
1658 
1659 	lockdep_assert_held(&rbd_dev->object_map_lock);
1660 	rbd_assert(!(val & ~OBJ_MASK));
1661 
1662 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1663 	p = &rbd_dev->object_map[index];
1664 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1665 }
1666 
1667 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1668 {
1669 	u8 state;
1670 
1671 	spin_lock(&rbd_dev->object_map_lock);
1672 	state = __rbd_object_map_get(rbd_dev, objno);
1673 	spin_unlock(&rbd_dev->object_map_lock);
1674 	return state;
1675 }
1676 
1677 static bool use_object_map(struct rbd_device *rbd_dev)
1678 {
1679 	/*
1680 	 * An image mapped read-only can't use the object map -- it isn't
1681 	 * loaded because the header lock isn't acquired.  Someone else can
1682 	 * write to the image and update the object map behind our back.
1683 	 *
1684 	 * A snapshot can't be written to, so using the object map is always
1685 	 * safe.
1686 	 */
1687 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1688 		return false;
1689 
1690 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1691 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1692 }
1693 
1694 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1695 {
1696 	u8 state;
1697 
1698 	/* fall back to default logic if object map is disabled or invalid */
1699 	if (!use_object_map(rbd_dev))
1700 		return true;
1701 
1702 	state = rbd_object_map_get(rbd_dev, objno);
1703 	return state != OBJECT_NONEXISTENT;
1704 }
1705 
1706 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1707 				struct ceph_object_id *oid)
1708 {
1709 	if (snap_id == CEPH_NOSNAP)
1710 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1711 				rbd_dev->spec->image_id);
1712 	else
1713 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1714 				rbd_dev->spec->image_id, snap_id);
1715 }
1716 
1717 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1718 {
1719 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1720 	CEPH_DEFINE_OID_ONSTACK(oid);
1721 	u8 lock_type;
1722 	char *lock_tag;
1723 	struct ceph_locker *lockers;
1724 	u32 num_lockers;
1725 	bool broke_lock = false;
1726 	int ret;
1727 
1728 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1729 
1730 again:
1731 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1732 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1733 	if (ret != -EBUSY || broke_lock) {
1734 		if (ret == -EEXIST)
1735 			ret = 0; /* already locked by myself */
1736 		if (ret)
1737 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1738 		return ret;
1739 	}
1740 
1741 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1742 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1743 				 &lockers, &num_lockers);
1744 	if (ret) {
1745 		if (ret == -ENOENT)
1746 			goto again;
1747 
1748 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1749 		return ret;
1750 	}
1751 
1752 	kfree(lock_tag);
1753 	if (num_lockers == 0)
1754 		goto again;
1755 
1756 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1757 		 ENTITY_NAME(lockers[0].id.name));
1758 
1759 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1760 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1761 				  &lockers[0].id.name);
1762 	ceph_free_lockers(lockers, num_lockers);
1763 	if (ret) {
1764 		if (ret == -ENOENT)
1765 			goto again;
1766 
1767 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1768 		return ret;
1769 	}
1770 
1771 	broke_lock = true;
1772 	goto again;
1773 }
1774 
1775 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1776 {
1777 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1778 	CEPH_DEFINE_OID_ONSTACK(oid);
1779 	int ret;
1780 
1781 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1782 
1783 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1784 			      "");
1785 	if (ret && ret != -ENOENT)
1786 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1787 }
1788 
1789 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1790 {
1791 	u8 struct_v;
1792 	u32 struct_len;
1793 	u32 header_len;
1794 	void *header_end;
1795 	int ret;
1796 
1797 	ceph_decode_32_safe(p, end, header_len, e_inval);
1798 	header_end = *p + header_len;
1799 
1800 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1801 				  &struct_len);
1802 	if (ret)
1803 		return ret;
1804 
1805 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1806 
1807 	*p = header_end;
1808 	return 0;
1809 
1810 e_inval:
1811 	return -EINVAL;
1812 }
1813 
1814 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1815 {
1816 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1817 	CEPH_DEFINE_OID_ONSTACK(oid);
1818 	struct page **pages;
1819 	void *p, *end;
1820 	size_t reply_len;
1821 	u64 num_objects;
1822 	u64 object_map_bytes;
1823 	u64 object_map_size;
1824 	int num_pages;
1825 	int ret;
1826 
1827 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1828 
1829 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1830 					   rbd_dev->mapping.size);
1831 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1832 					    BITS_PER_BYTE);
1833 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1834 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1835 	if (IS_ERR(pages))
1836 		return PTR_ERR(pages);
1837 
1838 	reply_len = num_pages * PAGE_SIZE;
1839 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1840 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1841 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1842 			     NULL, 0, pages, &reply_len);
1843 	if (ret)
1844 		goto out;
1845 
1846 	p = page_address(pages[0]);
1847 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1848 	ret = decode_object_map_header(&p, end, &object_map_size);
1849 	if (ret)
1850 		goto out;
1851 
1852 	if (object_map_size != num_objects) {
1853 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1854 			 object_map_size, num_objects);
1855 		ret = -EINVAL;
1856 		goto out;
1857 	}
1858 
1859 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1860 		ret = -EINVAL;
1861 		goto out;
1862 	}
1863 
1864 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1865 	if (!rbd_dev->object_map) {
1866 		ret = -ENOMEM;
1867 		goto out;
1868 	}
1869 
1870 	rbd_dev->object_map_size = object_map_size;
1871 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1872 				   offset_in_page(p), object_map_bytes);
1873 
1874 out:
1875 	ceph_release_page_vector(pages, num_pages);
1876 	return ret;
1877 }
1878 
1879 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1880 {
1881 	kvfree(rbd_dev->object_map);
1882 	rbd_dev->object_map = NULL;
1883 	rbd_dev->object_map_size = 0;
1884 }
1885 
1886 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1887 {
1888 	int ret;
1889 
1890 	ret = __rbd_object_map_load(rbd_dev);
1891 	if (ret)
1892 		return ret;
1893 
1894 	ret = rbd_dev_v2_get_flags(rbd_dev);
1895 	if (ret) {
1896 		rbd_object_map_free(rbd_dev);
1897 		return ret;
1898 	}
1899 
1900 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1901 		rbd_warn(rbd_dev, "object map is invalid");
1902 
1903 	return 0;
1904 }
1905 
1906 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1907 {
1908 	int ret;
1909 
1910 	ret = rbd_object_map_lock(rbd_dev);
1911 	if (ret)
1912 		return ret;
1913 
1914 	ret = rbd_object_map_load(rbd_dev);
1915 	if (ret) {
1916 		rbd_object_map_unlock(rbd_dev);
1917 		return ret;
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1924 {
1925 	rbd_object_map_free(rbd_dev);
1926 	rbd_object_map_unlock(rbd_dev);
1927 }
1928 
1929 /*
1930  * This function needs snap_id (or more precisely just something to
1931  * distinguish between HEAD and snapshot object maps), new_state and
1932  * current_state that were passed to rbd_object_map_update().
1933  *
1934  * To avoid allocating and stashing a context we piggyback on the OSD
1935  * request.  A HEAD update has two ops (assert_locked).  For new_state
1936  * and current_state we decode our own object_map_update op, encoded in
1937  * rbd_cls_object_map_update().
1938  */
1939 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1940 					struct ceph_osd_request *osd_req)
1941 {
1942 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1943 	struct ceph_osd_data *osd_data;
1944 	u64 objno;
1945 	u8 state, new_state, current_state;
1946 	bool has_current_state;
1947 	void *p;
1948 
1949 	if (osd_req->r_result)
1950 		return osd_req->r_result;
1951 
1952 	/*
1953 	 * Nothing to do for a snapshot object map.
1954 	 */
1955 	if (osd_req->r_num_ops == 1)
1956 		return 0;
1957 
1958 	/*
1959 	 * Update in-memory HEAD object map.
1960 	 */
1961 	rbd_assert(osd_req->r_num_ops == 2);
1962 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1963 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1964 
1965 	p = page_address(osd_data->pages[0]);
1966 	objno = ceph_decode_64(&p);
1967 	rbd_assert(objno == obj_req->ex.oe_objno);
1968 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1969 	new_state = ceph_decode_8(&p);
1970 	has_current_state = ceph_decode_8(&p);
1971 	if (has_current_state)
1972 		current_state = ceph_decode_8(&p);
1973 
1974 	spin_lock(&rbd_dev->object_map_lock);
1975 	state = __rbd_object_map_get(rbd_dev, objno);
1976 	if (!has_current_state || current_state == state ||
1977 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1978 		__rbd_object_map_set(rbd_dev, objno, new_state);
1979 	spin_unlock(&rbd_dev->object_map_lock);
1980 
1981 	return 0;
1982 }
1983 
1984 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1985 {
1986 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1987 	int result;
1988 
1989 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1990 	     osd_req->r_result, obj_req);
1991 
1992 	result = rbd_object_map_update_finish(obj_req, osd_req);
1993 	rbd_obj_handle_request(obj_req, result);
1994 }
1995 
1996 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
1997 {
1998 	u8 state = rbd_object_map_get(rbd_dev, objno);
1999 
2000 	if (state == new_state ||
2001 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2002 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2003 		return false;
2004 
2005 	return true;
2006 }
2007 
2008 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2009 				     int which, u64 objno, u8 new_state,
2010 				     const u8 *current_state)
2011 {
2012 	struct page **pages;
2013 	void *p, *start;
2014 	int ret;
2015 
2016 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2017 	if (ret)
2018 		return ret;
2019 
2020 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2021 	if (IS_ERR(pages))
2022 		return PTR_ERR(pages);
2023 
2024 	p = start = page_address(pages[0]);
2025 	ceph_encode_64(&p, objno);
2026 	ceph_encode_64(&p, objno + 1);
2027 	ceph_encode_8(&p, new_state);
2028 	if (current_state) {
2029 		ceph_encode_8(&p, 1);
2030 		ceph_encode_8(&p, *current_state);
2031 	} else {
2032 		ceph_encode_8(&p, 0);
2033 	}
2034 
2035 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2036 					  false, true);
2037 	return 0;
2038 }
2039 
2040 /*
2041  * Return:
2042  *   0 - object map update sent
2043  *   1 - object map update isn't needed
2044  *  <0 - error
2045  */
2046 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2047 				 u8 new_state, const u8 *current_state)
2048 {
2049 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2050 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2051 	struct ceph_osd_request *req;
2052 	int num_ops = 1;
2053 	int which = 0;
2054 	int ret;
2055 
2056 	if (snap_id == CEPH_NOSNAP) {
2057 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2058 			return 1;
2059 
2060 		num_ops++; /* assert_locked */
2061 	}
2062 
2063 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2064 	if (!req)
2065 		return -ENOMEM;
2066 
2067 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2068 	req->r_callback = rbd_object_map_callback;
2069 	req->r_priv = obj_req;
2070 
2071 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2072 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2073 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2074 	ktime_get_real_ts64(&req->r_mtime);
2075 
2076 	if (snap_id == CEPH_NOSNAP) {
2077 		/*
2078 		 * Protect against possible race conditions during lock
2079 		 * ownership transitions.
2080 		 */
2081 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2082 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2083 		if (ret)
2084 			return ret;
2085 	}
2086 
2087 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2088 					new_state, current_state);
2089 	if (ret)
2090 		return ret;
2091 
2092 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2093 	if (ret)
2094 		return ret;
2095 
2096 	ceph_osdc_start_request(osdc, req, false);
2097 	return 0;
2098 }
2099 
2100 static void prune_extents(struct ceph_file_extent *img_extents,
2101 			  u32 *num_img_extents, u64 overlap)
2102 {
2103 	u32 cnt = *num_img_extents;
2104 
2105 	/* drop extents completely beyond the overlap */
2106 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2107 		cnt--;
2108 
2109 	if (cnt) {
2110 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2111 
2112 		/* trim final overlapping extent */
2113 		if (ex->fe_off + ex->fe_len > overlap)
2114 			ex->fe_len = overlap - ex->fe_off;
2115 	}
2116 
2117 	*num_img_extents = cnt;
2118 }
2119 
2120 /*
2121  * Determine the byte range(s) covered by either just the object extent
2122  * or the entire object in the parent image.
2123  */
2124 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2125 				    bool entire)
2126 {
2127 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2128 	int ret;
2129 
2130 	if (!rbd_dev->parent_overlap)
2131 		return 0;
2132 
2133 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2134 				  entire ? 0 : obj_req->ex.oe_off,
2135 				  entire ? rbd_dev->layout.object_size :
2136 							obj_req->ex.oe_len,
2137 				  &obj_req->img_extents,
2138 				  &obj_req->num_img_extents);
2139 	if (ret)
2140 		return ret;
2141 
2142 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2143 		      rbd_dev->parent_overlap);
2144 	return 0;
2145 }
2146 
2147 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2148 {
2149 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2150 
2151 	switch (obj_req->img_request->data_type) {
2152 	case OBJ_REQUEST_BIO:
2153 		osd_req_op_extent_osd_data_bio(osd_req, which,
2154 					       &obj_req->bio_pos,
2155 					       obj_req->ex.oe_len);
2156 		break;
2157 	case OBJ_REQUEST_BVECS:
2158 	case OBJ_REQUEST_OWN_BVECS:
2159 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2160 							obj_req->ex.oe_len);
2161 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2162 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2163 						    &obj_req->bvec_pos);
2164 		break;
2165 	default:
2166 		BUG();
2167 	}
2168 }
2169 
2170 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2171 {
2172 	struct page **pages;
2173 
2174 	/*
2175 	 * The response data for a STAT call consists of:
2176 	 *     le64 length;
2177 	 *     struct {
2178 	 *         le32 tv_sec;
2179 	 *         le32 tv_nsec;
2180 	 *     } mtime;
2181 	 */
2182 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2183 	if (IS_ERR(pages))
2184 		return PTR_ERR(pages);
2185 
2186 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2187 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2188 				     8 + sizeof(struct ceph_timespec),
2189 				     0, false, true);
2190 	return 0;
2191 }
2192 
2193 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2194 				u32 bytes)
2195 {
2196 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2197 	int ret;
2198 
2199 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2200 	if (ret)
2201 		return ret;
2202 
2203 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2204 					  obj_req->copyup_bvec_count, bytes);
2205 	return 0;
2206 }
2207 
2208 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2209 {
2210 	obj_req->read_state = RBD_OBJ_READ_START;
2211 	return 0;
2212 }
2213 
2214 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2215 				      int which)
2216 {
2217 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2218 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2219 	u16 opcode;
2220 
2221 	if (!use_object_map(rbd_dev) ||
2222 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2223 		osd_req_op_alloc_hint_init(osd_req, which++,
2224 					   rbd_dev->layout.object_size,
2225 					   rbd_dev->layout.object_size,
2226 					   rbd_dev->opts->alloc_hint_flags);
2227 	}
2228 
2229 	if (rbd_obj_is_entire(obj_req))
2230 		opcode = CEPH_OSD_OP_WRITEFULL;
2231 	else
2232 		opcode = CEPH_OSD_OP_WRITE;
2233 
2234 	osd_req_op_extent_init(osd_req, which, opcode,
2235 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2236 	rbd_osd_setup_data(osd_req, which);
2237 }
2238 
2239 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2240 {
2241 	int ret;
2242 
2243 	/* reverse map the entire object onto the parent */
2244 	ret = rbd_obj_calc_img_extents(obj_req, true);
2245 	if (ret)
2246 		return ret;
2247 
2248 	if (rbd_obj_copyup_enabled(obj_req))
2249 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2250 
2251 	obj_req->write_state = RBD_OBJ_WRITE_START;
2252 	return 0;
2253 }
2254 
2255 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2256 {
2257 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2258 					  CEPH_OSD_OP_ZERO;
2259 }
2260 
2261 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2262 					int which)
2263 {
2264 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2265 
2266 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2267 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2268 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2269 	} else {
2270 		osd_req_op_extent_init(osd_req, which,
2271 				       truncate_or_zero_opcode(obj_req),
2272 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2273 				       0, 0);
2274 	}
2275 }
2276 
2277 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2278 {
2279 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2280 	u64 off, next_off;
2281 	int ret;
2282 
2283 	/*
2284 	 * Align the range to alloc_size boundary and punt on discards
2285 	 * that are too small to free up any space.
2286 	 *
2287 	 * alloc_size == object_size && is_tail() is a special case for
2288 	 * filestore with filestore_punch_hole = false, needed to allow
2289 	 * truncate (in addition to delete).
2290 	 */
2291 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2292 	    !rbd_obj_is_tail(obj_req)) {
2293 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2294 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2295 				      rbd_dev->opts->alloc_size);
2296 		if (off >= next_off)
2297 			return 1;
2298 
2299 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2300 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2301 		     off, next_off - off);
2302 		obj_req->ex.oe_off = off;
2303 		obj_req->ex.oe_len = next_off - off;
2304 	}
2305 
2306 	/* reverse map the entire object onto the parent */
2307 	ret = rbd_obj_calc_img_extents(obj_req, true);
2308 	if (ret)
2309 		return ret;
2310 
2311 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2312 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2313 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2314 
2315 	obj_req->write_state = RBD_OBJ_WRITE_START;
2316 	return 0;
2317 }
2318 
2319 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2320 					int which)
2321 {
2322 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2323 	u16 opcode;
2324 
2325 	if (rbd_obj_is_entire(obj_req)) {
2326 		if (obj_req->num_img_extents) {
2327 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2328 				osd_req_op_init(osd_req, which++,
2329 						CEPH_OSD_OP_CREATE, 0);
2330 			opcode = CEPH_OSD_OP_TRUNCATE;
2331 		} else {
2332 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2333 			osd_req_op_init(osd_req, which++,
2334 					CEPH_OSD_OP_DELETE, 0);
2335 			opcode = 0;
2336 		}
2337 	} else {
2338 		opcode = truncate_or_zero_opcode(obj_req);
2339 	}
2340 
2341 	if (opcode)
2342 		osd_req_op_extent_init(osd_req, which, opcode,
2343 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2344 				       0, 0);
2345 }
2346 
2347 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2348 {
2349 	int ret;
2350 
2351 	/* reverse map the entire object onto the parent */
2352 	ret = rbd_obj_calc_img_extents(obj_req, true);
2353 	if (ret)
2354 		return ret;
2355 
2356 	if (rbd_obj_copyup_enabled(obj_req))
2357 		obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2358 	if (!obj_req->num_img_extents) {
2359 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2360 		if (rbd_obj_is_entire(obj_req))
2361 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2362 	}
2363 
2364 	obj_req->write_state = RBD_OBJ_WRITE_START;
2365 	return 0;
2366 }
2367 
2368 static int count_write_ops(struct rbd_obj_request *obj_req)
2369 {
2370 	struct rbd_img_request *img_req = obj_req->img_request;
2371 
2372 	switch (img_req->op_type) {
2373 	case OBJ_OP_WRITE:
2374 		if (!use_object_map(img_req->rbd_dev) ||
2375 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2376 			return 2; /* setallochint + write/writefull */
2377 
2378 		return 1; /* write/writefull */
2379 	case OBJ_OP_DISCARD:
2380 		return 1; /* delete/truncate/zero */
2381 	case OBJ_OP_ZEROOUT:
2382 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2383 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2384 			return 2; /* create + truncate */
2385 
2386 		return 1; /* delete/truncate/zero */
2387 	default:
2388 		BUG();
2389 	}
2390 }
2391 
2392 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2393 				    int which)
2394 {
2395 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2396 
2397 	switch (obj_req->img_request->op_type) {
2398 	case OBJ_OP_WRITE:
2399 		__rbd_osd_setup_write_ops(osd_req, which);
2400 		break;
2401 	case OBJ_OP_DISCARD:
2402 		__rbd_osd_setup_discard_ops(osd_req, which);
2403 		break;
2404 	case OBJ_OP_ZEROOUT:
2405 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2406 		break;
2407 	default:
2408 		BUG();
2409 	}
2410 }
2411 
2412 /*
2413  * Prune the list of object requests (adjust offset and/or length, drop
2414  * redundant requests).  Prepare object request state machines and image
2415  * request state machine for execution.
2416  */
2417 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2418 {
2419 	struct rbd_obj_request *obj_req, *next_obj_req;
2420 	int ret;
2421 
2422 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2423 		switch (img_req->op_type) {
2424 		case OBJ_OP_READ:
2425 			ret = rbd_obj_init_read(obj_req);
2426 			break;
2427 		case OBJ_OP_WRITE:
2428 			ret = rbd_obj_init_write(obj_req);
2429 			break;
2430 		case OBJ_OP_DISCARD:
2431 			ret = rbd_obj_init_discard(obj_req);
2432 			break;
2433 		case OBJ_OP_ZEROOUT:
2434 			ret = rbd_obj_init_zeroout(obj_req);
2435 			break;
2436 		default:
2437 			BUG();
2438 		}
2439 		if (ret < 0)
2440 			return ret;
2441 		if (ret > 0) {
2442 			rbd_img_obj_request_del(img_req, obj_req);
2443 			continue;
2444 		}
2445 	}
2446 
2447 	img_req->state = RBD_IMG_START;
2448 	return 0;
2449 }
2450 
2451 union rbd_img_fill_iter {
2452 	struct ceph_bio_iter	bio_iter;
2453 	struct ceph_bvec_iter	bvec_iter;
2454 };
2455 
2456 struct rbd_img_fill_ctx {
2457 	enum obj_request_type	pos_type;
2458 	union rbd_img_fill_iter	*pos;
2459 	union rbd_img_fill_iter	iter;
2460 	ceph_object_extent_fn_t	set_pos_fn;
2461 	ceph_object_extent_fn_t	count_fn;
2462 	ceph_object_extent_fn_t	copy_fn;
2463 };
2464 
2465 static struct ceph_object_extent *alloc_object_extent(void *arg)
2466 {
2467 	struct rbd_img_request *img_req = arg;
2468 	struct rbd_obj_request *obj_req;
2469 
2470 	obj_req = rbd_obj_request_create();
2471 	if (!obj_req)
2472 		return NULL;
2473 
2474 	rbd_img_obj_request_add(img_req, obj_req);
2475 	return &obj_req->ex;
2476 }
2477 
2478 /*
2479  * While su != os && sc == 1 is technically not fancy (it's the same
2480  * layout as su == os && sc == 1), we can't use the nocopy path for it
2481  * because ->set_pos_fn() should be called only once per object.
2482  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2483  * treat su != os && sc == 1 as fancy.
2484  */
2485 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2486 {
2487 	return l->stripe_unit != l->object_size;
2488 }
2489 
2490 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2491 				       struct ceph_file_extent *img_extents,
2492 				       u32 num_img_extents,
2493 				       struct rbd_img_fill_ctx *fctx)
2494 {
2495 	u32 i;
2496 	int ret;
2497 
2498 	img_req->data_type = fctx->pos_type;
2499 
2500 	/*
2501 	 * Create object requests and set each object request's starting
2502 	 * position in the provided bio (list) or bio_vec array.
2503 	 */
2504 	fctx->iter = *fctx->pos;
2505 	for (i = 0; i < num_img_extents; i++) {
2506 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2507 					   img_extents[i].fe_off,
2508 					   img_extents[i].fe_len,
2509 					   &img_req->object_extents,
2510 					   alloc_object_extent, img_req,
2511 					   fctx->set_pos_fn, &fctx->iter);
2512 		if (ret)
2513 			return ret;
2514 	}
2515 
2516 	return __rbd_img_fill_request(img_req);
2517 }
2518 
2519 /*
2520  * Map a list of image extents to a list of object extents, create the
2521  * corresponding object requests (normally each to a different object,
2522  * but not always) and add them to @img_req.  For each object request,
2523  * set up its data descriptor to point to the corresponding chunk(s) of
2524  * @fctx->pos data buffer.
2525  *
2526  * Because ceph_file_to_extents() will merge adjacent object extents
2527  * together, each object request's data descriptor may point to multiple
2528  * different chunks of @fctx->pos data buffer.
2529  *
2530  * @fctx->pos data buffer is assumed to be large enough.
2531  */
2532 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2533 				struct ceph_file_extent *img_extents,
2534 				u32 num_img_extents,
2535 				struct rbd_img_fill_ctx *fctx)
2536 {
2537 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2538 	struct rbd_obj_request *obj_req;
2539 	u32 i;
2540 	int ret;
2541 
2542 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2543 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2544 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2545 						   num_img_extents, fctx);
2546 
2547 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2548 
2549 	/*
2550 	 * Create object requests and determine ->bvec_count for each object
2551 	 * request.  Note that ->bvec_count sum over all object requests may
2552 	 * be greater than the number of bio_vecs in the provided bio (list)
2553 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2554 	 * stripe unit boundaries.
2555 	 */
2556 	fctx->iter = *fctx->pos;
2557 	for (i = 0; i < num_img_extents; i++) {
2558 		ret = ceph_file_to_extents(&rbd_dev->layout,
2559 					   img_extents[i].fe_off,
2560 					   img_extents[i].fe_len,
2561 					   &img_req->object_extents,
2562 					   alloc_object_extent, img_req,
2563 					   fctx->count_fn, &fctx->iter);
2564 		if (ret)
2565 			return ret;
2566 	}
2567 
2568 	for_each_obj_request(img_req, obj_req) {
2569 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2570 					      sizeof(*obj_req->bvec_pos.bvecs),
2571 					      GFP_NOIO);
2572 		if (!obj_req->bvec_pos.bvecs)
2573 			return -ENOMEM;
2574 	}
2575 
2576 	/*
2577 	 * Fill in each object request's private bio_vec array, splitting and
2578 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2579 	 */
2580 	fctx->iter = *fctx->pos;
2581 	for (i = 0; i < num_img_extents; i++) {
2582 		ret = ceph_iterate_extents(&rbd_dev->layout,
2583 					   img_extents[i].fe_off,
2584 					   img_extents[i].fe_len,
2585 					   &img_req->object_extents,
2586 					   fctx->copy_fn, &fctx->iter);
2587 		if (ret)
2588 			return ret;
2589 	}
2590 
2591 	return __rbd_img_fill_request(img_req);
2592 }
2593 
2594 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2595 			       u64 off, u64 len)
2596 {
2597 	struct ceph_file_extent ex = { off, len };
2598 	union rbd_img_fill_iter dummy = {};
2599 	struct rbd_img_fill_ctx fctx = {
2600 		.pos_type = OBJ_REQUEST_NODATA,
2601 		.pos = &dummy,
2602 	};
2603 
2604 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2605 }
2606 
2607 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2608 {
2609 	struct rbd_obj_request *obj_req =
2610 	    container_of(ex, struct rbd_obj_request, ex);
2611 	struct ceph_bio_iter *it = arg;
2612 
2613 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2614 	obj_req->bio_pos = *it;
2615 	ceph_bio_iter_advance(it, bytes);
2616 }
2617 
2618 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2619 {
2620 	struct rbd_obj_request *obj_req =
2621 	    container_of(ex, struct rbd_obj_request, ex);
2622 	struct ceph_bio_iter *it = arg;
2623 
2624 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2625 	ceph_bio_iter_advance_step(it, bytes, ({
2626 		obj_req->bvec_count++;
2627 	}));
2628 
2629 }
2630 
2631 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2632 {
2633 	struct rbd_obj_request *obj_req =
2634 	    container_of(ex, struct rbd_obj_request, ex);
2635 	struct ceph_bio_iter *it = arg;
2636 
2637 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2638 	ceph_bio_iter_advance_step(it, bytes, ({
2639 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2640 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2641 	}));
2642 }
2643 
2644 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2645 				   struct ceph_file_extent *img_extents,
2646 				   u32 num_img_extents,
2647 				   struct ceph_bio_iter *bio_pos)
2648 {
2649 	struct rbd_img_fill_ctx fctx = {
2650 		.pos_type = OBJ_REQUEST_BIO,
2651 		.pos = (union rbd_img_fill_iter *)bio_pos,
2652 		.set_pos_fn = set_bio_pos,
2653 		.count_fn = count_bio_bvecs,
2654 		.copy_fn = copy_bio_bvecs,
2655 	};
2656 
2657 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2658 				    &fctx);
2659 }
2660 
2661 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2662 				 u64 off, u64 len, struct bio *bio)
2663 {
2664 	struct ceph_file_extent ex = { off, len };
2665 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2666 
2667 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2668 }
2669 
2670 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2671 {
2672 	struct rbd_obj_request *obj_req =
2673 	    container_of(ex, struct rbd_obj_request, ex);
2674 	struct ceph_bvec_iter *it = arg;
2675 
2676 	obj_req->bvec_pos = *it;
2677 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2678 	ceph_bvec_iter_advance(it, bytes);
2679 }
2680 
2681 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2682 {
2683 	struct rbd_obj_request *obj_req =
2684 	    container_of(ex, struct rbd_obj_request, ex);
2685 	struct ceph_bvec_iter *it = arg;
2686 
2687 	ceph_bvec_iter_advance_step(it, bytes, ({
2688 		obj_req->bvec_count++;
2689 	}));
2690 }
2691 
2692 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2693 {
2694 	struct rbd_obj_request *obj_req =
2695 	    container_of(ex, struct rbd_obj_request, ex);
2696 	struct ceph_bvec_iter *it = arg;
2697 
2698 	ceph_bvec_iter_advance_step(it, bytes, ({
2699 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2700 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2701 	}));
2702 }
2703 
2704 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2705 				     struct ceph_file_extent *img_extents,
2706 				     u32 num_img_extents,
2707 				     struct ceph_bvec_iter *bvec_pos)
2708 {
2709 	struct rbd_img_fill_ctx fctx = {
2710 		.pos_type = OBJ_REQUEST_BVECS,
2711 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2712 		.set_pos_fn = set_bvec_pos,
2713 		.count_fn = count_bvecs,
2714 		.copy_fn = copy_bvecs,
2715 	};
2716 
2717 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2718 				    &fctx);
2719 }
2720 
2721 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2722 				   struct ceph_file_extent *img_extents,
2723 				   u32 num_img_extents,
2724 				   struct bio_vec *bvecs)
2725 {
2726 	struct ceph_bvec_iter it = {
2727 		.bvecs = bvecs,
2728 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2729 							     num_img_extents) },
2730 	};
2731 
2732 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2733 					 &it);
2734 }
2735 
2736 static void rbd_img_handle_request_work(struct work_struct *work)
2737 {
2738 	struct rbd_img_request *img_req =
2739 	    container_of(work, struct rbd_img_request, work);
2740 
2741 	rbd_img_handle_request(img_req, img_req->work_result);
2742 }
2743 
2744 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2745 {
2746 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2747 	img_req->work_result = result;
2748 	queue_work(rbd_wq, &img_req->work);
2749 }
2750 
2751 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2752 {
2753 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2754 
2755 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2756 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2757 		return true;
2758 	}
2759 
2760 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2761 	     obj_req->ex.oe_objno);
2762 	return false;
2763 }
2764 
2765 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2766 {
2767 	struct ceph_osd_request *osd_req;
2768 	int ret;
2769 
2770 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2771 	if (IS_ERR(osd_req))
2772 		return PTR_ERR(osd_req);
2773 
2774 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2775 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2776 	rbd_osd_setup_data(osd_req, 0);
2777 	rbd_osd_format_read(osd_req);
2778 
2779 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2780 	if (ret)
2781 		return ret;
2782 
2783 	rbd_osd_submit(osd_req);
2784 	return 0;
2785 }
2786 
2787 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2788 {
2789 	struct rbd_img_request *img_req = obj_req->img_request;
2790 	struct rbd_device *parent = img_req->rbd_dev->parent;
2791 	struct rbd_img_request *child_img_req;
2792 	int ret;
2793 
2794 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2795 	if (!child_img_req)
2796 		return -ENOMEM;
2797 
2798 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2799 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2800 	child_img_req->obj_request = obj_req;
2801 
2802 	down_read(&parent->header_rwsem);
2803 	rbd_img_capture_header(child_img_req);
2804 	up_read(&parent->header_rwsem);
2805 
2806 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2807 	     obj_req);
2808 
2809 	if (!rbd_img_is_write(img_req)) {
2810 		switch (img_req->data_type) {
2811 		case OBJ_REQUEST_BIO:
2812 			ret = __rbd_img_fill_from_bio(child_img_req,
2813 						      obj_req->img_extents,
2814 						      obj_req->num_img_extents,
2815 						      &obj_req->bio_pos);
2816 			break;
2817 		case OBJ_REQUEST_BVECS:
2818 		case OBJ_REQUEST_OWN_BVECS:
2819 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2820 						      obj_req->img_extents,
2821 						      obj_req->num_img_extents,
2822 						      &obj_req->bvec_pos);
2823 			break;
2824 		default:
2825 			BUG();
2826 		}
2827 	} else {
2828 		ret = rbd_img_fill_from_bvecs(child_img_req,
2829 					      obj_req->img_extents,
2830 					      obj_req->num_img_extents,
2831 					      obj_req->copyup_bvecs);
2832 	}
2833 	if (ret) {
2834 		rbd_img_request_destroy(child_img_req);
2835 		return ret;
2836 	}
2837 
2838 	/* avoid parent chain recursion */
2839 	rbd_img_schedule(child_img_req, 0);
2840 	return 0;
2841 }
2842 
2843 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2844 {
2845 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2846 	int ret;
2847 
2848 again:
2849 	switch (obj_req->read_state) {
2850 	case RBD_OBJ_READ_START:
2851 		rbd_assert(!*result);
2852 
2853 		if (!rbd_obj_may_exist(obj_req)) {
2854 			*result = -ENOENT;
2855 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2856 			goto again;
2857 		}
2858 
2859 		ret = rbd_obj_read_object(obj_req);
2860 		if (ret) {
2861 			*result = ret;
2862 			return true;
2863 		}
2864 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2865 		return false;
2866 	case RBD_OBJ_READ_OBJECT:
2867 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2868 			/* reverse map this object extent onto the parent */
2869 			ret = rbd_obj_calc_img_extents(obj_req, false);
2870 			if (ret) {
2871 				*result = ret;
2872 				return true;
2873 			}
2874 			if (obj_req->num_img_extents) {
2875 				ret = rbd_obj_read_from_parent(obj_req);
2876 				if (ret) {
2877 					*result = ret;
2878 					return true;
2879 				}
2880 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2881 				return false;
2882 			}
2883 		}
2884 
2885 		/*
2886 		 * -ENOENT means a hole in the image -- zero-fill the entire
2887 		 * length of the request.  A short read also implies zero-fill
2888 		 * to the end of the request.
2889 		 */
2890 		if (*result == -ENOENT) {
2891 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2892 			*result = 0;
2893 		} else if (*result >= 0) {
2894 			if (*result < obj_req->ex.oe_len)
2895 				rbd_obj_zero_range(obj_req, *result,
2896 						obj_req->ex.oe_len - *result);
2897 			else
2898 				rbd_assert(*result == obj_req->ex.oe_len);
2899 			*result = 0;
2900 		}
2901 		return true;
2902 	case RBD_OBJ_READ_PARENT:
2903 		/*
2904 		 * The parent image is read only up to the overlap -- zero-fill
2905 		 * from the overlap to the end of the request.
2906 		 */
2907 		if (!*result) {
2908 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2909 
2910 			if (obj_overlap < obj_req->ex.oe_len)
2911 				rbd_obj_zero_range(obj_req, obj_overlap,
2912 					    obj_req->ex.oe_len - obj_overlap);
2913 		}
2914 		return true;
2915 	default:
2916 		BUG();
2917 	}
2918 }
2919 
2920 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2921 {
2922 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2923 
2924 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2925 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2926 
2927 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2928 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2929 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2930 		return true;
2931 	}
2932 
2933 	return false;
2934 }
2935 
2936 /*
2937  * Return:
2938  *   0 - object map update sent
2939  *   1 - object map update isn't needed
2940  *  <0 - error
2941  */
2942 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2943 {
2944 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2945 	u8 new_state;
2946 
2947 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2948 		return 1;
2949 
2950 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2951 		new_state = OBJECT_PENDING;
2952 	else
2953 		new_state = OBJECT_EXISTS;
2954 
2955 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2956 }
2957 
2958 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2959 {
2960 	struct ceph_osd_request *osd_req;
2961 	int num_ops = count_write_ops(obj_req);
2962 	int which = 0;
2963 	int ret;
2964 
2965 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2966 		num_ops++; /* stat */
2967 
2968 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2969 	if (IS_ERR(osd_req))
2970 		return PTR_ERR(osd_req);
2971 
2972 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2973 		ret = rbd_osd_setup_stat(osd_req, which++);
2974 		if (ret)
2975 			return ret;
2976 	}
2977 
2978 	rbd_osd_setup_write_ops(osd_req, which);
2979 	rbd_osd_format_write(osd_req);
2980 
2981 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2982 	if (ret)
2983 		return ret;
2984 
2985 	rbd_osd_submit(osd_req);
2986 	return 0;
2987 }
2988 
2989 /*
2990  * copyup_bvecs pages are never highmem pages
2991  */
2992 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2993 {
2994 	struct ceph_bvec_iter it = {
2995 		.bvecs = bvecs,
2996 		.iter = { .bi_size = bytes },
2997 	};
2998 
2999 	ceph_bvec_iter_advance_step(&it, bytes, ({
3000 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3001 			       bv.bv_len))
3002 			return false;
3003 	}));
3004 	return true;
3005 }
3006 
3007 #define MODS_ONLY	U32_MAX
3008 
3009 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3010 				      u32 bytes)
3011 {
3012 	struct ceph_osd_request *osd_req;
3013 	int ret;
3014 
3015 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3016 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3017 
3018 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3019 	if (IS_ERR(osd_req))
3020 		return PTR_ERR(osd_req);
3021 
3022 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3023 	if (ret)
3024 		return ret;
3025 
3026 	rbd_osd_format_write(osd_req);
3027 
3028 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3029 	if (ret)
3030 		return ret;
3031 
3032 	rbd_osd_submit(osd_req);
3033 	return 0;
3034 }
3035 
3036 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3037 					u32 bytes)
3038 {
3039 	struct ceph_osd_request *osd_req;
3040 	int num_ops = count_write_ops(obj_req);
3041 	int which = 0;
3042 	int ret;
3043 
3044 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3045 
3046 	if (bytes != MODS_ONLY)
3047 		num_ops++; /* copyup */
3048 
3049 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3050 	if (IS_ERR(osd_req))
3051 		return PTR_ERR(osd_req);
3052 
3053 	if (bytes != MODS_ONLY) {
3054 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3055 		if (ret)
3056 			return ret;
3057 	}
3058 
3059 	rbd_osd_setup_write_ops(osd_req, which);
3060 	rbd_osd_format_write(osd_req);
3061 
3062 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3063 	if (ret)
3064 		return ret;
3065 
3066 	rbd_osd_submit(osd_req);
3067 	return 0;
3068 }
3069 
3070 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3071 {
3072 	u32 i;
3073 
3074 	rbd_assert(!obj_req->copyup_bvecs);
3075 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3076 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3077 					sizeof(*obj_req->copyup_bvecs),
3078 					GFP_NOIO);
3079 	if (!obj_req->copyup_bvecs)
3080 		return -ENOMEM;
3081 
3082 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3083 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3084 
3085 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3086 		if (!obj_req->copyup_bvecs[i].bv_page)
3087 			return -ENOMEM;
3088 
3089 		obj_req->copyup_bvecs[i].bv_offset = 0;
3090 		obj_req->copyup_bvecs[i].bv_len = len;
3091 		obj_overlap -= len;
3092 	}
3093 
3094 	rbd_assert(!obj_overlap);
3095 	return 0;
3096 }
3097 
3098 /*
3099  * The target object doesn't exist.  Read the data for the entire
3100  * target object up to the overlap point (if any) from the parent,
3101  * so we can use it for a copyup.
3102  */
3103 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3104 {
3105 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3106 	int ret;
3107 
3108 	rbd_assert(obj_req->num_img_extents);
3109 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3110 		      rbd_dev->parent_overlap);
3111 	if (!obj_req->num_img_extents) {
3112 		/*
3113 		 * The overlap has become 0 (most likely because the
3114 		 * image has been flattened).  Re-submit the original write
3115 		 * request -- pass MODS_ONLY since the copyup isn't needed
3116 		 * anymore.
3117 		 */
3118 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3119 	}
3120 
3121 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3122 	if (ret)
3123 		return ret;
3124 
3125 	return rbd_obj_read_from_parent(obj_req);
3126 }
3127 
3128 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3129 {
3130 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3131 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3132 	u8 new_state;
3133 	u32 i;
3134 	int ret;
3135 
3136 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3137 
3138 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3139 		return;
3140 
3141 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3142 		return;
3143 
3144 	for (i = 0; i < snapc->num_snaps; i++) {
3145 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3146 		    i + 1 < snapc->num_snaps)
3147 			new_state = OBJECT_EXISTS_CLEAN;
3148 		else
3149 			new_state = OBJECT_EXISTS;
3150 
3151 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3152 					    new_state, NULL);
3153 		if (ret < 0) {
3154 			obj_req->pending.result = ret;
3155 			return;
3156 		}
3157 
3158 		rbd_assert(!ret);
3159 		obj_req->pending.num_pending++;
3160 	}
3161 }
3162 
3163 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3164 {
3165 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3166 	int ret;
3167 
3168 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3169 
3170 	/*
3171 	 * Only send non-zero copyup data to save some I/O and network
3172 	 * bandwidth -- zero copyup data is equivalent to the object not
3173 	 * existing.
3174 	 */
3175 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3176 		bytes = 0;
3177 
3178 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3179 		/*
3180 		 * Send a copyup request with an empty snapshot context to
3181 		 * deep-copyup the object through all existing snapshots.
3182 		 * A second request with the current snapshot context will be
3183 		 * sent for the actual modification.
3184 		 */
3185 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3186 		if (ret) {
3187 			obj_req->pending.result = ret;
3188 			return;
3189 		}
3190 
3191 		obj_req->pending.num_pending++;
3192 		bytes = MODS_ONLY;
3193 	}
3194 
3195 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3196 	if (ret) {
3197 		obj_req->pending.result = ret;
3198 		return;
3199 	}
3200 
3201 	obj_req->pending.num_pending++;
3202 }
3203 
3204 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3205 {
3206 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3207 	int ret;
3208 
3209 again:
3210 	switch (obj_req->copyup_state) {
3211 	case RBD_OBJ_COPYUP_START:
3212 		rbd_assert(!*result);
3213 
3214 		ret = rbd_obj_copyup_read_parent(obj_req);
3215 		if (ret) {
3216 			*result = ret;
3217 			return true;
3218 		}
3219 		if (obj_req->num_img_extents)
3220 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3221 		else
3222 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3223 		return false;
3224 	case RBD_OBJ_COPYUP_READ_PARENT:
3225 		if (*result)
3226 			return true;
3227 
3228 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3229 				  rbd_obj_img_extents_bytes(obj_req))) {
3230 			dout("%s %p detected zeros\n", __func__, obj_req);
3231 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3232 		}
3233 
3234 		rbd_obj_copyup_object_maps(obj_req);
3235 		if (!obj_req->pending.num_pending) {
3236 			*result = obj_req->pending.result;
3237 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3238 			goto again;
3239 		}
3240 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3241 		return false;
3242 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3243 		if (!pending_result_dec(&obj_req->pending, result))
3244 			return false;
3245 		fallthrough;
3246 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3247 		if (*result) {
3248 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3249 				 *result);
3250 			return true;
3251 		}
3252 
3253 		rbd_obj_copyup_write_object(obj_req);
3254 		if (!obj_req->pending.num_pending) {
3255 			*result = obj_req->pending.result;
3256 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3257 			goto again;
3258 		}
3259 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3260 		return false;
3261 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3262 		if (!pending_result_dec(&obj_req->pending, result))
3263 			return false;
3264 		fallthrough;
3265 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3266 		return true;
3267 	default:
3268 		BUG();
3269 	}
3270 }
3271 
3272 /*
3273  * Return:
3274  *   0 - object map update sent
3275  *   1 - object map update isn't needed
3276  *  <0 - error
3277  */
3278 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3279 {
3280 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3281 	u8 current_state = OBJECT_PENDING;
3282 
3283 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3284 		return 1;
3285 
3286 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3287 		return 1;
3288 
3289 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3290 				     &current_state);
3291 }
3292 
3293 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3294 {
3295 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3296 	int ret;
3297 
3298 again:
3299 	switch (obj_req->write_state) {
3300 	case RBD_OBJ_WRITE_START:
3301 		rbd_assert(!*result);
3302 
3303 		if (rbd_obj_write_is_noop(obj_req))
3304 			return true;
3305 
3306 		ret = rbd_obj_write_pre_object_map(obj_req);
3307 		if (ret < 0) {
3308 			*result = ret;
3309 			return true;
3310 		}
3311 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3312 		if (ret > 0)
3313 			goto again;
3314 		return false;
3315 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3316 		if (*result) {
3317 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3318 				 *result);
3319 			return true;
3320 		}
3321 		ret = rbd_obj_write_object(obj_req);
3322 		if (ret) {
3323 			*result = ret;
3324 			return true;
3325 		}
3326 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3327 		return false;
3328 	case RBD_OBJ_WRITE_OBJECT:
3329 		if (*result == -ENOENT) {
3330 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3331 				*result = 0;
3332 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3333 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3334 				goto again;
3335 			}
3336 			/*
3337 			 * On a non-existent object:
3338 			 *   delete - -ENOENT, truncate/zero - 0
3339 			 */
3340 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3341 				*result = 0;
3342 		}
3343 		if (*result)
3344 			return true;
3345 
3346 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3347 		goto again;
3348 	case __RBD_OBJ_WRITE_COPYUP:
3349 		if (!rbd_obj_advance_copyup(obj_req, result))
3350 			return false;
3351 		fallthrough;
3352 	case RBD_OBJ_WRITE_COPYUP:
3353 		if (*result) {
3354 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3355 			return true;
3356 		}
3357 		ret = rbd_obj_write_post_object_map(obj_req);
3358 		if (ret < 0) {
3359 			*result = ret;
3360 			return true;
3361 		}
3362 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3363 		if (ret > 0)
3364 			goto again;
3365 		return false;
3366 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3367 		if (*result)
3368 			rbd_warn(rbd_dev, "post object map update failed: %d",
3369 				 *result);
3370 		return true;
3371 	default:
3372 		BUG();
3373 	}
3374 }
3375 
3376 /*
3377  * Return true if @obj_req is completed.
3378  */
3379 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3380 				     int *result)
3381 {
3382 	struct rbd_img_request *img_req = obj_req->img_request;
3383 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3384 	bool done;
3385 
3386 	mutex_lock(&obj_req->state_mutex);
3387 	if (!rbd_img_is_write(img_req))
3388 		done = rbd_obj_advance_read(obj_req, result);
3389 	else
3390 		done = rbd_obj_advance_write(obj_req, result);
3391 	mutex_unlock(&obj_req->state_mutex);
3392 
3393 	if (done && *result) {
3394 		rbd_assert(*result < 0);
3395 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3396 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3397 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3398 	}
3399 	return done;
3400 }
3401 
3402 /*
3403  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3404  * recursion.
3405  */
3406 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3407 {
3408 	if (__rbd_obj_handle_request(obj_req, &result))
3409 		rbd_img_handle_request(obj_req->img_request, result);
3410 }
3411 
3412 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3413 {
3414 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3415 
3416 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3417 		return false;
3418 
3419 	if (rbd_is_ro(rbd_dev))
3420 		return false;
3421 
3422 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3423 	if (rbd_dev->opts->lock_on_read ||
3424 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3425 		return true;
3426 
3427 	return rbd_img_is_write(img_req);
3428 }
3429 
3430 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3431 {
3432 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3433 	bool locked;
3434 
3435 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3436 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3437 	spin_lock(&rbd_dev->lock_lists_lock);
3438 	rbd_assert(list_empty(&img_req->lock_item));
3439 	if (!locked)
3440 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3441 	else
3442 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3443 	spin_unlock(&rbd_dev->lock_lists_lock);
3444 	return locked;
3445 }
3446 
3447 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3448 {
3449 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3450 	bool need_wakeup;
3451 
3452 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3453 	spin_lock(&rbd_dev->lock_lists_lock);
3454 	rbd_assert(!list_empty(&img_req->lock_item));
3455 	list_del_init(&img_req->lock_item);
3456 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3457 		       list_empty(&rbd_dev->running_list));
3458 	spin_unlock(&rbd_dev->lock_lists_lock);
3459 	if (need_wakeup)
3460 		complete(&rbd_dev->releasing_wait);
3461 }
3462 
3463 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3464 {
3465 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3466 
3467 	if (!need_exclusive_lock(img_req))
3468 		return 1;
3469 
3470 	if (rbd_lock_add_request(img_req))
3471 		return 1;
3472 
3473 	if (rbd_dev->opts->exclusive) {
3474 		WARN_ON(1); /* lock got released? */
3475 		return -EROFS;
3476 	}
3477 
3478 	/*
3479 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3480 	 * and cancel_delayed_work() in wake_lock_waiters().
3481 	 */
3482 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3483 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3484 	return 0;
3485 }
3486 
3487 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3488 {
3489 	struct rbd_obj_request *obj_req;
3490 
3491 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3492 
3493 	for_each_obj_request(img_req, obj_req) {
3494 		int result = 0;
3495 
3496 		if (__rbd_obj_handle_request(obj_req, &result)) {
3497 			if (result) {
3498 				img_req->pending.result = result;
3499 				return;
3500 			}
3501 		} else {
3502 			img_req->pending.num_pending++;
3503 		}
3504 	}
3505 }
3506 
3507 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3508 {
3509 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3510 	int ret;
3511 
3512 again:
3513 	switch (img_req->state) {
3514 	case RBD_IMG_START:
3515 		rbd_assert(!*result);
3516 
3517 		ret = rbd_img_exclusive_lock(img_req);
3518 		if (ret < 0) {
3519 			*result = ret;
3520 			return true;
3521 		}
3522 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3523 		if (ret > 0)
3524 			goto again;
3525 		return false;
3526 	case RBD_IMG_EXCLUSIVE_LOCK:
3527 		if (*result)
3528 			return true;
3529 
3530 		rbd_assert(!need_exclusive_lock(img_req) ||
3531 			   __rbd_is_lock_owner(rbd_dev));
3532 
3533 		rbd_img_object_requests(img_req);
3534 		if (!img_req->pending.num_pending) {
3535 			*result = img_req->pending.result;
3536 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3537 			goto again;
3538 		}
3539 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3540 		return false;
3541 	case __RBD_IMG_OBJECT_REQUESTS:
3542 		if (!pending_result_dec(&img_req->pending, result))
3543 			return false;
3544 		fallthrough;
3545 	case RBD_IMG_OBJECT_REQUESTS:
3546 		return true;
3547 	default:
3548 		BUG();
3549 	}
3550 }
3551 
3552 /*
3553  * Return true if @img_req is completed.
3554  */
3555 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3556 				     int *result)
3557 {
3558 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3559 	bool done;
3560 
3561 	if (need_exclusive_lock(img_req)) {
3562 		down_read(&rbd_dev->lock_rwsem);
3563 		mutex_lock(&img_req->state_mutex);
3564 		done = rbd_img_advance(img_req, result);
3565 		if (done)
3566 			rbd_lock_del_request(img_req);
3567 		mutex_unlock(&img_req->state_mutex);
3568 		up_read(&rbd_dev->lock_rwsem);
3569 	} else {
3570 		mutex_lock(&img_req->state_mutex);
3571 		done = rbd_img_advance(img_req, result);
3572 		mutex_unlock(&img_req->state_mutex);
3573 	}
3574 
3575 	if (done && *result) {
3576 		rbd_assert(*result < 0);
3577 		rbd_warn(rbd_dev, "%s%s result %d",
3578 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3579 		      obj_op_name(img_req->op_type), *result);
3580 	}
3581 	return done;
3582 }
3583 
3584 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3585 {
3586 again:
3587 	if (!__rbd_img_handle_request(img_req, &result))
3588 		return;
3589 
3590 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3591 		struct rbd_obj_request *obj_req = img_req->obj_request;
3592 
3593 		rbd_img_request_destroy(img_req);
3594 		if (__rbd_obj_handle_request(obj_req, &result)) {
3595 			img_req = obj_req->img_request;
3596 			goto again;
3597 		}
3598 	} else {
3599 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3600 
3601 		rbd_img_request_destroy(img_req);
3602 		blk_mq_end_request(rq, errno_to_blk_status(result));
3603 	}
3604 }
3605 
3606 static const struct rbd_client_id rbd_empty_cid;
3607 
3608 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3609 			  const struct rbd_client_id *rhs)
3610 {
3611 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3612 }
3613 
3614 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3615 {
3616 	struct rbd_client_id cid;
3617 
3618 	mutex_lock(&rbd_dev->watch_mutex);
3619 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3620 	cid.handle = rbd_dev->watch_cookie;
3621 	mutex_unlock(&rbd_dev->watch_mutex);
3622 	return cid;
3623 }
3624 
3625 /*
3626  * lock_rwsem must be held for write
3627  */
3628 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3629 			      const struct rbd_client_id *cid)
3630 {
3631 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3632 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3633 	     cid->gid, cid->handle);
3634 	rbd_dev->owner_cid = *cid; /* struct */
3635 }
3636 
3637 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3638 {
3639 	mutex_lock(&rbd_dev->watch_mutex);
3640 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3641 	mutex_unlock(&rbd_dev->watch_mutex);
3642 }
3643 
3644 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3645 {
3646 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3647 
3648 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3649 	strcpy(rbd_dev->lock_cookie, cookie);
3650 	rbd_set_owner_cid(rbd_dev, &cid);
3651 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3652 }
3653 
3654 /*
3655  * lock_rwsem must be held for write
3656  */
3657 static int rbd_lock(struct rbd_device *rbd_dev)
3658 {
3659 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3660 	char cookie[32];
3661 	int ret;
3662 
3663 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3664 		rbd_dev->lock_cookie[0] != '\0');
3665 
3666 	format_lock_cookie(rbd_dev, cookie);
3667 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3668 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3669 			    RBD_LOCK_TAG, "", 0);
3670 	if (ret)
3671 		return ret;
3672 
3673 	__rbd_lock(rbd_dev, cookie);
3674 	return 0;
3675 }
3676 
3677 /*
3678  * lock_rwsem must be held for write
3679  */
3680 static void rbd_unlock(struct rbd_device *rbd_dev)
3681 {
3682 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3683 	int ret;
3684 
3685 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3686 		rbd_dev->lock_cookie[0] == '\0');
3687 
3688 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3689 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3690 	if (ret && ret != -ENOENT)
3691 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3692 
3693 	/* treat errors as the image is unlocked */
3694 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3695 	rbd_dev->lock_cookie[0] = '\0';
3696 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3697 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3698 }
3699 
3700 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3701 				enum rbd_notify_op notify_op,
3702 				struct page ***preply_pages,
3703 				size_t *preply_len)
3704 {
3705 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3706 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3707 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3708 	int buf_size = sizeof(buf);
3709 	void *p = buf;
3710 
3711 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3712 
3713 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3714 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3715 	ceph_encode_32(&p, notify_op);
3716 	ceph_encode_64(&p, cid.gid);
3717 	ceph_encode_64(&p, cid.handle);
3718 
3719 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3720 				&rbd_dev->header_oloc, buf, buf_size,
3721 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3722 }
3723 
3724 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3725 			       enum rbd_notify_op notify_op)
3726 {
3727 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3728 }
3729 
3730 static void rbd_notify_acquired_lock(struct work_struct *work)
3731 {
3732 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3733 						  acquired_lock_work);
3734 
3735 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3736 }
3737 
3738 static void rbd_notify_released_lock(struct work_struct *work)
3739 {
3740 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3741 						  released_lock_work);
3742 
3743 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3744 }
3745 
3746 static int rbd_request_lock(struct rbd_device *rbd_dev)
3747 {
3748 	struct page **reply_pages;
3749 	size_t reply_len;
3750 	bool lock_owner_responded = false;
3751 	int ret;
3752 
3753 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3754 
3755 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3756 				   &reply_pages, &reply_len);
3757 	if (ret && ret != -ETIMEDOUT) {
3758 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3759 		goto out;
3760 	}
3761 
3762 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3763 		void *p = page_address(reply_pages[0]);
3764 		void *const end = p + reply_len;
3765 		u32 n;
3766 
3767 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3768 		while (n--) {
3769 			u8 struct_v;
3770 			u32 len;
3771 
3772 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3773 			p += 8 + 8; /* skip gid and cookie */
3774 
3775 			ceph_decode_32_safe(&p, end, len, e_inval);
3776 			if (!len)
3777 				continue;
3778 
3779 			if (lock_owner_responded) {
3780 				rbd_warn(rbd_dev,
3781 					 "duplicate lock owners detected");
3782 				ret = -EIO;
3783 				goto out;
3784 			}
3785 
3786 			lock_owner_responded = true;
3787 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3788 						  &struct_v, &len);
3789 			if (ret) {
3790 				rbd_warn(rbd_dev,
3791 					 "failed to decode ResponseMessage: %d",
3792 					 ret);
3793 				goto e_inval;
3794 			}
3795 
3796 			ret = ceph_decode_32(&p);
3797 		}
3798 	}
3799 
3800 	if (!lock_owner_responded) {
3801 		rbd_warn(rbd_dev, "no lock owners detected");
3802 		ret = -ETIMEDOUT;
3803 	}
3804 
3805 out:
3806 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3807 	return ret;
3808 
3809 e_inval:
3810 	ret = -EINVAL;
3811 	goto out;
3812 }
3813 
3814 /*
3815  * Either image request state machine(s) or rbd_add_acquire_lock()
3816  * (i.e. "rbd map").
3817  */
3818 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3819 {
3820 	struct rbd_img_request *img_req;
3821 
3822 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3823 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3824 
3825 	cancel_delayed_work(&rbd_dev->lock_dwork);
3826 	if (!completion_done(&rbd_dev->acquire_wait)) {
3827 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3828 			   list_empty(&rbd_dev->running_list));
3829 		rbd_dev->acquire_err = result;
3830 		complete_all(&rbd_dev->acquire_wait);
3831 		return;
3832 	}
3833 
3834 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3835 		mutex_lock(&img_req->state_mutex);
3836 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3837 		rbd_img_schedule(img_req, result);
3838 		mutex_unlock(&img_req->state_mutex);
3839 	}
3840 
3841 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3842 }
3843 
3844 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3845 			       struct ceph_locker **lockers, u32 *num_lockers)
3846 {
3847 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3848 	u8 lock_type;
3849 	char *lock_tag;
3850 	int ret;
3851 
3852 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3853 
3854 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3855 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3856 				 &lock_type, &lock_tag, lockers, num_lockers);
3857 	if (ret)
3858 		return ret;
3859 
3860 	if (*num_lockers == 0) {
3861 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3862 		goto out;
3863 	}
3864 
3865 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3866 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3867 			 lock_tag);
3868 		ret = -EBUSY;
3869 		goto out;
3870 	}
3871 
3872 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3873 		rbd_warn(rbd_dev, "shared lock type detected");
3874 		ret = -EBUSY;
3875 		goto out;
3876 	}
3877 
3878 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3879 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3880 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3881 			 (*lockers)[0].id.cookie);
3882 		ret = -EBUSY;
3883 		goto out;
3884 	}
3885 
3886 out:
3887 	kfree(lock_tag);
3888 	return ret;
3889 }
3890 
3891 static int find_watcher(struct rbd_device *rbd_dev,
3892 			const struct ceph_locker *locker)
3893 {
3894 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3895 	struct ceph_watch_item *watchers;
3896 	u32 num_watchers;
3897 	u64 cookie;
3898 	int i;
3899 	int ret;
3900 
3901 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3902 				      &rbd_dev->header_oloc, &watchers,
3903 				      &num_watchers);
3904 	if (ret)
3905 		return ret;
3906 
3907 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3908 	for (i = 0; i < num_watchers; i++) {
3909 		/*
3910 		 * Ignore addr->type while comparing.  This mimics
3911 		 * entity_addr_t::get_legacy_str() + strcmp().
3912 		 */
3913 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3914 					    &locker->info.addr) &&
3915 		    watchers[i].cookie == cookie) {
3916 			struct rbd_client_id cid = {
3917 				.gid = le64_to_cpu(watchers[i].name.num),
3918 				.handle = cookie,
3919 			};
3920 
3921 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3922 			     rbd_dev, cid.gid, cid.handle);
3923 			rbd_set_owner_cid(rbd_dev, &cid);
3924 			ret = 1;
3925 			goto out;
3926 		}
3927 	}
3928 
3929 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3930 	ret = 0;
3931 out:
3932 	kfree(watchers);
3933 	return ret;
3934 }
3935 
3936 /*
3937  * lock_rwsem must be held for write
3938  */
3939 static int rbd_try_lock(struct rbd_device *rbd_dev)
3940 {
3941 	struct ceph_client *client = rbd_dev->rbd_client->client;
3942 	struct ceph_locker *lockers;
3943 	u32 num_lockers;
3944 	int ret;
3945 
3946 	for (;;) {
3947 		ret = rbd_lock(rbd_dev);
3948 		if (ret != -EBUSY)
3949 			return ret;
3950 
3951 		/* determine if the current lock holder is still alive */
3952 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3953 		if (ret)
3954 			return ret;
3955 
3956 		if (num_lockers == 0)
3957 			goto again;
3958 
3959 		ret = find_watcher(rbd_dev, lockers);
3960 		if (ret)
3961 			goto out; /* request lock or error */
3962 
3963 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
3964 			 ENTITY_NAME(lockers[0].id.name));
3965 
3966 		ret = ceph_monc_blocklist_add(&client->monc,
3967 					      &lockers[0].info.addr);
3968 		if (ret) {
3969 			rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d",
3970 				 ENTITY_NAME(lockers[0].id.name), ret);
3971 			goto out;
3972 		}
3973 
3974 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3975 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3976 					  lockers[0].id.cookie,
3977 					  &lockers[0].id.name);
3978 		if (ret && ret != -ENOENT)
3979 			goto out;
3980 
3981 again:
3982 		ceph_free_lockers(lockers, num_lockers);
3983 	}
3984 
3985 out:
3986 	ceph_free_lockers(lockers, num_lockers);
3987 	return ret;
3988 }
3989 
3990 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
3991 {
3992 	int ret;
3993 
3994 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
3995 		ret = rbd_object_map_open(rbd_dev);
3996 		if (ret)
3997 			return ret;
3998 	}
3999 
4000 	return 0;
4001 }
4002 
4003 /*
4004  * Return:
4005  *   0 - lock acquired
4006  *   1 - caller should call rbd_request_lock()
4007  *  <0 - error
4008  */
4009 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4010 {
4011 	int ret;
4012 
4013 	down_read(&rbd_dev->lock_rwsem);
4014 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4015 	     rbd_dev->lock_state);
4016 	if (__rbd_is_lock_owner(rbd_dev)) {
4017 		up_read(&rbd_dev->lock_rwsem);
4018 		return 0;
4019 	}
4020 
4021 	up_read(&rbd_dev->lock_rwsem);
4022 	down_write(&rbd_dev->lock_rwsem);
4023 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4024 	     rbd_dev->lock_state);
4025 	if (__rbd_is_lock_owner(rbd_dev)) {
4026 		up_write(&rbd_dev->lock_rwsem);
4027 		return 0;
4028 	}
4029 
4030 	ret = rbd_try_lock(rbd_dev);
4031 	if (ret < 0) {
4032 		rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4033 		if (ret == -EBLOCKLISTED)
4034 			goto out;
4035 
4036 		ret = 1; /* request lock anyway */
4037 	}
4038 	if (ret > 0) {
4039 		up_write(&rbd_dev->lock_rwsem);
4040 		return ret;
4041 	}
4042 
4043 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4044 	rbd_assert(list_empty(&rbd_dev->running_list));
4045 
4046 	ret = rbd_post_acquire_action(rbd_dev);
4047 	if (ret) {
4048 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4049 		/*
4050 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4051 		 * rbd_lock_add_request() would let the request through,
4052 		 * assuming that e.g. object map is locked and loaded.
4053 		 */
4054 		rbd_unlock(rbd_dev);
4055 	}
4056 
4057 out:
4058 	wake_lock_waiters(rbd_dev, ret);
4059 	up_write(&rbd_dev->lock_rwsem);
4060 	return ret;
4061 }
4062 
4063 static void rbd_acquire_lock(struct work_struct *work)
4064 {
4065 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4066 					    struct rbd_device, lock_dwork);
4067 	int ret;
4068 
4069 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4070 again:
4071 	ret = rbd_try_acquire_lock(rbd_dev);
4072 	if (ret <= 0) {
4073 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4074 		return;
4075 	}
4076 
4077 	ret = rbd_request_lock(rbd_dev);
4078 	if (ret == -ETIMEDOUT) {
4079 		goto again; /* treat this as a dead client */
4080 	} else if (ret == -EROFS) {
4081 		rbd_warn(rbd_dev, "peer will not release lock");
4082 		down_write(&rbd_dev->lock_rwsem);
4083 		wake_lock_waiters(rbd_dev, ret);
4084 		up_write(&rbd_dev->lock_rwsem);
4085 	} else if (ret < 0) {
4086 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4087 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4088 				 RBD_RETRY_DELAY);
4089 	} else {
4090 		/*
4091 		 * lock owner acked, but resend if we don't see them
4092 		 * release the lock
4093 		 */
4094 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4095 		     rbd_dev);
4096 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4097 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4098 	}
4099 }
4100 
4101 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4102 {
4103 	bool need_wait;
4104 
4105 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4106 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4107 
4108 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4109 		return false;
4110 
4111 	/*
4112 	 * Ensure that all in-flight IO is flushed.
4113 	 */
4114 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4115 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4116 	need_wait = !list_empty(&rbd_dev->running_list);
4117 	downgrade_write(&rbd_dev->lock_rwsem);
4118 	if (need_wait)
4119 		wait_for_completion(&rbd_dev->releasing_wait);
4120 	up_read(&rbd_dev->lock_rwsem);
4121 
4122 	down_write(&rbd_dev->lock_rwsem);
4123 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4124 		return false;
4125 
4126 	rbd_assert(list_empty(&rbd_dev->running_list));
4127 	return true;
4128 }
4129 
4130 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4131 {
4132 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4133 		rbd_object_map_close(rbd_dev);
4134 }
4135 
4136 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4137 {
4138 	rbd_assert(list_empty(&rbd_dev->running_list));
4139 
4140 	rbd_pre_release_action(rbd_dev);
4141 	rbd_unlock(rbd_dev);
4142 }
4143 
4144 /*
4145  * lock_rwsem must be held for write
4146  */
4147 static void rbd_release_lock(struct rbd_device *rbd_dev)
4148 {
4149 	if (!rbd_quiesce_lock(rbd_dev))
4150 		return;
4151 
4152 	__rbd_release_lock(rbd_dev);
4153 
4154 	/*
4155 	 * Give others a chance to grab the lock - we would re-acquire
4156 	 * almost immediately if we got new IO while draining the running
4157 	 * list otherwise.  We need to ack our own notifications, so this
4158 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4159 	 * way of maybe_kick_acquire().
4160 	 */
4161 	cancel_delayed_work(&rbd_dev->lock_dwork);
4162 }
4163 
4164 static void rbd_release_lock_work(struct work_struct *work)
4165 {
4166 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4167 						  unlock_work);
4168 
4169 	down_write(&rbd_dev->lock_rwsem);
4170 	rbd_release_lock(rbd_dev);
4171 	up_write(&rbd_dev->lock_rwsem);
4172 }
4173 
4174 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4175 {
4176 	bool have_requests;
4177 
4178 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4179 	if (__rbd_is_lock_owner(rbd_dev))
4180 		return;
4181 
4182 	spin_lock(&rbd_dev->lock_lists_lock);
4183 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4184 	spin_unlock(&rbd_dev->lock_lists_lock);
4185 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4186 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4187 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4188 	}
4189 }
4190 
4191 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4192 				     void **p)
4193 {
4194 	struct rbd_client_id cid = { 0 };
4195 
4196 	if (struct_v >= 2) {
4197 		cid.gid = ceph_decode_64(p);
4198 		cid.handle = ceph_decode_64(p);
4199 	}
4200 
4201 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4202 	     cid.handle);
4203 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4204 		down_write(&rbd_dev->lock_rwsem);
4205 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4206 			/*
4207 			 * we already know that the remote client is
4208 			 * the owner
4209 			 */
4210 			up_write(&rbd_dev->lock_rwsem);
4211 			return;
4212 		}
4213 
4214 		rbd_set_owner_cid(rbd_dev, &cid);
4215 		downgrade_write(&rbd_dev->lock_rwsem);
4216 	} else {
4217 		down_read(&rbd_dev->lock_rwsem);
4218 	}
4219 
4220 	maybe_kick_acquire(rbd_dev);
4221 	up_read(&rbd_dev->lock_rwsem);
4222 }
4223 
4224 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4225 				     void **p)
4226 {
4227 	struct rbd_client_id cid = { 0 };
4228 
4229 	if (struct_v >= 2) {
4230 		cid.gid = ceph_decode_64(p);
4231 		cid.handle = ceph_decode_64(p);
4232 	}
4233 
4234 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4235 	     cid.handle);
4236 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4237 		down_write(&rbd_dev->lock_rwsem);
4238 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4239 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4240 			     __func__, rbd_dev, cid.gid, cid.handle,
4241 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4242 			up_write(&rbd_dev->lock_rwsem);
4243 			return;
4244 		}
4245 
4246 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4247 		downgrade_write(&rbd_dev->lock_rwsem);
4248 	} else {
4249 		down_read(&rbd_dev->lock_rwsem);
4250 	}
4251 
4252 	maybe_kick_acquire(rbd_dev);
4253 	up_read(&rbd_dev->lock_rwsem);
4254 }
4255 
4256 /*
4257  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4258  * ResponseMessage is needed.
4259  */
4260 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4261 				   void **p)
4262 {
4263 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4264 	struct rbd_client_id cid = { 0 };
4265 	int result = 1;
4266 
4267 	if (struct_v >= 2) {
4268 		cid.gid = ceph_decode_64(p);
4269 		cid.handle = ceph_decode_64(p);
4270 	}
4271 
4272 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4273 	     cid.handle);
4274 	if (rbd_cid_equal(&cid, &my_cid))
4275 		return result;
4276 
4277 	down_read(&rbd_dev->lock_rwsem);
4278 	if (__rbd_is_lock_owner(rbd_dev)) {
4279 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4280 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4281 			goto out_unlock;
4282 
4283 		/*
4284 		 * encode ResponseMessage(0) so the peer can detect
4285 		 * a missing owner
4286 		 */
4287 		result = 0;
4288 
4289 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4290 			if (!rbd_dev->opts->exclusive) {
4291 				dout("%s rbd_dev %p queueing unlock_work\n",
4292 				     __func__, rbd_dev);
4293 				queue_work(rbd_dev->task_wq,
4294 					   &rbd_dev->unlock_work);
4295 			} else {
4296 				/* refuse to release the lock */
4297 				result = -EROFS;
4298 			}
4299 		}
4300 	}
4301 
4302 out_unlock:
4303 	up_read(&rbd_dev->lock_rwsem);
4304 	return result;
4305 }
4306 
4307 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4308 				     u64 notify_id, u64 cookie, s32 *result)
4309 {
4310 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4311 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4312 	int buf_size = sizeof(buf);
4313 	int ret;
4314 
4315 	if (result) {
4316 		void *p = buf;
4317 
4318 		/* encode ResponseMessage */
4319 		ceph_start_encoding(&p, 1, 1,
4320 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4321 		ceph_encode_32(&p, *result);
4322 	} else {
4323 		buf_size = 0;
4324 	}
4325 
4326 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4327 				   &rbd_dev->header_oloc, notify_id, cookie,
4328 				   buf, buf_size);
4329 	if (ret)
4330 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4331 }
4332 
4333 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4334 				   u64 cookie)
4335 {
4336 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4337 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4338 }
4339 
4340 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4341 					  u64 notify_id, u64 cookie, s32 result)
4342 {
4343 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4344 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4345 }
4346 
4347 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4348 			 u64 notifier_id, void *data, size_t data_len)
4349 {
4350 	struct rbd_device *rbd_dev = arg;
4351 	void *p = data;
4352 	void *const end = p + data_len;
4353 	u8 struct_v = 0;
4354 	u32 len;
4355 	u32 notify_op;
4356 	int ret;
4357 
4358 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4359 	     __func__, rbd_dev, cookie, notify_id, data_len);
4360 	if (data_len) {
4361 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4362 					  &struct_v, &len);
4363 		if (ret) {
4364 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4365 				 ret);
4366 			return;
4367 		}
4368 
4369 		notify_op = ceph_decode_32(&p);
4370 	} else {
4371 		/* legacy notification for header updates */
4372 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4373 		len = 0;
4374 	}
4375 
4376 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4377 	switch (notify_op) {
4378 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4379 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4380 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4381 		break;
4382 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4383 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4384 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4385 		break;
4386 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4387 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4388 		if (ret <= 0)
4389 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4390 						      cookie, ret);
4391 		else
4392 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4393 		break;
4394 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4395 		ret = rbd_dev_refresh(rbd_dev);
4396 		if (ret)
4397 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4398 
4399 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4400 		break;
4401 	default:
4402 		if (rbd_is_lock_owner(rbd_dev))
4403 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4404 						      cookie, -EOPNOTSUPP);
4405 		else
4406 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4407 		break;
4408 	}
4409 }
4410 
4411 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4412 
4413 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4414 {
4415 	struct rbd_device *rbd_dev = arg;
4416 
4417 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4418 
4419 	down_write(&rbd_dev->lock_rwsem);
4420 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4421 	up_write(&rbd_dev->lock_rwsem);
4422 
4423 	mutex_lock(&rbd_dev->watch_mutex);
4424 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4425 		__rbd_unregister_watch(rbd_dev);
4426 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4427 
4428 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4429 	}
4430 	mutex_unlock(&rbd_dev->watch_mutex);
4431 }
4432 
4433 /*
4434  * watch_mutex must be locked
4435  */
4436 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4437 {
4438 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4439 	struct ceph_osd_linger_request *handle;
4440 
4441 	rbd_assert(!rbd_dev->watch_handle);
4442 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4443 
4444 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4445 				 &rbd_dev->header_oloc, rbd_watch_cb,
4446 				 rbd_watch_errcb, rbd_dev);
4447 	if (IS_ERR(handle))
4448 		return PTR_ERR(handle);
4449 
4450 	rbd_dev->watch_handle = handle;
4451 	return 0;
4452 }
4453 
4454 /*
4455  * watch_mutex must be locked
4456  */
4457 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4458 {
4459 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4460 	int ret;
4461 
4462 	rbd_assert(rbd_dev->watch_handle);
4463 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4464 
4465 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4466 	if (ret)
4467 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4468 
4469 	rbd_dev->watch_handle = NULL;
4470 }
4471 
4472 static int rbd_register_watch(struct rbd_device *rbd_dev)
4473 {
4474 	int ret;
4475 
4476 	mutex_lock(&rbd_dev->watch_mutex);
4477 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4478 	ret = __rbd_register_watch(rbd_dev);
4479 	if (ret)
4480 		goto out;
4481 
4482 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4483 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4484 
4485 out:
4486 	mutex_unlock(&rbd_dev->watch_mutex);
4487 	return ret;
4488 }
4489 
4490 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4491 {
4492 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4493 
4494 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4495 	cancel_work_sync(&rbd_dev->released_lock_work);
4496 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4497 	cancel_work_sync(&rbd_dev->unlock_work);
4498 }
4499 
4500 /*
4501  * header_rwsem must not be held to avoid a deadlock with
4502  * rbd_dev_refresh() when flushing notifies.
4503  */
4504 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4505 {
4506 	cancel_tasks_sync(rbd_dev);
4507 
4508 	mutex_lock(&rbd_dev->watch_mutex);
4509 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4510 		__rbd_unregister_watch(rbd_dev);
4511 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4512 	mutex_unlock(&rbd_dev->watch_mutex);
4513 
4514 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4515 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4516 }
4517 
4518 /*
4519  * lock_rwsem must be held for write
4520  */
4521 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4522 {
4523 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4524 	char cookie[32];
4525 	int ret;
4526 
4527 	if (!rbd_quiesce_lock(rbd_dev))
4528 		return;
4529 
4530 	format_lock_cookie(rbd_dev, cookie);
4531 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4532 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4533 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4534 				  RBD_LOCK_TAG, cookie);
4535 	if (ret) {
4536 		if (ret != -EOPNOTSUPP)
4537 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4538 				 ret);
4539 
4540 		/*
4541 		 * Lock cookie cannot be updated on older OSDs, so do
4542 		 * a manual release and queue an acquire.
4543 		 */
4544 		__rbd_release_lock(rbd_dev);
4545 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4546 	} else {
4547 		__rbd_lock(rbd_dev, cookie);
4548 		wake_lock_waiters(rbd_dev, 0);
4549 	}
4550 }
4551 
4552 static void rbd_reregister_watch(struct work_struct *work)
4553 {
4554 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4555 					    struct rbd_device, watch_dwork);
4556 	int ret;
4557 
4558 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4559 
4560 	mutex_lock(&rbd_dev->watch_mutex);
4561 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4562 		mutex_unlock(&rbd_dev->watch_mutex);
4563 		return;
4564 	}
4565 
4566 	ret = __rbd_register_watch(rbd_dev);
4567 	if (ret) {
4568 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4569 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4570 			queue_delayed_work(rbd_dev->task_wq,
4571 					   &rbd_dev->watch_dwork,
4572 					   RBD_RETRY_DELAY);
4573 			mutex_unlock(&rbd_dev->watch_mutex);
4574 			return;
4575 		}
4576 
4577 		mutex_unlock(&rbd_dev->watch_mutex);
4578 		down_write(&rbd_dev->lock_rwsem);
4579 		wake_lock_waiters(rbd_dev, ret);
4580 		up_write(&rbd_dev->lock_rwsem);
4581 		return;
4582 	}
4583 
4584 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4585 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4586 	mutex_unlock(&rbd_dev->watch_mutex);
4587 
4588 	down_write(&rbd_dev->lock_rwsem);
4589 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4590 		rbd_reacquire_lock(rbd_dev);
4591 	up_write(&rbd_dev->lock_rwsem);
4592 
4593 	ret = rbd_dev_refresh(rbd_dev);
4594 	if (ret)
4595 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4596 }
4597 
4598 /*
4599  * Synchronous osd object method call.  Returns the number of bytes
4600  * returned in the outbound buffer, or a negative error code.
4601  */
4602 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4603 			     struct ceph_object_id *oid,
4604 			     struct ceph_object_locator *oloc,
4605 			     const char *method_name,
4606 			     const void *outbound,
4607 			     size_t outbound_size,
4608 			     void *inbound,
4609 			     size_t inbound_size)
4610 {
4611 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4612 	struct page *req_page = NULL;
4613 	struct page *reply_page;
4614 	int ret;
4615 
4616 	/*
4617 	 * Method calls are ultimately read operations.  The result
4618 	 * should placed into the inbound buffer provided.  They
4619 	 * also supply outbound data--parameters for the object
4620 	 * method.  Currently if this is present it will be a
4621 	 * snapshot id.
4622 	 */
4623 	if (outbound) {
4624 		if (outbound_size > PAGE_SIZE)
4625 			return -E2BIG;
4626 
4627 		req_page = alloc_page(GFP_KERNEL);
4628 		if (!req_page)
4629 			return -ENOMEM;
4630 
4631 		memcpy(page_address(req_page), outbound, outbound_size);
4632 	}
4633 
4634 	reply_page = alloc_page(GFP_KERNEL);
4635 	if (!reply_page) {
4636 		if (req_page)
4637 			__free_page(req_page);
4638 		return -ENOMEM;
4639 	}
4640 
4641 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4642 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4643 			     &reply_page, &inbound_size);
4644 	if (!ret) {
4645 		memcpy(inbound, page_address(reply_page), inbound_size);
4646 		ret = inbound_size;
4647 	}
4648 
4649 	if (req_page)
4650 		__free_page(req_page);
4651 	__free_page(reply_page);
4652 	return ret;
4653 }
4654 
4655 static void rbd_queue_workfn(struct work_struct *work)
4656 {
4657 	struct rbd_img_request *img_request =
4658 	    container_of(work, struct rbd_img_request, work);
4659 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4660 	enum obj_operation_type op_type = img_request->op_type;
4661 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4662 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4663 	u64 length = blk_rq_bytes(rq);
4664 	u64 mapping_size;
4665 	int result;
4666 
4667 	/* Ignore/skip any zero-length requests */
4668 	if (!length) {
4669 		dout("%s: zero-length request\n", __func__);
4670 		result = 0;
4671 		goto err_img_request;
4672 	}
4673 
4674 	blk_mq_start_request(rq);
4675 
4676 	down_read(&rbd_dev->header_rwsem);
4677 	mapping_size = rbd_dev->mapping.size;
4678 	rbd_img_capture_header(img_request);
4679 	up_read(&rbd_dev->header_rwsem);
4680 
4681 	if (offset + length > mapping_size) {
4682 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4683 			 length, mapping_size);
4684 		result = -EIO;
4685 		goto err_img_request;
4686 	}
4687 
4688 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4689 	     img_request, obj_op_name(op_type), offset, length);
4690 
4691 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4692 		result = rbd_img_fill_nodata(img_request, offset, length);
4693 	else
4694 		result = rbd_img_fill_from_bio(img_request, offset, length,
4695 					       rq->bio);
4696 	if (result)
4697 		goto err_img_request;
4698 
4699 	rbd_img_handle_request(img_request, 0);
4700 	return;
4701 
4702 err_img_request:
4703 	rbd_img_request_destroy(img_request);
4704 	if (result)
4705 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4706 			 obj_op_name(op_type), length, offset, result);
4707 	blk_mq_end_request(rq, errno_to_blk_status(result));
4708 }
4709 
4710 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4711 		const struct blk_mq_queue_data *bd)
4712 {
4713 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4714 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4715 	enum obj_operation_type op_type;
4716 
4717 	switch (req_op(bd->rq)) {
4718 	case REQ_OP_DISCARD:
4719 		op_type = OBJ_OP_DISCARD;
4720 		break;
4721 	case REQ_OP_WRITE_ZEROES:
4722 		op_type = OBJ_OP_ZEROOUT;
4723 		break;
4724 	case REQ_OP_WRITE:
4725 		op_type = OBJ_OP_WRITE;
4726 		break;
4727 	case REQ_OP_READ:
4728 		op_type = OBJ_OP_READ;
4729 		break;
4730 	default:
4731 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4732 		return BLK_STS_IOERR;
4733 	}
4734 
4735 	rbd_img_request_init(img_req, rbd_dev, op_type);
4736 
4737 	if (rbd_img_is_write(img_req)) {
4738 		if (rbd_is_ro(rbd_dev)) {
4739 			rbd_warn(rbd_dev, "%s on read-only mapping",
4740 				 obj_op_name(img_req->op_type));
4741 			return BLK_STS_IOERR;
4742 		}
4743 		rbd_assert(!rbd_is_snap(rbd_dev));
4744 	}
4745 
4746 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4747 	queue_work(rbd_wq, &img_req->work);
4748 	return BLK_STS_OK;
4749 }
4750 
4751 static void rbd_free_disk(struct rbd_device *rbd_dev)
4752 {
4753 	blk_cleanup_queue(rbd_dev->disk->queue);
4754 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4755 	put_disk(rbd_dev->disk);
4756 	rbd_dev->disk = NULL;
4757 }
4758 
4759 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4760 			     struct ceph_object_id *oid,
4761 			     struct ceph_object_locator *oloc,
4762 			     void *buf, int buf_len)
4763 
4764 {
4765 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4766 	struct ceph_osd_request *req;
4767 	struct page **pages;
4768 	int num_pages = calc_pages_for(0, buf_len);
4769 	int ret;
4770 
4771 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4772 	if (!req)
4773 		return -ENOMEM;
4774 
4775 	ceph_oid_copy(&req->r_base_oid, oid);
4776 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4777 	req->r_flags = CEPH_OSD_FLAG_READ;
4778 
4779 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4780 	if (IS_ERR(pages)) {
4781 		ret = PTR_ERR(pages);
4782 		goto out_req;
4783 	}
4784 
4785 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4786 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4787 					 true);
4788 
4789 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4790 	if (ret)
4791 		goto out_req;
4792 
4793 	ceph_osdc_start_request(osdc, req, false);
4794 	ret = ceph_osdc_wait_request(osdc, req);
4795 	if (ret >= 0)
4796 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4797 
4798 out_req:
4799 	ceph_osdc_put_request(req);
4800 	return ret;
4801 }
4802 
4803 /*
4804  * Read the complete header for the given rbd device.  On successful
4805  * return, the rbd_dev->header field will contain up-to-date
4806  * information about the image.
4807  */
4808 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4809 {
4810 	struct rbd_image_header_ondisk *ondisk = NULL;
4811 	u32 snap_count = 0;
4812 	u64 names_size = 0;
4813 	u32 want_count;
4814 	int ret;
4815 
4816 	/*
4817 	 * The complete header will include an array of its 64-bit
4818 	 * snapshot ids, followed by the names of those snapshots as
4819 	 * a contiguous block of NUL-terminated strings.  Note that
4820 	 * the number of snapshots could change by the time we read
4821 	 * it in, in which case we re-read it.
4822 	 */
4823 	do {
4824 		size_t size;
4825 
4826 		kfree(ondisk);
4827 
4828 		size = sizeof (*ondisk);
4829 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4830 		size += names_size;
4831 		ondisk = kmalloc(size, GFP_KERNEL);
4832 		if (!ondisk)
4833 			return -ENOMEM;
4834 
4835 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4836 					&rbd_dev->header_oloc, ondisk, size);
4837 		if (ret < 0)
4838 			goto out;
4839 		if ((size_t)ret < size) {
4840 			ret = -ENXIO;
4841 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4842 				size, ret);
4843 			goto out;
4844 		}
4845 		if (!rbd_dev_ondisk_valid(ondisk)) {
4846 			ret = -ENXIO;
4847 			rbd_warn(rbd_dev, "invalid header");
4848 			goto out;
4849 		}
4850 
4851 		names_size = le64_to_cpu(ondisk->snap_names_len);
4852 		want_count = snap_count;
4853 		snap_count = le32_to_cpu(ondisk->snap_count);
4854 	} while (snap_count != want_count);
4855 
4856 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4857 out:
4858 	kfree(ondisk);
4859 
4860 	return ret;
4861 }
4862 
4863 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4864 {
4865 	sector_t size;
4866 
4867 	/*
4868 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4869 	 * try to update its size.  If REMOVING is set, updating size
4870 	 * is just useless work since the device can't be opened.
4871 	 */
4872 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4873 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4874 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4875 		dout("setting size to %llu sectors", (unsigned long long)size);
4876 		set_capacity_and_notify(rbd_dev->disk, size);
4877 	}
4878 }
4879 
4880 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4881 {
4882 	u64 mapping_size;
4883 	int ret;
4884 
4885 	down_write(&rbd_dev->header_rwsem);
4886 	mapping_size = rbd_dev->mapping.size;
4887 
4888 	ret = rbd_dev_header_info(rbd_dev);
4889 	if (ret)
4890 		goto out;
4891 
4892 	/*
4893 	 * If there is a parent, see if it has disappeared due to the
4894 	 * mapped image getting flattened.
4895 	 */
4896 	if (rbd_dev->parent) {
4897 		ret = rbd_dev_v2_parent_info(rbd_dev);
4898 		if (ret)
4899 			goto out;
4900 	}
4901 
4902 	rbd_assert(!rbd_is_snap(rbd_dev));
4903 	rbd_dev->mapping.size = rbd_dev->header.image_size;
4904 
4905 out:
4906 	up_write(&rbd_dev->header_rwsem);
4907 	if (!ret && mapping_size != rbd_dev->mapping.size)
4908 		rbd_dev_update_size(rbd_dev);
4909 
4910 	return ret;
4911 }
4912 
4913 static const struct blk_mq_ops rbd_mq_ops = {
4914 	.queue_rq	= rbd_queue_rq,
4915 };
4916 
4917 static int rbd_init_disk(struct rbd_device *rbd_dev)
4918 {
4919 	struct gendisk *disk;
4920 	struct request_queue *q;
4921 	unsigned int objset_bytes =
4922 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4923 	int err;
4924 
4925 	/* create gendisk info */
4926 	disk = alloc_disk(single_major ?
4927 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4928 			  RBD_MINORS_PER_MAJOR);
4929 	if (!disk)
4930 		return -ENOMEM;
4931 
4932 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4933 		 rbd_dev->dev_id);
4934 	disk->major = rbd_dev->major;
4935 	disk->first_minor = rbd_dev->minor;
4936 	if (single_major)
4937 		disk->flags |= GENHD_FL_EXT_DEVT;
4938 	disk->fops = &rbd_bd_ops;
4939 	disk->private_data = rbd_dev;
4940 
4941 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4942 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4943 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4944 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4945 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4946 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4947 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4948 
4949 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4950 	if (err)
4951 		goto out_disk;
4952 
4953 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4954 	if (IS_ERR(q)) {
4955 		err = PTR_ERR(q);
4956 		goto out_tag_set;
4957 	}
4958 
4959 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4960 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4961 
4962 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4963 	q->limits.max_sectors = queue_max_hw_sectors(q);
4964 	blk_queue_max_segments(q, USHRT_MAX);
4965 	blk_queue_max_segment_size(q, UINT_MAX);
4966 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4967 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4968 
4969 	if (rbd_dev->opts->trim) {
4970 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4971 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4972 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4973 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4974 	}
4975 
4976 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4977 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4978 
4979 	/*
4980 	 * disk_release() expects a queue ref from add_disk() and will
4981 	 * put it.  Hold an extra ref until add_disk() is called.
4982 	 */
4983 	WARN_ON(!blk_get_queue(q));
4984 	disk->queue = q;
4985 	q->queuedata = rbd_dev;
4986 
4987 	rbd_dev->disk = disk;
4988 
4989 	return 0;
4990 out_tag_set:
4991 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4992 out_disk:
4993 	put_disk(disk);
4994 	return err;
4995 }
4996 
4997 /*
4998   sysfs
4999 */
5000 
5001 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5002 {
5003 	return container_of(dev, struct rbd_device, dev);
5004 }
5005 
5006 static ssize_t rbd_size_show(struct device *dev,
5007 			     struct device_attribute *attr, char *buf)
5008 {
5009 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5010 
5011 	return sprintf(buf, "%llu\n",
5012 		(unsigned long long)rbd_dev->mapping.size);
5013 }
5014 
5015 static ssize_t rbd_features_show(struct device *dev,
5016 			     struct device_attribute *attr, char *buf)
5017 {
5018 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5019 
5020 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5021 }
5022 
5023 static ssize_t rbd_major_show(struct device *dev,
5024 			      struct device_attribute *attr, char *buf)
5025 {
5026 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5027 
5028 	if (rbd_dev->major)
5029 		return sprintf(buf, "%d\n", rbd_dev->major);
5030 
5031 	return sprintf(buf, "(none)\n");
5032 }
5033 
5034 static ssize_t rbd_minor_show(struct device *dev,
5035 			      struct device_attribute *attr, char *buf)
5036 {
5037 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5038 
5039 	return sprintf(buf, "%d\n", rbd_dev->minor);
5040 }
5041 
5042 static ssize_t rbd_client_addr_show(struct device *dev,
5043 				    struct device_attribute *attr, char *buf)
5044 {
5045 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5046 	struct ceph_entity_addr *client_addr =
5047 	    ceph_client_addr(rbd_dev->rbd_client->client);
5048 
5049 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5050 		       le32_to_cpu(client_addr->nonce));
5051 }
5052 
5053 static ssize_t rbd_client_id_show(struct device *dev,
5054 				  struct device_attribute *attr, char *buf)
5055 {
5056 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057 
5058 	return sprintf(buf, "client%lld\n",
5059 		       ceph_client_gid(rbd_dev->rbd_client->client));
5060 }
5061 
5062 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5063 				     struct device_attribute *attr, char *buf)
5064 {
5065 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5066 
5067 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5068 }
5069 
5070 static ssize_t rbd_config_info_show(struct device *dev,
5071 				    struct device_attribute *attr, char *buf)
5072 {
5073 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5074 
5075 	if (!capable(CAP_SYS_ADMIN))
5076 		return -EPERM;
5077 
5078 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5079 }
5080 
5081 static ssize_t rbd_pool_show(struct device *dev,
5082 			     struct device_attribute *attr, char *buf)
5083 {
5084 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5085 
5086 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5087 }
5088 
5089 static ssize_t rbd_pool_id_show(struct device *dev,
5090 			     struct device_attribute *attr, char *buf)
5091 {
5092 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5093 
5094 	return sprintf(buf, "%llu\n",
5095 			(unsigned long long) rbd_dev->spec->pool_id);
5096 }
5097 
5098 static ssize_t rbd_pool_ns_show(struct device *dev,
5099 				struct device_attribute *attr, char *buf)
5100 {
5101 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5102 
5103 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5104 }
5105 
5106 static ssize_t rbd_name_show(struct device *dev,
5107 			     struct device_attribute *attr, char *buf)
5108 {
5109 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5110 
5111 	if (rbd_dev->spec->image_name)
5112 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5113 
5114 	return sprintf(buf, "(unknown)\n");
5115 }
5116 
5117 static ssize_t rbd_image_id_show(struct device *dev,
5118 			     struct device_attribute *attr, char *buf)
5119 {
5120 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121 
5122 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5123 }
5124 
5125 /*
5126  * Shows the name of the currently-mapped snapshot (or
5127  * RBD_SNAP_HEAD_NAME for the base image).
5128  */
5129 static ssize_t rbd_snap_show(struct device *dev,
5130 			     struct device_attribute *attr,
5131 			     char *buf)
5132 {
5133 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5134 
5135 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5136 }
5137 
5138 static ssize_t rbd_snap_id_show(struct device *dev,
5139 				struct device_attribute *attr, char *buf)
5140 {
5141 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5142 
5143 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5144 }
5145 
5146 /*
5147  * For a v2 image, shows the chain of parent images, separated by empty
5148  * lines.  For v1 images or if there is no parent, shows "(no parent
5149  * image)".
5150  */
5151 static ssize_t rbd_parent_show(struct device *dev,
5152 			       struct device_attribute *attr,
5153 			       char *buf)
5154 {
5155 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5156 	ssize_t count = 0;
5157 
5158 	if (!rbd_dev->parent)
5159 		return sprintf(buf, "(no parent image)\n");
5160 
5161 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5162 		struct rbd_spec *spec = rbd_dev->parent_spec;
5163 
5164 		count += sprintf(&buf[count], "%s"
5165 			    "pool_id %llu\npool_name %s\n"
5166 			    "pool_ns %s\n"
5167 			    "image_id %s\nimage_name %s\n"
5168 			    "snap_id %llu\nsnap_name %s\n"
5169 			    "overlap %llu\n",
5170 			    !count ? "" : "\n", /* first? */
5171 			    spec->pool_id, spec->pool_name,
5172 			    spec->pool_ns ?: "",
5173 			    spec->image_id, spec->image_name ?: "(unknown)",
5174 			    spec->snap_id, spec->snap_name,
5175 			    rbd_dev->parent_overlap);
5176 	}
5177 
5178 	return count;
5179 }
5180 
5181 static ssize_t rbd_image_refresh(struct device *dev,
5182 				 struct device_attribute *attr,
5183 				 const char *buf,
5184 				 size_t size)
5185 {
5186 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5187 	int ret;
5188 
5189 	if (!capable(CAP_SYS_ADMIN))
5190 		return -EPERM;
5191 
5192 	ret = rbd_dev_refresh(rbd_dev);
5193 	if (ret)
5194 		return ret;
5195 
5196 	return size;
5197 }
5198 
5199 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5200 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5201 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5202 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5203 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5204 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5205 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5206 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5207 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5208 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5209 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5210 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5211 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5212 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5213 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5214 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5215 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5216 
5217 static struct attribute *rbd_attrs[] = {
5218 	&dev_attr_size.attr,
5219 	&dev_attr_features.attr,
5220 	&dev_attr_major.attr,
5221 	&dev_attr_minor.attr,
5222 	&dev_attr_client_addr.attr,
5223 	&dev_attr_client_id.attr,
5224 	&dev_attr_cluster_fsid.attr,
5225 	&dev_attr_config_info.attr,
5226 	&dev_attr_pool.attr,
5227 	&dev_attr_pool_id.attr,
5228 	&dev_attr_pool_ns.attr,
5229 	&dev_attr_name.attr,
5230 	&dev_attr_image_id.attr,
5231 	&dev_attr_current_snap.attr,
5232 	&dev_attr_snap_id.attr,
5233 	&dev_attr_parent.attr,
5234 	&dev_attr_refresh.attr,
5235 	NULL
5236 };
5237 
5238 static struct attribute_group rbd_attr_group = {
5239 	.attrs = rbd_attrs,
5240 };
5241 
5242 static const struct attribute_group *rbd_attr_groups[] = {
5243 	&rbd_attr_group,
5244 	NULL
5245 };
5246 
5247 static void rbd_dev_release(struct device *dev);
5248 
5249 static const struct device_type rbd_device_type = {
5250 	.name		= "rbd",
5251 	.groups		= rbd_attr_groups,
5252 	.release	= rbd_dev_release,
5253 };
5254 
5255 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5256 {
5257 	kref_get(&spec->kref);
5258 
5259 	return spec;
5260 }
5261 
5262 static void rbd_spec_free(struct kref *kref);
5263 static void rbd_spec_put(struct rbd_spec *spec)
5264 {
5265 	if (spec)
5266 		kref_put(&spec->kref, rbd_spec_free);
5267 }
5268 
5269 static struct rbd_spec *rbd_spec_alloc(void)
5270 {
5271 	struct rbd_spec *spec;
5272 
5273 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5274 	if (!spec)
5275 		return NULL;
5276 
5277 	spec->pool_id = CEPH_NOPOOL;
5278 	spec->snap_id = CEPH_NOSNAP;
5279 	kref_init(&spec->kref);
5280 
5281 	return spec;
5282 }
5283 
5284 static void rbd_spec_free(struct kref *kref)
5285 {
5286 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5287 
5288 	kfree(spec->pool_name);
5289 	kfree(spec->pool_ns);
5290 	kfree(spec->image_id);
5291 	kfree(spec->image_name);
5292 	kfree(spec->snap_name);
5293 	kfree(spec);
5294 }
5295 
5296 static void rbd_dev_free(struct rbd_device *rbd_dev)
5297 {
5298 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5299 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5300 
5301 	ceph_oid_destroy(&rbd_dev->header_oid);
5302 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5303 	kfree(rbd_dev->config_info);
5304 
5305 	rbd_put_client(rbd_dev->rbd_client);
5306 	rbd_spec_put(rbd_dev->spec);
5307 	kfree(rbd_dev->opts);
5308 	kfree(rbd_dev);
5309 }
5310 
5311 static void rbd_dev_release(struct device *dev)
5312 {
5313 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5314 	bool need_put = !!rbd_dev->opts;
5315 
5316 	if (need_put) {
5317 		destroy_workqueue(rbd_dev->task_wq);
5318 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5319 	}
5320 
5321 	rbd_dev_free(rbd_dev);
5322 
5323 	/*
5324 	 * This is racy, but way better than putting module outside of
5325 	 * the release callback.  The race window is pretty small, so
5326 	 * doing something similar to dm (dm-builtin.c) is overkill.
5327 	 */
5328 	if (need_put)
5329 		module_put(THIS_MODULE);
5330 }
5331 
5332 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5333 					   struct rbd_spec *spec)
5334 {
5335 	struct rbd_device *rbd_dev;
5336 
5337 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5338 	if (!rbd_dev)
5339 		return NULL;
5340 
5341 	spin_lock_init(&rbd_dev->lock);
5342 	INIT_LIST_HEAD(&rbd_dev->node);
5343 	init_rwsem(&rbd_dev->header_rwsem);
5344 
5345 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5346 	ceph_oid_init(&rbd_dev->header_oid);
5347 	rbd_dev->header_oloc.pool = spec->pool_id;
5348 	if (spec->pool_ns) {
5349 		WARN_ON(!*spec->pool_ns);
5350 		rbd_dev->header_oloc.pool_ns =
5351 		    ceph_find_or_create_string(spec->pool_ns,
5352 					       strlen(spec->pool_ns));
5353 	}
5354 
5355 	mutex_init(&rbd_dev->watch_mutex);
5356 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5357 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5358 
5359 	init_rwsem(&rbd_dev->lock_rwsem);
5360 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5361 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5362 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5363 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5364 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5365 	spin_lock_init(&rbd_dev->lock_lists_lock);
5366 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5367 	INIT_LIST_HEAD(&rbd_dev->running_list);
5368 	init_completion(&rbd_dev->acquire_wait);
5369 	init_completion(&rbd_dev->releasing_wait);
5370 
5371 	spin_lock_init(&rbd_dev->object_map_lock);
5372 
5373 	rbd_dev->dev.bus = &rbd_bus_type;
5374 	rbd_dev->dev.type = &rbd_device_type;
5375 	rbd_dev->dev.parent = &rbd_root_dev;
5376 	device_initialize(&rbd_dev->dev);
5377 
5378 	rbd_dev->rbd_client = rbdc;
5379 	rbd_dev->spec = spec;
5380 
5381 	return rbd_dev;
5382 }
5383 
5384 /*
5385  * Create a mapping rbd_dev.
5386  */
5387 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5388 					 struct rbd_spec *spec,
5389 					 struct rbd_options *opts)
5390 {
5391 	struct rbd_device *rbd_dev;
5392 
5393 	rbd_dev = __rbd_dev_create(rbdc, spec);
5394 	if (!rbd_dev)
5395 		return NULL;
5396 
5397 	rbd_dev->opts = opts;
5398 
5399 	/* get an id and fill in device name */
5400 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5401 					 minor_to_rbd_dev_id(1 << MINORBITS),
5402 					 GFP_KERNEL);
5403 	if (rbd_dev->dev_id < 0)
5404 		goto fail_rbd_dev;
5405 
5406 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5407 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5408 						   rbd_dev->name);
5409 	if (!rbd_dev->task_wq)
5410 		goto fail_dev_id;
5411 
5412 	/* we have a ref from do_rbd_add() */
5413 	__module_get(THIS_MODULE);
5414 
5415 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5416 	return rbd_dev;
5417 
5418 fail_dev_id:
5419 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5420 fail_rbd_dev:
5421 	rbd_dev_free(rbd_dev);
5422 	return NULL;
5423 }
5424 
5425 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5426 {
5427 	if (rbd_dev)
5428 		put_device(&rbd_dev->dev);
5429 }
5430 
5431 /*
5432  * Get the size and object order for an image snapshot, or if
5433  * snap_id is CEPH_NOSNAP, gets this information for the base
5434  * image.
5435  */
5436 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5437 				u8 *order, u64 *snap_size)
5438 {
5439 	__le64 snapid = cpu_to_le64(snap_id);
5440 	int ret;
5441 	struct {
5442 		u8 order;
5443 		__le64 size;
5444 	} __attribute__ ((packed)) size_buf = { 0 };
5445 
5446 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5447 				  &rbd_dev->header_oloc, "get_size",
5448 				  &snapid, sizeof(snapid),
5449 				  &size_buf, sizeof(size_buf));
5450 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5451 	if (ret < 0)
5452 		return ret;
5453 	if (ret < sizeof (size_buf))
5454 		return -ERANGE;
5455 
5456 	if (order) {
5457 		*order = size_buf.order;
5458 		dout("  order %u", (unsigned int)*order);
5459 	}
5460 	*snap_size = le64_to_cpu(size_buf.size);
5461 
5462 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5463 		(unsigned long long)snap_id,
5464 		(unsigned long long)*snap_size);
5465 
5466 	return 0;
5467 }
5468 
5469 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5470 {
5471 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5472 					&rbd_dev->header.obj_order,
5473 					&rbd_dev->header.image_size);
5474 }
5475 
5476 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5477 {
5478 	size_t size;
5479 	void *reply_buf;
5480 	int ret;
5481 	void *p;
5482 
5483 	/* Response will be an encoded string, which includes a length */
5484 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5485 	reply_buf = kzalloc(size, GFP_KERNEL);
5486 	if (!reply_buf)
5487 		return -ENOMEM;
5488 
5489 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5490 				  &rbd_dev->header_oloc, "get_object_prefix",
5491 				  NULL, 0, reply_buf, size);
5492 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5493 	if (ret < 0)
5494 		goto out;
5495 
5496 	p = reply_buf;
5497 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5498 						p + ret, NULL, GFP_NOIO);
5499 	ret = 0;
5500 
5501 	if (IS_ERR(rbd_dev->header.object_prefix)) {
5502 		ret = PTR_ERR(rbd_dev->header.object_prefix);
5503 		rbd_dev->header.object_prefix = NULL;
5504 	} else {
5505 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5506 	}
5507 out:
5508 	kfree(reply_buf);
5509 
5510 	return ret;
5511 }
5512 
5513 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5514 				     bool read_only, u64 *snap_features)
5515 {
5516 	struct {
5517 		__le64 snap_id;
5518 		u8 read_only;
5519 	} features_in;
5520 	struct {
5521 		__le64 features;
5522 		__le64 incompat;
5523 	} __attribute__ ((packed)) features_buf = { 0 };
5524 	u64 unsup;
5525 	int ret;
5526 
5527 	features_in.snap_id = cpu_to_le64(snap_id);
5528 	features_in.read_only = read_only;
5529 
5530 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5531 				  &rbd_dev->header_oloc, "get_features",
5532 				  &features_in, sizeof(features_in),
5533 				  &features_buf, sizeof(features_buf));
5534 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5535 	if (ret < 0)
5536 		return ret;
5537 	if (ret < sizeof (features_buf))
5538 		return -ERANGE;
5539 
5540 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5541 	if (unsup) {
5542 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5543 			 unsup);
5544 		return -ENXIO;
5545 	}
5546 
5547 	*snap_features = le64_to_cpu(features_buf.features);
5548 
5549 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5550 		(unsigned long long)snap_id,
5551 		(unsigned long long)*snap_features,
5552 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5553 
5554 	return 0;
5555 }
5556 
5557 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5558 {
5559 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5560 					 rbd_is_ro(rbd_dev),
5561 					 &rbd_dev->header.features);
5562 }
5563 
5564 /*
5565  * These are generic image flags, but since they are used only for
5566  * object map, store them in rbd_dev->object_map_flags.
5567  *
5568  * For the same reason, this function is called only on object map
5569  * (re)load and not on header refresh.
5570  */
5571 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5572 {
5573 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5574 	__le64 flags;
5575 	int ret;
5576 
5577 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5578 				  &rbd_dev->header_oloc, "get_flags",
5579 				  &snapid, sizeof(snapid),
5580 				  &flags, sizeof(flags));
5581 	if (ret < 0)
5582 		return ret;
5583 	if (ret < sizeof(flags))
5584 		return -EBADMSG;
5585 
5586 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5587 	return 0;
5588 }
5589 
5590 struct parent_image_info {
5591 	u64		pool_id;
5592 	const char	*pool_ns;
5593 	const char	*image_id;
5594 	u64		snap_id;
5595 
5596 	bool		has_overlap;
5597 	u64		overlap;
5598 };
5599 
5600 /*
5601  * The caller is responsible for @pii.
5602  */
5603 static int decode_parent_image_spec(void **p, void *end,
5604 				    struct parent_image_info *pii)
5605 {
5606 	u8 struct_v;
5607 	u32 struct_len;
5608 	int ret;
5609 
5610 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5611 				  &struct_v, &struct_len);
5612 	if (ret)
5613 		return ret;
5614 
5615 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5616 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5617 	if (IS_ERR(pii->pool_ns)) {
5618 		ret = PTR_ERR(pii->pool_ns);
5619 		pii->pool_ns = NULL;
5620 		return ret;
5621 	}
5622 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5623 	if (IS_ERR(pii->image_id)) {
5624 		ret = PTR_ERR(pii->image_id);
5625 		pii->image_id = NULL;
5626 		return ret;
5627 	}
5628 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5629 	return 0;
5630 
5631 e_inval:
5632 	return -EINVAL;
5633 }
5634 
5635 static int __get_parent_info(struct rbd_device *rbd_dev,
5636 			     struct page *req_page,
5637 			     struct page *reply_page,
5638 			     struct parent_image_info *pii)
5639 {
5640 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5641 	size_t reply_len = PAGE_SIZE;
5642 	void *p, *end;
5643 	int ret;
5644 
5645 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5646 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5647 			     req_page, sizeof(u64), &reply_page, &reply_len);
5648 	if (ret)
5649 		return ret == -EOPNOTSUPP ? 1 : ret;
5650 
5651 	p = page_address(reply_page);
5652 	end = p + reply_len;
5653 	ret = decode_parent_image_spec(&p, end, pii);
5654 	if (ret)
5655 		return ret;
5656 
5657 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5658 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5659 			     req_page, sizeof(u64), &reply_page, &reply_len);
5660 	if (ret)
5661 		return ret;
5662 
5663 	p = page_address(reply_page);
5664 	end = p + reply_len;
5665 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5666 	if (pii->has_overlap)
5667 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5668 
5669 	return 0;
5670 
5671 e_inval:
5672 	return -EINVAL;
5673 }
5674 
5675 /*
5676  * The caller is responsible for @pii.
5677  */
5678 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5679 				    struct page *req_page,
5680 				    struct page *reply_page,
5681 				    struct parent_image_info *pii)
5682 {
5683 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5684 	size_t reply_len = PAGE_SIZE;
5685 	void *p, *end;
5686 	int ret;
5687 
5688 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5689 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5690 			     req_page, sizeof(u64), &reply_page, &reply_len);
5691 	if (ret)
5692 		return ret;
5693 
5694 	p = page_address(reply_page);
5695 	end = p + reply_len;
5696 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5697 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5698 	if (IS_ERR(pii->image_id)) {
5699 		ret = PTR_ERR(pii->image_id);
5700 		pii->image_id = NULL;
5701 		return ret;
5702 	}
5703 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5704 	pii->has_overlap = true;
5705 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5706 
5707 	return 0;
5708 
5709 e_inval:
5710 	return -EINVAL;
5711 }
5712 
5713 static int get_parent_info(struct rbd_device *rbd_dev,
5714 			   struct parent_image_info *pii)
5715 {
5716 	struct page *req_page, *reply_page;
5717 	void *p;
5718 	int ret;
5719 
5720 	req_page = alloc_page(GFP_KERNEL);
5721 	if (!req_page)
5722 		return -ENOMEM;
5723 
5724 	reply_page = alloc_page(GFP_KERNEL);
5725 	if (!reply_page) {
5726 		__free_page(req_page);
5727 		return -ENOMEM;
5728 	}
5729 
5730 	p = page_address(req_page);
5731 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5732 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5733 	if (ret > 0)
5734 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5735 					       pii);
5736 
5737 	__free_page(req_page);
5738 	__free_page(reply_page);
5739 	return ret;
5740 }
5741 
5742 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5743 {
5744 	struct rbd_spec *parent_spec;
5745 	struct parent_image_info pii = { 0 };
5746 	int ret;
5747 
5748 	parent_spec = rbd_spec_alloc();
5749 	if (!parent_spec)
5750 		return -ENOMEM;
5751 
5752 	ret = get_parent_info(rbd_dev, &pii);
5753 	if (ret)
5754 		goto out_err;
5755 
5756 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5757 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5758 	     pii.has_overlap, pii.overlap);
5759 
5760 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5761 		/*
5762 		 * Either the parent never existed, or we have
5763 		 * record of it but the image got flattened so it no
5764 		 * longer has a parent.  When the parent of a
5765 		 * layered image disappears we immediately set the
5766 		 * overlap to 0.  The effect of this is that all new
5767 		 * requests will be treated as if the image had no
5768 		 * parent.
5769 		 *
5770 		 * If !pii.has_overlap, the parent image spec is not
5771 		 * applicable.  It's there to avoid duplication in each
5772 		 * snapshot record.
5773 		 */
5774 		if (rbd_dev->parent_overlap) {
5775 			rbd_dev->parent_overlap = 0;
5776 			rbd_dev_parent_put(rbd_dev);
5777 			pr_info("%s: clone image has been flattened\n",
5778 				rbd_dev->disk->disk_name);
5779 		}
5780 
5781 		goto out;	/* No parent?  No problem. */
5782 	}
5783 
5784 	/* The ceph file layout needs to fit pool id in 32 bits */
5785 
5786 	ret = -EIO;
5787 	if (pii.pool_id > (u64)U32_MAX) {
5788 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5789 			(unsigned long long)pii.pool_id, U32_MAX);
5790 		goto out_err;
5791 	}
5792 
5793 	/*
5794 	 * The parent won't change (except when the clone is
5795 	 * flattened, already handled that).  So we only need to
5796 	 * record the parent spec we have not already done so.
5797 	 */
5798 	if (!rbd_dev->parent_spec) {
5799 		parent_spec->pool_id = pii.pool_id;
5800 		if (pii.pool_ns && *pii.pool_ns) {
5801 			parent_spec->pool_ns = pii.pool_ns;
5802 			pii.pool_ns = NULL;
5803 		}
5804 		parent_spec->image_id = pii.image_id;
5805 		pii.image_id = NULL;
5806 		parent_spec->snap_id = pii.snap_id;
5807 
5808 		rbd_dev->parent_spec = parent_spec;
5809 		parent_spec = NULL;	/* rbd_dev now owns this */
5810 	}
5811 
5812 	/*
5813 	 * We always update the parent overlap.  If it's zero we issue
5814 	 * a warning, as we will proceed as if there was no parent.
5815 	 */
5816 	if (!pii.overlap) {
5817 		if (parent_spec) {
5818 			/* refresh, careful to warn just once */
5819 			if (rbd_dev->parent_overlap)
5820 				rbd_warn(rbd_dev,
5821 				    "clone now standalone (overlap became 0)");
5822 		} else {
5823 			/* initial probe */
5824 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5825 		}
5826 	}
5827 	rbd_dev->parent_overlap = pii.overlap;
5828 
5829 out:
5830 	ret = 0;
5831 out_err:
5832 	kfree(pii.pool_ns);
5833 	kfree(pii.image_id);
5834 	rbd_spec_put(parent_spec);
5835 	return ret;
5836 }
5837 
5838 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5839 {
5840 	struct {
5841 		__le64 stripe_unit;
5842 		__le64 stripe_count;
5843 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5844 	size_t size = sizeof (striping_info_buf);
5845 	void *p;
5846 	int ret;
5847 
5848 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5849 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5850 				NULL, 0, &striping_info_buf, size);
5851 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5852 	if (ret < 0)
5853 		return ret;
5854 	if (ret < size)
5855 		return -ERANGE;
5856 
5857 	p = &striping_info_buf;
5858 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5859 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5860 	return 0;
5861 }
5862 
5863 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5864 {
5865 	__le64 data_pool_id;
5866 	int ret;
5867 
5868 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5869 				  &rbd_dev->header_oloc, "get_data_pool",
5870 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5871 	if (ret < 0)
5872 		return ret;
5873 	if (ret < sizeof(data_pool_id))
5874 		return -EBADMSG;
5875 
5876 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5877 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5878 	return 0;
5879 }
5880 
5881 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5882 {
5883 	CEPH_DEFINE_OID_ONSTACK(oid);
5884 	size_t image_id_size;
5885 	char *image_id;
5886 	void *p;
5887 	void *end;
5888 	size_t size;
5889 	void *reply_buf = NULL;
5890 	size_t len = 0;
5891 	char *image_name = NULL;
5892 	int ret;
5893 
5894 	rbd_assert(!rbd_dev->spec->image_name);
5895 
5896 	len = strlen(rbd_dev->spec->image_id);
5897 	image_id_size = sizeof (__le32) + len;
5898 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5899 	if (!image_id)
5900 		return NULL;
5901 
5902 	p = image_id;
5903 	end = image_id + image_id_size;
5904 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5905 
5906 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5907 	reply_buf = kmalloc(size, GFP_KERNEL);
5908 	if (!reply_buf)
5909 		goto out;
5910 
5911 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5912 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5913 				  "dir_get_name", image_id, image_id_size,
5914 				  reply_buf, size);
5915 	if (ret < 0)
5916 		goto out;
5917 	p = reply_buf;
5918 	end = reply_buf + ret;
5919 
5920 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5921 	if (IS_ERR(image_name))
5922 		image_name = NULL;
5923 	else
5924 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5925 out:
5926 	kfree(reply_buf);
5927 	kfree(image_id);
5928 
5929 	return image_name;
5930 }
5931 
5932 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5933 {
5934 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5935 	const char *snap_name;
5936 	u32 which = 0;
5937 
5938 	/* Skip over names until we find the one we are looking for */
5939 
5940 	snap_name = rbd_dev->header.snap_names;
5941 	while (which < snapc->num_snaps) {
5942 		if (!strcmp(name, snap_name))
5943 			return snapc->snaps[which];
5944 		snap_name += strlen(snap_name) + 1;
5945 		which++;
5946 	}
5947 	return CEPH_NOSNAP;
5948 }
5949 
5950 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5951 {
5952 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5953 	u32 which;
5954 	bool found = false;
5955 	u64 snap_id;
5956 
5957 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5958 		const char *snap_name;
5959 
5960 		snap_id = snapc->snaps[which];
5961 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5962 		if (IS_ERR(snap_name)) {
5963 			/* ignore no-longer existing snapshots */
5964 			if (PTR_ERR(snap_name) == -ENOENT)
5965 				continue;
5966 			else
5967 				break;
5968 		}
5969 		found = !strcmp(name, snap_name);
5970 		kfree(snap_name);
5971 	}
5972 	return found ? snap_id : CEPH_NOSNAP;
5973 }
5974 
5975 /*
5976  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5977  * no snapshot by that name is found, or if an error occurs.
5978  */
5979 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5980 {
5981 	if (rbd_dev->image_format == 1)
5982 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5983 
5984 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5985 }
5986 
5987 /*
5988  * An image being mapped will have everything but the snap id.
5989  */
5990 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5991 {
5992 	struct rbd_spec *spec = rbd_dev->spec;
5993 
5994 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5995 	rbd_assert(spec->image_id && spec->image_name);
5996 	rbd_assert(spec->snap_name);
5997 
5998 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5999 		u64 snap_id;
6000 
6001 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6002 		if (snap_id == CEPH_NOSNAP)
6003 			return -ENOENT;
6004 
6005 		spec->snap_id = snap_id;
6006 	} else {
6007 		spec->snap_id = CEPH_NOSNAP;
6008 	}
6009 
6010 	return 0;
6011 }
6012 
6013 /*
6014  * A parent image will have all ids but none of the names.
6015  *
6016  * All names in an rbd spec are dynamically allocated.  It's OK if we
6017  * can't figure out the name for an image id.
6018  */
6019 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6020 {
6021 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6022 	struct rbd_spec *spec = rbd_dev->spec;
6023 	const char *pool_name;
6024 	const char *image_name;
6025 	const char *snap_name;
6026 	int ret;
6027 
6028 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6029 	rbd_assert(spec->image_id);
6030 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6031 
6032 	/* Get the pool name; we have to make our own copy of this */
6033 
6034 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6035 	if (!pool_name) {
6036 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6037 		return -EIO;
6038 	}
6039 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6040 	if (!pool_name)
6041 		return -ENOMEM;
6042 
6043 	/* Fetch the image name; tolerate failure here */
6044 
6045 	image_name = rbd_dev_image_name(rbd_dev);
6046 	if (!image_name)
6047 		rbd_warn(rbd_dev, "unable to get image name");
6048 
6049 	/* Fetch the snapshot name */
6050 
6051 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6052 	if (IS_ERR(snap_name)) {
6053 		ret = PTR_ERR(snap_name);
6054 		goto out_err;
6055 	}
6056 
6057 	spec->pool_name = pool_name;
6058 	spec->image_name = image_name;
6059 	spec->snap_name = snap_name;
6060 
6061 	return 0;
6062 
6063 out_err:
6064 	kfree(image_name);
6065 	kfree(pool_name);
6066 	return ret;
6067 }
6068 
6069 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6070 {
6071 	size_t size;
6072 	int ret;
6073 	void *reply_buf;
6074 	void *p;
6075 	void *end;
6076 	u64 seq;
6077 	u32 snap_count;
6078 	struct ceph_snap_context *snapc;
6079 	u32 i;
6080 
6081 	/*
6082 	 * We'll need room for the seq value (maximum snapshot id),
6083 	 * snapshot count, and array of that many snapshot ids.
6084 	 * For now we have a fixed upper limit on the number we're
6085 	 * prepared to receive.
6086 	 */
6087 	size = sizeof (__le64) + sizeof (__le32) +
6088 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6089 	reply_buf = kzalloc(size, GFP_KERNEL);
6090 	if (!reply_buf)
6091 		return -ENOMEM;
6092 
6093 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6094 				  &rbd_dev->header_oloc, "get_snapcontext",
6095 				  NULL, 0, reply_buf, size);
6096 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6097 	if (ret < 0)
6098 		goto out;
6099 
6100 	p = reply_buf;
6101 	end = reply_buf + ret;
6102 	ret = -ERANGE;
6103 	ceph_decode_64_safe(&p, end, seq, out);
6104 	ceph_decode_32_safe(&p, end, snap_count, out);
6105 
6106 	/*
6107 	 * Make sure the reported number of snapshot ids wouldn't go
6108 	 * beyond the end of our buffer.  But before checking that,
6109 	 * make sure the computed size of the snapshot context we
6110 	 * allocate is representable in a size_t.
6111 	 */
6112 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6113 				 / sizeof (u64)) {
6114 		ret = -EINVAL;
6115 		goto out;
6116 	}
6117 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6118 		goto out;
6119 	ret = 0;
6120 
6121 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6122 	if (!snapc) {
6123 		ret = -ENOMEM;
6124 		goto out;
6125 	}
6126 	snapc->seq = seq;
6127 	for (i = 0; i < snap_count; i++)
6128 		snapc->snaps[i] = ceph_decode_64(&p);
6129 
6130 	ceph_put_snap_context(rbd_dev->header.snapc);
6131 	rbd_dev->header.snapc = snapc;
6132 
6133 	dout("  snap context seq = %llu, snap_count = %u\n",
6134 		(unsigned long long)seq, (unsigned int)snap_count);
6135 out:
6136 	kfree(reply_buf);
6137 
6138 	return ret;
6139 }
6140 
6141 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6142 					u64 snap_id)
6143 {
6144 	size_t size;
6145 	void *reply_buf;
6146 	__le64 snapid;
6147 	int ret;
6148 	void *p;
6149 	void *end;
6150 	char *snap_name;
6151 
6152 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6153 	reply_buf = kmalloc(size, GFP_KERNEL);
6154 	if (!reply_buf)
6155 		return ERR_PTR(-ENOMEM);
6156 
6157 	snapid = cpu_to_le64(snap_id);
6158 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6159 				  &rbd_dev->header_oloc, "get_snapshot_name",
6160 				  &snapid, sizeof(snapid), reply_buf, size);
6161 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6162 	if (ret < 0) {
6163 		snap_name = ERR_PTR(ret);
6164 		goto out;
6165 	}
6166 
6167 	p = reply_buf;
6168 	end = reply_buf + ret;
6169 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6170 	if (IS_ERR(snap_name))
6171 		goto out;
6172 
6173 	dout("  snap_id 0x%016llx snap_name = %s\n",
6174 		(unsigned long long)snap_id, snap_name);
6175 out:
6176 	kfree(reply_buf);
6177 
6178 	return snap_name;
6179 }
6180 
6181 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6182 {
6183 	bool first_time = rbd_dev->header.object_prefix == NULL;
6184 	int ret;
6185 
6186 	ret = rbd_dev_v2_image_size(rbd_dev);
6187 	if (ret)
6188 		return ret;
6189 
6190 	if (first_time) {
6191 		ret = rbd_dev_v2_header_onetime(rbd_dev);
6192 		if (ret)
6193 			return ret;
6194 	}
6195 
6196 	ret = rbd_dev_v2_snap_context(rbd_dev);
6197 	if (ret && first_time) {
6198 		kfree(rbd_dev->header.object_prefix);
6199 		rbd_dev->header.object_prefix = NULL;
6200 	}
6201 
6202 	return ret;
6203 }
6204 
6205 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6206 {
6207 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6208 
6209 	if (rbd_dev->image_format == 1)
6210 		return rbd_dev_v1_header_info(rbd_dev);
6211 
6212 	return rbd_dev_v2_header_info(rbd_dev);
6213 }
6214 
6215 /*
6216  * Skips over white space at *buf, and updates *buf to point to the
6217  * first found non-space character (if any). Returns the length of
6218  * the token (string of non-white space characters) found.  Note
6219  * that *buf must be terminated with '\0'.
6220  */
6221 static inline size_t next_token(const char **buf)
6222 {
6223         /*
6224         * These are the characters that produce nonzero for
6225         * isspace() in the "C" and "POSIX" locales.
6226         */
6227         const char *spaces = " \f\n\r\t\v";
6228 
6229         *buf += strspn(*buf, spaces);	/* Find start of token */
6230 
6231 	return strcspn(*buf, spaces);   /* Return token length */
6232 }
6233 
6234 /*
6235  * Finds the next token in *buf, dynamically allocates a buffer big
6236  * enough to hold a copy of it, and copies the token into the new
6237  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6238  * that a duplicate buffer is created even for a zero-length token.
6239  *
6240  * Returns a pointer to the newly-allocated duplicate, or a null
6241  * pointer if memory for the duplicate was not available.  If
6242  * the lenp argument is a non-null pointer, the length of the token
6243  * (not including the '\0') is returned in *lenp.
6244  *
6245  * If successful, the *buf pointer will be updated to point beyond
6246  * the end of the found token.
6247  *
6248  * Note: uses GFP_KERNEL for allocation.
6249  */
6250 static inline char *dup_token(const char **buf, size_t *lenp)
6251 {
6252 	char *dup;
6253 	size_t len;
6254 
6255 	len = next_token(buf);
6256 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6257 	if (!dup)
6258 		return NULL;
6259 	*(dup + len) = '\0';
6260 	*buf += len;
6261 
6262 	if (lenp)
6263 		*lenp = len;
6264 
6265 	return dup;
6266 }
6267 
6268 static int rbd_parse_param(struct fs_parameter *param,
6269 			    struct rbd_parse_opts_ctx *pctx)
6270 {
6271 	struct rbd_options *opt = pctx->opts;
6272 	struct fs_parse_result result;
6273 	struct p_log log = {.prefix = "rbd"};
6274 	int token, ret;
6275 
6276 	ret = ceph_parse_param(param, pctx->copts, NULL);
6277 	if (ret != -ENOPARAM)
6278 		return ret;
6279 
6280 	token = __fs_parse(&log, rbd_parameters, param, &result);
6281 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6282 	if (token < 0) {
6283 		if (token == -ENOPARAM)
6284 			return inval_plog(&log, "Unknown parameter '%s'",
6285 					  param->key);
6286 		return token;
6287 	}
6288 
6289 	switch (token) {
6290 	case Opt_queue_depth:
6291 		if (result.uint_32 < 1)
6292 			goto out_of_range;
6293 		opt->queue_depth = result.uint_32;
6294 		break;
6295 	case Opt_alloc_size:
6296 		if (result.uint_32 < SECTOR_SIZE)
6297 			goto out_of_range;
6298 		if (!is_power_of_2(result.uint_32))
6299 			return inval_plog(&log, "alloc_size must be a power of 2");
6300 		opt->alloc_size = result.uint_32;
6301 		break;
6302 	case Opt_lock_timeout:
6303 		/* 0 is "wait forever" (i.e. infinite timeout) */
6304 		if (result.uint_32 > INT_MAX / 1000)
6305 			goto out_of_range;
6306 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6307 		break;
6308 	case Opt_pool_ns:
6309 		kfree(pctx->spec->pool_ns);
6310 		pctx->spec->pool_ns = param->string;
6311 		param->string = NULL;
6312 		break;
6313 	case Opt_compression_hint:
6314 		switch (result.uint_32) {
6315 		case Opt_compression_hint_none:
6316 			opt->alloc_hint_flags &=
6317 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6318 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6319 			break;
6320 		case Opt_compression_hint_compressible:
6321 			opt->alloc_hint_flags |=
6322 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6323 			opt->alloc_hint_flags &=
6324 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6325 			break;
6326 		case Opt_compression_hint_incompressible:
6327 			opt->alloc_hint_flags |=
6328 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6329 			opt->alloc_hint_flags &=
6330 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6331 			break;
6332 		default:
6333 			BUG();
6334 		}
6335 		break;
6336 	case Opt_read_only:
6337 		opt->read_only = true;
6338 		break;
6339 	case Opt_read_write:
6340 		opt->read_only = false;
6341 		break;
6342 	case Opt_lock_on_read:
6343 		opt->lock_on_read = true;
6344 		break;
6345 	case Opt_exclusive:
6346 		opt->exclusive = true;
6347 		break;
6348 	case Opt_notrim:
6349 		opt->trim = false;
6350 		break;
6351 	default:
6352 		BUG();
6353 	}
6354 
6355 	return 0;
6356 
6357 out_of_range:
6358 	return inval_plog(&log, "%s out of range", param->key);
6359 }
6360 
6361 /*
6362  * This duplicates most of generic_parse_monolithic(), untying it from
6363  * fs_context and skipping standard superblock and security options.
6364  */
6365 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6366 {
6367 	char *key;
6368 	int ret = 0;
6369 
6370 	dout("%s '%s'\n", __func__, options);
6371 	while ((key = strsep(&options, ",")) != NULL) {
6372 		if (*key) {
6373 			struct fs_parameter param = {
6374 				.key	= key,
6375 				.type	= fs_value_is_flag,
6376 			};
6377 			char *value = strchr(key, '=');
6378 			size_t v_len = 0;
6379 
6380 			if (value) {
6381 				if (value == key)
6382 					continue;
6383 				*value++ = 0;
6384 				v_len = strlen(value);
6385 				param.string = kmemdup_nul(value, v_len,
6386 							   GFP_KERNEL);
6387 				if (!param.string)
6388 					return -ENOMEM;
6389 				param.type = fs_value_is_string;
6390 			}
6391 			param.size = v_len;
6392 
6393 			ret = rbd_parse_param(&param, pctx);
6394 			kfree(param.string);
6395 			if (ret)
6396 				break;
6397 		}
6398 	}
6399 
6400 	return ret;
6401 }
6402 
6403 /*
6404  * Parse the options provided for an "rbd add" (i.e., rbd image
6405  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6406  * and the data written is passed here via a NUL-terminated buffer.
6407  * Returns 0 if successful or an error code otherwise.
6408  *
6409  * The information extracted from these options is recorded in
6410  * the other parameters which return dynamically-allocated
6411  * structures:
6412  *  ceph_opts
6413  *      The address of a pointer that will refer to a ceph options
6414  *      structure.  Caller must release the returned pointer using
6415  *      ceph_destroy_options() when it is no longer needed.
6416  *  rbd_opts
6417  *	Address of an rbd options pointer.  Fully initialized by
6418  *	this function; caller must release with kfree().
6419  *  spec
6420  *	Address of an rbd image specification pointer.  Fully
6421  *	initialized by this function based on parsed options.
6422  *	Caller must release with rbd_spec_put().
6423  *
6424  * The options passed take this form:
6425  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6426  * where:
6427  *  <mon_addrs>
6428  *      A comma-separated list of one or more monitor addresses.
6429  *      A monitor address is an ip address, optionally followed
6430  *      by a port number (separated by a colon).
6431  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6432  *  <options>
6433  *      A comma-separated list of ceph and/or rbd options.
6434  *  <pool_name>
6435  *      The name of the rados pool containing the rbd image.
6436  *  <image_name>
6437  *      The name of the image in that pool to map.
6438  *  <snap_id>
6439  *      An optional snapshot id.  If provided, the mapping will
6440  *      present data from the image at the time that snapshot was
6441  *      created.  The image head is used if no snapshot id is
6442  *      provided.  Snapshot mappings are always read-only.
6443  */
6444 static int rbd_add_parse_args(const char *buf,
6445 				struct ceph_options **ceph_opts,
6446 				struct rbd_options **opts,
6447 				struct rbd_spec **rbd_spec)
6448 {
6449 	size_t len;
6450 	char *options;
6451 	const char *mon_addrs;
6452 	char *snap_name;
6453 	size_t mon_addrs_size;
6454 	struct rbd_parse_opts_ctx pctx = { 0 };
6455 	int ret;
6456 
6457 	/* The first four tokens are required */
6458 
6459 	len = next_token(&buf);
6460 	if (!len) {
6461 		rbd_warn(NULL, "no monitor address(es) provided");
6462 		return -EINVAL;
6463 	}
6464 	mon_addrs = buf;
6465 	mon_addrs_size = len;
6466 	buf += len;
6467 
6468 	ret = -EINVAL;
6469 	options = dup_token(&buf, NULL);
6470 	if (!options)
6471 		return -ENOMEM;
6472 	if (!*options) {
6473 		rbd_warn(NULL, "no options provided");
6474 		goto out_err;
6475 	}
6476 
6477 	pctx.spec = rbd_spec_alloc();
6478 	if (!pctx.spec)
6479 		goto out_mem;
6480 
6481 	pctx.spec->pool_name = dup_token(&buf, NULL);
6482 	if (!pctx.spec->pool_name)
6483 		goto out_mem;
6484 	if (!*pctx.spec->pool_name) {
6485 		rbd_warn(NULL, "no pool name provided");
6486 		goto out_err;
6487 	}
6488 
6489 	pctx.spec->image_name = dup_token(&buf, NULL);
6490 	if (!pctx.spec->image_name)
6491 		goto out_mem;
6492 	if (!*pctx.spec->image_name) {
6493 		rbd_warn(NULL, "no image name provided");
6494 		goto out_err;
6495 	}
6496 
6497 	/*
6498 	 * Snapshot name is optional; default is to use "-"
6499 	 * (indicating the head/no snapshot).
6500 	 */
6501 	len = next_token(&buf);
6502 	if (!len) {
6503 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6504 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6505 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6506 		ret = -ENAMETOOLONG;
6507 		goto out_err;
6508 	}
6509 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6510 	if (!snap_name)
6511 		goto out_mem;
6512 	*(snap_name + len) = '\0';
6513 	pctx.spec->snap_name = snap_name;
6514 
6515 	pctx.copts = ceph_alloc_options();
6516 	if (!pctx.copts)
6517 		goto out_mem;
6518 
6519 	/* Initialize all rbd options to the defaults */
6520 
6521 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6522 	if (!pctx.opts)
6523 		goto out_mem;
6524 
6525 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6526 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6527 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6528 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6529 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6530 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6531 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6532 
6533 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL);
6534 	if (ret)
6535 		goto out_err;
6536 
6537 	ret = rbd_parse_options(options, &pctx);
6538 	if (ret)
6539 		goto out_err;
6540 
6541 	*ceph_opts = pctx.copts;
6542 	*opts = pctx.opts;
6543 	*rbd_spec = pctx.spec;
6544 	kfree(options);
6545 	return 0;
6546 
6547 out_mem:
6548 	ret = -ENOMEM;
6549 out_err:
6550 	kfree(pctx.opts);
6551 	ceph_destroy_options(pctx.copts);
6552 	rbd_spec_put(pctx.spec);
6553 	kfree(options);
6554 	return ret;
6555 }
6556 
6557 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6558 {
6559 	down_write(&rbd_dev->lock_rwsem);
6560 	if (__rbd_is_lock_owner(rbd_dev))
6561 		__rbd_release_lock(rbd_dev);
6562 	up_write(&rbd_dev->lock_rwsem);
6563 }
6564 
6565 /*
6566  * If the wait is interrupted, an error is returned even if the lock
6567  * was successfully acquired.  rbd_dev_image_unlock() will release it
6568  * if needed.
6569  */
6570 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6571 {
6572 	long ret;
6573 
6574 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6575 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6576 			return 0;
6577 
6578 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6579 		return -EINVAL;
6580 	}
6581 
6582 	if (rbd_is_ro(rbd_dev))
6583 		return 0;
6584 
6585 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6586 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6587 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6588 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6589 	if (ret > 0) {
6590 		ret = rbd_dev->acquire_err;
6591 	} else {
6592 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6593 		if (!ret)
6594 			ret = -ETIMEDOUT;
6595 	}
6596 
6597 	if (ret) {
6598 		rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6599 		return ret;
6600 	}
6601 
6602 	/*
6603 	 * The lock may have been released by now, unless automatic lock
6604 	 * transitions are disabled.
6605 	 */
6606 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6607 	return 0;
6608 }
6609 
6610 /*
6611  * An rbd format 2 image has a unique identifier, distinct from the
6612  * name given to it by the user.  Internally, that identifier is
6613  * what's used to specify the names of objects related to the image.
6614  *
6615  * A special "rbd id" object is used to map an rbd image name to its
6616  * id.  If that object doesn't exist, then there is no v2 rbd image
6617  * with the supplied name.
6618  *
6619  * This function will record the given rbd_dev's image_id field if
6620  * it can be determined, and in that case will return 0.  If any
6621  * errors occur a negative errno will be returned and the rbd_dev's
6622  * image_id field will be unchanged (and should be NULL).
6623  */
6624 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6625 {
6626 	int ret;
6627 	size_t size;
6628 	CEPH_DEFINE_OID_ONSTACK(oid);
6629 	void *response;
6630 	char *image_id;
6631 
6632 	/*
6633 	 * When probing a parent image, the image id is already
6634 	 * known (and the image name likely is not).  There's no
6635 	 * need to fetch the image id again in this case.  We
6636 	 * do still need to set the image format though.
6637 	 */
6638 	if (rbd_dev->spec->image_id) {
6639 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6640 
6641 		return 0;
6642 	}
6643 
6644 	/*
6645 	 * First, see if the format 2 image id file exists, and if
6646 	 * so, get the image's persistent id from it.
6647 	 */
6648 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6649 			       rbd_dev->spec->image_name);
6650 	if (ret)
6651 		return ret;
6652 
6653 	dout("rbd id object name is %s\n", oid.name);
6654 
6655 	/* Response will be an encoded string, which includes a length */
6656 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6657 	response = kzalloc(size, GFP_NOIO);
6658 	if (!response) {
6659 		ret = -ENOMEM;
6660 		goto out;
6661 	}
6662 
6663 	/* If it doesn't exist we'll assume it's a format 1 image */
6664 
6665 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6666 				  "get_id", NULL, 0,
6667 				  response, size);
6668 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6669 	if (ret == -ENOENT) {
6670 		image_id = kstrdup("", GFP_KERNEL);
6671 		ret = image_id ? 0 : -ENOMEM;
6672 		if (!ret)
6673 			rbd_dev->image_format = 1;
6674 	} else if (ret >= 0) {
6675 		void *p = response;
6676 
6677 		image_id = ceph_extract_encoded_string(&p, p + ret,
6678 						NULL, GFP_NOIO);
6679 		ret = PTR_ERR_OR_ZERO(image_id);
6680 		if (!ret)
6681 			rbd_dev->image_format = 2;
6682 	}
6683 
6684 	if (!ret) {
6685 		rbd_dev->spec->image_id = image_id;
6686 		dout("image_id is %s\n", image_id);
6687 	}
6688 out:
6689 	kfree(response);
6690 	ceph_oid_destroy(&oid);
6691 	return ret;
6692 }
6693 
6694 /*
6695  * Undo whatever state changes are made by v1 or v2 header info
6696  * call.
6697  */
6698 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6699 {
6700 	struct rbd_image_header	*header;
6701 
6702 	rbd_dev_parent_put(rbd_dev);
6703 	rbd_object_map_free(rbd_dev);
6704 	rbd_dev_mapping_clear(rbd_dev);
6705 
6706 	/* Free dynamic fields from the header, then zero it out */
6707 
6708 	header = &rbd_dev->header;
6709 	ceph_put_snap_context(header->snapc);
6710 	kfree(header->snap_sizes);
6711 	kfree(header->snap_names);
6712 	kfree(header->object_prefix);
6713 	memset(header, 0, sizeof (*header));
6714 }
6715 
6716 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6717 {
6718 	int ret;
6719 
6720 	ret = rbd_dev_v2_object_prefix(rbd_dev);
6721 	if (ret)
6722 		goto out_err;
6723 
6724 	/*
6725 	 * Get the and check features for the image.  Currently the
6726 	 * features are assumed to never change.
6727 	 */
6728 	ret = rbd_dev_v2_features(rbd_dev);
6729 	if (ret)
6730 		goto out_err;
6731 
6732 	/* If the image supports fancy striping, get its parameters */
6733 
6734 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6735 		ret = rbd_dev_v2_striping_info(rbd_dev);
6736 		if (ret < 0)
6737 			goto out_err;
6738 	}
6739 
6740 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6741 		ret = rbd_dev_v2_data_pool(rbd_dev);
6742 		if (ret)
6743 			goto out_err;
6744 	}
6745 
6746 	rbd_init_layout(rbd_dev);
6747 	return 0;
6748 
6749 out_err:
6750 	rbd_dev->header.features = 0;
6751 	kfree(rbd_dev->header.object_prefix);
6752 	rbd_dev->header.object_prefix = NULL;
6753 	return ret;
6754 }
6755 
6756 /*
6757  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6758  * rbd_dev_image_probe() recursion depth, which means it's also the
6759  * length of the already discovered part of the parent chain.
6760  */
6761 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6762 {
6763 	struct rbd_device *parent = NULL;
6764 	int ret;
6765 
6766 	if (!rbd_dev->parent_spec)
6767 		return 0;
6768 
6769 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6770 		pr_info("parent chain is too long (%d)\n", depth);
6771 		ret = -EINVAL;
6772 		goto out_err;
6773 	}
6774 
6775 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6776 	if (!parent) {
6777 		ret = -ENOMEM;
6778 		goto out_err;
6779 	}
6780 
6781 	/*
6782 	 * Images related by parent/child relationships always share
6783 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6784 	 */
6785 	__rbd_get_client(rbd_dev->rbd_client);
6786 	rbd_spec_get(rbd_dev->parent_spec);
6787 
6788 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6789 
6790 	ret = rbd_dev_image_probe(parent, depth);
6791 	if (ret < 0)
6792 		goto out_err;
6793 
6794 	rbd_dev->parent = parent;
6795 	atomic_set(&rbd_dev->parent_ref, 1);
6796 	return 0;
6797 
6798 out_err:
6799 	rbd_dev_unparent(rbd_dev);
6800 	rbd_dev_destroy(parent);
6801 	return ret;
6802 }
6803 
6804 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6805 {
6806 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6807 	rbd_free_disk(rbd_dev);
6808 	if (!single_major)
6809 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6810 }
6811 
6812 /*
6813  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6814  * upon return.
6815  */
6816 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6817 {
6818 	int ret;
6819 
6820 	/* Record our major and minor device numbers. */
6821 
6822 	if (!single_major) {
6823 		ret = register_blkdev(0, rbd_dev->name);
6824 		if (ret < 0)
6825 			goto err_out_unlock;
6826 
6827 		rbd_dev->major = ret;
6828 		rbd_dev->minor = 0;
6829 	} else {
6830 		rbd_dev->major = rbd_major;
6831 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6832 	}
6833 
6834 	/* Set up the blkdev mapping. */
6835 
6836 	ret = rbd_init_disk(rbd_dev);
6837 	if (ret)
6838 		goto err_out_blkdev;
6839 
6840 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6841 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6842 
6843 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6844 	if (ret)
6845 		goto err_out_disk;
6846 
6847 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6848 	up_write(&rbd_dev->header_rwsem);
6849 	return 0;
6850 
6851 err_out_disk:
6852 	rbd_free_disk(rbd_dev);
6853 err_out_blkdev:
6854 	if (!single_major)
6855 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6856 err_out_unlock:
6857 	up_write(&rbd_dev->header_rwsem);
6858 	return ret;
6859 }
6860 
6861 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6862 {
6863 	struct rbd_spec *spec = rbd_dev->spec;
6864 	int ret;
6865 
6866 	/* Record the header object name for this rbd image. */
6867 
6868 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6869 	if (rbd_dev->image_format == 1)
6870 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6871 				       spec->image_name, RBD_SUFFIX);
6872 	else
6873 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6874 				       RBD_HEADER_PREFIX, spec->image_id);
6875 
6876 	return ret;
6877 }
6878 
6879 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6880 {
6881 	if (!is_snap) {
6882 		pr_info("image %s/%s%s%s does not exist\n",
6883 			rbd_dev->spec->pool_name,
6884 			rbd_dev->spec->pool_ns ?: "",
6885 			rbd_dev->spec->pool_ns ? "/" : "",
6886 			rbd_dev->spec->image_name);
6887 	} else {
6888 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6889 			rbd_dev->spec->pool_name,
6890 			rbd_dev->spec->pool_ns ?: "",
6891 			rbd_dev->spec->pool_ns ? "/" : "",
6892 			rbd_dev->spec->image_name,
6893 			rbd_dev->spec->snap_name);
6894 	}
6895 }
6896 
6897 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6898 {
6899 	if (!rbd_is_ro(rbd_dev))
6900 		rbd_unregister_watch(rbd_dev);
6901 
6902 	rbd_dev_unprobe(rbd_dev);
6903 	rbd_dev->image_format = 0;
6904 	kfree(rbd_dev->spec->image_id);
6905 	rbd_dev->spec->image_id = NULL;
6906 }
6907 
6908 /*
6909  * Probe for the existence of the header object for the given rbd
6910  * device.  If this image is the one being mapped (i.e., not a
6911  * parent), initiate a watch on its header object before using that
6912  * object to get detailed information about the rbd image.
6913  *
6914  * On success, returns with header_rwsem held for write if called
6915  * with @depth == 0.
6916  */
6917 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6918 {
6919 	bool need_watch = !rbd_is_ro(rbd_dev);
6920 	int ret;
6921 
6922 	/*
6923 	 * Get the id from the image id object.  Unless there's an
6924 	 * error, rbd_dev->spec->image_id will be filled in with
6925 	 * a dynamically-allocated string, and rbd_dev->image_format
6926 	 * will be set to either 1 or 2.
6927 	 */
6928 	ret = rbd_dev_image_id(rbd_dev);
6929 	if (ret)
6930 		return ret;
6931 
6932 	ret = rbd_dev_header_name(rbd_dev);
6933 	if (ret)
6934 		goto err_out_format;
6935 
6936 	if (need_watch) {
6937 		ret = rbd_register_watch(rbd_dev);
6938 		if (ret) {
6939 			if (ret == -ENOENT)
6940 				rbd_print_dne(rbd_dev, false);
6941 			goto err_out_format;
6942 		}
6943 	}
6944 
6945 	if (!depth)
6946 		down_write(&rbd_dev->header_rwsem);
6947 
6948 	ret = rbd_dev_header_info(rbd_dev);
6949 	if (ret) {
6950 		if (ret == -ENOENT && !need_watch)
6951 			rbd_print_dne(rbd_dev, false);
6952 		goto err_out_probe;
6953 	}
6954 
6955 	/*
6956 	 * If this image is the one being mapped, we have pool name and
6957 	 * id, image name and id, and snap name - need to fill snap id.
6958 	 * Otherwise this is a parent image, identified by pool, image
6959 	 * and snap ids - need to fill in names for those ids.
6960 	 */
6961 	if (!depth)
6962 		ret = rbd_spec_fill_snap_id(rbd_dev);
6963 	else
6964 		ret = rbd_spec_fill_names(rbd_dev);
6965 	if (ret) {
6966 		if (ret == -ENOENT)
6967 			rbd_print_dne(rbd_dev, true);
6968 		goto err_out_probe;
6969 	}
6970 
6971 	ret = rbd_dev_mapping_set(rbd_dev);
6972 	if (ret)
6973 		goto err_out_probe;
6974 
6975 	if (rbd_is_snap(rbd_dev) &&
6976 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6977 		ret = rbd_object_map_load(rbd_dev);
6978 		if (ret)
6979 			goto err_out_probe;
6980 	}
6981 
6982 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6983 		ret = rbd_dev_v2_parent_info(rbd_dev);
6984 		if (ret)
6985 			goto err_out_probe;
6986 	}
6987 
6988 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6989 	if (ret)
6990 		goto err_out_probe;
6991 
6992 	dout("discovered format %u image, header name is %s\n",
6993 		rbd_dev->image_format, rbd_dev->header_oid.name);
6994 	return 0;
6995 
6996 err_out_probe:
6997 	if (!depth)
6998 		up_write(&rbd_dev->header_rwsem);
6999 	if (need_watch)
7000 		rbd_unregister_watch(rbd_dev);
7001 	rbd_dev_unprobe(rbd_dev);
7002 err_out_format:
7003 	rbd_dev->image_format = 0;
7004 	kfree(rbd_dev->spec->image_id);
7005 	rbd_dev->spec->image_id = NULL;
7006 	return ret;
7007 }
7008 
7009 static ssize_t do_rbd_add(struct bus_type *bus,
7010 			  const char *buf,
7011 			  size_t count)
7012 {
7013 	struct rbd_device *rbd_dev = NULL;
7014 	struct ceph_options *ceph_opts = NULL;
7015 	struct rbd_options *rbd_opts = NULL;
7016 	struct rbd_spec *spec = NULL;
7017 	struct rbd_client *rbdc;
7018 	int rc;
7019 
7020 	if (!capable(CAP_SYS_ADMIN))
7021 		return -EPERM;
7022 
7023 	if (!try_module_get(THIS_MODULE))
7024 		return -ENODEV;
7025 
7026 	/* parse add command */
7027 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7028 	if (rc < 0)
7029 		goto out;
7030 
7031 	rbdc = rbd_get_client(ceph_opts);
7032 	if (IS_ERR(rbdc)) {
7033 		rc = PTR_ERR(rbdc);
7034 		goto err_out_args;
7035 	}
7036 
7037 	/* pick the pool */
7038 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7039 	if (rc < 0) {
7040 		if (rc == -ENOENT)
7041 			pr_info("pool %s does not exist\n", spec->pool_name);
7042 		goto err_out_client;
7043 	}
7044 	spec->pool_id = (u64)rc;
7045 
7046 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7047 	if (!rbd_dev) {
7048 		rc = -ENOMEM;
7049 		goto err_out_client;
7050 	}
7051 	rbdc = NULL;		/* rbd_dev now owns this */
7052 	spec = NULL;		/* rbd_dev now owns this */
7053 	rbd_opts = NULL;	/* rbd_dev now owns this */
7054 
7055 	/* if we are mapping a snapshot it will be a read-only mapping */
7056 	if (rbd_dev->opts->read_only ||
7057 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7058 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7059 
7060 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7061 	if (!rbd_dev->config_info) {
7062 		rc = -ENOMEM;
7063 		goto err_out_rbd_dev;
7064 	}
7065 
7066 	rc = rbd_dev_image_probe(rbd_dev, 0);
7067 	if (rc < 0)
7068 		goto err_out_rbd_dev;
7069 
7070 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7071 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7072 			 rbd_dev->layout.object_size);
7073 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7074 	}
7075 
7076 	rc = rbd_dev_device_setup(rbd_dev);
7077 	if (rc)
7078 		goto err_out_image_probe;
7079 
7080 	rc = rbd_add_acquire_lock(rbd_dev);
7081 	if (rc)
7082 		goto err_out_image_lock;
7083 
7084 	/* Everything's ready.  Announce the disk to the world. */
7085 
7086 	rc = device_add(&rbd_dev->dev);
7087 	if (rc)
7088 		goto err_out_image_lock;
7089 
7090 	device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7091 	/* see rbd_init_disk() */
7092 	blk_put_queue(rbd_dev->disk->queue);
7093 
7094 	spin_lock(&rbd_dev_list_lock);
7095 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7096 	spin_unlock(&rbd_dev_list_lock);
7097 
7098 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7099 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7100 		rbd_dev->header.features);
7101 	rc = count;
7102 out:
7103 	module_put(THIS_MODULE);
7104 	return rc;
7105 
7106 err_out_image_lock:
7107 	rbd_dev_image_unlock(rbd_dev);
7108 	rbd_dev_device_release(rbd_dev);
7109 err_out_image_probe:
7110 	rbd_dev_image_release(rbd_dev);
7111 err_out_rbd_dev:
7112 	rbd_dev_destroy(rbd_dev);
7113 err_out_client:
7114 	rbd_put_client(rbdc);
7115 err_out_args:
7116 	rbd_spec_put(spec);
7117 	kfree(rbd_opts);
7118 	goto out;
7119 }
7120 
7121 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7122 {
7123 	if (single_major)
7124 		return -EINVAL;
7125 
7126 	return do_rbd_add(bus, buf, count);
7127 }
7128 
7129 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7130 				      size_t count)
7131 {
7132 	return do_rbd_add(bus, buf, count);
7133 }
7134 
7135 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7136 {
7137 	while (rbd_dev->parent) {
7138 		struct rbd_device *first = rbd_dev;
7139 		struct rbd_device *second = first->parent;
7140 		struct rbd_device *third;
7141 
7142 		/*
7143 		 * Follow to the parent with no grandparent and
7144 		 * remove it.
7145 		 */
7146 		while (second && (third = second->parent)) {
7147 			first = second;
7148 			second = third;
7149 		}
7150 		rbd_assert(second);
7151 		rbd_dev_image_release(second);
7152 		rbd_dev_destroy(second);
7153 		first->parent = NULL;
7154 		first->parent_overlap = 0;
7155 
7156 		rbd_assert(first->parent_spec);
7157 		rbd_spec_put(first->parent_spec);
7158 		first->parent_spec = NULL;
7159 	}
7160 }
7161 
7162 static ssize_t do_rbd_remove(struct bus_type *bus,
7163 			     const char *buf,
7164 			     size_t count)
7165 {
7166 	struct rbd_device *rbd_dev = NULL;
7167 	struct list_head *tmp;
7168 	int dev_id;
7169 	char opt_buf[6];
7170 	bool force = false;
7171 	int ret;
7172 
7173 	if (!capable(CAP_SYS_ADMIN))
7174 		return -EPERM;
7175 
7176 	dev_id = -1;
7177 	opt_buf[0] = '\0';
7178 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7179 	if (dev_id < 0) {
7180 		pr_err("dev_id out of range\n");
7181 		return -EINVAL;
7182 	}
7183 	if (opt_buf[0] != '\0') {
7184 		if (!strcmp(opt_buf, "force")) {
7185 			force = true;
7186 		} else {
7187 			pr_err("bad remove option at '%s'\n", opt_buf);
7188 			return -EINVAL;
7189 		}
7190 	}
7191 
7192 	ret = -ENOENT;
7193 	spin_lock(&rbd_dev_list_lock);
7194 	list_for_each(tmp, &rbd_dev_list) {
7195 		rbd_dev = list_entry(tmp, struct rbd_device, node);
7196 		if (rbd_dev->dev_id == dev_id) {
7197 			ret = 0;
7198 			break;
7199 		}
7200 	}
7201 	if (!ret) {
7202 		spin_lock_irq(&rbd_dev->lock);
7203 		if (rbd_dev->open_count && !force)
7204 			ret = -EBUSY;
7205 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7206 					  &rbd_dev->flags))
7207 			ret = -EINPROGRESS;
7208 		spin_unlock_irq(&rbd_dev->lock);
7209 	}
7210 	spin_unlock(&rbd_dev_list_lock);
7211 	if (ret)
7212 		return ret;
7213 
7214 	if (force) {
7215 		/*
7216 		 * Prevent new IO from being queued and wait for existing
7217 		 * IO to complete/fail.
7218 		 */
7219 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7220 		blk_set_queue_dying(rbd_dev->disk->queue);
7221 	}
7222 
7223 	del_gendisk(rbd_dev->disk);
7224 	spin_lock(&rbd_dev_list_lock);
7225 	list_del_init(&rbd_dev->node);
7226 	spin_unlock(&rbd_dev_list_lock);
7227 	device_del(&rbd_dev->dev);
7228 
7229 	rbd_dev_image_unlock(rbd_dev);
7230 	rbd_dev_device_release(rbd_dev);
7231 	rbd_dev_image_release(rbd_dev);
7232 	rbd_dev_destroy(rbd_dev);
7233 	return count;
7234 }
7235 
7236 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7237 {
7238 	if (single_major)
7239 		return -EINVAL;
7240 
7241 	return do_rbd_remove(bus, buf, count);
7242 }
7243 
7244 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7245 					 size_t count)
7246 {
7247 	return do_rbd_remove(bus, buf, count);
7248 }
7249 
7250 /*
7251  * create control files in sysfs
7252  * /sys/bus/rbd/...
7253  */
7254 static int __init rbd_sysfs_init(void)
7255 {
7256 	int ret;
7257 
7258 	ret = device_register(&rbd_root_dev);
7259 	if (ret < 0)
7260 		return ret;
7261 
7262 	ret = bus_register(&rbd_bus_type);
7263 	if (ret < 0)
7264 		device_unregister(&rbd_root_dev);
7265 
7266 	return ret;
7267 }
7268 
7269 static void __exit rbd_sysfs_cleanup(void)
7270 {
7271 	bus_unregister(&rbd_bus_type);
7272 	device_unregister(&rbd_root_dev);
7273 }
7274 
7275 static int __init rbd_slab_init(void)
7276 {
7277 	rbd_assert(!rbd_img_request_cache);
7278 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7279 	if (!rbd_img_request_cache)
7280 		return -ENOMEM;
7281 
7282 	rbd_assert(!rbd_obj_request_cache);
7283 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7284 	if (!rbd_obj_request_cache)
7285 		goto out_err;
7286 
7287 	return 0;
7288 
7289 out_err:
7290 	kmem_cache_destroy(rbd_img_request_cache);
7291 	rbd_img_request_cache = NULL;
7292 	return -ENOMEM;
7293 }
7294 
7295 static void rbd_slab_exit(void)
7296 {
7297 	rbd_assert(rbd_obj_request_cache);
7298 	kmem_cache_destroy(rbd_obj_request_cache);
7299 	rbd_obj_request_cache = NULL;
7300 
7301 	rbd_assert(rbd_img_request_cache);
7302 	kmem_cache_destroy(rbd_img_request_cache);
7303 	rbd_img_request_cache = NULL;
7304 }
7305 
7306 static int __init rbd_init(void)
7307 {
7308 	int rc;
7309 
7310 	if (!libceph_compatible(NULL)) {
7311 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7312 		return -EINVAL;
7313 	}
7314 
7315 	rc = rbd_slab_init();
7316 	if (rc)
7317 		return rc;
7318 
7319 	/*
7320 	 * The number of active work items is limited by the number of
7321 	 * rbd devices * queue depth, so leave @max_active at default.
7322 	 */
7323 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7324 	if (!rbd_wq) {
7325 		rc = -ENOMEM;
7326 		goto err_out_slab;
7327 	}
7328 
7329 	if (single_major) {
7330 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7331 		if (rbd_major < 0) {
7332 			rc = rbd_major;
7333 			goto err_out_wq;
7334 		}
7335 	}
7336 
7337 	rc = rbd_sysfs_init();
7338 	if (rc)
7339 		goto err_out_blkdev;
7340 
7341 	if (single_major)
7342 		pr_info("loaded (major %d)\n", rbd_major);
7343 	else
7344 		pr_info("loaded\n");
7345 
7346 	return 0;
7347 
7348 err_out_blkdev:
7349 	if (single_major)
7350 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7351 err_out_wq:
7352 	destroy_workqueue(rbd_wq);
7353 err_out_slab:
7354 	rbd_slab_exit();
7355 	return rc;
7356 }
7357 
7358 static void __exit rbd_exit(void)
7359 {
7360 	ida_destroy(&rbd_dev_id_ida);
7361 	rbd_sysfs_cleanup();
7362 	if (single_major)
7363 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7364 	destroy_workqueue(rbd_wq);
7365 	rbd_slab_exit();
7366 }
7367 
7368 module_init(rbd_init);
7369 module_exit(rbd_exit);
7370 
7371 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7372 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7373 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7374 /* following authorship retained from original osdblk.c */
7375 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7376 
7377 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7378 MODULE_LICENSE("GPL");
7379