1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/fs_parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3) 119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4) 120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5) 121 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 122 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 123 124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 125 RBD_FEATURE_STRIPINGV2 | \ 126 RBD_FEATURE_EXCLUSIVE_LOCK | \ 127 RBD_FEATURE_OBJECT_MAP | \ 128 RBD_FEATURE_FAST_DIFF | \ 129 RBD_FEATURE_DEEP_FLATTEN | \ 130 RBD_FEATURE_DATA_POOL | \ 131 RBD_FEATURE_OPERATIONS) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 const char *pool_ns; /* NULL if default, never "" */ 191 192 const char *image_id; 193 const char *image_name; 194 195 u64 snap_id; 196 const char *snap_name; 197 198 struct kref kref; 199 }; 200 201 /* 202 * an instance of the client. multiple devices may share an rbd client. 203 */ 204 struct rbd_client { 205 struct ceph_client *client; 206 struct kref kref; 207 struct list_head node; 208 }; 209 210 struct pending_result { 211 int result; /* first nonzero result */ 212 int num_pending; 213 }; 214 215 struct rbd_img_request; 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA = 1, 219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 222 }; 223 224 enum obj_operation_type { 225 OBJ_OP_READ = 1, 226 OBJ_OP_WRITE, 227 OBJ_OP_DISCARD, 228 OBJ_OP_ZEROOUT, 229 }; 230 231 #define RBD_OBJ_FLAG_DELETION (1U << 0) 232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1) 233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2) 234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3) 235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4) 236 237 enum rbd_obj_read_state { 238 RBD_OBJ_READ_START = 1, 239 RBD_OBJ_READ_OBJECT, 240 RBD_OBJ_READ_PARENT, 241 }; 242 243 /* 244 * Writes go through the following state machine to deal with 245 * layering: 246 * 247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . . 248 * . | . 249 * . v . 250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . . 251 * . | . . 252 * . v v (deep-copyup . 253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) . 254 * flattened) v | . . 255 * . v . . 256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup . 257 * | not needed) v 258 * v . 259 * done . . . . . . . . . . . . . . . . . . 260 * ^ 261 * | 262 * RBD_OBJ_WRITE_FLAT 263 * 264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 265 * assert_exists guard is needed or not (in some cases it's not needed 266 * even if there is a parent). 267 */ 268 enum rbd_obj_write_state { 269 RBD_OBJ_WRITE_START = 1, 270 RBD_OBJ_WRITE_PRE_OBJECT_MAP, 271 RBD_OBJ_WRITE_OBJECT, 272 __RBD_OBJ_WRITE_COPYUP, 273 RBD_OBJ_WRITE_COPYUP, 274 RBD_OBJ_WRITE_POST_OBJECT_MAP, 275 }; 276 277 enum rbd_obj_copyup_state { 278 RBD_OBJ_COPYUP_START = 1, 279 RBD_OBJ_COPYUP_READ_PARENT, 280 __RBD_OBJ_COPYUP_OBJECT_MAPS, 281 RBD_OBJ_COPYUP_OBJECT_MAPS, 282 __RBD_OBJ_COPYUP_WRITE_OBJECT, 283 RBD_OBJ_COPYUP_WRITE_OBJECT, 284 }; 285 286 struct rbd_obj_request { 287 struct ceph_object_extent ex; 288 unsigned int flags; /* RBD_OBJ_FLAG_* */ 289 union { 290 enum rbd_obj_read_state read_state; /* for reads */ 291 enum rbd_obj_write_state write_state; /* for writes */ 292 }; 293 294 struct rbd_img_request *img_request; 295 struct ceph_file_extent *img_extents; 296 u32 num_img_extents; 297 298 union { 299 struct ceph_bio_iter bio_pos; 300 struct { 301 struct ceph_bvec_iter bvec_pos; 302 u32 bvec_count; 303 u32 bvec_idx; 304 }; 305 }; 306 307 enum rbd_obj_copyup_state copyup_state; 308 struct bio_vec *copyup_bvecs; 309 u32 copyup_bvec_count; 310 311 struct list_head osd_reqs; /* w/ r_private_item */ 312 313 struct mutex state_mutex; 314 struct pending_result pending; 315 struct kref kref; 316 }; 317 318 enum img_req_flags { 319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 321 }; 322 323 enum rbd_img_state { 324 RBD_IMG_START = 1, 325 RBD_IMG_EXCLUSIVE_LOCK, 326 __RBD_IMG_OBJECT_REQUESTS, 327 RBD_IMG_OBJECT_REQUESTS, 328 }; 329 330 struct rbd_img_request { 331 struct rbd_device *rbd_dev; 332 enum obj_operation_type op_type; 333 enum obj_request_type data_type; 334 unsigned long flags; 335 enum rbd_img_state state; 336 union { 337 u64 snap_id; /* for reads */ 338 struct ceph_snap_context *snapc; /* for writes */ 339 }; 340 struct rbd_obj_request *obj_request; /* obj req initiator */ 341 342 struct list_head lock_item; 343 struct list_head object_extents; /* obj_req.ex structs */ 344 345 struct mutex state_mutex; 346 struct pending_result pending; 347 struct work_struct work; 348 int work_result; 349 }; 350 351 #define for_each_obj_request(ireq, oreq) \ 352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 353 #define for_each_obj_request_safe(ireq, oreq, n) \ 354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 355 356 enum rbd_watch_state { 357 RBD_WATCH_STATE_UNREGISTERED, 358 RBD_WATCH_STATE_REGISTERED, 359 RBD_WATCH_STATE_ERROR, 360 }; 361 362 enum rbd_lock_state { 363 RBD_LOCK_STATE_UNLOCKED, 364 RBD_LOCK_STATE_LOCKED, 365 RBD_LOCK_STATE_RELEASING, 366 }; 367 368 /* WatchNotify::ClientId */ 369 struct rbd_client_id { 370 u64 gid; 371 u64 handle; 372 }; 373 374 struct rbd_mapping { 375 u64 size; 376 }; 377 378 /* 379 * a single device 380 */ 381 struct rbd_device { 382 int dev_id; /* blkdev unique id */ 383 384 int major; /* blkdev assigned major */ 385 int minor; 386 struct gendisk *disk; /* blkdev's gendisk and rq */ 387 388 u32 image_format; /* Either 1 or 2 */ 389 struct rbd_client *rbd_client; 390 391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 392 393 spinlock_t lock; /* queue, flags, open_count */ 394 395 struct rbd_image_header header; 396 unsigned long flags; /* possibly lock protected */ 397 struct rbd_spec *spec; 398 struct rbd_options *opts; 399 char *config_info; /* add{,_single_major} string */ 400 401 struct ceph_object_id header_oid; 402 struct ceph_object_locator header_oloc; 403 404 struct ceph_file_layout layout; /* used for all rbd requests */ 405 406 struct mutex watch_mutex; 407 enum rbd_watch_state watch_state; 408 struct ceph_osd_linger_request *watch_handle; 409 u64 watch_cookie; 410 struct delayed_work watch_dwork; 411 412 struct rw_semaphore lock_rwsem; 413 enum rbd_lock_state lock_state; 414 char lock_cookie[32]; 415 struct rbd_client_id owner_cid; 416 struct work_struct acquired_lock_work; 417 struct work_struct released_lock_work; 418 struct delayed_work lock_dwork; 419 struct work_struct unlock_work; 420 spinlock_t lock_lists_lock; 421 struct list_head acquiring_list; 422 struct list_head running_list; 423 struct completion acquire_wait; 424 int acquire_err; 425 struct completion releasing_wait; 426 427 spinlock_t object_map_lock; 428 u8 *object_map; 429 u64 object_map_size; /* in objects */ 430 u64 object_map_flags; 431 432 struct workqueue_struct *task_wq; 433 434 struct rbd_spec *parent_spec; 435 u64 parent_overlap; 436 atomic_t parent_ref; 437 struct rbd_device *parent; 438 439 /* Block layer tags. */ 440 struct blk_mq_tag_set tag_set; 441 442 /* protects updating the header */ 443 struct rw_semaphore header_rwsem; 444 445 struct rbd_mapping mapping; 446 447 struct list_head node; 448 449 /* sysfs related */ 450 struct device dev; 451 unsigned long open_count; /* protected by lock */ 452 }; 453 454 /* 455 * Flag bits for rbd_dev->flags: 456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 457 * by rbd_dev->lock 458 */ 459 enum rbd_dev_flags { 460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */ 461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */ 463 }; 464 465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 466 467 static LIST_HEAD(rbd_dev_list); /* devices */ 468 static DEFINE_SPINLOCK(rbd_dev_list_lock); 469 470 static LIST_HEAD(rbd_client_list); /* clients */ 471 static DEFINE_SPINLOCK(rbd_client_list_lock); 472 473 /* Slab caches for frequently-allocated structures */ 474 475 static struct kmem_cache *rbd_img_request_cache; 476 static struct kmem_cache *rbd_obj_request_cache; 477 478 static int rbd_major; 479 static DEFINE_IDA(rbd_dev_id_ida); 480 481 static struct workqueue_struct *rbd_wq; 482 483 static struct ceph_snap_context rbd_empty_snapc = { 484 .nref = REFCOUNT_INIT(1), 485 }; 486 487 /* 488 * single-major requires >= 0.75 version of userspace rbd utility. 489 */ 490 static bool single_major = true; 491 module_param(single_major, bool, 0444); 492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 493 494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count); 495 static ssize_t remove_store(const struct bus_type *bus, const char *buf, 496 size_t count); 497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 498 size_t count); 499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 500 size_t count); 501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 502 503 static int rbd_dev_id_to_minor(int dev_id) 504 { 505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 506 } 507 508 static int minor_to_rbd_dev_id(int minor) 509 { 510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 511 } 512 513 static bool rbd_is_ro(struct rbd_device *rbd_dev) 514 { 515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 516 } 517 518 static bool rbd_is_snap(struct rbd_device *rbd_dev) 519 { 520 return rbd_dev->spec->snap_id != CEPH_NOSNAP; 521 } 522 523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 524 { 525 lockdep_assert_held(&rbd_dev->lock_rwsem); 526 527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 529 } 530 531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 532 { 533 bool is_lock_owner; 534 535 down_read(&rbd_dev->lock_rwsem); 536 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 537 up_read(&rbd_dev->lock_rwsem); 538 return is_lock_owner; 539 } 540 541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf) 542 { 543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 544 } 545 546 static BUS_ATTR_WO(add); 547 static BUS_ATTR_WO(remove); 548 static BUS_ATTR_WO(add_single_major); 549 static BUS_ATTR_WO(remove_single_major); 550 static BUS_ATTR_RO(supported_features); 551 552 static struct attribute *rbd_bus_attrs[] = { 553 &bus_attr_add.attr, 554 &bus_attr_remove.attr, 555 &bus_attr_add_single_major.attr, 556 &bus_attr_remove_single_major.attr, 557 &bus_attr_supported_features.attr, 558 NULL, 559 }; 560 561 static umode_t rbd_bus_is_visible(struct kobject *kobj, 562 struct attribute *attr, int index) 563 { 564 if (!single_major && 565 (attr == &bus_attr_add_single_major.attr || 566 attr == &bus_attr_remove_single_major.attr)) 567 return 0; 568 569 return attr->mode; 570 } 571 572 static const struct attribute_group rbd_bus_group = { 573 .attrs = rbd_bus_attrs, 574 .is_visible = rbd_bus_is_visible, 575 }; 576 __ATTRIBUTE_GROUPS(rbd_bus); 577 578 static struct bus_type rbd_bus_type = { 579 .name = "rbd", 580 .bus_groups = rbd_bus_groups, 581 }; 582 583 static void rbd_root_dev_release(struct device *dev) 584 { 585 } 586 587 static struct device rbd_root_dev = { 588 .init_name = "rbd", 589 .release = rbd_root_dev_release, 590 }; 591 592 static __printf(2, 3) 593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 va_start(args, fmt); 599 vaf.fmt = fmt; 600 vaf.va = &args; 601 602 if (!rbd_dev) 603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 604 else if (rbd_dev->disk) 605 printk(KERN_WARNING "%s: %s: %pV\n", 606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 607 else if (rbd_dev->spec && rbd_dev->spec->image_name) 608 printk(KERN_WARNING "%s: image %s: %pV\n", 609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 610 else if (rbd_dev->spec && rbd_dev->spec->image_id) 611 printk(KERN_WARNING "%s: id %s: %pV\n", 612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 613 else /* punt */ 614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 615 RBD_DRV_NAME, rbd_dev, &vaf); 616 va_end(args); 617 } 618 619 #ifdef RBD_DEBUG 620 #define rbd_assert(expr) \ 621 if (unlikely(!(expr))) { \ 622 printk(KERN_ERR "\nAssertion failure in %s() " \ 623 "at line %d:\n\n" \ 624 "\trbd_assert(%s);\n\n", \ 625 __func__, __LINE__, #expr); \ 626 BUG(); \ 627 } 628 #else /* !RBD_DEBUG */ 629 # define rbd_assert(expr) ((void) 0) 630 #endif /* !RBD_DEBUG */ 631 632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 633 634 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev, 636 struct rbd_image_header *header); 637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 638 u64 snap_id); 639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 640 u8 *order, u64 *snap_size); 641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev); 642 643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result); 644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result); 645 646 /* 647 * Return true if nothing else is pending. 648 */ 649 static bool pending_result_dec(struct pending_result *pending, int *result) 650 { 651 rbd_assert(pending->num_pending > 0); 652 653 if (*result && !pending->result) 654 pending->result = *result; 655 if (--pending->num_pending) 656 return false; 657 658 *result = pending->result; 659 return true; 660 } 661 662 static int rbd_open(struct gendisk *disk, blk_mode_t mode) 663 { 664 struct rbd_device *rbd_dev = disk->private_data; 665 bool removing = false; 666 667 spin_lock_irq(&rbd_dev->lock); 668 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 669 removing = true; 670 else 671 rbd_dev->open_count++; 672 spin_unlock_irq(&rbd_dev->lock); 673 if (removing) 674 return -ENOENT; 675 676 (void) get_device(&rbd_dev->dev); 677 678 return 0; 679 } 680 681 static void rbd_release(struct gendisk *disk) 682 { 683 struct rbd_device *rbd_dev = disk->private_data; 684 unsigned long open_count_before; 685 686 spin_lock_irq(&rbd_dev->lock); 687 open_count_before = rbd_dev->open_count--; 688 spin_unlock_irq(&rbd_dev->lock); 689 rbd_assert(open_count_before > 0); 690 691 put_device(&rbd_dev->dev); 692 } 693 694 static const struct block_device_operations rbd_bd_ops = { 695 .owner = THIS_MODULE, 696 .open = rbd_open, 697 .release = rbd_release, 698 }; 699 700 /* 701 * Initialize an rbd client instance. Success or not, this function 702 * consumes ceph_opts. Caller holds client_mutex. 703 */ 704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 705 { 706 struct rbd_client *rbdc; 707 int ret = -ENOMEM; 708 709 dout("%s:\n", __func__); 710 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 711 if (!rbdc) 712 goto out_opt; 713 714 kref_init(&rbdc->kref); 715 INIT_LIST_HEAD(&rbdc->node); 716 717 rbdc->client = ceph_create_client(ceph_opts, rbdc); 718 if (IS_ERR(rbdc->client)) 719 goto out_rbdc; 720 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 721 722 ret = ceph_open_session(rbdc->client); 723 if (ret < 0) 724 goto out_client; 725 726 spin_lock(&rbd_client_list_lock); 727 list_add_tail(&rbdc->node, &rbd_client_list); 728 spin_unlock(&rbd_client_list_lock); 729 730 dout("%s: rbdc %p\n", __func__, rbdc); 731 732 return rbdc; 733 out_client: 734 ceph_destroy_client(rbdc->client); 735 out_rbdc: 736 kfree(rbdc); 737 out_opt: 738 if (ceph_opts) 739 ceph_destroy_options(ceph_opts); 740 dout("%s: error %d\n", __func__, ret); 741 742 return ERR_PTR(ret); 743 } 744 745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 746 { 747 kref_get(&rbdc->kref); 748 749 return rbdc; 750 } 751 752 /* 753 * Find a ceph client with specific addr and configuration. If 754 * found, bump its reference count. 755 */ 756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 757 { 758 struct rbd_client *rbdc = NULL, *iter; 759 760 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 761 return NULL; 762 763 spin_lock(&rbd_client_list_lock); 764 list_for_each_entry(iter, &rbd_client_list, node) { 765 if (!ceph_compare_options(ceph_opts, iter->client)) { 766 __rbd_get_client(iter); 767 768 rbdc = iter; 769 break; 770 } 771 } 772 spin_unlock(&rbd_client_list_lock); 773 774 return rbdc; 775 } 776 777 /* 778 * (Per device) rbd map options 779 */ 780 enum { 781 Opt_queue_depth, 782 Opt_alloc_size, 783 Opt_lock_timeout, 784 /* int args above */ 785 Opt_pool_ns, 786 Opt_compression_hint, 787 /* string args above */ 788 Opt_read_only, 789 Opt_read_write, 790 Opt_lock_on_read, 791 Opt_exclusive, 792 Opt_notrim, 793 }; 794 795 enum { 796 Opt_compression_hint_none, 797 Opt_compression_hint_compressible, 798 Opt_compression_hint_incompressible, 799 }; 800 801 static const struct constant_table rbd_param_compression_hint[] = { 802 {"none", Opt_compression_hint_none}, 803 {"compressible", Opt_compression_hint_compressible}, 804 {"incompressible", Opt_compression_hint_incompressible}, 805 {} 806 }; 807 808 static const struct fs_parameter_spec rbd_parameters[] = { 809 fsparam_u32 ("alloc_size", Opt_alloc_size), 810 fsparam_enum ("compression_hint", Opt_compression_hint, 811 rbd_param_compression_hint), 812 fsparam_flag ("exclusive", Opt_exclusive), 813 fsparam_flag ("lock_on_read", Opt_lock_on_read), 814 fsparam_u32 ("lock_timeout", Opt_lock_timeout), 815 fsparam_flag ("notrim", Opt_notrim), 816 fsparam_string ("_pool_ns", Opt_pool_ns), 817 fsparam_u32 ("queue_depth", Opt_queue_depth), 818 fsparam_flag ("read_only", Opt_read_only), 819 fsparam_flag ("read_write", Opt_read_write), 820 fsparam_flag ("ro", Opt_read_only), 821 fsparam_flag ("rw", Opt_read_write), 822 {} 823 }; 824 825 struct rbd_options { 826 int queue_depth; 827 int alloc_size; 828 unsigned long lock_timeout; 829 bool read_only; 830 bool lock_on_read; 831 bool exclusive; 832 bool trim; 833 834 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */ 835 }; 836 837 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ 838 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024) 839 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 840 #define RBD_READ_ONLY_DEFAULT false 841 #define RBD_LOCK_ON_READ_DEFAULT false 842 #define RBD_EXCLUSIVE_DEFAULT false 843 #define RBD_TRIM_DEFAULT true 844 845 struct rbd_parse_opts_ctx { 846 struct rbd_spec *spec; 847 struct ceph_options *copts; 848 struct rbd_options *opts; 849 }; 850 851 static char* obj_op_name(enum obj_operation_type op_type) 852 { 853 switch (op_type) { 854 case OBJ_OP_READ: 855 return "read"; 856 case OBJ_OP_WRITE: 857 return "write"; 858 case OBJ_OP_DISCARD: 859 return "discard"; 860 case OBJ_OP_ZEROOUT: 861 return "zeroout"; 862 default: 863 return "???"; 864 } 865 } 866 867 /* 868 * Destroy ceph client 869 * 870 * Caller must hold rbd_client_list_lock. 871 */ 872 static void rbd_client_release(struct kref *kref) 873 { 874 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 875 876 dout("%s: rbdc %p\n", __func__, rbdc); 877 spin_lock(&rbd_client_list_lock); 878 list_del(&rbdc->node); 879 spin_unlock(&rbd_client_list_lock); 880 881 ceph_destroy_client(rbdc->client); 882 kfree(rbdc); 883 } 884 885 /* 886 * Drop reference to ceph client node. If it's not referenced anymore, release 887 * it. 888 */ 889 static void rbd_put_client(struct rbd_client *rbdc) 890 { 891 if (rbdc) 892 kref_put(&rbdc->kref, rbd_client_release); 893 } 894 895 /* 896 * Get a ceph client with specific addr and configuration, if one does 897 * not exist create it. Either way, ceph_opts is consumed by this 898 * function. 899 */ 900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 901 { 902 struct rbd_client *rbdc; 903 int ret; 904 905 mutex_lock(&client_mutex); 906 rbdc = rbd_client_find(ceph_opts); 907 if (rbdc) { 908 ceph_destroy_options(ceph_opts); 909 910 /* 911 * Using an existing client. Make sure ->pg_pools is up to 912 * date before we look up the pool id in do_rbd_add(). 913 */ 914 ret = ceph_wait_for_latest_osdmap(rbdc->client, 915 rbdc->client->options->mount_timeout); 916 if (ret) { 917 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 918 rbd_put_client(rbdc); 919 rbdc = ERR_PTR(ret); 920 } 921 } else { 922 rbdc = rbd_client_create(ceph_opts); 923 } 924 mutex_unlock(&client_mutex); 925 926 return rbdc; 927 } 928 929 static bool rbd_image_format_valid(u32 image_format) 930 { 931 return image_format == 1 || image_format == 2; 932 } 933 934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 935 { 936 size_t size; 937 u32 snap_count; 938 939 /* The header has to start with the magic rbd header text */ 940 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 941 return false; 942 943 /* The bio layer requires at least sector-sized I/O */ 944 945 if (ondisk->options.order < SECTOR_SHIFT) 946 return false; 947 948 /* If we use u64 in a few spots we may be able to loosen this */ 949 950 if (ondisk->options.order > 8 * sizeof (int) - 1) 951 return false; 952 953 /* 954 * The size of a snapshot header has to fit in a size_t, and 955 * that limits the number of snapshots. 956 */ 957 snap_count = le32_to_cpu(ondisk->snap_count); 958 size = SIZE_MAX - sizeof (struct ceph_snap_context); 959 if (snap_count > size / sizeof (__le64)) 960 return false; 961 962 /* 963 * Not only that, but the size of the entire the snapshot 964 * header must also be representable in a size_t. 965 */ 966 size -= snap_count * sizeof (__le64); 967 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 968 return false; 969 970 return true; 971 } 972 973 /* 974 * returns the size of an object in the image 975 */ 976 static u32 rbd_obj_bytes(struct rbd_image_header *header) 977 { 978 return 1U << header->obj_order; 979 } 980 981 static void rbd_init_layout(struct rbd_device *rbd_dev) 982 { 983 if (rbd_dev->header.stripe_unit == 0 || 984 rbd_dev->header.stripe_count == 0) { 985 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 986 rbd_dev->header.stripe_count = 1; 987 } 988 989 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 990 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 991 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 992 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 993 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 994 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 995 } 996 997 static void rbd_image_header_cleanup(struct rbd_image_header *header) 998 { 999 kfree(header->object_prefix); 1000 ceph_put_snap_context(header->snapc); 1001 kfree(header->snap_sizes); 1002 kfree(header->snap_names); 1003 1004 memset(header, 0, sizeof(*header)); 1005 } 1006 1007 /* 1008 * Fill an rbd image header with information from the given format 1 1009 * on-disk header. 1010 */ 1011 static int rbd_header_from_disk(struct rbd_image_header *header, 1012 struct rbd_image_header_ondisk *ondisk, 1013 bool first_time) 1014 { 1015 struct ceph_snap_context *snapc; 1016 char *object_prefix = NULL; 1017 char *snap_names = NULL; 1018 u64 *snap_sizes = NULL; 1019 u32 snap_count; 1020 int ret = -ENOMEM; 1021 u32 i; 1022 1023 /* Allocate this now to avoid having to handle failure below */ 1024 1025 if (first_time) { 1026 object_prefix = kstrndup(ondisk->object_prefix, 1027 sizeof(ondisk->object_prefix), 1028 GFP_KERNEL); 1029 if (!object_prefix) 1030 return -ENOMEM; 1031 } 1032 1033 /* Allocate the snapshot context and fill it in */ 1034 1035 snap_count = le32_to_cpu(ondisk->snap_count); 1036 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1037 if (!snapc) 1038 goto out_err; 1039 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1040 if (snap_count) { 1041 struct rbd_image_snap_ondisk *snaps; 1042 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1043 1044 /* We'll keep a copy of the snapshot names... */ 1045 1046 if (snap_names_len > (u64)SIZE_MAX) 1047 goto out_2big; 1048 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1049 if (!snap_names) 1050 goto out_err; 1051 1052 /* ...as well as the array of their sizes. */ 1053 snap_sizes = kmalloc_array(snap_count, 1054 sizeof(*header->snap_sizes), 1055 GFP_KERNEL); 1056 if (!snap_sizes) 1057 goto out_err; 1058 1059 /* 1060 * Copy the names, and fill in each snapshot's id 1061 * and size. 1062 * 1063 * Note that rbd_dev_v1_header_info() guarantees the 1064 * ondisk buffer we're working with has 1065 * snap_names_len bytes beyond the end of the 1066 * snapshot id array, this memcpy() is safe. 1067 */ 1068 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1069 snaps = ondisk->snaps; 1070 for (i = 0; i < snap_count; i++) { 1071 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1072 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1073 } 1074 } 1075 1076 /* We won't fail any more, fill in the header */ 1077 1078 if (first_time) { 1079 header->object_prefix = object_prefix; 1080 header->obj_order = ondisk->options.order; 1081 } 1082 1083 /* The remaining fields always get updated (when we refresh) */ 1084 1085 header->image_size = le64_to_cpu(ondisk->image_size); 1086 header->snapc = snapc; 1087 header->snap_names = snap_names; 1088 header->snap_sizes = snap_sizes; 1089 1090 return 0; 1091 out_2big: 1092 ret = -EIO; 1093 out_err: 1094 kfree(snap_sizes); 1095 kfree(snap_names); 1096 ceph_put_snap_context(snapc); 1097 kfree(object_prefix); 1098 1099 return ret; 1100 } 1101 1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1103 { 1104 const char *snap_name; 1105 1106 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1107 1108 /* Skip over names until we find the one we are looking for */ 1109 1110 snap_name = rbd_dev->header.snap_names; 1111 while (which--) 1112 snap_name += strlen(snap_name) + 1; 1113 1114 return kstrdup(snap_name, GFP_KERNEL); 1115 } 1116 1117 /* 1118 * Snapshot id comparison function for use with qsort()/bsearch(). 1119 * Note that result is for snapshots in *descending* order. 1120 */ 1121 static int snapid_compare_reverse(const void *s1, const void *s2) 1122 { 1123 u64 snap_id1 = *(u64 *)s1; 1124 u64 snap_id2 = *(u64 *)s2; 1125 1126 if (snap_id1 < snap_id2) 1127 return 1; 1128 return snap_id1 == snap_id2 ? 0 : -1; 1129 } 1130 1131 /* 1132 * Search a snapshot context to see if the given snapshot id is 1133 * present. 1134 * 1135 * Returns the position of the snapshot id in the array if it's found, 1136 * or BAD_SNAP_INDEX otherwise. 1137 * 1138 * Note: The snapshot array is in kept sorted (by the osd) in 1139 * reverse order, highest snapshot id first. 1140 */ 1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1142 { 1143 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1144 u64 *found; 1145 1146 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1147 sizeof (snap_id), snapid_compare_reverse); 1148 1149 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1150 } 1151 1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1153 u64 snap_id) 1154 { 1155 u32 which; 1156 const char *snap_name; 1157 1158 which = rbd_dev_snap_index(rbd_dev, snap_id); 1159 if (which == BAD_SNAP_INDEX) 1160 return ERR_PTR(-ENOENT); 1161 1162 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1163 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1164 } 1165 1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1167 { 1168 if (snap_id == CEPH_NOSNAP) 1169 return RBD_SNAP_HEAD_NAME; 1170 1171 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1172 if (rbd_dev->image_format == 1) 1173 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1174 1175 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1176 } 1177 1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1179 u64 *snap_size) 1180 { 1181 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1182 if (snap_id == CEPH_NOSNAP) { 1183 *snap_size = rbd_dev->header.image_size; 1184 } else if (rbd_dev->image_format == 1) { 1185 u32 which; 1186 1187 which = rbd_dev_snap_index(rbd_dev, snap_id); 1188 if (which == BAD_SNAP_INDEX) 1189 return -ENOENT; 1190 1191 *snap_size = rbd_dev->header.snap_sizes[which]; 1192 } else { 1193 u64 size = 0; 1194 int ret; 1195 1196 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1197 if (ret) 1198 return ret; 1199 1200 *snap_size = size; 1201 } 1202 return 0; 1203 } 1204 1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1206 { 1207 u64 snap_id = rbd_dev->spec->snap_id; 1208 u64 size = 0; 1209 int ret; 1210 1211 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1212 if (ret) 1213 return ret; 1214 1215 rbd_dev->mapping.size = size; 1216 return 0; 1217 } 1218 1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1220 { 1221 rbd_dev->mapping.size = 0; 1222 } 1223 1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1225 { 1226 struct ceph_bio_iter it = *bio_pos; 1227 1228 ceph_bio_iter_advance(&it, off); 1229 ceph_bio_iter_advance_step(&it, bytes, ({ 1230 memzero_bvec(&bv); 1231 })); 1232 } 1233 1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1235 { 1236 struct ceph_bvec_iter it = *bvec_pos; 1237 1238 ceph_bvec_iter_advance(&it, off); 1239 ceph_bvec_iter_advance_step(&it, bytes, ({ 1240 memzero_bvec(&bv); 1241 })); 1242 } 1243 1244 /* 1245 * Zero a range in @obj_req data buffer defined by a bio (list) or 1246 * (private) bio_vec array. 1247 * 1248 * @off is relative to the start of the data buffer. 1249 */ 1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1251 u32 bytes) 1252 { 1253 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes); 1254 1255 switch (obj_req->img_request->data_type) { 1256 case OBJ_REQUEST_BIO: 1257 zero_bios(&obj_req->bio_pos, off, bytes); 1258 break; 1259 case OBJ_REQUEST_BVECS: 1260 case OBJ_REQUEST_OWN_BVECS: 1261 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1262 break; 1263 default: 1264 BUG(); 1265 } 1266 } 1267 1268 static void rbd_obj_request_destroy(struct kref *kref); 1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1270 { 1271 rbd_assert(obj_request != NULL); 1272 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1273 kref_read(&obj_request->kref)); 1274 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1275 } 1276 1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1278 struct rbd_obj_request *obj_request) 1279 { 1280 rbd_assert(obj_request->img_request == NULL); 1281 1282 /* Image request now owns object's original reference */ 1283 obj_request->img_request = img_request; 1284 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1285 } 1286 1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1288 struct rbd_obj_request *obj_request) 1289 { 1290 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1291 list_del(&obj_request->ex.oe_item); 1292 rbd_assert(obj_request->img_request == img_request); 1293 rbd_obj_request_put(obj_request); 1294 } 1295 1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req) 1297 { 1298 struct rbd_obj_request *obj_req = osd_req->r_priv; 1299 1300 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n", 1301 __func__, osd_req, obj_req, obj_req->ex.oe_objno, 1302 obj_req->ex.oe_off, obj_req->ex.oe_len); 1303 ceph_osdc_start_request(osd_req->r_osdc, osd_req); 1304 } 1305 1306 /* 1307 * The default/initial value for all image request flags is 0. Each 1308 * is conditionally set to 1 at image request initialization time 1309 * and currently never change thereafter. 1310 */ 1311 static void img_request_layered_set(struct rbd_img_request *img_request) 1312 { 1313 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1314 } 1315 1316 static bool img_request_layered_test(struct rbd_img_request *img_request) 1317 { 1318 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1319 } 1320 1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1322 { 1323 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1324 1325 return !obj_req->ex.oe_off && 1326 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1327 } 1328 1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1330 { 1331 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1332 1333 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1334 rbd_dev->layout.object_size; 1335 } 1336 1337 /* 1338 * Must be called after rbd_obj_calc_img_extents(). 1339 */ 1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req) 1341 { 1342 rbd_assert(obj_req->img_request->snapc); 1343 1344 if (obj_req->img_request->op_type == OBJ_OP_DISCARD) { 1345 dout("%s %p objno %llu discard\n", __func__, obj_req, 1346 obj_req->ex.oe_objno); 1347 return; 1348 } 1349 1350 if (!obj_req->num_img_extents) { 1351 dout("%s %p objno %llu not overlapping\n", __func__, obj_req, 1352 obj_req->ex.oe_objno); 1353 return; 1354 } 1355 1356 if (rbd_obj_is_entire(obj_req) && 1357 !obj_req->img_request->snapc->num_snaps) { 1358 dout("%s %p objno %llu entire\n", __func__, obj_req, 1359 obj_req->ex.oe_objno); 1360 return; 1361 } 1362 1363 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 1364 } 1365 1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1367 { 1368 return ceph_file_extents_bytes(obj_req->img_extents, 1369 obj_req->num_img_extents); 1370 } 1371 1372 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1373 { 1374 switch (img_req->op_type) { 1375 case OBJ_OP_READ: 1376 return false; 1377 case OBJ_OP_WRITE: 1378 case OBJ_OP_DISCARD: 1379 case OBJ_OP_ZEROOUT: 1380 return true; 1381 default: 1382 BUG(); 1383 } 1384 } 1385 1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1387 { 1388 struct rbd_obj_request *obj_req = osd_req->r_priv; 1389 int result; 1390 1391 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1392 osd_req->r_result, obj_req); 1393 1394 /* 1395 * Writes aren't allowed to return a data payload. In some 1396 * guarded write cases (e.g. stat + zero on an empty object) 1397 * a stat response makes it through, but we don't care. 1398 */ 1399 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request)) 1400 result = 0; 1401 else 1402 result = osd_req->r_result; 1403 1404 rbd_obj_handle_request(obj_req, result); 1405 } 1406 1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req) 1408 { 1409 struct rbd_obj_request *obj_request = osd_req->r_priv; 1410 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1411 struct ceph_options *opt = rbd_dev->rbd_client->client->options; 1412 1413 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica; 1414 osd_req->r_snapid = obj_request->img_request->snap_id; 1415 } 1416 1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req) 1418 { 1419 struct rbd_obj_request *obj_request = osd_req->r_priv; 1420 1421 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1422 ktime_get_real_ts64(&osd_req->r_mtime); 1423 osd_req->r_data_offset = obj_request->ex.oe_off; 1424 } 1425 1426 static struct ceph_osd_request * 1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, 1428 struct ceph_snap_context *snapc, int num_ops) 1429 { 1430 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1431 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1432 struct ceph_osd_request *req; 1433 const char *name_format = rbd_dev->image_format == 1 ? 1434 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1435 int ret; 1436 1437 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1438 if (!req) 1439 return ERR_PTR(-ENOMEM); 1440 1441 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 1442 req->r_callback = rbd_osd_req_callback; 1443 req->r_priv = obj_req; 1444 1445 /* 1446 * Data objects may be stored in a separate pool, but always in 1447 * the same namespace in that pool as the header in its pool. 1448 */ 1449 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 1450 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1451 1452 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1453 rbd_dev->header.object_prefix, 1454 obj_req->ex.oe_objno); 1455 if (ret) 1456 return ERR_PTR(ret); 1457 1458 return req; 1459 } 1460 1461 static struct ceph_osd_request * 1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops) 1463 { 1464 rbd_assert(obj_req->img_request->snapc); 1465 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc, 1466 num_ops); 1467 } 1468 1469 static struct rbd_obj_request *rbd_obj_request_create(void) 1470 { 1471 struct rbd_obj_request *obj_request; 1472 1473 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1474 if (!obj_request) 1475 return NULL; 1476 1477 ceph_object_extent_init(&obj_request->ex); 1478 INIT_LIST_HEAD(&obj_request->osd_reqs); 1479 mutex_init(&obj_request->state_mutex); 1480 kref_init(&obj_request->kref); 1481 1482 dout("%s %p\n", __func__, obj_request); 1483 return obj_request; 1484 } 1485 1486 static void rbd_obj_request_destroy(struct kref *kref) 1487 { 1488 struct rbd_obj_request *obj_request; 1489 struct ceph_osd_request *osd_req; 1490 u32 i; 1491 1492 obj_request = container_of(kref, struct rbd_obj_request, kref); 1493 1494 dout("%s: obj %p\n", __func__, obj_request); 1495 1496 while (!list_empty(&obj_request->osd_reqs)) { 1497 osd_req = list_first_entry(&obj_request->osd_reqs, 1498 struct ceph_osd_request, r_private_item); 1499 list_del_init(&osd_req->r_private_item); 1500 ceph_osdc_put_request(osd_req); 1501 } 1502 1503 switch (obj_request->img_request->data_type) { 1504 case OBJ_REQUEST_NODATA: 1505 case OBJ_REQUEST_BIO: 1506 case OBJ_REQUEST_BVECS: 1507 break; /* Nothing to do */ 1508 case OBJ_REQUEST_OWN_BVECS: 1509 kfree(obj_request->bvec_pos.bvecs); 1510 break; 1511 default: 1512 BUG(); 1513 } 1514 1515 kfree(obj_request->img_extents); 1516 if (obj_request->copyup_bvecs) { 1517 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1518 if (obj_request->copyup_bvecs[i].bv_page) 1519 __free_page(obj_request->copyup_bvecs[i].bv_page); 1520 } 1521 kfree(obj_request->copyup_bvecs); 1522 } 1523 1524 kmem_cache_free(rbd_obj_request_cache, obj_request); 1525 } 1526 1527 /* It's OK to call this for a device with no parent */ 1528 1529 static void rbd_spec_put(struct rbd_spec *spec); 1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1531 { 1532 rbd_dev_remove_parent(rbd_dev); 1533 rbd_spec_put(rbd_dev->parent_spec); 1534 rbd_dev->parent_spec = NULL; 1535 rbd_dev->parent_overlap = 0; 1536 } 1537 1538 /* 1539 * Parent image reference counting is used to determine when an 1540 * image's parent fields can be safely torn down--after there are no 1541 * more in-flight requests to the parent image. When the last 1542 * reference is dropped, cleaning them up is safe. 1543 */ 1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1545 { 1546 int counter; 1547 1548 if (!rbd_dev->parent_spec) 1549 return; 1550 1551 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1552 if (counter > 0) 1553 return; 1554 1555 /* Last reference; clean up parent data structures */ 1556 1557 if (!counter) 1558 rbd_dev_unparent(rbd_dev); 1559 else 1560 rbd_warn(rbd_dev, "parent reference underflow"); 1561 } 1562 1563 /* 1564 * If an image has a non-zero parent overlap, get a reference to its 1565 * parent. 1566 * 1567 * Returns true if the rbd device has a parent with a non-zero 1568 * overlap and a reference for it was successfully taken, or 1569 * false otherwise. 1570 */ 1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1572 { 1573 int counter = 0; 1574 1575 if (!rbd_dev->parent_spec) 1576 return false; 1577 1578 if (rbd_dev->parent_overlap) 1579 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1580 1581 if (counter < 0) 1582 rbd_warn(rbd_dev, "parent reference overflow"); 1583 1584 return counter > 0; 1585 } 1586 1587 static void rbd_img_request_init(struct rbd_img_request *img_request, 1588 struct rbd_device *rbd_dev, 1589 enum obj_operation_type op_type) 1590 { 1591 memset(img_request, 0, sizeof(*img_request)); 1592 1593 img_request->rbd_dev = rbd_dev; 1594 img_request->op_type = op_type; 1595 1596 INIT_LIST_HEAD(&img_request->lock_item); 1597 INIT_LIST_HEAD(&img_request->object_extents); 1598 mutex_init(&img_request->state_mutex); 1599 } 1600 1601 /* 1602 * Only snap_id is captured here, for reads. For writes, snapshot 1603 * context is captured in rbd_img_object_requests() after exclusive 1604 * lock is ensured to be held. 1605 */ 1606 static void rbd_img_capture_header(struct rbd_img_request *img_req) 1607 { 1608 struct rbd_device *rbd_dev = img_req->rbd_dev; 1609 1610 lockdep_assert_held(&rbd_dev->header_rwsem); 1611 1612 if (!rbd_img_is_write(img_req)) 1613 img_req->snap_id = rbd_dev->spec->snap_id; 1614 1615 if (rbd_dev_parent_get(rbd_dev)) 1616 img_request_layered_set(img_req); 1617 } 1618 1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request) 1620 { 1621 struct rbd_obj_request *obj_request; 1622 struct rbd_obj_request *next_obj_request; 1623 1624 dout("%s: img %p\n", __func__, img_request); 1625 1626 WARN_ON(!list_empty(&img_request->lock_item)); 1627 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1628 rbd_img_obj_request_del(img_request, obj_request); 1629 1630 if (img_request_layered_test(img_request)) 1631 rbd_dev_parent_put(img_request->rbd_dev); 1632 1633 if (rbd_img_is_write(img_request)) 1634 ceph_put_snap_context(img_request->snapc); 1635 1636 if (test_bit(IMG_REQ_CHILD, &img_request->flags)) 1637 kmem_cache_free(rbd_img_request_cache, img_request); 1638 } 1639 1640 #define BITS_PER_OBJ 2 1641 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ) 1642 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1) 1643 1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno, 1645 u64 *index, u8 *shift) 1646 { 1647 u32 off; 1648 1649 rbd_assert(objno < rbd_dev->object_map_size); 1650 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off); 1651 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ; 1652 } 1653 1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1655 { 1656 u64 index; 1657 u8 shift; 1658 1659 lockdep_assert_held(&rbd_dev->object_map_lock); 1660 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1661 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK; 1662 } 1663 1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val) 1665 { 1666 u64 index; 1667 u8 shift; 1668 u8 *p; 1669 1670 lockdep_assert_held(&rbd_dev->object_map_lock); 1671 rbd_assert(!(val & ~OBJ_MASK)); 1672 1673 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1674 p = &rbd_dev->object_map[index]; 1675 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift); 1676 } 1677 1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1679 { 1680 u8 state; 1681 1682 spin_lock(&rbd_dev->object_map_lock); 1683 state = __rbd_object_map_get(rbd_dev, objno); 1684 spin_unlock(&rbd_dev->object_map_lock); 1685 return state; 1686 } 1687 1688 static bool use_object_map(struct rbd_device *rbd_dev) 1689 { 1690 /* 1691 * An image mapped read-only can't use the object map -- it isn't 1692 * loaded because the header lock isn't acquired. Someone else can 1693 * write to the image and update the object map behind our back. 1694 * 1695 * A snapshot can't be written to, so using the object map is always 1696 * safe. 1697 */ 1698 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev)) 1699 return false; 1700 1701 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) && 1702 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)); 1703 } 1704 1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno) 1706 { 1707 u8 state; 1708 1709 /* fall back to default logic if object map is disabled or invalid */ 1710 if (!use_object_map(rbd_dev)) 1711 return true; 1712 1713 state = rbd_object_map_get(rbd_dev, objno); 1714 return state != OBJECT_NONEXISTENT; 1715 } 1716 1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id, 1718 struct ceph_object_id *oid) 1719 { 1720 if (snap_id == CEPH_NOSNAP) 1721 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX, 1722 rbd_dev->spec->image_id); 1723 else 1724 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX, 1725 rbd_dev->spec->image_id, snap_id); 1726 } 1727 1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev) 1729 { 1730 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1731 CEPH_DEFINE_OID_ONSTACK(oid); 1732 u8 lock_type; 1733 char *lock_tag; 1734 struct ceph_locker *lockers; 1735 u32 num_lockers; 1736 bool broke_lock = false; 1737 int ret; 1738 1739 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1740 1741 again: 1742 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1743 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0); 1744 if (ret != -EBUSY || broke_lock) { 1745 if (ret == -EEXIST) 1746 ret = 0; /* already locked by myself */ 1747 if (ret) 1748 rbd_warn(rbd_dev, "failed to lock object map: %d", ret); 1749 return ret; 1750 } 1751 1752 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc, 1753 RBD_LOCK_NAME, &lock_type, &lock_tag, 1754 &lockers, &num_lockers); 1755 if (ret) { 1756 if (ret == -ENOENT) 1757 goto again; 1758 1759 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret); 1760 return ret; 1761 } 1762 1763 kfree(lock_tag); 1764 if (num_lockers == 0) 1765 goto again; 1766 1767 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu", 1768 ENTITY_NAME(lockers[0].id.name)); 1769 1770 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc, 1771 RBD_LOCK_NAME, lockers[0].id.cookie, 1772 &lockers[0].id.name); 1773 ceph_free_lockers(lockers, num_lockers); 1774 if (ret) { 1775 if (ret == -ENOENT) 1776 goto again; 1777 1778 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret); 1779 return ret; 1780 } 1781 1782 broke_lock = true; 1783 goto again; 1784 } 1785 1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev) 1787 { 1788 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1789 CEPH_DEFINE_OID_ONSTACK(oid); 1790 int ret; 1791 1792 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1793 1794 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1795 ""); 1796 if (ret && ret != -ENOENT) 1797 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret); 1798 } 1799 1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size) 1801 { 1802 u8 struct_v; 1803 u32 struct_len; 1804 u32 header_len; 1805 void *header_end; 1806 int ret; 1807 1808 ceph_decode_32_safe(p, end, header_len, e_inval); 1809 header_end = *p + header_len; 1810 1811 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v, 1812 &struct_len); 1813 if (ret) 1814 return ret; 1815 1816 ceph_decode_64_safe(p, end, *object_map_size, e_inval); 1817 1818 *p = header_end; 1819 return 0; 1820 1821 e_inval: 1822 return -EINVAL; 1823 } 1824 1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev) 1826 { 1827 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1828 CEPH_DEFINE_OID_ONSTACK(oid); 1829 struct page **pages; 1830 void *p, *end; 1831 size_t reply_len; 1832 u64 num_objects; 1833 u64 object_map_bytes; 1834 u64 object_map_size; 1835 int num_pages; 1836 int ret; 1837 1838 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size); 1839 1840 num_objects = ceph_get_num_objects(&rbd_dev->layout, 1841 rbd_dev->mapping.size); 1842 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ, 1843 BITS_PER_BYTE); 1844 num_pages = calc_pages_for(0, object_map_bytes) + 1; 1845 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 1846 if (IS_ERR(pages)) 1847 return PTR_ERR(pages); 1848 1849 reply_len = num_pages * PAGE_SIZE; 1850 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid); 1851 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc, 1852 "rbd", "object_map_load", CEPH_OSD_FLAG_READ, 1853 NULL, 0, pages, &reply_len); 1854 if (ret) 1855 goto out; 1856 1857 p = page_address(pages[0]); 1858 end = p + min(reply_len, (size_t)PAGE_SIZE); 1859 ret = decode_object_map_header(&p, end, &object_map_size); 1860 if (ret) 1861 goto out; 1862 1863 if (object_map_size != num_objects) { 1864 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu", 1865 object_map_size, num_objects); 1866 ret = -EINVAL; 1867 goto out; 1868 } 1869 1870 if (offset_in_page(p) + object_map_bytes > reply_len) { 1871 ret = -EINVAL; 1872 goto out; 1873 } 1874 1875 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL); 1876 if (!rbd_dev->object_map) { 1877 ret = -ENOMEM; 1878 goto out; 1879 } 1880 1881 rbd_dev->object_map_size = object_map_size; 1882 ceph_copy_from_page_vector(pages, rbd_dev->object_map, 1883 offset_in_page(p), object_map_bytes); 1884 1885 out: 1886 ceph_release_page_vector(pages, num_pages); 1887 return ret; 1888 } 1889 1890 static void rbd_object_map_free(struct rbd_device *rbd_dev) 1891 { 1892 kvfree(rbd_dev->object_map); 1893 rbd_dev->object_map = NULL; 1894 rbd_dev->object_map_size = 0; 1895 } 1896 1897 static int rbd_object_map_load(struct rbd_device *rbd_dev) 1898 { 1899 int ret; 1900 1901 ret = __rbd_object_map_load(rbd_dev); 1902 if (ret) 1903 return ret; 1904 1905 ret = rbd_dev_v2_get_flags(rbd_dev); 1906 if (ret) { 1907 rbd_object_map_free(rbd_dev); 1908 return ret; 1909 } 1910 1911 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID) 1912 rbd_warn(rbd_dev, "object map is invalid"); 1913 1914 return 0; 1915 } 1916 1917 static int rbd_object_map_open(struct rbd_device *rbd_dev) 1918 { 1919 int ret; 1920 1921 ret = rbd_object_map_lock(rbd_dev); 1922 if (ret) 1923 return ret; 1924 1925 ret = rbd_object_map_load(rbd_dev); 1926 if (ret) { 1927 rbd_object_map_unlock(rbd_dev); 1928 return ret; 1929 } 1930 1931 return 0; 1932 } 1933 1934 static void rbd_object_map_close(struct rbd_device *rbd_dev) 1935 { 1936 rbd_object_map_free(rbd_dev); 1937 rbd_object_map_unlock(rbd_dev); 1938 } 1939 1940 /* 1941 * This function needs snap_id (or more precisely just something to 1942 * distinguish between HEAD and snapshot object maps), new_state and 1943 * current_state that were passed to rbd_object_map_update(). 1944 * 1945 * To avoid allocating and stashing a context we piggyback on the OSD 1946 * request. A HEAD update has two ops (assert_locked). For new_state 1947 * and current_state we decode our own object_map_update op, encoded in 1948 * rbd_cls_object_map_update(). 1949 */ 1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req, 1951 struct ceph_osd_request *osd_req) 1952 { 1953 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1954 struct ceph_osd_data *osd_data; 1955 u64 objno; 1956 u8 state, new_state, current_state; 1957 bool has_current_state; 1958 void *p; 1959 1960 if (osd_req->r_result) 1961 return osd_req->r_result; 1962 1963 /* 1964 * Nothing to do for a snapshot object map. 1965 */ 1966 if (osd_req->r_num_ops == 1) 1967 return 0; 1968 1969 /* 1970 * Update in-memory HEAD object map. 1971 */ 1972 rbd_assert(osd_req->r_num_ops == 2); 1973 osd_data = osd_req_op_data(osd_req, 1, cls, request_data); 1974 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES); 1975 1976 p = page_address(osd_data->pages[0]); 1977 objno = ceph_decode_64(&p); 1978 rbd_assert(objno == obj_req->ex.oe_objno); 1979 rbd_assert(ceph_decode_64(&p) == objno + 1); 1980 new_state = ceph_decode_8(&p); 1981 has_current_state = ceph_decode_8(&p); 1982 if (has_current_state) 1983 current_state = ceph_decode_8(&p); 1984 1985 spin_lock(&rbd_dev->object_map_lock); 1986 state = __rbd_object_map_get(rbd_dev, objno); 1987 if (!has_current_state || current_state == state || 1988 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN)) 1989 __rbd_object_map_set(rbd_dev, objno, new_state); 1990 spin_unlock(&rbd_dev->object_map_lock); 1991 1992 return 0; 1993 } 1994 1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req) 1996 { 1997 struct rbd_obj_request *obj_req = osd_req->r_priv; 1998 int result; 1999 2000 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 2001 osd_req->r_result, obj_req); 2002 2003 result = rbd_object_map_update_finish(obj_req, osd_req); 2004 rbd_obj_handle_request(obj_req, result); 2005 } 2006 2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state) 2008 { 2009 u8 state = rbd_object_map_get(rbd_dev, objno); 2010 2011 if (state == new_state || 2012 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) || 2013 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING)) 2014 return false; 2015 2016 return true; 2017 } 2018 2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req, 2020 int which, u64 objno, u8 new_state, 2021 const u8 *current_state) 2022 { 2023 struct page **pages; 2024 void *p, *start; 2025 int ret; 2026 2027 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update"); 2028 if (ret) 2029 return ret; 2030 2031 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2032 if (IS_ERR(pages)) 2033 return PTR_ERR(pages); 2034 2035 p = start = page_address(pages[0]); 2036 ceph_encode_64(&p, objno); 2037 ceph_encode_64(&p, objno + 1); 2038 ceph_encode_8(&p, new_state); 2039 if (current_state) { 2040 ceph_encode_8(&p, 1); 2041 ceph_encode_8(&p, *current_state); 2042 } else { 2043 ceph_encode_8(&p, 0); 2044 } 2045 2046 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0, 2047 false, true); 2048 return 0; 2049 } 2050 2051 /* 2052 * Return: 2053 * 0 - object map update sent 2054 * 1 - object map update isn't needed 2055 * <0 - error 2056 */ 2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id, 2058 u8 new_state, const u8 *current_state) 2059 { 2060 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2061 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2062 struct ceph_osd_request *req; 2063 int num_ops = 1; 2064 int which = 0; 2065 int ret; 2066 2067 if (snap_id == CEPH_NOSNAP) { 2068 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state)) 2069 return 1; 2070 2071 num_ops++; /* assert_locked */ 2072 } 2073 2074 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO); 2075 if (!req) 2076 return -ENOMEM; 2077 2078 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 2079 req->r_callback = rbd_object_map_callback; 2080 req->r_priv = obj_req; 2081 2082 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid); 2083 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 2084 req->r_flags = CEPH_OSD_FLAG_WRITE; 2085 ktime_get_real_ts64(&req->r_mtime); 2086 2087 if (snap_id == CEPH_NOSNAP) { 2088 /* 2089 * Protect against possible race conditions during lock 2090 * ownership transitions. 2091 */ 2092 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME, 2093 CEPH_CLS_LOCK_EXCLUSIVE, "", ""); 2094 if (ret) 2095 return ret; 2096 } 2097 2098 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno, 2099 new_state, current_state); 2100 if (ret) 2101 return ret; 2102 2103 ret = ceph_osdc_alloc_messages(req, GFP_NOIO); 2104 if (ret) 2105 return ret; 2106 2107 ceph_osdc_start_request(osdc, req); 2108 return 0; 2109 } 2110 2111 static void prune_extents(struct ceph_file_extent *img_extents, 2112 u32 *num_img_extents, u64 overlap) 2113 { 2114 u32 cnt = *num_img_extents; 2115 2116 /* drop extents completely beyond the overlap */ 2117 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 2118 cnt--; 2119 2120 if (cnt) { 2121 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 2122 2123 /* trim final overlapping extent */ 2124 if (ex->fe_off + ex->fe_len > overlap) 2125 ex->fe_len = overlap - ex->fe_off; 2126 } 2127 2128 *num_img_extents = cnt; 2129 } 2130 2131 /* 2132 * Determine the byte range(s) covered by either just the object extent 2133 * or the entire object in the parent image. 2134 */ 2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 2136 bool entire) 2137 { 2138 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2139 int ret; 2140 2141 if (!rbd_dev->parent_overlap) 2142 return 0; 2143 2144 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 2145 entire ? 0 : obj_req->ex.oe_off, 2146 entire ? rbd_dev->layout.object_size : 2147 obj_req->ex.oe_len, 2148 &obj_req->img_extents, 2149 &obj_req->num_img_extents); 2150 if (ret) 2151 return ret; 2152 2153 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2154 rbd_dev->parent_overlap); 2155 return 0; 2156 } 2157 2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which) 2159 { 2160 struct rbd_obj_request *obj_req = osd_req->r_priv; 2161 2162 switch (obj_req->img_request->data_type) { 2163 case OBJ_REQUEST_BIO: 2164 osd_req_op_extent_osd_data_bio(osd_req, which, 2165 &obj_req->bio_pos, 2166 obj_req->ex.oe_len); 2167 break; 2168 case OBJ_REQUEST_BVECS: 2169 case OBJ_REQUEST_OWN_BVECS: 2170 rbd_assert(obj_req->bvec_pos.iter.bi_size == 2171 obj_req->ex.oe_len); 2172 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 2173 osd_req_op_extent_osd_data_bvec_pos(osd_req, which, 2174 &obj_req->bvec_pos); 2175 break; 2176 default: 2177 BUG(); 2178 } 2179 } 2180 2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which) 2182 { 2183 struct page **pages; 2184 2185 /* 2186 * The response data for a STAT call consists of: 2187 * le64 length; 2188 * struct { 2189 * le32 tv_sec; 2190 * le32 tv_nsec; 2191 * } mtime; 2192 */ 2193 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2194 if (IS_ERR(pages)) 2195 return PTR_ERR(pages); 2196 2197 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0); 2198 osd_req_op_raw_data_in_pages(osd_req, which, pages, 2199 8 + sizeof(struct ceph_timespec), 2200 0, false, true); 2201 return 0; 2202 } 2203 2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which, 2205 u32 bytes) 2206 { 2207 struct rbd_obj_request *obj_req = osd_req->r_priv; 2208 int ret; 2209 2210 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup"); 2211 if (ret) 2212 return ret; 2213 2214 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs, 2215 obj_req->copyup_bvec_count, bytes); 2216 return 0; 2217 } 2218 2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req) 2220 { 2221 obj_req->read_state = RBD_OBJ_READ_START; 2222 return 0; 2223 } 2224 2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2226 int which) 2227 { 2228 struct rbd_obj_request *obj_req = osd_req->r_priv; 2229 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2230 u16 opcode; 2231 2232 if (!use_object_map(rbd_dev) || 2233 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) { 2234 osd_req_op_alloc_hint_init(osd_req, which++, 2235 rbd_dev->layout.object_size, 2236 rbd_dev->layout.object_size, 2237 rbd_dev->opts->alloc_hint_flags); 2238 } 2239 2240 if (rbd_obj_is_entire(obj_req)) 2241 opcode = CEPH_OSD_OP_WRITEFULL; 2242 else 2243 opcode = CEPH_OSD_OP_WRITE; 2244 2245 osd_req_op_extent_init(osd_req, which, opcode, 2246 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2247 rbd_osd_setup_data(osd_req, which); 2248 } 2249 2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req) 2251 { 2252 int ret; 2253 2254 /* reverse map the entire object onto the parent */ 2255 ret = rbd_obj_calc_img_extents(obj_req, true); 2256 if (ret) 2257 return ret; 2258 2259 obj_req->write_state = RBD_OBJ_WRITE_START; 2260 return 0; 2261 } 2262 2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req) 2264 { 2265 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE : 2266 CEPH_OSD_OP_ZERO; 2267 } 2268 2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req, 2270 int which) 2271 { 2272 struct rbd_obj_request *obj_req = osd_req->r_priv; 2273 2274 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) { 2275 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2276 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0); 2277 } else { 2278 osd_req_op_extent_init(osd_req, which, 2279 truncate_or_zero_opcode(obj_req), 2280 obj_req->ex.oe_off, obj_req->ex.oe_len, 2281 0, 0); 2282 } 2283 } 2284 2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req) 2286 { 2287 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2288 u64 off, next_off; 2289 int ret; 2290 2291 /* 2292 * Align the range to alloc_size boundary and punt on discards 2293 * that are too small to free up any space. 2294 * 2295 * alloc_size == object_size && is_tail() is a special case for 2296 * filestore with filestore_punch_hole = false, needed to allow 2297 * truncate (in addition to delete). 2298 */ 2299 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size || 2300 !rbd_obj_is_tail(obj_req)) { 2301 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size); 2302 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len, 2303 rbd_dev->opts->alloc_size); 2304 if (off >= next_off) 2305 return 1; 2306 2307 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__, 2308 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len, 2309 off, next_off - off); 2310 obj_req->ex.oe_off = off; 2311 obj_req->ex.oe_len = next_off - off; 2312 } 2313 2314 /* reverse map the entire object onto the parent */ 2315 ret = rbd_obj_calc_img_extents(obj_req, true); 2316 if (ret) 2317 return ret; 2318 2319 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2320 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) 2321 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2322 2323 obj_req->write_state = RBD_OBJ_WRITE_START; 2324 return 0; 2325 } 2326 2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req, 2328 int which) 2329 { 2330 struct rbd_obj_request *obj_req = osd_req->r_priv; 2331 u16 opcode; 2332 2333 if (rbd_obj_is_entire(obj_req)) { 2334 if (obj_req->num_img_extents) { 2335 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2336 osd_req_op_init(osd_req, which++, 2337 CEPH_OSD_OP_CREATE, 0); 2338 opcode = CEPH_OSD_OP_TRUNCATE; 2339 } else { 2340 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2341 osd_req_op_init(osd_req, which++, 2342 CEPH_OSD_OP_DELETE, 0); 2343 opcode = 0; 2344 } 2345 } else { 2346 opcode = truncate_or_zero_opcode(obj_req); 2347 } 2348 2349 if (opcode) 2350 osd_req_op_extent_init(osd_req, which, opcode, 2351 obj_req->ex.oe_off, obj_req->ex.oe_len, 2352 0, 0); 2353 } 2354 2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req) 2356 { 2357 int ret; 2358 2359 /* reverse map the entire object onto the parent */ 2360 ret = rbd_obj_calc_img_extents(obj_req, true); 2361 if (ret) 2362 return ret; 2363 2364 if (!obj_req->num_img_extents) { 2365 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2366 if (rbd_obj_is_entire(obj_req)) 2367 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2368 } 2369 2370 obj_req->write_state = RBD_OBJ_WRITE_START; 2371 return 0; 2372 } 2373 2374 static int count_write_ops(struct rbd_obj_request *obj_req) 2375 { 2376 struct rbd_img_request *img_req = obj_req->img_request; 2377 2378 switch (img_req->op_type) { 2379 case OBJ_OP_WRITE: 2380 if (!use_object_map(img_req->rbd_dev) || 2381 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) 2382 return 2; /* setallochint + write/writefull */ 2383 2384 return 1; /* write/writefull */ 2385 case OBJ_OP_DISCARD: 2386 return 1; /* delete/truncate/zero */ 2387 case OBJ_OP_ZEROOUT: 2388 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents && 2389 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2390 return 2; /* create + truncate */ 2391 2392 return 1; /* delete/truncate/zero */ 2393 default: 2394 BUG(); 2395 } 2396 } 2397 2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2399 int which) 2400 { 2401 struct rbd_obj_request *obj_req = osd_req->r_priv; 2402 2403 switch (obj_req->img_request->op_type) { 2404 case OBJ_OP_WRITE: 2405 __rbd_osd_setup_write_ops(osd_req, which); 2406 break; 2407 case OBJ_OP_DISCARD: 2408 __rbd_osd_setup_discard_ops(osd_req, which); 2409 break; 2410 case OBJ_OP_ZEROOUT: 2411 __rbd_osd_setup_zeroout_ops(osd_req, which); 2412 break; 2413 default: 2414 BUG(); 2415 } 2416 } 2417 2418 /* 2419 * Prune the list of object requests (adjust offset and/or length, drop 2420 * redundant requests). Prepare object request state machines and image 2421 * request state machine for execution. 2422 */ 2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 2424 { 2425 struct rbd_obj_request *obj_req, *next_obj_req; 2426 int ret; 2427 2428 for_each_obj_request_safe(img_req, obj_req, next_obj_req) { 2429 switch (img_req->op_type) { 2430 case OBJ_OP_READ: 2431 ret = rbd_obj_init_read(obj_req); 2432 break; 2433 case OBJ_OP_WRITE: 2434 ret = rbd_obj_init_write(obj_req); 2435 break; 2436 case OBJ_OP_DISCARD: 2437 ret = rbd_obj_init_discard(obj_req); 2438 break; 2439 case OBJ_OP_ZEROOUT: 2440 ret = rbd_obj_init_zeroout(obj_req); 2441 break; 2442 default: 2443 BUG(); 2444 } 2445 if (ret < 0) 2446 return ret; 2447 if (ret > 0) { 2448 rbd_img_obj_request_del(img_req, obj_req); 2449 continue; 2450 } 2451 } 2452 2453 img_req->state = RBD_IMG_START; 2454 return 0; 2455 } 2456 2457 union rbd_img_fill_iter { 2458 struct ceph_bio_iter bio_iter; 2459 struct ceph_bvec_iter bvec_iter; 2460 }; 2461 2462 struct rbd_img_fill_ctx { 2463 enum obj_request_type pos_type; 2464 union rbd_img_fill_iter *pos; 2465 union rbd_img_fill_iter iter; 2466 ceph_object_extent_fn_t set_pos_fn; 2467 ceph_object_extent_fn_t count_fn; 2468 ceph_object_extent_fn_t copy_fn; 2469 }; 2470 2471 static struct ceph_object_extent *alloc_object_extent(void *arg) 2472 { 2473 struct rbd_img_request *img_req = arg; 2474 struct rbd_obj_request *obj_req; 2475 2476 obj_req = rbd_obj_request_create(); 2477 if (!obj_req) 2478 return NULL; 2479 2480 rbd_img_obj_request_add(img_req, obj_req); 2481 return &obj_req->ex; 2482 } 2483 2484 /* 2485 * While su != os && sc == 1 is technically not fancy (it's the same 2486 * layout as su == os && sc == 1), we can't use the nocopy path for it 2487 * because ->set_pos_fn() should be called only once per object. 2488 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 2489 * treat su != os && sc == 1 as fancy. 2490 */ 2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 2492 { 2493 return l->stripe_unit != l->object_size; 2494 } 2495 2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 2497 struct ceph_file_extent *img_extents, 2498 u32 num_img_extents, 2499 struct rbd_img_fill_ctx *fctx) 2500 { 2501 u32 i; 2502 int ret; 2503 2504 img_req->data_type = fctx->pos_type; 2505 2506 /* 2507 * Create object requests and set each object request's starting 2508 * position in the provided bio (list) or bio_vec array. 2509 */ 2510 fctx->iter = *fctx->pos; 2511 for (i = 0; i < num_img_extents; i++) { 2512 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 2513 img_extents[i].fe_off, 2514 img_extents[i].fe_len, 2515 &img_req->object_extents, 2516 alloc_object_extent, img_req, 2517 fctx->set_pos_fn, &fctx->iter); 2518 if (ret) 2519 return ret; 2520 } 2521 2522 return __rbd_img_fill_request(img_req); 2523 } 2524 2525 /* 2526 * Map a list of image extents to a list of object extents, create the 2527 * corresponding object requests (normally each to a different object, 2528 * but not always) and add them to @img_req. For each object request, 2529 * set up its data descriptor to point to the corresponding chunk(s) of 2530 * @fctx->pos data buffer. 2531 * 2532 * Because ceph_file_to_extents() will merge adjacent object extents 2533 * together, each object request's data descriptor may point to multiple 2534 * different chunks of @fctx->pos data buffer. 2535 * 2536 * @fctx->pos data buffer is assumed to be large enough. 2537 */ 2538 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2539 struct ceph_file_extent *img_extents, 2540 u32 num_img_extents, 2541 struct rbd_img_fill_ctx *fctx) 2542 { 2543 struct rbd_device *rbd_dev = img_req->rbd_dev; 2544 struct rbd_obj_request *obj_req; 2545 u32 i; 2546 int ret; 2547 2548 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2549 !rbd_layout_is_fancy(&rbd_dev->layout)) 2550 return rbd_img_fill_request_nocopy(img_req, img_extents, 2551 num_img_extents, fctx); 2552 2553 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2554 2555 /* 2556 * Create object requests and determine ->bvec_count for each object 2557 * request. Note that ->bvec_count sum over all object requests may 2558 * be greater than the number of bio_vecs in the provided bio (list) 2559 * or bio_vec array because when mapped, those bio_vecs can straddle 2560 * stripe unit boundaries. 2561 */ 2562 fctx->iter = *fctx->pos; 2563 for (i = 0; i < num_img_extents; i++) { 2564 ret = ceph_file_to_extents(&rbd_dev->layout, 2565 img_extents[i].fe_off, 2566 img_extents[i].fe_len, 2567 &img_req->object_extents, 2568 alloc_object_extent, img_req, 2569 fctx->count_fn, &fctx->iter); 2570 if (ret) 2571 return ret; 2572 } 2573 2574 for_each_obj_request(img_req, obj_req) { 2575 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2576 sizeof(*obj_req->bvec_pos.bvecs), 2577 GFP_NOIO); 2578 if (!obj_req->bvec_pos.bvecs) 2579 return -ENOMEM; 2580 } 2581 2582 /* 2583 * Fill in each object request's private bio_vec array, splitting and 2584 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2585 */ 2586 fctx->iter = *fctx->pos; 2587 for (i = 0; i < num_img_extents; i++) { 2588 ret = ceph_iterate_extents(&rbd_dev->layout, 2589 img_extents[i].fe_off, 2590 img_extents[i].fe_len, 2591 &img_req->object_extents, 2592 fctx->copy_fn, &fctx->iter); 2593 if (ret) 2594 return ret; 2595 } 2596 2597 return __rbd_img_fill_request(img_req); 2598 } 2599 2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2601 u64 off, u64 len) 2602 { 2603 struct ceph_file_extent ex = { off, len }; 2604 union rbd_img_fill_iter dummy = {}; 2605 struct rbd_img_fill_ctx fctx = { 2606 .pos_type = OBJ_REQUEST_NODATA, 2607 .pos = &dummy, 2608 }; 2609 2610 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2611 } 2612 2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2614 { 2615 struct rbd_obj_request *obj_req = 2616 container_of(ex, struct rbd_obj_request, ex); 2617 struct ceph_bio_iter *it = arg; 2618 2619 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2620 obj_req->bio_pos = *it; 2621 ceph_bio_iter_advance(it, bytes); 2622 } 2623 2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2625 { 2626 struct rbd_obj_request *obj_req = 2627 container_of(ex, struct rbd_obj_request, ex); 2628 struct ceph_bio_iter *it = arg; 2629 2630 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2631 ceph_bio_iter_advance_step(it, bytes, ({ 2632 obj_req->bvec_count++; 2633 })); 2634 2635 } 2636 2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2638 { 2639 struct rbd_obj_request *obj_req = 2640 container_of(ex, struct rbd_obj_request, ex); 2641 struct ceph_bio_iter *it = arg; 2642 2643 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2644 ceph_bio_iter_advance_step(it, bytes, ({ 2645 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2646 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2647 })); 2648 } 2649 2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2651 struct ceph_file_extent *img_extents, 2652 u32 num_img_extents, 2653 struct ceph_bio_iter *bio_pos) 2654 { 2655 struct rbd_img_fill_ctx fctx = { 2656 .pos_type = OBJ_REQUEST_BIO, 2657 .pos = (union rbd_img_fill_iter *)bio_pos, 2658 .set_pos_fn = set_bio_pos, 2659 .count_fn = count_bio_bvecs, 2660 .copy_fn = copy_bio_bvecs, 2661 }; 2662 2663 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2664 &fctx); 2665 } 2666 2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2668 u64 off, u64 len, struct bio *bio) 2669 { 2670 struct ceph_file_extent ex = { off, len }; 2671 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2672 2673 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2674 } 2675 2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2677 { 2678 struct rbd_obj_request *obj_req = 2679 container_of(ex, struct rbd_obj_request, ex); 2680 struct ceph_bvec_iter *it = arg; 2681 2682 obj_req->bvec_pos = *it; 2683 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2684 ceph_bvec_iter_advance(it, bytes); 2685 } 2686 2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2688 { 2689 struct rbd_obj_request *obj_req = 2690 container_of(ex, struct rbd_obj_request, ex); 2691 struct ceph_bvec_iter *it = arg; 2692 2693 ceph_bvec_iter_advance_step(it, bytes, ({ 2694 obj_req->bvec_count++; 2695 })); 2696 } 2697 2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2699 { 2700 struct rbd_obj_request *obj_req = 2701 container_of(ex, struct rbd_obj_request, ex); 2702 struct ceph_bvec_iter *it = arg; 2703 2704 ceph_bvec_iter_advance_step(it, bytes, ({ 2705 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2706 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2707 })); 2708 } 2709 2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2711 struct ceph_file_extent *img_extents, 2712 u32 num_img_extents, 2713 struct ceph_bvec_iter *bvec_pos) 2714 { 2715 struct rbd_img_fill_ctx fctx = { 2716 .pos_type = OBJ_REQUEST_BVECS, 2717 .pos = (union rbd_img_fill_iter *)bvec_pos, 2718 .set_pos_fn = set_bvec_pos, 2719 .count_fn = count_bvecs, 2720 .copy_fn = copy_bvecs, 2721 }; 2722 2723 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2724 &fctx); 2725 } 2726 2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2728 struct ceph_file_extent *img_extents, 2729 u32 num_img_extents, 2730 struct bio_vec *bvecs) 2731 { 2732 struct ceph_bvec_iter it = { 2733 .bvecs = bvecs, 2734 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2735 num_img_extents) }, 2736 }; 2737 2738 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2739 &it); 2740 } 2741 2742 static void rbd_img_handle_request_work(struct work_struct *work) 2743 { 2744 struct rbd_img_request *img_req = 2745 container_of(work, struct rbd_img_request, work); 2746 2747 rbd_img_handle_request(img_req, img_req->work_result); 2748 } 2749 2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result) 2751 { 2752 INIT_WORK(&img_req->work, rbd_img_handle_request_work); 2753 img_req->work_result = result; 2754 queue_work(rbd_wq, &img_req->work); 2755 } 2756 2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req) 2758 { 2759 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2760 2761 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) { 2762 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2763 return true; 2764 } 2765 2766 dout("%s %p objno %llu assuming dne\n", __func__, obj_req, 2767 obj_req->ex.oe_objno); 2768 return false; 2769 } 2770 2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req) 2772 { 2773 struct ceph_osd_request *osd_req; 2774 int ret; 2775 2776 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1); 2777 if (IS_ERR(osd_req)) 2778 return PTR_ERR(osd_req); 2779 2780 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ, 2781 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2782 rbd_osd_setup_data(osd_req, 0); 2783 rbd_osd_format_read(osd_req); 2784 2785 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2786 if (ret) 2787 return ret; 2788 2789 rbd_osd_submit(osd_req); 2790 return 0; 2791 } 2792 2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2794 { 2795 struct rbd_img_request *img_req = obj_req->img_request; 2796 struct rbd_device *parent = img_req->rbd_dev->parent; 2797 struct rbd_img_request *child_img_req; 2798 int ret; 2799 2800 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2801 if (!child_img_req) 2802 return -ENOMEM; 2803 2804 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ); 2805 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2806 child_img_req->obj_request = obj_req; 2807 2808 down_read(&parent->header_rwsem); 2809 rbd_img_capture_header(child_img_req); 2810 up_read(&parent->header_rwsem); 2811 2812 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req, 2813 obj_req); 2814 2815 if (!rbd_img_is_write(img_req)) { 2816 switch (img_req->data_type) { 2817 case OBJ_REQUEST_BIO: 2818 ret = __rbd_img_fill_from_bio(child_img_req, 2819 obj_req->img_extents, 2820 obj_req->num_img_extents, 2821 &obj_req->bio_pos); 2822 break; 2823 case OBJ_REQUEST_BVECS: 2824 case OBJ_REQUEST_OWN_BVECS: 2825 ret = __rbd_img_fill_from_bvecs(child_img_req, 2826 obj_req->img_extents, 2827 obj_req->num_img_extents, 2828 &obj_req->bvec_pos); 2829 break; 2830 default: 2831 BUG(); 2832 } 2833 } else { 2834 ret = rbd_img_fill_from_bvecs(child_img_req, 2835 obj_req->img_extents, 2836 obj_req->num_img_extents, 2837 obj_req->copyup_bvecs); 2838 } 2839 if (ret) { 2840 rbd_img_request_destroy(child_img_req); 2841 return ret; 2842 } 2843 2844 /* avoid parent chain recursion */ 2845 rbd_img_schedule(child_img_req, 0); 2846 return 0; 2847 } 2848 2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result) 2850 { 2851 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2852 int ret; 2853 2854 again: 2855 switch (obj_req->read_state) { 2856 case RBD_OBJ_READ_START: 2857 rbd_assert(!*result); 2858 2859 if (!rbd_obj_may_exist(obj_req)) { 2860 *result = -ENOENT; 2861 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2862 goto again; 2863 } 2864 2865 ret = rbd_obj_read_object(obj_req); 2866 if (ret) { 2867 *result = ret; 2868 return true; 2869 } 2870 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2871 return false; 2872 case RBD_OBJ_READ_OBJECT: 2873 if (*result == -ENOENT && rbd_dev->parent_overlap) { 2874 /* reverse map this object extent onto the parent */ 2875 ret = rbd_obj_calc_img_extents(obj_req, false); 2876 if (ret) { 2877 *result = ret; 2878 return true; 2879 } 2880 if (obj_req->num_img_extents) { 2881 ret = rbd_obj_read_from_parent(obj_req); 2882 if (ret) { 2883 *result = ret; 2884 return true; 2885 } 2886 obj_req->read_state = RBD_OBJ_READ_PARENT; 2887 return false; 2888 } 2889 } 2890 2891 /* 2892 * -ENOENT means a hole in the image -- zero-fill the entire 2893 * length of the request. A short read also implies zero-fill 2894 * to the end of the request. 2895 */ 2896 if (*result == -ENOENT) { 2897 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len); 2898 *result = 0; 2899 } else if (*result >= 0) { 2900 if (*result < obj_req->ex.oe_len) 2901 rbd_obj_zero_range(obj_req, *result, 2902 obj_req->ex.oe_len - *result); 2903 else 2904 rbd_assert(*result == obj_req->ex.oe_len); 2905 *result = 0; 2906 } 2907 return true; 2908 case RBD_OBJ_READ_PARENT: 2909 /* 2910 * The parent image is read only up to the overlap -- zero-fill 2911 * from the overlap to the end of the request. 2912 */ 2913 if (!*result) { 2914 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req); 2915 2916 if (obj_overlap < obj_req->ex.oe_len) 2917 rbd_obj_zero_range(obj_req, obj_overlap, 2918 obj_req->ex.oe_len - obj_overlap); 2919 } 2920 return true; 2921 default: 2922 BUG(); 2923 } 2924 } 2925 2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req) 2927 { 2928 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2929 2930 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) 2931 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2932 2933 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) && 2934 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) { 2935 dout("%s %p noop for nonexistent\n", __func__, obj_req); 2936 return true; 2937 } 2938 2939 return false; 2940 } 2941 2942 /* 2943 * Return: 2944 * 0 - object map update sent 2945 * 1 - object map update isn't needed 2946 * <0 - error 2947 */ 2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req) 2949 { 2950 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2951 u8 new_state; 2952 2953 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 2954 return 1; 2955 2956 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 2957 new_state = OBJECT_PENDING; 2958 else 2959 new_state = OBJECT_EXISTS; 2960 2961 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL); 2962 } 2963 2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req) 2965 { 2966 struct ceph_osd_request *osd_req; 2967 int num_ops = count_write_ops(obj_req); 2968 int which = 0; 2969 int ret; 2970 2971 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) 2972 num_ops++; /* stat */ 2973 2974 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 2975 if (IS_ERR(osd_req)) 2976 return PTR_ERR(osd_req); 2977 2978 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 2979 ret = rbd_osd_setup_stat(osd_req, which++); 2980 if (ret) 2981 return ret; 2982 } 2983 2984 rbd_osd_setup_write_ops(osd_req, which); 2985 rbd_osd_format_write(osd_req); 2986 2987 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2988 if (ret) 2989 return ret; 2990 2991 rbd_osd_submit(osd_req); 2992 return 0; 2993 } 2994 2995 /* 2996 * copyup_bvecs pages are never highmem pages 2997 */ 2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 2999 { 3000 struct ceph_bvec_iter it = { 3001 .bvecs = bvecs, 3002 .iter = { .bi_size = bytes }, 3003 }; 3004 3005 ceph_bvec_iter_advance_step(&it, bytes, ({ 3006 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len)) 3007 return false; 3008 })); 3009 return true; 3010 } 3011 3012 #define MODS_ONLY U32_MAX 3013 3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req, 3015 u32 bytes) 3016 { 3017 struct ceph_osd_request *osd_req; 3018 int ret; 3019 3020 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3021 rbd_assert(bytes > 0 && bytes != MODS_ONLY); 3022 3023 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1); 3024 if (IS_ERR(osd_req)) 3025 return PTR_ERR(osd_req); 3026 3027 ret = rbd_osd_setup_copyup(osd_req, 0, bytes); 3028 if (ret) 3029 return ret; 3030 3031 rbd_osd_format_write(osd_req); 3032 3033 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3034 if (ret) 3035 return ret; 3036 3037 rbd_osd_submit(osd_req); 3038 return 0; 3039 } 3040 3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req, 3042 u32 bytes) 3043 { 3044 struct ceph_osd_request *osd_req; 3045 int num_ops = count_write_ops(obj_req); 3046 int which = 0; 3047 int ret; 3048 3049 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3050 3051 if (bytes != MODS_ONLY) 3052 num_ops++; /* copyup */ 3053 3054 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 3055 if (IS_ERR(osd_req)) 3056 return PTR_ERR(osd_req); 3057 3058 if (bytes != MODS_ONLY) { 3059 ret = rbd_osd_setup_copyup(osd_req, which++, bytes); 3060 if (ret) 3061 return ret; 3062 } 3063 3064 rbd_osd_setup_write_ops(osd_req, which); 3065 rbd_osd_format_write(osd_req); 3066 3067 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3068 if (ret) 3069 return ret; 3070 3071 rbd_osd_submit(osd_req); 3072 return 0; 3073 } 3074 3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 3076 { 3077 u32 i; 3078 3079 rbd_assert(!obj_req->copyup_bvecs); 3080 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 3081 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 3082 sizeof(*obj_req->copyup_bvecs), 3083 GFP_NOIO); 3084 if (!obj_req->copyup_bvecs) 3085 return -ENOMEM; 3086 3087 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 3088 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 3089 struct page *page = alloc_page(GFP_NOIO); 3090 3091 if (!page) 3092 return -ENOMEM; 3093 3094 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0); 3095 obj_overlap -= len; 3096 } 3097 3098 rbd_assert(!obj_overlap); 3099 return 0; 3100 } 3101 3102 /* 3103 * The target object doesn't exist. Read the data for the entire 3104 * target object up to the overlap point (if any) from the parent, 3105 * so we can use it for a copyup. 3106 */ 3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req) 3108 { 3109 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3110 int ret; 3111 3112 rbd_assert(obj_req->num_img_extents); 3113 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 3114 rbd_dev->parent_overlap); 3115 if (!obj_req->num_img_extents) { 3116 /* 3117 * The overlap has become 0 (most likely because the 3118 * image has been flattened). Re-submit the original write 3119 * request -- pass MODS_ONLY since the copyup isn't needed 3120 * anymore. 3121 */ 3122 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY); 3123 } 3124 3125 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 3126 if (ret) 3127 return ret; 3128 3129 return rbd_obj_read_from_parent(obj_req); 3130 } 3131 3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req) 3133 { 3134 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3135 struct ceph_snap_context *snapc = obj_req->img_request->snapc; 3136 u8 new_state; 3137 u32 i; 3138 int ret; 3139 3140 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3141 3142 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3143 return; 3144 3145 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3146 return; 3147 3148 for (i = 0; i < snapc->num_snaps; i++) { 3149 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) && 3150 i + 1 < snapc->num_snaps) 3151 new_state = OBJECT_EXISTS_CLEAN; 3152 else 3153 new_state = OBJECT_EXISTS; 3154 3155 ret = rbd_object_map_update(obj_req, snapc->snaps[i], 3156 new_state, NULL); 3157 if (ret < 0) { 3158 obj_req->pending.result = ret; 3159 return; 3160 } 3161 3162 rbd_assert(!ret); 3163 obj_req->pending.num_pending++; 3164 } 3165 } 3166 3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req) 3168 { 3169 u32 bytes = rbd_obj_img_extents_bytes(obj_req); 3170 int ret; 3171 3172 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3173 3174 /* 3175 * Only send non-zero copyup data to save some I/O and network 3176 * bandwidth -- zero copyup data is equivalent to the object not 3177 * existing. 3178 */ 3179 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3180 bytes = 0; 3181 3182 if (obj_req->img_request->snapc->num_snaps && bytes > 0) { 3183 /* 3184 * Send a copyup request with an empty snapshot context to 3185 * deep-copyup the object through all existing snapshots. 3186 * A second request with the current snapshot context will be 3187 * sent for the actual modification. 3188 */ 3189 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes); 3190 if (ret) { 3191 obj_req->pending.result = ret; 3192 return; 3193 } 3194 3195 obj_req->pending.num_pending++; 3196 bytes = MODS_ONLY; 3197 } 3198 3199 ret = rbd_obj_copyup_current_snapc(obj_req, bytes); 3200 if (ret) { 3201 obj_req->pending.result = ret; 3202 return; 3203 } 3204 3205 obj_req->pending.num_pending++; 3206 } 3207 3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result) 3209 { 3210 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3211 int ret; 3212 3213 again: 3214 switch (obj_req->copyup_state) { 3215 case RBD_OBJ_COPYUP_START: 3216 rbd_assert(!*result); 3217 3218 ret = rbd_obj_copyup_read_parent(obj_req); 3219 if (ret) { 3220 *result = ret; 3221 return true; 3222 } 3223 if (obj_req->num_img_extents) 3224 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT; 3225 else 3226 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3227 return false; 3228 case RBD_OBJ_COPYUP_READ_PARENT: 3229 if (*result) 3230 return true; 3231 3232 if (is_zero_bvecs(obj_req->copyup_bvecs, 3233 rbd_obj_img_extents_bytes(obj_req))) { 3234 dout("%s %p detected zeros\n", __func__, obj_req); 3235 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS; 3236 } 3237 3238 rbd_obj_copyup_object_maps(obj_req); 3239 if (!obj_req->pending.num_pending) { 3240 *result = obj_req->pending.result; 3241 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS; 3242 goto again; 3243 } 3244 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS; 3245 return false; 3246 case __RBD_OBJ_COPYUP_OBJECT_MAPS: 3247 if (!pending_result_dec(&obj_req->pending, result)) 3248 return false; 3249 fallthrough; 3250 case RBD_OBJ_COPYUP_OBJECT_MAPS: 3251 if (*result) { 3252 rbd_warn(rbd_dev, "snap object map update failed: %d", 3253 *result); 3254 return true; 3255 } 3256 3257 rbd_obj_copyup_write_object(obj_req); 3258 if (!obj_req->pending.num_pending) { 3259 *result = obj_req->pending.result; 3260 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3261 goto again; 3262 } 3263 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT; 3264 return false; 3265 case __RBD_OBJ_COPYUP_WRITE_OBJECT: 3266 if (!pending_result_dec(&obj_req->pending, result)) 3267 return false; 3268 fallthrough; 3269 case RBD_OBJ_COPYUP_WRITE_OBJECT: 3270 return true; 3271 default: 3272 BUG(); 3273 } 3274 } 3275 3276 /* 3277 * Return: 3278 * 0 - object map update sent 3279 * 1 - object map update isn't needed 3280 * <0 - error 3281 */ 3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req) 3283 { 3284 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3285 u8 current_state = OBJECT_PENDING; 3286 3287 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3288 return 1; 3289 3290 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION)) 3291 return 1; 3292 3293 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT, 3294 ¤t_state); 3295 } 3296 3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result) 3298 { 3299 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3300 int ret; 3301 3302 again: 3303 switch (obj_req->write_state) { 3304 case RBD_OBJ_WRITE_START: 3305 rbd_assert(!*result); 3306 3307 rbd_obj_set_copyup_enabled(obj_req); 3308 if (rbd_obj_write_is_noop(obj_req)) 3309 return true; 3310 3311 ret = rbd_obj_write_pre_object_map(obj_req); 3312 if (ret < 0) { 3313 *result = ret; 3314 return true; 3315 } 3316 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP; 3317 if (ret > 0) 3318 goto again; 3319 return false; 3320 case RBD_OBJ_WRITE_PRE_OBJECT_MAP: 3321 if (*result) { 3322 rbd_warn(rbd_dev, "pre object map update failed: %d", 3323 *result); 3324 return true; 3325 } 3326 ret = rbd_obj_write_object(obj_req); 3327 if (ret) { 3328 *result = ret; 3329 return true; 3330 } 3331 obj_req->write_state = RBD_OBJ_WRITE_OBJECT; 3332 return false; 3333 case RBD_OBJ_WRITE_OBJECT: 3334 if (*result == -ENOENT) { 3335 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3336 *result = 0; 3337 obj_req->copyup_state = RBD_OBJ_COPYUP_START; 3338 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP; 3339 goto again; 3340 } 3341 /* 3342 * On a non-existent object: 3343 * delete - -ENOENT, truncate/zero - 0 3344 */ 3345 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 3346 *result = 0; 3347 } 3348 if (*result) 3349 return true; 3350 3351 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 3352 goto again; 3353 case __RBD_OBJ_WRITE_COPYUP: 3354 if (!rbd_obj_advance_copyup(obj_req, result)) 3355 return false; 3356 fallthrough; 3357 case RBD_OBJ_WRITE_COPYUP: 3358 if (*result) { 3359 rbd_warn(rbd_dev, "copyup failed: %d", *result); 3360 return true; 3361 } 3362 ret = rbd_obj_write_post_object_map(obj_req); 3363 if (ret < 0) { 3364 *result = ret; 3365 return true; 3366 } 3367 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP; 3368 if (ret > 0) 3369 goto again; 3370 return false; 3371 case RBD_OBJ_WRITE_POST_OBJECT_MAP: 3372 if (*result) 3373 rbd_warn(rbd_dev, "post object map update failed: %d", 3374 *result); 3375 return true; 3376 default: 3377 BUG(); 3378 } 3379 } 3380 3381 /* 3382 * Return true if @obj_req is completed. 3383 */ 3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req, 3385 int *result) 3386 { 3387 struct rbd_img_request *img_req = obj_req->img_request; 3388 struct rbd_device *rbd_dev = img_req->rbd_dev; 3389 bool done; 3390 3391 mutex_lock(&obj_req->state_mutex); 3392 if (!rbd_img_is_write(img_req)) 3393 done = rbd_obj_advance_read(obj_req, result); 3394 else 3395 done = rbd_obj_advance_write(obj_req, result); 3396 mutex_unlock(&obj_req->state_mutex); 3397 3398 if (done && *result) { 3399 rbd_assert(*result < 0); 3400 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d", 3401 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 3402 obj_req->ex.oe_off, obj_req->ex.oe_len, *result); 3403 } 3404 return done; 3405 } 3406 3407 /* 3408 * This is open-coded in rbd_img_handle_request() to avoid parent chain 3409 * recursion. 3410 */ 3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result) 3412 { 3413 if (__rbd_obj_handle_request(obj_req, &result)) 3414 rbd_img_handle_request(obj_req->img_request, result); 3415 } 3416 3417 static bool need_exclusive_lock(struct rbd_img_request *img_req) 3418 { 3419 struct rbd_device *rbd_dev = img_req->rbd_dev; 3420 3421 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) 3422 return false; 3423 3424 if (rbd_is_ro(rbd_dev)) 3425 return false; 3426 3427 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 3428 if (rbd_dev->opts->lock_on_read || 3429 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3430 return true; 3431 3432 return rbd_img_is_write(img_req); 3433 } 3434 3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req) 3436 { 3437 struct rbd_device *rbd_dev = img_req->rbd_dev; 3438 bool locked; 3439 3440 lockdep_assert_held(&rbd_dev->lock_rwsem); 3441 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED; 3442 spin_lock(&rbd_dev->lock_lists_lock); 3443 rbd_assert(list_empty(&img_req->lock_item)); 3444 if (!locked) 3445 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list); 3446 else 3447 list_add_tail(&img_req->lock_item, &rbd_dev->running_list); 3448 spin_unlock(&rbd_dev->lock_lists_lock); 3449 return locked; 3450 } 3451 3452 static void rbd_lock_del_request(struct rbd_img_request *img_req) 3453 { 3454 struct rbd_device *rbd_dev = img_req->rbd_dev; 3455 bool need_wakeup; 3456 3457 lockdep_assert_held(&rbd_dev->lock_rwsem); 3458 spin_lock(&rbd_dev->lock_lists_lock); 3459 rbd_assert(!list_empty(&img_req->lock_item)); 3460 list_del_init(&img_req->lock_item); 3461 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING && 3462 list_empty(&rbd_dev->running_list)); 3463 spin_unlock(&rbd_dev->lock_lists_lock); 3464 if (need_wakeup) 3465 complete(&rbd_dev->releasing_wait); 3466 } 3467 3468 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req) 3469 { 3470 struct rbd_device *rbd_dev = img_req->rbd_dev; 3471 3472 if (!need_exclusive_lock(img_req)) 3473 return 1; 3474 3475 if (rbd_lock_add_request(img_req)) 3476 return 1; 3477 3478 if (rbd_dev->opts->exclusive) { 3479 WARN_ON(1); /* lock got released? */ 3480 return -EROFS; 3481 } 3482 3483 /* 3484 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3485 * and cancel_delayed_work() in wake_lock_waiters(). 3486 */ 3487 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3488 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3489 return 0; 3490 } 3491 3492 static void rbd_img_object_requests(struct rbd_img_request *img_req) 3493 { 3494 struct rbd_device *rbd_dev = img_req->rbd_dev; 3495 struct rbd_obj_request *obj_req; 3496 3497 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending); 3498 rbd_assert(!need_exclusive_lock(img_req) || 3499 __rbd_is_lock_owner(rbd_dev)); 3500 3501 if (rbd_img_is_write(img_req)) { 3502 rbd_assert(!img_req->snapc); 3503 down_read(&rbd_dev->header_rwsem); 3504 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc); 3505 up_read(&rbd_dev->header_rwsem); 3506 } 3507 3508 for_each_obj_request(img_req, obj_req) { 3509 int result = 0; 3510 3511 if (__rbd_obj_handle_request(obj_req, &result)) { 3512 if (result) { 3513 img_req->pending.result = result; 3514 return; 3515 } 3516 } else { 3517 img_req->pending.num_pending++; 3518 } 3519 } 3520 } 3521 3522 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result) 3523 { 3524 int ret; 3525 3526 again: 3527 switch (img_req->state) { 3528 case RBD_IMG_START: 3529 rbd_assert(!*result); 3530 3531 ret = rbd_img_exclusive_lock(img_req); 3532 if (ret < 0) { 3533 *result = ret; 3534 return true; 3535 } 3536 img_req->state = RBD_IMG_EXCLUSIVE_LOCK; 3537 if (ret > 0) 3538 goto again; 3539 return false; 3540 case RBD_IMG_EXCLUSIVE_LOCK: 3541 if (*result) 3542 return true; 3543 3544 rbd_img_object_requests(img_req); 3545 if (!img_req->pending.num_pending) { 3546 *result = img_req->pending.result; 3547 img_req->state = RBD_IMG_OBJECT_REQUESTS; 3548 goto again; 3549 } 3550 img_req->state = __RBD_IMG_OBJECT_REQUESTS; 3551 return false; 3552 case __RBD_IMG_OBJECT_REQUESTS: 3553 if (!pending_result_dec(&img_req->pending, result)) 3554 return false; 3555 fallthrough; 3556 case RBD_IMG_OBJECT_REQUESTS: 3557 return true; 3558 default: 3559 BUG(); 3560 } 3561 } 3562 3563 /* 3564 * Return true if @img_req is completed. 3565 */ 3566 static bool __rbd_img_handle_request(struct rbd_img_request *img_req, 3567 int *result) 3568 { 3569 struct rbd_device *rbd_dev = img_req->rbd_dev; 3570 bool done; 3571 3572 if (need_exclusive_lock(img_req)) { 3573 down_read(&rbd_dev->lock_rwsem); 3574 mutex_lock(&img_req->state_mutex); 3575 done = rbd_img_advance(img_req, result); 3576 if (done) 3577 rbd_lock_del_request(img_req); 3578 mutex_unlock(&img_req->state_mutex); 3579 up_read(&rbd_dev->lock_rwsem); 3580 } else { 3581 mutex_lock(&img_req->state_mutex); 3582 done = rbd_img_advance(img_req, result); 3583 mutex_unlock(&img_req->state_mutex); 3584 } 3585 3586 if (done && *result) { 3587 rbd_assert(*result < 0); 3588 rbd_warn(rbd_dev, "%s%s result %d", 3589 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "", 3590 obj_op_name(img_req->op_type), *result); 3591 } 3592 return done; 3593 } 3594 3595 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result) 3596 { 3597 again: 3598 if (!__rbd_img_handle_request(img_req, &result)) 3599 return; 3600 3601 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 3602 struct rbd_obj_request *obj_req = img_req->obj_request; 3603 3604 rbd_img_request_destroy(img_req); 3605 if (__rbd_obj_handle_request(obj_req, &result)) { 3606 img_req = obj_req->img_request; 3607 goto again; 3608 } 3609 } else { 3610 struct request *rq = blk_mq_rq_from_pdu(img_req); 3611 3612 rbd_img_request_destroy(img_req); 3613 blk_mq_end_request(rq, errno_to_blk_status(result)); 3614 } 3615 } 3616 3617 static const struct rbd_client_id rbd_empty_cid; 3618 3619 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3620 const struct rbd_client_id *rhs) 3621 { 3622 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3623 } 3624 3625 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3626 { 3627 struct rbd_client_id cid; 3628 3629 mutex_lock(&rbd_dev->watch_mutex); 3630 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3631 cid.handle = rbd_dev->watch_cookie; 3632 mutex_unlock(&rbd_dev->watch_mutex); 3633 return cid; 3634 } 3635 3636 /* 3637 * lock_rwsem must be held for write 3638 */ 3639 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3640 const struct rbd_client_id *cid) 3641 { 3642 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3643 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3644 cid->gid, cid->handle); 3645 rbd_dev->owner_cid = *cid; /* struct */ 3646 } 3647 3648 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3649 { 3650 mutex_lock(&rbd_dev->watch_mutex); 3651 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3652 mutex_unlock(&rbd_dev->watch_mutex); 3653 } 3654 3655 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 3656 { 3657 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3658 3659 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3660 strcpy(rbd_dev->lock_cookie, cookie); 3661 rbd_set_owner_cid(rbd_dev, &cid); 3662 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3663 } 3664 3665 /* 3666 * lock_rwsem must be held for write 3667 */ 3668 static int rbd_lock(struct rbd_device *rbd_dev) 3669 { 3670 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3671 char cookie[32]; 3672 int ret; 3673 3674 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3675 rbd_dev->lock_cookie[0] != '\0'); 3676 3677 format_lock_cookie(rbd_dev, cookie); 3678 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3679 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3680 RBD_LOCK_TAG, "", 0); 3681 if (ret && ret != -EEXIST) 3682 return ret; 3683 3684 __rbd_lock(rbd_dev, cookie); 3685 return 0; 3686 } 3687 3688 /* 3689 * lock_rwsem must be held for write 3690 */ 3691 static void rbd_unlock(struct rbd_device *rbd_dev) 3692 { 3693 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3694 int ret; 3695 3696 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3697 rbd_dev->lock_cookie[0] == '\0'); 3698 3699 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3700 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3701 if (ret && ret != -ENOENT) 3702 rbd_warn(rbd_dev, "failed to unlock header: %d", ret); 3703 3704 /* treat errors as the image is unlocked */ 3705 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3706 rbd_dev->lock_cookie[0] = '\0'; 3707 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3708 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3709 } 3710 3711 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3712 enum rbd_notify_op notify_op, 3713 struct page ***preply_pages, 3714 size_t *preply_len) 3715 { 3716 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3717 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3718 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 3719 int buf_size = sizeof(buf); 3720 void *p = buf; 3721 3722 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3723 3724 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3725 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3726 ceph_encode_32(&p, notify_op); 3727 ceph_encode_64(&p, cid.gid); 3728 ceph_encode_64(&p, cid.handle); 3729 3730 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3731 &rbd_dev->header_oloc, buf, buf_size, 3732 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3733 } 3734 3735 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3736 enum rbd_notify_op notify_op) 3737 { 3738 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL); 3739 } 3740 3741 static void rbd_notify_acquired_lock(struct work_struct *work) 3742 { 3743 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3744 acquired_lock_work); 3745 3746 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3747 } 3748 3749 static void rbd_notify_released_lock(struct work_struct *work) 3750 { 3751 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3752 released_lock_work); 3753 3754 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3755 } 3756 3757 static int rbd_request_lock(struct rbd_device *rbd_dev) 3758 { 3759 struct page **reply_pages; 3760 size_t reply_len; 3761 bool lock_owner_responded = false; 3762 int ret; 3763 3764 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3765 3766 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3767 &reply_pages, &reply_len); 3768 if (ret && ret != -ETIMEDOUT) { 3769 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3770 goto out; 3771 } 3772 3773 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3774 void *p = page_address(reply_pages[0]); 3775 void *const end = p + reply_len; 3776 u32 n; 3777 3778 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3779 while (n--) { 3780 u8 struct_v; 3781 u32 len; 3782 3783 ceph_decode_need(&p, end, 8 + 8, e_inval); 3784 p += 8 + 8; /* skip gid and cookie */ 3785 3786 ceph_decode_32_safe(&p, end, len, e_inval); 3787 if (!len) 3788 continue; 3789 3790 if (lock_owner_responded) { 3791 rbd_warn(rbd_dev, 3792 "duplicate lock owners detected"); 3793 ret = -EIO; 3794 goto out; 3795 } 3796 3797 lock_owner_responded = true; 3798 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3799 &struct_v, &len); 3800 if (ret) { 3801 rbd_warn(rbd_dev, 3802 "failed to decode ResponseMessage: %d", 3803 ret); 3804 goto e_inval; 3805 } 3806 3807 ret = ceph_decode_32(&p); 3808 } 3809 } 3810 3811 if (!lock_owner_responded) { 3812 rbd_warn(rbd_dev, "no lock owners detected"); 3813 ret = -ETIMEDOUT; 3814 } 3815 3816 out: 3817 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3818 return ret; 3819 3820 e_inval: 3821 ret = -EINVAL; 3822 goto out; 3823 } 3824 3825 /* 3826 * Either image request state machine(s) or rbd_add_acquire_lock() 3827 * (i.e. "rbd map"). 3828 */ 3829 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result) 3830 { 3831 struct rbd_img_request *img_req; 3832 3833 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3834 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 3835 3836 cancel_delayed_work(&rbd_dev->lock_dwork); 3837 if (!completion_done(&rbd_dev->acquire_wait)) { 3838 rbd_assert(list_empty(&rbd_dev->acquiring_list) && 3839 list_empty(&rbd_dev->running_list)); 3840 rbd_dev->acquire_err = result; 3841 complete_all(&rbd_dev->acquire_wait); 3842 return; 3843 } 3844 3845 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) { 3846 mutex_lock(&img_req->state_mutex); 3847 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK); 3848 rbd_img_schedule(img_req, result); 3849 mutex_unlock(&img_req->state_mutex); 3850 } 3851 3852 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list); 3853 } 3854 3855 static bool locker_equal(const struct ceph_locker *lhs, 3856 const struct ceph_locker *rhs) 3857 { 3858 return lhs->id.name.type == rhs->id.name.type && 3859 lhs->id.name.num == rhs->id.name.num && 3860 !strcmp(lhs->id.cookie, rhs->id.cookie) && 3861 ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr); 3862 } 3863 3864 static void free_locker(struct ceph_locker *locker) 3865 { 3866 if (locker) 3867 ceph_free_lockers(locker, 1); 3868 } 3869 3870 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev) 3871 { 3872 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3873 struct ceph_locker *lockers; 3874 u32 num_lockers; 3875 u8 lock_type; 3876 char *lock_tag; 3877 u64 handle; 3878 int ret; 3879 3880 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3881 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3882 &lock_type, &lock_tag, &lockers, &num_lockers); 3883 if (ret) { 3884 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret); 3885 return ERR_PTR(ret); 3886 } 3887 3888 if (num_lockers == 0) { 3889 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3890 lockers = NULL; 3891 goto out; 3892 } 3893 3894 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3895 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3896 lock_tag); 3897 goto err_busy; 3898 } 3899 3900 if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) { 3901 rbd_warn(rbd_dev, "incompatible lock type detected"); 3902 goto err_busy; 3903 } 3904 3905 WARN_ON(num_lockers != 1); 3906 ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", 3907 &handle); 3908 if (ret != 1) { 3909 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3910 lockers[0].id.cookie); 3911 goto err_busy; 3912 } 3913 if (ceph_addr_is_blank(&lockers[0].info.addr)) { 3914 rbd_warn(rbd_dev, "locker has a blank address"); 3915 goto err_busy; 3916 } 3917 3918 dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n", 3919 __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name), 3920 &lockers[0].info.addr.in_addr, 3921 le32_to_cpu(lockers[0].info.addr.nonce), handle); 3922 3923 out: 3924 kfree(lock_tag); 3925 return lockers; 3926 3927 err_busy: 3928 kfree(lock_tag); 3929 ceph_free_lockers(lockers, num_lockers); 3930 return ERR_PTR(-EBUSY); 3931 } 3932 3933 static int find_watcher(struct rbd_device *rbd_dev, 3934 const struct ceph_locker *locker) 3935 { 3936 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3937 struct ceph_watch_item *watchers; 3938 u32 num_watchers; 3939 u64 cookie; 3940 int i; 3941 int ret; 3942 3943 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3944 &rbd_dev->header_oloc, &watchers, 3945 &num_watchers); 3946 if (ret) { 3947 rbd_warn(rbd_dev, "failed to get watchers: %d", ret); 3948 return ret; 3949 } 3950 3951 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3952 for (i = 0; i < num_watchers; i++) { 3953 /* 3954 * Ignore addr->type while comparing. This mimics 3955 * entity_addr_t::get_legacy_str() + strcmp(). 3956 */ 3957 if (ceph_addr_equal_no_type(&watchers[i].addr, 3958 &locker->info.addr) && 3959 watchers[i].cookie == cookie) { 3960 struct rbd_client_id cid = { 3961 .gid = le64_to_cpu(watchers[i].name.num), 3962 .handle = cookie, 3963 }; 3964 3965 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3966 rbd_dev, cid.gid, cid.handle); 3967 rbd_set_owner_cid(rbd_dev, &cid); 3968 ret = 1; 3969 goto out; 3970 } 3971 } 3972 3973 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3974 ret = 0; 3975 out: 3976 kfree(watchers); 3977 return ret; 3978 } 3979 3980 /* 3981 * lock_rwsem must be held for write 3982 */ 3983 static int rbd_try_lock(struct rbd_device *rbd_dev) 3984 { 3985 struct ceph_client *client = rbd_dev->rbd_client->client; 3986 struct ceph_locker *locker, *refreshed_locker; 3987 int ret; 3988 3989 for (;;) { 3990 locker = refreshed_locker = NULL; 3991 3992 ret = rbd_lock(rbd_dev); 3993 if (!ret) 3994 goto out; 3995 if (ret != -EBUSY) { 3996 rbd_warn(rbd_dev, "failed to lock header: %d", ret); 3997 goto out; 3998 } 3999 4000 /* determine if the current lock holder is still alive */ 4001 locker = get_lock_owner_info(rbd_dev); 4002 if (IS_ERR(locker)) { 4003 ret = PTR_ERR(locker); 4004 locker = NULL; 4005 goto out; 4006 } 4007 if (!locker) 4008 goto again; 4009 4010 ret = find_watcher(rbd_dev, locker); 4011 if (ret) 4012 goto out; /* request lock or error */ 4013 4014 refreshed_locker = get_lock_owner_info(rbd_dev); 4015 if (IS_ERR(refreshed_locker)) { 4016 ret = PTR_ERR(refreshed_locker); 4017 refreshed_locker = NULL; 4018 goto out; 4019 } 4020 if (!refreshed_locker || 4021 !locker_equal(locker, refreshed_locker)) 4022 goto again; 4023 4024 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu", 4025 ENTITY_NAME(locker->id.name)); 4026 4027 ret = ceph_monc_blocklist_add(&client->monc, 4028 &locker->info.addr); 4029 if (ret) { 4030 rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d", 4031 ENTITY_NAME(locker->id.name), ret); 4032 goto out; 4033 } 4034 4035 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 4036 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4037 locker->id.cookie, &locker->id.name); 4038 if (ret && ret != -ENOENT) { 4039 rbd_warn(rbd_dev, "failed to break header lock: %d", 4040 ret); 4041 goto out; 4042 } 4043 4044 again: 4045 free_locker(refreshed_locker); 4046 free_locker(locker); 4047 } 4048 4049 out: 4050 free_locker(refreshed_locker); 4051 free_locker(locker); 4052 return ret; 4053 } 4054 4055 static int rbd_post_acquire_action(struct rbd_device *rbd_dev) 4056 { 4057 int ret; 4058 4059 ret = rbd_dev_refresh(rbd_dev); 4060 if (ret) 4061 return ret; 4062 4063 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) { 4064 ret = rbd_object_map_open(rbd_dev); 4065 if (ret) 4066 return ret; 4067 } 4068 4069 return 0; 4070 } 4071 4072 /* 4073 * Return: 4074 * 0 - lock acquired 4075 * 1 - caller should call rbd_request_lock() 4076 * <0 - error 4077 */ 4078 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev) 4079 { 4080 int ret; 4081 4082 down_read(&rbd_dev->lock_rwsem); 4083 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 4084 rbd_dev->lock_state); 4085 if (__rbd_is_lock_owner(rbd_dev)) { 4086 up_read(&rbd_dev->lock_rwsem); 4087 return 0; 4088 } 4089 4090 up_read(&rbd_dev->lock_rwsem); 4091 down_write(&rbd_dev->lock_rwsem); 4092 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 4093 rbd_dev->lock_state); 4094 if (__rbd_is_lock_owner(rbd_dev)) { 4095 up_write(&rbd_dev->lock_rwsem); 4096 return 0; 4097 } 4098 4099 ret = rbd_try_lock(rbd_dev); 4100 if (ret < 0) { 4101 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret); 4102 goto out; 4103 } 4104 if (ret > 0) { 4105 up_write(&rbd_dev->lock_rwsem); 4106 return ret; 4107 } 4108 4109 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED); 4110 rbd_assert(list_empty(&rbd_dev->running_list)); 4111 4112 ret = rbd_post_acquire_action(rbd_dev); 4113 if (ret) { 4114 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret); 4115 /* 4116 * Can't stay in RBD_LOCK_STATE_LOCKED because 4117 * rbd_lock_add_request() would let the request through, 4118 * assuming that e.g. object map is locked and loaded. 4119 */ 4120 rbd_unlock(rbd_dev); 4121 } 4122 4123 out: 4124 wake_lock_waiters(rbd_dev, ret); 4125 up_write(&rbd_dev->lock_rwsem); 4126 return ret; 4127 } 4128 4129 static void rbd_acquire_lock(struct work_struct *work) 4130 { 4131 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4132 struct rbd_device, lock_dwork); 4133 int ret; 4134 4135 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4136 again: 4137 ret = rbd_try_acquire_lock(rbd_dev); 4138 if (ret <= 0) { 4139 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret); 4140 return; 4141 } 4142 4143 ret = rbd_request_lock(rbd_dev); 4144 if (ret == -ETIMEDOUT) { 4145 goto again; /* treat this as a dead client */ 4146 } else if (ret == -EROFS) { 4147 rbd_warn(rbd_dev, "peer will not release lock"); 4148 down_write(&rbd_dev->lock_rwsem); 4149 wake_lock_waiters(rbd_dev, ret); 4150 up_write(&rbd_dev->lock_rwsem); 4151 } else if (ret < 0) { 4152 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 4153 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4154 RBD_RETRY_DELAY); 4155 } else { 4156 /* 4157 * lock owner acked, but resend if we don't see them 4158 * release the lock 4159 */ 4160 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__, 4161 rbd_dev); 4162 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4163 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 4164 } 4165 } 4166 4167 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev) 4168 { 4169 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4170 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 4171 4172 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 4173 return false; 4174 4175 /* 4176 * Ensure that all in-flight IO is flushed. 4177 */ 4178 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 4179 rbd_assert(!completion_done(&rbd_dev->releasing_wait)); 4180 if (list_empty(&rbd_dev->running_list)) 4181 return true; 4182 4183 up_write(&rbd_dev->lock_rwsem); 4184 wait_for_completion(&rbd_dev->releasing_wait); 4185 4186 down_write(&rbd_dev->lock_rwsem); 4187 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 4188 return false; 4189 4190 rbd_assert(list_empty(&rbd_dev->running_list)); 4191 return true; 4192 } 4193 4194 static void rbd_pre_release_action(struct rbd_device *rbd_dev) 4195 { 4196 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) 4197 rbd_object_map_close(rbd_dev); 4198 } 4199 4200 static void __rbd_release_lock(struct rbd_device *rbd_dev) 4201 { 4202 rbd_assert(list_empty(&rbd_dev->running_list)); 4203 4204 rbd_pre_release_action(rbd_dev); 4205 rbd_unlock(rbd_dev); 4206 } 4207 4208 /* 4209 * lock_rwsem must be held for write 4210 */ 4211 static void rbd_release_lock(struct rbd_device *rbd_dev) 4212 { 4213 if (!rbd_quiesce_lock(rbd_dev)) 4214 return; 4215 4216 __rbd_release_lock(rbd_dev); 4217 4218 /* 4219 * Give others a chance to grab the lock - we would re-acquire 4220 * almost immediately if we got new IO while draining the running 4221 * list otherwise. We need to ack our own notifications, so this 4222 * lock_dwork will be requeued from rbd_handle_released_lock() by 4223 * way of maybe_kick_acquire(). 4224 */ 4225 cancel_delayed_work(&rbd_dev->lock_dwork); 4226 } 4227 4228 static void rbd_release_lock_work(struct work_struct *work) 4229 { 4230 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 4231 unlock_work); 4232 4233 down_write(&rbd_dev->lock_rwsem); 4234 rbd_release_lock(rbd_dev); 4235 up_write(&rbd_dev->lock_rwsem); 4236 } 4237 4238 static void maybe_kick_acquire(struct rbd_device *rbd_dev) 4239 { 4240 bool have_requests; 4241 4242 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4243 if (__rbd_is_lock_owner(rbd_dev)) 4244 return; 4245 4246 spin_lock(&rbd_dev->lock_lists_lock); 4247 have_requests = !list_empty(&rbd_dev->acquiring_list); 4248 spin_unlock(&rbd_dev->lock_lists_lock); 4249 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) { 4250 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev); 4251 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4252 } 4253 } 4254 4255 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 4256 void **p) 4257 { 4258 struct rbd_client_id cid = { 0 }; 4259 4260 if (struct_v >= 2) { 4261 cid.gid = ceph_decode_64(p); 4262 cid.handle = ceph_decode_64(p); 4263 } 4264 4265 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4266 cid.handle); 4267 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4268 down_write(&rbd_dev->lock_rwsem); 4269 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4270 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n", 4271 __func__, rbd_dev, cid.gid, cid.handle); 4272 } else { 4273 rbd_set_owner_cid(rbd_dev, &cid); 4274 } 4275 downgrade_write(&rbd_dev->lock_rwsem); 4276 } else { 4277 down_read(&rbd_dev->lock_rwsem); 4278 } 4279 4280 maybe_kick_acquire(rbd_dev); 4281 up_read(&rbd_dev->lock_rwsem); 4282 } 4283 4284 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 4285 void **p) 4286 { 4287 struct rbd_client_id cid = { 0 }; 4288 4289 if (struct_v >= 2) { 4290 cid.gid = ceph_decode_64(p); 4291 cid.handle = ceph_decode_64(p); 4292 } 4293 4294 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4295 cid.handle); 4296 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4297 down_write(&rbd_dev->lock_rwsem); 4298 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4299 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n", 4300 __func__, rbd_dev, cid.gid, cid.handle, 4301 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 4302 } else { 4303 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4304 } 4305 downgrade_write(&rbd_dev->lock_rwsem); 4306 } else { 4307 down_read(&rbd_dev->lock_rwsem); 4308 } 4309 4310 maybe_kick_acquire(rbd_dev); 4311 up_read(&rbd_dev->lock_rwsem); 4312 } 4313 4314 /* 4315 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 4316 * ResponseMessage is needed. 4317 */ 4318 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 4319 void **p) 4320 { 4321 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 4322 struct rbd_client_id cid = { 0 }; 4323 int result = 1; 4324 4325 if (struct_v >= 2) { 4326 cid.gid = ceph_decode_64(p); 4327 cid.handle = ceph_decode_64(p); 4328 } 4329 4330 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4331 cid.handle); 4332 if (rbd_cid_equal(&cid, &my_cid)) 4333 return result; 4334 4335 down_read(&rbd_dev->lock_rwsem); 4336 if (__rbd_is_lock_owner(rbd_dev)) { 4337 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 4338 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 4339 goto out_unlock; 4340 4341 /* 4342 * encode ResponseMessage(0) so the peer can detect 4343 * a missing owner 4344 */ 4345 result = 0; 4346 4347 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 4348 if (!rbd_dev->opts->exclusive) { 4349 dout("%s rbd_dev %p queueing unlock_work\n", 4350 __func__, rbd_dev); 4351 queue_work(rbd_dev->task_wq, 4352 &rbd_dev->unlock_work); 4353 } else { 4354 /* refuse to release the lock */ 4355 result = -EROFS; 4356 } 4357 } 4358 } 4359 4360 out_unlock: 4361 up_read(&rbd_dev->lock_rwsem); 4362 return result; 4363 } 4364 4365 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 4366 u64 notify_id, u64 cookie, s32 *result) 4367 { 4368 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4369 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 4370 int buf_size = sizeof(buf); 4371 int ret; 4372 4373 if (result) { 4374 void *p = buf; 4375 4376 /* encode ResponseMessage */ 4377 ceph_start_encoding(&p, 1, 1, 4378 buf_size - CEPH_ENCODING_START_BLK_LEN); 4379 ceph_encode_32(&p, *result); 4380 } else { 4381 buf_size = 0; 4382 } 4383 4384 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 4385 &rbd_dev->header_oloc, notify_id, cookie, 4386 buf, buf_size); 4387 if (ret) 4388 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 4389 } 4390 4391 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 4392 u64 cookie) 4393 { 4394 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4395 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 4396 } 4397 4398 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 4399 u64 notify_id, u64 cookie, s32 result) 4400 { 4401 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 4402 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 4403 } 4404 4405 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 4406 u64 notifier_id, void *data, size_t data_len) 4407 { 4408 struct rbd_device *rbd_dev = arg; 4409 void *p = data; 4410 void *const end = p + data_len; 4411 u8 struct_v = 0; 4412 u32 len; 4413 u32 notify_op; 4414 int ret; 4415 4416 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 4417 __func__, rbd_dev, cookie, notify_id, data_len); 4418 if (data_len) { 4419 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 4420 &struct_v, &len); 4421 if (ret) { 4422 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 4423 ret); 4424 return; 4425 } 4426 4427 notify_op = ceph_decode_32(&p); 4428 } else { 4429 /* legacy notification for header updates */ 4430 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 4431 len = 0; 4432 } 4433 4434 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 4435 switch (notify_op) { 4436 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 4437 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 4438 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4439 break; 4440 case RBD_NOTIFY_OP_RELEASED_LOCK: 4441 rbd_handle_released_lock(rbd_dev, struct_v, &p); 4442 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4443 break; 4444 case RBD_NOTIFY_OP_REQUEST_LOCK: 4445 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 4446 if (ret <= 0) 4447 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4448 cookie, ret); 4449 else 4450 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4451 break; 4452 case RBD_NOTIFY_OP_HEADER_UPDATE: 4453 ret = rbd_dev_refresh(rbd_dev); 4454 if (ret) 4455 rbd_warn(rbd_dev, "refresh failed: %d", ret); 4456 4457 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4458 break; 4459 default: 4460 if (rbd_is_lock_owner(rbd_dev)) 4461 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4462 cookie, -EOPNOTSUPP); 4463 else 4464 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4465 break; 4466 } 4467 } 4468 4469 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 4470 4471 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 4472 { 4473 struct rbd_device *rbd_dev = arg; 4474 4475 rbd_warn(rbd_dev, "encountered watch error: %d", err); 4476 4477 down_write(&rbd_dev->lock_rwsem); 4478 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4479 up_write(&rbd_dev->lock_rwsem); 4480 4481 mutex_lock(&rbd_dev->watch_mutex); 4482 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 4483 __rbd_unregister_watch(rbd_dev); 4484 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 4485 4486 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 4487 } 4488 mutex_unlock(&rbd_dev->watch_mutex); 4489 } 4490 4491 /* 4492 * watch_mutex must be locked 4493 */ 4494 static int __rbd_register_watch(struct rbd_device *rbd_dev) 4495 { 4496 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4497 struct ceph_osd_linger_request *handle; 4498 4499 rbd_assert(!rbd_dev->watch_handle); 4500 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4501 4502 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 4503 &rbd_dev->header_oloc, rbd_watch_cb, 4504 rbd_watch_errcb, rbd_dev); 4505 if (IS_ERR(handle)) 4506 return PTR_ERR(handle); 4507 4508 rbd_dev->watch_handle = handle; 4509 return 0; 4510 } 4511 4512 /* 4513 * watch_mutex must be locked 4514 */ 4515 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 4516 { 4517 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4518 int ret; 4519 4520 rbd_assert(rbd_dev->watch_handle); 4521 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4522 4523 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 4524 if (ret) 4525 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 4526 4527 rbd_dev->watch_handle = NULL; 4528 } 4529 4530 static int rbd_register_watch(struct rbd_device *rbd_dev) 4531 { 4532 int ret; 4533 4534 mutex_lock(&rbd_dev->watch_mutex); 4535 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 4536 ret = __rbd_register_watch(rbd_dev); 4537 if (ret) 4538 goto out; 4539 4540 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4541 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4542 4543 out: 4544 mutex_unlock(&rbd_dev->watch_mutex); 4545 return ret; 4546 } 4547 4548 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 4549 { 4550 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4551 4552 cancel_work_sync(&rbd_dev->acquired_lock_work); 4553 cancel_work_sync(&rbd_dev->released_lock_work); 4554 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 4555 cancel_work_sync(&rbd_dev->unlock_work); 4556 } 4557 4558 /* 4559 * header_rwsem must not be held to avoid a deadlock with 4560 * rbd_dev_refresh() when flushing notifies. 4561 */ 4562 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 4563 { 4564 cancel_tasks_sync(rbd_dev); 4565 4566 mutex_lock(&rbd_dev->watch_mutex); 4567 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 4568 __rbd_unregister_watch(rbd_dev); 4569 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4570 mutex_unlock(&rbd_dev->watch_mutex); 4571 4572 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 4573 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 4574 } 4575 4576 /* 4577 * lock_rwsem must be held for write 4578 */ 4579 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 4580 { 4581 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4582 char cookie[32]; 4583 int ret; 4584 4585 if (!rbd_quiesce_lock(rbd_dev)) 4586 return; 4587 4588 format_lock_cookie(rbd_dev, cookie); 4589 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 4590 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4591 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 4592 RBD_LOCK_TAG, cookie); 4593 if (ret) { 4594 if (ret != -EOPNOTSUPP) 4595 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 4596 ret); 4597 4598 /* 4599 * Lock cookie cannot be updated on older OSDs, so do 4600 * a manual release and queue an acquire. 4601 */ 4602 __rbd_release_lock(rbd_dev); 4603 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4604 } else { 4605 __rbd_lock(rbd_dev, cookie); 4606 wake_lock_waiters(rbd_dev, 0); 4607 } 4608 } 4609 4610 static void rbd_reregister_watch(struct work_struct *work) 4611 { 4612 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4613 struct rbd_device, watch_dwork); 4614 int ret; 4615 4616 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4617 4618 mutex_lock(&rbd_dev->watch_mutex); 4619 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 4620 mutex_unlock(&rbd_dev->watch_mutex); 4621 return; 4622 } 4623 4624 ret = __rbd_register_watch(rbd_dev); 4625 if (ret) { 4626 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 4627 if (ret != -EBLOCKLISTED && ret != -ENOENT) { 4628 queue_delayed_work(rbd_dev->task_wq, 4629 &rbd_dev->watch_dwork, 4630 RBD_RETRY_DELAY); 4631 mutex_unlock(&rbd_dev->watch_mutex); 4632 return; 4633 } 4634 4635 mutex_unlock(&rbd_dev->watch_mutex); 4636 down_write(&rbd_dev->lock_rwsem); 4637 wake_lock_waiters(rbd_dev, ret); 4638 up_write(&rbd_dev->lock_rwsem); 4639 return; 4640 } 4641 4642 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4643 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4644 mutex_unlock(&rbd_dev->watch_mutex); 4645 4646 down_write(&rbd_dev->lock_rwsem); 4647 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 4648 rbd_reacquire_lock(rbd_dev); 4649 up_write(&rbd_dev->lock_rwsem); 4650 4651 ret = rbd_dev_refresh(rbd_dev); 4652 if (ret) 4653 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 4654 } 4655 4656 /* 4657 * Synchronous osd object method call. Returns the number of bytes 4658 * returned in the outbound buffer, or a negative error code. 4659 */ 4660 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 4661 struct ceph_object_id *oid, 4662 struct ceph_object_locator *oloc, 4663 const char *method_name, 4664 const void *outbound, 4665 size_t outbound_size, 4666 void *inbound, 4667 size_t inbound_size) 4668 { 4669 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4670 struct page *req_page = NULL; 4671 struct page *reply_page; 4672 int ret; 4673 4674 /* 4675 * Method calls are ultimately read operations. The result 4676 * should placed into the inbound buffer provided. They 4677 * also supply outbound data--parameters for the object 4678 * method. Currently if this is present it will be a 4679 * snapshot id. 4680 */ 4681 if (outbound) { 4682 if (outbound_size > PAGE_SIZE) 4683 return -E2BIG; 4684 4685 req_page = alloc_page(GFP_KERNEL); 4686 if (!req_page) 4687 return -ENOMEM; 4688 4689 memcpy(page_address(req_page), outbound, outbound_size); 4690 } 4691 4692 reply_page = alloc_page(GFP_KERNEL); 4693 if (!reply_page) { 4694 if (req_page) 4695 __free_page(req_page); 4696 return -ENOMEM; 4697 } 4698 4699 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 4700 CEPH_OSD_FLAG_READ, req_page, outbound_size, 4701 &reply_page, &inbound_size); 4702 if (!ret) { 4703 memcpy(inbound, page_address(reply_page), inbound_size); 4704 ret = inbound_size; 4705 } 4706 4707 if (req_page) 4708 __free_page(req_page); 4709 __free_page(reply_page); 4710 return ret; 4711 } 4712 4713 static void rbd_queue_workfn(struct work_struct *work) 4714 { 4715 struct rbd_img_request *img_request = 4716 container_of(work, struct rbd_img_request, work); 4717 struct rbd_device *rbd_dev = img_request->rbd_dev; 4718 enum obj_operation_type op_type = img_request->op_type; 4719 struct request *rq = blk_mq_rq_from_pdu(img_request); 4720 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4721 u64 length = blk_rq_bytes(rq); 4722 u64 mapping_size; 4723 int result; 4724 4725 /* Ignore/skip any zero-length requests */ 4726 if (!length) { 4727 dout("%s: zero-length request\n", __func__); 4728 result = 0; 4729 goto err_img_request; 4730 } 4731 4732 blk_mq_start_request(rq); 4733 4734 down_read(&rbd_dev->header_rwsem); 4735 mapping_size = rbd_dev->mapping.size; 4736 rbd_img_capture_header(img_request); 4737 up_read(&rbd_dev->header_rwsem); 4738 4739 if (offset + length > mapping_size) { 4740 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4741 length, mapping_size); 4742 result = -EIO; 4743 goto err_img_request; 4744 } 4745 4746 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev, 4747 img_request, obj_op_name(op_type), offset, length); 4748 4749 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT) 4750 result = rbd_img_fill_nodata(img_request, offset, length); 4751 else 4752 result = rbd_img_fill_from_bio(img_request, offset, length, 4753 rq->bio); 4754 if (result) 4755 goto err_img_request; 4756 4757 rbd_img_handle_request(img_request, 0); 4758 return; 4759 4760 err_img_request: 4761 rbd_img_request_destroy(img_request); 4762 if (result) 4763 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4764 obj_op_name(op_type), length, offset, result); 4765 blk_mq_end_request(rq, errno_to_blk_status(result)); 4766 } 4767 4768 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4769 const struct blk_mq_queue_data *bd) 4770 { 4771 struct rbd_device *rbd_dev = hctx->queue->queuedata; 4772 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq); 4773 enum obj_operation_type op_type; 4774 4775 switch (req_op(bd->rq)) { 4776 case REQ_OP_DISCARD: 4777 op_type = OBJ_OP_DISCARD; 4778 break; 4779 case REQ_OP_WRITE_ZEROES: 4780 op_type = OBJ_OP_ZEROOUT; 4781 break; 4782 case REQ_OP_WRITE: 4783 op_type = OBJ_OP_WRITE; 4784 break; 4785 case REQ_OP_READ: 4786 op_type = OBJ_OP_READ; 4787 break; 4788 default: 4789 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq)); 4790 return BLK_STS_IOERR; 4791 } 4792 4793 rbd_img_request_init(img_req, rbd_dev, op_type); 4794 4795 if (rbd_img_is_write(img_req)) { 4796 if (rbd_is_ro(rbd_dev)) { 4797 rbd_warn(rbd_dev, "%s on read-only mapping", 4798 obj_op_name(img_req->op_type)); 4799 return BLK_STS_IOERR; 4800 } 4801 rbd_assert(!rbd_is_snap(rbd_dev)); 4802 } 4803 4804 INIT_WORK(&img_req->work, rbd_queue_workfn); 4805 queue_work(rbd_wq, &img_req->work); 4806 return BLK_STS_OK; 4807 } 4808 4809 static void rbd_free_disk(struct rbd_device *rbd_dev) 4810 { 4811 put_disk(rbd_dev->disk); 4812 blk_mq_free_tag_set(&rbd_dev->tag_set); 4813 rbd_dev->disk = NULL; 4814 } 4815 4816 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4817 struct ceph_object_id *oid, 4818 struct ceph_object_locator *oloc, 4819 void *buf, int buf_len) 4820 4821 { 4822 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4823 struct ceph_osd_request *req; 4824 struct page **pages; 4825 int num_pages = calc_pages_for(0, buf_len); 4826 int ret; 4827 4828 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4829 if (!req) 4830 return -ENOMEM; 4831 4832 ceph_oid_copy(&req->r_base_oid, oid); 4833 ceph_oloc_copy(&req->r_base_oloc, oloc); 4834 req->r_flags = CEPH_OSD_FLAG_READ; 4835 4836 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4837 if (IS_ERR(pages)) { 4838 ret = PTR_ERR(pages); 4839 goto out_req; 4840 } 4841 4842 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4843 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4844 true); 4845 4846 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4847 if (ret) 4848 goto out_req; 4849 4850 ceph_osdc_start_request(osdc, req); 4851 ret = ceph_osdc_wait_request(osdc, req); 4852 if (ret >= 0) 4853 ceph_copy_from_page_vector(pages, buf, 0, ret); 4854 4855 out_req: 4856 ceph_osdc_put_request(req); 4857 return ret; 4858 } 4859 4860 /* 4861 * Read the complete header for the given rbd device. On successful 4862 * return, the rbd_dev->header field will contain up-to-date 4863 * information about the image. 4864 */ 4865 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev, 4866 struct rbd_image_header *header, 4867 bool first_time) 4868 { 4869 struct rbd_image_header_ondisk *ondisk = NULL; 4870 u32 snap_count = 0; 4871 u64 names_size = 0; 4872 u32 want_count; 4873 int ret; 4874 4875 /* 4876 * The complete header will include an array of its 64-bit 4877 * snapshot ids, followed by the names of those snapshots as 4878 * a contiguous block of NUL-terminated strings. Note that 4879 * the number of snapshots could change by the time we read 4880 * it in, in which case we re-read it. 4881 */ 4882 do { 4883 size_t size; 4884 4885 kfree(ondisk); 4886 4887 size = sizeof (*ondisk); 4888 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4889 size += names_size; 4890 ondisk = kmalloc(size, GFP_KERNEL); 4891 if (!ondisk) 4892 return -ENOMEM; 4893 4894 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4895 &rbd_dev->header_oloc, ondisk, size); 4896 if (ret < 0) 4897 goto out; 4898 if ((size_t)ret < size) { 4899 ret = -ENXIO; 4900 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4901 size, ret); 4902 goto out; 4903 } 4904 if (!rbd_dev_ondisk_valid(ondisk)) { 4905 ret = -ENXIO; 4906 rbd_warn(rbd_dev, "invalid header"); 4907 goto out; 4908 } 4909 4910 names_size = le64_to_cpu(ondisk->snap_names_len); 4911 want_count = snap_count; 4912 snap_count = le32_to_cpu(ondisk->snap_count); 4913 } while (snap_count != want_count); 4914 4915 ret = rbd_header_from_disk(header, ondisk, first_time); 4916 out: 4917 kfree(ondisk); 4918 4919 return ret; 4920 } 4921 4922 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4923 { 4924 sector_t size; 4925 4926 /* 4927 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4928 * try to update its size. If REMOVING is set, updating size 4929 * is just useless work since the device can't be opened. 4930 */ 4931 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4932 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4933 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4934 dout("setting size to %llu sectors", (unsigned long long)size); 4935 set_capacity_and_notify(rbd_dev->disk, size); 4936 } 4937 } 4938 4939 static const struct blk_mq_ops rbd_mq_ops = { 4940 .queue_rq = rbd_queue_rq, 4941 }; 4942 4943 static int rbd_init_disk(struct rbd_device *rbd_dev) 4944 { 4945 struct gendisk *disk; 4946 struct request_queue *q; 4947 unsigned int objset_bytes = 4948 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 4949 int err; 4950 4951 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4952 rbd_dev->tag_set.ops = &rbd_mq_ops; 4953 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4954 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4955 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 4956 rbd_dev->tag_set.nr_hw_queues = num_present_cpus(); 4957 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request); 4958 4959 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4960 if (err) 4961 return err; 4962 4963 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev); 4964 if (IS_ERR(disk)) { 4965 err = PTR_ERR(disk); 4966 goto out_tag_set; 4967 } 4968 q = disk->queue; 4969 4970 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4971 rbd_dev->dev_id); 4972 disk->major = rbd_dev->major; 4973 disk->first_minor = rbd_dev->minor; 4974 if (single_major) 4975 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT); 4976 else 4977 disk->minors = RBD_MINORS_PER_MAJOR; 4978 disk->fops = &rbd_bd_ops; 4979 disk->private_data = rbd_dev; 4980 4981 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 4982 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4983 4984 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT); 4985 q->limits.max_sectors = queue_max_hw_sectors(q); 4986 blk_queue_max_segments(q, USHRT_MAX); 4987 blk_queue_max_segment_size(q, UINT_MAX); 4988 blk_queue_io_min(q, rbd_dev->opts->alloc_size); 4989 blk_queue_io_opt(q, rbd_dev->opts->alloc_size); 4990 4991 if (rbd_dev->opts->trim) { 4992 q->limits.discard_granularity = rbd_dev->opts->alloc_size; 4993 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT); 4994 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT); 4995 } 4996 4997 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4998 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 4999 5000 rbd_dev->disk = disk; 5001 5002 return 0; 5003 out_tag_set: 5004 blk_mq_free_tag_set(&rbd_dev->tag_set); 5005 return err; 5006 } 5007 5008 /* 5009 sysfs 5010 */ 5011 5012 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 5013 { 5014 return container_of(dev, struct rbd_device, dev); 5015 } 5016 5017 static ssize_t rbd_size_show(struct device *dev, 5018 struct device_attribute *attr, char *buf) 5019 { 5020 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5021 5022 return sprintf(buf, "%llu\n", 5023 (unsigned long long)rbd_dev->mapping.size); 5024 } 5025 5026 static ssize_t rbd_features_show(struct device *dev, 5027 struct device_attribute *attr, char *buf) 5028 { 5029 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5030 5031 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features); 5032 } 5033 5034 static ssize_t rbd_major_show(struct device *dev, 5035 struct device_attribute *attr, char *buf) 5036 { 5037 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5038 5039 if (rbd_dev->major) 5040 return sprintf(buf, "%d\n", rbd_dev->major); 5041 5042 return sprintf(buf, "(none)\n"); 5043 } 5044 5045 static ssize_t rbd_minor_show(struct device *dev, 5046 struct device_attribute *attr, char *buf) 5047 { 5048 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5049 5050 return sprintf(buf, "%d\n", rbd_dev->minor); 5051 } 5052 5053 static ssize_t rbd_client_addr_show(struct device *dev, 5054 struct device_attribute *attr, char *buf) 5055 { 5056 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5057 struct ceph_entity_addr *client_addr = 5058 ceph_client_addr(rbd_dev->rbd_client->client); 5059 5060 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 5061 le32_to_cpu(client_addr->nonce)); 5062 } 5063 5064 static ssize_t rbd_client_id_show(struct device *dev, 5065 struct device_attribute *attr, char *buf) 5066 { 5067 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5068 5069 return sprintf(buf, "client%lld\n", 5070 ceph_client_gid(rbd_dev->rbd_client->client)); 5071 } 5072 5073 static ssize_t rbd_cluster_fsid_show(struct device *dev, 5074 struct device_attribute *attr, char *buf) 5075 { 5076 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5077 5078 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 5079 } 5080 5081 static ssize_t rbd_config_info_show(struct device *dev, 5082 struct device_attribute *attr, char *buf) 5083 { 5084 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5085 5086 if (!capable(CAP_SYS_ADMIN)) 5087 return -EPERM; 5088 5089 return sprintf(buf, "%s\n", rbd_dev->config_info); 5090 } 5091 5092 static ssize_t rbd_pool_show(struct device *dev, 5093 struct device_attribute *attr, char *buf) 5094 { 5095 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5096 5097 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 5098 } 5099 5100 static ssize_t rbd_pool_id_show(struct device *dev, 5101 struct device_attribute *attr, char *buf) 5102 { 5103 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5104 5105 return sprintf(buf, "%llu\n", 5106 (unsigned long long) rbd_dev->spec->pool_id); 5107 } 5108 5109 static ssize_t rbd_pool_ns_show(struct device *dev, 5110 struct device_attribute *attr, char *buf) 5111 { 5112 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5113 5114 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: ""); 5115 } 5116 5117 static ssize_t rbd_name_show(struct device *dev, 5118 struct device_attribute *attr, char *buf) 5119 { 5120 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5121 5122 if (rbd_dev->spec->image_name) 5123 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 5124 5125 return sprintf(buf, "(unknown)\n"); 5126 } 5127 5128 static ssize_t rbd_image_id_show(struct device *dev, 5129 struct device_attribute *attr, char *buf) 5130 { 5131 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5132 5133 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 5134 } 5135 5136 /* 5137 * Shows the name of the currently-mapped snapshot (or 5138 * RBD_SNAP_HEAD_NAME for the base image). 5139 */ 5140 static ssize_t rbd_snap_show(struct device *dev, 5141 struct device_attribute *attr, 5142 char *buf) 5143 { 5144 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5145 5146 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 5147 } 5148 5149 static ssize_t rbd_snap_id_show(struct device *dev, 5150 struct device_attribute *attr, char *buf) 5151 { 5152 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5153 5154 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 5155 } 5156 5157 /* 5158 * For a v2 image, shows the chain of parent images, separated by empty 5159 * lines. For v1 images or if there is no parent, shows "(no parent 5160 * image)". 5161 */ 5162 static ssize_t rbd_parent_show(struct device *dev, 5163 struct device_attribute *attr, 5164 char *buf) 5165 { 5166 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5167 ssize_t count = 0; 5168 5169 if (!rbd_dev->parent) 5170 return sprintf(buf, "(no parent image)\n"); 5171 5172 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 5173 struct rbd_spec *spec = rbd_dev->parent_spec; 5174 5175 count += sprintf(&buf[count], "%s" 5176 "pool_id %llu\npool_name %s\n" 5177 "pool_ns %s\n" 5178 "image_id %s\nimage_name %s\n" 5179 "snap_id %llu\nsnap_name %s\n" 5180 "overlap %llu\n", 5181 !count ? "" : "\n", /* first? */ 5182 spec->pool_id, spec->pool_name, 5183 spec->pool_ns ?: "", 5184 spec->image_id, spec->image_name ?: "(unknown)", 5185 spec->snap_id, spec->snap_name, 5186 rbd_dev->parent_overlap); 5187 } 5188 5189 return count; 5190 } 5191 5192 static ssize_t rbd_image_refresh(struct device *dev, 5193 struct device_attribute *attr, 5194 const char *buf, 5195 size_t size) 5196 { 5197 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5198 int ret; 5199 5200 if (!capable(CAP_SYS_ADMIN)) 5201 return -EPERM; 5202 5203 ret = rbd_dev_refresh(rbd_dev); 5204 if (ret) 5205 return ret; 5206 5207 return size; 5208 } 5209 5210 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 5211 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 5212 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 5213 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 5214 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 5215 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 5216 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 5217 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 5218 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 5219 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 5220 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL); 5221 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 5222 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 5223 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 5224 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 5225 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 5226 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 5227 5228 static struct attribute *rbd_attrs[] = { 5229 &dev_attr_size.attr, 5230 &dev_attr_features.attr, 5231 &dev_attr_major.attr, 5232 &dev_attr_minor.attr, 5233 &dev_attr_client_addr.attr, 5234 &dev_attr_client_id.attr, 5235 &dev_attr_cluster_fsid.attr, 5236 &dev_attr_config_info.attr, 5237 &dev_attr_pool.attr, 5238 &dev_attr_pool_id.attr, 5239 &dev_attr_pool_ns.attr, 5240 &dev_attr_name.attr, 5241 &dev_attr_image_id.attr, 5242 &dev_attr_current_snap.attr, 5243 &dev_attr_snap_id.attr, 5244 &dev_attr_parent.attr, 5245 &dev_attr_refresh.attr, 5246 NULL 5247 }; 5248 5249 static struct attribute_group rbd_attr_group = { 5250 .attrs = rbd_attrs, 5251 }; 5252 5253 static const struct attribute_group *rbd_attr_groups[] = { 5254 &rbd_attr_group, 5255 NULL 5256 }; 5257 5258 static void rbd_dev_release(struct device *dev); 5259 5260 static const struct device_type rbd_device_type = { 5261 .name = "rbd", 5262 .groups = rbd_attr_groups, 5263 .release = rbd_dev_release, 5264 }; 5265 5266 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 5267 { 5268 kref_get(&spec->kref); 5269 5270 return spec; 5271 } 5272 5273 static void rbd_spec_free(struct kref *kref); 5274 static void rbd_spec_put(struct rbd_spec *spec) 5275 { 5276 if (spec) 5277 kref_put(&spec->kref, rbd_spec_free); 5278 } 5279 5280 static struct rbd_spec *rbd_spec_alloc(void) 5281 { 5282 struct rbd_spec *spec; 5283 5284 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 5285 if (!spec) 5286 return NULL; 5287 5288 spec->pool_id = CEPH_NOPOOL; 5289 spec->snap_id = CEPH_NOSNAP; 5290 kref_init(&spec->kref); 5291 5292 return spec; 5293 } 5294 5295 static void rbd_spec_free(struct kref *kref) 5296 { 5297 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 5298 5299 kfree(spec->pool_name); 5300 kfree(spec->pool_ns); 5301 kfree(spec->image_id); 5302 kfree(spec->image_name); 5303 kfree(spec->snap_name); 5304 kfree(spec); 5305 } 5306 5307 static void rbd_dev_free(struct rbd_device *rbd_dev) 5308 { 5309 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 5310 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 5311 5312 ceph_oid_destroy(&rbd_dev->header_oid); 5313 ceph_oloc_destroy(&rbd_dev->header_oloc); 5314 kfree(rbd_dev->config_info); 5315 5316 rbd_put_client(rbd_dev->rbd_client); 5317 rbd_spec_put(rbd_dev->spec); 5318 kfree(rbd_dev->opts); 5319 kfree(rbd_dev); 5320 } 5321 5322 static void rbd_dev_release(struct device *dev) 5323 { 5324 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5325 bool need_put = !!rbd_dev->opts; 5326 5327 if (need_put) { 5328 destroy_workqueue(rbd_dev->task_wq); 5329 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5330 } 5331 5332 rbd_dev_free(rbd_dev); 5333 5334 /* 5335 * This is racy, but way better than putting module outside of 5336 * the release callback. The race window is pretty small, so 5337 * doing something similar to dm (dm-builtin.c) is overkill. 5338 */ 5339 if (need_put) 5340 module_put(THIS_MODULE); 5341 } 5342 5343 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec) 5344 { 5345 struct rbd_device *rbd_dev; 5346 5347 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 5348 if (!rbd_dev) 5349 return NULL; 5350 5351 spin_lock_init(&rbd_dev->lock); 5352 INIT_LIST_HEAD(&rbd_dev->node); 5353 init_rwsem(&rbd_dev->header_rwsem); 5354 5355 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 5356 ceph_oid_init(&rbd_dev->header_oid); 5357 rbd_dev->header_oloc.pool = spec->pool_id; 5358 if (spec->pool_ns) { 5359 WARN_ON(!*spec->pool_ns); 5360 rbd_dev->header_oloc.pool_ns = 5361 ceph_find_or_create_string(spec->pool_ns, 5362 strlen(spec->pool_ns)); 5363 } 5364 5365 mutex_init(&rbd_dev->watch_mutex); 5366 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 5367 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 5368 5369 init_rwsem(&rbd_dev->lock_rwsem); 5370 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 5371 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 5372 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 5373 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 5374 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 5375 spin_lock_init(&rbd_dev->lock_lists_lock); 5376 INIT_LIST_HEAD(&rbd_dev->acquiring_list); 5377 INIT_LIST_HEAD(&rbd_dev->running_list); 5378 init_completion(&rbd_dev->acquire_wait); 5379 init_completion(&rbd_dev->releasing_wait); 5380 5381 spin_lock_init(&rbd_dev->object_map_lock); 5382 5383 rbd_dev->dev.bus = &rbd_bus_type; 5384 rbd_dev->dev.type = &rbd_device_type; 5385 rbd_dev->dev.parent = &rbd_root_dev; 5386 device_initialize(&rbd_dev->dev); 5387 5388 return rbd_dev; 5389 } 5390 5391 /* 5392 * Create a mapping rbd_dev. 5393 */ 5394 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 5395 struct rbd_spec *spec, 5396 struct rbd_options *opts) 5397 { 5398 struct rbd_device *rbd_dev; 5399 5400 rbd_dev = __rbd_dev_create(spec); 5401 if (!rbd_dev) 5402 return NULL; 5403 5404 /* get an id and fill in device name */ 5405 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 5406 minor_to_rbd_dev_id(1 << MINORBITS), 5407 GFP_KERNEL); 5408 if (rbd_dev->dev_id < 0) 5409 goto fail_rbd_dev; 5410 5411 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 5412 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 5413 rbd_dev->name); 5414 if (!rbd_dev->task_wq) 5415 goto fail_dev_id; 5416 5417 /* we have a ref from do_rbd_add() */ 5418 __module_get(THIS_MODULE); 5419 5420 rbd_dev->rbd_client = rbdc; 5421 rbd_dev->spec = spec; 5422 rbd_dev->opts = opts; 5423 5424 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 5425 return rbd_dev; 5426 5427 fail_dev_id: 5428 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5429 fail_rbd_dev: 5430 rbd_dev_free(rbd_dev); 5431 return NULL; 5432 } 5433 5434 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 5435 { 5436 if (rbd_dev) 5437 put_device(&rbd_dev->dev); 5438 } 5439 5440 /* 5441 * Get the size and object order for an image snapshot, or if 5442 * snap_id is CEPH_NOSNAP, gets this information for the base 5443 * image. 5444 */ 5445 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 5446 u8 *order, u64 *snap_size) 5447 { 5448 __le64 snapid = cpu_to_le64(snap_id); 5449 int ret; 5450 struct { 5451 u8 order; 5452 __le64 size; 5453 } __attribute__ ((packed)) size_buf = { 0 }; 5454 5455 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5456 &rbd_dev->header_oloc, "get_size", 5457 &snapid, sizeof(snapid), 5458 &size_buf, sizeof(size_buf)); 5459 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5460 if (ret < 0) 5461 return ret; 5462 if (ret < sizeof (size_buf)) 5463 return -ERANGE; 5464 5465 if (order) { 5466 *order = size_buf.order; 5467 dout(" order %u", (unsigned int)*order); 5468 } 5469 *snap_size = le64_to_cpu(size_buf.size); 5470 5471 dout(" snap_id 0x%016llx snap_size = %llu\n", 5472 (unsigned long long)snap_id, 5473 (unsigned long long)*snap_size); 5474 5475 return 0; 5476 } 5477 5478 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev, 5479 char **pobject_prefix) 5480 { 5481 size_t size; 5482 void *reply_buf; 5483 char *object_prefix; 5484 int ret; 5485 void *p; 5486 5487 /* Response will be an encoded string, which includes a length */ 5488 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX; 5489 reply_buf = kzalloc(size, GFP_KERNEL); 5490 if (!reply_buf) 5491 return -ENOMEM; 5492 5493 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5494 &rbd_dev->header_oloc, "get_object_prefix", 5495 NULL, 0, reply_buf, size); 5496 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5497 if (ret < 0) 5498 goto out; 5499 5500 p = reply_buf; 5501 object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL, 5502 GFP_NOIO); 5503 if (IS_ERR(object_prefix)) { 5504 ret = PTR_ERR(object_prefix); 5505 goto out; 5506 } 5507 ret = 0; 5508 5509 *pobject_prefix = object_prefix; 5510 dout(" object_prefix = %s\n", object_prefix); 5511 out: 5512 kfree(reply_buf); 5513 5514 return ret; 5515 } 5516 5517 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 5518 bool read_only, u64 *snap_features) 5519 { 5520 struct { 5521 __le64 snap_id; 5522 u8 read_only; 5523 } features_in; 5524 struct { 5525 __le64 features; 5526 __le64 incompat; 5527 } __attribute__ ((packed)) features_buf = { 0 }; 5528 u64 unsup; 5529 int ret; 5530 5531 features_in.snap_id = cpu_to_le64(snap_id); 5532 features_in.read_only = read_only; 5533 5534 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5535 &rbd_dev->header_oloc, "get_features", 5536 &features_in, sizeof(features_in), 5537 &features_buf, sizeof(features_buf)); 5538 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5539 if (ret < 0) 5540 return ret; 5541 if (ret < sizeof (features_buf)) 5542 return -ERANGE; 5543 5544 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 5545 if (unsup) { 5546 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 5547 unsup); 5548 return -ENXIO; 5549 } 5550 5551 *snap_features = le64_to_cpu(features_buf.features); 5552 5553 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 5554 (unsigned long long)snap_id, 5555 (unsigned long long)*snap_features, 5556 (unsigned long long)le64_to_cpu(features_buf.incompat)); 5557 5558 return 0; 5559 } 5560 5561 /* 5562 * These are generic image flags, but since they are used only for 5563 * object map, store them in rbd_dev->object_map_flags. 5564 * 5565 * For the same reason, this function is called only on object map 5566 * (re)load and not on header refresh. 5567 */ 5568 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev) 5569 { 5570 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5571 __le64 flags; 5572 int ret; 5573 5574 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5575 &rbd_dev->header_oloc, "get_flags", 5576 &snapid, sizeof(snapid), 5577 &flags, sizeof(flags)); 5578 if (ret < 0) 5579 return ret; 5580 if (ret < sizeof(flags)) 5581 return -EBADMSG; 5582 5583 rbd_dev->object_map_flags = le64_to_cpu(flags); 5584 return 0; 5585 } 5586 5587 struct parent_image_info { 5588 u64 pool_id; 5589 const char *pool_ns; 5590 const char *image_id; 5591 u64 snap_id; 5592 5593 bool has_overlap; 5594 u64 overlap; 5595 }; 5596 5597 static void rbd_parent_info_cleanup(struct parent_image_info *pii) 5598 { 5599 kfree(pii->pool_ns); 5600 kfree(pii->image_id); 5601 5602 memset(pii, 0, sizeof(*pii)); 5603 } 5604 5605 /* 5606 * The caller is responsible for @pii. 5607 */ 5608 static int decode_parent_image_spec(void **p, void *end, 5609 struct parent_image_info *pii) 5610 { 5611 u8 struct_v; 5612 u32 struct_len; 5613 int ret; 5614 5615 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec", 5616 &struct_v, &struct_len); 5617 if (ret) 5618 return ret; 5619 5620 ceph_decode_64_safe(p, end, pii->pool_id, e_inval); 5621 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5622 if (IS_ERR(pii->pool_ns)) { 5623 ret = PTR_ERR(pii->pool_ns); 5624 pii->pool_ns = NULL; 5625 return ret; 5626 } 5627 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5628 if (IS_ERR(pii->image_id)) { 5629 ret = PTR_ERR(pii->image_id); 5630 pii->image_id = NULL; 5631 return ret; 5632 } 5633 ceph_decode_64_safe(p, end, pii->snap_id, e_inval); 5634 return 0; 5635 5636 e_inval: 5637 return -EINVAL; 5638 } 5639 5640 static int __get_parent_info(struct rbd_device *rbd_dev, 5641 struct page *req_page, 5642 struct page *reply_page, 5643 struct parent_image_info *pii) 5644 { 5645 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5646 size_t reply_len = PAGE_SIZE; 5647 void *p, *end; 5648 int ret; 5649 5650 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5651 "rbd", "parent_get", CEPH_OSD_FLAG_READ, 5652 req_page, sizeof(u64), &reply_page, &reply_len); 5653 if (ret) 5654 return ret == -EOPNOTSUPP ? 1 : ret; 5655 5656 p = page_address(reply_page); 5657 end = p + reply_len; 5658 ret = decode_parent_image_spec(&p, end, pii); 5659 if (ret) 5660 return ret; 5661 5662 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5663 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ, 5664 req_page, sizeof(u64), &reply_page, &reply_len); 5665 if (ret) 5666 return ret; 5667 5668 p = page_address(reply_page); 5669 end = p + reply_len; 5670 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval); 5671 if (pii->has_overlap) 5672 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5673 5674 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5675 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id, 5676 pii->has_overlap, pii->overlap); 5677 return 0; 5678 5679 e_inval: 5680 return -EINVAL; 5681 } 5682 5683 /* 5684 * The caller is responsible for @pii. 5685 */ 5686 static int __get_parent_info_legacy(struct rbd_device *rbd_dev, 5687 struct page *req_page, 5688 struct page *reply_page, 5689 struct parent_image_info *pii) 5690 { 5691 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5692 size_t reply_len = PAGE_SIZE; 5693 void *p, *end; 5694 int ret; 5695 5696 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5697 "rbd", "get_parent", CEPH_OSD_FLAG_READ, 5698 req_page, sizeof(u64), &reply_page, &reply_len); 5699 if (ret) 5700 return ret; 5701 5702 p = page_address(reply_page); 5703 end = p + reply_len; 5704 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval); 5705 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5706 if (IS_ERR(pii->image_id)) { 5707 ret = PTR_ERR(pii->image_id); 5708 pii->image_id = NULL; 5709 return ret; 5710 } 5711 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval); 5712 pii->has_overlap = true; 5713 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5714 5715 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5716 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id, 5717 pii->has_overlap, pii->overlap); 5718 return 0; 5719 5720 e_inval: 5721 return -EINVAL; 5722 } 5723 5724 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev, 5725 struct parent_image_info *pii) 5726 { 5727 struct page *req_page, *reply_page; 5728 void *p; 5729 int ret; 5730 5731 req_page = alloc_page(GFP_KERNEL); 5732 if (!req_page) 5733 return -ENOMEM; 5734 5735 reply_page = alloc_page(GFP_KERNEL); 5736 if (!reply_page) { 5737 __free_page(req_page); 5738 return -ENOMEM; 5739 } 5740 5741 p = page_address(req_page); 5742 ceph_encode_64(&p, rbd_dev->spec->snap_id); 5743 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii); 5744 if (ret > 0) 5745 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page, 5746 pii); 5747 5748 __free_page(req_page); 5749 __free_page(reply_page); 5750 return ret; 5751 } 5752 5753 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev) 5754 { 5755 struct rbd_spec *parent_spec; 5756 struct parent_image_info pii = { 0 }; 5757 int ret; 5758 5759 parent_spec = rbd_spec_alloc(); 5760 if (!parent_spec) 5761 return -ENOMEM; 5762 5763 ret = rbd_dev_v2_parent_info(rbd_dev, &pii); 5764 if (ret) 5765 goto out_err; 5766 5767 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) 5768 goto out; /* No parent? No problem. */ 5769 5770 /* The ceph file layout needs to fit pool id in 32 bits */ 5771 5772 ret = -EIO; 5773 if (pii.pool_id > (u64)U32_MAX) { 5774 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5775 (unsigned long long)pii.pool_id, U32_MAX); 5776 goto out_err; 5777 } 5778 5779 /* 5780 * The parent won't change except when the clone is flattened, 5781 * so we only need to record the parent image spec once. 5782 */ 5783 parent_spec->pool_id = pii.pool_id; 5784 if (pii.pool_ns && *pii.pool_ns) { 5785 parent_spec->pool_ns = pii.pool_ns; 5786 pii.pool_ns = NULL; 5787 } 5788 parent_spec->image_id = pii.image_id; 5789 pii.image_id = NULL; 5790 parent_spec->snap_id = pii.snap_id; 5791 5792 rbd_assert(!rbd_dev->parent_spec); 5793 rbd_dev->parent_spec = parent_spec; 5794 parent_spec = NULL; /* rbd_dev now owns this */ 5795 5796 /* 5797 * Record the parent overlap. If it's zero, issue a warning as 5798 * we will proceed as if there is no parent. 5799 */ 5800 if (!pii.overlap) 5801 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5802 rbd_dev->parent_overlap = pii.overlap; 5803 5804 out: 5805 ret = 0; 5806 out_err: 5807 rbd_parent_info_cleanup(&pii); 5808 rbd_spec_put(parent_spec); 5809 return ret; 5810 } 5811 5812 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev, 5813 u64 *stripe_unit, u64 *stripe_count) 5814 { 5815 struct { 5816 __le64 stripe_unit; 5817 __le64 stripe_count; 5818 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5819 size_t size = sizeof (striping_info_buf); 5820 int ret; 5821 5822 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5823 &rbd_dev->header_oloc, "get_stripe_unit_count", 5824 NULL, 0, &striping_info_buf, size); 5825 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5826 if (ret < 0) 5827 return ret; 5828 if (ret < size) 5829 return -ERANGE; 5830 5831 *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit); 5832 *stripe_count = le64_to_cpu(striping_info_buf.stripe_count); 5833 dout(" stripe_unit = %llu stripe_count = %llu\n", *stripe_unit, 5834 *stripe_count); 5835 5836 return 0; 5837 } 5838 5839 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id) 5840 { 5841 __le64 data_pool_buf; 5842 int ret; 5843 5844 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5845 &rbd_dev->header_oloc, "get_data_pool", 5846 NULL, 0, &data_pool_buf, 5847 sizeof(data_pool_buf)); 5848 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5849 if (ret < 0) 5850 return ret; 5851 if (ret < sizeof(data_pool_buf)) 5852 return -EBADMSG; 5853 5854 *data_pool_id = le64_to_cpu(data_pool_buf); 5855 dout(" data_pool_id = %lld\n", *data_pool_id); 5856 WARN_ON(*data_pool_id == CEPH_NOPOOL); 5857 5858 return 0; 5859 } 5860 5861 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5862 { 5863 CEPH_DEFINE_OID_ONSTACK(oid); 5864 size_t image_id_size; 5865 char *image_id; 5866 void *p; 5867 void *end; 5868 size_t size; 5869 void *reply_buf = NULL; 5870 size_t len = 0; 5871 char *image_name = NULL; 5872 int ret; 5873 5874 rbd_assert(!rbd_dev->spec->image_name); 5875 5876 len = strlen(rbd_dev->spec->image_id); 5877 image_id_size = sizeof (__le32) + len; 5878 image_id = kmalloc(image_id_size, GFP_KERNEL); 5879 if (!image_id) 5880 return NULL; 5881 5882 p = image_id; 5883 end = image_id + image_id_size; 5884 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5885 5886 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5887 reply_buf = kmalloc(size, GFP_KERNEL); 5888 if (!reply_buf) 5889 goto out; 5890 5891 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5892 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5893 "dir_get_name", image_id, image_id_size, 5894 reply_buf, size); 5895 if (ret < 0) 5896 goto out; 5897 p = reply_buf; 5898 end = reply_buf + ret; 5899 5900 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5901 if (IS_ERR(image_name)) 5902 image_name = NULL; 5903 else 5904 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5905 out: 5906 kfree(reply_buf); 5907 kfree(image_id); 5908 5909 return image_name; 5910 } 5911 5912 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5913 { 5914 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5915 const char *snap_name; 5916 u32 which = 0; 5917 5918 /* Skip over names until we find the one we are looking for */ 5919 5920 snap_name = rbd_dev->header.snap_names; 5921 while (which < snapc->num_snaps) { 5922 if (!strcmp(name, snap_name)) 5923 return snapc->snaps[which]; 5924 snap_name += strlen(snap_name) + 1; 5925 which++; 5926 } 5927 return CEPH_NOSNAP; 5928 } 5929 5930 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5931 { 5932 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5933 u32 which; 5934 bool found = false; 5935 u64 snap_id; 5936 5937 for (which = 0; !found && which < snapc->num_snaps; which++) { 5938 const char *snap_name; 5939 5940 snap_id = snapc->snaps[which]; 5941 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5942 if (IS_ERR(snap_name)) { 5943 /* ignore no-longer existing snapshots */ 5944 if (PTR_ERR(snap_name) == -ENOENT) 5945 continue; 5946 else 5947 break; 5948 } 5949 found = !strcmp(name, snap_name); 5950 kfree(snap_name); 5951 } 5952 return found ? snap_id : CEPH_NOSNAP; 5953 } 5954 5955 /* 5956 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5957 * no snapshot by that name is found, or if an error occurs. 5958 */ 5959 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5960 { 5961 if (rbd_dev->image_format == 1) 5962 return rbd_v1_snap_id_by_name(rbd_dev, name); 5963 5964 return rbd_v2_snap_id_by_name(rbd_dev, name); 5965 } 5966 5967 /* 5968 * An image being mapped will have everything but the snap id. 5969 */ 5970 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5971 { 5972 struct rbd_spec *spec = rbd_dev->spec; 5973 5974 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5975 rbd_assert(spec->image_id && spec->image_name); 5976 rbd_assert(spec->snap_name); 5977 5978 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5979 u64 snap_id; 5980 5981 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5982 if (snap_id == CEPH_NOSNAP) 5983 return -ENOENT; 5984 5985 spec->snap_id = snap_id; 5986 } else { 5987 spec->snap_id = CEPH_NOSNAP; 5988 } 5989 5990 return 0; 5991 } 5992 5993 /* 5994 * A parent image will have all ids but none of the names. 5995 * 5996 * All names in an rbd spec are dynamically allocated. It's OK if we 5997 * can't figure out the name for an image id. 5998 */ 5999 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 6000 { 6001 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 6002 struct rbd_spec *spec = rbd_dev->spec; 6003 const char *pool_name; 6004 const char *image_name; 6005 const char *snap_name; 6006 int ret; 6007 6008 rbd_assert(spec->pool_id != CEPH_NOPOOL); 6009 rbd_assert(spec->image_id); 6010 rbd_assert(spec->snap_id != CEPH_NOSNAP); 6011 6012 /* Get the pool name; we have to make our own copy of this */ 6013 6014 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 6015 if (!pool_name) { 6016 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 6017 return -EIO; 6018 } 6019 pool_name = kstrdup(pool_name, GFP_KERNEL); 6020 if (!pool_name) 6021 return -ENOMEM; 6022 6023 /* Fetch the image name; tolerate failure here */ 6024 6025 image_name = rbd_dev_image_name(rbd_dev); 6026 if (!image_name) 6027 rbd_warn(rbd_dev, "unable to get image name"); 6028 6029 /* Fetch the snapshot name */ 6030 6031 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 6032 if (IS_ERR(snap_name)) { 6033 ret = PTR_ERR(snap_name); 6034 goto out_err; 6035 } 6036 6037 spec->pool_name = pool_name; 6038 spec->image_name = image_name; 6039 spec->snap_name = snap_name; 6040 6041 return 0; 6042 6043 out_err: 6044 kfree(image_name); 6045 kfree(pool_name); 6046 return ret; 6047 } 6048 6049 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, 6050 struct ceph_snap_context **psnapc) 6051 { 6052 size_t size; 6053 int ret; 6054 void *reply_buf; 6055 void *p; 6056 void *end; 6057 u64 seq; 6058 u32 snap_count; 6059 struct ceph_snap_context *snapc; 6060 u32 i; 6061 6062 /* 6063 * We'll need room for the seq value (maximum snapshot id), 6064 * snapshot count, and array of that many snapshot ids. 6065 * For now we have a fixed upper limit on the number we're 6066 * prepared to receive. 6067 */ 6068 size = sizeof (__le64) + sizeof (__le32) + 6069 RBD_MAX_SNAP_COUNT * sizeof (__le64); 6070 reply_buf = kzalloc(size, GFP_KERNEL); 6071 if (!reply_buf) 6072 return -ENOMEM; 6073 6074 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6075 &rbd_dev->header_oloc, "get_snapcontext", 6076 NULL, 0, reply_buf, size); 6077 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6078 if (ret < 0) 6079 goto out; 6080 6081 p = reply_buf; 6082 end = reply_buf + ret; 6083 ret = -ERANGE; 6084 ceph_decode_64_safe(&p, end, seq, out); 6085 ceph_decode_32_safe(&p, end, snap_count, out); 6086 6087 /* 6088 * Make sure the reported number of snapshot ids wouldn't go 6089 * beyond the end of our buffer. But before checking that, 6090 * make sure the computed size of the snapshot context we 6091 * allocate is representable in a size_t. 6092 */ 6093 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 6094 / sizeof (u64)) { 6095 ret = -EINVAL; 6096 goto out; 6097 } 6098 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 6099 goto out; 6100 ret = 0; 6101 6102 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 6103 if (!snapc) { 6104 ret = -ENOMEM; 6105 goto out; 6106 } 6107 snapc->seq = seq; 6108 for (i = 0; i < snap_count; i++) 6109 snapc->snaps[i] = ceph_decode_64(&p); 6110 6111 *psnapc = snapc; 6112 dout(" snap context seq = %llu, snap_count = %u\n", 6113 (unsigned long long)seq, (unsigned int)snap_count); 6114 out: 6115 kfree(reply_buf); 6116 6117 return ret; 6118 } 6119 6120 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 6121 u64 snap_id) 6122 { 6123 size_t size; 6124 void *reply_buf; 6125 __le64 snapid; 6126 int ret; 6127 void *p; 6128 void *end; 6129 char *snap_name; 6130 6131 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 6132 reply_buf = kmalloc(size, GFP_KERNEL); 6133 if (!reply_buf) 6134 return ERR_PTR(-ENOMEM); 6135 6136 snapid = cpu_to_le64(snap_id); 6137 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6138 &rbd_dev->header_oloc, "get_snapshot_name", 6139 &snapid, sizeof(snapid), reply_buf, size); 6140 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6141 if (ret < 0) { 6142 snap_name = ERR_PTR(ret); 6143 goto out; 6144 } 6145 6146 p = reply_buf; 6147 end = reply_buf + ret; 6148 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 6149 if (IS_ERR(snap_name)) 6150 goto out; 6151 6152 dout(" snap_id 0x%016llx snap_name = %s\n", 6153 (unsigned long long)snap_id, snap_name); 6154 out: 6155 kfree(reply_buf); 6156 6157 return snap_name; 6158 } 6159 6160 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev, 6161 struct rbd_image_header *header, 6162 bool first_time) 6163 { 6164 int ret; 6165 6166 ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 6167 first_time ? &header->obj_order : NULL, 6168 &header->image_size); 6169 if (ret) 6170 return ret; 6171 6172 if (first_time) { 6173 ret = rbd_dev_v2_header_onetime(rbd_dev, header); 6174 if (ret) 6175 return ret; 6176 } 6177 6178 ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc); 6179 if (ret) 6180 return ret; 6181 6182 return 0; 6183 } 6184 6185 static int rbd_dev_header_info(struct rbd_device *rbd_dev, 6186 struct rbd_image_header *header, 6187 bool first_time) 6188 { 6189 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6190 rbd_assert(!header->object_prefix && !header->snapc); 6191 6192 if (rbd_dev->image_format == 1) 6193 return rbd_dev_v1_header_info(rbd_dev, header, first_time); 6194 6195 return rbd_dev_v2_header_info(rbd_dev, header, first_time); 6196 } 6197 6198 /* 6199 * Skips over white space at *buf, and updates *buf to point to the 6200 * first found non-space character (if any). Returns the length of 6201 * the token (string of non-white space characters) found. Note 6202 * that *buf must be terminated with '\0'. 6203 */ 6204 static inline size_t next_token(const char **buf) 6205 { 6206 /* 6207 * These are the characters that produce nonzero for 6208 * isspace() in the "C" and "POSIX" locales. 6209 */ 6210 static const char spaces[] = " \f\n\r\t\v"; 6211 6212 *buf += strspn(*buf, spaces); /* Find start of token */ 6213 6214 return strcspn(*buf, spaces); /* Return token length */ 6215 } 6216 6217 /* 6218 * Finds the next token in *buf, dynamically allocates a buffer big 6219 * enough to hold a copy of it, and copies the token into the new 6220 * buffer. The copy is guaranteed to be terminated with '\0'. Note 6221 * that a duplicate buffer is created even for a zero-length token. 6222 * 6223 * Returns a pointer to the newly-allocated duplicate, or a null 6224 * pointer if memory for the duplicate was not available. If 6225 * the lenp argument is a non-null pointer, the length of the token 6226 * (not including the '\0') is returned in *lenp. 6227 * 6228 * If successful, the *buf pointer will be updated to point beyond 6229 * the end of the found token. 6230 * 6231 * Note: uses GFP_KERNEL for allocation. 6232 */ 6233 static inline char *dup_token(const char **buf, size_t *lenp) 6234 { 6235 char *dup; 6236 size_t len; 6237 6238 len = next_token(buf); 6239 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 6240 if (!dup) 6241 return NULL; 6242 *(dup + len) = '\0'; 6243 *buf += len; 6244 6245 if (lenp) 6246 *lenp = len; 6247 6248 return dup; 6249 } 6250 6251 static int rbd_parse_param(struct fs_parameter *param, 6252 struct rbd_parse_opts_ctx *pctx) 6253 { 6254 struct rbd_options *opt = pctx->opts; 6255 struct fs_parse_result result; 6256 struct p_log log = {.prefix = "rbd"}; 6257 int token, ret; 6258 6259 ret = ceph_parse_param(param, pctx->copts, NULL); 6260 if (ret != -ENOPARAM) 6261 return ret; 6262 6263 token = __fs_parse(&log, rbd_parameters, param, &result); 6264 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token); 6265 if (token < 0) { 6266 if (token == -ENOPARAM) 6267 return inval_plog(&log, "Unknown parameter '%s'", 6268 param->key); 6269 return token; 6270 } 6271 6272 switch (token) { 6273 case Opt_queue_depth: 6274 if (result.uint_32 < 1) 6275 goto out_of_range; 6276 opt->queue_depth = result.uint_32; 6277 break; 6278 case Opt_alloc_size: 6279 if (result.uint_32 < SECTOR_SIZE) 6280 goto out_of_range; 6281 if (!is_power_of_2(result.uint_32)) 6282 return inval_plog(&log, "alloc_size must be a power of 2"); 6283 opt->alloc_size = result.uint_32; 6284 break; 6285 case Opt_lock_timeout: 6286 /* 0 is "wait forever" (i.e. infinite timeout) */ 6287 if (result.uint_32 > INT_MAX / 1000) 6288 goto out_of_range; 6289 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000); 6290 break; 6291 case Opt_pool_ns: 6292 kfree(pctx->spec->pool_ns); 6293 pctx->spec->pool_ns = param->string; 6294 param->string = NULL; 6295 break; 6296 case Opt_compression_hint: 6297 switch (result.uint_32) { 6298 case Opt_compression_hint_none: 6299 opt->alloc_hint_flags &= 6300 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE | 6301 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE); 6302 break; 6303 case Opt_compression_hint_compressible: 6304 opt->alloc_hint_flags |= 6305 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6306 opt->alloc_hint_flags &= 6307 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6308 break; 6309 case Opt_compression_hint_incompressible: 6310 opt->alloc_hint_flags |= 6311 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6312 opt->alloc_hint_flags &= 6313 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6314 break; 6315 default: 6316 BUG(); 6317 } 6318 break; 6319 case Opt_read_only: 6320 opt->read_only = true; 6321 break; 6322 case Opt_read_write: 6323 opt->read_only = false; 6324 break; 6325 case Opt_lock_on_read: 6326 opt->lock_on_read = true; 6327 break; 6328 case Opt_exclusive: 6329 opt->exclusive = true; 6330 break; 6331 case Opt_notrim: 6332 opt->trim = false; 6333 break; 6334 default: 6335 BUG(); 6336 } 6337 6338 return 0; 6339 6340 out_of_range: 6341 return inval_plog(&log, "%s out of range", param->key); 6342 } 6343 6344 /* 6345 * This duplicates most of generic_parse_monolithic(), untying it from 6346 * fs_context and skipping standard superblock and security options. 6347 */ 6348 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx) 6349 { 6350 char *key; 6351 int ret = 0; 6352 6353 dout("%s '%s'\n", __func__, options); 6354 while ((key = strsep(&options, ",")) != NULL) { 6355 if (*key) { 6356 struct fs_parameter param = { 6357 .key = key, 6358 .type = fs_value_is_flag, 6359 }; 6360 char *value = strchr(key, '='); 6361 size_t v_len = 0; 6362 6363 if (value) { 6364 if (value == key) 6365 continue; 6366 *value++ = 0; 6367 v_len = strlen(value); 6368 param.string = kmemdup_nul(value, v_len, 6369 GFP_KERNEL); 6370 if (!param.string) 6371 return -ENOMEM; 6372 param.type = fs_value_is_string; 6373 } 6374 param.size = v_len; 6375 6376 ret = rbd_parse_param(¶m, pctx); 6377 kfree(param.string); 6378 if (ret) 6379 break; 6380 } 6381 } 6382 6383 return ret; 6384 } 6385 6386 /* 6387 * Parse the options provided for an "rbd add" (i.e., rbd image 6388 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 6389 * and the data written is passed here via a NUL-terminated buffer. 6390 * Returns 0 if successful or an error code otherwise. 6391 * 6392 * The information extracted from these options is recorded in 6393 * the other parameters which return dynamically-allocated 6394 * structures: 6395 * ceph_opts 6396 * The address of a pointer that will refer to a ceph options 6397 * structure. Caller must release the returned pointer using 6398 * ceph_destroy_options() when it is no longer needed. 6399 * rbd_opts 6400 * Address of an rbd options pointer. Fully initialized by 6401 * this function; caller must release with kfree(). 6402 * spec 6403 * Address of an rbd image specification pointer. Fully 6404 * initialized by this function based on parsed options. 6405 * Caller must release with rbd_spec_put(). 6406 * 6407 * The options passed take this form: 6408 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 6409 * where: 6410 * <mon_addrs> 6411 * A comma-separated list of one or more monitor addresses. 6412 * A monitor address is an ip address, optionally followed 6413 * by a port number (separated by a colon). 6414 * I.e.: ip1[:port1][,ip2[:port2]...] 6415 * <options> 6416 * A comma-separated list of ceph and/or rbd options. 6417 * <pool_name> 6418 * The name of the rados pool containing the rbd image. 6419 * <image_name> 6420 * The name of the image in that pool to map. 6421 * <snap_id> 6422 * An optional snapshot id. If provided, the mapping will 6423 * present data from the image at the time that snapshot was 6424 * created. The image head is used if no snapshot id is 6425 * provided. Snapshot mappings are always read-only. 6426 */ 6427 static int rbd_add_parse_args(const char *buf, 6428 struct ceph_options **ceph_opts, 6429 struct rbd_options **opts, 6430 struct rbd_spec **rbd_spec) 6431 { 6432 size_t len; 6433 char *options; 6434 const char *mon_addrs; 6435 char *snap_name; 6436 size_t mon_addrs_size; 6437 struct rbd_parse_opts_ctx pctx = { 0 }; 6438 int ret; 6439 6440 /* The first four tokens are required */ 6441 6442 len = next_token(&buf); 6443 if (!len) { 6444 rbd_warn(NULL, "no monitor address(es) provided"); 6445 return -EINVAL; 6446 } 6447 mon_addrs = buf; 6448 mon_addrs_size = len; 6449 buf += len; 6450 6451 ret = -EINVAL; 6452 options = dup_token(&buf, NULL); 6453 if (!options) 6454 return -ENOMEM; 6455 if (!*options) { 6456 rbd_warn(NULL, "no options provided"); 6457 goto out_err; 6458 } 6459 6460 pctx.spec = rbd_spec_alloc(); 6461 if (!pctx.spec) 6462 goto out_mem; 6463 6464 pctx.spec->pool_name = dup_token(&buf, NULL); 6465 if (!pctx.spec->pool_name) 6466 goto out_mem; 6467 if (!*pctx.spec->pool_name) { 6468 rbd_warn(NULL, "no pool name provided"); 6469 goto out_err; 6470 } 6471 6472 pctx.spec->image_name = dup_token(&buf, NULL); 6473 if (!pctx.spec->image_name) 6474 goto out_mem; 6475 if (!*pctx.spec->image_name) { 6476 rbd_warn(NULL, "no image name provided"); 6477 goto out_err; 6478 } 6479 6480 /* 6481 * Snapshot name is optional; default is to use "-" 6482 * (indicating the head/no snapshot). 6483 */ 6484 len = next_token(&buf); 6485 if (!len) { 6486 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 6487 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 6488 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 6489 ret = -ENAMETOOLONG; 6490 goto out_err; 6491 } 6492 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 6493 if (!snap_name) 6494 goto out_mem; 6495 *(snap_name + len) = '\0'; 6496 pctx.spec->snap_name = snap_name; 6497 6498 pctx.copts = ceph_alloc_options(); 6499 if (!pctx.copts) 6500 goto out_mem; 6501 6502 /* Initialize all rbd options to the defaults */ 6503 6504 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL); 6505 if (!pctx.opts) 6506 goto out_mem; 6507 6508 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT; 6509 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 6510 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT; 6511 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 6512 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 6513 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 6514 pctx.opts->trim = RBD_TRIM_DEFAULT; 6515 6516 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL, 6517 ','); 6518 if (ret) 6519 goto out_err; 6520 6521 ret = rbd_parse_options(options, &pctx); 6522 if (ret) 6523 goto out_err; 6524 6525 *ceph_opts = pctx.copts; 6526 *opts = pctx.opts; 6527 *rbd_spec = pctx.spec; 6528 kfree(options); 6529 return 0; 6530 6531 out_mem: 6532 ret = -ENOMEM; 6533 out_err: 6534 kfree(pctx.opts); 6535 ceph_destroy_options(pctx.copts); 6536 rbd_spec_put(pctx.spec); 6537 kfree(options); 6538 return ret; 6539 } 6540 6541 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 6542 { 6543 down_write(&rbd_dev->lock_rwsem); 6544 if (__rbd_is_lock_owner(rbd_dev)) 6545 __rbd_release_lock(rbd_dev); 6546 up_write(&rbd_dev->lock_rwsem); 6547 } 6548 6549 /* 6550 * If the wait is interrupted, an error is returned even if the lock 6551 * was successfully acquired. rbd_dev_image_unlock() will release it 6552 * if needed. 6553 */ 6554 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 6555 { 6556 long ret; 6557 6558 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 6559 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read) 6560 return 0; 6561 6562 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 6563 return -EINVAL; 6564 } 6565 6566 if (rbd_is_ro(rbd_dev)) 6567 return 0; 6568 6569 rbd_assert(!rbd_is_lock_owner(rbd_dev)); 6570 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 6571 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait, 6572 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout)); 6573 if (ret > 0) { 6574 ret = rbd_dev->acquire_err; 6575 } else { 6576 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 6577 if (!ret) 6578 ret = -ETIMEDOUT; 6579 6580 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret); 6581 } 6582 if (ret) 6583 return ret; 6584 6585 /* 6586 * The lock may have been released by now, unless automatic lock 6587 * transitions are disabled. 6588 */ 6589 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev)); 6590 return 0; 6591 } 6592 6593 /* 6594 * An rbd format 2 image has a unique identifier, distinct from the 6595 * name given to it by the user. Internally, that identifier is 6596 * what's used to specify the names of objects related to the image. 6597 * 6598 * A special "rbd id" object is used to map an rbd image name to its 6599 * id. If that object doesn't exist, then there is no v2 rbd image 6600 * with the supplied name. 6601 * 6602 * This function will record the given rbd_dev's image_id field if 6603 * it can be determined, and in that case will return 0. If any 6604 * errors occur a negative errno will be returned and the rbd_dev's 6605 * image_id field will be unchanged (and should be NULL). 6606 */ 6607 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 6608 { 6609 int ret; 6610 size_t size; 6611 CEPH_DEFINE_OID_ONSTACK(oid); 6612 void *response; 6613 char *image_id; 6614 6615 /* 6616 * When probing a parent image, the image id is already 6617 * known (and the image name likely is not). There's no 6618 * need to fetch the image id again in this case. We 6619 * do still need to set the image format though. 6620 */ 6621 if (rbd_dev->spec->image_id) { 6622 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 6623 6624 return 0; 6625 } 6626 6627 /* 6628 * First, see if the format 2 image id file exists, and if 6629 * so, get the image's persistent id from it. 6630 */ 6631 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 6632 rbd_dev->spec->image_name); 6633 if (ret) 6634 return ret; 6635 6636 dout("rbd id object name is %s\n", oid.name); 6637 6638 /* Response will be an encoded string, which includes a length */ 6639 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 6640 response = kzalloc(size, GFP_NOIO); 6641 if (!response) { 6642 ret = -ENOMEM; 6643 goto out; 6644 } 6645 6646 /* If it doesn't exist we'll assume it's a format 1 image */ 6647 6648 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 6649 "get_id", NULL, 0, 6650 response, size); 6651 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6652 if (ret == -ENOENT) { 6653 image_id = kstrdup("", GFP_KERNEL); 6654 ret = image_id ? 0 : -ENOMEM; 6655 if (!ret) 6656 rbd_dev->image_format = 1; 6657 } else if (ret >= 0) { 6658 void *p = response; 6659 6660 image_id = ceph_extract_encoded_string(&p, p + ret, 6661 NULL, GFP_NOIO); 6662 ret = PTR_ERR_OR_ZERO(image_id); 6663 if (!ret) 6664 rbd_dev->image_format = 2; 6665 } 6666 6667 if (!ret) { 6668 rbd_dev->spec->image_id = image_id; 6669 dout("image_id is %s\n", image_id); 6670 } 6671 out: 6672 kfree(response); 6673 ceph_oid_destroy(&oid); 6674 return ret; 6675 } 6676 6677 /* 6678 * Undo whatever state changes are made by v1 or v2 header info 6679 * call. 6680 */ 6681 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 6682 { 6683 rbd_dev_parent_put(rbd_dev); 6684 rbd_object_map_free(rbd_dev); 6685 rbd_dev_mapping_clear(rbd_dev); 6686 6687 /* Free dynamic fields from the header, then zero it out */ 6688 6689 rbd_image_header_cleanup(&rbd_dev->header); 6690 } 6691 6692 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev, 6693 struct rbd_image_header *header) 6694 { 6695 int ret; 6696 6697 ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix); 6698 if (ret) 6699 return ret; 6700 6701 /* 6702 * Get the and check features for the image. Currently the 6703 * features are assumed to never change. 6704 */ 6705 ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 6706 rbd_is_ro(rbd_dev), &header->features); 6707 if (ret) 6708 return ret; 6709 6710 /* If the image supports fancy striping, get its parameters */ 6711 6712 if (header->features & RBD_FEATURE_STRIPINGV2) { 6713 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit, 6714 &header->stripe_count); 6715 if (ret) 6716 return ret; 6717 } 6718 6719 if (header->features & RBD_FEATURE_DATA_POOL) { 6720 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id); 6721 if (ret) 6722 return ret; 6723 } 6724 6725 return 0; 6726 } 6727 6728 /* 6729 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 6730 * rbd_dev_image_probe() recursion depth, which means it's also the 6731 * length of the already discovered part of the parent chain. 6732 */ 6733 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 6734 { 6735 struct rbd_device *parent = NULL; 6736 int ret; 6737 6738 if (!rbd_dev->parent_spec) 6739 return 0; 6740 6741 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 6742 pr_info("parent chain is too long (%d)\n", depth); 6743 ret = -EINVAL; 6744 goto out_err; 6745 } 6746 6747 parent = __rbd_dev_create(rbd_dev->parent_spec); 6748 if (!parent) { 6749 ret = -ENOMEM; 6750 goto out_err; 6751 } 6752 6753 /* 6754 * Images related by parent/child relationships always share 6755 * rbd_client and spec/parent_spec, so bump their refcounts. 6756 */ 6757 parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client); 6758 parent->spec = rbd_spec_get(rbd_dev->parent_spec); 6759 6760 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags); 6761 6762 ret = rbd_dev_image_probe(parent, depth); 6763 if (ret < 0) 6764 goto out_err; 6765 6766 rbd_dev->parent = parent; 6767 atomic_set(&rbd_dev->parent_ref, 1); 6768 return 0; 6769 6770 out_err: 6771 rbd_dev_unparent(rbd_dev); 6772 rbd_dev_destroy(parent); 6773 return ret; 6774 } 6775 6776 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6777 { 6778 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6779 rbd_free_disk(rbd_dev); 6780 if (!single_major) 6781 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6782 } 6783 6784 /* 6785 * rbd_dev->header_rwsem must be locked for write and will be unlocked 6786 * upon return. 6787 */ 6788 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 6789 { 6790 int ret; 6791 6792 /* Record our major and minor device numbers. */ 6793 6794 if (!single_major) { 6795 ret = register_blkdev(0, rbd_dev->name); 6796 if (ret < 0) 6797 goto err_out_unlock; 6798 6799 rbd_dev->major = ret; 6800 rbd_dev->minor = 0; 6801 } else { 6802 rbd_dev->major = rbd_major; 6803 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 6804 } 6805 6806 /* Set up the blkdev mapping. */ 6807 6808 ret = rbd_init_disk(rbd_dev); 6809 if (ret) 6810 goto err_out_blkdev; 6811 6812 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 6813 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev)); 6814 6815 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 6816 if (ret) 6817 goto err_out_disk; 6818 6819 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6820 up_write(&rbd_dev->header_rwsem); 6821 return 0; 6822 6823 err_out_disk: 6824 rbd_free_disk(rbd_dev); 6825 err_out_blkdev: 6826 if (!single_major) 6827 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6828 err_out_unlock: 6829 up_write(&rbd_dev->header_rwsem); 6830 return ret; 6831 } 6832 6833 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6834 { 6835 struct rbd_spec *spec = rbd_dev->spec; 6836 int ret; 6837 6838 /* Record the header object name for this rbd image. */ 6839 6840 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6841 if (rbd_dev->image_format == 1) 6842 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6843 spec->image_name, RBD_SUFFIX); 6844 else 6845 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6846 RBD_HEADER_PREFIX, spec->image_id); 6847 6848 return ret; 6849 } 6850 6851 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap) 6852 { 6853 if (!is_snap) { 6854 pr_info("image %s/%s%s%s does not exist\n", 6855 rbd_dev->spec->pool_name, 6856 rbd_dev->spec->pool_ns ?: "", 6857 rbd_dev->spec->pool_ns ? "/" : "", 6858 rbd_dev->spec->image_name); 6859 } else { 6860 pr_info("snap %s/%s%s%s@%s does not exist\n", 6861 rbd_dev->spec->pool_name, 6862 rbd_dev->spec->pool_ns ?: "", 6863 rbd_dev->spec->pool_ns ? "/" : "", 6864 rbd_dev->spec->image_name, 6865 rbd_dev->spec->snap_name); 6866 } 6867 } 6868 6869 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6870 { 6871 if (!rbd_is_ro(rbd_dev)) 6872 rbd_unregister_watch(rbd_dev); 6873 6874 rbd_dev_unprobe(rbd_dev); 6875 rbd_dev->image_format = 0; 6876 kfree(rbd_dev->spec->image_id); 6877 rbd_dev->spec->image_id = NULL; 6878 } 6879 6880 /* 6881 * Probe for the existence of the header object for the given rbd 6882 * device. If this image is the one being mapped (i.e., not a 6883 * parent), initiate a watch on its header object before using that 6884 * object to get detailed information about the rbd image. 6885 * 6886 * On success, returns with header_rwsem held for write if called 6887 * with @depth == 0. 6888 */ 6889 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6890 { 6891 bool need_watch = !rbd_is_ro(rbd_dev); 6892 int ret; 6893 6894 /* 6895 * Get the id from the image id object. Unless there's an 6896 * error, rbd_dev->spec->image_id will be filled in with 6897 * a dynamically-allocated string, and rbd_dev->image_format 6898 * will be set to either 1 or 2. 6899 */ 6900 ret = rbd_dev_image_id(rbd_dev); 6901 if (ret) 6902 return ret; 6903 6904 ret = rbd_dev_header_name(rbd_dev); 6905 if (ret) 6906 goto err_out_format; 6907 6908 if (need_watch) { 6909 ret = rbd_register_watch(rbd_dev); 6910 if (ret) { 6911 if (ret == -ENOENT) 6912 rbd_print_dne(rbd_dev, false); 6913 goto err_out_format; 6914 } 6915 } 6916 6917 if (!depth) 6918 down_write(&rbd_dev->header_rwsem); 6919 6920 ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true); 6921 if (ret) { 6922 if (ret == -ENOENT && !need_watch) 6923 rbd_print_dne(rbd_dev, false); 6924 goto err_out_probe; 6925 } 6926 6927 rbd_init_layout(rbd_dev); 6928 6929 /* 6930 * If this image is the one being mapped, we have pool name and 6931 * id, image name and id, and snap name - need to fill snap id. 6932 * Otherwise this is a parent image, identified by pool, image 6933 * and snap ids - need to fill in names for those ids. 6934 */ 6935 if (!depth) 6936 ret = rbd_spec_fill_snap_id(rbd_dev); 6937 else 6938 ret = rbd_spec_fill_names(rbd_dev); 6939 if (ret) { 6940 if (ret == -ENOENT) 6941 rbd_print_dne(rbd_dev, true); 6942 goto err_out_probe; 6943 } 6944 6945 ret = rbd_dev_mapping_set(rbd_dev); 6946 if (ret) 6947 goto err_out_probe; 6948 6949 if (rbd_is_snap(rbd_dev) && 6950 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) { 6951 ret = rbd_object_map_load(rbd_dev); 6952 if (ret) 6953 goto err_out_probe; 6954 } 6955 6956 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6957 ret = rbd_dev_setup_parent(rbd_dev); 6958 if (ret) 6959 goto err_out_probe; 6960 } 6961 6962 ret = rbd_dev_probe_parent(rbd_dev, depth); 6963 if (ret) 6964 goto err_out_probe; 6965 6966 dout("discovered format %u image, header name is %s\n", 6967 rbd_dev->image_format, rbd_dev->header_oid.name); 6968 return 0; 6969 6970 err_out_probe: 6971 if (!depth) 6972 up_write(&rbd_dev->header_rwsem); 6973 if (need_watch) 6974 rbd_unregister_watch(rbd_dev); 6975 rbd_dev_unprobe(rbd_dev); 6976 err_out_format: 6977 rbd_dev->image_format = 0; 6978 kfree(rbd_dev->spec->image_id); 6979 rbd_dev->spec->image_id = NULL; 6980 return ret; 6981 } 6982 6983 static void rbd_dev_update_header(struct rbd_device *rbd_dev, 6984 struct rbd_image_header *header) 6985 { 6986 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6987 rbd_assert(rbd_dev->header.object_prefix); /* !first_time */ 6988 6989 if (rbd_dev->header.image_size != header->image_size) { 6990 rbd_dev->header.image_size = header->image_size; 6991 6992 if (!rbd_is_snap(rbd_dev)) { 6993 rbd_dev->mapping.size = header->image_size; 6994 rbd_dev_update_size(rbd_dev); 6995 } 6996 } 6997 6998 ceph_put_snap_context(rbd_dev->header.snapc); 6999 rbd_dev->header.snapc = header->snapc; 7000 header->snapc = NULL; 7001 7002 if (rbd_dev->image_format == 1) { 7003 kfree(rbd_dev->header.snap_names); 7004 rbd_dev->header.snap_names = header->snap_names; 7005 header->snap_names = NULL; 7006 7007 kfree(rbd_dev->header.snap_sizes); 7008 rbd_dev->header.snap_sizes = header->snap_sizes; 7009 header->snap_sizes = NULL; 7010 } 7011 } 7012 7013 static void rbd_dev_update_parent(struct rbd_device *rbd_dev, 7014 struct parent_image_info *pii) 7015 { 7016 if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) { 7017 /* 7018 * Either the parent never existed, or we have 7019 * record of it but the image got flattened so it no 7020 * longer has a parent. When the parent of a 7021 * layered image disappears we immediately set the 7022 * overlap to 0. The effect of this is that all new 7023 * requests will be treated as if the image had no 7024 * parent. 7025 * 7026 * If !pii.has_overlap, the parent image spec is not 7027 * applicable. It's there to avoid duplication in each 7028 * snapshot record. 7029 */ 7030 if (rbd_dev->parent_overlap) { 7031 rbd_dev->parent_overlap = 0; 7032 rbd_dev_parent_put(rbd_dev); 7033 pr_info("%s: clone has been flattened\n", 7034 rbd_dev->disk->disk_name); 7035 } 7036 } else { 7037 rbd_assert(rbd_dev->parent_spec); 7038 7039 /* 7040 * Update the parent overlap. If it became zero, issue 7041 * a warning as we will proceed as if there is no parent. 7042 */ 7043 if (!pii->overlap && rbd_dev->parent_overlap) 7044 rbd_warn(rbd_dev, 7045 "clone has become standalone (overlap 0)"); 7046 rbd_dev->parent_overlap = pii->overlap; 7047 } 7048 } 7049 7050 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 7051 { 7052 struct rbd_image_header header = { 0 }; 7053 struct parent_image_info pii = { 0 }; 7054 int ret; 7055 7056 dout("%s rbd_dev %p\n", __func__, rbd_dev); 7057 7058 ret = rbd_dev_header_info(rbd_dev, &header, false); 7059 if (ret) 7060 goto out; 7061 7062 /* 7063 * If there is a parent, see if it has disappeared due to the 7064 * mapped image getting flattened. 7065 */ 7066 if (rbd_dev->parent) { 7067 ret = rbd_dev_v2_parent_info(rbd_dev, &pii); 7068 if (ret) 7069 goto out; 7070 } 7071 7072 down_write(&rbd_dev->header_rwsem); 7073 rbd_dev_update_header(rbd_dev, &header); 7074 if (rbd_dev->parent) 7075 rbd_dev_update_parent(rbd_dev, &pii); 7076 up_write(&rbd_dev->header_rwsem); 7077 7078 out: 7079 rbd_parent_info_cleanup(&pii); 7080 rbd_image_header_cleanup(&header); 7081 return ret; 7082 } 7083 7084 static ssize_t do_rbd_add(const char *buf, size_t count) 7085 { 7086 struct rbd_device *rbd_dev = NULL; 7087 struct ceph_options *ceph_opts = NULL; 7088 struct rbd_options *rbd_opts = NULL; 7089 struct rbd_spec *spec = NULL; 7090 struct rbd_client *rbdc; 7091 int rc; 7092 7093 if (!capable(CAP_SYS_ADMIN)) 7094 return -EPERM; 7095 7096 if (!try_module_get(THIS_MODULE)) 7097 return -ENODEV; 7098 7099 /* parse add command */ 7100 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 7101 if (rc < 0) 7102 goto out; 7103 7104 rbdc = rbd_get_client(ceph_opts); 7105 if (IS_ERR(rbdc)) { 7106 rc = PTR_ERR(rbdc); 7107 goto err_out_args; 7108 } 7109 7110 /* pick the pool */ 7111 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 7112 if (rc < 0) { 7113 if (rc == -ENOENT) 7114 pr_info("pool %s does not exist\n", spec->pool_name); 7115 goto err_out_client; 7116 } 7117 spec->pool_id = (u64)rc; 7118 7119 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 7120 if (!rbd_dev) { 7121 rc = -ENOMEM; 7122 goto err_out_client; 7123 } 7124 rbdc = NULL; /* rbd_dev now owns this */ 7125 spec = NULL; /* rbd_dev now owns this */ 7126 rbd_opts = NULL; /* rbd_dev now owns this */ 7127 7128 /* if we are mapping a snapshot it will be a read-only mapping */ 7129 if (rbd_dev->opts->read_only || 7130 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME)) 7131 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 7132 7133 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 7134 if (!rbd_dev->config_info) { 7135 rc = -ENOMEM; 7136 goto err_out_rbd_dev; 7137 } 7138 7139 rc = rbd_dev_image_probe(rbd_dev, 0); 7140 if (rc < 0) 7141 goto err_out_rbd_dev; 7142 7143 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) { 7144 rbd_warn(rbd_dev, "alloc_size adjusted to %u", 7145 rbd_dev->layout.object_size); 7146 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size; 7147 } 7148 7149 rc = rbd_dev_device_setup(rbd_dev); 7150 if (rc) 7151 goto err_out_image_probe; 7152 7153 rc = rbd_add_acquire_lock(rbd_dev); 7154 if (rc) 7155 goto err_out_image_lock; 7156 7157 /* Everything's ready. Announce the disk to the world. */ 7158 7159 rc = device_add(&rbd_dev->dev); 7160 if (rc) 7161 goto err_out_image_lock; 7162 7163 rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL); 7164 if (rc) 7165 goto err_out_cleanup_disk; 7166 7167 spin_lock(&rbd_dev_list_lock); 7168 list_add_tail(&rbd_dev->node, &rbd_dev_list); 7169 spin_unlock(&rbd_dev_list_lock); 7170 7171 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 7172 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 7173 rbd_dev->header.features); 7174 rc = count; 7175 out: 7176 module_put(THIS_MODULE); 7177 return rc; 7178 7179 err_out_cleanup_disk: 7180 rbd_free_disk(rbd_dev); 7181 err_out_image_lock: 7182 rbd_dev_image_unlock(rbd_dev); 7183 rbd_dev_device_release(rbd_dev); 7184 err_out_image_probe: 7185 rbd_dev_image_release(rbd_dev); 7186 err_out_rbd_dev: 7187 rbd_dev_destroy(rbd_dev); 7188 err_out_client: 7189 rbd_put_client(rbdc); 7190 err_out_args: 7191 rbd_spec_put(spec); 7192 kfree(rbd_opts); 7193 goto out; 7194 } 7195 7196 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count) 7197 { 7198 if (single_major) 7199 return -EINVAL; 7200 7201 return do_rbd_add(buf, count); 7202 } 7203 7204 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 7205 size_t count) 7206 { 7207 return do_rbd_add(buf, count); 7208 } 7209 7210 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 7211 { 7212 while (rbd_dev->parent) { 7213 struct rbd_device *first = rbd_dev; 7214 struct rbd_device *second = first->parent; 7215 struct rbd_device *third; 7216 7217 /* 7218 * Follow to the parent with no grandparent and 7219 * remove it. 7220 */ 7221 while (second && (third = second->parent)) { 7222 first = second; 7223 second = third; 7224 } 7225 rbd_assert(second); 7226 rbd_dev_image_release(second); 7227 rbd_dev_destroy(second); 7228 first->parent = NULL; 7229 first->parent_overlap = 0; 7230 7231 rbd_assert(first->parent_spec); 7232 rbd_spec_put(first->parent_spec); 7233 first->parent_spec = NULL; 7234 } 7235 } 7236 7237 static ssize_t do_rbd_remove(const char *buf, size_t count) 7238 { 7239 struct rbd_device *rbd_dev = NULL; 7240 int dev_id; 7241 char opt_buf[6]; 7242 bool force = false; 7243 int ret; 7244 7245 if (!capable(CAP_SYS_ADMIN)) 7246 return -EPERM; 7247 7248 dev_id = -1; 7249 opt_buf[0] = '\0'; 7250 sscanf(buf, "%d %5s", &dev_id, opt_buf); 7251 if (dev_id < 0) { 7252 pr_err("dev_id out of range\n"); 7253 return -EINVAL; 7254 } 7255 if (opt_buf[0] != '\0') { 7256 if (!strcmp(opt_buf, "force")) { 7257 force = true; 7258 } else { 7259 pr_err("bad remove option at '%s'\n", opt_buf); 7260 return -EINVAL; 7261 } 7262 } 7263 7264 ret = -ENOENT; 7265 spin_lock(&rbd_dev_list_lock); 7266 list_for_each_entry(rbd_dev, &rbd_dev_list, node) { 7267 if (rbd_dev->dev_id == dev_id) { 7268 ret = 0; 7269 break; 7270 } 7271 } 7272 if (!ret) { 7273 spin_lock_irq(&rbd_dev->lock); 7274 if (rbd_dev->open_count && !force) 7275 ret = -EBUSY; 7276 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING, 7277 &rbd_dev->flags)) 7278 ret = -EINPROGRESS; 7279 spin_unlock_irq(&rbd_dev->lock); 7280 } 7281 spin_unlock(&rbd_dev_list_lock); 7282 if (ret) 7283 return ret; 7284 7285 if (force) { 7286 /* 7287 * Prevent new IO from being queued and wait for existing 7288 * IO to complete/fail. 7289 */ 7290 blk_mq_freeze_queue(rbd_dev->disk->queue); 7291 blk_mark_disk_dead(rbd_dev->disk); 7292 } 7293 7294 del_gendisk(rbd_dev->disk); 7295 spin_lock(&rbd_dev_list_lock); 7296 list_del_init(&rbd_dev->node); 7297 spin_unlock(&rbd_dev_list_lock); 7298 device_del(&rbd_dev->dev); 7299 7300 rbd_dev_image_unlock(rbd_dev); 7301 rbd_dev_device_release(rbd_dev); 7302 rbd_dev_image_release(rbd_dev); 7303 rbd_dev_destroy(rbd_dev); 7304 return count; 7305 } 7306 7307 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count) 7308 { 7309 if (single_major) 7310 return -EINVAL; 7311 7312 return do_rbd_remove(buf, count); 7313 } 7314 7315 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 7316 size_t count) 7317 { 7318 return do_rbd_remove(buf, count); 7319 } 7320 7321 /* 7322 * create control files in sysfs 7323 * /sys/bus/rbd/... 7324 */ 7325 static int __init rbd_sysfs_init(void) 7326 { 7327 int ret; 7328 7329 ret = device_register(&rbd_root_dev); 7330 if (ret < 0) { 7331 put_device(&rbd_root_dev); 7332 return ret; 7333 } 7334 7335 ret = bus_register(&rbd_bus_type); 7336 if (ret < 0) 7337 device_unregister(&rbd_root_dev); 7338 7339 return ret; 7340 } 7341 7342 static void __exit rbd_sysfs_cleanup(void) 7343 { 7344 bus_unregister(&rbd_bus_type); 7345 device_unregister(&rbd_root_dev); 7346 } 7347 7348 static int __init rbd_slab_init(void) 7349 { 7350 rbd_assert(!rbd_img_request_cache); 7351 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 7352 if (!rbd_img_request_cache) 7353 return -ENOMEM; 7354 7355 rbd_assert(!rbd_obj_request_cache); 7356 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 7357 if (!rbd_obj_request_cache) 7358 goto out_err; 7359 7360 return 0; 7361 7362 out_err: 7363 kmem_cache_destroy(rbd_img_request_cache); 7364 rbd_img_request_cache = NULL; 7365 return -ENOMEM; 7366 } 7367 7368 static void rbd_slab_exit(void) 7369 { 7370 rbd_assert(rbd_obj_request_cache); 7371 kmem_cache_destroy(rbd_obj_request_cache); 7372 rbd_obj_request_cache = NULL; 7373 7374 rbd_assert(rbd_img_request_cache); 7375 kmem_cache_destroy(rbd_img_request_cache); 7376 rbd_img_request_cache = NULL; 7377 } 7378 7379 static int __init rbd_init(void) 7380 { 7381 int rc; 7382 7383 if (!libceph_compatible(NULL)) { 7384 rbd_warn(NULL, "libceph incompatibility (quitting)"); 7385 return -EINVAL; 7386 } 7387 7388 rc = rbd_slab_init(); 7389 if (rc) 7390 return rc; 7391 7392 /* 7393 * The number of active work items is limited by the number of 7394 * rbd devices * queue depth, so leave @max_active at default. 7395 */ 7396 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 7397 if (!rbd_wq) { 7398 rc = -ENOMEM; 7399 goto err_out_slab; 7400 } 7401 7402 if (single_major) { 7403 rbd_major = register_blkdev(0, RBD_DRV_NAME); 7404 if (rbd_major < 0) { 7405 rc = rbd_major; 7406 goto err_out_wq; 7407 } 7408 } 7409 7410 rc = rbd_sysfs_init(); 7411 if (rc) 7412 goto err_out_blkdev; 7413 7414 if (single_major) 7415 pr_info("loaded (major %d)\n", rbd_major); 7416 else 7417 pr_info("loaded\n"); 7418 7419 return 0; 7420 7421 err_out_blkdev: 7422 if (single_major) 7423 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7424 err_out_wq: 7425 destroy_workqueue(rbd_wq); 7426 err_out_slab: 7427 rbd_slab_exit(); 7428 return rc; 7429 } 7430 7431 static void __exit rbd_exit(void) 7432 { 7433 ida_destroy(&rbd_dev_id_ida); 7434 rbd_sysfs_cleanup(); 7435 if (single_major) 7436 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7437 destroy_workqueue(rbd_wq); 7438 rbd_slab_exit(); 7439 } 7440 7441 module_init(rbd_init); 7442 module_exit(rbd_exit); 7443 7444 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 7445 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 7446 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 7447 /* following authorship retained from original osdblk.c */ 7448 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 7449 7450 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 7451 MODULE_LICENSE("GPL"); 7452