1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 119 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 120 121 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 122 RBD_FEATURE_STRIPINGV2 | \ 123 RBD_FEATURE_EXCLUSIVE_LOCK | \ 124 RBD_FEATURE_DATA_POOL | \ 125 RBD_FEATURE_OPERATIONS) 126 127 /* Features supported by this (client software) implementation. */ 128 129 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 130 131 /* 132 * An RBD device name will be "rbd#", where the "rbd" comes from 133 * RBD_DRV_NAME above, and # is a unique integer identifier. 134 */ 135 #define DEV_NAME_LEN 32 136 137 /* 138 * block device image metadata (in-memory version) 139 */ 140 struct rbd_image_header { 141 /* These six fields never change for a given rbd image */ 142 char *object_prefix; 143 __u8 obj_order; 144 u64 stripe_unit; 145 u64 stripe_count; 146 s64 data_pool_id; 147 u64 features; /* Might be changeable someday? */ 148 149 /* The remaining fields need to be updated occasionally */ 150 u64 image_size; 151 struct ceph_snap_context *snapc; 152 char *snap_names; /* format 1 only */ 153 u64 *snap_sizes; /* format 1 only */ 154 }; 155 156 /* 157 * An rbd image specification. 158 * 159 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 160 * identify an image. Each rbd_dev structure includes a pointer to 161 * an rbd_spec structure that encapsulates this identity. 162 * 163 * Each of the id's in an rbd_spec has an associated name. For a 164 * user-mapped image, the names are supplied and the id's associated 165 * with them are looked up. For a layered image, a parent image is 166 * defined by the tuple, and the names are looked up. 167 * 168 * An rbd_dev structure contains a parent_spec pointer which is 169 * non-null if the image it represents is a child in a layered 170 * image. This pointer will refer to the rbd_spec structure used 171 * by the parent rbd_dev for its own identity (i.e., the structure 172 * is shared between the parent and child). 173 * 174 * Since these structures are populated once, during the discovery 175 * phase of image construction, they are effectively immutable so 176 * we make no effort to synchronize access to them. 177 * 178 * Note that code herein does not assume the image name is known (it 179 * could be a null pointer). 180 */ 181 struct rbd_spec { 182 u64 pool_id; 183 const char *pool_name; 184 185 const char *image_id; 186 const char *image_name; 187 188 u64 snap_id; 189 const char *snap_name; 190 191 struct kref kref; 192 }; 193 194 /* 195 * an instance of the client. multiple devices may share an rbd client. 196 */ 197 struct rbd_client { 198 struct ceph_client *client; 199 struct kref kref; 200 struct list_head node; 201 }; 202 203 struct rbd_img_request; 204 205 enum obj_request_type { 206 OBJ_REQUEST_NODATA = 1, 207 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 208 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 209 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 210 }; 211 212 enum obj_operation_type { 213 OBJ_OP_READ = 1, 214 OBJ_OP_WRITE, 215 OBJ_OP_DISCARD, 216 }; 217 218 /* 219 * Writes go through the following state machine to deal with 220 * layering: 221 * 222 * need copyup 223 * RBD_OBJ_WRITE_GUARD ---------------> RBD_OBJ_WRITE_COPYUP 224 * | ^ | 225 * v \------------------------------/ 226 * done 227 * ^ 228 * | 229 * RBD_OBJ_WRITE_FLAT 230 * 231 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 232 * there is a parent or not. 233 */ 234 enum rbd_obj_write_state { 235 RBD_OBJ_WRITE_FLAT = 1, 236 RBD_OBJ_WRITE_GUARD, 237 RBD_OBJ_WRITE_COPYUP, 238 }; 239 240 struct rbd_obj_request { 241 struct ceph_object_extent ex; 242 union { 243 bool tried_parent; /* for reads */ 244 enum rbd_obj_write_state write_state; /* for writes */ 245 }; 246 247 struct rbd_img_request *img_request; 248 struct ceph_file_extent *img_extents; 249 u32 num_img_extents; 250 251 union { 252 struct ceph_bio_iter bio_pos; 253 struct { 254 struct ceph_bvec_iter bvec_pos; 255 u32 bvec_count; 256 u32 bvec_idx; 257 }; 258 }; 259 struct bio_vec *copyup_bvecs; 260 u32 copyup_bvec_count; 261 262 struct ceph_osd_request *osd_req; 263 264 u64 xferred; /* bytes transferred */ 265 int result; 266 267 struct kref kref; 268 }; 269 270 enum img_req_flags { 271 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 272 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 273 }; 274 275 struct rbd_img_request { 276 struct rbd_device *rbd_dev; 277 enum obj_operation_type op_type; 278 enum obj_request_type data_type; 279 unsigned long flags; 280 union { 281 u64 snap_id; /* for reads */ 282 struct ceph_snap_context *snapc; /* for writes */ 283 }; 284 union { 285 struct request *rq; /* block request */ 286 struct rbd_obj_request *obj_request; /* obj req initiator */ 287 }; 288 spinlock_t completion_lock; 289 u64 xferred;/* aggregate bytes transferred */ 290 int result; /* first nonzero obj_request result */ 291 292 struct list_head object_extents; /* obj_req.ex structs */ 293 u32 obj_request_count; 294 u32 pending_count; 295 296 struct kref kref; 297 }; 298 299 #define for_each_obj_request(ireq, oreq) \ 300 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 301 #define for_each_obj_request_safe(ireq, oreq, n) \ 302 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 303 304 enum rbd_watch_state { 305 RBD_WATCH_STATE_UNREGISTERED, 306 RBD_WATCH_STATE_REGISTERED, 307 RBD_WATCH_STATE_ERROR, 308 }; 309 310 enum rbd_lock_state { 311 RBD_LOCK_STATE_UNLOCKED, 312 RBD_LOCK_STATE_LOCKED, 313 RBD_LOCK_STATE_RELEASING, 314 }; 315 316 /* WatchNotify::ClientId */ 317 struct rbd_client_id { 318 u64 gid; 319 u64 handle; 320 }; 321 322 struct rbd_mapping { 323 u64 size; 324 u64 features; 325 }; 326 327 /* 328 * a single device 329 */ 330 struct rbd_device { 331 int dev_id; /* blkdev unique id */ 332 333 int major; /* blkdev assigned major */ 334 int minor; 335 struct gendisk *disk; /* blkdev's gendisk and rq */ 336 337 u32 image_format; /* Either 1 or 2 */ 338 struct rbd_client *rbd_client; 339 340 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 341 342 spinlock_t lock; /* queue, flags, open_count */ 343 344 struct rbd_image_header header; 345 unsigned long flags; /* possibly lock protected */ 346 struct rbd_spec *spec; 347 struct rbd_options *opts; 348 char *config_info; /* add{,_single_major} string */ 349 350 struct ceph_object_id header_oid; 351 struct ceph_object_locator header_oloc; 352 353 struct ceph_file_layout layout; /* used for all rbd requests */ 354 355 struct mutex watch_mutex; 356 enum rbd_watch_state watch_state; 357 struct ceph_osd_linger_request *watch_handle; 358 u64 watch_cookie; 359 struct delayed_work watch_dwork; 360 361 struct rw_semaphore lock_rwsem; 362 enum rbd_lock_state lock_state; 363 char lock_cookie[32]; 364 struct rbd_client_id owner_cid; 365 struct work_struct acquired_lock_work; 366 struct work_struct released_lock_work; 367 struct delayed_work lock_dwork; 368 struct work_struct unlock_work; 369 wait_queue_head_t lock_waitq; 370 371 struct workqueue_struct *task_wq; 372 373 struct rbd_spec *parent_spec; 374 u64 parent_overlap; 375 atomic_t parent_ref; 376 struct rbd_device *parent; 377 378 /* Block layer tags. */ 379 struct blk_mq_tag_set tag_set; 380 381 /* protects updating the header */ 382 struct rw_semaphore header_rwsem; 383 384 struct rbd_mapping mapping; 385 386 struct list_head node; 387 388 /* sysfs related */ 389 struct device dev; 390 unsigned long open_count; /* protected by lock */ 391 }; 392 393 /* 394 * Flag bits for rbd_dev->flags: 395 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 396 * by rbd_dev->lock 397 * - BLACKLISTED is protected by rbd_dev->lock_rwsem 398 */ 399 enum rbd_dev_flags { 400 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 401 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 402 RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */ 403 }; 404 405 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 406 407 static LIST_HEAD(rbd_dev_list); /* devices */ 408 static DEFINE_SPINLOCK(rbd_dev_list_lock); 409 410 static LIST_HEAD(rbd_client_list); /* clients */ 411 static DEFINE_SPINLOCK(rbd_client_list_lock); 412 413 /* Slab caches for frequently-allocated structures */ 414 415 static struct kmem_cache *rbd_img_request_cache; 416 static struct kmem_cache *rbd_obj_request_cache; 417 418 static int rbd_major; 419 static DEFINE_IDA(rbd_dev_id_ida); 420 421 static struct workqueue_struct *rbd_wq; 422 423 /* 424 * single-major requires >= 0.75 version of userspace rbd utility. 425 */ 426 static bool single_major = true; 427 module_param(single_major, bool, 0444); 428 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 429 430 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 431 size_t count); 432 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 433 size_t count); 434 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 435 size_t count); 436 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 437 size_t count); 438 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 439 440 static int rbd_dev_id_to_minor(int dev_id) 441 { 442 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 443 } 444 445 static int minor_to_rbd_dev_id(int minor) 446 { 447 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 448 } 449 450 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 451 { 452 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 453 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 454 } 455 456 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 457 { 458 bool is_lock_owner; 459 460 down_read(&rbd_dev->lock_rwsem); 461 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 462 up_read(&rbd_dev->lock_rwsem); 463 return is_lock_owner; 464 } 465 466 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf) 467 { 468 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 469 } 470 471 static BUS_ATTR(add, 0200, NULL, rbd_add); 472 static BUS_ATTR(remove, 0200, NULL, rbd_remove); 473 static BUS_ATTR(add_single_major, 0200, NULL, rbd_add_single_major); 474 static BUS_ATTR(remove_single_major, 0200, NULL, rbd_remove_single_major); 475 static BUS_ATTR(supported_features, 0444, rbd_supported_features_show, NULL); 476 477 static struct attribute *rbd_bus_attrs[] = { 478 &bus_attr_add.attr, 479 &bus_attr_remove.attr, 480 &bus_attr_add_single_major.attr, 481 &bus_attr_remove_single_major.attr, 482 &bus_attr_supported_features.attr, 483 NULL, 484 }; 485 486 static umode_t rbd_bus_is_visible(struct kobject *kobj, 487 struct attribute *attr, int index) 488 { 489 if (!single_major && 490 (attr == &bus_attr_add_single_major.attr || 491 attr == &bus_attr_remove_single_major.attr)) 492 return 0; 493 494 return attr->mode; 495 } 496 497 static const struct attribute_group rbd_bus_group = { 498 .attrs = rbd_bus_attrs, 499 .is_visible = rbd_bus_is_visible, 500 }; 501 __ATTRIBUTE_GROUPS(rbd_bus); 502 503 static struct bus_type rbd_bus_type = { 504 .name = "rbd", 505 .bus_groups = rbd_bus_groups, 506 }; 507 508 static void rbd_root_dev_release(struct device *dev) 509 { 510 } 511 512 static struct device rbd_root_dev = { 513 .init_name = "rbd", 514 .release = rbd_root_dev_release, 515 }; 516 517 static __printf(2, 3) 518 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 519 { 520 struct va_format vaf; 521 va_list args; 522 523 va_start(args, fmt); 524 vaf.fmt = fmt; 525 vaf.va = &args; 526 527 if (!rbd_dev) 528 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 529 else if (rbd_dev->disk) 530 printk(KERN_WARNING "%s: %s: %pV\n", 531 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 532 else if (rbd_dev->spec && rbd_dev->spec->image_name) 533 printk(KERN_WARNING "%s: image %s: %pV\n", 534 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 535 else if (rbd_dev->spec && rbd_dev->spec->image_id) 536 printk(KERN_WARNING "%s: id %s: %pV\n", 537 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 538 else /* punt */ 539 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 540 RBD_DRV_NAME, rbd_dev, &vaf); 541 va_end(args); 542 } 543 544 #ifdef RBD_DEBUG 545 #define rbd_assert(expr) \ 546 if (unlikely(!(expr))) { \ 547 printk(KERN_ERR "\nAssertion failure in %s() " \ 548 "at line %d:\n\n" \ 549 "\trbd_assert(%s);\n\n", \ 550 __func__, __LINE__, #expr); \ 551 BUG(); \ 552 } 553 #else /* !RBD_DEBUG */ 554 # define rbd_assert(expr) ((void) 0) 555 #endif /* !RBD_DEBUG */ 556 557 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 558 559 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 560 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 561 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 562 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 563 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 564 u64 snap_id); 565 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 566 u8 *order, u64 *snap_size); 567 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 568 u64 *snap_features); 569 570 static int rbd_open(struct block_device *bdev, fmode_t mode) 571 { 572 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 573 bool removing = false; 574 575 spin_lock_irq(&rbd_dev->lock); 576 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 577 removing = true; 578 else 579 rbd_dev->open_count++; 580 spin_unlock_irq(&rbd_dev->lock); 581 if (removing) 582 return -ENOENT; 583 584 (void) get_device(&rbd_dev->dev); 585 586 return 0; 587 } 588 589 static void rbd_release(struct gendisk *disk, fmode_t mode) 590 { 591 struct rbd_device *rbd_dev = disk->private_data; 592 unsigned long open_count_before; 593 594 spin_lock_irq(&rbd_dev->lock); 595 open_count_before = rbd_dev->open_count--; 596 spin_unlock_irq(&rbd_dev->lock); 597 rbd_assert(open_count_before > 0); 598 599 put_device(&rbd_dev->dev); 600 } 601 602 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 603 { 604 int ro; 605 606 if (get_user(ro, (int __user *)arg)) 607 return -EFAULT; 608 609 /* Snapshots can't be marked read-write */ 610 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 611 return -EROFS; 612 613 /* Let blkdev_roset() handle it */ 614 return -ENOTTY; 615 } 616 617 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 618 unsigned int cmd, unsigned long arg) 619 { 620 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 621 int ret; 622 623 switch (cmd) { 624 case BLKROSET: 625 ret = rbd_ioctl_set_ro(rbd_dev, arg); 626 break; 627 default: 628 ret = -ENOTTY; 629 } 630 631 return ret; 632 } 633 634 #ifdef CONFIG_COMPAT 635 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 636 unsigned int cmd, unsigned long arg) 637 { 638 return rbd_ioctl(bdev, mode, cmd, arg); 639 } 640 #endif /* CONFIG_COMPAT */ 641 642 static const struct block_device_operations rbd_bd_ops = { 643 .owner = THIS_MODULE, 644 .open = rbd_open, 645 .release = rbd_release, 646 .ioctl = rbd_ioctl, 647 #ifdef CONFIG_COMPAT 648 .compat_ioctl = rbd_compat_ioctl, 649 #endif 650 }; 651 652 /* 653 * Initialize an rbd client instance. Success or not, this function 654 * consumes ceph_opts. Caller holds client_mutex. 655 */ 656 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 657 { 658 struct rbd_client *rbdc; 659 int ret = -ENOMEM; 660 661 dout("%s:\n", __func__); 662 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 663 if (!rbdc) 664 goto out_opt; 665 666 kref_init(&rbdc->kref); 667 INIT_LIST_HEAD(&rbdc->node); 668 669 rbdc->client = ceph_create_client(ceph_opts, rbdc); 670 if (IS_ERR(rbdc->client)) 671 goto out_rbdc; 672 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 673 674 ret = ceph_open_session(rbdc->client); 675 if (ret < 0) 676 goto out_client; 677 678 spin_lock(&rbd_client_list_lock); 679 list_add_tail(&rbdc->node, &rbd_client_list); 680 spin_unlock(&rbd_client_list_lock); 681 682 dout("%s: rbdc %p\n", __func__, rbdc); 683 684 return rbdc; 685 out_client: 686 ceph_destroy_client(rbdc->client); 687 out_rbdc: 688 kfree(rbdc); 689 out_opt: 690 if (ceph_opts) 691 ceph_destroy_options(ceph_opts); 692 dout("%s: error %d\n", __func__, ret); 693 694 return ERR_PTR(ret); 695 } 696 697 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 698 { 699 kref_get(&rbdc->kref); 700 701 return rbdc; 702 } 703 704 /* 705 * Find a ceph client with specific addr and configuration. If 706 * found, bump its reference count. 707 */ 708 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 709 { 710 struct rbd_client *client_node; 711 bool found = false; 712 713 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 714 return NULL; 715 716 spin_lock(&rbd_client_list_lock); 717 list_for_each_entry(client_node, &rbd_client_list, node) { 718 if (!ceph_compare_options(ceph_opts, client_node->client)) { 719 __rbd_get_client(client_node); 720 721 found = true; 722 break; 723 } 724 } 725 spin_unlock(&rbd_client_list_lock); 726 727 return found ? client_node : NULL; 728 } 729 730 /* 731 * (Per device) rbd map options 732 */ 733 enum { 734 Opt_queue_depth, 735 Opt_lock_timeout, 736 Opt_last_int, 737 /* int args above */ 738 Opt_last_string, 739 /* string args above */ 740 Opt_read_only, 741 Opt_read_write, 742 Opt_lock_on_read, 743 Opt_exclusive, 744 Opt_notrim, 745 Opt_err 746 }; 747 748 static match_table_t rbd_opts_tokens = { 749 {Opt_queue_depth, "queue_depth=%d"}, 750 {Opt_lock_timeout, "lock_timeout=%d"}, 751 /* int args above */ 752 /* string args above */ 753 {Opt_read_only, "read_only"}, 754 {Opt_read_only, "ro"}, /* Alternate spelling */ 755 {Opt_read_write, "read_write"}, 756 {Opt_read_write, "rw"}, /* Alternate spelling */ 757 {Opt_lock_on_read, "lock_on_read"}, 758 {Opt_exclusive, "exclusive"}, 759 {Opt_notrim, "notrim"}, 760 {Opt_err, NULL} 761 }; 762 763 struct rbd_options { 764 int queue_depth; 765 unsigned long lock_timeout; 766 bool read_only; 767 bool lock_on_read; 768 bool exclusive; 769 bool trim; 770 }; 771 772 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 773 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 774 #define RBD_READ_ONLY_DEFAULT false 775 #define RBD_LOCK_ON_READ_DEFAULT false 776 #define RBD_EXCLUSIVE_DEFAULT false 777 #define RBD_TRIM_DEFAULT true 778 779 static int parse_rbd_opts_token(char *c, void *private) 780 { 781 struct rbd_options *rbd_opts = private; 782 substring_t argstr[MAX_OPT_ARGS]; 783 int token, intval, ret; 784 785 token = match_token(c, rbd_opts_tokens, argstr); 786 if (token < Opt_last_int) { 787 ret = match_int(&argstr[0], &intval); 788 if (ret < 0) { 789 pr_err("bad mount option arg (not int) at '%s'\n", c); 790 return ret; 791 } 792 dout("got int token %d val %d\n", token, intval); 793 } else if (token > Opt_last_int && token < Opt_last_string) { 794 dout("got string token %d val %s\n", token, argstr[0].from); 795 } else { 796 dout("got token %d\n", token); 797 } 798 799 switch (token) { 800 case Opt_queue_depth: 801 if (intval < 1) { 802 pr_err("queue_depth out of range\n"); 803 return -EINVAL; 804 } 805 rbd_opts->queue_depth = intval; 806 break; 807 case Opt_lock_timeout: 808 /* 0 is "wait forever" (i.e. infinite timeout) */ 809 if (intval < 0 || intval > INT_MAX / 1000) { 810 pr_err("lock_timeout out of range\n"); 811 return -EINVAL; 812 } 813 rbd_opts->lock_timeout = msecs_to_jiffies(intval * 1000); 814 break; 815 case Opt_read_only: 816 rbd_opts->read_only = true; 817 break; 818 case Opt_read_write: 819 rbd_opts->read_only = false; 820 break; 821 case Opt_lock_on_read: 822 rbd_opts->lock_on_read = true; 823 break; 824 case Opt_exclusive: 825 rbd_opts->exclusive = true; 826 break; 827 case Opt_notrim: 828 rbd_opts->trim = false; 829 break; 830 default: 831 /* libceph prints "bad option" msg */ 832 return -EINVAL; 833 } 834 835 return 0; 836 } 837 838 static char* obj_op_name(enum obj_operation_type op_type) 839 { 840 switch (op_type) { 841 case OBJ_OP_READ: 842 return "read"; 843 case OBJ_OP_WRITE: 844 return "write"; 845 case OBJ_OP_DISCARD: 846 return "discard"; 847 default: 848 return "???"; 849 } 850 } 851 852 /* 853 * Destroy ceph client 854 * 855 * Caller must hold rbd_client_list_lock. 856 */ 857 static void rbd_client_release(struct kref *kref) 858 { 859 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 860 861 dout("%s: rbdc %p\n", __func__, rbdc); 862 spin_lock(&rbd_client_list_lock); 863 list_del(&rbdc->node); 864 spin_unlock(&rbd_client_list_lock); 865 866 ceph_destroy_client(rbdc->client); 867 kfree(rbdc); 868 } 869 870 /* 871 * Drop reference to ceph client node. If it's not referenced anymore, release 872 * it. 873 */ 874 static void rbd_put_client(struct rbd_client *rbdc) 875 { 876 if (rbdc) 877 kref_put(&rbdc->kref, rbd_client_release); 878 } 879 880 static int wait_for_latest_osdmap(struct ceph_client *client) 881 { 882 u64 newest_epoch; 883 int ret; 884 885 ret = ceph_monc_get_version(&client->monc, "osdmap", &newest_epoch); 886 if (ret) 887 return ret; 888 889 if (client->osdc.osdmap->epoch >= newest_epoch) 890 return 0; 891 892 ceph_osdc_maybe_request_map(&client->osdc); 893 return ceph_monc_wait_osdmap(&client->monc, newest_epoch, 894 client->options->mount_timeout); 895 } 896 897 /* 898 * Get a ceph client with specific addr and configuration, if one does 899 * not exist create it. Either way, ceph_opts is consumed by this 900 * function. 901 */ 902 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 903 { 904 struct rbd_client *rbdc; 905 int ret; 906 907 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 908 rbdc = rbd_client_find(ceph_opts); 909 if (rbdc) { 910 ceph_destroy_options(ceph_opts); 911 912 /* 913 * Using an existing client. Make sure ->pg_pools is up to 914 * date before we look up the pool id in do_rbd_add(). 915 */ 916 ret = wait_for_latest_osdmap(rbdc->client); 917 if (ret) { 918 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 919 rbd_put_client(rbdc); 920 rbdc = ERR_PTR(ret); 921 } 922 } else { 923 rbdc = rbd_client_create(ceph_opts); 924 } 925 mutex_unlock(&client_mutex); 926 927 return rbdc; 928 } 929 930 static bool rbd_image_format_valid(u32 image_format) 931 { 932 return image_format == 1 || image_format == 2; 933 } 934 935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 936 { 937 size_t size; 938 u32 snap_count; 939 940 /* The header has to start with the magic rbd header text */ 941 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 942 return false; 943 944 /* The bio layer requires at least sector-sized I/O */ 945 946 if (ondisk->options.order < SECTOR_SHIFT) 947 return false; 948 949 /* If we use u64 in a few spots we may be able to loosen this */ 950 951 if (ondisk->options.order > 8 * sizeof (int) - 1) 952 return false; 953 954 /* 955 * The size of a snapshot header has to fit in a size_t, and 956 * that limits the number of snapshots. 957 */ 958 snap_count = le32_to_cpu(ondisk->snap_count); 959 size = SIZE_MAX - sizeof (struct ceph_snap_context); 960 if (snap_count > size / sizeof (__le64)) 961 return false; 962 963 /* 964 * Not only that, but the size of the entire the snapshot 965 * header must also be representable in a size_t. 966 */ 967 size -= snap_count * sizeof (__le64); 968 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 969 return false; 970 971 return true; 972 } 973 974 /* 975 * returns the size of an object in the image 976 */ 977 static u32 rbd_obj_bytes(struct rbd_image_header *header) 978 { 979 return 1U << header->obj_order; 980 } 981 982 static void rbd_init_layout(struct rbd_device *rbd_dev) 983 { 984 if (rbd_dev->header.stripe_unit == 0 || 985 rbd_dev->header.stripe_count == 0) { 986 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 987 rbd_dev->header.stripe_count = 1; 988 } 989 990 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 991 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 992 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 993 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 994 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 995 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 996 } 997 998 /* 999 * Fill an rbd image header with information from the given format 1 1000 * on-disk header. 1001 */ 1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1003 struct rbd_image_header_ondisk *ondisk) 1004 { 1005 struct rbd_image_header *header = &rbd_dev->header; 1006 bool first_time = header->object_prefix == NULL; 1007 struct ceph_snap_context *snapc; 1008 char *object_prefix = NULL; 1009 char *snap_names = NULL; 1010 u64 *snap_sizes = NULL; 1011 u32 snap_count; 1012 int ret = -ENOMEM; 1013 u32 i; 1014 1015 /* Allocate this now to avoid having to handle failure below */ 1016 1017 if (first_time) { 1018 object_prefix = kstrndup(ondisk->object_prefix, 1019 sizeof(ondisk->object_prefix), 1020 GFP_KERNEL); 1021 if (!object_prefix) 1022 return -ENOMEM; 1023 } 1024 1025 /* Allocate the snapshot context and fill it in */ 1026 1027 snap_count = le32_to_cpu(ondisk->snap_count); 1028 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1029 if (!snapc) 1030 goto out_err; 1031 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1032 if (snap_count) { 1033 struct rbd_image_snap_ondisk *snaps; 1034 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1035 1036 /* We'll keep a copy of the snapshot names... */ 1037 1038 if (snap_names_len > (u64)SIZE_MAX) 1039 goto out_2big; 1040 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1041 if (!snap_names) 1042 goto out_err; 1043 1044 /* ...as well as the array of their sizes. */ 1045 snap_sizes = kmalloc_array(snap_count, 1046 sizeof(*header->snap_sizes), 1047 GFP_KERNEL); 1048 if (!snap_sizes) 1049 goto out_err; 1050 1051 /* 1052 * Copy the names, and fill in each snapshot's id 1053 * and size. 1054 * 1055 * Note that rbd_dev_v1_header_info() guarantees the 1056 * ondisk buffer we're working with has 1057 * snap_names_len bytes beyond the end of the 1058 * snapshot id array, this memcpy() is safe. 1059 */ 1060 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1061 snaps = ondisk->snaps; 1062 for (i = 0; i < snap_count; i++) { 1063 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1064 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1065 } 1066 } 1067 1068 /* We won't fail any more, fill in the header */ 1069 1070 if (first_time) { 1071 header->object_prefix = object_prefix; 1072 header->obj_order = ondisk->options.order; 1073 rbd_init_layout(rbd_dev); 1074 } else { 1075 ceph_put_snap_context(header->snapc); 1076 kfree(header->snap_names); 1077 kfree(header->snap_sizes); 1078 } 1079 1080 /* The remaining fields always get updated (when we refresh) */ 1081 1082 header->image_size = le64_to_cpu(ondisk->image_size); 1083 header->snapc = snapc; 1084 header->snap_names = snap_names; 1085 header->snap_sizes = snap_sizes; 1086 1087 return 0; 1088 out_2big: 1089 ret = -EIO; 1090 out_err: 1091 kfree(snap_sizes); 1092 kfree(snap_names); 1093 ceph_put_snap_context(snapc); 1094 kfree(object_prefix); 1095 1096 return ret; 1097 } 1098 1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1100 { 1101 const char *snap_name; 1102 1103 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1104 1105 /* Skip over names until we find the one we are looking for */ 1106 1107 snap_name = rbd_dev->header.snap_names; 1108 while (which--) 1109 snap_name += strlen(snap_name) + 1; 1110 1111 return kstrdup(snap_name, GFP_KERNEL); 1112 } 1113 1114 /* 1115 * Snapshot id comparison function for use with qsort()/bsearch(). 1116 * Note that result is for snapshots in *descending* order. 1117 */ 1118 static int snapid_compare_reverse(const void *s1, const void *s2) 1119 { 1120 u64 snap_id1 = *(u64 *)s1; 1121 u64 snap_id2 = *(u64 *)s2; 1122 1123 if (snap_id1 < snap_id2) 1124 return 1; 1125 return snap_id1 == snap_id2 ? 0 : -1; 1126 } 1127 1128 /* 1129 * Search a snapshot context to see if the given snapshot id is 1130 * present. 1131 * 1132 * Returns the position of the snapshot id in the array if it's found, 1133 * or BAD_SNAP_INDEX otherwise. 1134 * 1135 * Note: The snapshot array is in kept sorted (by the osd) in 1136 * reverse order, highest snapshot id first. 1137 */ 1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1139 { 1140 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1141 u64 *found; 1142 1143 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1144 sizeof (snap_id), snapid_compare_reverse); 1145 1146 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1147 } 1148 1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1150 u64 snap_id) 1151 { 1152 u32 which; 1153 const char *snap_name; 1154 1155 which = rbd_dev_snap_index(rbd_dev, snap_id); 1156 if (which == BAD_SNAP_INDEX) 1157 return ERR_PTR(-ENOENT); 1158 1159 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1160 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1161 } 1162 1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1164 { 1165 if (snap_id == CEPH_NOSNAP) 1166 return RBD_SNAP_HEAD_NAME; 1167 1168 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1169 if (rbd_dev->image_format == 1) 1170 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1171 1172 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1173 } 1174 1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1176 u64 *snap_size) 1177 { 1178 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1179 if (snap_id == CEPH_NOSNAP) { 1180 *snap_size = rbd_dev->header.image_size; 1181 } else if (rbd_dev->image_format == 1) { 1182 u32 which; 1183 1184 which = rbd_dev_snap_index(rbd_dev, snap_id); 1185 if (which == BAD_SNAP_INDEX) 1186 return -ENOENT; 1187 1188 *snap_size = rbd_dev->header.snap_sizes[which]; 1189 } else { 1190 u64 size = 0; 1191 int ret; 1192 1193 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1194 if (ret) 1195 return ret; 1196 1197 *snap_size = size; 1198 } 1199 return 0; 1200 } 1201 1202 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1203 u64 *snap_features) 1204 { 1205 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1206 if (snap_id == CEPH_NOSNAP) { 1207 *snap_features = rbd_dev->header.features; 1208 } else if (rbd_dev->image_format == 1) { 1209 *snap_features = 0; /* No features for format 1 */ 1210 } else { 1211 u64 features = 0; 1212 int ret; 1213 1214 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1215 if (ret) 1216 return ret; 1217 1218 *snap_features = features; 1219 } 1220 return 0; 1221 } 1222 1223 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1224 { 1225 u64 snap_id = rbd_dev->spec->snap_id; 1226 u64 size = 0; 1227 u64 features = 0; 1228 int ret; 1229 1230 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1231 if (ret) 1232 return ret; 1233 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1234 if (ret) 1235 return ret; 1236 1237 rbd_dev->mapping.size = size; 1238 rbd_dev->mapping.features = features; 1239 1240 return 0; 1241 } 1242 1243 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1244 { 1245 rbd_dev->mapping.size = 0; 1246 rbd_dev->mapping.features = 0; 1247 } 1248 1249 static void zero_bvec(struct bio_vec *bv) 1250 { 1251 void *buf; 1252 unsigned long flags; 1253 1254 buf = bvec_kmap_irq(bv, &flags); 1255 memset(buf, 0, bv->bv_len); 1256 flush_dcache_page(bv->bv_page); 1257 bvec_kunmap_irq(buf, &flags); 1258 } 1259 1260 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1261 { 1262 struct ceph_bio_iter it = *bio_pos; 1263 1264 ceph_bio_iter_advance(&it, off); 1265 ceph_bio_iter_advance_step(&it, bytes, ({ 1266 zero_bvec(&bv); 1267 })); 1268 } 1269 1270 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1271 { 1272 struct ceph_bvec_iter it = *bvec_pos; 1273 1274 ceph_bvec_iter_advance(&it, off); 1275 ceph_bvec_iter_advance_step(&it, bytes, ({ 1276 zero_bvec(&bv); 1277 })); 1278 } 1279 1280 /* 1281 * Zero a range in @obj_req data buffer defined by a bio (list) or 1282 * (private) bio_vec array. 1283 * 1284 * @off is relative to the start of the data buffer. 1285 */ 1286 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1287 u32 bytes) 1288 { 1289 switch (obj_req->img_request->data_type) { 1290 case OBJ_REQUEST_BIO: 1291 zero_bios(&obj_req->bio_pos, off, bytes); 1292 break; 1293 case OBJ_REQUEST_BVECS: 1294 case OBJ_REQUEST_OWN_BVECS: 1295 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1296 break; 1297 default: 1298 rbd_assert(0); 1299 } 1300 } 1301 1302 static void rbd_obj_request_destroy(struct kref *kref); 1303 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1304 { 1305 rbd_assert(obj_request != NULL); 1306 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1307 kref_read(&obj_request->kref)); 1308 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1309 } 1310 1311 static void rbd_img_request_get(struct rbd_img_request *img_request) 1312 { 1313 dout("%s: img %p (was %d)\n", __func__, img_request, 1314 kref_read(&img_request->kref)); 1315 kref_get(&img_request->kref); 1316 } 1317 1318 static void rbd_img_request_destroy(struct kref *kref); 1319 static void rbd_img_request_put(struct rbd_img_request *img_request) 1320 { 1321 rbd_assert(img_request != NULL); 1322 dout("%s: img %p (was %d)\n", __func__, img_request, 1323 kref_read(&img_request->kref)); 1324 kref_put(&img_request->kref, rbd_img_request_destroy); 1325 } 1326 1327 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1328 struct rbd_obj_request *obj_request) 1329 { 1330 rbd_assert(obj_request->img_request == NULL); 1331 1332 /* Image request now owns object's original reference */ 1333 obj_request->img_request = img_request; 1334 img_request->obj_request_count++; 1335 img_request->pending_count++; 1336 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1337 } 1338 1339 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1340 struct rbd_obj_request *obj_request) 1341 { 1342 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1343 list_del(&obj_request->ex.oe_item); 1344 rbd_assert(img_request->obj_request_count > 0); 1345 img_request->obj_request_count--; 1346 rbd_assert(obj_request->img_request == img_request); 1347 rbd_obj_request_put(obj_request); 1348 } 1349 1350 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request) 1351 { 1352 struct ceph_osd_request *osd_req = obj_request->osd_req; 1353 1354 dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__, 1355 obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off, 1356 obj_request->ex.oe_len, osd_req); 1357 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1358 } 1359 1360 /* 1361 * The default/initial value for all image request flags is 0. Each 1362 * is conditionally set to 1 at image request initialization time 1363 * and currently never change thereafter. 1364 */ 1365 static void img_request_layered_set(struct rbd_img_request *img_request) 1366 { 1367 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1368 smp_mb(); 1369 } 1370 1371 static void img_request_layered_clear(struct rbd_img_request *img_request) 1372 { 1373 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1374 smp_mb(); 1375 } 1376 1377 static bool img_request_layered_test(struct rbd_img_request *img_request) 1378 { 1379 smp_mb(); 1380 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1381 } 1382 1383 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1384 { 1385 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1386 1387 return !obj_req->ex.oe_off && 1388 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1389 } 1390 1391 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1392 { 1393 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1394 1395 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1396 rbd_dev->layout.object_size; 1397 } 1398 1399 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1400 { 1401 return ceph_file_extents_bytes(obj_req->img_extents, 1402 obj_req->num_img_extents); 1403 } 1404 1405 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1406 { 1407 switch (img_req->op_type) { 1408 case OBJ_OP_READ: 1409 return false; 1410 case OBJ_OP_WRITE: 1411 case OBJ_OP_DISCARD: 1412 return true; 1413 default: 1414 BUG(); 1415 } 1416 } 1417 1418 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req); 1419 1420 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1421 { 1422 struct rbd_obj_request *obj_req = osd_req->r_priv; 1423 1424 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1425 osd_req->r_result, obj_req); 1426 rbd_assert(osd_req == obj_req->osd_req); 1427 1428 obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0; 1429 if (!obj_req->result && !rbd_img_is_write(obj_req->img_request)) 1430 obj_req->xferred = osd_req->r_result; 1431 else 1432 /* 1433 * Writes aren't allowed to return a data payload. In some 1434 * guarded write cases (e.g. stat + zero on an empty object) 1435 * a stat response makes it through, but we don't care. 1436 */ 1437 obj_req->xferred = 0; 1438 1439 rbd_obj_handle_request(obj_req); 1440 } 1441 1442 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1443 { 1444 struct ceph_osd_request *osd_req = obj_request->osd_req; 1445 1446 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1447 osd_req->r_snapid = obj_request->img_request->snap_id; 1448 } 1449 1450 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1451 { 1452 struct ceph_osd_request *osd_req = obj_request->osd_req; 1453 1454 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1455 ktime_get_real_ts(&osd_req->r_mtime); 1456 osd_req->r_data_offset = obj_request->ex.oe_off; 1457 } 1458 1459 static struct ceph_osd_request * 1460 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops) 1461 { 1462 struct rbd_img_request *img_req = obj_req->img_request; 1463 struct rbd_device *rbd_dev = img_req->rbd_dev; 1464 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1465 struct ceph_osd_request *req; 1466 const char *name_format = rbd_dev->image_format == 1 ? 1467 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1468 1469 req = ceph_osdc_alloc_request(osdc, 1470 (rbd_img_is_write(img_req) ? img_req->snapc : NULL), 1471 num_ops, false, GFP_NOIO); 1472 if (!req) 1473 return NULL; 1474 1475 req->r_callback = rbd_osd_req_callback; 1476 req->r_priv = obj_req; 1477 1478 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1479 if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1480 rbd_dev->header.object_prefix, obj_req->ex.oe_objno)) 1481 goto err_req; 1482 1483 if (ceph_osdc_alloc_messages(req, GFP_NOIO)) 1484 goto err_req; 1485 1486 return req; 1487 1488 err_req: 1489 ceph_osdc_put_request(req); 1490 return NULL; 1491 } 1492 1493 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1494 { 1495 ceph_osdc_put_request(osd_req); 1496 } 1497 1498 static struct rbd_obj_request *rbd_obj_request_create(void) 1499 { 1500 struct rbd_obj_request *obj_request; 1501 1502 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1503 if (!obj_request) 1504 return NULL; 1505 1506 ceph_object_extent_init(&obj_request->ex); 1507 kref_init(&obj_request->kref); 1508 1509 dout("%s %p\n", __func__, obj_request); 1510 return obj_request; 1511 } 1512 1513 static void rbd_obj_request_destroy(struct kref *kref) 1514 { 1515 struct rbd_obj_request *obj_request; 1516 u32 i; 1517 1518 obj_request = container_of(kref, struct rbd_obj_request, kref); 1519 1520 dout("%s: obj %p\n", __func__, obj_request); 1521 1522 if (obj_request->osd_req) 1523 rbd_osd_req_destroy(obj_request->osd_req); 1524 1525 switch (obj_request->img_request->data_type) { 1526 case OBJ_REQUEST_NODATA: 1527 case OBJ_REQUEST_BIO: 1528 case OBJ_REQUEST_BVECS: 1529 break; /* Nothing to do */ 1530 case OBJ_REQUEST_OWN_BVECS: 1531 kfree(obj_request->bvec_pos.bvecs); 1532 break; 1533 default: 1534 rbd_assert(0); 1535 } 1536 1537 kfree(obj_request->img_extents); 1538 if (obj_request->copyup_bvecs) { 1539 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1540 if (obj_request->copyup_bvecs[i].bv_page) 1541 __free_page(obj_request->copyup_bvecs[i].bv_page); 1542 } 1543 kfree(obj_request->copyup_bvecs); 1544 } 1545 1546 kmem_cache_free(rbd_obj_request_cache, obj_request); 1547 } 1548 1549 /* It's OK to call this for a device with no parent */ 1550 1551 static void rbd_spec_put(struct rbd_spec *spec); 1552 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1553 { 1554 rbd_dev_remove_parent(rbd_dev); 1555 rbd_spec_put(rbd_dev->parent_spec); 1556 rbd_dev->parent_spec = NULL; 1557 rbd_dev->parent_overlap = 0; 1558 } 1559 1560 /* 1561 * Parent image reference counting is used to determine when an 1562 * image's parent fields can be safely torn down--after there are no 1563 * more in-flight requests to the parent image. When the last 1564 * reference is dropped, cleaning them up is safe. 1565 */ 1566 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1567 { 1568 int counter; 1569 1570 if (!rbd_dev->parent_spec) 1571 return; 1572 1573 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1574 if (counter > 0) 1575 return; 1576 1577 /* Last reference; clean up parent data structures */ 1578 1579 if (!counter) 1580 rbd_dev_unparent(rbd_dev); 1581 else 1582 rbd_warn(rbd_dev, "parent reference underflow"); 1583 } 1584 1585 /* 1586 * If an image has a non-zero parent overlap, get a reference to its 1587 * parent. 1588 * 1589 * Returns true if the rbd device has a parent with a non-zero 1590 * overlap and a reference for it was successfully taken, or 1591 * false otherwise. 1592 */ 1593 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1594 { 1595 int counter = 0; 1596 1597 if (!rbd_dev->parent_spec) 1598 return false; 1599 1600 down_read(&rbd_dev->header_rwsem); 1601 if (rbd_dev->parent_overlap) 1602 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1603 up_read(&rbd_dev->header_rwsem); 1604 1605 if (counter < 0) 1606 rbd_warn(rbd_dev, "parent reference overflow"); 1607 1608 return counter > 0; 1609 } 1610 1611 /* 1612 * Caller is responsible for filling in the list of object requests 1613 * that comprises the image request, and the Linux request pointer 1614 * (if there is one). 1615 */ 1616 static struct rbd_img_request *rbd_img_request_create( 1617 struct rbd_device *rbd_dev, 1618 enum obj_operation_type op_type, 1619 struct ceph_snap_context *snapc) 1620 { 1621 struct rbd_img_request *img_request; 1622 1623 img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO); 1624 if (!img_request) 1625 return NULL; 1626 1627 img_request->rbd_dev = rbd_dev; 1628 img_request->op_type = op_type; 1629 if (!rbd_img_is_write(img_request)) 1630 img_request->snap_id = rbd_dev->spec->snap_id; 1631 else 1632 img_request->snapc = snapc; 1633 1634 if (rbd_dev_parent_get(rbd_dev)) 1635 img_request_layered_set(img_request); 1636 1637 spin_lock_init(&img_request->completion_lock); 1638 INIT_LIST_HEAD(&img_request->object_extents); 1639 kref_init(&img_request->kref); 1640 1641 dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev, 1642 obj_op_name(op_type), img_request); 1643 return img_request; 1644 } 1645 1646 static void rbd_img_request_destroy(struct kref *kref) 1647 { 1648 struct rbd_img_request *img_request; 1649 struct rbd_obj_request *obj_request; 1650 struct rbd_obj_request *next_obj_request; 1651 1652 img_request = container_of(kref, struct rbd_img_request, kref); 1653 1654 dout("%s: img %p\n", __func__, img_request); 1655 1656 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1657 rbd_img_obj_request_del(img_request, obj_request); 1658 rbd_assert(img_request->obj_request_count == 0); 1659 1660 if (img_request_layered_test(img_request)) { 1661 img_request_layered_clear(img_request); 1662 rbd_dev_parent_put(img_request->rbd_dev); 1663 } 1664 1665 if (rbd_img_is_write(img_request)) 1666 ceph_put_snap_context(img_request->snapc); 1667 1668 kmem_cache_free(rbd_img_request_cache, img_request); 1669 } 1670 1671 static void prune_extents(struct ceph_file_extent *img_extents, 1672 u32 *num_img_extents, u64 overlap) 1673 { 1674 u32 cnt = *num_img_extents; 1675 1676 /* drop extents completely beyond the overlap */ 1677 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 1678 cnt--; 1679 1680 if (cnt) { 1681 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 1682 1683 /* trim final overlapping extent */ 1684 if (ex->fe_off + ex->fe_len > overlap) 1685 ex->fe_len = overlap - ex->fe_off; 1686 } 1687 1688 *num_img_extents = cnt; 1689 } 1690 1691 /* 1692 * Determine the byte range(s) covered by either just the object extent 1693 * or the entire object in the parent image. 1694 */ 1695 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 1696 bool entire) 1697 { 1698 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1699 int ret; 1700 1701 if (!rbd_dev->parent_overlap) 1702 return 0; 1703 1704 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 1705 entire ? 0 : obj_req->ex.oe_off, 1706 entire ? rbd_dev->layout.object_size : 1707 obj_req->ex.oe_len, 1708 &obj_req->img_extents, 1709 &obj_req->num_img_extents); 1710 if (ret) 1711 return ret; 1712 1713 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 1714 rbd_dev->parent_overlap); 1715 return 0; 1716 } 1717 1718 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which) 1719 { 1720 switch (obj_req->img_request->data_type) { 1721 case OBJ_REQUEST_BIO: 1722 osd_req_op_extent_osd_data_bio(obj_req->osd_req, which, 1723 &obj_req->bio_pos, 1724 obj_req->ex.oe_len); 1725 break; 1726 case OBJ_REQUEST_BVECS: 1727 case OBJ_REQUEST_OWN_BVECS: 1728 rbd_assert(obj_req->bvec_pos.iter.bi_size == 1729 obj_req->ex.oe_len); 1730 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 1731 osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which, 1732 &obj_req->bvec_pos); 1733 break; 1734 default: 1735 rbd_assert(0); 1736 } 1737 } 1738 1739 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req) 1740 { 1741 obj_req->osd_req = rbd_osd_req_create(obj_req, 1); 1742 if (!obj_req->osd_req) 1743 return -ENOMEM; 1744 1745 osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ, 1746 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 1747 rbd_osd_req_setup_data(obj_req, 0); 1748 1749 rbd_osd_req_format_read(obj_req); 1750 return 0; 1751 } 1752 1753 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req, 1754 unsigned int which) 1755 { 1756 struct page **pages; 1757 1758 /* 1759 * The response data for a STAT call consists of: 1760 * le64 length; 1761 * struct { 1762 * le32 tv_sec; 1763 * le32 tv_nsec; 1764 * } mtime; 1765 */ 1766 pages = ceph_alloc_page_vector(1, GFP_NOIO); 1767 if (IS_ERR(pages)) 1768 return PTR_ERR(pages); 1769 1770 osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0); 1771 osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages, 1772 8 + sizeof(struct ceph_timespec), 1773 0, false, true); 1774 return 0; 1775 } 1776 1777 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req, 1778 unsigned int which) 1779 { 1780 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1781 u16 opcode; 1782 1783 osd_req_op_alloc_hint_init(obj_req->osd_req, which++, 1784 rbd_dev->layout.object_size, 1785 rbd_dev->layout.object_size); 1786 1787 if (rbd_obj_is_entire(obj_req)) 1788 opcode = CEPH_OSD_OP_WRITEFULL; 1789 else 1790 opcode = CEPH_OSD_OP_WRITE; 1791 1792 osd_req_op_extent_init(obj_req->osd_req, which, opcode, 1793 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 1794 rbd_osd_req_setup_data(obj_req, which++); 1795 1796 rbd_assert(which == obj_req->osd_req->r_num_ops); 1797 rbd_osd_req_format_write(obj_req); 1798 } 1799 1800 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req) 1801 { 1802 unsigned int num_osd_ops, which = 0; 1803 int ret; 1804 1805 /* reverse map the entire object onto the parent */ 1806 ret = rbd_obj_calc_img_extents(obj_req, true); 1807 if (ret) 1808 return ret; 1809 1810 if (obj_req->num_img_extents) { 1811 obj_req->write_state = RBD_OBJ_WRITE_GUARD; 1812 num_osd_ops = 3; /* stat + setallochint + write/writefull */ 1813 } else { 1814 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 1815 num_osd_ops = 2; /* setallochint + write/writefull */ 1816 } 1817 1818 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops); 1819 if (!obj_req->osd_req) 1820 return -ENOMEM; 1821 1822 if (obj_req->num_img_extents) { 1823 ret = __rbd_obj_setup_stat(obj_req, which++); 1824 if (ret) 1825 return ret; 1826 } 1827 1828 __rbd_obj_setup_write(obj_req, which); 1829 return 0; 1830 } 1831 1832 static void __rbd_obj_setup_discard(struct rbd_obj_request *obj_req, 1833 unsigned int which) 1834 { 1835 u16 opcode; 1836 1837 if (rbd_obj_is_entire(obj_req)) { 1838 if (obj_req->num_img_extents) { 1839 osd_req_op_init(obj_req->osd_req, which++, 1840 CEPH_OSD_OP_CREATE, 0); 1841 opcode = CEPH_OSD_OP_TRUNCATE; 1842 } else { 1843 osd_req_op_init(obj_req->osd_req, which++, 1844 CEPH_OSD_OP_DELETE, 0); 1845 opcode = 0; 1846 } 1847 } else if (rbd_obj_is_tail(obj_req)) { 1848 opcode = CEPH_OSD_OP_TRUNCATE; 1849 } else { 1850 opcode = CEPH_OSD_OP_ZERO; 1851 } 1852 1853 if (opcode) 1854 osd_req_op_extent_init(obj_req->osd_req, which++, opcode, 1855 obj_req->ex.oe_off, obj_req->ex.oe_len, 1856 0, 0); 1857 1858 rbd_assert(which == obj_req->osd_req->r_num_ops); 1859 rbd_osd_req_format_write(obj_req); 1860 } 1861 1862 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req) 1863 { 1864 unsigned int num_osd_ops, which = 0; 1865 int ret; 1866 1867 /* reverse map the entire object onto the parent */ 1868 ret = rbd_obj_calc_img_extents(obj_req, true); 1869 if (ret) 1870 return ret; 1871 1872 if (rbd_obj_is_entire(obj_req)) { 1873 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 1874 if (obj_req->num_img_extents) 1875 num_osd_ops = 2; /* create + truncate */ 1876 else 1877 num_osd_ops = 1; /* delete */ 1878 } else { 1879 if (obj_req->num_img_extents) { 1880 obj_req->write_state = RBD_OBJ_WRITE_GUARD; 1881 num_osd_ops = 2; /* stat + truncate/zero */ 1882 } else { 1883 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 1884 num_osd_ops = 1; /* truncate/zero */ 1885 } 1886 } 1887 1888 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops); 1889 if (!obj_req->osd_req) 1890 return -ENOMEM; 1891 1892 if (!rbd_obj_is_entire(obj_req) && obj_req->num_img_extents) { 1893 ret = __rbd_obj_setup_stat(obj_req, which++); 1894 if (ret) 1895 return ret; 1896 } 1897 1898 __rbd_obj_setup_discard(obj_req, which); 1899 return 0; 1900 } 1901 1902 /* 1903 * For each object request in @img_req, allocate an OSD request, add 1904 * individual OSD ops and prepare them for submission. The number of 1905 * OSD ops depends on op_type and the overlap point (if any). 1906 */ 1907 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 1908 { 1909 struct rbd_obj_request *obj_req; 1910 int ret; 1911 1912 for_each_obj_request(img_req, obj_req) { 1913 switch (img_req->op_type) { 1914 case OBJ_OP_READ: 1915 ret = rbd_obj_setup_read(obj_req); 1916 break; 1917 case OBJ_OP_WRITE: 1918 ret = rbd_obj_setup_write(obj_req); 1919 break; 1920 case OBJ_OP_DISCARD: 1921 ret = rbd_obj_setup_discard(obj_req); 1922 break; 1923 default: 1924 rbd_assert(0); 1925 } 1926 if (ret) 1927 return ret; 1928 } 1929 1930 return 0; 1931 } 1932 1933 union rbd_img_fill_iter { 1934 struct ceph_bio_iter bio_iter; 1935 struct ceph_bvec_iter bvec_iter; 1936 }; 1937 1938 struct rbd_img_fill_ctx { 1939 enum obj_request_type pos_type; 1940 union rbd_img_fill_iter *pos; 1941 union rbd_img_fill_iter iter; 1942 ceph_object_extent_fn_t set_pos_fn; 1943 ceph_object_extent_fn_t count_fn; 1944 ceph_object_extent_fn_t copy_fn; 1945 }; 1946 1947 static struct ceph_object_extent *alloc_object_extent(void *arg) 1948 { 1949 struct rbd_img_request *img_req = arg; 1950 struct rbd_obj_request *obj_req; 1951 1952 obj_req = rbd_obj_request_create(); 1953 if (!obj_req) 1954 return NULL; 1955 1956 rbd_img_obj_request_add(img_req, obj_req); 1957 return &obj_req->ex; 1958 } 1959 1960 /* 1961 * While su != os && sc == 1 is technically not fancy (it's the same 1962 * layout as su == os && sc == 1), we can't use the nocopy path for it 1963 * because ->set_pos_fn() should be called only once per object. 1964 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 1965 * treat su != os && sc == 1 as fancy. 1966 */ 1967 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 1968 { 1969 return l->stripe_unit != l->object_size; 1970 } 1971 1972 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 1973 struct ceph_file_extent *img_extents, 1974 u32 num_img_extents, 1975 struct rbd_img_fill_ctx *fctx) 1976 { 1977 u32 i; 1978 int ret; 1979 1980 img_req->data_type = fctx->pos_type; 1981 1982 /* 1983 * Create object requests and set each object request's starting 1984 * position in the provided bio (list) or bio_vec array. 1985 */ 1986 fctx->iter = *fctx->pos; 1987 for (i = 0; i < num_img_extents; i++) { 1988 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 1989 img_extents[i].fe_off, 1990 img_extents[i].fe_len, 1991 &img_req->object_extents, 1992 alloc_object_extent, img_req, 1993 fctx->set_pos_fn, &fctx->iter); 1994 if (ret) 1995 return ret; 1996 } 1997 1998 return __rbd_img_fill_request(img_req); 1999 } 2000 2001 /* 2002 * Map a list of image extents to a list of object extents, create the 2003 * corresponding object requests (normally each to a different object, 2004 * but not always) and add them to @img_req. For each object request, 2005 * set up its data descriptor to point to the corresponding chunk(s) of 2006 * @fctx->pos data buffer. 2007 * 2008 * Because ceph_file_to_extents() will merge adjacent object extents 2009 * together, each object request's data descriptor may point to multiple 2010 * different chunks of @fctx->pos data buffer. 2011 * 2012 * @fctx->pos data buffer is assumed to be large enough. 2013 */ 2014 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2015 struct ceph_file_extent *img_extents, 2016 u32 num_img_extents, 2017 struct rbd_img_fill_ctx *fctx) 2018 { 2019 struct rbd_device *rbd_dev = img_req->rbd_dev; 2020 struct rbd_obj_request *obj_req; 2021 u32 i; 2022 int ret; 2023 2024 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2025 !rbd_layout_is_fancy(&rbd_dev->layout)) 2026 return rbd_img_fill_request_nocopy(img_req, img_extents, 2027 num_img_extents, fctx); 2028 2029 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2030 2031 /* 2032 * Create object requests and determine ->bvec_count for each object 2033 * request. Note that ->bvec_count sum over all object requests may 2034 * be greater than the number of bio_vecs in the provided bio (list) 2035 * or bio_vec array because when mapped, those bio_vecs can straddle 2036 * stripe unit boundaries. 2037 */ 2038 fctx->iter = *fctx->pos; 2039 for (i = 0; i < num_img_extents; i++) { 2040 ret = ceph_file_to_extents(&rbd_dev->layout, 2041 img_extents[i].fe_off, 2042 img_extents[i].fe_len, 2043 &img_req->object_extents, 2044 alloc_object_extent, img_req, 2045 fctx->count_fn, &fctx->iter); 2046 if (ret) 2047 return ret; 2048 } 2049 2050 for_each_obj_request(img_req, obj_req) { 2051 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2052 sizeof(*obj_req->bvec_pos.bvecs), 2053 GFP_NOIO); 2054 if (!obj_req->bvec_pos.bvecs) 2055 return -ENOMEM; 2056 } 2057 2058 /* 2059 * Fill in each object request's private bio_vec array, splitting and 2060 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2061 */ 2062 fctx->iter = *fctx->pos; 2063 for (i = 0; i < num_img_extents; i++) { 2064 ret = ceph_iterate_extents(&rbd_dev->layout, 2065 img_extents[i].fe_off, 2066 img_extents[i].fe_len, 2067 &img_req->object_extents, 2068 fctx->copy_fn, &fctx->iter); 2069 if (ret) 2070 return ret; 2071 } 2072 2073 return __rbd_img_fill_request(img_req); 2074 } 2075 2076 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2077 u64 off, u64 len) 2078 { 2079 struct ceph_file_extent ex = { off, len }; 2080 union rbd_img_fill_iter dummy; 2081 struct rbd_img_fill_ctx fctx = { 2082 .pos_type = OBJ_REQUEST_NODATA, 2083 .pos = &dummy, 2084 }; 2085 2086 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2087 } 2088 2089 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2090 { 2091 struct rbd_obj_request *obj_req = 2092 container_of(ex, struct rbd_obj_request, ex); 2093 struct ceph_bio_iter *it = arg; 2094 2095 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2096 obj_req->bio_pos = *it; 2097 ceph_bio_iter_advance(it, bytes); 2098 } 2099 2100 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2101 { 2102 struct rbd_obj_request *obj_req = 2103 container_of(ex, struct rbd_obj_request, ex); 2104 struct ceph_bio_iter *it = arg; 2105 2106 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2107 ceph_bio_iter_advance_step(it, bytes, ({ 2108 obj_req->bvec_count++; 2109 })); 2110 2111 } 2112 2113 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2114 { 2115 struct rbd_obj_request *obj_req = 2116 container_of(ex, struct rbd_obj_request, ex); 2117 struct ceph_bio_iter *it = arg; 2118 2119 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2120 ceph_bio_iter_advance_step(it, bytes, ({ 2121 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2122 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2123 })); 2124 } 2125 2126 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2127 struct ceph_file_extent *img_extents, 2128 u32 num_img_extents, 2129 struct ceph_bio_iter *bio_pos) 2130 { 2131 struct rbd_img_fill_ctx fctx = { 2132 .pos_type = OBJ_REQUEST_BIO, 2133 .pos = (union rbd_img_fill_iter *)bio_pos, 2134 .set_pos_fn = set_bio_pos, 2135 .count_fn = count_bio_bvecs, 2136 .copy_fn = copy_bio_bvecs, 2137 }; 2138 2139 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2140 &fctx); 2141 } 2142 2143 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2144 u64 off, u64 len, struct bio *bio) 2145 { 2146 struct ceph_file_extent ex = { off, len }; 2147 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2148 2149 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2150 } 2151 2152 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2153 { 2154 struct rbd_obj_request *obj_req = 2155 container_of(ex, struct rbd_obj_request, ex); 2156 struct ceph_bvec_iter *it = arg; 2157 2158 obj_req->bvec_pos = *it; 2159 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2160 ceph_bvec_iter_advance(it, bytes); 2161 } 2162 2163 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2164 { 2165 struct rbd_obj_request *obj_req = 2166 container_of(ex, struct rbd_obj_request, ex); 2167 struct ceph_bvec_iter *it = arg; 2168 2169 ceph_bvec_iter_advance_step(it, bytes, ({ 2170 obj_req->bvec_count++; 2171 })); 2172 } 2173 2174 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2175 { 2176 struct rbd_obj_request *obj_req = 2177 container_of(ex, struct rbd_obj_request, ex); 2178 struct ceph_bvec_iter *it = arg; 2179 2180 ceph_bvec_iter_advance_step(it, bytes, ({ 2181 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2182 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2183 })); 2184 } 2185 2186 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2187 struct ceph_file_extent *img_extents, 2188 u32 num_img_extents, 2189 struct ceph_bvec_iter *bvec_pos) 2190 { 2191 struct rbd_img_fill_ctx fctx = { 2192 .pos_type = OBJ_REQUEST_BVECS, 2193 .pos = (union rbd_img_fill_iter *)bvec_pos, 2194 .set_pos_fn = set_bvec_pos, 2195 .count_fn = count_bvecs, 2196 .copy_fn = copy_bvecs, 2197 }; 2198 2199 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2200 &fctx); 2201 } 2202 2203 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2204 struct ceph_file_extent *img_extents, 2205 u32 num_img_extents, 2206 struct bio_vec *bvecs) 2207 { 2208 struct ceph_bvec_iter it = { 2209 .bvecs = bvecs, 2210 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2211 num_img_extents) }, 2212 }; 2213 2214 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2215 &it); 2216 } 2217 2218 static void rbd_img_request_submit(struct rbd_img_request *img_request) 2219 { 2220 struct rbd_obj_request *obj_request; 2221 2222 dout("%s: img %p\n", __func__, img_request); 2223 2224 rbd_img_request_get(img_request); 2225 for_each_obj_request(img_request, obj_request) 2226 rbd_obj_request_submit(obj_request); 2227 2228 rbd_img_request_put(img_request); 2229 } 2230 2231 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2232 { 2233 struct rbd_img_request *img_req = obj_req->img_request; 2234 struct rbd_img_request *child_img_req; 2235 int ret; 2236 2237 child_img_req = rbd_img_request_create(img_req->rbd_dev->parent, 2238 OBJ_OP_READ, NULL); 2239 if (!child_img_req) 2240 return -ENOMEM; 2241 2242 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2243 child_img_req->obj_request = obj_req; 2244 2245 if (!rbd_img_is_write(img_req)) { 2246 switch (img_req->data_type) { 2247 case OBJ_REQUEST_BIO: 2248 ret = __rbd_img_fill_from_bio(child_img_req, 2249 obj_req->img_extents, 2250 obj_req->num_img_extents, 2251 &obj_req->bio_pos); 2252 break; 2253 case OBJ_REQUEST_BVECS: 2254 case OBJ_REQUEST_OWN_BVECS: 2255 ret = __rbd_img_fill_from_bvecs(child_img_req, 2256 obj_req->img_extents, 2257 obj_req->num_img_extents, 2258 &obj_req->bvec_pos); 2259 break; 2260 default: 2261 rbd_assert(0); 2262 } 2263 } else { 2264 ret = rbd_img_fill_from_bvecs(child_img_req, 2265 obj_req->img_extents, 2266 obj_req->num_img_extents, 2267 obj_req->copyup_bvecs); 2268 } 2269 if (ret) { 2270 rbd_img_request_put(child_img_req); 2271 return ret; 2272 } 2273 2274 rbd_img_request_submit(child_img_req); 2275 return 0; 2276 } 2277 2278 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req) 2279 { 2280 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2281 int ret; 2282 2283 if (obj_req->result == -ENOENT && 2284 rbd_dev->parent_overlap && !obj_req->tried_parent) { 2285 /* reverse map this object extent onto the parent */ 2286 ret = rbd_obj_calc_img_extents(obj_req, false); 2287 if (ret) { 2288 obj_req->result = ret; 2289 return true; 2290 } 2291 2292 if (obj_req->num_img_extents) { 2293 obj_req->tried_parent = true; 2294 ret = rbd_obj_read_from_parent(obj_req); 2295 if (ret) { 2296 obj_req->result = ret; 2297 return true; 2298 } 2299 return false; 2300 } 2301 } 2302 2303 /* 2304 * -ENOENT means a hole in the image -- zero-fill the entire 2305 * length of the request. A short read also implies zero-fill 2306 * to the end of the request. In both cases we update xferred 2307 * count to indicate the whole request was satisfied. 2308 */ 2309 if (obj_req->result == -ENOENT || 2310 (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) { 2311 rbd_assert(!obj_req->xferred || !obj_req->result); 2312 rbd_obj_zero_range(obj_req, obj_req->xferred, 2313 obj_req->ex.oe_len - obj_req->xferred); 2314 obj_req->result = 0; 2315 obj_req->xferred = obj_req->ex.oe_len; 2316 } 2317 2318 return true; 2319 } 2320 2321 /* 2322 * copyup_bvecs pages are never highmem pages 2323 */ 2324 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 2325 { 2326 struct ceph_bvec_iter it = { 2327 .bvecs = bvecs, 2328 .iter = { .bi_size = bytes }, 2329 }; 2330 2331 ceph_bvec_iter_advance_step(&it, bytes, ({ 2332 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0, 2333 bv.bv_len)) 2334 return false; 2335 })); 2336 return true; 2337 } 2338 2339 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes) 2340 { 2341 unsigned int num_osd_ops = obj_req->osd_req->r_num_ops; 2342 int ret; 2343 2344 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 2345 rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT); 2346 rbd_osd_req_destroy(obj_req->osd_req); 2347 2348 /* 2349 * Create a copyup request with the same number of OSD ops as 2350 * the original request. The original request was stat + op(s), 2351 * the new copyup request will be copyup + the same op(s). 2352 */ 2353 obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops); 2354 if (!obj_req->osd_req) 2355 return -ENOMEM; 2356 2357 ret = osd_req_op_cls_init(obj_req->osd_req, 0, CEPH_OSD_OP_CALL, "rbd", 2358 "copyup"); 2359 if (ret) 2360 return ret; 2361 2362 /* 2363 * Only send non-zero copyup data to save some I/O and network 2364 * bandwidth -- zero copyup data is equivalent to the object not 2365 * existing. 2366 */ 2367 if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) { 2368 dout("%s obj_req %p detected zeroes\n", __func__, obj_req); 2369 bytes = 0; 2370 } 2371 osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0, 2372 obj_req->copyup_bvecs, 2373 obj_req->copyup_bvec_count, 2374 bytes); 2375 2376 switch (obj_req->img_request->op_type) { 2377 case OBJ_OP_WRITE: 2378 __rbd_obj_setup_write(obj_req, 1); 2379 break; 2380 case OBJ_OP_DISCARD: 2381 rbd_assert(!rbd_obj_is_entire(obj_req)); 2382 __rbd_obj_setup_discard(obj_req, 1); 2383 break; 2384 default: 2385 rbd_assert(0); 2386 } 2387 2388 rbd_obj_request_submit(obj_req); 2389 return 0; 2390 } 2391 2392 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 2393 { 2394 u32 i; 2395 2396 rbd_assert(!obj_req->copyup_bvecs); 2397 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 2398 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 2399 sizeof(*obj_req->copyup_bvecs), 2400 GFP_NOIO); 2401 if (!obj_req->copyup_bvecs) 2402 return -ENOMEM; 2403 2404 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 2405 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 2406 2407 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO); 2408 if (!obj_req->copyup_bvecs[i].bv_page) 2409 return -ENOMEM; 2410 2411 obj_req->copyup_bvecs[i].bv_offset = 0; 2412 obj_req->copyup_bvecs[i].bv_len = len; 2413 obj_overlap -= len; 2414 } 2415 2416 rbd_assert(!obj_overlap); 2417 return 0; 2418 } 2419 2420 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req) 2421 { 2422 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2423 int ret; 2424 2425 rbd_assert(obj_req->num_img_extents); 2426 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2427 rbd_dev->parent_overlap); 2428 if (!obj_req->num_img_extents) { 2429 /* 2430 * The overlap has become 0 (most likely because the 2431 * image has been flattened). Use rbd_obj_issue_copyup() 2432 * to re-submit the original write request -- the copyup 2433 * operation itself will be a no-op, since someone must 2434 * have populated the child object while we weren't 2435 * looking. Move to WRITE_FLAT state as we'll be done 2436 * with the operation once the null copyup completes. 2437 */ 2438 obj_req->write_state = RBD_OBJ_WRITE_FLAT; 2439 return rbd_obj_issue_copyup(obj_req, 0); 2440 } 2441 2442 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 2443 if (ret) 2444 return ret; 2445 2446 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 2447 return rbd_obj_read_from_parent(obj_req); 2448 } 2449 2450 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req) 2451 { 2452 int ret; 2453 2454 again: 2455 switch (obj_req->write_state) { 2456 case RBD_OBJ_WRITE_GUARD: 2457 rbd_assert(!obj_req->xferred); 2458 if (obj_req->result == -ENOENT) { 2459 /* 2460 * The target object doesn't exist. Read the data for 2461 * the entire target object up to the overlap point (if 2462 * any) from the parent, so we can use it for a copyup. 2463 */ 2464 ret = rbd_obj_handle_write_guard(obj_req); 2465 if (ret) { 2466 obj_req->result = ret; 2467 return true; 2468 } 2469 return false; 2470 } 2471 /* fall through */ 2472 case RBD_OBJ_WRITE_FLAT: 2473 if (!obj_req->result) 2474 /* 2475 * There is no such thing as a successful short 2476 * write -- indicate the whole request was satisfied. 2477 */ 2478 obj_req->xferred = obj_req->ex.oe_len; 2479 return true; 2480 case RBD_OBJ_WRITE_COPYUP: 2481 obj_req->write_state = RBD_OBJ_WRITE_GUARD; 2482 if (obj_req->result) 2483 goto again; 2484 2485 rbd_assert(obj_req->xferred); 2486 ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred); 2487 if (ret) { 2488 obj_req->result = ret; 2489 return true; 2490 } 2491 return false; 2492 default: 2493 BUG(); 2494 } 2495 } 2496 2497 /* 2498 * Returns true if @obj_req is completed, or false otherwise. 2499 */ 2500 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req) 2501 { 2502 switch (obj_req->img_request->op_type) { 2503 case OBJ_OP_READ: 2504 return rbd_obj_handle_read(obj_req); 2505 case OBJ_OP_WRITE: 2506 return rbd_obj_handle_write(obj_req); 2507 case OBJ_OP_DISCARD: 2508 if (rbd_obj_handle_write(obj_req)) { 2509 /* 2510 * Hide -ENOENT from delete/truncate/zero -- discarding 2511 * a non-existent object is not a problem. 2512 */ 2513 if (obj_req->result == -ENOENT) { 2514 obj_req->result = 0; 2515 obj_req->xferred = obj_req->ex.oe_len; 2516 } 2517 return true; 2518 } 2519 return false; 2520 default: 2521 BUG(); 2522 } 2523 } 2524 2525 static void rbd_obj_end_request(struct rbd_obj_request *obj_req) 2526 { 2527 struct rbd_img_request *img_req = obj_req->img_request; 2528 2529 rbd_assert((!obj_req->result && 2530 obj_req->xferred == obj_req->ex.oe_len) || 2531 (obj_req->result < 0 && !obj_req->xferred)); 2532 if (!obj_req->result) { 2533 img_req->xferred += obj_req->xferred; 2534 return; 2535 } 2536 2537 rbd_warn(img_req->rbd_dev, 2538 "%s at objno %llu %llu~%llu result %d xferred %llu", 2539 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 2540 obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result, 2541 obj_req->xferred); 2542 if (!img_req->result) { 2543 img_req->result = obj_req->result; 2544 img_req->xferred = 0; 2545 } 2546 } 2547 2548 static void rbd_img_end_child_request(struct rbd_img_request *img_req) 2549 { 2550 struct rbd_obj_request *obj_req = img_req->obj_request; 2551 2552 rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags)); 2553 rbd_assert((!img_req->result && 2554 img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) || 2555 (img_req->result < 0 && !img_req->xferred)); 2556 2557 obj_req->result = img_req->result; 2558 obj_req->xferred = img_req->xferred; 2559 rbd_img_request_put(img_req); 2560 } 2561 2562 static void rbd_img_end_request(struct rbd_img_request *img_req) 2563 { 2564 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 2565 rbd_assert((!img_req->result && 2566 img_req->xferred == blk_rq_bytes(img_req->rq)) || 2567 (img_req->result < 0 && !img_req->xferred)); 2568 2569 blk_mq_end_request(img_req->rq, 2570 errno_to_blk_status(img_req->result)); 2571 rbd_img_request_put(img_req); 2572 } 2573 2574 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req) 2575 { 2576 struct rbd_img_request *img_req; 2577 2578 again: 2579 if (!__rbd_obj_handle_request(obj_req)) 2580 return; 2581 2582 img_req = obj_req->img_request; 2583 spin_lock(&img_req->completion_lock); 2584 rbd_obj_end_request(obj_req); 2585 rbd_assert(img_req->pending_count); 2586 if (--img_req->pending_count) { 2587 spin_unlock(&img_req->completion_lock); 2588 return; 2589 } 2590 2591 spin_unlock(&img_req->completion_lock); 2592 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 2593 obj_req = img_req->obj_request; 2594 rbd_img_end_child_request(img_req); 2595 goto again; 2596 } 2597 rbd_img_end_request(img_req); 2598 } 2599 2600 static const struct rbd_client_id rbd_empty_cid; 2601 2602 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 2603 const struct rbd_client_id *rhs) 2604 { 2605 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 2606 } 2607 2608 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 2609 { 2610 struct rbd_client_id cid; 2611 2612 mutex_lock(&rbd_dev->watch_mutex); 2613 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 2614 cid.handle = rbd_dev->watch_cookie; 2615 mutex_unlock(&rbd_dev->watch_mutex); 2616 return cid; 2617 } 2618 2619 /* 2620 * lock_rwsem must be held for write 2621 */ 2622 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 2623 const struct rbd_client_id *cid) 2624 { 2625 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 2626 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 2627 cid->gid, cid->handle); 2628 rbd_dev->owner_cid = *cid; /* struct */ 2629 } 2630 2631 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 2632 { 2633 mutex_lock(&rbd_dev->watch_mutex); 2634 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 2635 mutex_unlock(&rbd_dev->watch_mutex); 2636 } 2637 2638 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 2639 { 2640 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 2641 2642 strcpy(rbd_dev->lock_cookie, cookie); 2643 rbd_set_owner_cid(rbd_dev, &cid); 2644 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 2645 } 2646 2647 /* 2648 * lock_rwsem must be held for write 2649 */ 2650 static int rbd_lock(struct rbd_device *rbd_dev) 2651 { 2652 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2653 char cookie[32]; 2654 int ret; 2655 2656 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 2657 rbd_dev->lock_cookie[0] != '\0'); 2658 2659 format_lock_cookie(rbd_dev, cookie); 2660 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 2661 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 2662 RBD_LOCK_TAG, "", 0); 2663 if (ret) 2664 return ret; 2665 2666 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 2667 __rbd_lock(rbd_dev, cookie); 2668 return 0; 2669 } 2670 2671 /* 2672 * lock_rwsem must be held for write 2673 */ 2674 static void rbd_unlock(struct rbd_device *rbd_dev) 2675 { 2676 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2677 int ret; 2678 2679 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 2680 rbd_dev->lock_cookie[0] == '\0'); 2681 2682 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 2683 RBD_LOCK_NAME, rbd_dev->lock_cookie); 2684 if (ret && ret != -ENOENT) 2685 rbd_warn(rbd_dev, "failed to unlock: %d", ret); 2686 2687 /* treat errors as the image is unlocked */ 2688 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 2689 rbd_dev->lock_cookie[0] = '\0'; 2690 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 2691 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 2692 } 2693 2694 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 2695 enum rbd_notify_op notify_op, 2696 struct page ***preply_pages, 2697 size_t *preply_len) 2698 { 2699 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2700 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 2701 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 2702 int buf_size = sizeof(buf); 2703 void *p = buf; 2704 2705 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 2706 2707 /* encode *LockPayload NotifyMessage (op + ClientId) */ 2708 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 2709 ceph_encode_32(&p, notify_op); 2710 ceph_encode_64(&p, cid.gid); 2711 ceph_encode_64(&p, cid.handle); 2712 2713 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 2714 &rbd_dev->header_oloc, buf, buf_size, 2715 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 2716 } 2717 2718 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 2719 enum rbd_notify_op notify_op) 2720 { 2721 struct page **reply_pages; 2722 size_t reply_len; 2723 2724 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len); 2725 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 2726 } 2727 2728 static void rbd_notify_acquired_lock(struct work_struct *work) 2729 { 2730 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 2731 acquired_lock_work); 2732 2733 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 2734 } 2735 2736 static void rbd_notify_released_lock(struct work_struct *work) 2737 { 2738 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 2739 released_lock_work); 2740 2741 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 2742 } 2743 2744 static int rbd_request_lock(struct rbd_device *rbd_dev) 2745 { 2746 struct page **reply_pages; 2747 size_t reply_len; 2748 bool lock_owner_responded = false; 2749 int ret; 2750 2751 dout("%s rbd_dev %p\n", __func__, rbd_dev); 2752 2753 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 2754 &reply_pages, &reply_len); 2755 if (ret && ret != -ETIMEDOUT) { 2756 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 2757 goto out; 2758 } 2759 2760 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 2761 void *p = page_address(reply_pages[0]); 2762 void *const end = p + reply_len; 2763 u32 n; 2764 2765 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 2766 while (n--) { 2767 u8 struct_v; 2768 u32 len; 2769 2770 ceph_decode_need(&p, end, 8 + 8, e_inval); 2771 p += 8 + 8; /* skip gid and cookie */ 2772 2773 ceph_decode_32_safe(&p, end, len, e_inval); 2774 if (!len) 2775 continue; 2776 2777 if (lock_owner_responded) { 2778 rbd_warn(rbd_dev, 2779 "duplicate lock owners detected"); 2780 ret = -EIO; 2781 goto out; 2782 } 2783 2784 lock_owner_responded = true; 2785 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 2786 &struct_v, &len); 2787 if (ret) { 2788 rbd_warn(rbd_dev, 2789 "failed to decode ResponseMessage: %d", 2790 ret); 2791 goto e_inval; 2792 } 2793 2794 ret = ceph_decode_32(&p); 2795 } 2796 } 2797 2798 if (!lock_owner_responded) { 2799 rbd_warn(rbd_dev, "no lock owners detected"); 2800 ret = -ETIMEDOUT; 2801 } 2802 2803 out: 2804 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 2805 return ret; 2806 2807 e_inval: 2808 ret = -EINVAL; 2809 goto out; 2810 } 2811 2812 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all) 2813 { 2814 dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all); 2815 2816 cancel_delayed_work(&rbd_dev->lock_dwork); 2817 if (wake_all) 2818 wake_up_all(&rbd_dev->lock_waitq); 2819 else 2820 wake_up(&rbd_dev->lock_waitq); 2821 } 2822 2823 static int get_lock_owner_info(struct rbd_device *rbd_dev, 2824 struct ceph_locker **lockers, u32 *num_lockers) 2825 { 2826 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2827 u8 lock_type; 2828 char *lock_tag; 2829 int ret; 2830 2831 dout("%s rbd_dev %p\n", __func__, rbd_dev); 2832 2833 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 2834 &rbd_dev->header_oloc, RBD_LOCK_NAME, 2835 &lock_type, &lock_tag, lockers, num_lockers); 2836 if (ret) 2837 return ret; 2838 2839 if (*num_lockers == 0) { 2840 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 2841 goto out; 2842 } 2843 2844 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 2845 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 2846 lock_tag); 2847 ret = -EBUSY; 2848 goto out; 2849 } 2850 2851 if (lock_type == CEPH_CLS_LOCK_SHARED) { 2852 rbd_warn(rbd_dev, "shared lock type detected"); 2853 ret = -EBUSY; 2854 goto out; 2855 } 2856 2857 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 2858 strlen(RBD_LOCK_COOKIE_PREFIX))) { 2859 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 2860 (*lockers)[0].id.cookie); 2861 ret = -EBUSY; 2862 goto out; 2863 } 2864 2865 out: 2866 kfree(lock_tag); 2867 return ret; 2868 } 2869 2870 static int find_watcher(struct rbd_device *rbd_dev, 2871 const struct ceph_locker *locker) 2872 { 2873 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2874 struct ceph_watch_item *watchers; 2875 u32 num_watchers; 2876 u64 cookie; 2877 int i; 2878 int ret; 2879 2880 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 2881 &rbd_dev->header_oloc, &watchers, 2882 &num_watchers); 2883 if (ret) 2884 return ret; 2885 2886 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 2887 for (i = 0; i < num_watchers; i++) { 2888 if (!memcmp(&watchers[i].addr, &locker->info.addr, 2889 sizeof(locker->info.addr)) && 2890 watchers[i].cookie == cookie) { 2891 struct rbd_client_id cid = { 2892 .gid = le64_to_cpu(watchers[i].name.num), 2893 .handle = cookie, 2894 }; 2895 2896 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 2897 rbd_dev, cid.gid, cid.handle); 2898 rbd_set_owner_cid(rbd_dev, &cid); 2899 ret = 1; 2900 goto out; 2901 } 2902 } 2903 2904 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 2905 ret = 0; 2906 out: 2907 kfree(watchers); 2908 return ret; 2909 } 2910 2911 /* 2912 * lock_rwsem must be held for write 2913 */ 2914 static int rbd_try_lock(struct rbd_device *rbd_dev) 2915 { 2916 struct ceph_client *client = rbd_dev->rbd_client->client; 2917 struct ceph_locker *lockers; 2918 u32 num_lockers; 2919 int ret; 2920 2921 for (;;) { 2922 ret = rbd_lock(rbd_dev); 2923 if (ret != -EBUSY) 2924 return ret; 2925 2926 /* determine if the current lock holder is still alive */ 2927 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 2928 if (ret) 2929 return ret; 2930 2931 if (num_lockers == 0) 2932 goto again; 2933 2934 ret = find_watcher(rbd_dev, lockers); 2935 if (ret) { 2936 if (ret > 0) 2937 ret = 0; /* have to request lock */ 2938 goto out; 2939 } 2940 2941 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock", 2942 ENTITY_NAME(lockers[0].id.name)); 2943 2944 ret = ceph_monc_blacklist_add(&client->monc, 2945 &lockers[0].info.addr); 2946 if (ret) { 2947 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 2948 ENTITY_NAME(lockers[0].id.name), ret); 2949 goto out; 2950 } 2951 2952 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 2953 &rbd_dev->header_oloc, RBD_LOCK_NAME, 2954 lockers[0].id.cookie, 2955 &lockers[0].id.name); 2956 if (ret && ret != -ENOENT) 2957 goto out; 2958 2959 again: 2960 ceph_free_lockers(lockers, num_lockers); 2961 } 2962 2963 out: 2964 ceph_free_lockers(lockers, num_lockers); 2965 return ret; 2966 } 2967 2968 /* 2969 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED 2970 */ 2971 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev, 2972 int *pret) 2973 { 2974 enum rbd_lock_state lock_state; 2975 2976 down_read(&rbd_dev->lock_rwsem); 2977 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 2978 rbd_dev->lock_state); 2979 if (__rbd_is_lock_owner(rbd_dev)) { 2980 lock_state = rbd_dev->lock_state; 2981 up_read(&rbd_dev->lock_rwsem); 2982 return lock_state; 2983 } 2984 2985 up_read(&rbd_dev->lock_rwsem); 2986 down_write(&rbd_dev->lock_rwsem); 2987 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 2988 rbd_dev->lock_state); 2989 if (!__rbd_is_lock_owner(rbd_dev)) { 2990 *pret = rbd_try_lock(rbd_dev); 2991 if (*pret) 2992 rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret); 2993 } 2994 2995 lock_state = rbd_dev->lock_state; 2996 up_write(&rbd_dev->lock_rwsem); 2997 return lock_state; 2998 } 2999 3000 static void rbd_acquire_lock(struct work_struct *work) 3001 { 3002 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3003 struct rbd_device, lock_dwork); 3004 enum rbd_lock_state lock_state; 3005 int ret = 0; 3006 3007 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3008 again: 3009 lock_state = rbd_try_acquire_lock(rbd_dev, &ret); 3010 if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) { 3011 if (lock_state == RBD_LOCK_STATE_LOCKED) 3012 wake_requests(rbd_dev, true); 3013 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__, 3014 rbd_dev, lock_state, ret); 3015 return; 3016 } 3017 3018 ret = rbd_request_lock(rbd_dev); 3019 if (ret == -ETIMEDOUT) { 3020 goto again; /* treat this as a dead client */ 3021 } else if (ret == -EROFS) { 3022 rbd_warn(rbd_dev, "peer will not release lock"); 3023 /* 3024 * If this is rbd_add_acquire_lock(), we want to fail 3025 * immediately -- reuse BLACKLISTED flag. Otherwise we 3026 * want to block. 3027 */ 3028 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) { 3029 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3030 /* wake "rbd map --exclusive" process */ 3031 wake_requests(rbd_dev, false); 3032 } 3033 } else if (ret < 0) { 3034 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 3035 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3036 RBD_RETRY_DELAY); 3037 } else { 3038 /* 3039 * lock owner acked, but resend if we don't see them 3040 * release the lock 3041 */ 3042 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__, 3043 rbd_dev); 3044 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 3045 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 3046 } 3047 } 3048 3049 /* 3050 * lock_rwsem must be held for write 3051 */ 3052 static bool rbd_release_lock(struct rbd_device *rbd_dev) 3053 { 3054 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 3055 rbd_dev->lock_state); 3056 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 3057 return false; 3058 3059 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 3060 downgrade_write(&rbd_dev->lock_rwsem); 3061 /* 3062 * Ensure that all in-flight IO is flushed. 3063 * 3064 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which 3065 * may be shared with other devices. 3066 */ 3067 ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc); 3068 up_read(&rbd_dev->lock_rwsem); 3069 3070 down_write(&rbd_dev->lock_rwsem); 3071 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 3072 rbd_dev->lock_state); 3073 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 3074 return false; 3075 3076 rbd_unlock(rbd_dev); 3077 /* 3078 * Give others a chance to grab the lock - we would re-acquire 3079 * almost immediately if we got new IO during ceph_osdc_sync() 3080 * otherwise. We need to ack our own notifications, so this 3081 * lock_dwork will be requeued from rbd_wait_state_locked() 3082 * after wake_requests() in rbd_handle_released_lock(). 3083 */ 3084 cancel_delayed_work(&rbd_dev->lock_dwork); 3085 return true; 3086 } 3087 3088 static void rbd_release_lock_work(struct work_struct *work) 3089 { 3090 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3091 unlock_work); 3092 3093 down_write(&rbd_dev->lock_rwsem); 3094 rbd_release_lock(rbd_dev); 3095 up_write(&rbd_dev->lock_rwsem); 3096 } 3097 3098 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 3099 void **p) 3100 { 3101 struct rbd_client_id cid = { 0 }; 3102 3103 if (struct_v >= 2) { 3104 cid.gid = ceph_decode_64(p); 3105 cid.handle = ceph_decode_64(p); 3106 } 3107 3108 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3109 cid.handle); 3110 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3111 down_write(&rbd_dev->lock_rwsem); 3112 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3113 /* 3114 * we already know that the remote client is 3115 * the owner 3116 */ 3117 up_write(&rbd_dev->lock_rwsem); 3118 return; 3119 } 3120 3121 rbd_set_owner_cid(rbd_dev, &cid); 3122 downgrade_write(&rbd_dev->lock_rwsem); 3123 } else { 3124 down_read(&rbd_dev->lock_rwsem); 3125 } 3126 3127 if (!__rbd_is_lock_owner(rbd_dev)) 3128 wake_requests(rbd_dev, false); 3129 up_read(&rbd_dev->lock_rwsem); 3130 } 3131 3132 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 3133 void **p) 3134 { 3135 struct rbd_client_id cid = { 0 }; 3136 3137 if (struct_v >= 2) { 3138 cid.gid = ceph_decode_64(p); 3139 cid.handle = ceph_decode_64(p); 3140 } 3141 3142 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3143 cid.handle); 3144 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 3145 down_write(&rbd_dev->lock_rwsem); 3146 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 3147 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 3148 __func__, rbd_dev, cid.gid, cid.handle, 3149 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 3150 up_write(&rbd_dev->lock_rwsem); 3151 return; 3152 } 3153 3154 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3155 downgrade_write(&rbd_dev->lock_rwsem); 3156 } else { 3157 down_read(&rbd_dev->lock_rwsem); 3158 } 3159 3160 if (!__rbd_is_lock_owner(rbd_dev)) 3161 wake_requests(rbd_dev, false); 3162 up_read(&rbd_dev->lock_rwsem); 3163 } 3164 3165 /* 3166 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 3167 * ResponseMessage is needed. 3168 */ 3169 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 3170 void **p) 3171 { 3172 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 3173 struct rbd_client_id cid = { 0 }; 3174 int result = 1; 3175 3176 if (struct_v >= 2) { 3177 cid.gid = ceph_decode_64(p); 3178 cid.handle = ceph_decode_64(p); 3179 } 3180 3181 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 3182 cid.handle); 3183 if (rbd_cid_equal(&cid, &my_cid)) 3184 return result; 3185 3186 down_read(&rbd_dev->lock_rwsem); 3187 if (__rbd_is_lock_owner(rbd_dev)) { 3188 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 3189 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 3190 goto out_unlock; 3191 3192 /* 3193 * encode ResponseMessage(0) so the peer can detect 3194 * a missing owner 3195 */ 3196 result = 0; 3197 3198 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 3199 if (!rbd_dev->opts->exclusive) { 3200 dout("%s rbd_dev %p queueing unlock_work\n", 3201 __func__, rbd_dev); 3202 queue_work(rbd_dev->task_wq, 3203 &rbd_dev->unlock_work); 3204 } else { 3205 /* refuse to release the lock */ 3206 result = -EROFS; 3207 } 3208 } 3209 } 3210 3211 out_unlock: 3212 up_read(&rbd_dev->lock_rwsem); 3213 return result; 3214 } 3215 3216 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 3217 u64 notify_id, u64 cookie, s32 *result) 3218 { 3219 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3220 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 3221 int buf_size = sizeof(buf); 3222 int ret; 3223 3224 if (result) { 3225 void *p = buf; 3226 3227 /* encode ResponseMessage */ 3228 ceph_start_encoding(&p, 1, 1, 3229 buf_size - CEPH_ENCODING_START_BLK_LEN); 3230 ceph_encode_32(&p, *result); 3231 } else { 3232 buf_size = 0; 3233 } 3234 3235 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 3236 &rbd_dev->header_oloc, notify_id, cookie, 3237 buf, buf_size); 3238 if (ret) 3239 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 3240 } 3241 3242 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 3243 u64 cookie) 3244 { 3245 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3246 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 3247 } 3248 3249 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 3250 u64 notify_id, u64 cookie, s32 result) 3251 { 3252 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3253 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 3254 } 3255 3256 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 3257 u64 notifier_id, void *data, size_t data_len) 3258 { 3259 struct rbd_device *rbd_dev = arg; 3260 void *p = data; 3261 void *const end = p + data_len; 3262 u8 struct_v = 0; 3263 u32 len; 3264 u32 notify_op; 3265 int ret; 3266 3267 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 3268 __func__, rbd_dev, cookie, notify_id, data_len); 3269 if (data_len) { 3270 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 3271 &struct_v, &len); 3272 if (ret) { 3273 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 3274 ret); 3275 return; 3276 } 3277 3278 notify_op = ceph_decode_32(&p); 3279 } else { 3280 /* legacy notification for header updates */ 3281 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 3282 len = 0; 3283 } 3284 3285 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 3286 switch (notify_op) { 3287 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 3288 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 3289 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3290 break; 3291 case RBD_NOTIFY_OP_RELEASED_LOCK: 3292 rbd_handle_released_lock(rbd_dev, struct_v, &p); 3293 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3294 break; 3295 case RBD_NOTIFY_OP_REQUEST_LOCK: 3296 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 3297 if (ret <= 0) 3298 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3299 cookie, ret); 3300 else 3301 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3302 break; 3303 case RBD_NOTIFY_OP_HEADER_UPDATE: 3304 ret = rbd_dev_refresh(rbd_dev); 3305 if (ret) 3306 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3307 3308 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3309 break; 3310 default: 3311 if (rbd_is_lock_owner(rbd_dev)) 3312 rbd_acknowledge_notify_result(rbd_dev, notify_id, 3313 cookie, -EOPNOTSUPP); 3314 else 3315 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 3316 break; 3317 } 3318 } 3319 3320 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 3321 3322 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 3323 { 3324 struct rbd_device *rbd_dev = arg; 3325 3326 rbd_warn(rbd_dev, "encountered watch error: %d", err); 3327 3328 down_write(&rbd_dev->lock_rwsem); 3329 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3330 up_write(&rbd_dev->lock_rwsem); 3331 3332 mutex_lock(&rbd_dev->watch_mutex); 3333 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 3334 __rbd_unregister_watch(rbd_dev); 3335 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 3336 3337 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 3338 } 3339 mutex_unlock(&rbd_dev->watch_mutex); 3340 } 3341 3342 /* 3343 * watch_mutex must be locked 3344 */ 3345 static int __rbd_register_watch(struct rbd_device *rbd_dev) 3346 { 3347 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3348 struct ceph_osd_linger_request *handle; 3349 3350 rbd_assert(!rbd_dev->watch_handle); 3351 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3352 3353 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 3354 &rbd_dev->header_oloc, rbd_watch_cb, 3355 rbd_watch_errcb, rbd_dev); 3356 if (IS_ERR(handle)) 3357 return PTR_ERR(handle); 3358 3359 rbd_dev->watch_handle = handle; 3360 return 0; 3361 } 3362 3363 /* 3364 * watch_mutex must be locked 3365 */ 3366 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 3367 { 3368 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3369 int ret; 3370 3371 rbd_assert(rbd_dev->watch_handle); 3372 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3373 3374 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 3375 if (ret) 3376 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 3377 3378 rbd_dev->watch_handle = NULL; 3379 } 3380 3381 static int rbd_register_watch(struct rbd_device *rbd_dev) 3382 { 3383 int ret; 3384 3385 mutex_lock(&rbd_dev->watch_mutex); 3386 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 3387 ret = __rbd_register_watch(rbd_dev); 3388 if (ret) 3389 goto out; 3390 3391 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3392 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3393 3394 out: 3395 mutex_unlock(&rbd_dev->watch_mutex); 3396 return ret; 3397 } 3398 3399 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 3400 { 3401 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3402 3403 cancel_work_sync(&rbd_dev->acquired_lock_work); 3404 cancel_work_sync(&rbd_dev->released_lock_work); 3405 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 3406 cancel_work_sync(&rbd_dev->unlock_work); 3407 } 3408 3409 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 3410 { 3411 WARN_ON(waitqueue_active(&rbd_dev->lock_waitq)); 3412 cancel_tasks_sync(rbd_dev); 3413 3414 mutex_lock(&rbd_dev->watch_mutex); 3415 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 3416 __rbd_unregister_watch(rbd_dev); 3417 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 3418 mutex_unlock(&rbd_dev->watch_mutex); 3419 3420 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 3421 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 3422 } 3423 3424 /* 3425 * lock_rwsem must be held for write 3426 */ 3427 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 3428 { 3429 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3430 char cookie[32]; 3431 int ret; 3432 3433 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED); 3434 3435 format_lock_cookie(rbd_dev, cookie); 3436 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 3437 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3438 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 3439 RBD_LOCK_TAG, cookie); 3440 if (ret) { 3441 if (ret != -EOPNOTSUPP) 3442 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 3443 ret); 3444 3445 /* 3446 * Lock cookie cannot be updated on older OSDs, so do 3447 * a manual release and queue an acquire. 3448 */ 3449 if (rbd_release_lock(rbd_dev)) 3450 queue_delayed_work(rbd_dev->task_wq, 3451 &rbd_dev->lock_dwork, 0); 3452 } else { 3453 __rbd_lock(rbd_dev, cookie); 3454 } 3455 } 3456 3457 static void rbd_reregister_watch(struct work_struct *work) 3458 { 3459 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 3460 struct rbd_device, watch_dwork); 3461 int ret; 3462 3463 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3464 3465 mutex_lock(&rbd_dev->watch_mutex); 3466 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 3467 mutex_unlock(&rbd_dev->watch_mutex); 3468 return; 3469 } 3470 3471 ret = __rbd_register_watch(rbd_dev); 3472 if (ret) { 3473 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 3474 if (ret == -EBLACKLISTED || ret == -ENOENT) { 3475 set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags); 3476 wake_requests(rbd_dev, true); 3477 } else { 3478 queue_delayed_work(rbd_dev->task_wq, 3479 &rbd_dev->watch_dwork, 3480 RBD_RETRY_DELAY); 3481 } 3482 mutex_unlock(&rbd_dev->watch_mutex); 3483 return; 3484 } 3485 3486 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 3487 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 3488 mutex_unlock(&rbd_dev->watch_mutex); 3489 3490 down_write(&rbd_dev->lock_rwsem); 3491 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3492 rbd_reacquire_lock(rbd_dev); 3493 up_write(&rbd_dev->lock_rwsem); 3494 3495 ret = rbd_dev_refresh(rbd_dev); 3496 if (ret) 3497 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 3498 } 3499 3500 /* 3501 * Synchronous osd object method call. Returns the number of bytes 3502 * returned in the outbound buffer, or a negative error code. 3503 */ 3504 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3505 struct ceph_object_id *oid, 3506 struct ceph_object_locator *oloc, 3507 const char *method_name, 3508 const void *outbound, 3509 size_t outbound_size, 3510 void *inbound, 3511 size_t inbound_size) 3512 { 3513 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3514 struct page *req_page = NULL; 3515 struct page *reply_page; 3516 int ret; 3517 3518 /* 3519 * Method calls are ultimately read operations. The result 3520 * should placed into the inbound buffer provided. They 3521 * also supply outbound data--parameters for the object 3522 * method. Currently if this is present it will be a 3523 * snapshot id. 3524 */ 3525 if (outbound) { 3526 if (outbound_size > PAGE_SIZE) 3527 return -E2BIG; 3528 3529 req_page = alloc_page(GFP_KERNEL); 3530 if (!req_page) 3531 return -ENOMEM; 3532 3533 memcpy(page_address(req_page), outbound, outbound_size); 3534 } 3535 3536 reply_page = alloc_page(GFP_KERNEL); 3537 if (!reply_page) { 3538 if (req_page) 3539 __free_page(req_page); 3540 return -ENOMEM; 3541 } 3542 3543 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 3544 CEPH_OSD_FLAG_READ, req_page, outbound_size, 3545 reply_page, &inbound_size); 3546 if (!ret) { 3547 memcpy(inbound, page_address(reply_page), inbound_size); 3548 ret = inbound_size; 3549 } 3550 3551 if (req_page) 3552 __free_page(req_page); 3553 __free_page(reply_page); 3554 return ret; 3555 } 3556 3557 /* 3558 * lock_rwsem must be held for read 3559 */ 3560 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire) 3561 { 3562 DEFINE_WAIT(wait); 3563 unsigned long timeout; 3564 int ret = 0; 3565 3566 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) 3567 return -EBLACKLISTED; 3568 3569 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 3570 return 0; 3571 3572 if (!may_acquire) { 3573 rbd_warn(rbd_dev, "exclusive lock required"); 3574 return -EROFS; 3575 } 3576 3577 do { 3578 /* 3579 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3580 * and cancel_delayed_work() in wake_requests(). 3581 */ 3582 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3583 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3584 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait, 3585 TASK_UNINTERRUPTIBLE); 3586 up_read(&rbd_dev->lock_rwsem); 3587 timeout = schedule_timeout(ceph_timeout_jiffies( 3588 rbd_dev->opts->lock_timeout)); 3589 down_read(&rbd_dev->lock_rwsem); 3590 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) { 3591 ret = -EBLACKLISTED; 3592 break; 3593 } 3594 if (!timeout) { 3595 rbd_warn(rbd_dev, "timed out waiting for lock"); 3596 ret = -ETIMEDOUT; 3597 break; 3598 } 3599 } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED); 3600 3601 finish_wait(&rbd_dev->lock_waitq, &wait); 3602 return ret; 3603 } 3604 3605 static void rbd_queue_workfn(struct work_struct *work) 3606 { 3607 struct request *rq = blk_mq_rq_from_pdu(work); 3608 struct rbd_device *rbd_dev = rq->q->queuedata; 3609 struct rbd_img_request *img_request; 3610 struct ceph_snap_context *snapc = NULL; 3611 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3612 u64 length = blk_rq_bytes(rq); 3613 enum obj_operation_type op_type; 3614 u64 mapping_size; 3615 bool must_be_locked; 3616 int result; 3617 3618 switch (req_op(rq)) { 3619 case REQ_OP_DISCARD: 3620 case REQ_OP_WRITE_ZEROES: 3621 op_type = OBJ_OP_DISCARD; 3622 break; 3623 case REQ_OP_WRITE: 3624 op_type = OBJ_OP_WRITE; 3625 break; 3626 case REQ_OP_READ: 3627 op_type = OBJ_OP_READ; 3628 break; 3629 default: 3630 dout("%s: non-fs request type %d\n", __func__, req_op(rq)); 3631 result = -EIO; 3632 goto err; 3633 } 3634 3635 /* Ignore/skip any zero-length requests */ 3636 3637 if (!length) { 3638 dout("%s: zero-length request\n", __func__); 3639 result = 0; 3640 goto err_rq; 3641 } 3642 3643 rbd_assert(op_type == OBJ_OP_READ || 3644 rbd_dev->spec->snap_id == CEPH_NOSNAP); 3645 3646 /* 3647 * Quit early if the mapped snapshot no longer exists. It's 3648 * still possible the snapshot will have disappeared by the 3649 * time our request arrives at the osd, but there's no sense in 3650 * sending it if we already know. 3651 */ 3652 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3653 dout("request for non-existent snapshot"); 3654 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3655 result = -ENXIO; 3656 goto err_rq; 3657 } 3658 3659 if (offset && length > U64_MAX - offset + 1) { 3660 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3661 length); 3662 result = -EINVAL; 3663 goto err_rq; /* Shouldn't happen */ 3664 } 3665 3666 blk_mq_start_request(rq); 3667 3668 down_read(&rbd_dev->header_rwsem); 3669 mapping_size = rbd_dev->mapping.size; 3670 if (op_type != OBJ_OP_READ) { 3671 snapc = rbd_dev->header.snapc; 3672 ceph_get_snap_context(snapc); 3673 } 3674 up_read(&rbd_dev->header_rwsem); 3675 3676 if (offset + length > mapping_size) { 3677 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3678 length, mapping_size); 3679 result = -EIO; 3680 goto err_rq; 3681 } 3682 3683 must_be_locked = 3684 (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) && 3685 (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read); 3686 if (must_be_locked) { 3687 down_read(&rbd_dev->lock_rwsem); 3688 result = rbd_wait_state_locked(rbd_dev, 3689 !rbd_dev->opts->exclusive); 3690 if (result) 3691 goto err_unlock; 3692 } 3693 3694 img_request = rbd_img_request_create(rbd_dev, op_type, snapc); 3695 if (!img_request) { 3696 result = -ENOMEM; 3697 goto err_unlock; 3698 } 3699 img_request->rq = rq; 3700 snapc = NULL; /* img_request consumes a ref */ 3701 3702 if (op_type == OBJ_OP_DISCARD) 3703 result = rbd_img_fill_nodata(img_request, offset, length); 3704 else 3705 result = rbd_img_fill_from_bio(img_request, offset, length, 3706 rq->bio); 3707 if (result) 3708 goto err_img_request; 3709 3710 rbd_img_request_submit(img_request); 3711 if (must_be_locked) 3712 up_read(&rbd_dev->lock_rwsem); 3713 return; 3714 3715 err_img_request: 3716 rbd_img_request_put(img_request); 3717 err_unlock: 3718 if (must_be_locked) 3719 up_read(&rbd_dev->lock_rwsem); 3720 err_rq: 3721 if (result) 3722 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3723 obj_op_name(op_type), length, offset, result); 3724 ceph_put_snap_context(snapc); 3725 err: 3726 blk_mq_end_request(rq, errno_to_blk_status(result)); 3727 } 3728 3729 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 3730 const struct blk_mq_queue_data *bd) 3731 { 3732 struct request *rq = bd->rq; 3733 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3734 3735 queue_work(rbd_wq, work); 3736 return BLK_STS_OK; 3737 } 3738 3739 static void rbd_free_disk(struct rbd_device *rbd_dev) 3740 { 3741 blk_cleanup_queue(rbd_dev->disk->queue); 3742 blk_mq_free_tag_set(&rbd_dev->tag_set); 3743 put_disk(rbd_dev->disk); 3744 rbd_dev->disk = NULL; 3745 } 3746 3747 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3748 struct ceph_object_id *oid, 3749 struct ceph_object_locator *oloc, 3750 void *buf, int buf_len) 3751 3752 { 3753 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3754 struct ceph_osd_request *req; 3755 struct page **pages; 3756 int num_pages = calc_pages_for(0, buf_len); 3757 int ret; 3758 3759 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 3760 if (!req) 3761 return -ENOMEM; 3762 3763 ceph_oid_copy(&req->r_base_oid, oid); 3764 ceph_oloc_copy(&req->r_base_oloc, oloc); 3765 req->r_flags = CEPH_OSD_FLAG_READ; 3766 3767 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 3768 if (ret) 3769 goto out_req; 3770 3771 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 3772 if (IS_ERR(pages)) { 3773 ret = PTR_ERR(pages); 3774 goto out_req; 3775 } 3776 3777 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 3778 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 3779 true); 3780 3781 ceph_osdc_start_request(osdc, req, false); 3782 ret = ceph_osdc_wait_request(osdc, req); 3783 if (ret >= 0) 3784 ceph_copy_from_page_vector(pages, buf, 0, ret); 3785 3786 out_req: 3787 ceph_osdc_put_request(req); 3788 return ret; 3789 } 3790 3791 /* 3792 * Read the complete header for the given rbd device. On successful 3793 * return, the rbd_dev->header field will contain up-to-date 3794 * information about the image. 3795 */ 3796 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3797 { 3798 struct rbd_image_header_ondisk *ondisk = NULL; 3799 u32 snap_count = 0; 3800 u64 names_size = 0; 3801 u32 want_count; 3802 int ret; 3803 3804 /* 3805 * The complete header will include an array of its 64-bit 3806 * snapshot ids, followed by the names of those snapshots as 3807 * a contiguous block of NUL-terminated strings. Note that 3808 * the number of snapshots could change by the time we read 3809 * it in, in which case we re-read it. 3810 */ 3811 do { 3812 size_t size; 3813 3814 kfree(ondisk); 3815 3816 size = sizeof (*ondisk); 3817 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3818 size += names_size; 3819 ondisk = kmalloc(size, GFP_KERNEL); 3820 if (!ondisk) 3821 return -ENOMEM; 3822 3823 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 3824 &rbd_dev->header_oloc, ondisk, size); 3825 if (ret < 0) 3826 goto out; 3827 if ((size_t)ret < size) { 3828 ret = -ENXIO; 3829 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3830 size, ret); 3831 goto out; 3832 } 3833 if (!rbd_dev_ondisk_valid(ondisk)) { 3834 ret = -ENXIO; 3835 rbd_warn(rbd_dev, "invalid header"); 3836 goto out; 3837 } 3838 3839 names_size = le64_to_cpu(ondisk->snap_names_len); 3840 want_count = snap_count; 3841 snap_count = le32_to_cpu(ondisk->snap_count); 3842 } while (snap_count != want_count); 3843 3844 ret = rbd_header_from_disk(rbd_dev, ondisk); 3845 out: 3846 kfree(ondisk); 3847 3848 return ret; 3849 } 3850 3851 /* 3852 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3853 * has disappeared from the (just updated) snapshot context. 3854 */ 3855 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3856 { 3857 u64 snap_id; 3858 3859 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3860 return; 3861 3862 snap_id = rbd_dev->spec->snap_id; 3863 if (snap_id == CEPH_NOSNAP) 3864 return; 3865 3866 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3867 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3868 } 3869 3870 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3871 { 3872 sector_t size; 3873 3874 /* 3875 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 3876 * try to update its size. If REMOVING is set, updating size 3877 * is just useless work since the device can't be opened. 3878 */ 3879 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 3880 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 3881 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3882 dout("setting size to %llu sectors", (unsigned long long)size); 3883 set_capacity(rbd_dev->disk, size); 3884 revalidate_disk(rbd_dev->disk); 3885 } 3886 } 3887 3888 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3889 { 3890 u64 mapping_size; 3891 int ret; 3892 3893 down_write(&rbd_dev->header_rwsem); 3894 mapping_size = rbd_dev->mapping.size; 3895 3896 ret = rbd_dev_header_info(rbd_dev); 3897 if (ret) 3898 goto out; 3899 3900 /* 3901 * If there is a parent, see if it has disappeared due to the 3902 * mapped image getting flattened. 3903 */ 3904 if (rbd_dev->parent) { 3905 ret = rbd_dev_v2_parent_info(rbd_dev); 3906 if (ret) 3907 goto out; 3908 } 3909 3910 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3911 rbd_dev->mapping.size = rbd_dev->header.image_size; 3912 } else { 3913 /* validate mapped snapshot's EXISTS flag */ 3914 rbd_exists_validate(rbd_dev); 3915 } 3916 3917 out: 3918 up_write(&rbd_dev->header_rwsem); 3919 if (!ret && mapping_size != rbd_dev->mapping.size) 3920 rbd_dev_update_size(rbd_dev); 3921 3922 return ret; 3923 } 3924 3925 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq, 3926 unsigned int hctx_idx, unsigned int numa_node) 3927 { 3928 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3929 3930 INIT_WORK(work, rbd_queue_workfn); 3931 return 0; 3932 } 3933 3934 static const struct blk_mq_ops rbd_mq_ops = { 3935 .queue_rq = rbd_queue_rq, 3936 .init_request = rbd_init_request, 3937 }; 3938 3939 static int rbd_init_disk(struct rbd_device *rbd_dev) 3940 { 3941 struct gendisk *disk; 3942 struct request_queue *q; 3943 unsigned int objset_bytes = 3944 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 3945 int err; 3946 3947 /* create gendisk info */ 3948 disk = alloc_disk(single_major ? 3949 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3950 RBD_MINORS_PER_MAJOR); 3951 if (!disk) 3952 return -ENOMEM; 3953 3954 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3955 rbd_dev->dev_id); 3956 disk->major = rbd_dev->major; 3957 disk->first_minor = rbd_dev->minor; 3958 if (single_major) 3959 disk->flags |= GENHD_FL_EXT_DEVT; 3960 disk->fops = &rbd_bd_ops; 3961 disk->private_data = rbd_dev; 3962 3963 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 3964 rbd_dev->tag_set.ops = &rbd_mq_ops; 3965 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 3966 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 3967 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 3968 rbd_dev->tag_set.nr_hw_queues = 1; 3969 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 3970 3971 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 3972 if (err) 3973 goto out_disk; 3974 3975 q = blk_mq_init_queue(&rbd_dev->tag_set); 3976 if (IS_ERR(q)) { 3977 err = PTR_ERR(q); 3978 goto out_tag_set; 3979 } 3980 3981 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3982 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 3983 3984 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT); 3985 q->limits.max_sectors = queue_max_hw_sectors(q); 3986 blk_queue_max_segments(q, USHRT_MAX); 3987 blk_queue_max_segment_size(q, UINT_MAX); 3988 blk_queue_io_min(q, objset_bytes); 3989 blk_queue_io_opt(q, objset_bytes); 3990 3991 if (rbd_dev->opts->trim) { 3992 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 3993 q->limits.discard_granularity = objset_bytes; 3994 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT); 3995 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT); 3996 } 3997 3998 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 3999 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 4000 4001 /* 4002 * disk_release() expects a queue ref from add_disk() and will 4003 * put it. Hold an extra ref until add_disk() is called. 4004 */ 4005 WARN_ON(!blk_get_queue(q)); 4006 disk->queue = q; 4007 q->queuedata = rbd_dev; 4008 4009 rbd_dev->disk = disk; 4010 4011 return 0; 4012 out_tag_set: 4013 blk_mq_free_tag_set(&rbd_dev->tag_set); 4014 out_disk: 4015 put_disk(disk); 4016 return err; 4017 } 4018 4019 /* 4020 sysfs 4021 */ 4022 4023 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4024 { 4025 return container_of(dev, struct rbd_device, dev); 4026 } 4027 4028 static ssize_t rbd_size_show(struct device *dev, 4029 struct device_attribute *attr, char *buf) 4030 { 4031 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4032 4033 return sprintf(buf, "%llu\n", 4034 (unsigned long long)rbd_dev->mapping.size); 4035 } 4036 4037 /* 4038 * Note this shows the features for whatever's mapped, which is not 4039 * necessarily the base image. 4040 */ 4041 static ssize_t rbd_features_show(struct device *dev, 4042 struct device_attribute *attr, char *buf) 4043 { 4044 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4045 4046 return sprintf(buf, "0x%016llx\n", 4047 (unsigned long long)rbd_dev->mapping.features); 4048 } 4049 4050 static ssize_t rbd_major_show(struct device *dev, 4051 struct device_attribute *attr, char *buf) 4052 { 4053 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4054 4055 if (rbd_dev->major) 4056 return sprintf(buf, "%d\n", rbd_dev->major); 4057 4058 return sprintf(buf, "(none)\n"); 4059 } 4060 4061 static ssize_t rbd_minor_show(struct device *dev, 4062 struct device_attribute *attr, char *buf) 4063 { 4064 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4065 4066 return sprintf(buf, "%d\n", rbd_dev->minor); 4067 } 4068 4069 static ssize_t rbd_client_addr_show(struct device *dev, 4070 struct device_attribute *attr, char *buf) 4071 { 4072 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4073 struct ceph_entity_addr *client_addr = 4074 ceph_client_addr(rbd_dev->rbd_client->client); 4075 4076 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 4077 le32_to_cpu(client_addr->nonce)); 4078 } 4079 4080 static ssize_t rbd_client_id_show(struct device *dev, 4081 struct device_attribute *attr, char *buf) 4082 { 4083 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4084 4085 return sprintf(buf, "client%lld\n", 4086 ceph_client_gid(rbd_dev->rbd_client->client)); 4087 } 4088 4089 static ssize_t rbd_cluster_fsid_show(struct device *dev, 4090 struct device_attribute *attr, char *buf) 4091 { 4092 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4093 4094 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 4095 } 4096 4097 static ssize_t rbd_config_info_show(struct device *dev, 4098 struct device_attribute *attr, char *buf) 4099 { 4100 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4101 4102 return sprintf(buf, "%s\n", rbd_dev->config_info); 4103 } 4104 4105 static ssize_t rbd_pool_show(struct device *dev, 4106 struct device_attribute *attr, char *buf) 4107 { 4108 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4109 4110 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 4111 } 4112 4113 static ssize_t rbd_pool_id_show(struct device *dev, 4114 struct device_attribute *attr, char *buf) 4115 { 4116 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4117 4118 return sprintf(buf, "%llu\n", 4119 (unsigned long long) rbd_dev->spec->pool_id); 4120 } 4121 4122 static ssize_t rbd_name_show(struct device *dev, 4123 struct device_attribute *attr, char *buf) 4124 { 4125 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4126 4127 if (rbd_dev->spec->image_name) 4128 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 4129 4130 return sprintf(buf, "(unknown)\n"); 4131 } 4132 4133 static ssize_t rbd_image_id_show(struct device *dev, 4134 struct device_attribute *attr, char *buf) 4135 { 4136 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4137 4138 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 4139 } 4140 4141 /* 4142 * Shows the name of the currently-mapped snapshot (or 4143 * RBD_SNAP_HEAD_NAME for the base image). 4144 */ 4145 static ssize_t rbd_snap_show(struct device *dev, 4146 struct device_attribute *attr, 4147 char *buf) 4148 { 4149 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4150 4151 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 4152 } 4153 4154 static ssize_t rbd_snap_id_show(struct device *dev, 4155 struct device_attribute *attr, char *buf) 4156 { 4157 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4158 4159 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 4160 } 4161 4162 /* 4163 * For a v2 image, shows the chain of parent images, separated by empty 4164 * lines. For v1 images or if there is no parent, shows "(no parent 4165 * image)". 4166 */ 4167 static ssize_t rbd_parent_show(struct device *dev, 4168 struct device_attribute *attr, 4169 char *buf) 4170 { 4171 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4172 ssize_t count = 0; 4173 4174 if (!rbd_dev->parent) 4175 return sprintf(buf, "(no parent image)\n"); 4176 4177 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 4178 struct rbd_spec *spec = rbd_dev->parent_spec; 4179 4180 count += sprintf(&buf[count], "%s" 4181 "pool_id %llu\npool_name %s\n" 4182 "image_id %s\nimage_name %s\n" 4183 "snap_id %llu\nsnap_name %s\n" 4184 "overlap %llu\n", 4185 !count ? "" : "\n", /* first? */ 4186 spec->pool_id, spec->pool_name, 4187 spec->image_id, spec->image_name ?: "(unknown)", 4188 spec->snap_id, spec->snap_name, 4189 rbd_dev->parent_overlap); 4190 } 4191 4192 return count; 4193 } 4194 4195 static ssize_t rbd_image_refresh(struct device *dev, 4196 struct device_attribute *attr, 4197 const char *buf, 4198 size_t size) 4199 { 4200 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4201 int ret; 4202 4203 ret = rbd_dev_refresh(rbd_dev); 4204 if (ret) 4205 return ret; 4206 4207 return size; 4208 } 4209 4210 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 4211 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 4212 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 4213 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 4214 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 4215 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 4216 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 4217 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 4218 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 4219 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 4220 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 4221 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 4222 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 4223 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 4224 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 4225 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 4226 4227 static struct attribute *rbd_attrs[] = { 4228 &dev_attr_size.attr, 4229 &dev_attr_features.attr, 4230 &dev_attr_major.attr, 4231 &dev_attr_minor.attr, 4232 &dev_attr_client_addr.attr, 4233 &dev_attr_client_id.attr, 4234 &dev_attr_cluster_fsid.attr, 4235 &dev_attr_config_info.attr, 4236 &dev_attr_pool.attr, 4237 &dev_attr_pool_id.attr, 4238 &dev_attr_name.attr, 4239 &dev_attr_image_id.attr, 4240 &dev_attr_current_snap.attr, 4241 &dev_attr_snap_id.attr, 4242 &dev_attr_parent.attr, 4243 &dev_attr_refresh.attr, 4244 NULL 4245 }; 4246 4247 static struct attribute_group rbd_attr_group = { 4248 .attrs = rbd_attrs, 4249 }; 4250 4251 static const struct attribute_group *rbd_attr_groups[] = { 4252 &rbd_attr_group, 4253 NULL 4254 }; 4255 4256 static void rbd_dev_release(struct device *dev); 4257 4258 static const struct device_type rbd_device_type = { 4259 .name = "rbd", 4260 .groups = rbd_attr_groups, 4261 .release = rbd_dev_release, 4262 }; 4263 4264 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4265 { 4266 kref_get(&spec->kref); 4267 4268 return spec; 4269 } 4270 4271 static void rbd_spec_free(struct kref *kref); 4272 static void rbd_spec_put(struct rbd_spec *spec) 4273 { 4274 if (spec) 4275 kref_put(&spec->kref, rbd_spec_free); 4276 } 4277 4278 static struct rbd_spec *rbd_spec_alloc(void) 4279 { 4280 struct rbd_spec *spec; 4281 4282 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4283 if (!spec) 4284 return NULL; 4285 4286 spec->pool_id = CEPH_NOPOOL; 4287 spec->snap_id = CEPH_NOSNAP; 4288 kref_init(&spec->kref); 4289 4290 return spec; 4291 } 4292 4293 static void rbd_spec_free(struct kref *kref) 4294 { 4295 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4296 4297 kfree(spec->pool_name); 4298 kfree(spec->image_id); 4299 kfree(spec->image_name); 4300 kfree(spec->snap_name); 4301 kfree(spec); 4302 } 4303 4304 static void rbd_dev_free(struct rbd_device *rbd_dev) 4305 { 4306 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 4307 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 4308 4309 ceph_oid_destroy(&rbd_dev->header_oid); 4310 ceph_oloc_destroy(&rbd_dev->header_oloc); 4311 kfree(rbd_dev->config_info); 4312 4313 rbd_put_client(rbd_dev->rbd_client); 4314 rbd_spec_put(rbd_dev->spec); 4315 kfree(rbd_dev->opts); 4316 kfree(rbd_dev); 4317 } 4318 4319 static void rbd_dev_release(struct device *dev) 4320 { 4321 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4322 bool need_put = !!rbd_dev->opts; 4323 4324 if (need_put) { 4325 destroy_workqueue(rbd_dev->task_wq); 4326 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4327 } 4328 4329 rbd_dev_free(rbd_dev); 4330 4331 /* 4332 * This is racy, but way better than putting module outside of 4333 * the release callback. The race window is pretty small, so 4334 * doing something similar to dm (dm-builtin.c) is overkill. 4335 */ 4336 if (need_put) 4337 module_put(THIS_MODULE); 4338 } 4339 4340 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 4341 struct rbd_spec *spec) 4342 { 4343 struct rbd_device *rbd_dev; 4344 4345 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 4346 if (!rbd_dev) 4347 return NULL; 4348 4349 spin_lock_init(&rbd_dev->lock); 4350 INIT_LIST_HEAD(&rbd_dev->node); 4351 init_rwsem(&rbd_dev->header_rwsem); 4352 4353 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 4354 ceph_oid_init(&rbd_dev->header_oid); 4355 rbd_dev->header_oloc.pool = spec->pool_id; 4356 4357 mutex_init(&rbd_dev->watch_mutex); 4358 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4359 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 4360 4361 init_rwsem(&rbd_dev->lock_rwsem); 4362 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 4363 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 4364 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 4365 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 4366 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 4367 init_waitqueue_head(&rbd_dev->lock_waitq); 4368 4369 rbd_dev->dev.bus = &rbd_bus_type; 4370 rbd_dev->dev.type = &rbd_device_type; 4371 rbd_dev->dev.parent = &rbd_root_dev; 4372 device_initialize(&rbd_dev->dev); 4373 4374 rbd_dev->rbd_client = rbdc; 4375 rbd_dev->spec = spec; 4376 4377 return rbd_dev; 4378 } 4379 4380 /* 4381 * Create a mapping rbd_dev. 4382 */ 4383 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4384 struct rbd_spec *spec, 4385 struct rbd_options *opts) 4386 { 4387 struct rbd_device *rbd_dev; 4388 4389 rbd_dev = __rbd_dev_create(rbdc, spec); 4390 if (!rbd_dev) 4391 return NULL; 4392 4393 rbd_dev->opts = opts; 4394 4395 /* get an id and fill in device name */ 4396 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 4397 minor_to_rbd_dev_id(1 << MINORBITS), 4398 GFP_KERNEL); 4399 if (rbd_dev->dev_id < 0) 4400 goto fail_rbd_dev; 4401 4402 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 4403 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 4404 rbd_dev->name); 4405 if (!rbd_dev->task_wq) 4406 goto fail_dev_id; 4407 4408 /* we have a ref from do_rbd_add() */ 4409 __module_get(THIS_MODULE); 4410 4411 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 4412 return rbd_dev; 4413 4414 fail_dev_id: 4415 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4416 fail_rbd_dev: 4417 rbd_dev_free(rbd_dev); 4418 return NULL; 4419 } 4420 4421 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4422 { 4423 if (rbd_dev) 4424 put_device(&rbd_dev->dev); 4425 } 4426 4427 /* 4428 * Get the size and object order for an image snapshot, or if 4429 * snap_id is CEPH_NOSNAP, gets this information for the base 4430 * image. 4431 */ 4432 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4433 u8 *order, u64 *snap_size) 4434 { 4435 __le64 snapid = cpu_to_le64(snap_id); 4436 int ret; 4437 struct { 4438 u8 order; 4439 __le64 size; 4440 } __attribute__ ((packed)) size_buf = { 0 }; 4441 4442 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4443 &rbd_dev->header_oloc, "get_size", 4444 &snapid, sizeof(snapid), 4445 &size_buf, sizeof(size_buf)); 4446 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4447 if (ret < 0) 4448 return ret; 4449 if (ret < sizeof (size_buf)) 4450 return -ERANGE; 4451 4452 if (order) { 4453 *order = size_buf.order; 4454 dout(" order %u", (unsigned int)*order); 4455 } 4456 *snap_size = le64_to_cpu(size_buf.size); 4457 4458 dout(" snap_id 0x%016llx snap_size = %llu\n", 4459 (unsigned long long)snap_id, 4460 (unsigned long long)*snap_size); 4461 4462 return 0; 4463 } 4464 4465 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4466 { 4467 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4468 &rbd_dev->header.obj_order, 4469 &rbd_dev->header.image_size); 4470 } 4471 4472 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4473 { 4474 void *reply_buf; 4475 int ret; 4476 void *p; 4477 4478 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4479 if (!reply_buf) 4480 return -ENOMEM; 4481 4482 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4483 &rbd_dev->header_oloc, "get_object_prefix", 4484 NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4485 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4486 if (ret < 0) 4487 goto out; 4488 4489 p = reply_buf; 4490 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4491 p + ret, NULL, GFP_NOIO); 4492 ret = 0; 4493 4494 if (IS_ERR(rbd_dev->header.object_prefix)) { 4495 ret = PTR_ERR(rbd_dev->header.object_prefix); 4496 rbd_dev->header.object_prefix = NULL; 4497 } else { 4498 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4499 } 4500 out: 4501 kfree(reply_buf); 4502 4503 return ret; 4504 } 4505 4506 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4507 u64 *snap_features) 4508 { 4509 __le64 snapid = cpu_to_le64(snap_id); 4510 struct { 4511 __le64 features; 4512 __le64 incompat; 4513 } __attribute__ ((packed)) features_buf = { 0 }; 4514 u64 unsup; 4515 int ret; 4516 4517 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4518 &rbd_dev->header_oloc, "get_features", 4519 &snapid, sizeof(snapid), 4520 &features_buf, sizeof(features_buf)); 4521 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4522 if (ret < 0) 4523 return ret; 4524 if (ret < sizeof (features_buf)) 4525 return -ERANGE; 4526 4527 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 4528 if (unsup) { 4529 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 4530 unsup); 4531 return -ENXIO; 4532 } 4533 4534 *snap_features = le64_to_cpu(features_buf.features); 4535 4536 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4537 (unsigned long long)snap_id, 4538 (unsigned long long)*snap_features, 4539 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4540 4541 return 0; 4542 } 4543 4544 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4545 { 4546 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4547 &rbd_dev->header.features); 4548 } 4549 4550 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4551 { 4552 struct rbd_spec *parent_spec; 4553 size_t size; 4554 void *reply_buf = NULL; 4555 __le64 snapid; 4556 void *p; 4557 void *end; 4558 u64 pool_id; 4559 char *image_id; 4560 u64 snap_id; 4561 u64 overlap; 4562 int ret; 4563 4564 parent_spec = rbd_spec_alloc(); 4565 if (!parent_spec) 4566 return -ENOMEM; 4567 4568 size = sizeof (__le64) + /* pool_id */ 4569 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4570 sizeof (__le64) + /* snap_id */ 4571 sizeof (__le64); /* overlap */ 4572 reply_buf = kmalloc(size, GFP_KERNEL); 4573 if (!reply_buf) { 4574 ret = -ENOMEM; 4575 goto out_err; 4576 } 4577 4578 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4579 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4580 &rbd_dev->header_oloc, "get_parent", 4581 &snapid, sizeof(snapid), reply_buf, size); 4582 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4583 if (ret < 0) 4584 goto out_err; 4585 4586 p = reply_buf; 4587 end = reply_buf + ret; 4588 ret = -ERANGE; 4589 ceph_decode_64_safe(&p, end, pool_id, out_err); 4590 if (pool_id == CEPH_NOPOOL) { 4591 /* 4592 * Either the parent never existed, or we have 4593 * record of it but the image got flattened so it no 4594 * longer has a parent. When the parent of a 4595 * layered image disappears we immediately set the 4596 * overlap to 0. The effect of this is that all new 4597 * requests will be treated as if the image had no 4598 * parent. 4599 */ 4600 if (rbd_dev->parent_overlap) { 4601 rbd_dev->parent_overlap = 0; 4602 rbd_dev_parent_put(rbd_dev); 4603 pr_info("%s: clone image has been flattened\n", 4604 rbd_dev->disk->disk_name); 4605 } 4606 4607 goto out; /* No parent? No problem. */ 4608 } 4609 4610 /* The ceph file layout needs to fit pool id in 32 bits */ 4611 4612 ret = -EIO; 4613 if (pool_id > (u64)U32_MAX) { 4614 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4615 (unsigned long long)pool_id, U32_MAX); 4616 goto out_err; 4617 } 4618 4619 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4620 if (IS_ERR(image_id)) { 4621 ret = PTR_ERR(image_id); 4622 goto out_err; 4623 } 4624 ceph_decode_64_safe(&p, end, snap_id, out_err); 4625 ceph_decode_64_safe(&p, end, overlap, out_err); 4626 4627 /* 4628 * The parent won't change (except when the clone is 4629 * flattened, already handled that). So we only need to 4630 * record the parent spec we have not already done so. 4631 */ 4632 if (!rbd_dev->parent_spec) { 4633 parent_spec->pool_id = pool_id; 4634 parent_spec->image_id = image_id; 4635 parent_spec->snap_id = snap_id; 4636 rbd_dev->parent_spec = parent_spec; 4637 parent_spec = NULL; /* rbd_dev now owns this */ 4638 } else { 4639 kfree(image_id); 4640 } 4641 4642 /* 4643 * We always update the parent overlap. If it's zero we issue 4644 * a warning, as we will proceed as if there was no parent. 4645 */ 4646 if (!overlap) { 4647 if (parent_spec) { 4648 /* refresh, careful to warn just once */ 4649 if (rbd_dev->parent_overlap) 4650 rbd_warn(rbd_dev, 4651 "clone now standalone (overlap became 0)"); 4652 } else { 4653 /* initial probe */ 4654 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 4655 } 4656 } 4657 rbd_dev->parent_overlap = overlap; 4658 4659 out: 4660 ret = 0; 4661 out_err: 4662 kfree(reply_buf); 4663 rbd_spec_put(parent_spec); 4664 4665 return ret; 4666 } 4667 4668 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4669 { 4670 struct { 4671 __le64 stripe_unit; 4672 __le64 stripe_count; 4673 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4674 size_t size = sizeof (striping_info_buf); 4675 void *p; 4676 int ret; 4677 4678 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4679 &rbd_dev->header_oloc, "get_stripe_unit_count", 4680 NULL, 0, &striping_info_buf, size); 4681 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4682 if (ret < 0) 4683 return ret; 4684 if (ret < size) 4685 return -ERANGE; 4686 4687 p = &striping_info_buf; 4688 rbd_dev->header.stripe_unit = ceph_decode_64(&p); 4689 rbd_dev->header.stripe_count = ceph_decode_64(&p); 4690 return 0; 4691 } 4692 4693 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 4694 { 4695 __le64 data_pool_id; 4696 int ret; 4697 4698 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4699 &rbd_dev->header_oloc, "get_data_pool", 4700 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 4701 if (ret < 0) 4702 return ret; 4703 if (ret < sizeof(data_pool_id)) 4704 return -EBADMSG; 4705 4706 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 4707 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 4708 return 0; 4709 } 4710 4711 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4712 { 4713 CEPH_DEFINE_OID_ONSTACK(oid); 4714 size_t image_id_size; 4715 char *image_id; 4716 void *p; 4717 void *end; 4718 size_t size; 4719 void *reply_buf = NULL; 4720 size_t len = 0; 4721 char *image_name = NULL; 4722 int ret; 4723 4724 rbd_assert(!rbd_dev->spec->image_name); 4725 4726 len = strlen(rbd_dev->spec->image_id); 4727 image_id_size = sizeof (__le32) + len; 4728 image_id = kmalloc(image_id_size, GFP_KERNEL); 4729 if (!image_id) 4730 return NULL; 4731 4732 p = image_id; 4733 end = image_id + image_id_size; 4734 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4735 4736 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4737 reply_buf = kmalloc(size, GFP_KERNEL); 4738 if (!reply_buf) 4739 goto out; 4740 4741 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 4742 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 4743 "dir_get_name", image_id, image_id_size, 4744 reply_buf, size); 4745 if (ret < 0) 4746 goto out; 4747 p = reply_buf; 4748 end = reply_buf + ret; 4749 4750 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4751 if (IS_ERR(image_name)) 4752 image_name = NULL; 4753 else 4754 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4755 out: 4756 kfree(reply_buf); 4757 kfree(image_id); 4758 4759 return image_name; 4760 } 4761 4762 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4763 { 4764 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4765 const char *snap_name; 4766 u32 which = 0; 4767 4768 /* Skip over names until we find the one we are looking for */ 4769 4770 snap_name = rbd_dev->header.snap_names; 4771 while (which < snapc->num_snaps) { 4772 if (!strcmp(name, snap_name)) 4773 return snapc->snaps[which]; 4774 snap_name += strlen(snap_name) + 1; 4775 which++; 4776 } 4777 return CEPH_NOSNAP; 4778 } 4779 4780 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4781 { 4782 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4783 u32 which; 4784 bool found = false; 4785 u64 snap_id; 4786 4787 for (which = 0; !found && which < snapc->num_snaps; which++) { 4788 const char *snap_name; 4789 4790 snap_id = snapc->snaps[which]; 4791 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4792 if (IS_ERR(snap_name)) { 4793 /* ignore no-longer existing snapshots */ 4794 if (PTR_ERR(snap_name) == -ENOENT) 4795 continue; 4796 else 4797 break; 4798 } 4799 found = !strcmp(name, snap_name); 4800 kfree(snap_name); 4801 } 4802 return found ? snap_id : CEPH_NOSNAP; 4803 } 4804 4805 /* 4806 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4807 * no snapshot by that name is found, or if an error occurs. 4808 */ 4809 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4810 { 4811 if (rbd_dev->image_format == 1) 4812 return rbd_v1_snap_id_by_name(rbd_dev, name); 4813 4814 return rbd_v2_snap_id_by_name(rbd_dev, name); 4815 } 4816 4817 /* 4818 * An image being mapped will have everything but the snap id. 4819 */ 4820 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4821 { 4822 struct rbd_spec *spec = rbd_dev->spec; 4823 4824 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4825 rbd_assert(spec->image_id && spec->image_name); 4826 rbd_assert(spec->snap_name); 4827 4828 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4829 u64 snap_id; 4830 4831 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4832 if (snap_id == CEPH_NOSNAP) 4833 return -ENOENT; 4834 4835 spec->snap_id = snap_id; 4836 } else { 4837 spec->snap_id = CEPH_NOSNAP; 4838 } 4839 4840 return 0; 4841 } 4842 4843 /* 4844 * A parent image will have all ids but none of the names. 4845 * 4846 * All names in an rbd spec are dynamically allocated. It's OK if we 4847 * can't figure out the name for an image id. 4848 */ 4849 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4850 { 4851 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4852 struct rbd_spec *spec = rbd_dev->spec; 4853 const char *pool_name; 4854 const char *image_name; 4855 const char *snap_name; 4856 int ret; 4857 4858 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4859 rbd_assert(spec->image_id); 4860 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4861 4862 /* Get the pool name; we have to make our own copy of this */ 4863 4864 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4865 if (!pool_name) { 4866 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4867 return -EIO; 4868 } 4869 pool_name = kstrdup(pool_name, GFP_KERNEL); 4870 if (!pool_name) 4871 return -ENOMEM; 4872 4873 /* Fetch the image name; tolerate failure here */ 4874 4875 image_name = rbd_dev_image_name(rbd_dev); 4876 if (!image_name) 4877 rbd_warn(rbd_dev, "unable to get image name"); 4878 4879 /* Fetch the snapshot name */ 4880 4881 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4882 if (IS_ERR(snap_name)) { 4883 ret = PTR_ERR(snap_name); 4884 goto out_err; 4885 } 4886 4887 spec->pool_name = pool_name; 4888 spec->image_name = image_name; 4889 spec->snap_name = snap_name; 4890 4891 return 0; 4892 4893 out_err: 4894 kfree(image_name); 4895 kfree(pool_name); 4896 return ret; 4897 } 4898 4899 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4900 { 4901 size_t size; 4902 int ret; 4903 void *reply_buf; 4904 void *p; 4905 void *end; 4906 u64 seq; 4907 u32 snap_count; 4908 struct ceph_snap_context *snapc; 4909 u32 i; 4910 4911 /* 4912 * We'll need room for the seq value (maximum snapshot id), 4913 * snapshot count, and array of that many snapshot ids. 4914 * For now we have a fixed upper limit on the number we're 4915 * prepared to receive. 4916 */ 4917 size = sizeof (__le64) + sizeof (__le32) + 4918 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4919 reply_buf = kzalloc(size, GFP_KERNEL); 4920 if (!reply_buf) 4921 return -ENOMEM; 4922 4923 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4924 &rbd_dev->header_oloc, "get_snapcontext", 4925 NULL, 0, reply_buf, size); 4926 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4927 if (ret < 0) 4928 goto out; 4929 4930 p = reply_buf; 4931 end = reply_buf + ret; 4932 ret = -ERANGE; 4933 ceph_decode_64_safe(&p, end, seq, out); 4934 ceph_decode_32_safe(&p, end, snap_count, out); 4935 4936 /* 4937 * Make sure the reported number of snapshot ids wouldn't go 4938 * beyond the end of our buffer. But before checking that, 4939 * make sure the computed size of the snapshot context we 4940 * allocate is representable in a size_t. 4941 */ 4942 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4943 / sizeof (u64)) { 4944 ret = -EINVAL; 4945 goto out; 4946 } 4947 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4948 goto out; 4949 ret = 0; 4950 4951 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4952 if (!snapc) { 4953 ret = -ENOMEM; 4954 goto out; 4955 } 4956 snapc->seq = seq; 4957 for (i = 0; i < snap_count; i++) 4958 snapc->snaps[i] = ceph_decode_64(&p); 4959 4960 ceph_put_snap_context(rbd_dev->header.snapc); 4961 rbd_dev->header.snapc = snapc; 4962 4963 dout(" snap context seq = %llu, snap_count = %u\n", 4964 (unsigned long long)seq, (unsigned int)snap_count); 4965 out: 4966 kfree(reply_buf); 4967 4968 return ret; 4969 } 4970 4971 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4972 u64 snap_id) 4973 { 4974 size_t size; 4975 void *reply_buf; 4976 __le64 snapid; 4977 int ret; 4978 void *p; 4979 void *end; 4980 char *snap_name; 4981 4982 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4983 reply_buf = kmalloc(size, GFP_KERNEL); 4984 if (!reply_buf) 4985 return ERR_PTR(-ENOMEM); 4986 4987 snapid = cpu_to_le64(snap_id); 4988 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 4989 &rbd_dev->header_oloc, "get_snapshot_name", 4990 &snapid, sizeof(snapid), reply_buf, size); 4991 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4992 if (ret < 0) { 4993 snap_name = ERR_PTR(ret); 4994 goto out; 4995 } 4996 4997 p = reply_buf; 4998 end = reply_buf + ret; 4999 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5000 if (IS_ERR(snap_name)) 5001 goto out; 5002 5003 dout(" snap_id 0x%016llx snap_name = %s\n", 5004 (unsigned long long)snap_id, snap_name); 5005 out: 5006 kfree(reply_buf); 5007 5008 return snap_name; 5009 } 5010 5011 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 5012 { 5013 bool first_time = rbd_dev->header.object_prefix == NULL; 5014 int ret; 5015 5016 ret = rbd_dev_v2_image_size(rbd_dev); 5017 if (ret) 5018 return ret; 5019 5020 if (first_time) { 5021 ret = rbd_dev_v2_header_onetime(rbd_dev); 5022 if (ret) 5023 return ret; 5024 } 5025 5026 ret = rbd_dev_v2_snap_context(rbd_dev); 5027 if (ret && first_time) { 5028 kfree(rbd_dev->header.object_prefix); 5029 rbd_dev->header.object_prefix = NULL; 5030 } 5031 5032 return ret; 5033 } 5034 5035 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 5036 { 5037 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5038 5039 if (rbd_dev->image_format == 1) 5040 return rbd_dev_v1_header_info(rbd_dev); 5041 5042 return rbd_dev_v2_header_info(rbd_dev); 5043 } 5044 5045 /* 5046 * Skips over white space at *buf, and updates *buf to point to the 5047 * first found non-space character (if any). Returns the length of 5048 * the token (string of non-white space characters) found. Note 5049 * that *buf must be terminated with '\0'. 5050 */ 5051 static inline size_t next_token(const char **buf) 5052 { 5053 /* 5054 * These are the characters that produce nonzero for 5055 * isspace() in the "C" and "POSIX" locales. 5056 */ 5057 const char *spaces = " \f\n\r\t\v"; 5058 5059 *buf += strspn(*buf, spaces); /* Find start of token */ 5060 5061 return strcspn(*buf, spaces); /* Return token length */ 5062 } 5063 5064 /* 5065 * Finds the next token in *buf, dynamically allocates a buffer big 5066 * enough to hold a copy of it, and copies the token into the new 5067 * buffer. The copy is guaranteed to be terminated with '\0'. Note 5068 * that a duplicate buffer is created even for a zero-length token. 5069 * 5070 * Returns a pointer to the newly-allocated duplicate, or a null 5071 * pointer if memory for the duplicate was not available. If 5072 * the lenp argument is a non-null pointer, the length of the token 5073 * (not including the '\0') is returned in *lenp. 5074 * 5075 * If successful, the *buf pointer will be updated to point beyond 5076 * the end of the found token. 5077 * 5078 * Note: uses GFP_KERNEL for allocation. 5079 */ 5080 static inline char *dup_token(const char **buf, size_t *lenp) 5081 { 5082 char *dup; 5083 size_t len; 5084 5085 len = next_token(buf); 5086 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 5087 if (!dup) 5088 return NULL; 5089 *(dup + len) = '\0'; 5090 *buf += len; 5091 5092 if (lenp) 5093 *lenp = len; 5094 5095 return dup; 5096 } 5097 5098 /* 5099 * Parse the options provided for an "rbd add" (i.e., rbd image 5100 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 5101 * and the data written is passed here via a NUL-terminated buffer. 5102 * Returns 0 if successful or an error code otherwise. 5103 * 5104 * The information extracted from these options is recorded in 5105 * the other parameters which return dynamically-allocated 5106 * structures: 5107 * ceph_opts 5108 * The address of a pointer that will refer to a ceph options 5109 * structure. Caller must release the returned pointer using 5110 * ceph_destroy_options() when it is no longer needed. 5111 * rbd_opts 5112 * Address of an rbd options pointer. Fully initialized by 5113 * this function; caller must release with kfree(). 5114 * spec 5115 * Address of an rbd image specification pointer. Fully 5116 * initialized by this function based on parsed options. 5117 * Caller must release with rbd_spec_put(). 5118 * 5119 * The options passed take this form: 5120 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 5121 * where: 5122 * <mon_addrs> 5123 * A comma-separated list of one or more monitor addresses. 5124 * A monitor address is an ip address, optionally followed 5125 * by a port number (separated by a colon). 5126 * I.e.: ip1[:port1][,ip2[:port2]...] 5127 * <options> 5128 * A comma-separated list of ceph and/or rbd options. 5129 * <pool_name> 5130 * The name of the rados pool containing the rbd image. 5131 * <image_name> 5132 * The name of the image in that pool to map. 5133 * <snap_id> 5134 * An optional snapshot id. If provided, the mapping will 5135 * present data from the image at the time that snapshot was 5136 * created. The image head is used if no snapshot id is 5137 * provided. Snapshot mappings are always read-only. 5138 */ 5139 static int rbd_add_parse_args(const char *buf, 5140 struct ceph_options **ceph_opts, 5141 struct rbd_options **opts, 5142 struct rbd_spec **rbd_spec) 5143 { 5144 size_t len; 5145 char *options; 5146 const char *mon_addrs; 5147 char *snap_name; 5148 size_t mon_addrs_size; 5149 struct rbd_spec *spec = NULL; 5150 struct rbd_options *rbd_opts = NULL; 5151 struct ceph_options *copts; 5152 int ret; 5153 5154 /* The first four tokens are required */ 5155 5156 len = next_token(&buf); 5157 if (!len) { 5158 rbd_warn(NULL, "no monitor address(es) provided"); 5159 return -EINVAL; 5160 } 5161 mon_addrs = buf; 5162 mon_addrs_size = len + 1; 5163 buf += len; 5164 5165 ret = -EINVAL; 5166 options = dup_token(&buf, NULL); 5167 if (!options) 5168 return -ENOMEM; 5169 if (!*options) { 5170 rbd_warn(NULL, "no options provided"); 5171 goto out_err; 5172 } 5173 5174 spec = rbd_spec_alloc(); 5175 if (!spec) 5176 goto out_mem; 5177 5178 spec->pool_name = dup_token(&buf, NULL); 5179 if (!spec->pool_name) 5180 goto out_mem; 5181 if (!*spec->pool_name) { 5182 rbd_warn(NULL, "no pool name provided"); 5183 goto out_err; 5184 } 5185 5186 spec->image_name = dup_token(&buf, NULL); 5187 if (!spec->image_name) 5188 goto out_mem; 5189 if (!*spec->image_name) { 5190 rbd_warn(NULL, "no image name provided"); 5191 goto out_err; 5192 } 5193 5194 /* 5195 * Snapshot name is optional; default is to use "-" 5196 * (indicating the head/no snapshot). 5197 */ 5198 len = next_token(&buf); 5199 if (!len) { 5200 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 5201 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 5202 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 5203 ret = -ENAMETOOLONG; 5204 goto out_err; 5205 } 5206 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 5207 if (!snap_name) 5208 goto out_mem; 5209 *(snap_name + len) = '\0'; 5210 spec->snap_name = snap_name; 5211 5212 /* Initialize all rbd options to the defaults */ 5213 5214 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 5215 if (!rbd_opts) 5216 goto out_mem; 5217 5218 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 5219 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 5220 rbd_opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 5221 rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 5222 rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 5223 rbd_opts->trim = RBD_TRIM_DEFAULT; 5224 5225 copts = ceph_parse_options(options, mon_addrs, 5226 mon_addrs + mon_addrs_size - 1, 5227 parse_rbd_opts_token, rbd_opts); 5228 if (IS_ERR(copts)) { 5229 ret = PTR_ERR(copts); 5230 goto out_err; 5231 } 5232 kfree(options); 5233 5234 *ceph_opts = copts; 5235 *opts = rbd_opts; 5236 *rbd_spec = spec; 5237 5238 return 0; 5239 out_mem: 5240 ret = -ENOMEM; 5241 out_err: 5242 kfree(rbd_opts); 5243 rbd_spec_put(spec); 5244 kfree(options); 5245 5246 return ret; 5247 } 5248 5249 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 5250 { 5251 down_write(&rbd_dev->lock_rwsem); 5252 if (__rbd_is_lock_owner(rbd_dev)) 5253 rbd_unlock(rbd_dev); 5254 up_write(&rbd_dev->lock_rwsem); 5255 } 5256 5257 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 5258 { 5259 int ret; 5260 5261 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 5262 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 5263 return -EINVAL; 5264 } 5265 5266 /* FIXME: "rbd map --exclusive" should be in interruptible */ 5267 down_read(&rbd_dev->lock_rwsem); 5268 ret = rbd_wait_state_locked(rbd_dev, true); 5269 up_read(&rbd_dev->lock_rwsem); 5270 if (ret) { 5271 rbd_warn(rbd_dev, "failed to acquire exclusive lock"); 5272 return -EROFS; 5273 } 5274 5275 return 0; 5276 } 5277 5278 /* 5279 * An rbd format 2 image has a unique identifier, distinct from the 5280 * name given to it by the user. Internally, that identifier is 5281 * what's used to specify the names of objects related to the image. 5282 * 5283 * A special "rbd id" object is used to map an rbd image name to its 5284 * id. If that object doesn't exist, then there is no v2 rbd image 5285 * with the supplied name. 5286 * 5287 * This function will record the given rbd_dev's image_id field if 5288 * it can be determined, and in that case will return 0. If any 5289 * errors occur a negative errno will be returned and the rbd_dev's 5290 * image_id field will be unchanged (and should be NULL). 5291 */ 5292 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5293 { 5294 int ret; 5295 size_t size; 5296 CEPH_DEFINE_OID_ONSTACK(oid); 5297 void *response; 5298 char *image_id; 5299 5300 /* 5301 * When probing a parent image, the image id is already 5302 * known (and the image name likely is not). There's no 5303 * need to fetch the image id again in this case. We 5304 * do still need to set the image format though. 5305 */ 5306 if (rbd_dev->spec->image_id) { 5307 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5308 5309 return 0; 5310 } 5311 5312 /* 5313 * First, see if the format 2 image id file exists, and if 5314 * so, get the image's persistent id from it. 5315 */ 5316 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 5317 rbd_dev->spec->image_name); 5318 if (ret) 5319 return ret; 5320 5321 dout("rbd id object name is %s\n", oid.name); 5322 5323 /* Response will be an encoded string, which includes a length */ 5324 5325 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5326 response = kzalloc(size, GFP_NOIO); 5327 if (!response) { 5328 ret = -ENOMEM; 5329 goto out; 5330 } 5331 5332 /* If it doesn't exist we'll assume it's a format 1 image */ 5333 5334 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5335 "get_id", NULL, 0, 5336 response, RBD_IMAGE_ID_LEN_MAX); 5337 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5338 if (ret == -ENOENT) { 5339 image_id = kstrdup("", GFP_KERNEL); 5340 ret = image_id ? 0 : -ENOMEM; 5341 if (!ret) 5342 rbd_dev->image_format = 1; 5343 } else if (ret >= 0) { 5344 void *p = response; 5345 5346 image_id = ceph_extract_encoded_string(&p, p + ret, 5347 NULL, GFP_NOIO); 5348 ret = PTR_ERR_OR_ZERO(image_id); 5349 if (!ret) 5350 rbd_dev->image_format = 2; 5351 } 5352 5353 if (!ret) { 5354 rbd_dev->spec->image_id = image_id; 5355 dout("image_id is %s\n", image_id); 5356 } 5357 out: 5358 kfree(response); 5359 ceph_oid_destroy(&oid); 5360 return ret; 5361 } 5362 5363 /* 5364 * Undo whatever state changes are made by v1 or v2 header info 5365 * call. 5366 */ 5367 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5368 { 5369 struct rbd_image_header *header; 5370 5371 rbd_dev_parent_put(rbd_dev); 5372 5373 /* Free dynamic fields from the header, then zero it out */ 5374 5375 header = &rbd_dev->header; 5376 ceph_put_snap_context(header->snapc); 5377 kfree(header->snap_sizes); 5378 kfree(header->snap_names); 5379 kfree(header->object_prefix); 5380 memset(header, 0, sizeof (*header)); 5381 } 5382 5383 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5384 { 5385 int ret; 5386 5387 ret = rbd_dev_v2_object_prefix(rbd_dev); 5388 if (ret) 5389 goto out_err; 5390 5391 /* 5392 * Get the and check features for the image. Currently the 5393 * features are assumed to never change. 5394 */ 5395 ret = rbd_dev_v2_features(rbd_dev); 5396 if (ret) 5397 goto out_err; 5398 5399 /* If the image supports fancy striping, get its parameters */ 5400 5401 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5402 ret = rbd_dev_v2_striping_info(rbd_dev); 5403 if (ret < 0) 5404 goto out_err; 5405 } 5406 5407 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 5408 ret = rbd_dev_v2_data_pool(rbd_dev); 5409 if (ret) 5410 goto out_err; 5411 } 5412 5413 rbd_init_layout(rbd_dev); 5414 return 0; 5415 5416 out_err: 5417 rbd_dev->header.features = 0; 5418 kfree(rbd_dev->header.object_prefix); 5419 rbd_dev->header.object_prefix = NULL; 5420 return ret; 5421 } 5422 5423 /* 5424 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5425 * rbd_dev_image_probe() recursion depth, which means it's also the 5426 * length of the already discovered part of the parent chain. 5427 */ 5428 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5429 { 5430 struct rbd_device *parent = NULL; 5431 int ret; 5432 5433 if (!rbd_dev->parent_spec) 5434 return 0; 5435 5436 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5437 pr_info("parent chain is too long (%d)\n", depth); 5438 ret = -EINVAL; 5439 goto out_err; 5440 } 5441 5442 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 5443 if (!parent) { 5444 ret = -ENOMEM; 5445 goto out_err; 5446 } 5447 5448 /* 5449 * Images related by parent/child relationships always share 5450 * rbd_client and spec/parent_spec, so bump their refcounts. 5451 */ 5452 __rbd_get_client(rbd_dev->rbd_client); 5453 rbd_spec_get(rbd_dev->parent_spec); 5454 5455 ret = rbd_dev_image_probe(parent, depth); 5456 if (ret < 0) 5457 goto out_err; 5458 5459 rbd_dev->parent = parent; 5460 atomic_set(&rbd_dev->parent_ref, 1); 5461 return 0; 5462 5463 out_err: 5464 rbd_dev_unparent(rbd_dev); 5465 rbd_dev_destroy(parent); 5466 return ret; 5467 } 5468 5469 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 5470 { 5471 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5472 rbd_dev_mapping_clear(rbd_dev); 5473 rbd_free_disk(rbd_dev); 5474 if (!single_major) 5475 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5476 } 5477 5478 /* 5479 * rbd_dev->header_rwsem must be locked for write and will be unlocked 5480 * upon return. 5481 */ 5482 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5483 { 5484 int ret; 5485 5486 /* Record our major and minor device numbers. */ 5487 5488 if (!single_major) { 5489 ret = register_blkdev(0, rbd_dev->name); 5490 if (ret < 0) 5491 goto err_out_unlock; 5492 5493 rbd_dev->major = ret; 5494 rbd_dev->minor = 0; 5495 } else { 5496 rbd_dev->major = rbd_major; 5497 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5498 } 5499 5500 /* Set up the blkdev mapping. */ 5501 5502 ret = rbd_init_disk(rbd_dev); 5503 if (ret) 5504 goto err_out_blkdev; 5505 5506 ret = rbd_dev_mapping_set(rbd_dev); 5507 if (ret) 5508 goto err_out_disk; 5509 5510 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5511 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only); 5512 5513 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 5514 if (ret) 5515 goto err_out_mapping; 5516 5517 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5518 up_write(&rbd_dev->header_rwsem); 5519 return 0; 5520 5521 err_out_mapping: 5522 rbd_dev_mapping_clear(rbd_dev); 5523 err_out_disk: 5524 rbd_free_disk(rbd_dev); 5525 err_out_blkdev: 5526 if (!single_major) 5527 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5528 err_out_unlock: 5529 up_write(&rbd_dev->header_rwsem); 5530 return ret; 5531 } 5532 5533 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5534 { 5535 struct rbd_spec *spec = rbd_dev->spec; 5536 int ret; 5537 5538 /* Record the header object name for this rbd image. */ 5539 5540 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5541 if (rbd_dev->image_format == 1) 5542 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5543 spec->image_name, RBD_SUFFIX); 5544 else 5545 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 5546 RBD_HEADER_PREFIX, spec->image_id); 5547 5548 return ret; 5549 } 5550 5551 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5552 { 5553 rbd_dev_unprobe(rbd_dev); 5554 if (rbd_dev->opts) 5555 rbd_unregister_watch(rbd_dev); 5556 rbd_dev->image_format = 0; 5557 kfree(rbd_dev->spec->image_id); 5558 rbd_dev->spec->image_id = NULL; 5559 } 5560 5561 /* 5562 * Probe for the existence of the header object for the given rbd 5563 * device. If this image is the one being mapped (i.e., not a 5564 * parent), initiate a watch on its header object before using that 5565 * object to get detailed information about the rbd image. 5566 */ 5567 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 5568 { 5569 int ret; 5570 5571 /* 5572 * Get the id from the image id object. Unless there's an 5573 * error, rbd_dev->spec->image_id will be filled in with 5574 * a dynamically-allocated string, and rbd_dev->image_format 5575 * will be set to either 1 or 2. 5576 */ 5577 ret = rbd_dev_image_id(rbd_dev); 5578 if (ret) 5579 return ret; 5580 5581 ret = rbd_dev_header_name(rbd_dev); 5582 if (ret) 5583 goto err_out_format; 5584 5585 if (!depth) { 5586 ret = rbd_register_watch(rbd_dev); 5587 if (ret) { 5588 if (ret == -ENOENT) 5589 pr_info("image %s/%s does not exist\n", 5590 rbd_dev->spec->pool_name, 5591 rbd_dev->spec->image_name); 5592 goto err_out_format; 5593 } 5594 } 5595 5596 ret = rbd_dev_header_info(rbd_dev); 5597 if (ret) 5598 goto err_out_watch; 5599 5600 /* 5601 * If this image is the one being mapped, we have pool name and 5602 * id, image name and id, and snap name - need to fill snap id. 5603 * Otherwise this is a parent image, identified by pool, image 5604 * and snap ids - need to fill in names for those ids. 5605 */ 5606 if (!depth) 5607 ret = rbd_spec_fill_snap_id(rbd_dev); 5608 else 5609 ret = rbd_spec_fill_names(rbd_dev); 5610 if (ret) { 5611 if (ret == -ENOENT) 5612 pr_info("snap %s/%s@%s does not exist\n", 5613 rbd_dev->spec->pool_name, 5614 rbd_dev->spec->image_name, 5615 rbd_dev->spec->snap_name); 5616 goto err_out_probe; 5617 } 5618 5619 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5620 ret = rbd_dev_v2_parent_info(rbd_dev); 5621 if (ret) 5622 goto err_out_probe; 5623 5624 /* 5625 * Need to warn users if this image is the one being 5626 * mapped and has a parent. 5627 */ 5628 if (!depth && rbd_dev->parent_spec) 5629 rbd_warn(rbd_dev, 5630 "WARNING: kernel layering is EXPERIMENTAL!"); 5631 } 5632 5633 ret = rbd_dev_probe_parent(rbd_dev, depth); 5634 if (ret) 5635 goto err_out_probe; 5636 5637 dout("discovered format %u image, header name is %s\n", 5638 rbd_dev->image_format, rbd_dev->header_oid.name); 5639 return 0; 5640 5641 err_out_probe: 5642 rbd_dev_unprobe(rbd_dev); 5643 err_out_watch: 5644 if (!depth) 5645 rbd_unregister_watch(rbd_dev); 5646 err_out_format: 5647 rbd_dev->image_format = 0; 5648 kfree(rbd_dev->spec->image_id); 5649 rbd_dev->spec->image_id = NULL; 5650 return ret; 5651 } 5652 5653 static ssize_t do_rbd_add(struct bus_type *bus, 5654 const char *buf, 5655 size_t count) 5656 { 5657 struct rbd_device *rbd_dev = NULL; 5658 struct ceph_options *ceph_opts = NULL; 5659 struct rbd_options *rbd_opts = NULL; 5660 struct rbd_spec *spec = NULL; 5661 struct rbd_client *rbdc; 5662 int rc; 5663 5664 if (!try_module_get(THIS_MODULE)) 5665 return -ENODEV; 5666 5667 /* parse add command */ 5668 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5669 if (rc < 0) 5670 goto out; 5671 5672 rbdc = rbd_get_client(ceph_opts); 5673 if (IS_ERR(rbdc)) { 5674 rc = PTR_ERR(rbdc); 5675 goto err_out_args; 5676 } 5677 5678 /* pick the pool */ 5679 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 5680 if (rc < 0) { 5681 if (rc == -ENOENT) 5682 pr_info("pool %s does not exist\n", spec->pool_name); 5683 goto err_out_client; 5684 } 5685 spec->pool_id = (u64)rc; 5686 5687 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 5688 if (!rbd_dev) { 5689 rc = -ENOMEM; 5690 goto err_out_client; 5691 } 5692 rbdc = NULL; /* rbd_dev now owns this */ 5693 spec = NULL; /* rbd_dev now owns this */ 5694 rbd_opts = NULL; /* rbd_dev now owns this */ 5695 5696 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 5697 if (!rbd_dev->config_info) { 5698 rc = -ENOMEM; 5699 goto err_out_rbd_dev; 5700 } 5701 5702 down_write(&rbd_dev->header_rwsem); 5703 rc = rbd_dev_image_probe(rbd_dev, 0); 5704 if (rc < 0) { 5705 up_write(&rbd_dev->header_rwsem); 5706 goto err_out_rbd_dev; 5707 } 5708 5709 /* If we are mapping a snapshot it must be marked read-only */ 5710 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5711 rbd_dev->opts->read_only = true; 5712 5713 rc = rbd_dev_device_setup(rbd_dev); 5714 if (rc) 5715 goto err_out_image_probe; 5716 5717 if (rbd_dev->opts->exclusive) { 5718 rc = rbd_add_acquire_lock(rbd_dev); 5719 if (rc) 5720 goto err_out_device_setup; 5721 } 5722 5723 /* Everything's ready. Announce the disk to the world. */ 5724 5725 rc = device_add(&rbd_dev->dev); 5726 if (rc) 5727 goto err_out_image_lock; 5728 5729 add_disk(rbd_dev->disk); 5730 /* see rbd_init_disk() */ 5731 blk_put_queue(rbd_dev->disk->queue); 5732 5733 spin_lock(&rbd_dev_list_lock); 5734 list_add_tail(&rbd_dev->node, &rbd_dev_list); 5735 spin_unlock(&rbd_dev_list_lock); 5736 5737 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 5738 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 5739 rbd_dev->header.features); 5740 rc = count; 5741 out: 5742 module_put(THIS_MODULE); 5743 return rc; 5744 5745 err_out_image_lock: 5746 rbd_dev_image_unlock(rbd_dev); 5747 err_out_device_setup: 5748 rbd_dev_device_release(rbd_dev); 5749 err_out_image_probe: 5750 rbd_dev_image_release(rbd_dev); 5751 err_out_rbd_dev: 5752 rbd_dev_destroy(rbd_dev); 5753 err_out_client: 5754 rbd_put_client(rbdc); 5755 err_out_args: 5756 rbd_spec_put(spec); 5757 kfree(rbd_opts); 5758 goto out; 5759 } 5760 5761 static ssize_t rbd_add(struct bus_type *bus, 5762 const char *buf, 5763 size_t count) 5764 { 5765 if (single_major) 5766 return -EINVAL; 5767 5768 return do_rbd_add(bus, buf, count); 5769 } 5770 5771 static ssize_t rbd_add_single_major(struct bus_type *bus, 5772 const char *buf, 5773 size_t count) 5774 { 5775 return do_rbd_add(bus, buf, count); 5776 } 5777 5778 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5779 { 5780 while (rbd_dev->parent) { 5781 struct rbd_device *first = rbd_dev; 5782 struct rbd_device *second = first->parent; 5783 struct rbd_device *third; 5784 5785 /* 5786 * Follow to the parent with no grandparent and 5787 * remove it. 5788 */ 5789 while (second && (third = second->parent)) { 5790 first = second; 5791 second = third; 5792 } 5793 rbd_assert(second); 5794 rbd_dev_image_release(second); 5795 rbd_dev_destroy(second); 5796 first->parent = NULL; 5797 first->parent_overlap = 0; 5798 5799 rbd_assert(first->parent_spec); 5800 rbd_spec_put(first->parent_spec); 5801 first->parent_spec = NULL; 5802 } 5803 } 5804 5805 static ssize_t do_rbd_remove(struct bus_type *bus, 5806 const char *buf, 5807 size_t count) 5808 { 5809 struct rbd_device *rbd_dev = NULL; 5810 struct list_head *tmp; 5811 int dev_id; 5812 char opt_buf[6]; 5813 bool already = false; 5814 bool force = false; 5815 int ret; 5816 5817 dev_id = -1; 5818 opt_buf[0] = '\0'; 5819 sscanf(buf, "%d %5s", &dev_id, opt_buf); 5820 if (dev_id < 0) { 5821 pr_err("dev_id out of range\n"); 5822 return -EINVAL; 5823 } 5824 if (opt_buf[0] != '\0') { 5825 if (!strcmp(opt_buf, "force")) { 5826 force = true; 5827 } else { 5828 pr_err("bad remove option at '%s'\n", opt_buf); 5829 return -EINVAL; 5830 } 5831 } 5832 5833 ret = -ENOENT; 5834 spin_lock(&rbd_dev_list_lock); 5835 list_for_each(tmp, &rbd_dev_list) { 5836 rbd_dev = list_entry(tmp, struct rbd_device, node); 5837 if (rbd_dev->dev_id == dev_id) { 5838 ret = 0; 5839 break; 5840 } 5841 } 5842 if (!ret) { 5843 spin_lock_irq(&rbd_dev->lock); 5844 if (rbd_dev->open_count && !force) 5845 ret = -EBUSY; 5846 else 5847 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5848 &rbd_dev->flags); 5849 spin_unlock_irq(&rbd_dev->lock); 5850 } 5851 spin_unlock(&rbd_dev_list_lock); 5852 if (ret < 0 || already) 5853 return ret; 5854 5855 if (force) { 5856 /* 5857 * Prevent new IO from being queued and wait for existing 5858 * IO to complete/fail. 5859 */ 5860 blk_mq_freeze_queue(rbd_dev->disk->queue); 5861 blk_set_queue_dying(rbd_dev->disk->queue); 5862 } 5863 5864 del_gendisk(rbd_dev->disk); 5865 spin_lock(&rbd_dev_list_lock); 5866 list_del_init(&rbd_dev->node); 5867 spin_unlock(&rbd_dev_list_lock); 5868 device_del(&rbd_dev->dev); 5869 5870 rbd_dev_image_unlock(rbd_dev); 5871 rbd_dev_device_release(rbd_dev); 5872 rbd_dev_image_release(rbd_dev); 5873 rbd_dev_destroy(rbd_dev); 5874 return count; 5875 } 5876 5877 static ssize_t rbd_remove(struct bus_type *bus, 5878 const char *buf, 5879 size_t count) 5880 { 5881 if (single_major) 5882 return -EINVAL; 5883 5884 return do_rbd_remove(bus, buf, count); 5885 } 5886 5887 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5888 const char *buf, 5889 size_t count) 5890 { 5891 return do_rbd_remove(bus, buf, count); 5892 } 5893 5894 /* 5895 * create control files in sysfs 5896 * /sys/bus/rbd/... 5897 */ 5898 static int rbd_sysfs_init(void) 5899 { 5900 int ret; 5901 5902 ret = device_register(&rbd_root_dev); 5903 if (ret < 0) 5904 return ret; 5905 5906 ret = bus_register(&rbd_bus_type); 5907 if (ret < 0) 5908 device_unregister(&rbd_root_dev); 5909 5910 return ret; 5911 } 5912 5913 static void rbd_sysfs_cleanup(void) 5914 { 5915 bus_unregister(&rbd_bus_type); 5916 device_unregister(&rbd_root_dev); 5917 } 5918 5919 static int rbd_slab_init(void) 5920 { 5921 rbd_assert(!rbd_img_request_cache); 5922 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 5923 if (!rbd_img_request_cache) 5924 return -ENOMEM; 5925 5926 rbd_assert(!rbd_obj_request_cache); 5927 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 5928 if (!rbd_obj_request_cache) 5929 goto out_err; 5930 5931 return 0; 5932 5933 out_err: 5934 kmem_cache_destroy(rbd_img_request_cache); 5935 rbd_img_request_cache = NULL; 5936 return -ENOMEM; 5937 } 5938 5939 static void rbd_slab_exit(void) 5940 { 5941 rbd_assert(rbd_obj_request_cache); 5942 kmem_cache_destroy(rbd_obj_request_cache); 5943 rbd_obj_request_cache = NULL; 5944 5945 rbd_assert(rbd_img_request_cache); 5946 kmem_cache_destroy(rbd_img_request_cache); 5947 rbd_img_request_cache = NULL; 5948 } 5949 5950 static int __init rbd_init(void) 5951 { 5952 int rc; 5953 5954 if (!libceph_compatible(NULL)) { 5955 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5956 return -EINVAL; 5957 } 5958 5959 rc = rbd_slab_init(); 5960 if (rc) 5961 return rc; 5962 5963 /* 5964 * The number of active work items is limited by the number of 5965 * rbd devices * queue depth, so leave @max_active at default. 5966 */ 5967 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 5968 if (!rbd_wq) { 5969 rc = -ENOMEM; 5970 goto err_out_slab; 5971 } 5972 5973 if (single_major) { 5974 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5975 if (rbd_major < 0) { 5976 rc = rbd_major; 5977 goto err_out_wq; 5978 } 5979 } 5980 5981 rc = rbd_sysfs_init(); 5982 if (rc) 5983 goto err_out_blkdev; 5984 5985 if (single_major) 5986 pr_info("loaded (major %d)\n", rbd_major); 5987 else 5988 pr_info("loaded\n"); 5989 5990 return 0; 5991 5992 err_out_blkdev: 5993 if (single_major) 5994 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5995 err_out_wq: 5996 destroy_workqueue(rbd_wq); 5997 err_out_slab: 5998 rbd_slab_exit(); 5999 return rc; 6000 } 6001 6002 static void __exit rbd_exit(void) 6003 { 6004 ida_destroy(&rbd_dev_id_ida); 6005 rbd_sysfs_cleanup(); 6006 if (single_major) 6007 unregister_blkdev(rbd_major, RBD_DRV_NAME); 6008 destroy_workqueue(rbd_wq); 6009 rbd_slab_exit(); 6010 } 6011 6012 module_init(rbd_init); 6013 module_exit(rbd_exit); 6014 6015 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 6016 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 6017 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 6018 /* following authorship retained from original osdblk.c */ 6019 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 6020 6021 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 6022 MODULE_LICENSE("GPL"); 6023