1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/fs_parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3) 119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4) 120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5) 121 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 122 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 123 124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 125 RBD_FEATURE_STRIPINGV2 | \ 126 RBD_FEATURE_EXCLUSIVE_LOCK | \ 127 RBD_FEATURE_OBJECT_MAP | \ 128 RBD_FEATURE_FAST_DIFF | \ 129 RBD_FEATURE_DEEP_FLATTEN | \ 130 RBD_FEATURE_DATA_POOL | \ 131 RBD_FEATURE_OPERATIONS) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 const char *pool_ns; /* NULL if default, never "" */ 191 192 const char *image_id; 193 const char *image_name; 194 195 u64 snap_id; 196 const char *snap_name; 197 198 struct kref kref; 199 }; 200 201 /* 202 * an instance of the client. multiple devices may share an rbd client. 203 */ 204 struct rbd_client { 205 struct ceph_client *client; 206 struct kref kref; 207 struct list_head node; 208 }; 209 210 struct pending_result { 211 int result; /* first nonzero result */ 212 int num_pending; 213 }; 214 215 struct rbd_img_request; 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA = 1, 219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 222 }; 223 224 enum obj_operation_type { 225 OBJ_OP_READ = 1, 226 OBJ_OP_WRITE, 227 OBJ_OP_DISCARD, 228 OBJ_OP_ZEROOUT, 229 }; 230 231 #define RBD_OBJ_FLAG_DELETION (1U << 0) 232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1) 233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2) 234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3) 235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4) 236 237 enum rbd_obj_read_state { 238 RBD_OBJ_READ_START = 1, 239 RBD_OBJ_READ_OBJECT, 240 RBD_OBJ_READ_PARENT, 241 }; 242 243 /* 244 * Writes go through the following state machine to deal with 245 * layering: 246 * 247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . . 248 * . | . 249 * . v . 250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . . 251 * . | . . 252 * . v v (deep-copyup . 253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) . 254 * flattened) v | . . 255 * . v . . 256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup . 257 * | not needed) v 258 * v . 259 * done . . . . . . . . . . . . . . . . . . 260 * ^ 261 * | 262 * RBD_OBJ_WRITE_FLAT 263 * 264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 265 * assert_exists guard is needed or not (in some cases it's not needed 266 * even if there is a parent). 267 */ 268 enum rbd_obj_write_state { 269 RBD_OBJ_WRITE_START = 1, 270 RBD_OBJ_WRITE_PRE_OBJECT_MAP, 271 RBD_OBJ_WRITE_OBJECT, 272 __RBD_OBJ_WRITE_COPYUP, 273 RBD_OBJ_WRITE_COPYUP, 274 RBD_OBJ_WRITE_POST_OBJECT_MAP, 275 }; 276 277 enum rbd_obj_copyup_state { 278 RBD_OBJ_COPYUP_START = 1, 279 RBD_OBJ_COPYUP_READ_PARENT, 280 __RBD_OBJ_COPYUP_OBJECT_MAPS, 281 RBD_OBJ_COPYUP_OBJECT_MAPS, 282 __RBD_OBJ_COPYUP_WRITE_OBJECT, 283 RBD_OBJ_COPYUP_WRITE_OBJECT, 284 }; 285 286 struct rbd_obj_request { 287 struct ceph_object_extent ex; 288 unsigned int flags; /* RBD_OBJ_FLAG_* */ 289 union { 290 enum rbd_obj_read_state read_state; /* for reads */ 291 enum rbd_obj_write_state write_state; /* for writes */ 292 }; 293 294 struct rbd_img_request *img_request; 295 struct ceph_file_extent *img_extents; 296 u32 num_img_extents; 297 298 union { 299 struct ceph_bio_iter bio_pos; 300 struct { 301 struct ceph_bvec_iter bvec_pos; 302 u32 bvec_count; 303 u32 bvec_idx; 304 }; 305 }; 306 307 enum rbd_obj_copyup_state copyup_state; 308 struct bio_vec *copyup_bvecs; 309 u32 copyup_bvec_count; 310 311 struct list_head osd_reqs; /* w/ r_private_item */ 312 313 struct mutex state_mutex; 314 struct pending_result pending; 315 struct kref kref; 316 }; 317 318 enum img_req_flags { 319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 321 }; 322 323 enum rbd_img_state { 324 RBD_IMG_START = 1, 325 RBD_IMG_EXCLUSIVE_LOCK, 326 __RBD_IMG_OBJECT_REQUESTS, 327 RBD_IMG_OBJECT_REQUESTS, 328 }; 329 330 struct rbd_img_request { 331 struct rbd_device *rbd_dev; 332 enum obj_operation_type op_type; 333 enum obj_request_type data_type; 334 unsigned long flags; 335 enum rbd_img_state state; 336 union { 337 u64 snap_id; /* for reads */ 338 struct ceph_snap_context *snapc; /* for writes */ 339 }; 340 struct rbd_obj_request *obj_request; /* obj req initiator */ 341 342 struct list_head lock_item; 343 struct list_head object_extents; /* obj_req.ex structs */ 344 345 struct mutex state_mutex; 346 struct pending_result pending; 347 struct work_struct work; 348 int work_result; 349 }; 350 351 #define for_each_obj_request(ireq, oreq) \ 352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 353 #define for_each_obj_request_safe(ireq, oreq, n) \ 354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 355 356 enum rbd_watch_state { 357 RBD_WATCH_STATE_UNREGISTERED, 358 RBD_WATCH_STATE_REGISTERED, 359 RBD_WATCH_STATE_ERROR, 360 }; 361 362 enum rbd_lock_state { 363 RBD_LOCK_STATE_UNLOCKED, 364 RBD_LOCK_STATE_LOCKED, 365 RBD_LOCK_STATE_RELEASING, 366 }; 367 368 /* WatchNotify::ClientId */ 369 struct rbd_client_id { 370 u64 gid; 371 u64 handle; 372 }; 373 374 struct rbd_mapping { 375 u64 size; 376 }; 377 378 /* 379 * a single device 380 */ 381 struct rbd_device { 382 int dev_id; /* blkdev unique id */ 383 384 int major; /* blkdev assigned major */ 385 int minor; 386 struct gendisk *disk; /* blkdev's gendisk and rq */ 387 388 u32 image_format; /* Either 1 or 2 */ 389 struct rbd_client *rbd_client; 390 391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 392 393 spinlock_t lock; /* queue, flags, open_count */ 394 395 struct rbd_image_header header; 396 unsigned long flags; /* possibly lock protected */ 397 struct rbd_spec *spec; 398 struct rbd_options *opts; 399 char *config_info; /* add{,_single_major} string */ 400 401 struct ceph_object_id header_oid; 402 struct ceph_object_locator header_oloc; 403 404 struct ceph_file_layout layout; /* used for all rbd requests */ 405 406 struct mutex watch_mutex; 407 enum rbd_watch_state watch_state; 408 struct ceph_osd_linger_request *watch_handle; 409 u64 watch_cookie; 410 struct delayed_work watch_dwork; 411 412 struct rw_semaphore lock_rwsem; 413 enum rbd_lock_state lock_state; 414 char lock_cookie[32]; 415 struct rbd_client_id owner_cid; 416 struct work_struct acquired_lock_work; 417 struct work_struct released_lock_work; 418 struct delayed_work lock_dwork; 419 struct work_struct unlock_work; 420 spinlock_t lock_lists_lock; 421 struct list_head acquiring_list; 422 struct list_head running_list; 423 struct completion acquire_wait; 424 int acquire_err; 425 struct completion releasing_wait; 426 427 spinlock_t object_map_lock; 428 u8 *object_map; 429 u64 object_map_size; /* in objects */ 430 u64 object_map_flags; 431 432 struct workqueue_struct *task_wq; 433 434 struct rbd_spec *parent_spec; 435 u64 parent_overlap; 436 atomic_t parent_ref; 437 struct rbd_device *parent; 438 439 /* Block layer tags. */ 440 struct blk_mq_tag_set tag_set; 441 442 /* protects updating the header */ 443 struct rw_semaphore header_rwsem; 444 445 struct rbd_mapping mapping; 446 447 struct list_head node; 448 449 /* sysfs related */ 450 struct device dev; 451 unsigned long open_count; /* protected by lock */ 452 }; 453 454 /* 455 * Flag bits for rbd_dev->flags: 456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 457 * by rbd_dev->lock 458 */ 459 enum rbd_dev_flags { 460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */ 461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */ 463 }; 464 465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 466 467 static LIST_HEAD(rbd_dev_list); /* devices */ 468 static DEFINE_SPINLOCK(rbd_dev_list_lock); 469 470 static LIST_HEAD(rbd_client_list); /* clients */ 471 static DEFINE_SPINLOCK(rbd_client_list_lock); 472 473 /* Slab caches for frequently-allocated structures */ 474 475 static struct kmem_cache *rbd_img_request_cache; 476 static struct kmem_cache *rbd_obj_request_cache; 477 478 static int rbd_major; 479 static DEFINE_IDA(rbd_dev_id_ida); 480 481 static struct workqueue_struct *rbd_wq; 482 483 static struct ceph_snap_context rbd_empty_snapc = { 484 .nref = REFCOUNT_INIT(1), 485 }; 486 487 /* 488 * single-major requires >= 0.75 version of userspace rbd utility. 489 */ 490 static bool single_major = true; 491 module_param(single_major, bool, 0444); 492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 493 494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count); 495 static ssize_t remove_store(const struct bus_type *bus, const char *buf, 496 size_t count); 497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 498 size_t count); 499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 500 size_t count); 501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 502 503 static int rbd_dev_id_to_minor(int dev_id) 504 { 505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 506 } 507 508 static int minor_to_rbd_dev_id(int minor) 509 { 510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 511 } 512 513 static bool rbd_is_ro(struct rbd_device *rbd_dev) 514 { 515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 516 } 517 518 static bool rbd_is_snap(struct rbd_device *rbd_dev) 519 { 520 return rbd_dev->spec->snap_id != CEPH_NOSNAP; 521 } 522 523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 524 { 525 lockdep_assert_held(&rbd_dev->lock_rwsem); 526 527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 529 } 530 531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 532 { 533 bool is_lock_owner; 534 535 down_read(&rbd_dev->lock_rwsem); 536 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 537 up_read(&rbd_dev->lock_rwsem); 538 return is_lock_owner; 539 } 540 541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf) 542 { 543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 544 } 545 546 static BUS_ATTR_WO(add); 547 static BUS_ATTR_WO(remove); 548 static BUS_ATTR_WO(add_single_major); 549 static BUS_ATTR_WO(remove_single_major); 550 static BUS_ATTR_RO(supported_features); 551 552 static struct attribute *rbd_bus_attrs[] = { 553 &bus_attr_add.attr, 554 &bus_attr_remove.attr, 555 &bus_attr_add_single_major.attr, 556 &bus_attr_remove_single_major.attr, 557 &bus_attr_supported_features.attr, 558 NULL, 559 }; 560 561 static umode_t rbd_bus_is_visible(struct kobject *kobj, 562 struct attribute *attr, int index) 563 { 564 if (!single_major && 565 (attr == &bus_attr_add_single_major.attr || 566 attr == &bus_attr_remove_single_major.attr)) 567 return 0; 568 569 return attr->mode; 570 } 571 572 static const struct attribute_group rbd_bus_group = { 573 .attrs = rbd_bus_attrs, 574 .is_visible = rbd_bus_is_visible, 575 }; 576 __ATTRIBUTE_GROUPS(rbd_bus); 577 578 static struct bus_type rbd_bus_type = { 579 .name = "rbd", 580 .bus_groups = rbd_bus_groups, 581 }; 582 583 static void rbd_root_dev_release(struct device *dev) 584 { 585 } 586 587 static struct device rbd_root_dev = { 588 .init_name = "rbd", 589 .release = rbd_root_dev_release, 590 }; 591 592 static __printf(2, 3) 593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 va_start(args, fmt); 599 vaf.fmt = fmt; 600 vaf.va = &args; 601 602 if (!rbd_dev) 603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 604 else if (rbd_dev->disk) 605 printk(KERN_WARNING "%s: %s: %pV\n", 606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 607 else if (rbd_dev->spec && rbd_dev->spec->image_name) 608 printk(KERN_WARNING "%s: image %s: %pV\n", 609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 610 else if (rbd_dev->spec && rbd_dev->spec->image_id) 611 printk(KERN_WARNING "%s: id %s: %pV\n", 612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 613 else /* punt */ 614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 615 RBD_DRV_NAME, rbd_dev, &vaf); 616 va_end(args); 617 } 618 619 #ifdef RBD_DEBUG 620 #define rbd_assert(expr) \ 621 if (unlikely(!(expr))) { \ 622 printk(KERN_ERR "\nAssertion failure in %s() " \ 623 "at line %d:\n\n" \ 624 "\trbd_assert(%s);\n\n", \ 625 __func__, __LINE__, #expr); \ 626 BUG(); \ 627 } 628 #else /* !RBD_DEBUG */ 629 # define rbd_assert(expr) ((void) 0) 630 #endif /* !RBD_DEBUG */ 631 632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 633 634 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 636 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 639 u64 snap_id); 640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 641 u8 *order, u64 *snap_size); 642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev); 643 644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result); 645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result); 646 647 /* 648 * Return true if nothing else is pending. 649 */ 650 static bool pending_result_dec(struct pending_result *pending, int *result) 651 { 652 rbd_assert(pending->num_pending > 0); 653 654 if (*result && !pending->result) 655 pending->result = *result; 656 if (--pending->num_pending) 657 return false; 658 659 *result = pending->result; 660 return true; 661 } 662 663 static int rbd_open(struct block_device *bdev, fmode_t mode) 664 { 665 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 666 bool removing = false; 667 668 spin_lock_irq(&rbd_dev->lock); 669 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 670 removing = true; 671 else 672 rbd_dev->open_count++; 673 spin_unlock_irq(&rbd_dev->lock); 674 if (removing) 675 return -ENOENT; 676 677 (void) get_device(&rbd_dev->dev); 678 679 return 0; 680 } 681 682 static void rbd_release(struct gendisk *disk, fmode_t mode) 683 { 684 struct rbd_device *rbd_dev = disk->private_data; 685 unsigned long open_count_before; 686 687 spin_lock_irq(&rbd_dev->lock); 688 open_count_before = rbd_dev->open_count--; 689 spin_unlock_irq(&rbd_dev->lock); 690 rbd_assert(open_count_before > 0); 691 692 put_device(&rbd_dev->dev); 693 } 694 695 static const struct block_device_operations rbd_bd_ops = { 696 .owner = THIS_MODULE, 697 .open = rbd_open, 698 .release = rbd_release, 699 }; 700 701 /* 702 * Initialize an rbd client instance. Success or not, this function 703 * consumes ceph_opts. Caller holds client_mutex. 704 */ 705 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 706 { 707 struct rbd_client *rbdc; 708 int ret = -ENOMEM; 709 710 dout("%s:\n", __func__); 711 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 712 if (!rbdc) 713 goto out_opt; 714 715 kref_init(&rbdc->kref); 716 INIT_LIST_HEAD(&rbdc->node); 717 718 rbdc->client = ceph_create_client(ceph_opts, rbdc); 719 if (IS_ERR(rbdc->client)) 720 goto out_rbdc; 721 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 722 723 ret = ceph_open_session(rbdc->client); 724 if (ret < 0) 725 goto out_client; 726 727 spin_lock(&rbd_client_list_lock); 728 list_add_tail(&rbdc->node, &rbd_client_list); 729 spin_unlock(&rbd_client_list_lock); 730 731 dout("%s: rbdc %p\n", __func__, rbdc); 732 733 return rbdc; 734 out_client: 735 ceph_destroy_client(rbdc->client); 736 out_rbdc: 737 kfree(rbdc); 738 out_opt: 739 if (ceph_opts) 740 ceph_destroy_options(ceph_opts); 741 dout("%s: error %d\n", __func__, ret); 742 743 return ERR_PTR(ret); 744 } 745 746 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 747 { 748 kref_get(&rbdc->kref); 749 750 return rbdc; 751 } 752 753 /* 754 * Find a ceph client with specific addr and configuration. If 755 * found, bump its reference count. 756 */ 757 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 758 { 759 struct rbd_client *rbdc = NULL, *iter; 760 761 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 762 return NULL; 763 764 spin_lock(&rbd_client_list_lock); 765 list_for_each_entry(iter, &rbd_client_list, node) { 766 if (!ceph_compare_options(ceph_opts, iter->client)) { 767 __rbd_get_client(iter); 768 769 rbdc = iter; 770 break; 771 } 772 } 773 spin_unlock(&rbd_client_list_lock); 774 775 return rbdc; 776 } 777 778 /* 779 * (Per device) rbd map options 780 */ 781 enum { 782 Opt_queue_depth, 783 Opt_alloc_size, 784 Opt_lock_timeout, 785 /* int args above */ 786 Opt_pool_ns, 787 Opt_compression_hint, 788 /* string args above */ 789 Opt_read_only, 790 Opt_read_write, 791 Opt_lock_on_read, 792 Opt_exclusive, 793 Opt_notrim, 794 }; 795 796 enum { 797 Opt_compression_hint_none, 798 Opt_compression_hint_compressible, 799 Opt_compression_hint_incompressible, 800 }; 801 802 static const struct constant_table rbd_param_compression_hint[] = { 803 {"none", Opt_compression_hint_none}, 804 {"compressible", Opt_compression_hint_compressible}, 805 {"incompressible", Opt_compression_hint_incompressible}, 806 {} 807 }; 808 809 static const struct fs_parameter_spec rbd_parameters[] = { 810 fsparam_u32 ("alloc_size", Opt_alloc_size), 811 fsparam_enum ("compression_hint", Opt_compression_hint, 812 rbd_param_compression_hint), 813 fsparam_flag ("exclusive", Opt_exclusive), 814 fsparam_flag ("lock_on_read", Opt_lock_on_read), 815 fsparam_u32 ("lock_timeout", Opt_lock_timeout), 816 fsparam_flag ("notrim", Opt_notrim), 817 fsparam_string ("_pool_ns", Opt_pool_ns), 818 fsparam_u32 ("queue_depth", Opt_queue_depth), 819 fsparam_flag ("read_only", Opt_read_only), 820 fsparam_flag ("read_write", Opt_read_write), 821 fsparam_flag ("ro", Opt_read_only), 822 fsparam_flag ("rw", Opt_read_write), 823 {} 824 }; 825 826 struct rbd_options { 827 int queue_depth; 828 int alloc_size; 829 unsigned long lock_timeout; 830 bool read_only; 831 bool lock_on_read; 832 bool exclusive; 833 bool trim; 834 835 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */ 836 }; 837 838 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ 839 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024) 840 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 841 #define RBD_READ_ONLY_DEFAULT false 842 #define RBD_LOCK_ON_READ_DEFAULT false 843 #define RBD_EXCLUSIVE_DEFAULT false 844 #define RBD_TRIM_DEFAULT true 845 846 struct rbd_parse_opts_ctx { 847 struct rbd_spec *spec; 848 struct ceph_options *copts; 849 struct rbd_options *opts; 850 }; 851 852 static char* obj_op_name(enum obj_operation_type op_type) 853 { 854 switch (op_type) { 855 case OBJ_OP_READ: 856 return "read"; 857 case OBJ_OP_WRITE: 858 return "write"; 859 case OBJ_OP_DISCARD: 860 return "discard"; 861 case OBJ_OP_ZEROOUT: 862 return "zeroout"; 863 default: 864 return "???"; 865 } 866 } 867 868 /* 869 * Destroy ceph client 870 * 871 * Caller must hold rbd_client_list_lock. 872 */ 873 static void rbd_client_release(struct kref *kref) 874 { 875 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 876 877 dout("%s: rbdc %p\n", __func__, rbdc); 878 spin_lock(&rbd_client_list_lock); 879 list_del(&rbdc->node); 880 spin_unlock(&rbd_client_list_lock); 881 882 ceph_destroy_client(rbdc->client); 883 kfree(rbdc); 884 } 885 886 /* 887 * Drop reference to ceph client node. If it's not referenced anymore, release 888 * it. 889 */ 890 static void rbd_put_client(struct rbd_client *rbdc) 891 { 892 if (rbdc) 893 kref_put(&rbdc->kref, rbd_client_release); 894 } 895 896 /* 897 * Get a ceph client with specific addr and configuration, if one does 898 * not exist create it. Either way, ceph_opts is consumed by this 899 * function. 900 */ 901 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 902 { 903 struct rbd_client *rbdc; 904 int ret; 905 906 mutex_lock(&client_mutex); 907 rbdc = rbd_client_find(ceph_opts); 908 if (rbdc) { 909 ceph_destroy_options(ceph_opts); 910 911 /* 912 * Using an existing client. Make sure ->pg_pools is up to 913 * date before we look up the pool id in do_rbd_add(). 914 */ 915 ret = ceph_wait_for_latest_osdmap(rbdc->client, 916 rbdc->client->options->mount_timeout); 917 if (ret) { 918 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 919 rbd_put_client(rbdc); 920 rbdc = ERR_PTR(ret); 921 } 922 } else { 923 rbdc = rbd_client_create(ceph_opts); 924 } 925 mutex_unlock(&client_mutex); 926 927 return rbdc; 928 } 929 930 static bool rbd_image_format_valid(u32 image_format) 931 { 932 return image_format == 1 || image_format == 2; 933 } 934 935 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 936 { 937 size_t size; 938 u32 snap_count; 939 940 /* The header has to start with the magic rbd header text */ 941 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 942 return false; 943 944 /* The bio layer requires at least sector-sized I/O */ 945 946 if (ondisk->options.order < SECTOR_SHIFT) 947 return false; 948 949 /* If we use u64 in a few spots we may be able to loosen this */ 950 951 if (ondisk->options.order > 8 * sizeof (int) - 1) 952 return false; 953 954 /* 955 * The size of a snapshot header has to fit in a size_t, and 956 * that limits the number of snapshots. 957 */ 958 snap_count = le32_to_cpu(ondisk->snap_count); 959 size = SIZE_MAX - sizeof (struct ceph_snap_context); 960 if (snap_count > size / sizeof (__le64)) 961 return false; 962 963 /* 964 * Not only that, but the size of the entire the snapshot 965 * header must also be representable in a size_t. 966 */ 967 size -= snap_count * sizeof (__le64); 968 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 969 return false; 970 971 return true; 972 } 973 974 /* 975 * returns the size of an object in the image 976 */ 977 static u32 rbd_obj_bytes(struct rbd_image_header *header) 978 { 979 return 1U << header->obj_order; 980 } 981 982 static void rbd_init_layout(struct rbd_device *rbd_dev) 983 { 984 if (rbd_dev->header.stripe_unit == 0 || 985 rbd_dev->header.stripe_count == 0) { 986 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 987 rbd_dev->header.stripe_count = 1; 988 } 989 990 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 991 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 992 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 993 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 994 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 995 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 996 } 997 998 /* 999 * Fill an rbd image header with information from the given format 1 1000 * on-disk header. 1001 */ 1002 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1003 struct rbd_image_header_ondisk *ondisk) 1004 { 1005 struct rbd_image_header *header = &rbd_dev->header; 1006 bool first_time = header->object_prefix == NULL; 1007 struct ceph_snap_context *snapc; 1008 char *object_prefix = NULL; 1009 char *snap_names = NULL; 1010 u64 *snap_sizes = NULL; 1011 u32 snap_count; 1012 int ret = -ENOMEM; 1013 u32 i; 1014 1015 /* Allocate this now to avoid having to handle failure below */ 1016 1017 if (first_time) { 1018 object_prefix = kstrndup(ondisk->object_prefix, 1019 sizeof(ondisk->object_prefix), 1020 GFP_KERNEL); 1021 if (!object_prefix) 1022 return -ENOMEM; 1023 } 1024 1025 /* Allocate the snapshot context and fill it in */ 1026 1027 snap_count = le32_to_cpu(ondisk->snap_count); 1028 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1029 if (!snapc) 1030 goto out_err; 1031 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1032 if (snap_count) { 1033 struct rbd_image_snap_ondisk *snaps; 1034 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1035 1036 /* We'll keep a copy of the snapshot names... */ 1037 1038 if (snap_names_len > (u64)SIZE_MAX) 1039 goto out_2big; 1040 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1041 if (!snap_names) 1042 goto out_err; 1043 1044 /* ...as well as the array of their sizes. */ 1045 snap_sizes = kmalloc_array(snap_count, 1046 sizeof(*header->snap_sizes), 1047 GFP_KERNEL); 1048 if (!snap_sizes) 1049 goto out_err; 1050 1051 /* 1052 * Copy the names, and fill in each snapshot's id 1053 * and size. 1054 * 1055 * Note that rbd_dev_v1_header_info() guarantees the 1056 * ondisk buffer we're working with has 1057 * snap_names_len bytes beyond the end of the 1058 * snapshot id array, this memcpy() is safe. 1059 */ 1060 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1061 snaps = ondisk->snaps; 1062 for (i = 0; i < snap_count; i++) { 1063 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1064 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1065 } 1066 } 1067 1068 /* We won't fail any more, fill in the header */ 1069 1070 if (first_time) { 1071 header->object_prefix = object_prefix; 1072 header->obj_order = ondisk->options.order; 1073 rbd_init_layout(rbd_dev); 1074 } else { 1075 ceph_put_snap_context(header->snapc); 1076 kfree(header->snap_names); 1077 kfree(header->snap_sizes); 1078 } 1079 1080 /* The remaining fields always get updated (when we refresh) */ 1081 1082 header->image_size = le64_to_cpu(ondisk->image_size); 1083 header->snapc = snapc; 1084 header->snap_names = snap_names; 1085 header->snap_sizes = snap_sizes; 1086 1087 return 0; 1088 out_2big: 1089 ret = -EIO; 1090 out_err: 1091 kfree(snap_sizes); 1092 kfree(snap_names); 1093 ceph_put_snap_context(snapc); 1094 kfree(object_prefix); 1095 1096 return ret; 1097 } 1098 1099 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1100 { 1101 const char *snap_name; 1102 1103 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1104 1105 /* Skip over names until we find the one we are looking for */ 1106 1107 snap_name = rbd_dev->header.snap_names; 1108 while (which--) 1109 snap_name += strlen(snap_name) + 1; 1110 1111 return kstrdup(snap_name, GFP_KERNEL); 1112 } 1113 1114 /* 1115 * Snapshot id comparison function for use with qsort()/bsearch(). 1116 * Note that result is for snapshots in *descending* order. 1117 */ 1118 static int snapid_compare_reverse(const void *s1, const void *s2) 1119 { 1120 u64 snap_id1 = *(u64 *)s1; 1121 u64 snap_id2 = *(u64 *)s2; 1122 1123 if (snap_id1 < snap_id2) 1124 return 1; 1125 return snap_id1 == snap_id2 ? 0 : -1; 1126 } 1127 1128 /* 1129 * Search a snapshot context to see if the given snapshot id is 1130 * present. 1131 * 1132 * Returns the position of the snapshot id in the array if it's found, 1133 * or BAD_SNAP_INDEX otherwise. 1134 * 1135 * Note: The snapshot array is in kept sorted (by the osd) in 1136 * reverse order, highest snapshot id first. 1137 */ 1138 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1139 { 1140 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1141 u64 *found; 1142 1143 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1144 sizeof (snap_id), snapid_compare_reverse); 1145 1146 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1147 } 1148 1149 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1150 u64 snap_id) 1151 { 1152 u32 which; 1153 const char *snap_name; 1154 1155 which = rbd_dev_snap_index(rbd_dev, snap_id); 1156 if (which == BAD_SNAP_INDEX) 1157 return ERR_PTR(-ENOENT); 1158 1159 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1160 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1161 } 1162 1163 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1164 { 1165 if (snap_id == CEPH_NOSNAP) 1166 return RBD_SNAP_HEAD_NAME; 1167 1168 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1169 if (rbd_dev->image_format == 1) 1170 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1171 1172 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1173 } 1174 1175 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1176 u64 *snap_size) 1177 { 1178 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1179 if (snap_id == CEPH_NOSNAP) { 1180 *snap_size = rbd_dev->header.image_size; 1181 } else if (rbd_dev->image_format == 1) { 1182 u32 which; 1183 1184 which = rbd_dev_snap_index(rbd_dev, snap_id); 1185 if (which == BAD_SNAP_INDEX) 1186 return -ENOENT; 1187 1188 *snap_size = rbd_dev->header.snap_sizes[which]; 1189 } else { 1190 u64 size = 0; 1191 int ret; 1192 1193 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1194 if (ret) 1195 return ret; 1196 1197 *snap_size = size; 1198 } 1199 return 0; 1200 } 1201 1202 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1203 { 1204 u64 snap_id = rbd_dev->spec->snap_id; 1205 u64 size = 0; 1206 int ret; 1207 1208 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1209 if (ret) 1210 return ret; 1211 1212 rbd_dev->mapping.size = size; 1213 return 0; 1214 } 1215 1216 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1217 { 1218 rbd_dev->mapping.size = 0; 1219 } 1220 1221 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1222 { 1223 struct ceph_bio_iter it = *bio_pos; 1224 1225 ceph_bio_iter_advance(&it, off); 1226 ceph_bio_iter_advance_step(&it, bytes, ({ 1227 memzero_bvec(&bv); 1228 })); 1229 } 1230 1231 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1232 { 1233 struct ceph_bvec_iter it = *bvec_pos; 1234 1235 ceph_bvec_iter_advance(&it, off); 1236 ceph_bvec_iter_advance_step(&it, bytes, ({ 1237 memzero_bvec(&bv); 1238 })); 1239 } 1240 1241 /* 1242 * Zero a range in @obj_req data buffer defined by a bio (list) or 1243 * (private) bio_vec array. 1244 * 1245 * @off is relative to the start of the data buffer. 1246 */ 1247 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1248 u32 bytes) 1249 { 1250 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes); 1251 1252 switch (obj_req->img_request->data_type) { 1253 case OBJ_REQUEST_BIO: 1254 zero_bios(&obj_req->bio_pos, off, bytes); 1255 break; 1256 case OBJ_REQUEST_BVECS: 1257 case OBJ_REQUEST_OWN_BVECS: 1258 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1259 break; 1260 default: 1261 BUG(); 1262 } 1263 } 1264 1265 static void rbd_obj_request_destroy(struct kref *kref); 1266 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1267 { 1268 rbd_assert(obj_request != NULL); 1269 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1270 kref_read(&obj_request->kref)); 1271 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1272 } 1273 1274 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1275 struct rbd_obj_request *obj_request) 1276 { 1277 rbd_assert(obj_request->img_request == NULL); 1278 1279 /* Image request now owns object's original reference */ 1280 obj_request->img_request = img_request; 1281 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1282 } 1283 1284 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1285 struct rbd_obj_request *obj_request) 1286 { 1287 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1288 list_del(&obj_request->ex.oe_item); 1289 rbd_assert(obj_request->img_request == img_request); 1290 rbd_obj_request_put(obj_request); 1291 } 1292 1293 static void rbd_osd_submit(struct ceph_osd_request *osd_req) 1294 { 1295 struct rbd_obj_request *obj_req = osd_req->r_priv; 1296 1297 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n", 1298 __func__, osd_req, obj_req, obj_req->ex.oe_objno, 1299 obj_req->ex.oe_off, obj_req->ex.oe_len); 1300 ceph_osdc_start_request(osd_req->r_osdc, osd_req); 1301 } 1302 1303 /* 1304 * The default/initial value for all image request flags is 0. Each 1305 * is conditionally set to 1 at image request initialization time 1306 * and currently never change thereafter. 1307 */ 1308 static void img_request_layered_set(struct rbd_img_request *img_request) 1309 { 1310 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1311 } 1312 1313 static bool img_request_layered_test(struct rbd_img_request *img_request) 1314 { 1315 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1316 } 1317 1318 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1319 { 1320 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1321 1322 return !obj_req->ex.oe_off && 1323 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1324 } 1325 1326 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1327 { 1328 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1329 1330 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1331 rbd_dev->layout.object_size; 1332 } 1333 1334 /* 1335 * Must be called after rbd_obj_calc_img_extents(). 1336 */ 1337 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req) 1338 { 1339 rbd_assert(obj_req->img_request->snapc); 1340 1341 if (obj_req->img_request->op_type == OBJ_OP_DISCARD) { 1342 dout("%s %p objno %llu discard\n", __func__, obj_req, 1343 obj_req->ex.oe_objno); 1344 return; 1345 } 1346 1347 if (!obj_req->num_img_extents) { 1348 dout("%s %p objno %llu not overlapping\n", __func__, obj_req, 1349 obj_req->ex.oe_objno); 1350 return; 1351 } 1352 1353 if (rbd_obj_is_entire(obj_req) && 1354 !obj_req->img_request->snapc->num_snaps) { 1355 dout("%s %p objno %llu entire\n", __func__, obj_req, 1356 obj_req->ex.oe_objno); 1357 return; 1358 } 1359 1360 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 1361 } 1362 1363 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1364 { 1365 return ceph_file_extents_bytes(obj_req->img_extents, 1366 obj_req->num_img_extents); 1367 } 1368 1369 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1370 { 1371 switch (img_req->op_type) { 1372 case OBJ_OP_READ: 1373 return false; 1374 case OBJ_OP_WRITE: 1375 case OBJ_OP_DISCARD: 1376 case OBJ_OP_ZEROOUT: 1377 return true; 1378 default: 1379 BUG(); 1380 } 1381 } 1382 1383 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1384 { 1385 struct rbd_obj_request *obj_req = osd_req->r_priv; 1386 int result; 1387 1388 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1389 osd_req->r_result, obj_req); 1390 1391 /* 1392 * Writes aren't allowed to return a data payload. In some 1393 * guarded write cases (e.g. stat + zero on an empty object) 1394 * a stat response makes it through, but we don't care. 1395 */ 1396 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request)) 1397 result = 0; 1398 else 1399 result = osd_req->r_result; 1400 1401 rbd_obj_handle_request(obj_req, result); 1402 } 1403 1404 static void rbd_osd_format_read(struct ceph_osd_request *osd_req) 1405 { 1406 struct rbd_obj_request *obj_request = osd_req->r_priv; 1407 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1408 struct ceph_options *opt = rbd_dev->rbd_client->client->options; 1409 1410 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica; 1411 osd_req->r_snapid = obj_request->img_request->snap_id; 1412 } 1413 1414 static void rbd_osd_format_write(struct ceph_osd_request *osd_req) 1415 { 1416 struct rbd_obj_request *obj_request = osd_req->r_priv; 1417 1418 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1419 ktime_get_real_ts64(&osd_req->r_mtime); 1420 osd_req->r_data_offset = obj_request->ex.oe_off; 1421 } 1422 1423 static struct ceph_osd_request * 1424 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, 1425 struct ceph_snap_context *snapc, int num_ops) 1426 { 1427 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1428 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1429 struct ceph_osd_request *req; 1430 const char *name_format = rbd_dev->image_format == 1 ? 1431 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1432 int ret; 1433 1434 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1435 if (!req) 1436 return ERR_PTR(-ENOMEM); 1437 1438 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 1439 req->r_callback = rbd_osd_req_callback; 1440 req->r_priv = obj_req; 1441 1442 /* 1443 * Data objects may be stored in a separate pool, but always in 1444 * the same namespace in that pool as the header in its pool. 1445 */ 1446 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 1447 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1448 1449 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1450 rbd_dev->header.object_prefix, 1451 obj_req->ex.oe_objno); 1452 if (ret) 1453 return ERR_PTR(ret); 1454 1455 return req; 1456 } 1457 1458 static struct ceph_osd_request * 1459 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops) 1460 { 1461 rbd_assert(obj_req->img_request->snapc); 1462 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc, 1463 num_ops); 1464 } 1465 1466 static struct rbd_obj_request *rbd_obj_request_create(void) 1467 { 1468 struct rbd_obj_request *obj_request; 1469 1470 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1471 if (!obj_request) 1472 return NULL; 1473 1474 ceph_object_extent_init(&obj_request->ex); 1475 INIT_LIST_HEAD(&obj_request->osd_reqs); 1476 mutex_init(&obj_request->state_mutex); 1477 kref_init(&obj_request->kref); 1478 1479 dout("%s %p\n", __func__, obj_request); 1480 return obj_request; 1481 } 1482 1483 static void rbd_obj_request_destroy(struct kref *kref) 1484 { 1485 struct rbd_obj_request *obj_request; 1486 struct ceph_osd_request *osd_req; 1487 u32 i; 1488 1489 obj_request = container_of(kref, struct rbd_obj_request, kref); 1490 1491 dout("%s: obj %p\n", __func__, obj_request); 1492 1493 while (!list_empty(&obj_request->osd_reqs)) { 1494 osd_req = list_first_entry(&obj_request->osd_reqs, 1495 struct ceph_osd_request, r_private_item); 1496 list_del_init(&osd_req->r_private_item); 1497 ceph_osdc_put_request(osd_req); 1498 } 1499 1500 switch (obj_request->img_request->data_type) { 1501 case OBJ_REQUEST_NODATA: 1502 case OBJ_REQUEST_BIO: 1503 case OBJ_REQUEST_BVECS: 1504 break; /* Nothing to do */ 1505 case OBJ_REQUEST_OWN_BVECS: 1506 kfree(obj_request->bvec_pos.bvecs); 1507 break; 1508 default: 1509 BUG(); 1510 } 1511 1512 kfree(obj_request->img_extents); 1513 if (obj_request->copyup_bvecs) { 1514 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1515 if (obj_request->copyup_bvecs[i].bv_page) 1516 __free_page(obj_request->copyup_bvecs[i].bv_page); 1517 } 1518 kfree(obj_request->copyup_bvecs); 1519 } 1520 1521 kmem_cache_free(rbd_obj_request_cache, obj_request); 1522 } 1523 1524 /* It's OK to call this for a device with no parent */ 1525 1526 static void rbd_spec_put(struct rbd_spec *spec); 1527 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1528 { 1529 rbd_dev_remove_parent(rbd_dev); 1530 rbd_spec_put(rbd_dev->parent_spec); 1531 rbd_dev->parent_spec = NULL; 1532 rbd_dev->parent_overlap = 0; 1533 } 1534 1535 /* 1536 * Parent image reference counting is used to determine when an 1537 * image's parent fields can be safely torn down--after there are no 1538 * more in-flight requests to the parent image. When the last 1539 * reference is dropped, cleaning them up is safe. 1540 */ 1541 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1542 { 1543 int counter; 1544 1545 if (!rbd_dev->parent_spec) 1546 return; 1547 1548 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1549 if (counter > 0) 1550 return; 1551 1552 /* Last reference; clean up parent data structures */ 1553 1554 if (!counter) 1555 rbd_dev_unparent(rbd_dev); 1556 else 1557 rbd_warn(rbd_dev, "parent reference underflow"); 1558 } 1559 1560 /* 1561 * If an image has a non-zero parent overlap, get a reference to its 1562 * parent. 1563 * 1564 * Returns true if the rbd device has a parent with a non-zero 1565 * overlap and a reference for it was successfully taken, or 1566 * false otherwise. 1567 */ 1568 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1569 { 1570 int counter = 0; 1571 1572 if (!rbd_dev->parent_spec) 1573 return false; 1574 1575 if (rbd_dev->parent_overlap) 1576 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1577 1578 if (counter < 0) 1579 rbd_warn(rbd_dev, "parent reference overflow"); 1580 1581 return counter > 0; 1582 } 1583 1584 static void rbd_img_request_init(struct rbd_img_request *img_request, 1585 struct rbd_device *rbd_dev, 1586 enum obj_operation_type op_type) 1587 { 1588 memset(img_request, 0, sizeof(*img_request)); 1589 1590 img_request->rbd_dev = rbd_dev; 1591 img_request->op_type = op_type; 1592 1593 INIT_LIST_HEAD(&img_request->lock_item); 1594 INIT_LIST_HEAD(&img_request->object_extents); 1595 mutex_init(&img_request->state_mutex); 1596 } 1597 1598 /* 1599 * Only snap_id is captured here, for reads. For writes, snapshot 1600 * context is captured in rbd_img_object_requests() after exclusive 1601 * lock is ensured to be held. 1602 */ 1603 static void rbd_img_capture_header(struct rbd_img_request *img_req) 1604 { 1605 struct rbd_device *rbd_dev = img_req->rbd_dev; 1606 1607 lockdep_assert_held(&rbd_dev->header_rwsem); 1608 1609 if (!rbd_img_is_write(img_req)) 1610 img_req->snap_id = rbd_dev->spec->snap_id; 1611 1612 if (rbd_dev_parent_get(rbd_dev)) 1613 img_request_layered_set(img_req); 1614 } 1615 1616 static void rbd_img_request_destroy(struct rbd_img_request *img_request) 1617 { 1618 struct rbd_obj_request *obj_request; 1619 struct rbd_obj_request *next_obj_request; 1620 1621 dout("%s: img %p\n", __func__, img_request); 1622 1623 WARN_ON(!list_empty(&img_request->lock_item)); 1624 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1625 rbd_img_obj_request_del(img_request, obj_request); 1626 1627 if (img_request_layered_test(img_request)) 1628 rbd_dev_parent_put(img_request->rbd_dev); 1629 1630 if (rbd_img_is_write(img_request)) 1631 ceph_put_snap_context(img_request->snapc); 1632 1633 if (test_bit(IMG_REQ_CHILD, &img_request->flags)) 1634 kmem_cache_free(rbd_img_request_cache, img_request); 1635 } 1636 1637 #define BITS_PER_OBJ 2 1638 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ) 1639 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1) 1640 1641 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno, 1642 u64 *index, u8 *shift) 1643 { 1644 u32 off; 1645 1646 rbd_assert(objno < rbd_dev->object_map_size); 1647 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off); 1648 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ; 1649 } 1650 1651 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1652 { 1653 u64 index; 1654 u8 shift; 1655 1656 lockdep_assert_held(&rbd_dev->object_map_lock); 1657 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1658 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK; 1659 } 1660 1661 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val) 1662 { 1663 u64 index; 1664 u8 shift; 1665 u8 *p; 1666 1667 lockdep_assert_held(&rbd_dev->object_map_lock); 1668 rbd_assert(!(val & ~OBJ_MASK)); 1669 1670 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1671 p = &rbd_dev->object_map[index]; 1672 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift); 1673 } 1674 1675 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1676 { 1677 u8 state; 1678 1679 spin_lock(&rbd_dev->object_map_lock); 1680 state = __rbd_object_map_get(rbd_dev, objno); 1681 spin_unlock(&rbd_dev->object_map_lock); 1682 return state; 1683 } 1684 1685 static bool use_object_map(struct rbd_device *rbd_dev) 1686 { 1687 /* 1688 * An image mapped read-only can't use the object map -- it isn't 1689 * loaded because the header lock isn't acquired. Someone else can 1690 * write to the image and update the object map behind our back. 1691 * 1692 * A snapshot can't be written to, so using the object map is always 1693 * safe. 1694 */ 1695 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev)) 1696 return false; 1697 1698 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) && 1699 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)); 1700 } 1701 1702 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno) 1703 { 1704 u8 state; 1705 1706 /* fall back to default logic if object map is disabled or invalid */ 1707 if (!use_object_map(rbd_dev)) 1708 return true; 1709 1710 state = rbd_object_map_get(rbd_dev, objno); 1711 return state != OBJECT_NONEXISTENT; 1712 } 1713 1714 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id, 1715 struct ceph_object_id *oid) 1716 { 1717 if (snap_id == CEPH_NOSNAP) 1718 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX, 1719 rbd_dev->spec->image_id); 1720 else 1721 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX, 1722 rbd_dev->spec->image_id, snap_id); 1723 } 1724 1725 static int rbd_object_map_lock(struct rbd_device *rbd_dev) 1726 { 1727 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1728 CEPH_DEFINE_OID_ONSTACK(oid); 1729 u8 lock_type; 1730 char *lock_tag; 1731 struct ceph_locker *lockers; 1732 u32 num_lockers; 1733 bool broke_lock = false; 1734 int ret; 1735 1736 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1737 1738 again: 1739 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1740 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0); 1741 if (ret != -EBUSY || broke_lock) { 1742 if (ret == -EEXIST) 1743 ret = 0; /* already locked by myself */ 1744 if (ret) 1745 rbd_warn(rbd_dev, "failed to lock object map: %d", ret); 1746 return ret; 1747 } 1748 1749 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc, 1750 RBD_LOCK_NAME, &lock_type, &lock_tag, 1751 &lockers, &num_lockers); 1752 if (ret) { 1753 if (ret == -ENOENT) 1754 goto again; 1755 1756 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret); 1757 return ret; 1758 } 1759 1760 kfree(lock_tag); 1761 if (num_lockers == 0) 1762 goto again; 1763 1764 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu", 1765 ENTITY_NAME(lockers[0].id.name)); 1766 1767 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc, 1768 RBD_LOCK_NAME, lockers[0].id.cookie, 1769 &lockers[0].id.name); 1770 ceph_free_lockers(lockers, num_lockers); 1771 if (ret) { 1772 if (ret == -ENOENT) 1773 goto again; 1774 1775 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret); 1776 return ret; 1777 } 1778 1779 broke_lock = true; 1780 goto again; 1781 } 1782 1783 static void rbd_object_map_unlock(struct rbd_device *rbd_dev) 1784 { 1785 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1786 CEPH_DEFINE_OID_ONSTACK(oid); 1787 int ret; 1788 1789 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1790 1791 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1792 ""); 1793 if (ret && ret != -ENOENT) 1794 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret); 1795 } 1796 1797 static int decode_object_map_header(void **p, void *end, u64 *object_map_size) 1798 { 1799 u8 struct_v; 1800 u32 struct_len; 1801 u32 header_len; 1802 void *header_end; 1803 int ret; 1804 1805 ceph_decode_32_safe(p, end, header_len, e_inval); 1806 header_end = *p + header_len; 1807 1808 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v, 1809 &struct_len); 1810 if (ret) 1811 return ret; 1812 1813 ceph_decode_64_safe(p, end, *object_map_size, e_inval); 1814 1815 *p = header_end; 1816 return 0; 1817 1818 e_inval: 1819 return -EINVAL; 1820 } 1821 1822 static int __rbd_object_map_load(struct rbd_device *rbd_dev) 1823 { 1824 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1825 CEPH_DEFINE_OID_ONSTACK(oid); 1826 struct page **pages; 1827 void *p, *end; 1828 size_t reply_len; 1829 u64 num_objects; 1830 u64 object_map_bytes; 1831 u64 object_map_size; 1832 int num_pages; 1833 int ret; 1834 1835 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size); 1836 1837 num_objects = ceph_get_num_objects(&rbd_dev->layout, 1838 rbd_dev->mapping.size); 1839 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ, 1840 BITS_PER_BYTE); 1841 num_pages = calc_pages_for(0, object_map_bytes) + 1; 1842 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 1843 if (IS_ERR(pages)) 1844 return PTR_ERR(pages); 1845 1846 reply_len = num_pages * PAGE_SIZE; 1847 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid); 1848 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc, 1849 "rbd", "object_map_load", CEPH_OSD_FLAG_READ, 1850 NULL, 0, pages, &reply_len); 1851 if (ret) 1852 goto out; 1853 1854 p = page_address(pages[0]); 1855 end = p + min(reply_len, (size_t)PAGE_SIZE); 1856 ret = decode_object_map_header(&p, end, &object_map_size); 1857 if (ret) 1858 goto out; 1859 1860 if (object_map_size != num_objects) { 1861 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu", 1862 object_map_size, num_objects); 1863 ret = -EINVAL; 1864 goto out; 1865 } 1866 1867 if (offset_in_page(p) + object_map_bytes > reply_len) { 1868 ret = -EINVAL; 1869 goto out; 1870 } 1871 1872 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL); 1873 if (!rbd_dev->object_map) { 1874 ret = -ENOMEM; 1875 goto out; 1876 } 1877 1878 rbd_dev->object_map_size = object_map_size; 1879 ceph_copy_from_page_vector(pages, rbd_dev->object_map, 1880 offset_in_page(p), object_map_bytes); 1881 1882 out: 1883 ceph_release_page_vector(pages, num_pages); 1884 return ret; 1885 } 1886 1887 static void rbd_object_map_free(struct rbd_device *rbd_dev) 1888 { 1889 kvfree(rbd_dev->object_map); 1890 rbd_dev->object_map = NULL; 1891 rbd_dev->object_map_size = 0; 1892 } 1893 1894 static int rbd_object_map_load(struct rbd_device *rbd_dev) 1895 { 1896 int ret; 1897 1898 ret = __rbd_object_map_load(rbd_dev); 1899 if (ret) 1900 return ret; 1901 1902 ret = rbd_dev_v2_get_flags(rbd_dev); 1903 if (ret) { 1904 rbd_object_map_free(rbd_dev); 1905 return ret; 1906 } 1907 1908 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID) 1909 rbd_warn(rbd_dev, "object map is invalid"); 1910 1911 return 0; 1912 } 1913 1914 static int rbd_object_map_open(struct rbd_device *rbd_dev) 1915 { 1916 int ret; 1917 1918 ret = rbd_object_map_lock(rbd_dev); 1919 if (ret) 1920 return ret; 1921 1922 ret = rbd_object_map_load(rbd_dev); 1923 if (ret) { 1924 rbd_object_map_unlock(rbd_dev); 1925 return ret; 1926 } 1927 1928 return 0; 1929 } 1930 1931 static void rbd_object_map_close(struct rbd_device *rbd_dev) 1932 { 1933 rbd_object_map_free(rbd_dev); 1934 rbd_object_map_unlock(rbd_dev); 1935 } 1936 1937 /* 1938 * This function needs snap_id (or more precisely just something to 1939 * distinguish between HEAD and snapshot object maps), new_state and 1940 * current_state that were passed to rbd_object_map_update(). 1941 * 1942 * To avoid allocating and stashing a context we piggyback on the OSD 1943 * request. A HEAD update has two ops (assert_locked). For new_state 1944 * and current_state we decode our own object_map_update op, encoded in 1945 * rbd_cls_object_map_update(). 1946 */ 1947 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req, 1948 struct ceph_osd_request *osd_req) 1949 { 1950 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1951 struct ceph_osd_data *osd_data; 1952 u64 objno; 1953 u8 state, new_state, current_state; 1954 bool has_current_state; 1955 void *p; 1956 1957 if (osd_req->r_result) 1958 return osd_req->r_result; 1959 1960 /* 1961 * Nothing to do for a snapshot object map. 1962 */ 1963 if (osd_req->r_num_ops == 1) 1964 return 0; 1965 1966 /* 1967 * Update in-memory HEAD object map. 1968 */ 1969 rbd_assert(osd_req->r_num_ops == 2); 1970 osd_data = osd_req_op_data(osd_req, 1, cls, request_data); 1971 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES); 1972 1973 p = page_address(osd_data->pages[0]); 1974 objno = ceph_decode_64(&p); 1975 rbd_assert(objno == obj_req->ex.oe_objno); 1976 rbd_assert(ceph_decode_64(&p) == objno + 1); 1977 new_state = ceph_decode_8(&p); 1978 has_current_state = ceph_decode_8(&p); 1979 if (has_current_state) 1980 current_state = ceph_decode_8(&p); 1981 1982 spin_lock(&rbd_dev->object_map_lock); 1983 state = __rbd_object_map_get(rbd_dev, objno); 1984 if (!has_current_state || current_state == state || 1985 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN)) 1986 __rbd_object_map_set(rbd_dev, objno, new_state); 1987 spin_unlock(&rbd_dev->object_map_lock); 1988 1989 return 0; 1990 } 1991 1992 static void rbd_object_map_callback(struct ceph_osd_request *osd_req) 1993 { 1994 struct rbd_obj_request *obj_req = osd_req->r_priv; 1995 int result; 1996 1997 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1998 osd_req->r_result, obj_req); 1999 2000 result = rbd_object_map_update_finish(obj_req, osd_req); 2001 rbd_obj_handle_request(obj_req, result); 2002 } 2003 2004 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state) 2005 { 2006 u8 state = rbd_object_map_get(rbd_dev, objno); 2007 2008 if (state == new_state || 2009 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) || 2010 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING)) 2011 return false; 2012 2013 return true; 2014 } 2015 2016 static int rbd_cls_object_map_update(struct ceph_osd_request *req, 2017 int which, u64 objno, u8 new_state, 2018 const u8 *current_state) 2019 { 2020 struct page **pages; 2021 void *p, *start; 2022 int ret; 2023 2024 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update"); 2025 if (ret) 2026 return ret; 2027 2028 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2029 if (IS_ERR(pages)) 2030 return PTR_ERR(pages); 2031 2032 p = start = page_address(pages[0]); 2033 ceph_encode_64(&p, objno); 2034 ceph_encode_64(&p, objno + 1); 2035 ceph_encode_8(&p, new_state); 2036 if (current_state) { 2037 ceph_encode_8(&p, 1); 2038 ceph_encode_8(&p, *current_state); 2039 } else { 2040 ceph_encode_8(&p, 0); 2041 } 2042 2043 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0, 2044 false, true); 2045 return 0; 2046 } 2047 2048 /* 2049 * Return: 2050 * 0 - object map update sent 2051 * 1 - object map update isn't needed 2052 * <0 - error 2053 */ 2054 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id, 2055 u8 new_state, const u8 *current_state) 2056 { 2057 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2058 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2059 struct ceph_osd_request *req; 2060 int num_ops = 1; 2061 int which = 0; 2062 int ret; 2063 2064 if (snap_id == CEPH_NOSNAP) { 2065 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state)) 2066 return 1; 2067 2068 num_ops++; /* assert_locked */ 2069 } 2070 2071 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO); 2072 if (!req) 2073 return -ENOMEM; 2074 2075 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 2076 req->r_callback = rbd_object_map_callback; 2077 req->r_priv = obj_req; 2078 2079 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid); 2080 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 2081 req->r_flags = CEPH_OSD_FLAG_WRITE; 2082 ktime_get_real_ts64(&req->r_mtime); 2083 2084 if (snap_id == CEPH_NOSNAP) { 2085 /* 2086 * Protect against possible race conditions during lock 2087 * ownership transitions. 2088 */ 2089 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME, 2090 CEPH_CLS_LOCK_EXCLUSIVE, "", ""); 2091 if (ret) 2092 return ret; 2093 } 2094 2095 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno, 2096 new_state, current_state); 2097 if (ret) 2098 return ret; 2099 2100 ret = ceph_osdc_alloc_messages(req, GFP_NOIO); 2101 if (ret) 2102 return ret; 2103 2104 ceph_osdc_start_request(osdc, req); 2105 return 0; 2106 } 2107 2108 static void prune_extents(struct ceph_file_extent *img_extents, 2109 u32 *num_img_extents, u64 overlap) 2110 { 2111 u32 cnt = *num_img_extents; 2112 2113 /* drop extents completely beyond the overlap */ 2114 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 2115 cnt--; 2116 2117 if (cnt) { 2118 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 2119 2120 /* trim final overlapping extent */ 2121 if (ex->fe_off + ex->fe_len > overlap) 2122 ex->fe_len = overlap - ex->fe_off; 2123 } 2124 2125 *num_img_extents = cnt; 2126 } 2127 2128 /* 2129 * Determine the byte range(s) covered by either just the object extent 2130 * or the entire object in the parent image. 2131 */ 2132 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 2133 bool entire) 2134 { 2135 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2136 int ret; 2137 2138 if (!rbd_dev->parent_overlap) 2139 return 0; 2140 2141 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 2142 entire ? 0 : obj_req->ex.oe_off, 2143 entire ? rbd_dev->layout.object_size : 2144 obj_req->ex.oe_len, 2145 &obj_req->img_extents, 2146 &obj_req->num_img_extents); 2147 if (ret) 2148 return ret; 2149 2150 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2151 rbd_dev->parent_overlap); 2152 return 0; 2153 } 2154 2155 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which) 2156 { 2157 struct rbd_obj_request *obj_req = osd_req->r_priv; 2158 2159 switch (obj_req->img_request->data_type) { 2160 case OBJ_REQUEST_BIO: 2161 osd_req_op_extent_osd_data_bio(osd_req, which, 2162 &obj_req->bio_pos, 2163 obj_req->ex.oe_len); 2164 break; 2165 case OBJ_REQUEST_BVECS: 2166 case OBJ_REQUEST_OWN_BVECS: 2167 rbd_assert(obj_req->bvec_pos.iter.bi_size == 2168 obj_req->ex.oe_len); 2169 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 2170 osd_req_op_extent_osd_data_bvec_pos(osd_req, which, 2171 &obj_req->bvec_pos); 2172 break; 2173 default: 2174 BUG(); 2175 } 2176 } 2177 2178 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which) 2179 { 2180 struct page **pages; 2181 2182 /* 2183 * The response data for a STAT call consists of: 2184 * le64 length; 2185 * struct { 2186 * le32 tv_sec; 2187 * le32 tv_nsec; 2188 * } mtime; 2189 */ 2190 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2191 if (IS_ERR(pages)) 2192 return PTR_ERR(pages); 2193 2194 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0); 2195 osd_req_op_raw_data_in_pages(osd_req, which, pages, 2196 8 + sizeof(struct ceph_timespec), 2197 0, false, true); 2198 return 0; 2199 } 2200 2201 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which, 2202 u32 bytes) 2203 { 2204 struct rbd_obj_request *obj_req = osd_req->r_priv; 2205 int ret; 2206 2207 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup"); 2208 if (ret) 2209 return ret; 2210 2211 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs, 2212 obj_req->copyup_bvec_count, bytes); 2213 return 0; 2214 } 2215 2216 static int rbd_obj_init_read(struct rbd_obj_request *obj_req) 2217 { 2218 obj_req->read_state = RBD_OBJ_READ_START; 2219 return 0; 2220 } 2221 2222 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2223 int which) 2224 { 2225 struct rbd_obj_request *obj_req = osd_req->r_priv; 2226 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2227 u16 opcode; 2228 2229 if (!use_object_map(rbd_dev) || 2230 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) { 2231 osd_req_op_alloc_hint_init(osd_req, which++, 2232 rbd_dev->layout.object_size, 2233 rbd_dev->layout.object_size, 2234 rbd_dev->opts->alloc_hint_flags); 2235 } 2236 2237 if (rbd_obj_is_entire(obj_req)) 2238 opcode = CEPH_OSD_OP_WRITEFULL; 2239 else 2240 opcode = CEPH_OSD_OP_WRITE; 2241 2242 osd_req_op_extent_init(osd_req, which, opcode, 2243 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2244 rbd_osd_setup_data(osd_req, which); 2245 } 2246 2247 static int rbd_obj_init_write(struct rbd_obj_request *obj_req) 2248 { 2249 int ret; 2250 2251 /* reverse map the entire object onto the parent */ 2252 ret = rbd_obj_calc_img_extents(obj_req, true); 2253 if (ret) 2254 return ret; 2255 2256 obj_req->write_state = RBD_OBJ_WRITE_START; 2257 return 0; 2258 } 2259 2260 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req) 2261 { 2262 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE : 2263 CEPH_OSD_OP_ZERO; 2264 } 2265 2266 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req, 2267 int which) 2268 { 2269 struct rbd_obj_request *obj_req = osd_req->r_priv; 2270 2271 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) { 2272 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2273 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0); 2274 } else { 2275 osd_req_op_extent_init(osd_req, which, 2276 truncate_or_zero_opcode(obj_req), 2277 obj_req->ex.oe_off, obj_req->ex.oe_len, 2278 0, 0); 2279 } 2280 } 2281 2282 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req) 2283 { 2284 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2285 u64 off, next_off; 2286 int ret; 2287 2288 /* 2289 * Align the range to alloc_size boundary and punt on discards 2290 * that are too small to free up any space. 2291 * 2292 * alloc_size == object_size && is_tail() is a special case for 2293 * filestore with filestore_punch_hole = false, needed to allow 2294 * truncate (in addition to delete). 2295 */ 2296 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size || 2297 !rbd_obj_is_tail(obj_req)) { 2298 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size); 2299 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len, 2300 rbd_dev->opts->alloc_size); 2301 if (off >= next_off) 2302 return 1; 2303 2304 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__, 2305 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len, 2306 off, next_off - off); 2307 obj_req->ex.oe_off = off; 2308 obj_req->ex.oe_len = next_off - off; 2309 } 2310 2311 /* reverse map the entire object onto the parent */ 2312 ret = rbd_obj_calc_img_extents(obj_req, true); 2313 if (ret) 2314 return ret; 2315 2316 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2317 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) 2318 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2319 2320 obj_req->write_state = RBD_OBJ_WRITE_START; 2321 return 0; 2322 } 2323 2324 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req, 2325 int which) 2326 { 2327 struct rbd_obj_request *obj_req = osd_req->r_priv; 2328 u16 opcode; 2329 2330 if (rbd_obj_is_entire(obj_req)) { 2331 if (obj_req->num_img_extents) { 2332 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2333 osd_req_op_init(osd_req, which++, 2334 CEPH_OSD_OP_CREATE, 0); 2335 opcode = CEPH_OSD_OP_TRUNCATE; 2336 } else { 2337 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2338 osd_req_op_init(osd_req, which++, 2339 CEPH_OSD_OP_DELETE, 0); 2340 opcode = 0; 2341 } 2342 } else { 2343 opcode = truncate_or_zero_opcode(obj_req); 2344 } 2345 2346 if (opcode) 2347 osd_req_op_extent_init(osd_req, which, opcode, 2348 obj_req->ex.oe_off, obj_req->ex.oe_len, 2349 0, 0); 2350 } 2351 2352 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req) 2353 { 2354 int ret; 2355 2356 /* reverse map the entire object onto the parent */ 2357 ret = rbd_obj_calc_img_extents(obj_req, true); 2358 if (ret) 2359 return ret; 2360 2361 if (!obj_req->num_img_extents) { 2362 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2363 if (rbd_obj_is_entire(obj_req)) 2364 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2365 } 2366 2367 obj_req->write_state = RBD_OBJ_WRITE_START; 2368 return 0; 2369 } 2370 2371 static int count_write_ops(struct rbd_obj_request *obj_req) 2372 { 2373 struct rbd_img_request *img_req = obj_req->img_request; 2374 2375 switch (img_req->op_type) { 2376 case OBJ_OP_WRITE: 2377 if (!use_object_map(img_req->rbd_dev) || 2378 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) 2379 return 2; /* setallochint + write/writefull */ 2380 2381 return 1; /* write/writefull */ 2382 case OBJ_OP_DISCARD: 2383 return 1; /* delete/truncate/zero */ 2384 case OBJ_OP_ZEROOUT: 2385 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents && 2386 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2387 return 2; /* create + truncate */ 2388 2389 return 1; /* delete/truncate/zero */ 2390 default: 2391 BUG(); 2392 } 2393 } 2394 2395 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2396 int which) 2397 { 2398 struct rbd_obj_request *obj_req = osd_req->r_priv; 2399 2400 switch (obj_req->img_request->op_type) { 2401 case OBJ_OP_WRITE: 2402 __rbd_osd_setup_write_ops(osd_req, which); 2403 break; 2404 case OBJ_OP_DISCARD: 2405 __rbd_osd_setup_discard_ops(osd_req, which); 2406 break; 2407 case OBJ_OP_ZEROOUT: 2408 __rbd_osd_setup_zeroout_ops(osd_req, which); 2409 break; 2410 default: 2411 BUG(); 2412 } 2413 } 2414 2415 /* 2416 * Prune the list of object requests (adjust offset and/or length, drop 2417 * redundant requests). Prepare object request state machines and image 2418 * request state machine for execution. 2419 */ 2420 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 2421 { 2422 struct rbd_obj_request *obj_req, *next_obj_req; 2423 int ret; 2424 2425 for_each_obj_request_safe(img_req, obj_req, next_obj_req) { 2426 switch (img_req->op_type) { 2427 case OBJ_OP_READ: 2428 ret = rbd_obj_init_read(obj_req); 2429 break; 2430 case OBJ_OP_WRITE: 2431 ret = rbd_obj_init_write(obj_req); 2432 break; 2433 case OBJ_OP_DISCARD: 2434 ret = rbd_obj_init_discard(obj_req); 2435 break; 2436 case OBJ_OP_ZEROOUT: 2437 ret = rbd_obj_init_zeroout(obj_req); 2438 break; 2439 default: 2440 BUG(); 2441 } 2442 if (ret < 0) 2443 return ret; 2444 if (ret > 0) { 2445 rbd_img_obj_request_del(img_req, obj_req); 2446 continue; 2447 } 2448 } 2449 2450 img_req->state = RBD_IMG_START; 2451 return 0; 2452 } 2453 2454 union rbd_img_fill_iter { 2455 struct ceph_bio_iter bio_iter; 2456 struct ceph_bvec_iter bvec_iter; 2457 }; 2458 2459 struct rbd_img_fill_ctx { 2460 enum obj_request_type pos_type; 2461 union rbd_img_fill_iter *pos; 2462 union rbd_img_fill_iter iter; 2463 ceph_object_extent_fn_t set_pos_fn; 2464 ceph_object_extent_fn_t count_fn; 2465 ceph_object_extent_fn_t copy_fn; 2466 }; 2467 2468 static struct ceph_object_extent *alloc_object_extent(void *arg) 2469 { 2470 struct rbd_img_request *img_req = arg; 2471 struct rbd_obj_request *obj_req; 2472 2473 obj_req = rbd_obj_request_create(); 2474 if (!obj_req) 2475 return NULL; 2476 2477 rbd_img_obj_request_add(img_req, obj_req); 2478 return &obj_req->ex; 2479 } 2480 2481 /* 2482 * While su != os && sc == 1 is technically not fancy (it's the same 2483 * layout as su == os && sc == 1), we can't use the nocopy path for it 2484 * because ->set_pos_fn() should be called only once per object. 2485 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 2486 * treat su != os && sc == 1 as fancy. 2487 */ 2488 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 2489 { 2490 return l->stripe_unit != l->object_size; 2491 } 2492 2493 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 2494 struct ceph_file_extent *img_extents, 2495 u32 num_img_extents, 2496 struct rbd_img_fill_ctx *fctx) 2497 { 2498 u32 i; 2499 int ret; 2500 2501 img_req->data_type = fctx->pos_type; 2502 2503 /* 2504 * Create object requests and set each object request's starting 2505 * position in the provided bio (list) or bio_vec array. 2506 */ 2507 fctx->iter = *fctx->pos; 2508 for (i = 0; i < num_img_extents; i++) { 2509 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 2510 img_extents[i].fe_off, 2511 img_extents[i].fe_len, 2512 &img_req->object_extents, 2513 alloc_object_extent, img_req, 2514 fctx->set_pos_fn, &fctx->iter); 2515 if (ret) 2516 return ret; 2517 } 2518 2519 return __rbd_img_fill_request(img_req); 2520 } 2521 2522 /* 2523 * Map a list of image extents to a list of object extents, create the 2524 * corresponding object requests (normally each to a different object, 2525 * but not always) and add them to @img_req. For each object request, 2526 * set up its data descriptor to point to the corresponding chunk(s) of 2527 * @fctx->pos data buffer. 2528 * 2529 * Because ceph_file_to_extents() will merge adjacent object extents 2530 * together, each object request's data descriptor may point to multiple 2531 * different chunks of @fctx->pos data buffer. 2532 * 2533 * @fctx->pos data buffer is assumed to be large enough. 2534 */ 2535 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2536 struct ceph_file_extent *img_extents, 2537 u32 num_img_extents, 2538 struct rbd_img_fill_ctx *fctx) 2539 { 2540 struct rbd_device *rbd_dev = img_req->rbd_dev; 2541 struct rbd_obj_request *obj_req; 2542 u32 i; 2543 int ret; 2544 2545 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2546 !rbd_layout_is_fancy(&rbd_dev->layout)) 2547 return rbd_img_fill_request_nocopy(img_req, img_extents, 2548 num_img_extents, fctx); 2549 2550 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2551 2552 /* 2553 * Create object requests and determine ->bvec_count for each object 2554 * request. Note that ->bvec_count sum over all object requests may 2555 * be greater than the number of bio_vecs in the provided bio (list) 2556 * or bio_vec array because when mapped, those bio_vecs can straddle 2557 * stripe unit boundaries. 2558 */ 2559 fctx->iter = *fctx->pos; 2560 for (i = 0; i < num_img_extents; i++) { 2561 ret = ceph_file_to_extents(&rbd_dev->layout, 2562 img_extents[i].fe_off, 2563 img_extents[i].fe_len, 2564 &img_req->object_extents, 2565 alloc_object_extent, img_req, 2566 fctx->count_fn, &fctx->iter); 2567 if (ret) 2568 return ret; 2569 } 2570 2571 for_each_obj_request(img_req, obj_req) { 2572 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2573 sizeof(*obj_req->bvec_pos.bvecs), 2574 GFP_NOIO); 2575 if (!obj_req->bvec_pos.bvecs) 2576 return -ENOMEM; 2577 } 2578 2579 /* 2580 * Fill in each object request's private bio_vec array, splitting and 2581 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2582 */ 2583 fctx->iter = *fctx->pos; 2584 for (i = 0; i < num_img_extents; i++) { 2585 ret = ceph_iterate_extents(&rbd_dev->layout, 2586 img_extents[i].fe_off, 2587 img_extents[i].fe_len, 2588 &img_req->object_extents, 2589 fctx->copy_fn, &fctx->iter); 2590 if (ret) 2591 return ret; 2592 } 2593 2594 return __rbd_img_fill_request(img_req); 2595 } 2596 2597 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2598 u64 off, u64 len) 2599 { 2600 struct ceph_file_extent ex = { off, len }; 2601 union rbd_img_fill_iter dummy = {}; 2602 struct rbd_img_fill_ctx fctx = { 2603 .pos_type = OBJ_REQUEST_NODATA, 2604 .pos = &dummy, 2605 }; 2606 2607 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2608 } 2609 2610 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2611 { 2612 struct rbd_obj_request *obj_req = 2613 container_of(ex, struct rbd_obj_request, ex); 2614 struct ceph_bio_iter *it = arg; 2615 2616 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2617 obj_req->bio_pos = *it; 2618 ceph_bio_iter_advance(it, bytes); 2619 } 2620 2621 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2622 { 2623 struct rbd_obj_request *obj_req = 2624 container_of(ex, struct rbd_obj_request, ex); 2625 struct ceph_bio_iter *it = arg; 2626 2627 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2628 ceph_bio_iter_advance_step(it, bytes, ({ 2629 obj_req->bvec_count++; 2630 })); 2631 2632 } 2633 2634 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2635 { 2636 struct rbd_obj_request *obj_req = 2637 container_of(ex, struct rbd_obj_request, ex); 2638 struct ceph_bio_iter *it = arg; 2639 2640 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2641 ceph_bio_iter_advance_step(it, bytes, ({ 2642 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2643 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2644 })); 2645 } 2646 2647 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2648 struct ceph_file_extent *img_extents, 2649 u32 num_img_extents, 2650 struct ceph_bio_iter *bio_pos) 2651 { 2652 struct rbd_img_fill_ctx fctx = { 2653 .pos_type = OBJ_REQUEST_BIO, 2654 .pos = (union rbd_img_fill_iter *)bio_pos, 2655 .set_pos_fn = set_bio_pos, 2656 .count_fn = count_bio_bvecs, 2657 .copy_fn = copy_bio_bvecs, 2658 }; 2659 2660 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2661 &fctx); 2662 } 2663 2664 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2665 u64 off, u64 len, struct bio *bio) 2666 { 2667 struct ceph_file_extent ex = { off, len }; 2668 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2669 2670 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2671 } 2672 2673 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2674 { 2675 struct rbd_obj_request *obj_req = 2676 container_of(ex, struct rbd_obj_request, ex); 2677 struct ceph_bvec_iter *it = arg; 2678 2679 obj_req->bvec_pos = *it; 2680 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2681 ceph_bvec_iter_advance(it, bytes); 2682 } 2683 2684 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2685 { 2686 struct rbd_obj_request *obj_req = 2687 container_of(ex, struct rbd_obj_request, ex); 2688 struct ceph_bvec_iter *it = arg; 2689 2690 ceph_bvec_iter_advance_step(it, bytes, ({ 2691 obj_req->bvec_count++; 2692 })); 2693 } 2694 2695 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2696 { 2697 struct rbd_obj_request *obj_req = 2698 container_of(ex, struct rbd_obj_request, ex); 2699 struct ceph_bvec_iter *it = arg; 2700 2701 ceph_bvec_iter_advance_step(it, bytes, ({ 2702 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2703 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2704 })); 2705 } 2706 2707 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2708 struct ceph_file_extent *img_extents, 2709 u32 num_img_extents, 2710 struct ceph_bvec_iter *bvec_pos) 2711 { 2712 struct rbd_img_fill_ctx fctx = { 2713 .pos_type = OBJ_REQUEST_BVECS, 2714 .pos = (union rbd_img_fill_iter *)bvec_pos, 2715 .set_pos_fn = set_bvec_pos, 2716 .count_fn = count_bvecs, 2717 .copy_fn = copy_bvecs, 2718 }; 2719 2720 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2721 &fctx); 2722 } 2723 2724 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2725 struct ceph_file_extent *img_extents, 2726 u32 num_img_extents, 2727 struct bio_vec *bvecs) 2728 { 2729 struct ceph_bvec_iter it = { 2730 .bvecs = bvecs, 2731 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2732 num_img_extents) }, 2733 }; 2734 2735 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2736 &it); 2737 } 2738 2739 static void rbd_img_handle_request_work(struct work_struct *work) 2740 { 2741 struct rbd_img_request *img_req = 2742 container_of(work, struct rbd_img_request, work); 2743 2744 rbd_img_handle_request(img_req, img_req->work_result); 2745 } 2746 2747 static void rbd_img_schedule(struct rbd_img_request *img_req, int result) 2748 { 2749 INIT_WORK(&img_req->work, rbd_img_handle_request_work); 2750 img_req->work_result = result; 2751 queue_work(rbd_wq, &img_req->work); 2752 } 2753 2754 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req) 2755 { 2756 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2757 2758 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) { 2759 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2760 return true; 2761 } 2762 2763 dout("%s %p objno %llu assuming dne\n", __func__, obj_req, 2764 obj_req->ex.oe_objno); 2765 return false; 2766 } 2767 2768 static int rbd_obj_read_object(struct rbd_obj_request *obj_req) 2769 { 2770 struct ceph_osd_request *osd_req; 2771 int ret; 2772 2773 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1); 2774 if (IS_ERR(osd_req)) 2775 return PTR_ERR(osd_req); 2776 2777 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ, 2778 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2779 rbd_osd_setup_data(osd_req, 0); 2780 rbd_osd_format_read(osd_req); 2781 2782 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2783 if (ret) 2784 return ret; 2785 2786 rbd_osd_submit(osd_req); 2787 return 0; 2788 } 2789 2790 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2791 { 2792 struct rbd_img_request *img_req = obj_req->img_request; 2793 struct rbd_device *parent = img_req->rbd_dev->parent; 2794 struct rbd_img_request *child_img_req; 2795 int ret; 2796 2797 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2798 if (!child_img_req) 2799 return -ENOMEM; 2800 2801 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ); 2802 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2803 child_img_req->obj_request = obj_req; 2804 2805 down_read(&parent->header_rwsem); 2806 rbd_img_capture_header(child_img_req); 2807 up_read(&parent->header_rwsem); 2808 2809 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req, 2810 obj_req); 2811 2812 if (!rbd_img_is_write(img_req)) { 2813 switch (img_req->data_type) { 2814 case OBJ_REQUEST_BIO: 2815 ret = __rbd_img_fill_from_bio(child_img_req, 2816 obj_req->img_extents, 2817 obj_req->num_img_extents, 2818 &obj_req->bio_pos); 2819 break; 2820 case OBJ_REQUEST_BVECS: 2821 case OBJ_REQUEST_OWN_BVECS: 2822 ret = __rbd_img_fill_from_bvecs(child_img_req, 2823 obj_req->img_extents, 2824 obj_req->num_img_extents, 2825 &obj_req->bvec_pos); 2826 break; 2827 default: 2828 BUG(); 2829 } 2830 } else { 2831 ret = rbd_img_fill_from_bvecs(child_img_req, 2832 obj_req->img_extents, 2833 obj_req->num_img_extents, 2834 obj_req->copyup_bvecs); 2835 } 2836 if (ret) { 2837 rbd_img_request_destroy(child_img_req); 2838 return ret; 2839 } 2840 2841 /* avoid parent chain recursion */ 2842 rbd_img_schedule(child_img_req, 0); 2843 return 0; 2844 } 2845 2846 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result) 2847 { 2848 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2849 int ret; 2850 2851 again: 2852 switch (obj_req->read_state) { 2853 case RBD_OBJ_READ_START: 2854 rbd_assert(!*result); 2855 2856 if (!rbd_obj_may_exist(obj_req)) { 2857 *result = -ENOENT; 2858 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2859 goto again; 2860 } 2861 2862 ret = rbd_obj_read_object(obj_req); 2863 if (ret) { 2864 *result = ret; 2865 return true; 2866 } 2867 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2868 return false; 2869 case RBD_OBJ_READ_OBJECT: 2870 if (*result == -ENOENT && rbd_dev->parent_overlap) { 2871 /* reverse map this object extent onto the parent */ 2872 ret = rbd_obj_calc_img_extents(obj_req, false); 2873 if (ret) { 2874 *result = ret; 2875 return true; 2876 } 2877 if (obj_req->num_img_extents) { 2878 ret = rbd_obj_read_from_parent(obj_req); 2879 if (ret) { 2880 *result = ret; 2881 return true; 2882 } 2883 obj_req->read_state = RBD_OBJ_READ_PARENT; 2884 return false; 2885 } 2886 } 2887 2888 /* 2889 * -ENOENT means a hole in the image -- zero-fill the entire 2890 * length of the request. A short read also implies zero-fill 2891 * to the end of the request. 2892 */ 2893 if (*result == -ENOENT) { 2894 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len); 2895 *result = 0; 2896 } else if (*result >= 0) { 2897 if (*result < obj_req->ex.oe_len) 2898 rbd_obj_zero_range(obj_req, *result, 2899 obj_req->ex.oe_len - *result); 2900 else 2901 rbd_assert(*result == obj_req->ex.oe_len); 2902 *result = 0; 2903 } 2904 return true; 2905 case RBD_OBJ_READ_PARENT: 2906 /* 2907 * The parent image is read only up to the overlap -- zero-fill 2908 * from the overlap to the end of the request. 2909 */ 2910 if (!*result) { 2911 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req); 2912 2913 if (obj_overlap < obj_req->ex.oe_len) 2914 rbd_obj_zero_range(obj_req, obj_overlap, 2915 obj_req->ex.oe_len - obj_overlap); 2916 } 2917 return true; 2918 default: 2919 BUG(); 2920 } 2921 } 2922 2923 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req) 2924 { 2925 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2926 2927 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) 2928 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2929 2930 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) && 2931 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) { 2932 dout("%s %p noop for nonexistent\n", __func__, obj_req); 2933 return true; 2934 } 2935 2936 return false; 2937 } 2938 2939 /* 2940 * Return: 2941 * 0 - object map update sent 2942 * 1 - object map update isn't needed 2943 * <0 - error 2944 */ 2945 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req) 2946 { 2947 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2948 u8 new_state; 2949 2950 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 2951 return 1; 2952 2953 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 2954 new_state = OBJECT_PENDING; 2955 else 2956 new_state = OBJECT_EXISTS; 2957 2958 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL); 2959 } 2960 2961 static int rbd_obj_write_object(struct rbd_obj_request *obj_req) 2962 { 2963 struct ceph_osd_request *osd_req; 2964 int num_ops = count_write_ops(obj_req); 2965 int which = 0; 2966 int ret; 2967 2968 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) 2969 num_ops++; /* stat */ 2970 2971 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 2972 if (IS_ERR(osd_req)) 2973 return PTR_ERR(osd_req); 2974 2975 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 2976 ret = rbd_osd_setup_stat(osd_req, which++); 2977 if (ret) 2978 return ret; 2979 } 2980 2981 rbd_osd_setup_write_ops(osd_req, which); 2982 rbd_osd_format_write(osd_req); 2983 2984 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2985 if (ret) 2986 return ret; 2987 2988 rbd_osd_submit(osd_req); 2989 return 0; 2990 } 2991 2992 /* 2993 * copyup_bvecs pages are never highmem pages 2994 */ 2995 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 2996 { 2997 struct ceph_bvec_iter it = { 2998 .bvecs = bvecs, 2999 .iter = { .bi_size = bytes }, 3000 }; 3001 3002 ceph_bvec_iter_advance_step(&it, bytes, ({ 3003 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len)) 3004 return false; 3005 })); 3006 return true; 3007 } 3008 3009 #define MODS_ONLY U32_MAX 3010 3011 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req, 3012 u32 bytes) 3013 { 3014 struct ceph_osd_request *osd_req; 3015 int ret; 3016 3017 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3018 rbd_assert(bytes > 0 && bytes != MODS_ONLY); 3019 3020 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1); 3021 if (IS_ERR(osd_req)) 3022 return PTR_ERR(osd_req); 3023 3024 ret = rbd_osd_setup_copyup(osd_req, 0, bytes); 3025 if (ret) 3026 return ret; 3027 3028 rbd_osd_format_write(osd_req); 3029 3030 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3031 if (ret) 3032 return ret; 3033 3034 rbd_osd_submit(osd_req); 3035 return 0; 3036 } 3037 3038 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req, 3039 u32 bytes) 3040 { 3041 struct ceph_osd_request *osd_req; 3042 int num_ops = count_write_ops(obj_req); 3043 int which = 0; 3044 int ret; 3045 3046 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3047 3048 if (bytes != MODS_ONLY) 3049 num_ops++; /* copyup */ 3050 3051 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 3052 if (IS_ERR(osd_req)) 3053 return PTR_ERR(osd_req); 3054 3055 if (bytes != MODS_ONLY) { 3056 ret = rbd_osd_setup_copyup(osd_req, which++, bytes); 3057 if (ret) 3058 return ret; 3059 } 3060 3061 rbd_osd_setup_write_ops(osd_req, which); 3062 rbd_osd_format_write(osd_req); 3063 3064 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3065 if (ret) 3066 return ret; 3067 3068 rbd_osd_submit(osd_req); 3069 return 0; 3070 } 3071 3072 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 3073 { 3074 u32 i; 3075 3076 rbd_assert(!obj_req->copyup_bvecs); 3077 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 3078 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 3079 sizeof(*obj_req->copyup_bvecs), 3080 GFP_NOIO); 3081 if (!obj_req->copyup_bvecs) 3082 return -ENOMEM; 3083 3084 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 3085 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 3086 struct page *page = alloc_page(GFP_NOIO); 3087 3088 if (!page) 3089 return -ENOMEM; 3090 3091 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0); 3092 obj_overlap -= len; 3093 } 3094 3095 rbd_assert(!obj_overlap); 3096 return 0; 3097 } 3098 3099 /* 3100 * The target object doesn't exist. Read the data for the entire 3101 * target object up to the overlap point (if any) from the parent, 3102 * so we can use it for a copyup. 3103 */ 3104 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req) 3105 { 3106 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3107 int ret; 3108 3109 rbd_assert(obj_req->num_img_extents); 3110 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 3111 rbd_dev->parent_overlap); 3112 if (!obj_req->num_img_extents) { 3113 /* 3114 * The overlap has become 0 (most likely because the 3115 * image has been flattened). Re-submit the original write 3116 * request -- pass MODS_ONLY since the copyup isn't needed 3117 * anymore. 3118 */ 3119 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY); 3120 } 3121 3122 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 3123 if (ret) 3124 return ret; 3125 3126 return rbd_obj_read_from_parent(obj_req); 3127 } 3128 3129 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req) 3130 { 3131 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3132 struct ceph_snap_context *snapc = obj_req->img_request->snapc; 3133 u8 new_state; 3134 u32 i; 3135 int ret; 3136 3137 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3138 3139 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3140 return; 3141 3142 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3143 return; 3144 3145 for (i = 0; i < snapc->num_snaps; i++) { 3146 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) && 3147 i + 1 < snapc->num_snaps) 3148 new_state = OBJECT_EXISTS_CLEAN; 3149 else 3150 new_state = OBJECT_EXISTS; 3151 3152 ret = rbd_object_map_update(obj_req, snapc->snaps[i], 3153 new_state, NULL); 3154 if (ret < 0) { 3155 obj_req->pending.result = ret; 3156 return; 3157 } 3158 3159 rbd_assert(!ret); 3160 obj_req->pending.num_pending++; 3161 } 3162 } 3163 3164 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req) 3165 { 3166 u32 bytes = rbd_obj_img_extents_bytes(obj_req); 3167 int ret; 3168 3169 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3170 3171 /* 3172 * Only send non-zero copyup data to save some I/O and network 3173 * bandwidth -- zero copyup data is equivalent to the object not 3174 * existing. 3175 */ 3176 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3177 bytes = 0; 3178 3179 if (obj_req->img_request->snapc->num_snaps && bytes > 0) { 3180 /* 3181 * Send a copyup request with an empty snapshot context to 3182 * deep-copyup the object through all existing snapshots. 3183 * A second request with the current snapshot context will be 3184 * sent for the actual modification. 3185 */ 3186 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes); 3187 if (ret) { 3188 obj_req->pending.result = ret; 3189 return; 3190 } 3191 3192 obj_req->pending.num_pending++; 3193 bytes = MODS_ONLY; 3194 } 3195 3196 ret = rbd_obj_copyup_current_snapc(obj_req, bytes); 3197 if (ret) { 3198 obj_req->pending.result = ret; 3199 return; 3200 } 3201 3202 obj_req->pending.num_pending++; 3203 } 3204 3205 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result) 3206 { 3207 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3208 int ret; 3209 3210 again: 3211 switch (obj_req->copyup_state) { 3212 case RBD_OBJ_COPYUP_START: 3213 rbd_assert(!*result); 3214 3215 ret = rbd_obj_copyup_read_parent(obj_req); 3216 if (ret) { 3217 *result = ret; 3218 return true; 3219 } 3220 if (obj_req->num_img_extents) 3221 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT; 3222 else 3223 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3224 return false; 3225 case RBD_OBJ_COPYUP_READ_PARENT: 3226 if (*result) 3227 return true; 3228 3229 if (is_zero_bvecs(obj_req->copyup_bvecs, 3230 rbd_obj_img_extents_bytes(obj_req))) { 3231 dout("%s %p detected zeros\n", __func__, obj_req); 3232 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS; 3233 } 3234 3235 rbd_obj_copyup_object_maps(obj_req); 3236 if (!obj_req->pending.num_pending) { 3237 *result = obj_req->pending.result; 3238 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS; 3239 goto again; 3240 } 3241 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS; 3242 return false; 3243 case __RBD_OBJ_COPYUP_OBJECT_MAPS: 3244 if (!pending_result_dec(&obj_req->pending, result)) 3245 return false; 3246 fallthrough; 3247 case RBD_OBJ_COPYUP_OBJECT_MAPS: 3248 if (*result) { 3249 rbd_warn(rbd_dev, "snap object map update failed: %d", 3250 *result); 3251 return true; 3252 } 3253 3254 rbd_obj_copyup_write_object(obj_req); 3255 if (!obj_req->pending.num_pending) { 3256 *result = obj_req->pending.result; 3257 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3258 goto again; 3259 } 3260 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT; 3261 return false; 3262 case __RBD_OBJ_COPYUP_WRITE_OBJECT: 3263 if (!pending_result_dec(&obj_req->pending, result)) 3264 return false; 3265 fallthrough; 3266 case RBD_OBJ_COPYUP_WRITE_OBJECT: 3267 return true; 3268 default: 3269 BUG(); 3270 } 3271 } 3272 3273 /* 3274 * Return: 3275 * 0 - object map update sent 3276 * 1 - object map update isn't needed 3277 * <0 - error 3278 */ 3279 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req) 3280 { 3281 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3282 u8 current_state = OBJECT_PENDING; 3283 3284 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3285 return 1; 3286 3287 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION)) 3288 return 1; 3289 3290 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT, 3291 ¤t_state); 3292 } 3293 3294 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result) 3295 { 3296 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3297 int ret; 3298 3299 again: 3300 switch (obj_req->write_state) { 3301 case RBD_OBJ_WRITE_START: 3302 rbd_assert(!*result); 3303 3304 rbd_obj_set_copyup_enabled(obj_req); 3305 if (rbd_obj_write_is_noop(obj_req)) 3306 return true; 3307 3308 ret = rbd_obj_write_pre_object_map(obj_req); 3309 if (ret < 0) { 3310 *result = ret; 3311 return true; 3312 } 3313 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP; 3314 if (ret > 0) 3315 goto again; 3316 return false; 3317 case RBD_OBJ_WRITE_PRE_OBJECT_MAP: 3318 if (*result) { 3319 rbd_warn(rbd_dev, "pre object map update failed: %d", 3320 *result); 3321 return true; 3322 } 3323 ret = rbd_obj_write_object(obj_req); 3324 if (ret) { 3325 *result = ret; 3326 return true; 3327 } 3328 obj_req->write_state = RBD_OBJ_WRITE_OBJECT; 3329 return false; 3330 case RBD_OBJ_WRITE_OBJECT: 3331 if (*result == -ENOENT) { 3332 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3333 *result = 0; 3334 obj_req->copyup_state = RBD_OBJ_COPYUP_START; 3335 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP; 3336 goto again; 3337 } 3338 /* 3339 * On a non-existent object: 3340 * delete - -ENOENT, truncate/zero - 0 3341 */ 3342 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 3343 *result = 0; 3344 } 3345 if (*result) 3346 return true; 3347 3348 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 3349 goto again; 3350 case __RBD_OBJ_WRITE_COPYUP: 3351 if (!rbd_obj_advance_copyup(obj_req, result)) 3352 return false; 3353 fallthrough; 3354 case RBD_OBJ_WRITE_COPYUP: 3355 if (*result) { 3356 rbd_warn(rbd_dev, "copyup failed: %d", *result); 3357 return true; 3358 } 3359 ret = rbd_obj_write_post_object_map(obj_req); 3360 if (ret < 0) { 3361 *result = ret; 3362 return true; 3363 } 3364 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP; 3365 if (ret > 0) 3366 goto again; 3367 return false; 3368 case RBD_OBJ_WRITE_POST_OBJECT_MAP: 3369 if (*result) 3370 rbd_warn(rbd_dev, "post object map update failed: %d", 3371 *result); 3372 return true; 3373 default: 3374 BUG(); 3375 } 3376 } 3377 3378 /* 3379 * Return true if @obj_req is completed. 3380 */ 3381 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req, 3382 int *result) 3383 { 3384 struct rbd_img_request *img_req = obj_req->img_request; 3385 struct rbd_device *rbd_dev = img_req->rbd_dev; 3386 bool done; 3387 3388 mutex_lock(&obj_req->state_mutex); 3389 if (!rbd_img_is_write(img_req)) 3390 done = rbd_obj_advance_read(obj_req, result); 3391 else 3392 done = rbd_obj_advance_write(obj_req, result); 3393 mutex_unlock(&obj_req->state_mutex); 3394 3395 if (done && *result) { 3396 rbd_assert(*result < 0); 3397 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d", 3398 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 3399 obj_req->ex.oe_off, obj_req->ex.oe_len, *result); 3400 } 3401 return done; 3402 } 3403 3404 /* 3405 * This is open-coded in rbd_img_handle_request() to avoid parent chain 3406 * recursion. 3407 */ 3408 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result) 3409 { 3410 if (__rbd_obj_handle_request(obj_req, &result)) 3411 rbd_img_handle_request(obj_req->img_request, result); 3412 } 3413 3414 static bool need_exclusive_lock(struct rbd_img_request *img_req) 3415 { 3416 struct rbd_device *rbd_dev = img_req->rbd_dev; 3417 3418 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) 3419 return false; 3420 3421 if (rbd_is_ro(rbd_dev)) 3422 return false; 3423 3424 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 3425 if (rbd_dev->opts->lock_on_read || 3426 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3427 return true; 3428 3429 return rbd_img_is_write(img_req); 3430 } 3431 3432 static bool rbd_lock_add_request(struct rbd_img_request *img_req) 3433 { 3434 struct rbd_device *rbd_dev = img_req->rbd_dev; 3435 bool locked; 3436 3437 lockdep_assert_held(&rbd_dev->lock_rwsem); 3438 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED; 3439 spin_lock(&rbd_dev->lock_lists_lock); 3440 rbd_assert(list_empty(&img_req->lock_item)); 3441 if (!locked) 3442 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list); 3443 else 3444 list_add_tail(&img_req->lock_item, &rbd_dev->running_list); 3445 spin_unlock(&rbd_dev->lock_lists_lock); 3446 return locked; 3447 } 3448 3449 static void rbd_lock_del_request(struct rbd_img_request *img_req) 3450 { 3451 struct rbd_device *rbd_dev = img_req->rbd_dev; 3452 bool need_wakeup; 3453 3454 lockdep_assert_held(&rbd_dev->lock_rwsem); 3455 spin_lock(&rbd_dev->lock_lists_lock); 3456 rbd_assert(!list_empty(&img_req->lock_item)); 3457 list_del_init(&img_req->lock_item); 3458 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING && 3459 list_empty(&rbd_dev->running_list)); 3460 spin_unlock(&rbd_dev->lock_lists_lock); 3461 if (need_wakeup) 3462 complete(&rbd_dev->releasing_wait); 3463 } 3464 3465 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req) 3466 { 3467 struct rbd_device *rbd_dev = img_req->rbd_dev; 3468 3469 if (!need_exclusive_lock(img_req)) 3470 return 1; 3471 3472 if (rbd_lock_add_request(img_req)) 3473 return 1; 3474 3475 if (rbd_dev->opts->exclusive) { 3476 WARN_ON(1); /* lock got released? */ 3477 return -EROFS; 3478 } 3479 3480 /* 3481 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3482 * and cancel_delayed_work() in wake_lock_waiters(). 3483 */ 3484 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3485 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3486 return 0; 3487 } 3488 3489 static void rbd_img_object_requests(struct rbd_img_request *img_req) 3490 { 3491 struct rbd_device *rbd_dev = img_req->rbd_dev; 3492 struct rbd_obj_request *obj_req; 3493 3494 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending); 3495 rbd_assert(!need_exclusive_lock(img_req) || 3496 __rbd_is_lock_owner(rbd_dev)); 3497 3498 if (rbd_img_is_write(img_req)) { 3499 rbd_assert(!img_req->snapc); 3500 down_read(&rbd_dev->header_rwsem); 3501 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc); 3502 up_read(&rbd_dev->header_rwsem); 3503 } 3504 3505 for_each_obj_request(img_req, obj_req) { 3506 int result = 0; 3507 3508 if (__rbd_obj_handle_request(obj_req, &result)) { 3509 if (result) { 3510 img_req->pending.result = result; 3511 return; 3512 } 3513 } else { 3514 img_req->pending.num_pending++; 3515 } 3516 } 3517 } 3518 3519 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result) 3520 { 3521 int ret; 3522 3523 again: 3524 switch (img_req->state) { 3525 case RBD_IMG_START: 3526 rbd_assert(!*result); 3527 3528 ret = rbd_img_exclusive_lock(img_req); 3529 if (ret < 0) { 3530 *result = ret; 3531 return true; 3532 } 3533 img_req->state = RBD_IMG_EXCLUSIVE_LOCK; 3534 if (ret > 0) 3535 goto again; 3536 return false; 3537 case RBD_IMG_EXCLUSIVE_LOCK: 3538 if (*result) 3539 return true; 3540 3541 rbd_img_object_requests(img_req); 3542 if (!img_req->pending.num_pending) { 3543 *result = img_req->pending.result; 3544 img_req->state = RBD_IMG_OBJECT_REQUESTS; 3545 goto again; 3546 } 3547 img_req->state = __RBD_IMG_OBJECT_REQUESTS; 3548 return false; 3549 case __RBD_IMG_OBJECT_REQUESTS: 3550 if (!pending_result_dec(&img_req->pending, result)) 3551 return false; 3552 fallthrough; 3553 case RBD_IMG_OBJECT_REQUESTS: 3554 return true; 3555 default: 3556 BUG(); 3557 } 3558 } 3559 3560 /* 3561 * Return true if @img_req is completed. 3562 */ 3563 static bool __rbd_img_handle_request(struct rbd_img_request *img_req, 3564 int *result) 3565 { 3566 struct rbd_device *rbd_dev = img_req->rbd_dev; 3567 bool done; 3568 3569 if (need_exclusive_lock(img_req)) { 3570 down_read(&rbd_dev->lock_rwsem); 3571 mutex_lock(&img_req->state_mutex); 3572 done = rbd_img_advance(img_req, result); 3573 if (done) 3574 rbd_lock_del_request(img_req); 3575 mutex_unlock(&img_req->state_mutex); 3576 up_read(&rbd_dev->lock_rwsem); 3577 } else { 3578 mutex_lock(&img_req->state_mutex); 3579 done = rbd_img_advance(img_req, result); 3580 mutex_unlock(&img_req->state_mutex); 3581 } 3582 3583 if (done && *result) { 3584 rbd_assert(*result < 0); 3585 rbd_warn(rbd_dev, "%s%s result %d", 3586 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "", 3587 obj_op_name(img_req->op_type), *result); 3588 } 3589 return done; 3590 } 3591 3592 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result) 3593 { 3594 again: 3595 if (!__rbd_img_handle_request(img_req, &result)) 3596 return; 3597 3598 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 3599 struct rbd_obj_request *obj_req = img_req->obj_request; 3600 3601 rbd_img_request_destroy(img_req); 3602 if (__rbd_obj_handle_request(obj_req, &result)) { 3603 img_req = obj_req->img_request; 3604 goto again; 3605 } 3606 } else { 3607 struct request *rq = blk_mq_rq_from_pdu(img_req); 3608 3609 rbd_img_request_destroy(img_req); 3610 blk_mq_end_request(rq, errno_to_blk_status(result)); 3611 } 3612 } 3613 3614 static const struct rbd_client_id rbd_empty_cid; 3615 3616 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3617 const struct rbd_client_id *rhs) 3618 { 3619 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3620 } 3621 3622 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3623 { 3624 struct rbd_client_id cid; 3625 3626 mutex_lock(&rbd_dev->watch_mutex); 3627 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3628 cid.handle = rbd_dev->watch_cookie; 3629 mutex_unlock(&rbd_dev->watch_mutex); 3630 return cid; 3631 } 3632 3633 /* 3634 * lock_rwsem must be held for write 3635 */ 3636 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3637 const struct rbd_client_id *cid) 3638 { 3639 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3640 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3641 cid->gid, cid->handle); 3642 rbd_dev->owner_cid = *cid; /* struct */ 3643 } 3644 3645 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3646 { 3647 mutex_lock(&rbd_dev->watch_mutex); 3648 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3649 mutex_unlock(&rbd_dev->watch_mutex); 3650 } 3651 3652 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 3653 { 3654 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3655 3656 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3657 strcpy(rbd_dev->lock_cookie, cookie); 3658 rbd_set_owner_cid(rbd_dev, &cid); 3659 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3660 } 3661 3662 /* 3663 * lock_rwsem must be held for write 3664 */ 3665 static int rbd_lock(struct rbd_device *rbd_dev) 3666 { 3667 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3668 char cookie[32]; 3669 int ret; 3670 3671 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3672 rbd_dev->lock_cookie[0] != '\0'); 3673 3674 format_lock_cookie(rbd_dev, cookie); 3675 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3676 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3677 RBD_LOCK_TAG, "", 0); 3678 if (ret) 3679 return ret; 3680 3681 __rbd_lock(rbd_dev, cookie); 3682 return 0; 3683 } 3684 3685 /* 3686 * lock_rwsem must be held for write 3687 */ 3688 static void rbd_unlock(struct rbd_device *rbd_dev) 3689 { 3690 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3691 int ret; 3692 3693 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3694 rbd_dev->lock_cookie[0] == '\0'); 3695 3696 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3697 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3698 if (ret && ret != -ENOENT) 3699 rbd_warn(rbd_dev, "failed to unlock header: %d", ret); 3700 3701 /* treat errors as the image is unlocked */ 3702 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3703 rbd_dev->lock_cookie[0] = '\0'; 3704 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3705 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3706 } 3707 3708 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3709 enum rbd_notify_op notify_op, 3710 struct page ***preply_pages, 3711 size_t *preply_len) 3712 { 3713 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3714 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3715 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 3716 int buf_size = sizeof(buf); 3717 void *p = buf; 3718 3719 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3720 3721 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3722 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3723 ceph_encode_32(&p, notify_op); 3724 ceph_encode_64(&p, cid.gid); 3725 ceph_encode_64(&p, cid.handle); 3726 3727 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3728 &rbd_dev->header_oloc, buf, buf_size, 3729 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3730 } 3731 3732 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3733 enum rbd_notify_op notify_op) 3734 { 3735 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL); 3736 } 3737 3738 static void rbd_notify_acquired_lock(struct work_struct *work) 3739 { 3740 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3741 acquired_lock_work); 3742 3743 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3744 } 3745 3746 static void rbd_notify_released_lock(struct work_struct *work) 3747 { 3748 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3749 released_lock_work); 3750 3751 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3752 } 3753 3754 static int rbd_request_lock(struct rbd_device *rbd_dev) 3755 { 3756 struct page **reply_pages; 3757 size_t reply_len; 3758 bool lock_owner_responded = false; 3759 int ret; 3760 3761 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3762 3763 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3764 &reply_pages, &reply_len); 3765 if (ret && ret != -ETIMEDOUT) { 3766 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3767 goto out; 3768 } 3769 3770 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3771 void *p = page_address(reply_pages[0]); 3772 void *const end = p + reply_len; 3773 u32 n; 3774 3775 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3776 while (n--) { 3777 u8 struct_v; 3778 u32 len; 3779 3780 ceph_decode_need(&p, end, 8 + 8, e_inval); 3781 p += 8 + 8; /* skip gid and cookie */ 3782 3783 ceph_decode_32_safe(&p, end, len, e_inval); 3784 if (!len) 3785 continue; 3786 3787 if (lock_owner_responded) { 3788 rbd_warn(rbd_dev, 3789 "duplicate lock owners detected"); 3790 ret = -EIO; 3791 goto out; 3792 } 3793 3794 lock_owner_responded = true; 3795 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3796 &struct_v, &len); 3797 if (ret) { 3798 rbd_warn(rbd_dev, 3799 "failed to decode ResponseMessage: %d", 3800 ret); 3801 goto e_inval; 3802 } 3803 3804 ret = ceph_decode_32(&p); 3805 } 3806 } 3807 3808 if (!lock_owner_responded) { 3809 rbd_warn(rbd_dev, "no lock owners detected"); 3810 ret = -ETIMEDOUT; 3811 } 3812 3813 out: 3814 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3815 return ret; 3816 3817 e_inval: 3818 ret = -EINVAL; 3819 goto out; 3820 } 3821 3822 /* 3823 * Either image request state machine(s) or rbd_add_acquire_lock() 3824 * (i.e. "rbd map"). 3825 */ 3826 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result) 3827 { 3828 struct rbd_img_request *img_req; 3829 3830 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3831 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 3832 3833 cancel_delayed_work(&rbd_dev->lock_dwork); 3834 if (!completion_done(&rbd_dev->acquire_wait)) { 3835 rbd_assert(list_empty(&rbd_dev->acquiring_list) && 3836 list_empty(&rbd_dev->running_list)); 3837 rbd_dev->acquire_err = result; 3838 complete_all(&rbd_dev->acquire_wait); 3839 return; 3840 } 3841 3842 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) { 3843 mutex_lock(&img_req->state_mutex); 3844 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK); 3845 rbd_img_schedule(img_req, result); 3846 mutex_unlock(&img_req->state_mutex); 3847 } 3848 3849 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list); 3850 } 3851 3852 static int get_lock_owner_info(struct rbd_device *rbd_dev, 3853 struct ceph_locker **lockers, u32 *num_lockers) 3854 { 3855 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3856 u8 lock_type; 3857 char *lock_tag; 3858 int ret; 3859 3860 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3861 3862 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3863 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3864 &lock_type, &lock_tag, lockers, num_lockers); 3865 if (ret) 3866 return ret; 3867 3868 if (*num_lockers == 0) { 3869 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3870 goto out; 3871 } 3872 3873 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3874 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3875 lock_tag); 3876 ret = -EBUSY; 3877 goto out; 3878 } 3879 3880 if (lock_type == CEPH_CLS_LOCK_SHARED) { 3881 rbd_warn(rbd_dev, "shared lock type detected"); 3882 ret = -EBUSY; 3883 goto out; 3884 } 3885 3886 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 3887 strlen(RBD_LOCK_COOKIE_PREFIX))) { 3888 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3889 (*lockers)[0].id.cookie); 3890 ret = -EBUSY; 3891 goto out; 3892 } 3893 3894 out: 3895 kfree(lock_tag); 3896 return ret; 3897 } 3898 3899 static int find_watcher(struct rbd_device *rbd_dev, 3900 const struct ceph_locker *locker) 3901 { 3902 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3903 struct ceph_watch_item *watchers; 3904 u32 num_watchers; 3905 u64 cookie; 3906 int i; 3907 int ret; 3908 3909 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3910 &rbd_dev->header_oloc, &watchers, 3911 &num_watchers); 3912 if (ret) 3913 return ret; 3914 3915 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3916 for (i = 0; i < num_watchers; i++) { 3917 /* 3918 * Ignore addr->type while comparing. This mimics 3919 * entity_addr_t::get_legacy_str() + strcmp(). 3920 */ 3921 if (ceph_addr_equal_no_type(&watchers[i].addr, 3922 &locker->info.addr) && 3923 watchers[i].cookie == cookie) { 3924 struct rbd_client_id cid = { 3925 .gid = le64_to_cpu(watchers[i].name.num), 3926 .handle = cookie, 3927 }; 3928 3929 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3930 rbd_dev, cid.gid, cid.handle); 3931 rbd_set_owner_cid(rbd_dev, &cid); 3932 ret = 1; 3933 goto out; 3934 } 3935 } 3936 3937 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3938 ret = 0; 3939 out: 3940 kfree(watchers); 3941 return ret; 3942 } 3943 3944 /* 3945 * lock_rwsem must be held for write 3946 */ 3947 static int rbd_try_lock(struct rbd_device *rbd_dev) 3948 { 3949 struct ceph_client *client = rbd_dev->rbd_client->client; 3950 struct ceph_locker *lockers; 3951 u32 num_lockers; 3952 int ret; 3953 3954 for (;;) { 3955 ret = rbd_lock(rbd_dev); 3956 if (ret != -EBUSY) 3957 return ret; 3958 3959 /* determine if the current lock holder is still alive */ 3960 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 3961 if (ret) 3962 return ret; 3963 3964 if (num_lockers == 0) 3965 goto again; 3966 3967 ret = find_watcher(rbd_dev, lockers); 3968 if (ret) 3969 goto out; /* request lock or error */ 3970 3971 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu", 3972 ENTITY_NAME(lockers[0].id.name)); 3973 3974 ret = ceph_monc_blocklist_add(&client->monc, 3975 &lockers[0].info.addr); 3976 if (ret) { 3977 rbd_warn(rbd_dev, "blocklist of %s%llu failed: %d", 3978 ENTITY_NAME(lockers[0].id.name), ret); 3979 goto out; 3980 } 3981 3982 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 3983 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3984 lockers[0].id.cookie, 3985 &lockers[0].id.name); 3986 if (ret && ret != -ENOENT) 3987 goto out; 3988 3989 again: 3990 ceph_free_lockers(lockers, num_lockers); 3991 } 3992 3993 out: 3994 ceph_free_lockers(lockers, num_lockers); 3995 return ret; 3996 } 3997 3998 static int rbd_post_acquire_action(struct rbd_device *rbd_dev) 3999 { 4000 int ret; 4001 4002 ret = rbd_dev_refresh(rbd_dev); 4003 if (ret) 4004 return ret; 4005 4006 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) { 4007 ret = rbd_object_map_open(rbd_dev); 4008 if (ret) 4009 return ret; 4010 } 4011 4012 return 0; 4013 } 4014 4015 /* 4016 * Return: 4017 * 0 - lock acquired 4018 * 1 - caller should call rbd_request_lock() 4019 * <0 - error 4020 */ 4021 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev) 4022 { 4023 int ret; 4024 4025 down_read(&rbd_dev->lock_rwsem); 4026 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 4027 rbd_dev->lock_state); 4028 if (__rbd_is_lock_owner(rbd_dev)) { 4029 up_read(&rbd_dev->lock_rwsem); 4030 return 0; 4031 } 4032 4033 up_read(&rbd_dev->lock_rwsem); 4034 down_write(&rbd_dev->lock_rwsem); 4035 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 4036 rbd_dev->lock_state); 4037 if (__rbd_is_lock_owner(rbd_dev)) { 4038 up_write(&rbd_dev->lock_rwsem); 4039 return 0; 4040 } 4041 4042 ret = rbd_try_lock(rbd_dev); 4043 if (ret < 0) { 4044 rbd_warn(rbd_dev, "failed to lock header: %d", ret); 4045 if (ret == -EBLOCKLISTED) 4046 goto out; 4047 4048 ret = 1; /* request lock anyway */ 4049 } 4050 if (ret > 0) { 4051 up_write(&rbd_dev->lock_rwsem); 4052 return ret; 4053 } 4054 4055 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED); 4056 rbd_assert(list_empty(&rbd_dev->running_list)); 4057 4058 ret = rbd_post_acquire_action(rbd_dev); 4059 if (ret) { 4060 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret); 4061 /* 4062 * Can't stay in RBD_LOCK_STATE_LOCKED because 4063 * rbd_lock_add_request() would let the request through, 4064 * assuming that e.g. object map is locked and loaded. 4065 */ 4066 rbd_unlock(rbd_dev); 4067 } 4068 4069 out: 4070 wake_lock_waiters(rbd_dev, ret); 4071 up_write(&rbd_dev->lock_rwsem); 4072 return ret; 4073 } 4074 4075 static void rbd_acquire_lock(struct work_struct *work) 4076 { 4077 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4078 struct rbd_device, lock_dwork); 4079 int ret; 4080 4081 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4082 again: 4083 ret = rbd_try_acquire_lock(rbd_dev); 4084 if (ret <= 0) { 4085 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret); 4086 return; 4087 } 4088 4089 ret = rbd_request_lock(rbd_dev); 4090 if (ret == -ETIMEDOUT) { 4091 goto again; /* treat this as a dead client */ 4092 } else if (ret == -EROFS) { 4093 rbd_warn(rbd_dev, "peer will not release lock"); 4094 down_write(&rbd_dev->lock_rwsem); 4095 wake_lock_waiters(rbd_dev, ret); 4096 up_write(&rbd_dev->lock_rwsem); 4097 } else if (ret < 0) { 4098 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 4099 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4100 RBD_RETRY_DELAY); 4101 } else { 4102 /* 4103 * lock owner acked, but resend if we don't see them 4104 * release the lock 4105 */ 4106 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__, 4107 rbd_dev); 4108 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4109 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 4110 } 4111 } 4112 4113 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev) 4114 { 4115 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4116 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 4117 4118 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 4119 return false; 4120 4121 /* 4122 * Ensure that all in-flight IO is flushed. 4123 */ 4124 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 4125 rbd_assert(!completion_done(&rbd_dev->releasing_wait)); 4126 if (list_empty(&rbd_dev->running_list)) 4127 return true; 4128 4129 up_write(&rbd_dev->lock_rwsem); 4130 wait_for_completion(&rbd_dev->releasing_wait); 4131 4132 down_write(&rbd_dev->lock_rwsem); 4133 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 4134 return false; 4135 4136 rbd_assert(list_empty(&rbd_dev->running_list)); 4137 return true; 4138 } 4139 4140 static void rbd_pre_release_action(struct rbd_device *rbd_dev) 4141 { 4142 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) 4143 rbd_object_map_close(rbd_dev); 4144 } 4145 4146 static void __rbd_release_lock(struct rbd_device *rbd_dev) 4147 { 4148 rbd_assert(list_empty(&rbd_dev->running_list)); 4149 4150 rbd_pre_release_action(rbd_dev); 4151 rbd_unlock(rbd_dev); 4152 } 4153 4154 /* 4155 * lock_rwsem must be held for write 4156 */ 4157 static void rbd_release_lock(struct rbd_device *rbd_dev) 4158 { 4159 if (!rbd_quiesce_lock(rbd_dev)) 4160 return; 4161 4162 __rbd_release_lock(rbd_dev); 4163 4164 /* 4165 * Give others a chance to grab the lock - we would re-acquire 4166 * almost immediately if we got new IO while draining the running 4167 * list otherwise. We need to ack our own notifications, so this 4168 * lock_dwork will be requeued from rbd_handle_released_lock() by 4169 * way of maybe_kick_acquire(). 4170 */ 4171 cancel_delayed_work(&rbd_dev->lock_dwork); 4172 } 4173 4174 static void rbd_release_lock_work(struct work_struct *work) 4175 { 4176 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 4177 unlock_work); 4178 4179 down_write(&rbd_dev->lock_rwsem); 4180 rbd_release_lock(rbd_dev); 4181 up_write(&rbd_dev->lock_rwsem); 4182 } 4183 4184 static void maybe_kick_acquire(struct rbd_device *rbd_dev) 4185 { 4186 bool have_requests; 4187 4188 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4189 if (__rbd_is_lock_owner(rbd_dev)) 4190 return; 4191 4192 spin_lock(&rbd_dev->lock_lists_lock); 4193 have_requests = !list_empty(&rbd_dev->acquiring_list); 4194 spin_unlock(&rbd_dev->lock_lists_lock); 4195 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) { 4196 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev); 4197 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4198 } 4199 } 4200 4201 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 4202 void **p) 4203 { 4204 struct rbd_client_id cid = { 0 }; 4205 4206 if (struct_v >= 2) { 4207 cid.gid = ceph_decode_64(p); 4208 cid.handle = ceph_decode_64(p); 4209 } 4210 4211 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4212 cid.handle); 4213 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4214 down_write(&rbd_dev->lock_rwsem); 4215 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4216 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n", 4217 __func__, rbd_dev, cid.gid, cid.handle); 4218 } else { 4219 rbd_set_owner_cid(rbd_dev, &cid); 4220 } 4221 downgrade_write(&rbd_dev->lock_rwsem); 4222 } else { 4223 down_read(&rbd_dev->lock_rwsem); 4224 } 4225 4226 maybe_kick_acquire(rbd_dev); 4227 up_read(&rbd_dev->lock_rwsem); 4228 } 4229 4230 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 4231 void **p) 4232 { 4233 struct rbd_client_id cid = { 0 }; 4234 4235 if (struct_v >= 2) { 4236 cid.gid = ceph_decode_64(p); 4237 cid.handle = ceph_decode_64(p); 4238 } 4239 4240 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4241 cid.handle); 4242 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4243 down_write(&rbd_dev->lock_rwsem); 4244 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4245 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n", 4246 __func__, rbd_dev, cid.gid, cid.handle, 4247 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 4248 } else { 4249 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4250 } 4251 downgrade_write(&rbd_dev->lock_rwsem); 4252 } else { 4253 down_read(&rbd_dev->lock_rwsem); 4254 } 4255 4256 maybe_kick_acquire(rbd_dev); 4257 up_read(&rbd_dev->lock_rwsem); 4258 } 4259 4260 /* 4261 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 4262 * ResponseMessage is needed. 4263 */ 4264 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 4265 void **p) 4266 { 4267 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 4268 struct rbd_client_id cid = { 0 }; 4269 int result = 1; 4270 4271 if (struct_v >= 2) { 4272 cid.gid = ceph_decode_64(p); 4273 cid.handle = ceph_decode_64(p); 4274 } 4275 4276 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4277 cid.handle); 4278 if (rbd_cid_equal(&cid, &my_cid)) 4279 return result; 4280 4281 down_read(&rbd_dev->lock_rwsem); 4282 if (__rbd_is_lock_owner(rbd_dev)) { 4283 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 4284 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 4285 goto out_unlock; 4286 4287 /* 4288 * encode ResponseMessage(0) so the peer can detect 4289 * a missing owner 4290 */ 4291 result = 0; 4292 4293 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 4294 if (!rbd_dev->opts->exclusive) { 4295 dout("%s rbd_dev %p queueing unlock_work\n", 4296 __func__, rbd_dev); 4297 queue_work(rbd_dev->task_wq, 4298 &rbd_dev->unlock_work); 4299 } else { 4300 /* refuse to release the lock */ 4301 result = -EROFS; 4302 } 4303 } 4304 } 4305 4306 out_unlock: 4307 up_read(&rbd_dev->lock_rwsem); 4308 return result; 4309 } 4310 4311 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 4312 u64 notify_id, u64 cookie, s32 *result) 4313 { 4314 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4315 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 4316 int buf_size = sizeof(buf); 4317 int ret; 4318 4319 if (result) { 4320 void *p = buf; 4321 4322 /* encode ResponseMessage */ 4323 ceph_start_encoding(&p, 1, 1, 4324 buf_size - CEPH_ENCODING_START_BLK_LEN); 4325 ceph_encode_32(&p, *result); 4326 } else { 4327 buf_size = 0; 4328 } 4329 4330 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 4331 &rbd_dev->header_oloc, notify_id, cookie, 4332 buf, buf_size); 4333 if (ret) 4334 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 4335 } 4336 4337 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 4338 u64 cookie) 4339 { 4340 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4341 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 4342 } 4343 4344 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 4345 u64 notify_id, u64 cookie, s32 result) 4346 { 4347 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 4348 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 4349 } 4350 4351 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 4352 u64 notifier_id, void *data, size_t data_len) 4353 { 4354 struct rbd_device *rbd_dev = arg; 4355 void *p = data; 4356 void *const end = p + data_len; 4357 u8 struct_v = 0; 4358 u32 len; 4359 u32 notify_op; 4360 int ret; 4361 4362 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 4363 __func__, rbd_dev, cookie, notify_id, data_len); 4364 if (data_len) { 4365 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 4366 &struct_v, &len); 4367 if (ret) { 4368 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 4369 ret); 4370 return; 4371 } 4372 4373 notify_op = ceph_decode_32(&p); 4374 } else { 4375 /* legacy notification for header updates */ 4376 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 4377 len = 0; 4378 } 4379 4380 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 4381 switch (notify_op) { 4382 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 4383 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 4384 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4385 break; 4386 case RBD_NOTIFY_OP_RELEASED_LOCK: 4387 rbd_handle_released_lock(rbd_dev, struct_v, &p); 4388 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4389 break; 4390 case RBD_NOTIFY_OP_REQUEST_LOCK: 4391 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 4392 if (ret <= 0) 4393 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4394 cookie, ret); 4395 else 4396 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4397 break; 4398 case RBD_NOTIFY_OP_HEADER_UPDATE: 4399 ret = rbd_dev_refresh(rbd_dev); 4400 if (ret) 4401 rbd_warn(rbd_dev, "refresh failed: %d", ret); 4402 4403 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4404 break; 4405 default: 4406 if (rbd_is_lock_owner(rbd_dev)) 4407 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4408 cookie, -EOPNOTSUPP); 4409 else 4410 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4411 break; 4412 } 4413 } 4414 4415 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 4416 4417 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 4418 { 4419 struct rbd_device *rbd_dev = arg; 4420 4421 rbd_warn(rbd_dev, "encountered watch error: %d", err); 4422 4423 down_write(&rbd_dev->lock_rwsem); 4424 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4425 up_write(&rbd_dev->lock_rwsem); 4426 4427 mutex_lock(&rbd_dev->watch_mutex); 4428 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 4429 __rbd_unregister_watch(rbd_dev); 4430 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 4431 4432 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 4433 } 4434 mutex_unlock(&rbd_dev->watch_mutex); 4435 } 4436 4437 /* 4438 * watch_mutex must be locked 4439 */ 4440 static int __rbd_register_watch(struct rbd_device *rbd_dev) 4441 { 4442 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4443 struct ceph_osd_linger_request *handle; 4444 4445 rbd_assert(!rbd_dev->watch_handle); 4446 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4447 4448 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 4449 &rbd_dev->header_oloc, rbd_watch_cb, 4450 rbd_watch_errcb, rbd_dev); 4451 if (IS_ERR(handle)) 4452 return PTR_ERR(handle); 4453 4454 rbd_dev->watch_handle = handle; 4455 return 0; 4456 } 4457 4458 /* 4459 * watch_mutex must be locked 4460 */ 4461 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 4462 { 4463 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4464 int ret; 4465 4466 rbd_assert(rbd_dev->watch_handle); 4467 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4468 4469 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 4470 if (ret) 4471 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 4472 4473 rbd_dev->watch_handle = NULL; 4474 } 4475 4476 static int rbd_register_watch(struct rbd_device *rbd_dev) 4477 { 4478 int ret; 4479 4480 mutex_lock(&rbd_dev->watch_mutex); 4481 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 4482 ret = __rbd_register_watch(rbd_dev); 4483 if (ret) 4484 goto out; 4485 4486 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4487 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4488 4489 out: 4490 mutex_unlock(&rbd_dev->watch_mutex); 4491 return ret; 4492 } 4493 4494 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 4495 { 4496 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4497 4498 cancel_work_sync(&rbd_dev->acquired_lock_work); 4499 cancel_work_sync(&rbd_dev->released_lock_work); 4500 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 4501 cancel_work_sync(&rbd_dev->unlock_work); 4502 } 4503 4504 /* 4505 * header_rwsem must not be held to avoid a deadlock with 4506 * rbd_dev_refresh() when flushing notifies. 4507 */ 4508 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 4509 { 4510 cancel_tasks_sync(rbd_dev); 4511 4512 mutex_lock(&rbd_dev->watch_mutex); 4513 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 4514 __rbd_unregister_watch(rbd_dev); 4515 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4516 mutex_unlock(&rbd_dev->watch_mutex); 4517 4518 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 4519 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 4520 } 4521 4522 /* 4523 * lock_rwsem must be held for write 4524 */ 4525 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 4526 { 4527 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4528 char cookie[32]; 4529 int ret; 4530 4531 if (!rbd_quiesce_lock(rbd_dev)) 4532 return; 4533 4534 format_lock_cookie(rbd_dev, cookie); 4535 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 4536 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4537 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 4538 RBD_LOCK_TAG, cookie); 4539 if (ret) { 4540 if (ret != -EOPNOTSUPP) 4541 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 4542 ret); 4543 4544 /* 4545 * Lock cookie cannot be updated on older OSDs, so do 4546 * a manual release and queue an acquire. 4547 */ 4548 __rbd_release_lock(rbd_dev); 4549 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4550 } else { 4551 __rbd_lock(rbd_dev, cookie); 4552 wake_lock_waiters(rbd_dev, 0); 4553 } 4554 } 4555 4556 static void rbd_reregister_watch(struct work_struct *work) 4557 { 4558 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4559 struct rbd_device, watch_dwork); 4560 int ret; 4561 4562 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4563 4564 mutex_lock(&rbd_dev->watch_mutex); 4565 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 4566 mutex_unlock(&rbd_dev->watch_mutex); 4567 return; 4568 } 4569 4570 ret = __rbd_register_watch(rbd_dev); 4571 if (ret) { 4572 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 4573 if (ret != -EBLOCKLISTED && ret != -ENOENT) { 4574 queue_delayed_work(rbd_dev->task_wq, 4575 &rbd_dev->watch_dwork, 4576 RBD_RETRY_DELAY); 4577 mutex_unlock(&rbd_dev->watch_mutex); 4578 return; 4579 } 4580 4581 mutex_unlock(&rbd_dev->watch_mutex); 4582 down_write(&rbd_dev->lock_rwsem); 4583 wake_lock_waiters(rbd_dev, ret); 4584 up_write(&rbd_dev->lock_rwsem); 4585 return; 4586 } 4587 4588 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4589 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4590 mutex_unlock(&rbd_dev->watch_mutex); 4591 4592 down_write(&rbd_dev->lock_rwsem); 4593 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 4594 rbd_reacquire_lock(rbd_dev); 4595 up_write(&rbd_dev->lock_rwsem); 4596 4597 ret = rbd_dev_refresh(rbd_dev); 4598 if (ret) 4599 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 4600 } 4601 4602 /* 4603 * Synchronous osd object method call. Returns the number of bytes 4604 * returned in the outbound buffer, or a negative error code. 4605 */ 4606 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 4607 struct ceph_object_id *oid, 4608 struct ceph_object_locator *oloc, 4609 const char *method_name, 4610 const void *outbound, 4611 size_t outbound_size, 4612 void *inbound, 4613 size_t inbound_size) 4614 { 4615 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4616 struct page *req_page = NULL; 4617 struct page *reply_page; 4618 int ret; 4619 4620 /* 4621 * Method calls are ultimately read operations. The result 4622 * should placed into the inbound buffer provided. They 4623 * also supply outbound data--parameters for the object 4624 * method. Currently if this is present it will be a 4625 * snapshot id. 4626 */ 4627 if (outbound) { 4628 if (outbound_size > PAGE_SIZE) 4629 return -E2BIG; 4630 4631 req_page = alloc_page(GFP_KERNEL); 4632 if (!req_page) 4633 return -ENOMEM; 4634 4635 memcpy(page_address(req_page), outbound, outbound_size); 4636 } 4637 4638 reply_page = alloc_page(GFP_KERNEL); 4639 if (!reply_page) { 4640 if (req_page) 4641 __free_page(req_page); 4642 return -ENOMEM; 4643 } 4644 4645 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 4646 CEPH_OSD_FLAG_READ, req_page, outbound_size, 4647 &reply_page, &inbound_size); 4648 if (!ret) { 4649 memcpy(inbound, page_address(reply_page), inbound_size); 4650 ret = inbound_size; 4651 } 4652 4653 if (req_page) 4654 __free_page(req_page); 4655 __free_page(reply_page); 4656 return ret; 4657 } 4658 4659 static void rbd_queue_workfn(struct work_struct *work) 4660 { 4661 struct rbd_img_request *img_request = 4662 container_of(work, struct rbd_img_request, work); 4663 struct rbd_device *rbd_dev = img_request->rbd_dev; 4664 enum obj_operation_type op_type = img_request->op_type; 4665 struct request *rq = blk_mq_rq_from_pdu(img_request); 4666 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4667 u64 length = blk_rq_bytes(rq); 4668 u64 mapping_size; 4669 int result; 4670 4671 /* Ignore/skip any zero-length requests */ 4672 if (!length) { 4673 dout("%s: zero-length request\n", __func__); 4674 result = 0; 4675 goto err_img_request; 4676 } 4677 4678 blk_mq_start_request(rq); 4679 4680 down_read(&rbd_dev->header_rwsem); 4681 mapping_size = rbd_dev->mapping.size; 4682 rbd_img_capture_header(img_request); 4683 up_read(&rbd_dev->header_rwsem); 4684 4685 if (offset + length > mapping_size) { 4686 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4687 length, mapping_size); 4688 result = -EIO; 4689 goto err_img_request; 4690 } 4691 4692 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev, 4693 img_request, obj_op_name(op_type), offset, length); 4694 4695 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT) 4696 result = rbd_img_fill_nodata(img_request, offset, length); 4697 else 4698 result = rbd_img_fill_from_bio(img_request, offset, length, 4699 rq->bio); 4700 if (result) 4701 goto err_img_request; 4702 4703 rbd_img_handle_request(img_request, 0); 4704 return; 4705 4706 err_img_request: 4707 rbd_img_request_destroy(img_request); 4708 if (result) 4709 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4710 obj_op_name(op_type), length, offset, result); 4711 blk_mq_end_request(rq, errno_to_blk_status(result)); 4712 } 4713 4714 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4715 const struct blk_mq_queue_data *bd) 4716 { 4717 struct rbd_device *rbd_dev = hctx->queue->queuedata; 4718 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq); 4719 enum obj_operation_type op_type; 4720 4721 switch (req_op(bd->rq)) { 4722 case REQ_OP_DISCARD: 4723 op_type = OBJ_OP_DISCARD; 4724 break; 4725 case REQ_OP_WRITE_ZEROES: 4726 op_type = OBJ_OP_ZEROOUT; 4727 break; 4728 case REQ_OP_WRITE: 4729 op_type = OBJ_OP_WRITE; 4730 break; 4731 case REQ_OP_READ: 4732 op_type = OBJ_OP_READ; 4733 break; 4734 default: 4735 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq)); 4736 return BLK_STS_IOERR; 4737 } 4738 4739 rbd_img_request_init(img_req, rbd_dev, op_type); 4740 4741 if (rbd_img_is_write(img_req)) { 4742 if (rbd_is_ro(rbd_dev)) { 4743 rbd_warn(rbd_dev, "%s on read-only mapping", 4744 obj_op_name(img_req->op_type)); 4745 return BLK_STS_IOERR; 4746 } 4747 rbd_assert(!rbd_is_snap(rbd_dev)); 4748 } 4749 4750 INIT_WORK(&img_req->work, rbd_queue_workfn); 4751 queue_work(rbd_wq, &img_req->work); 4752 return BLK_STS_OK; 4753 } 4754 4755 static void rbd_free_disk(struct rbd_device *rbd_dev) 4756 { 4757 put_disk(rbd_dev->disk); 4758 blk_mq_free_tag_set(&rbd_dev->tag_set); 4759 rbd_dev->disk = NULL; 4760 } 4761 4762 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4763 struct ceph_object_id *oid, 4764 struct ceph_object_locator *oloc, 4765 void *buf, int buf_len) 4766 4767 { 4768 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4769 struct ceph_osd_request *req; 4770 struct page **pages; 4771 int num_pages = calc_pages_for(0, buf_len); 4772 int ret; 4773 4774 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4775 if (!req) 4776 return -ENOMEM; 4777 4778 ceph_oid_copy(&req->r_base_oid, oid); 4779 ceph_oloc_copy(&req->r_base_oloc, oloc); 4780 req->r_flags = CEPH_OSD_FLAG_READ; 4781 4782 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4783 if (IS_ERR(pages)) { 4784 ret = PTR_ERR(pages); 4785 goto out_req; 4786 } 4787 4788 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4789 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4790 true); 4791 4792 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4793 if (ret) 4794 goto out_req; 4795 4796 ceph_osdc_start_request(osdc, req); 4797 ret = ceph_osdc_wait_request(osdc, req); 4798 if (ret >= 0) 4799 ceph_copy_from_page_vector(pages, buf, 0, ret); 4800 4801 out_req: 4802 ceph_osdc_put_request(req); 4803 return ret; 4804 } 4805 4806 /* 4807 * Read the complete header for the given rbd device. On successful 4808 * return, the rbd_dev->header field will contain up-to-date 4809 * information about the image. 4810 */ 4811 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4812 { 4813 struct rbd_image_header_ondisk *ondisk = NULL; 4814 u32 snap_count = 0; 4815 u64 names_size = 0; 4816 u32 want_count; 4817 int ret; 4818 4819 /* 4820 * The complete header will include an array of its 64-bit 4821 * snapshot ids, followed by the names of those snapshots as 4822 * a contiguous block of NUL-terminated strings. Note that 4823 * the number of snapshots could change by the time we read 4824 * it in, in which case we re-read it. 4825 */ 4826 do { 4827 size_t size; 4828 4829 kfree(ondisk); 4830 4831 size = sizeof (*ondisk); 4832 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4833 size += names_size; 4834 ondisk = kmalloc(size, GFP_KERNEL); 4835 if (!ondisk) 4836 return -ENOMEM; 4837 4838 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4839 &rbd_dev->header_oloc, ondisk, size); 4840 if (ret < 0) 4841 goto out; 4842 if ((size_t)ret < size) { 4843 ret = -ENXIO; 4844 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4845 size, ret); 4846 goto out; 4847 } 4848 if (!rbd_dev_ondisk_valid(ondisk)) { 4849 ret = -ENXIO; 4850 rbd_warn(rbd_dev, "invalid header"); 4851 goto out; 4852 } 4853 4854 names_size = le64_to_cpu(ondisk->snap_names_len); 4855 want_count = snap_count; 4856 snap_count = le32_to_cpu(ondisk->snap_count); 4857 } while (snap_count != want_count); 4858 4859 ret = rbd_header_from_disk(rbd_dev, ondisk); 4860 out: 4861 kfree(ondisk); 4862 4863 return ret; 4864 } 4865 4866 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4867 { 4868 sector_t size; 4869 4870 /* 4871 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4872 * try to update its size. If REMOVING is set, updating size 4873 * is just useless work since the device can't be opened. 4874 */ 4875 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4876 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4877 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4878 dout("setting size to %llu sectors", (unsigned long long)size); 4879 set_capacity_and_notify(rbd_dev->disk, size); 4880 } 4881 } 4882 4883 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 4884 { 4885 u64 mapping_size; 4886 int ret; 4887 4888 down_write(&rbd_dev->header_rwsem); 4889 mapping_size = rbd_dev->mapping.size; 4890 4891 ret = rbd_dev_header_info(rbd_dev); 4892 if (ret) 4893 goto out; 4894 4895 /* 4896 * If there is a parent, see if it has disappeared due to the 4897 * mapped image getting flattened. 4898 */ 4899 if (rbd_dev->parent) { 4900 ret = rbd_dev_v2_parent_info(rbd_dev); 4901 if (ret) 4902 goto out; 4903 } 4904 4905 rbd_assert(!rbd_is_snap(rbd_dev)); 4906 rbd_dev->mapping.size = rbd_dev->header.image_size; 4907 4908 out: 4909 up_write(&rbd_dev->header_rwsem); 4910 if (!ret && mapping_size != rbd_dev->mapping.size) 4911 rbd_dev_update_size(rbd_dev); 4912 4913 return ret; 4914 } 4915 4916 static const struct blk_mq_ops rbd_mq_ops = { 4917 .queue_rq = rbd_queue_rq, 4918 }; 4919 4920 static int rbd_init_disk(struct rbd_device *rbd_dev) 4921 { 4922 struct gendisk *disk; 4923 struct request_queue *q; 4924 unsigned int objset_bytes = 4925 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 4926 int err; 4927 4928 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4929 rbd_dev->tag_set.ops = &rbd_mq_ops; 4930 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4931 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4932 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 4933 rbd_dev->tag_set.nr_hw_queues = num_present_cpus(); 4934 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request); 4935 4936 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4937 if (err) 4938 return err; 4939 4940 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev); 4941 if (IS_ERR(disk)) { 4942 err = PTR_ERR(disk); 4943 goto out_tag_set; 4944 } 4945 q = disk->queue; 4946 4947 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4948 rbd_dev->dev_id); 4949 disk->major = rbd_dev->major; 4950 disk->first_minor = rbd_dev->minor; 4951 if (single_major) 4952 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT); 4953 else 4954 disk->minors = RBD_MINORS_PER_MAJOR; 4955 disk->fops = &rbd_bd_ops; 4956 disk->private_data = rbd_dev; 4957 4958 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 4959 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4960 4961 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT); 4962 q->limits.max_sectors = queue_max_hw_sectors(q); 4963 blk_queue_max_segments(q, USHRT_MAX); 4964 blk_queue_max_segment_size(q, UINT_MAX); 4965 blk_queue_io_min(q, rbd_dev->opts->alloc_size); 4966 blk_queue_io_opt(q, rbd_dev->opts->alloc_size); 4967 4968 if (rbd_dev->opts->trim) { 4969 q->limits.discard_granularity = rbd_dev->opts->alloc_size; 4970 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT); 4971 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT); 4972 } 4973 4974 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 4975 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 4976 4977 rbd_dev->disk = disk; 4978 4979 return 0; 4980 out_tag_set: 4981 blk_mq_free_tag_set(&rbd_dev->tag_set); 4982 return err; 4983 } 4984 4985 /* 4986 sysfs 4987 */ 4988 4989 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 4990 { 4991 return container_of(dev, struct rbd_device, dev); 4992 } 4993 4994 static ssize_t rbd_size_show(struct device *dev, 4995 struct device_attribute *attr, char *buf) 4996 { 4997 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 4998 4999 return sprintf(buf, "%llu\n", 5000 (unsigned long long)rbd_dev->mapping.size); 5001 } 5002 5003 static ssize_t rbd_features_show(struct device *dev, 5004 struct device_attribute *attr, char *buf) 5005 { 5006 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5007 5008 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features); 5009 } 5010 5011 static ssize_t rbd_major_show(struct device *dev, 5012 struct device_attribute *attr, char *buf) 5013 { 5014 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5015 5016 if (rbd_dev->major) 5017 return sprintf(buf, "%d\n", rbd_dev->major); 5018 5019 return sprintf(buf, "(none)\n"); 5020 } 5021 5022 static ssize_t rbd_minor_show(struct device *dev, 5023 struct device_attribute *attr, char *buf) 5024 { 5025 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5026 5027 return sprintf(buf, "%d\n", rbd_dev->minor); 5028 } 5029 5030 static ssize_t rbd_client_addr_show(struct device *dev, 5031 struct device_attribute *attr, char *buf) 5032 { 5033 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5034 struct ceph_entity_addr *client_addr = 5035 ceph_client_addr(rbd_dev->rbd_client->client); 5036 5037 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 5038 le32_to_cpu(client_addr->nonce)); 5039 } 5040 5041 static ssize_t rbd_client_id_show(struct device *dev, 5042 struct device_attribute *attr, char *buf) 5043 { 5044 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5045 5046 return sprintf(buf, "client%lld\n", 5047 ceph_client_gid(rbd_dev->rbd_client->client)); 5048 } 5049 5050 static ssize_t rbd_cluster_fsid_show(struct device *dev, 5051 struct device_attribute *attr, char *buf) 5052 { 5053 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5054 5055 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 5056 } 5057 5058 static ssize_t rbd_config_info_show(struct device *dev, 5059 struct device_attribute *attr, char *buf) 5060 { 5061 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5062 5063 if (!capable(CAP_SYS_ADMIN)) 5064 return -EPERM; 5065 5066 return sprintf(buf, "%s\n", rbd_dev->config_info); 5067 } 5068 5069 static ssize_t rbd_pool_show(struct device *dev, 5070 struct device_attribute *attr, char *buf) 5071 { 5072 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5073 5074 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 5075 } 5076 5077 static ssize_t rbd_pool_id_show(struct device *dev, 5078 struct device_attribute *attr, char *buf) 5079 { 5080 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5081 5082 return sprintf(buf, "%llu\n", 5083 (unsigned long long) rbd_dev->spec->pool_id); 5084 } 5085 5086 static ssize_t rbd_pool_ns_show(struct device *dev, 5087 struct device_attribute *attr, char *buf) 5088 { 5089 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5090 5091 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: ""); 5092 } 5093 5094 static ssize_t rbd_name_show(struct device *dev, 5095 struct device_attribute *attr, char *buf) 5096 { 5097 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5098 5099 if (rbd_dev->spec->image_name) 5100 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 5101 5102 return sprintf(buf, "(unknown)\n"); 5103 } 5104 5105 static ssize_t rbd_image_id_show(struct device *dev, 5106 struct device_attribute *attr, char *buf) 5107 { 5108 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5109 5110 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 5111 } 5112 5113 /* 5114 * Shows the name of the currently-mapped snapshot (or 5115 * RBD_SNAP_HEAD_NAME for the base image). 5116 */ 5117 static ssize_t rbd_snap_show(struct device *dev, 5118 struct device_attribute *attr, 5119 char *buf) 5120 { 5121 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5122 5123 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 5124 } 5125 5126 static ssize_t rbd_snap_id_show(struct device *dev, 5127 struct device_attribute *attr, char *buf) 5128 { 5129 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5130 5131 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 5132 } 5133 5134 /* 5135 * For a v2 image, shows the chain of parent images, separated by empty 5136 * lines. For v1 images or if there is no parent, shows "(no parent 5137 * image)". 5138 */ 5139 static ssize_t rbd_parent_show(struct device *dev, 5140 struct device_attribute *attr, 5141 char *buf) 5142 { 5143 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5144 ssize_t count = 0; 5145 5146 if (!rbd_dev->parent) 5147 return sprintf(buf, "(no parent image)\n"); 5148 5149 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 5150 struct rbd_spec *spec = rbd_dev->parent_spec; 5151 5152 count += sprintf(&buf[count], "%s" 5153 "pool_id %llu\npool_name %s\n" 5154 "pool_ns %s\n" 5155 "image_id %s\nimage_name %s\n" 5156 "snap_id %llu\nsnap_name %s\n" 5157 "overlap %llu\n", 5158 !count ? "" : "\n", /* first? */ 5159 spec->pool_id, spec->pool_name, 5160 spec->pool_ns ?: "", 5161 spec->image_id, spec->image_name ?: "(unknown)", 5162 spec->snap_id, spec->snap_name, 5163 rbd_dev->parent_overlap); 5164 } 5165 5166 return count; 5167 } 5168 5169 static ssize_t rbd_image_refresh(struct device *dev, 5170 struct device_attribute *attr, 5171 const char *buf, 5172 size_t size) 5173 { 5174 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5175 int ret; 5176 5177 if (!capable(CAP_SYS_ADMIN)) 5178 return -EPERM; 5179 5180 ret = rbd_dev_refresh(rbd_dev); 5181 if (ret) 5182 return ret; 5183 5184 return size; 5185 } 5186 5187 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 5188 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 5189 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 5190 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 5191 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 5192 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 5193 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 5194 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 5195 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 5196 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 5197 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL); 5198 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 5199 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 5200 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 5201 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 5202 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 5203 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 5204 5205 static struct attribute *rbd_attrs[] = { 5206 &dev_attr_size.attr, 5207 &dev_attr_features.attr, 5208 &dev_attr_major.attr, 5209 &dev_attr_minor.attr, 5210 &dev_attr_client_addr.attr, 5211 &dev_attr_client_id.attr, 5212 &dev_attr_cluster_fsid.attr, 5213 &dev_attr_config_info.attr, 5214 &dev_attr_pool.attr, 5215 &dev_attr_pool_id.attr, 5216 &dev_attr_pool_ns.attr, 5217 &dev_attr_name.attr, 5218 &dev_attr_image_id.attr, 5219 &dev_attr_current_snap.attr, 5220 &dev_attr_snap_id.attr, 5221 &dev_attr_parent.attr, 5222 &dev_attr_refresh.attr, 5223 NULL 5224 }; 5225 5226 static struct attribute_group rbd_attr_group = { 5227 .attrs = rbd_attrs, 5228 }; 5229 5230 static const struct attribute_group *rbd_attr_groups[] = { 5231 &rbd_attr_group, 5232 NULL 5233 }; 5234 5235 static void rbd_dev_release(struct device *dev); 5236 5237 static const struct device_type rbd_device_type = { 5238 .name = "rbd", 5239 .groups = rbd_attr_groups, 5240 .release = rbd_dev_release, 5241 }; 5242 5243 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 5244 { 5245 kref_get(&spec->kref); 5246 5247 return spec; 5248 } 5249 5250 static void rbd_spec_free(struct kref *kref); 5251 static void rbd_spec_put(struct rbd_spec *spec) 5252 { 5253 if (spec) 5254 kref_put(&spec->kref, rbd_spec_free); 5255 } 5256 5257 static struct rbd_spec *rbd_spec_alloc(void) 5258 { 5259 struct rbd_spec *spec; 5260 5261 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 5262 if (!spec) 5263 return NULL; 5264 5265 spec->pool_id = CEPH_NOPOOL; 5266 spec->snap_id = CEPH_NOSNAP; 5267 kref_init(&spec->kref); 5268 5269 return spec; 5270 } 5271 5272 static void rbd_spec_free(struct kref *kref) 5273 { 5274 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 5275 5276 kfree(spec->pool_name); 5277 kfree(spec->pool_ns); 5278 kfree(spec->image_id); 5279 kfree(spec->image_name); 5280 kfree(spec->snap_name); 5281 kfree(spec); 5282 } 5283 5284 static void rbd_dev_free(struct rbd_device *rbd_dev) 5285 { 5286 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 5287 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 5288 5289 ceph_oid_destroy(&rbd_dev->header_oid); 5290 ceph_oloc_destroy(&rbd_dev->header_oloc); 5291 kfree(rbd_dev->config_info); 5292 5293 rbd_put_client(rbd_dev->rbd_client); 5294 rbd_spec_put(rbd_dev->spec); 5295 kfree(rbd_dev->opts); 5296 kfree(rbd_dev); 5297 } 5298 5299 static void rbd_dev_release(struct device *dev) 5300 { 5301 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5302 bool need_put = !!rbd_dev->opts; 5303 5304 if (need_put) { 5305 destroy_workqueue(rbd_dev->task_wq); 5306 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5307 } 5308 5309 rbd_dev_free(rbd_dev); 5310 5311 /* 5312 * This is racy, but way better than putting module outside of 5313 * the release callback. The race window is pretty small, so 5314 * doing something similar to dm (dm-builtin.c) is overkill. 5315 */ 5316 if (need_put) 5317 module_put(THIS_MODULE); 5318 } 5319 5320 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec) 5321 { 5322 struct rbd_device *rbd_dev; 5323 5324 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 5325 if (!rbd_dev) 5326 return NULL; 5327 5328 spin_lock_init(&rbd_dev->lock); 5329 INIT_LIST_HEAD(&rbd_dev->node); 5330 init_rwsem(&rbd_dev->header_rwsem); 5331 5332 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 5333 ceph_oid_init(&rbd_dev->header_oid); 5334 rbd_dev->header_oloc.pool = spec->pool_id; 5335 if (spec->pool_ns) { 5336 WARN_ON(!*spec->pool_ns); 5337 rbd_dev->header_oloc.pool_ns = 5338 ceph_find_or_create_string(spec->pool_ns, 5339 strlen(spec->pool_ns)); 5340 } 5341 5342 mutex_init(&rbd_dev->watch_mutex); 5343 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 5344 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 5345 5346 init_rwsem(&rbd_dev->lock_rwsem); 5347 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 5348 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 5349 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 5350 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 5351 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 5352 spin_lock_init(&rbd_dev->lock_lists_lock); 5353 INIT_LIST_HEAD(&rbd_dev->acquiring_list); 5354 INIT_LIST_HEAD(&rbd_dev->running_list); 5355 init_completion(&rbd_dev->acquire_wait); 5356 init_completion(&rbd_dev->releasing_wait); 5357 5358 spin_lock_init(&rbd_dev->object_map_lock); 5359 5360 rbd_dev->dev.bus = &rbd_bus_type; 5361 rbd_dev->dev.type = &rbd_device_type; 5362 rbd_dev->dev.parent = &rbd_root_dev; 5363 device_initialize(&rbd_dev->dev); 5364 5365 return rbd_dev; 5366 } 5367 5368 /* 5369 * Create a mapping rbd_dev. 5370 */ 5371 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 5372 struct rbd_spec *spec, 5373 struct rbd_options *opts) 5374 { 5375 struct rbd_device *rbd_dev; 5376 5377 rbd_dev = __rbd_dev_create(spec); 5378 if (!rbd_dev) 5379 return NULL; 5380 5381 /* get an id and fill in device name */ 5382 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 5383 minor_to_rbd_dev_id(1 << MINORBITS), 5384 GFP_KERNEL); 5385 if (rbd_dev->dev_id < 0) 5386 goto fail_rbd_dev; 5387 5388 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 5389 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 5390 rbd_dev->name); 5391 if (!rbd_dev->task_wq) 5392 goto fail_dev_id; 5393 5394 /* we have a ref from do_rbd_add() */ 5395 __module_get(THIS_MODULE); 5396 5397 rbd_dev->rbd_client = rbdc; 5398 rbd_dev->spec = spec; 5399 rbd_dev->opts = opts; 5400 5401 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 5402 return rbd_dev; 5403 5404 fail_dev_id: 5405 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5406 fail_rbd_dev: 5407 rbd_dev_free(rbd_dev); 5408 return NULL; 5409 } 5410 5411 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 5412 { 5413 if (rbd_dev) 5414 put_device(&rbd_dev->dev); 5415 } 5416 5417 /* 5418 * Get the size and object order for an image snapshot, or if 5419 * snap_id is CEPH_NOSNAP, gets this information for the base 5420 * image. 5421 */ 5422 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 5423 u8 *order, u64 *snap_size) 5424 { 5425 __le64 snapid = cpu_to_le64(snap_id); 5426 int ret; 5427 struct { 5428 u8 order; 5429 __le64 size; 5430 } __attribute__ ((packed)) size_buf = { 0 }; 5431 5432 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5433 &rbd_dev->header_oloc, "get_size", 5434 &snapid, sizeof(snapid), 5435 &size_buf, sizeof(size_buf)); 5436 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5437 if (ret < 0) 5438 return ret; 5439 if (ret < sizeof (size_buf)) 5440 return -ERANGE; 5441 5442 if (order) { 5443 *order = size_buf.order; 5444 dout(" order %u", (unsigned int)*order); 5445 } 5446 *snap_size = le64_to_cpu(size_buf.size); 5447 5448 dout(" snap_id 0x%016llx snap_size = %llu\n", 5449 (unsigned long long)snap_id, 5450 (unsigned long long)*snap_size); 5451 5452 return 0; 5453 } 5454 5455 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 5456 { 5457 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 5458 &rbd_dev->header.obj_order, 5459 &rbd_dev->header.image_size); 5460 } 5461 5462 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 5463 { 5464 size_t size; 5465 void *reply_buf; 5466 int ret; 5467 void *p; 5468 5469 /* Response will be an encoded string, which includes a length */ 5470 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX; 5471 reply_buf = kzalloc(size, GFP_KERNEL); 5472 if (!reply_buf) 5473 return -ENOMEM; 5474 5475 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5476 &rbd_dev->header_oloc, "get_object_prefix", 5477 NULL, 0, reply_buf, size); 5478 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5479 if (ret < 0) 5480 goto out; 5481 5482 p = reply_buf; 5483 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 5484 p + ret, NULL, GFP_NOIO); 5485 ret = 0; 5486 5487 if (IS_ERR(rbd_dev->header.object_prefix)) { 5488 ret = PTR_ERR(rbd_dev->header.object_prefix); 5489 rbd_dev->header.object_prefix = NULL; 5490 } else { 5491 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 5492 } 5493 out: 5494 kfree(reply_buf); 5495 5496 return ret; 5497 } 5498 5499 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 5500 bool read_only, u64 *snap_features) 5501 { 5502 struct { 5503 __le64 snap_id; 5504 u8 read_only; 5505 } features_in; 5506 struct { 5507 __le64 features; 5508 __le64 incompat; 5509 } __attribute__ ((packed)) features_buf = { 0 }; 5510 u64 unsup; 5511 int ret; 5512 5513 features_in.snap_id = cpu_to_le64(snap_id); 5514 features_in.read_only = read_only; 5515 5516 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5517 &rbd_dev->header_oloc, "get_features", 5518 &features_in, sizeof(features_in), 5519 &features_buf, sizeof(features_buf)); 5520 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5521 if (ret < 0) 5522 return ret; 5523 if (ret < sizeof (features_buf)) 5524 return -ERANGE; 5525 5526 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 5527 if (unsup) { 5528 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 5529 unsup); 5530 return -ENXIO; 5531 } 5532 5533 *snap_features = le64_to_cpu(features_buf.features); 5534 5535 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 5536 (unsigned long long)snap_id, 5537 (unsigned long long)*snap_features, 5538 (unsigned long long)le64_to_cpu(features_buf.incompat)); 5539 5540 return 0; 5541 } 5542 5543 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 5544 { 5545 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 5546 rbd_is_ro(rbd_dev), 5547 &rbd_dev->header.features); 5548 } 5549 5550 /* 5551 * These are generic image flags, but since they are used only for 5552 * object map, store them in rbd_dev->object_map_flags. 5553 * 5554 * For the same reason, this function is called only on object map 5555 * (re)load and not on header refresh. 5556 */ 5557 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev) 5558 { 5559 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5560 __le64 flags; 5561 int ret; 5562 5563 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5564 &rbd_dev->header_oloc, "get_flags", 5565 &snapid, sizeof(snapid), 5566 &flags, sizeof(flags)); 5567 if (ret < 0) 5568 return ret; 5569 if (ret < sizeof(flags)) 5570 return -EBADMSG; 5571 5572 rbd_dev->object_map_flags = le64_to_cpu(flags); 5573 return 0; 5574 } 5575 5576 struct parent_image_info { 5577 u64 pool_id; 5578 const char *pool_ns; 5579 const char *image_id; 5580 u64 snap_id; 5581 5582 bool has_overlap; 5583 u64 overlap; 5584 }; 5585 5586 /* 5587 * The caller is responsible for @pii. 5588 */ 5589 static int decode_parent_image_spec(void **p, void *end, 5590 struct parent_image_info *pii) 5591 { 5592 u8 struct_v; 5593 u32 struct_len; 5594 int ret; 5595 5596 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec", 5597 &struct_v, &struct_len); 5598 if (ret) 5599 return ret; 5600 5601 ceph_decode_64_safe(p, end, pii->pool_id, e_inval); 5602 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5603 if (IS_ERR(pii->pool_ns)) { 5604 ret = PTR_ERR(pii->pool_ns); 5605 pii->pool_ns = NULL; 5606 return ret; 5607 } 5608 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5609 if (IS_ERR(pii->image_id)) { 5610 ret = PTR_ERR(pii->image_id); 5611 pii->image_id = NULL; 5612 return ret; 5613 } 5614 ceph_decode_64_safe(p, end, pii->snap_id, e_inval); 5615 return 0; 5616 5617 e_inval: 5618 return -EINVAL; 5619 } 5620 5621 static int __get_parent_info(struct rbd_device *rbd_dev, 5622 struct page *req_page, 5623 struct page *reply_page, 5624 struct parent_image_info *pii) 5625 { 5626 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5627 size_t reply_len = PAGE_SIZE; 5628 void *p, *end; 5629 int ret; 5630 5631 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5632 "rbd", "parent_get", CEPH_OSD_FLAG_READ, 5633 req_page, sizeof(u64), &reply_page, &reply_len); 5634 if (ret) 5635 return ret == -EOPNOTSUPP ? 1 : ret; 5636 5637 p = page_address(reply_page); 5638 end = p + reply_len; 5639 ret = decode_parent_image_spec(&p, end, pii); 5640 if (ret) 5641 return ret; 5642 5643 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5644 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ, 5645 req_page, sizeof(u64), &reply_page, &reply_len); 5646 if (ret) 5647 return ret; 5648 5649 p = page_address(reply_page); 5650 end = p + reply_len; 5651 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval); 5652 if (pii->has_overlap) 5653 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5654 5655 return 0; 5656 5657 e_inval: 5658 return -EINVAL; 5659 } 5660 5661 /* 5662 * The caller is responsible for @pii. 5663 */ 5664 static int __get_parent_info_legacy(struct rbd_device *rbd_dev, 5665 struct page *req_page, 5666 struct page *reply_page, 5667 struct parent_image_info *pii) 5668 { 5669 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5670 size_t reply_len = PAGE_SIZE; 5671 void *p, *end; 5672 int ret; 5673 5674 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5675 "rbd", "get_parent", CEPH_OSD_FLAG_READ, 5676 req_page, sizeof(u64), &reply_page, &reply_len); 5677 if (ret) 5678 return ret; 5679 5680 p = page_address(reply_page); 5681 end = p + reply_len; 5682 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval); 5683 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5684 if (IS_ERR(pii->image_id)) { 5685 ret = PTR_ERR(pii->image_id); 5686 pii->image_id = NULL; 5687 return ret; 5688 } 5689 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval); 5690 pii->has_overlap = true; 5691 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5692 5693 return 0; 5694 5695 e_inval: 5696 return -EINVAL; 5697 } 5698 5699 static int get_parent_info(struct rbd_device *rbd_dev, 5700 struct parent_image_info *pii) 5701 { 5702 struct page *req_page, *reply_page; 5703 void *p; 5704 int ret; 5705 5706 req_page = alloc_page(GFP_KERNEL); 5707 if (!req_page) 5708 return -ENOMEM; 5709 5710 reply_page = alloc_page(GFP_KERNEL); 5711 if (!reply_page) { 5712 __free_page(req_page); 5713 return -ENOMEM; 5714 } 5715 5716 p = page_address(req_page); 5717 ceph_encode_64(&p, rbd_dev->spec->snap_id); 5718 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii); 5719 if (ret > 0) 5720 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page, 5721 pii); 5722 5723 __free_page(req_page); 5724 __free_page(reply_page); 5725 return ret; 5726 } 5727 5728 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 5729 { 5730 struct rbd_spec *parent_spec; 5731 struct parent_image_info pii = { 0 }; 5732 int ret; 5733 5734 parent_spec = rbd_spec_alloc(); 5735 if (!parent_spec) 5736 return -ENOMEM; 5737 5738 ret = get_parent_info(rbd_dev, &pii); 5739 if (ret) 5740 goto out_err; 5741 5742 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5743 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id, 5744 pii.has_overlap, pii.overlap); 5745 5746 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) { 5747 /* 5748 * Either the parent never existed, or we have 5749 * record of it but the image got flattened so it no 5750 * longer has a parent. When the parent of a 5751 * layered image disappears we immediately set the 5752 * overlap to 0. The effect of this is that all new 5753 * requests will be treated as if the image had no 5754 * parent. 5755 * 5756 * If !pii.has_overlap, the parent image spec is not 5757 * applicable. It's there to avoid duplication in each 5758 * snapshot record. 5759 */ 5760 if (rbd_dev->parent_overlap) { 5761 rbd_dev->parent_overlap = 0; 5762 rbd_dev_parent_put(rbd_dev); 5763 pr_info("%s: clone image has been flattened\n", 5764 rbd_dev->disk->disk_name); 5765 } 5766 5767 goto out; /* No parent? No problem. */ 5768 } 5769 5770 /* The ceph file layout needs to fit pool id in 32 bits */ 5771 5772 ret = -EIO; 5773 if (pii.pool_id > (u64)U32_MAX) { 5774 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5775 (unsigned long long)pii.pool_id, U32_MAX); 5776 goto out_err; 5777 } 5778 5779 /* 5780 * The parent won't change (except when the clone is 5781 * flattened, already handled that). So we only need to 5782 * record the parent spec we have not already done so. 5783 */ 5784 if (!rbd_dev->parent_spec) { 5785 parent_spec->pool_id = pii.pool_id; 5786 if (pii.pool_ns && *pii.pool_ns) { 5787 parent_spec->pool_ns = pii.pool_ns; 5788 pii.pool_ns = NULL; 5789 } 5790 parent_spec->image_id = pii.image_id; 5791 pii.image_id = NULL; 5792 parent_spec->snap_id = pii.snap_id; 5793 5794 rbd_dev->parent_spec = parent_spec; 5795 parent_spec = NULL; /* rbd_dev now owns this */ 5796 } 5797 5798 /* 5799 * We always update the parent overlap. If it's zero we issue 5800 * a warning, as we will proceed as if there was no parent. 5801 */ 5802 if (!pii.overlap) { 5803 if (parent_spec) { 5804 /* refresh, careful to warn just once */ 5805 if (rbd_dev->parent_overlap) 5806 rbd_warn(rbd_dev, 5807 "clone now standalone (overlap became 0)"); 5808 } else { 5809 /* initial probe */ 5810 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5811 } 5812 } 5813 rbd_dev->parent_overlap = pii.overlap; 5814 5815 out: 5816 ret = 0; 5817 out_err: 5818 kfree(pii.pool_ns); 5819 kfree(pii.image_id); 5820 rbd_spec_put(parent_spec); 5821 return ret; 5822 } 5823 5824 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 5825 { 5826 struct { 5827 __le64 stripe_unit; 5828 __le64 stripe_count; 5829 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5830 size_t size = sizeof (striping_info_buf); 5831 void *p; 5832 int ret; 5833 5834 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5835 &rbd_dev->header_oloc, "get_stripe_unit_count", 5836 NULL, 0, &striping_info_buf, size); 5837 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5838 if (ret < 0) 5839 return ret; 5840 if (ret < size) 5841 return -ERANGE; 5842 5843 p = &striping_info_buf; 5844 rbd_dev->header.stripe_unit = ceph_decode_64(&p); 5845 rbd_dev->header.stripe_count = ceph_decode_64(&p); 5846 return 0; 5847 } 5848 5849 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 5850 { 5851 __le64 data_pool_id; 5852 int ret; 5853 5854 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5855 &rbd_dev->header_oloc, "get_data_pool", 5856 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 5857 if (ret < 0) 5858 return ret; 5859 if (ret < sizeof(data_pool_id)) 5860 return -EBADMSG; 5861 5862 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 5863 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 5864 return 0; 5865 } 5866 5867 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5868 { 5869 CEPH_DEFINE_OID_ONSTACK(oid); 5870 size_t image_id_size; 5871 char *image_id; 5872 void *p; 5873 void *end; 5874 size_t size; 5875 void *reply_buf = NULL; 5876 size_t len = 0; 5877 char *image_name = NULL; 5878 int ret; 5879 5880 rbd_assert(!rbd_dev->spec->image_name); 5881 5882 len = strlen(rbd_dev->spec->image_id); 5883 image_id_size = sizeof (__le32) + len; 5884 image_id = kmalloc(image_id_size, GFP_KERNEL); 5885 if (!image_id) 5886 return NULL; 5887 5888 p = image_id; 5889 end = image_id + image_id_size; 5890 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5891 5892 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5893 reply_buf = kmalloc(size, GFP_KERNEL); 5894 if (!reply_buf) 5895 goto out; 5896 5897 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5898 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5899 "dir_get_name", image_id, image_id_size, 5900 reply_buf, size); 5901 if (ret < 0) 5902 goto out; 5903 p = reply_buf; 5904 end = reply_buf + ret; 5905 5906 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5907 if (IS_ERR(image_name)) 5908 image_name = NULL; 5909 else 5910 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5911 out: 5912 kfree(reply_buf); 5913 kfree(image_id); 5914 5915 return image_name; 5916 } 5917 5918 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5919 { 5920 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5921 const char *snap_name; 5922 u32 which = 0; 5923 5924 /* Skip over names until we find the one we are looking for */ 5925 5926 snap_name = rbd_dev->header.snap_names; 5927 while (which < snapc->num_snaps) { 5928 if (!strcmp(name, snap_name)) 5929 return snapc->snaps[which]; 5930 snap_name += strlen(snap_name) + 1; 5931 which++; 5932 } 5933 return CEPH_NOSNAP; 5934 } 5935 5936 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5937 { 5938 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5939 u32 which; 5940 bool found = false; 5941 u64 snap_id; 5942 5943 for (which = 0; !found && which < snapc->num_snaps; which++) { 5944 const char *snap_name; 5945 5946 snap_id = snapc->snaps[which]; 5947 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5948 if (IS_ERR(snap_name)) { 5949 /* ignore no-longer existing snapshots */ 5950 if (PTR_ERR(snap_name) == -ENOENT) 5951 continue; 5952 else 5953 break; 5954 } 5955 found = !strcmp(name, snap_name); 5956 kfree(snap_name); 5957 } 5958 return found ? snap_id : CEPH_NOSNAP; 5959 } 5960 5961 /* 5962 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5963 * no snapshot by that name is found, or if an error occurs. 5964 */ 5965 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5966 { 5967 if (rbd_dev->image_format == 1) 5968 return rbd_v1_snap_id_by_name(rbd_dev, name); 5969 5970 return rbd_v2_snap_id_by_name(rbd_dev, name); 5971 } 5972 5973 /* 5974 * An image being mapped will have everything but the snap id. 5975 */ 5976 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 5977 { 5978 struct rbd_spec *spec = rbd_dev->spec; 5979 5980 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 5981 rbd_assert(spec->image_id && spec->image_name); 5982 rbd_assert(spec->snap_name); 5983 5984 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 5985 u64 snap_id; 5986 5987 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 5988 if (snap_id == CEPH_NOSNAP) 5989 return -ENOENT; 5990 5991 spec->snap_id = snap_id; 5992 } else { 5993 spec->snap_id = CEPH_NOSNAP; 5994 } 5995 5996 return 0; 5997 } 5998 5999 /* 6000 * A parent image will have all ids but none of the names. 6001 * 6002 * All names in an rbd spec are dynamically allocated. It's OK if we 6003 * can't figure out the name for an image id. 6004 */ 6005 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 6006 { 6007 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 6008 struct rbd_spec *spec = rbd_dev->spec; 6009 const char *pool_name; 6010 const char *image_name; 6011 const char *snap_name; 6012 int ret; 6013 6014 rbd_assert(spec->pool_id != CEPH_NOPOOL); 6015 rbd_assert(spec->image_id); 6016 rbd_assert(spec->snap_id != CEPH_NOSNAP); 6017 6018 /* Get the pool name; we have to make our own copy of this */ 6019 6020 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 6021 if (!pool_name) { 6022 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 6023 return -EIO; 6024 } 6025 pool_name = kstrdup(pool_name, GFP_KERNEL); 6026 if (!pool_name) 6027 return -ENOMEM; 6028 6029 /* Fetch the image name; tolerate failure here */ 6030 6031 image_name = rbd_dev_image_name(rbd_dev); 6032 if (!image_name) 6033 rbd_warn(rbd_dev, "unable to get image name"); 6034 6035 /* Fetch the snapshot name */ 6036 6037 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 6038 if (IS_ERR(snap_name)) { 6039 ret = PTR_ERR(snap_name); 6040 goto out_err; 6041 } 6042 6043 spec->pool_name = pool_name; 6044 spec->image_name = image_name; 6045 spec->snap_name = snap_name; 6046 6047 return 0; 6048 6049 out_err: 6050 kfree(image_name); 6051 kfree(pool_name); 6052 return ret; 6053 } 6054 6055 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 6056 { 6057 size_t size; 6058 int ret; 6059 void *reply_buf; 6060 void *p; 6061 void *end; 6062 u64 seq; 6063 u32 snap_count; 6064 struct ceph_snap_context *snapc; 6065 u32 i; 6066 6067 /* 6068 * We'll need room for the seq value (maximum snapshot id), 6069 * snapshot count, and array of that many snapshot ids. 6070 * For now we have a fixed upper limit on the number we're 6071 * prepared to receive. 6072 */ 6073 size = sizeof (__le64) + sizeof (__le32) + 6074 RBD_MAX_SNAP_COUNT * sizeof (__le64); 6075 reply_buf = kzalloc(size, GFP_KERNEL); 6076 if (!reply_buf) 6077 return -ENOMEM; 6078 6079 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6080 &rbd_dev->header_oloc, "get_snapcontext", 6081 NULL, 0, reply_buf, size); 6082 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6083 if (ret < 0) 6084 goto out; 6085 6086 p = reply_buf; 6087 end = reply_buf + ret; 6088 ret = -ERANGE; 6089 ceph_decode_64_safe(&p, end, seq, out); 6090 ceph_decode_32_safe(&p, end, snap_count, out); 6091 6092 /* 6093 * Make sure the reported number of snapshot ids wouldn't go 6094 * beyond the end of our buffer. But before checking that, 6095 * make sure the computed size of the snapshot context we 6096 * allocate is representable in a size_t. 6097 */ 6098 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 6099 / sizeof (u64)) { 6100 ret = -EINVAL; 6101 goto out; 6102 } 6103 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 6104 goto out; 6105 ret = 0; 6106 6107 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 6108 if (!snapc) { 6109 ret = -ENOMEM; 6110 goto out; 6111 } 6112 snapc->seq = seq; 6113 for (i = 0; i < snap_count; i++) 6114 snapc->snaps[i] = ceph_decode_64(&p); 6115 6116 ceph_put_snap_context(rbd_dev->header.snapc); 6117 rbd_dev->header.snapc = snapc; 6118 6119 dout(" snap context seq = %llu, snap_count = %u\n", 6120 (unsigned long long)seq, (unsigned int)snap_count); 6121 out: 6122 kfree(reply_buf); 6123 6124 return ret; 6125 } 6126 6127 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 6128 u64 snap_id) 6129 { 6130 size_t size; 6131 void *reply_buf; 6132 __le64 snapid; 6133 int ret; 6134 void *p; 6135 void *end; 6136 char *snap_name; 6137 6138 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 6139 reply_buf = kmalloc(size, GFP_KERNEL); 6140 if (!reply_buf) 6141 return ERR_PTR(-ENOMEM); 6142 6143 snapid = cpu_to_le64(snap_id); 6144 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6145 &rbd_dev->header_oloc, "get_snapshot_name", 6146 &snapid, sizeof(snapid), reply_buf, size); 6147 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6148 if (ret < 0) { 6149 snap_name = ERR_PTR(ret); 6150 goto out; 6151 } 6152 6153 p = reply_buf; 6154 end = reply_buf + ret; 6155 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 6156 if (IS_ERR(snap_name)) 6157 goto out; 6158 6159 dout(" snap_id 0x%016llx snap_name = %s\n", 6160 (unsigned long long)snap_id, snap_name); 6161 out: 6162 kfree(reply_buf); 6163 6164 return snap_name; 6165 } 6166 6167 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 6168 { 6169 bool first_time = rbd_dev->header.object_prefix == NULL; 6170 int ret; 6171 6172 ret = rbd_dev_v2_image_size(rbd_dev); 6173 if (ret) 6174 return ret; 6175 6176 if (first_time) { 6177 ret = rbd_dev_v2_header_onetime(rbd_dev); 6178 if (ret) 6179 return ret; 6180 } 6181 6182 ret = rbd_dev_v2_snap_context(rbd_dev); 6183 if (ret && first_time) { 6184 kfree(rbd_dev->header.object_prefix); 6185 rbd_dev->header.object_prefix = NULL; 6186 } 6187 6188 return ret; 6189 } 6190 6191 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 6192 { 6193 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6194 6195 if (rbd_dev->image_format == 1) 6196 return rbd_dev_v1_header_info(rbd_dev); 6197 6198 return rbd_dev_v2_header_info(rbd_dev); 6199 } 6200 6201 /* 6202 * Skips over white space at *buf, and updates *buf to point to the 6203 * first found non-space character (if any). Returns the length of 6204 * the token (string of non-white space characters) found. Note 6205 * that *buf must be terminated with '\0'. 6206 */ 6207 static inline size_t next_token(const char **buf) 6208 { 6209 /* 6210 * These are the characters that produce nonzero for 6211 * isspace() in the "C" and "POSIX" locales. 6212 */ 6213 static const char spaces[] = " \f\n\r\t\v"; 6214 6215 *buf += strspn(*buf, spaces); /* Find start of token */ 6216 6217 return strcspn(*buf, spaces); /* Return token length */ 6218 } 6219 6220 /* 6221 * Finds the next token in *buf, dynamically allocates a buffer big 6222 * enough to hold a copy of it, and copies the token into the new 6223 * buffer. The copy is guaranteed to be terminated with '\0'. Note 6224 * that a duplicate buffer is created even for a zero-length token. 6225 * 6226 * Returns a pointer to the newly-allocated duplicate, or a null 6227 * pointer if memory for the duplicate was not available. If 6228 * the lenp argument is a non-null pointer, the length of the token 6229 * (not including the '\0') is returned in *lenp. 6230 * 6231 * If successful, the *buf pointer will be updated to point beyond 6232 * the end of the found token. 6233 * 6234 * Note: uses GFP_KERNEL for allocation. 6235 */ 6236 static inline char *dup_token(const char **buf, size_t *lenp) 6237 { 6238 char *dup; 6239 size_t len; 6240 6241 len = next_token(buf); 6242 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 6243 if (!dup) 6244 return NULL; 6245 *(dup + len) = '\0'; 6246 *buf += len; 6247 6248 if (lenp) 6249 *lenp = len; 6250 6251 return dup; 6252 } 6253 6254 static int rbd_parse_param(struct fs_parameter *param, 6255 struct rbd_parse_opts_ctx *pctx) 6256 { 6257 struct rbd_options *opt = pctx->opts; 6258 struct fs_parse_result result; 6259 struct p_log log = {.prefix = "rbd"}; 6260 int token, ret; 6261 6262 ret = ceph_parse_param(param, pctx->copts, NULL); 6263 if (ret != -ENOPARAM) 6264 return ret; 6265 6266 token = __fs_parse(&log, rbd_parameters, param, &result); 6267 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token); 6268 if (token < 0) { 6269 if (token == -ENOPARAM) 6270 return inval_plog(&log, "Unknown parameter '%s'", 6271 param->key); 6272 return token; 6273 } 6274 6275 switch (token) { 6276 case Opt_queue_depth: 6277 if (result.uint_32 < 1) 6278 goto out_of_range; 6279 opt->queue_depth = result.uint_32; 6280 break; 6281 case Opt_alloc_size: 6282 if (result.uint_32 < SECTOR_SIZE) 6283 goto out_of_range; 6284 if (!is_power_of_2(result.uint_32)) 6285 return inval_plog(&log, "alloc_size must be a power of 2"); 6286 opt->alloc_size = result.uint_32; 6287 break; 6288 case Opt_lock_timeout: 6289 /* 0 is "wait forever" (i.e. infinite timeout) */ 6290 if (result.uint_32 > INT_MAX / 1000) 6291 goto out_of_range; 6292 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000); 6293 break; 6294 case Opt_pool_ns: 6295 kfree(pctx->spec->pool_ns); 6296 pctx->spec->pool_ns = param->string; 6297 param->string = NULL; 6298 break; 6299 case Opt_compression_hint: 6300 switch (result.uint_32) { 6301 case Opt_compression_hint_none: 6302 opt->alloc_hint_flags &= 6303 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE | 6304 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE); 6305 break; 6306 case Opt_compression_hint_compressible: 6307 opt->alloc_hint_flags |= 6308 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6309 opt->alloc_hint_flags &= 6310 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6311 break; 6312 case Opt_compression_hint_incompressible: 6313 opt->alloc_hint_flags |= 6314 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE; 6315 opt->alloc_hint_flags &= 6316 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE; 6317 break; 6318 default: 6319 BUG(); 6320 } 6321 break; 6322 case Opt_read_only: 6323 opt->read_only = true; 6324 break; 6325 case Opt_read_write: 6326 opt->read_only = false; 6327 break; 6328 case Opt_lock_on_read: 6329 opt->lock_on_read = true; 6330 break; 6331 case Opt_exclusive: 6332 opt->exclusive = true; 6333 break; 6334 case Opt_notrim: 6335 opt->trim = false; 6336 break; 6337 default: 6338 BUG(); 6339 } 6340 6341 return 0; 6342 6343 out_of_range: 6344 return inval_plog(&log, "%s out of range", param->key); 6345 } 6346 6347 /* 6348 * This duplicates most of generic_parse_monolithic(), untying it from 6349 * fs_context and skipping standard superblock and security options. 6350 */ 6351 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx) 6352 { 6353 char *key; 6354 int ret = 0; 6355 6356 dout("%s '%s'\n", __func__, options); 6357 while ((key = strsep(&options, ",")) != NULL) { 6358 if (*key) { 6359 struct fs_parameter param = { 6360 .key = key, 6361 .type = fs_value_is_flag, 6362 }; 6363 char *value = strchr(key, '='); 6364 size_t v_len = 0; 6365 6366 if (value) { 6367 if (value == key) 6368 continue; 6369 *value++ = 0; 6370 v_len = strlen(value); 6371 param.string = kmemdup_nul(value, v_len, 6372 GFP_KERNEL); 6373 if (!param.string) 6374 return -ENOMEM; 6375 param.type = fs_value_is_string; 6376 } 6377 param.size = v_len; 6378 6379 ret = rbd_parse_param(¶m, pctx); 6380 kfree(param.string); 6381 if (ret) 6382 break; 6383 } 6384 } 6385 6386 return ret; 6387 } 6388 6389 /* 6390 * Parse the options provided for an "rbd add" (i.e., rbd image 6391 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 6392 * and the data written is passed here via a NUL-terminated buffer. 6393 * Returns 0 if successful or an error code otherwise. 6394 * 6395 * The information extracted from these options is recorded in 6396 * the other parameters which return dynamically-allocated 6397 * structures: 6398 * ceph_opts 6399 * The address of a pointer that will refer to a ceph options 6400 * structure. Caller must release the returned pointer using 6401 * ceph_destroy_options() when it is no longer needed. 6402 * rbd_opts 6403 * Address of an rbd options pointer. Fully initialized by 6404 * this function; caller must release with kfree(). 6405 * spec 6406 * Address of an rbd image specification pointer. Fully 6407 * initialized by this function based on parsed options. 6408 * Caller must release with rbd_spec_put(). 6409 * 6410 * The options passed take this form: 6411 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 6412 * where: 6413 * <mon_addrs> 6414 * A comma-separated list of one or more monitor addresses. 6415 * A monitor address is an ip address, optionally followed 6416 * by a port number (separated by a colon). 6417 * I.e.: ip1[:port1][,ip2[:port2]...] 6418 * <options> 6419 * A comma-separated list of ceph and/or rbd options. 6420 * <pool_name> 6421 * The name of the rados pool containing the rbd image. 6422 * <image_name> 6423 * The name of the image in that pool to map. 6424 * <snap_id> 6425 * An optional snapshot id. If provided, the mapping will 6426 * present data from the image at the time that snapshot was 6427 * created. The image head is used if no snapshot id is 6428 * provided. Snapshot mappings are always read-only. 6429 */ 6430 static int rbd_add_parse_args(const char *buf, 6431 struct ceph_options **ceph_opts, 6432 struct rbd_options **opts, 6433 struct rbd_spec **rbd_spec) 6434 { 6435 size_t len; 6436 char *options; 6437 const char *mon_addrs; 6438 char *snap_name; 6439 size_t mon_addrs_size; 6440 struct rbd_parse_opts_ctx pctx = { 0 }; 6441 int ret; 6442 6443 /* The first four tokens are required */ 6444 6445 len = next_token(&buf); 6446 if (!len) { 6447 rbd_warn(NULL, "no monitor address(es) provided"); 6448 return -EINVAL; 6449 } 6450 mon_addrs = buf; 6451 mon_addrs_size = len; 6452 buf += len; 6453 6454 ret = -EINVAL; 6455 options = dup_token(&buf, NULL); 6456 if (!options) 6457 return -ENOMEM; 6458 if (!*options) { 6459 rbd_warn(NULL, "no options provided"); 6460 goto out_err; 6461 } 6462 6463 pctx.spec = rbd_spec_alloc(); 6464 if (!pctx.spec) 6465 goto out_mem; 6466 6467 pctx.spec->pool_name = dup_token(&buf, NULL); 6468 if (!pctx.spec->pool_name) 6469 goto out_mem; 6470 if (!*pctx.spec->pool_name) { 6471 rbd_warn(NULL, "no pool name provided"); 6472 goto out_err; 6473 } 6474 6475 pctx.spec->image_name = dup_token(&buf, NULL); 6476 if (!pctx.spec->image_name) 6477 goto out_mem; 6478 if (!*pctx.spec->image_name) { 6479 rbd_warn(NULL, "no image name provided"); 6480 goto out_err; 6481 } 6482 6483 /* 6484 * Snapshot name is optional; default is to use "-" 6485 * (indicating the head/no snapshot). 6486 */ 6487 len = next_token(&buf); 6488 if (!len) { 6489 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 6490 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 6491 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 6492 ret = -ENAMETOOLONG; 6493 goto out_err; 6494 } 6495 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 6496 if (!snap_name) 6497 goto out_mem; 6498 *(snap_name + len) = '\0'; 6499 pctx.spec->snap_name = snap_name; 6500 6501 pctx.copts = ceph_alloc_options(); 6502 if (!pctx.copts) 6503 goto out_mem; 6504 6505 /* Initialize all rbd options to the defaults */ 6506 6507 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL); 6508 if (!pctx.opts) 6509 goto out_mem; 6510 6511 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT; 6512 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 6513 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT; 6514 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 6515 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 6516 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 6517 pctx.opts->trim = RBD_TRIM_DEFAULT; 6518 6519 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL, 6520 ','); 6521 if (ret) 6522 goto out_err; 6523 6524 ret = rbd_parse_options(options, &pctx); 6525 if (ret) 6526 goto out_err; 6527 6528 *ceph_opts = pctx.copts; 6529 *opts = pctx.opts; 6530 *rbd_spec = pctx.spec; 6531 kfree(options); 6532 return 0; 6533 6534 out_mem: 6535 ret = -ENOMEM; 6536 out_err: 6537 kfree(pctx.opts); 6538 ceph_destroy_options(pctx.copts); 6539 rbd_spec_put(pctx.spec); 6540 kfree(options); 6541 return ret; 6542 } 6543 6544 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 6545 { 6546 down_write(&rbd_dev->lock_rwsem); 6547 if (__rbd_is_lock_owner(rbd_dev)) 6548 __rbd_release_lock(rbd_dev); 6549 up_write(&rbd_dev->lock_rwsem); 6550 } 6551 6552 /* 6553 * If the wait is interrupted, an error is returned even if the lock 6554 * was successfully acquired. rbd_dev_image_unlock() will release it 6555 * if needed. 6556 */ 6557 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 6558 { 6559 long ret; 6560 6561 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 6562 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read) 6563 return 0; 6564 6565 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 6566 return -EINVAL; 6567 } 6568 6569 if (rbd_is_ro(rbd_dev)) 6570 return 0; 6571 6572 rbd_assert(!rbd_is_lock_owner(rbd_dev)); 6573 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 6574 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait, 6575 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout)); 6576 if (ret > 0) { 6577 ret = rbd_dev->acquire_err; 6578 } else { 6579 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 6580 if (!ret) 6581 ret = -ETIMEDOUT; 6582 } 6583 6584 if (ret) { 6585 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret); 6586 return ret; 6587 } 6588 6589 /* 6590 * The lock may have been released by now, unless automatic lock 6591 * transitions are disabled. 6592 */ 6593 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev)); 6594 return 0; 6595 } 6596 6597 /* 6598 * An rbd format 2 image has a unique identifier, distinct from the 6599 * name given to it by the user. Internally, that identifier is 6600 * what's used to specify the names of objects related to the image. 6601 * 6602 * A special "rbd id" object is used to map an rbd image name to its 6603 * id. If that object doesn't exist, then there is no v2 rbd image 6604 * with the supplied name. 6605 * 6606 * This function will record the given rbd_dev's image_id field if 6607 * it can be determined, and in that case will return 0. If any 6608 * errors occur a negative errno will be returned and the rbd_dev's 6609 * image_id field will be unchanged (and should be NULL). 6610 */ 6611 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 6612 { 6613 int ret; 6614 size_t size; 6615 CEPH_DEFINE_OID_ONSTACK(oid); 6616 void *response; 6617 char *image_id; 6618 6619 /* 6620 * When probing a parent image, the image id is already 6621 * known (and the image name likely is not). There's no 6622 * need to fetch the image id again in this case. We 6623 * do still need to set the image format though. 6624 */ 6625 if (rbd_dev->spec->image_id) { 6626 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 6627 6628 return 0; 6629 } 6630 6631 /* 6632 * First, see if the format 2 image id file exists, and if 6633 * so, get the image's persistent id from it. 6634 */ 6635 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 6636 rbd_dev->spec->image_name); 6637 if (ret) 6638 return ret; 6639 6640 dout("rbd id object name is %s\n", oid.name); 6641 6642 /* Response will be an encoded string, which includes a length */ 6643 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 6644 response = kzalloc(size, GFP_NOIO); 6645 if (!response) { 6646 ret = -ENOMEM; 6647 goto out; 6648 } 6649 6650 /* If it doesn't exist we'll assume it's a format 1 image */ 6651 6652 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 6653 "get_id", NULL, 0, 6654 response, size); 6655 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6656 if (ret == -ENOENT) { 6657 image_id = kstrdup("", GFP_KERNEL); 6658 ret = image_id ? 0 : -ENOMEM; 6659 if (!ret) 6660 rbd_dev->image_format = 1; 6661 } else if (ret >= 0) { 6662 void *p = response; 6663 6664 image_id = ceph_extract_encoded_string(&p, p + ret, 6665 NULL, GFP_NOIO); 6666 ret = PTR_ERR_OR_ZERO(image_id); 6667 if (!ret) 6668 rbd_dev->image_format = 2; 6669 } 6670 6671 if (!ret) { 6672 rbd_dev->spec->image_id = image_id; 6673 dout("image_id is %s\n", image_id); 6674 } 6675 out: 6676 kfree(response); 6677 ceph_oid_destroy(&oid); 6678 return ret; 6679 } 6680 6681 /* 6682 * Undo whatever state changes are made by v1 or v2 header info 6683 * call. 6684 */ 6685 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 6686 { 6687 struct rbd_image_header *header; 6688 6689 rbd_dev_parent_put(rbd_dev); 6690 rbd_object_map_free(rbd_dev); 6691 rbd_dev_mapping_clear(rbd_dev); 6692 6693 /* Free dynamic fields from the header, then zero it out */ 6694 6695 header = &rbd_dev->header; 6696 ceph_put_snap_context(header->snapc); 6697 kfree(header->snap_sizes); 6698 kfree(header->snap_names); 6699 kfree(header->object_prefix); 6700 memset(header, 0, sizeof (*header)); 6701 } 6702 6703 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 6704 { 6705 int ret; 6706 6707 ret = rbd_dev_v2_object_prefix(rbd_dev); 6708 if (ret) 6709 goto out_err; 6710 6711 /* 6712 * Get the and check features for the image. Currently the 6713 * features are assumed to never change. 6714 */ 6715 ret = rbd_dev_v2_features(rbd_dev); 6716 if (ret) 6717 goto out_err; 6718 6719 /* If the image supports fancy striping, get its parameters */ 6720 6721 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 6722 ret = rbd_dev_v2_striping_info(rbd_dev); 6723 if (ret < 0) 6724 goto out_err; 6725 } 6726 6727 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 6728 ret = rbd_dev_v2_data_pool(rbd_dev); 6729 if (ret) 6730 goto out_err; 6731 } 6732 6733 rbd_init_layout(rbd_dev); 6734 return 0; 6735 6736 out_err: 6737 rbd_dev->header.features = 0; 6738 kfree(rbd_dev->header.object_prefix); 6739 rbd_dev->header.object_prefix = NULL; 6740 return ret; 6741 } 6742 6743 /* 6744 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 6745 * rbd_dev_image_probe() recursion depth, which means it's also the 6746 * length of the already discovered part of the parent chain. 6747 */ 6748 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 6749 { 6750 struct rbd_device *parent = NULL; 6751 int ret; 6752 6753 if (!rbd_dev->parent_spec) 6754 return 0; 6755 6756 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 6757 pr_info("parent chain is too long (%d)\n", depth); 6758 ret = -EINVAL; 6759 goto out_err; 6760 } 6761 6762 parent = __rbd_dev_create(rbd_dev->parent_spec); 6763 if (!parent) { 6764 ret = -ENOMEM; 6765 goto out_err; 6766 } 6767 6768 /* 6769 * Images related by parent/child relationships always share 6770 * rbd_client and spec/parent_spec, so bump their refcounts. 6771 */ 6772 parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client); 6773 parent->spec = rbd_spec_get(rbd_dev->parent_spec); 6774 6775 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags); 6776 6777 ret = rbd_dev_image_probe(parent, depth); 6778 if (ret < 0) 6779 goto out_err; 6780 6781 rbd_dev->parent = parent; 6782 atomic_set(&rbd_dev->parent_ref, 1); 6783 return 0; 6784 6785 out_err: 6786 rbd_dev_unparent(rbd_dev); 6787 rbd_dev_destroy(parent); 6788 return ret; 6789 } 6790 6791 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6792 { 6793 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6794 rbd_free_disk(rbd_dev); 6795 if (!single_major) 6796 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6797 } 6798 6799 /* 6800 * rbd_dev->header_rwsem must be locked for write and will be unlocked 6801 * upon return. 6802 */ 6803 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 6804 { 6805 int ret; 6806 6807 /* Record our major and minor device numbers. */ 6808 6809 if (!single_major) { 6810 ret = register_blkdev(0, rbd_dev->name); 6811 if (ret < 0) 6812 goto err_out_unlock; 6813 6814 rbd_dev->major = ret; 6815 rbd_dev->minor = 0; 6816 } else { 6817 rbd_dev->major = rbd_major; 6818 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 6819 } 6820 6821 /* Set up the blkdev mapping. */ 6822 6823 ret = rbd_init_disk(rbd_dev); 6824 if (ret) 6825 goto err_out_blkdev; 6826 6827 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 6828 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev)); 6829 6830 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 6831 if (ret) 6832 goto err_out_disk; 6833 6834 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6835 up_write(&rbd_dev->header_rwsem); 6836 return 0; 6837 6838 err_out_disk: 6839 rbd_free_disk(rbd_dev); 6840 err_out_blkdev: 6841 if (!single_major) 6842 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6843 err_out_unlock: 6844 up_write(&rbd_dev->header_rwsem); 6845 return ret; 6846 } 6847 6848 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6849 { 6850 struct rbd_spec *spec = rbd_dev->spec; 6851 int ret; 6852 6853 /* Record the header object name for this rbd image. */ 6854 6855 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6856 if (rbd_dev->image_format == 1) 6857 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6858 spec->image_name, RBD_SUFFIX); 6859 else 6860 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6861 RBD_HEADER_PREFIX, spec->image_id); 6862 6863 return ret; 6864 } 6865 6866 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap) 6867 { 6868 if (!is_snap) { 6869 pr_info("image %s/%s%s%s does not exist\n", 6870 rbd_dev->spec->pool_name, 6871 rbd_dev->spec->pool_ns ?: "", 6872 rbd_dev->spec->pool_ns ? "/" : "", 6873 rbd_dev->spec->image_name); 6874 } else { 6875 pr_info("snap %s/%s%s%s@%s does not exist\n", 6876 rbd_dev->spec->pool_name, 6877 rbd_dev->spec->pool_ns ?: "", 6878 rbd_dev->spec->pool_ns ? "/" : "", 6879 rbd_dev->spec->image_name, 6880 rbd_dev->spec->snap_name); 6881 } 6882 } 6883 6884 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6885 { 6886 if (!rbd_is_ro(rbd_dev)) 6887 rbd_unregister_watch(rbd_dev); 6888 6889 rbd_dev_unprobe(rbd_dev); 6890 rbd_dev->image_format = 0; 6891 kfree(rbd_dev->spec->image_id); 6892 rbd_dev->spec->image_id = NULL; 6893 } 6894 6895 /* 6896 * Probe for the existence of the header object for the given rbd 6897 * device. If this image is the one being mapped (i.e., not a 6898 * parent), initiate a watch on its header object before using that 6899 * object to get detailed information about the rbd image. 6900 * 6901 * On success, returns with header_rwsem held for write if called 6902 * with @depth == 0. 6903 */ 6904 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6905 { 6906 bool need_watch = !rbd_is_ro(rbd_dev); 6907 int ret; 6908 6909 /* 6910 * Get the id from the image id object. Unless there's an 6911 * error, rbd_dev->spec->image_id will be filled in with 6912 * a dynamically-allocated string, and rbd_dev->image_format 6913 * will be set to either 1 or 2. 6914 */ 6915 ret = rbd_dev_image_id(rbd_dev); 6916 if (ret) 6917 return ret; 6918 6919 ret = rbd_dev_header_name(rbd_dev); 6920 if (ret) 6921 goto err_out_format; 6922 6923 if (need_watch) { 6924 ret = rbd_register_watch(rbd_dev); 6925 if (ret) { 6926 if (ret == -ENOENT) 6927 rbd_print_dne(rbd_dev, false); 6928 goto err_out_format; 6929 } 6930 } 6931 6932 if (!depth) 6933 down_write(&rbd_dev->header_rwsem); 6934 6935 ret = rbd_dev_header_info(rbd_dev); 6936 if (ret) { 6937 if (ret == -ENOENT && !need_watch) 6938 rbd_print_dne(rbd_dev, false); 6939 goto err_out_probe; 6940 } 6941 6942 /* 6943 * If this image is the one being mapped, we have pool name and 6944 * id, image name and id, and snap name - need to fill snap id. 6945 * Otherwise this is a parent image, identified by pool, image 6946 * and snap ids - need to fill in names for those ids. 6947 */ 6948 if (!depth) 6949 ret = rbd_spec_fill_snap_id(rbd_dev); 6950 else 6951 ret = rbd_spec_fill_names(rbd_dev); 6952 if (ret) { 6953 if (ret == -ENOENT) 6954 rbd_print_dne(rbd_dev, true); 6955 goto err_out_probe; 6956 } 6957 6958 ret = rbd_dev_mapping_set(rbd_dev); 6959 if (ret) 6960 goto err_out_probe; 6961 6962 if (rbd_is_snap(rbd_dev) && 6963 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) { 6964 ret = rbd_object_map_load(rbd_dev); 6965 if (ret) 6966 goto err_out_probe; 6967 } 6968 6969 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6970 ret = rbd_dev_v2_parent_info(rbd_dev); 6971 if (ret) 6972 goto err_out_probe; 6973 } 6974 6975 ret = rbd_dev_probe_parent(rbd_dev, depth); 6976 if (ret) 6977 goto err_out_probe; 6978 6979 dout("discovered format %u image, header name is %s\n", 6980 rbd_dev->image_format, rbd_dev->header_oid.name); 6981 return 0; 6982 6983 err_out_probe: 6984 if (!depth) 6985 up_write(&rbd_dev->header_rwsem); 6986 if (need_watch) 6987 rbd_unregister_watch(rbd_dev); 6988 rbd_dev_unprobe(rbd_dev); 6989 err_out_format: 6990 rbd_dev->image_format = 0; 6991 kfree(rbd_dev->spec->image_id); 6992 rbd_dev->spec->image_id = NULL; 6993 return ret; 6994 } 6995 6996 static ssize_t do_rbd_add(const char *buf, size_t count) 6997 { 6998 struct rbd_device *rbd_dev = NULL; 6999 struct ceph_options *ceph_opts = NULL; 7000 struct rbd_options *rbd_opts = NULL; 7001 struct rbd_spec *spec = NULL; 7002 struct rbd_client *rbdc; 7003 int rc; 7004 7005 if (!capable(CAP_SYS_ADMIN)) 7006 return -EPERM; 7007 7008 if (!try_module_get(THIS_MODULE)) 7009 return -ENODEV; 7010 7011 /* parse add command */ 7012 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 7013 if (rc < 0) 7014 goto out; 7015 7016 rbdc = rbd_get_client(ceph_opts); 7017 if (IS_ERR(rbdc)) { 7018 rc = PTR_ERR(rbdc); 7019 goto err_out_args; 7020 } 7021 7022 /* pick the pool */ 7023 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 7024 if (rc < 0) { 7025 if (rc == -ENOENT) 7026 pr_info("pool %s does not exist\n", spec->pool_name); 7027 goto err_out_client; 7028 } 7029 spec->pool_id = (u64)rc; 7030 7031 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 7032 if (!rbd_dev) { 7033 rc = -ENOMEM; 7034 goto err_out_client; 7035 } 7036 rbdc = NULL; /* rbd_dev now owns this */ 7037 spec = NULL; /* rbd_dev now owns this */ 7038 rbd_opts = NULL; /* rbd_dev now owns this */ 7039 7040 /* if we are mapping a snapshot it will be a read-only mapping */ 7041 if (rbd_dev->opts->read_only || 7042 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME)) 7043 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 7044 7045 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 7046 if (!rbd_dev->config_info) { 7047 rc = -ENOMEM; 7048 goto err_out_rbd_dev; 7049 } 7050 7051 rc = rbd_dev_image_probe(rbd_dev, 0); 7052 if (rc < 0) 7053 goto err_out_rbd_dev; 7054 7055 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) { 7056 rbd_warn(rbd_dev, "alloc_size adjusted to %u", 7057 rbd_dev->layout.object_size); 7058 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size; 7059 } 7060 7061 rc = rbd_dev_device_setup(rbd_dev); 7062 if (rc) 7063 goto err_out_image_probe; 7064 7065 rc = rbd_add_acquire_lock(rbd_dev); 7066 if (rc) 7067 goto err_out_image_lock; 7068 7069 /* Everything's ready. Announce the disk to the world. */ 7070 7071 rc = device_add(&rbd_dev->dev); 7072 if (rc) 7073 goto err_out_image_lock; 7074 7075 rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL); 7076 if (rc) 7077 goto err_out_cleanup_disk; 7078 7079 spin_lock(&rbd_dev_list_lock); 7080 list_add_tail(&rbd_dev->node, &rbd_dev_list); 7081 spin_unlock(&rbd_dev_list_lock); 7082 7083 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 7084 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 7085 rbd_dev->header.features); 7086 rc = count; 7087 out: 7088 module_put(THIS_MODULE); 7089 return rc; 7090 7091 err_out_cleanup_disk: 7092 rbd_free_disk(rbd_dev); 7093 err_out_image_lock: 7094 rbd_dev_image_unlock(rbd_dev); 7095 rbd_dev_device_release(rbd_dev); 7096 err_out_image_probe: 7097 rbd_dev_image_release(rbd_dev); 7098 err_out_rbd_dev: 7099 rbd_dev_destroy(rbd_dev); 7100 err_out_client: 7101 rbd_put_client(rbdc); 7102 err_out_args: 7103 rbd_spec_put(spec); 7104 kfree(rbd_opts); 7105 goto out; 7106 } 7107 7108 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count) 7109 { 7110 if (single_major) 7111 return -EINVAL; 7112 7113 return do_rbd_add(buf, count); 7114 } 7115 7116 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf, 7117 size_t count) 7118 { 7119 return do_rbd_add(buf, count); 7120 } 7121 7122 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 7123 { 7124 while (rbd_dev->parent) { 7125 struct rbd_device *first = rbd_dev; 7126 struct rbd_device *second = first->parent; 7127 struct rbd_device *third; 7128 7129 /* 7130 * Follow to the parent with no grandparent and 7131 * remove it. 7132 */ 7133 while (second && (third = second->parent)) { 7134 first = second; 7135 second = third; 7136 } 7137 rbd_assert(second); 7138 rbd_dev_image_release(second); 7139 rbd_dev_destroy(second); 7140 first->parent = NULL; 7141 first->parent_overlap = 0; 7142 7143 rbd_assert(first->parent_spec); 7144 rbd_spec_put(first->parent_spec); 7145 first->parent_spec = NULL; 7146 } 7147 } 7148 7149 static ssize_t do_rbd_remove(const char *buf, size_t count) 7150 { 7151 struct rbd_device *rbd_dev = NULL; 7152 struct list_head *tmp; 7153 int dev_id; 7154 char opt_buf[6]; 7155 bool force = false; 7156 int ret; 7157 7158 if (!capable(CAP_SYS_ADMIN)) 7159 return -EPERM; 7160 7161 dev_id = -1; 7162 opt_buf[0] = '\0'; 7163 sscanf(buf, "%d %5s", &dev_id, opt_buf); 7164 if (dev_id < 0) { 7165 pr_err("dev_id out of range\n"); 7166 return -EINVAL; 7167 } 7168 if (opt_buf[0] != '\0') { 7169 if (!strcmp(opt_buf, "force")) { 7170 force = true; 7171 } else { 7172 pr_err("bad remove option at '%s'\n", opt_buf); 7173 return -EINVAL; 7174 } 7175 } 7176 7177 ret = -ENOENT; 7178 spin_lock(&rbd_dev_list_lock); 7179 list_for_each(tmp, &rbd_dev_list) { 7180 rbd_dev = list_entry(tmp, struct rbd_device, node); 7181 if (rbd_dev->dev_id == dev_id) { 7182 ret = 0; 7183 break; 7184 } 7185 } 7186 if (!ret) { 7187 spin_lock_irq(&rbd_dev->lock); 7188 if (rbd_dev->open_count && !force) 7189 ret = -EBUSY; 7190 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING, 7191 &rbd_dev->flags)) 7192 ret = -EINPROGRESS; 7193 spin_unlock_irq(&rbd_dev->lock); 7194 } 7195 spin_unlock(&rbd_dev_list_lock); 7196 if (ret) 7197 return ret; 7198 7199 if (force) { 7200 /* 7201 * Prevent new IO from being queued and wait for existing 7202 * IO to complete/fail. 7203 */ 7204 blk_mq_freeze_queue(rbd_dev->disk->queue); 7205 blk_mark_disk_dead(rbd_dev->disk); 7206 } 7207 7208 del_gendisk(rbd_dev->disk); 7209 spin_lock(&rbd_dev_list_lock); 7210 list_del_init(&rbd_dev->node); 7211 spin_unlock(&rbd_dev_list_lock); 7212 device_del(&rbd_dev->dev); 7213 7214 rbd_dev_image_unlock(rbd_dev); 7215 rbd_dev_device_release(rbd_dev); 7216 rbd_dev_image_release(rbd_dev); 7217 rbd_dev_destroy(rbd_dev); 7218 return count; 7219 } 7220 7221 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count) 7222 { 7223 if (single_major) 7224 return -EINVAL; 7225 7226 return do_rbd_remove(buf, count); 7227 } 7228 7229 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf, 7230 size_t count) 7231 { 7232 return do_rbd_remove(buf, count); 7233 } 7234 7235 /* 7236 * create control files in sysfs 7237 * /sys/bus/rbd/... 7238 */ 7239 static int __init rbd_sysfs_init(void) 7240 { 7241 int ret; 7242 7243 ret = device_register(&rbd_root_dev); 7244 if (ret < 0) { 7245 put_device(&rbd_root_dev); 7246 return ret; 7247 } 7248 7249 ret = bus_register(&rbd_bus_type); 7250 if (ret < 0) 7251 device_unregister(&rbd_root_dev); 7252 7253 return ret; 7254 } 7255 7256 static void __exit rbd_sysfs_cleanup(void) 7257 { 7258 bus_unregister(&rbd_bus_type); 7259 device_unregister(&rbd_root_dev); 7260 } 7261 7262 static int __init rbd_slab_init(void) 7263 { 7264 rbd_assert(!rbd_img_request_cache); 7265 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 7266 if (!rbd_img_request_cache) 7267 return -ENOMEM; 7268 7269 rbd_assert(!rbd_obj_request_cache); 7270 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 7271 if (!rbd_obj_request_cache) 7272 goto out_err; 7273 7274 return 0; 7275 7276 out_err: 7277 kmem_cache_destroy(rbd_img_request_cache); 7278 rbd_img_request_cache = NULL; 7279 return -ENOMEM; 7280 } 7281 7282 static void rbd_slab_exit(void) 7283 { 7284 rbd_assert(rbd_obj_request_cache); 7285 kmem_cache_destroy(rbd_obj_request_cache); 7286 rbd_obj_request_cache = NULL; 7287 7288 rbd_assert(rbd_img_request_cache); 7289 kmem_cache_destroy(rbd_img_request_cache); 7290 rbd_img_request_cache = NULL; 7291 } 7292 7293 static int __init rbd_init(void) 7294 { 7295 int rc; 7296 7297 if (!libceph_compatible(NULL)) { 7298 rbd_warn(NULL, "libceph incompatibility (quitting)"); 7299 return -EINVAL; 7300 } 7301 7302 rc = rbd_slab_init(); 7303 if (rc) 7304 return rc; 7305 7306 /* 7307 * The number of active work items is limited by the number of 7308 * rbd devices * queue depth, so leave @max_active at default. 7309 */ 7310 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 7311 if (!rbd_wq) { 7312 rc = -ENOMEM; 7313 goto err_out_slab; 7314 } 7315 7316 if (single_major) { 7317 rbd_major = register_blkdev(0, RBD_DRV_NAME); 7318 if (rbd_major < 0) { 7319 rc = rbd_major; 7320 goto err_out_wq; 7321 } 7322 } 7323 7324 rc = rbd_sysfs_init(); 7325 if (rc) 7326 goto err_out_blkdev; 7327 7328 if (single_major) 7329 pr_info("loaded (major %d)\n", rbd_major); 7330 else 7331 pr_info("loaded\n"); 7332 7333 return 0; 7334 7335 err_out_blkdev: 7336 if (single_major) 7337 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7338 err_out_wq: 7339 destroy_workqueue(rbd_wq); 7340 err_out_slab: 7341 rbd_slab_exit(); 7342 return rc; 7343 } 7344 7345 static void __exit rbd_exit(void) 7346 { 7347 ida_destroy(&rbd_dev_id_ida); 7348 rbd_sysfs_cleanup(); 7349 if (single_major) 7350 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7351 destroy_workqueue(rbd_wq); 7352 rbd_slab_exit(); 7353 } 7354 7355 module_init(rbd_init); 7356 module_exit(rbd_exit); 7357 7358 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 7359 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 7360 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 7361 /* following authorship retained from original osdblk.c */ 7362 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 7363 7364 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 7365 MODULE_LICENSE("GPL"); 7366