1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/fs.h> 42 #include <linux/blkdev.h> 43 #include <linux/slab.h> 44 #include <linux/idr.h> 45 46 #include "rbd_types.h" 47 48 #define RBD_DEBUG /* Activate rbd_assert() calls */ 49 50 /* 51 * The basic unit of block I/O is a sector. It is interpreted in a 52 * number of contexts in Linux (blk, bio, genhd), but the default is 53 * universally 512 bytes. These symbols are just slightly more 54 * meaningful than the bare numbers they represent. 55 */ 56 #define SECTOR_SHIFT 9 57 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 58 59 /* 60 * Increment the given counter and return its updated value. 61 * If the counter is already 0 it will not be incremented. 62 * If the counter is already at its maximum value returns 63 * -EINVAL without updating it. 64 */ 65 static int atomic_inc_return_safe(atomic_t *v) 66 { 67 unsigned int counter; 68 69 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 70 if (counter <= (unsigned int)INT_MAX) 71 return (int)counter; 72 73 atomic_dec(v); 74 75 return -EINVAL; 76 } 77 78 /* Decrement the counter. Return the resulting value, or -EINVAL */ 79 static int atomic_dec_return_safe(atomic_t *v) 80 { 81 int counter; 82 83 counter = atomic_dec_return(v); 84 if (counter >= 0) 85 return counter; 86 87 atomic_inc(v); 88 89 return -EINVAL; 90 } 91 92 #define RBD_DRV_NAME "rbd" 93 94 #define RBD_MINORS_PER_MAJOR 256 95 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 96 97 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 98 #define RBD_MAX_SNAP_NAME_LEN \ 99 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 100 101 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 102 103 #define RBD_SNAP_HEAD_NAME "-" 104 105 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 106 107 /* This allows a single page to hold an image name sent by OSD */ 108 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 109 #define RBD_IMAGE_ID_LEN_MAX 64 110 111 #define RBD_OBJ_PREFIX_LEN_MAX 64 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1<<1) 117 #define RBD_FEATURES_ALL \ 118 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 119 120 /* Features supported by this (client software) implementation. */ 121 122 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 123 124 /* 125 * An RBD device name will be "rbd#", where the "rbd" comes from 126 * RBD_DRV_NAME above, and # is a unique integer identifier. 127 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 128 * enough to hold all possible device names. 129 */ 130 #define DEV_NAME_LEN 32 131 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 132 133 /* 134 * block device image metadata (in-memory version) 135 */ 136 struct rbd_image_header { 137 /* These six fields never change for a given rbd image */ 138 char *object_prefix; 139 __u8 obj_order; 140 __u8 crypt_type; 141 __u8 comp_type; 142 u64 stripe_unit; 143 u64 stripe_count; 144 u64 features; /* Might be changeable someday? */ 145 146 /* The remaining fields need to be updated occasionally */ 147 u64 image_size; 148 struct ceph_snap_context *snapc; 149 char *snap_names; /* format 1 only */ 150 u64 *snap_sizes; /* format 1 only */ 151 }; 152 153 /* 154 * An rbd image specification. 155 * 156 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 157 * identify an image. Each rbd_dev structure includes a pointer to 158 * an rbd_spec structure that encapsulates this identity. 159 * 160 * Each of the id's in an rbd_spec has an associated name. For a 161 * user-mapped image, the names are supplied and the id's associated 162 * with them are looked up. For a layered image, a parent image is 163 * defined by the tuple, and the names are looked up. 164 * 165 * An rbd_dev structure contains a parent_spec pointer which is 166 * non-null if the image it represents is a child in a layered 167 * image. This pointer will refer to the rbd_spec structure used 168 * by the parent rbd_dev for its own identity (i.e., the structure 169 * is shared between the parent and child). 170 * 171 * Since these structures are populated once, during the discovery 172 * phase of image construction, they are effectively immutable so 173 * we make no effort to synchronize access to them. 174 * 175 * Note that code herein does not assume the image name is known (it 176 * could be a null pointer). 177 */ 178 struct rbd_spec { 179 u64 pool_id; 180 const char *pool_name; 181 182 const char *image_id; 183 const char *image_name; 184 185 u64 snap_id; 186 const char *snap_name; 187 188 struct kref kref; 189 }; 190 191 /* 192 * an instance of the client. multiple devices may share an rbd client. 193 */ 194 struct rbd_client { 195 struct ceph_client *client; 196 struct kref kref; 197 struct list_head node; 198 }; 199 200 struct rbd_img_request; 201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 202 203 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 204 205 struct rbd_obj_request; 206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 207 208 enum obj_request_type { 209 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 210 }; 211 212 enum obj_req_flags { 213 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 214 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 215 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 216 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 217 }; 218 219 struct rbd_obj_request { 220 const char *object_name; 221 u64 offset; /* object start byte */ 222 u64 length; /* bytes from offset */ 223 unsigned long flags; 224 225 /* 226 * An object request associated with an image will have its 227 * img_data flag set; a standalone object request will not. 228 * 229 * A standalone object request will have which == BAD_WHICH 230 * and a null obj_request pointer. 231 * 232 * An object request initiated in support of a layered image 233 * object (to check for its existence before a write) will 234 * have which == BAD_WHICH and a non-null obj_request pointer. 235 * 236 * Finally, an object request for rbd image data will have 237 * which != BAD_WHICH, and will have a non-null img_request 238 * pointer. The value of which will be in the range 239 * 0..(img_request->obj_request_count-1). 240 */ 241 union { 242 struct rbd_obj_request *obj_request; /* STAT op */ 243 struct { 244 struct rbd_img_request *img_request; 245 u64 img_offset; 246 /* links for img_request->obj_requests list */ 247 struct list_head links; 248 }; 249 }; 250 u32 which; /* posn image request list */ 251 252 enum obj_request_type type; 253 union { 254 struct bio *bio_list; 255 struct { 256 struct page **pages; 257 u32 page_count; 258 }; 259 }; 260 struct page **copyup_pages; 261 u32 copyup_page_count; 262 263 struct ceph_osd_request *osd_req; 264 265 u64 xferred; /* bytes transferred */ 266 int result; 267 268 rbd_obj_callback_t callback; 269 struct completion completion; 270 271 struct kref kref; 272 }; 273 274 enum img_req_flags { 275 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 276 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 277 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 278 }; 279 280 struct rbd_img_request { 281 struct rbd_device *rbd_dev; 282 u64 offset; /* starting image byte offset */ 283 u64 length; /* byte count from offset */ 284 unsigned long flags; 285 union { 286 u64 snap_id; /* for reads */ 287 struct ceph_snap_context *snapc; /* for writes */ 288 }; 289 union { 290 struct request *rq; /* block request */ 291 struct rbd_obj_request *obj_request; /* obj req initiator */ 292 }; 293 struct page **copyup_pages; 294 u32 copyup_page_count; 295 spinlock_t completion_lock;/* protects next_completion */ 296 u32 next_completion; 297 rbd_img_callback_t callback; 298 u64 xferred;/* aggregate bytes transferred */ 299 int result; /* first nonzero obj_request result */ 300 301 u32 obj_request_count; 302 struct list_head obj_requests; /* rbd_obj_request structs */ 303 304 struct kref kref; 305 }; 306 307 #define for_each_obj_request(ireq, oreq) \ 308 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 309 #define for_each_obj_request_from(ireq, oreq) \ 310 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 311 #define for_each_obj_request_safe(ireq, oreq, n) \ 312 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 313 314 struct rbd_mapping { 315 u64 size; 316 u64 features; 317 bool read_only; 318 }; 319 320 /* 321 * a single device 322 */ 323 struct rbd_device { 324 int dev_id; /* blkdev unique id */ 325 326 int major; /* blkdev assigned major */ 327 int minor; 328 struct gendisk *disk; /* blkdev's gendisk and rq */ 329 330 u32 image_format; /* Either 1 or 2 */ 331 struct rbd_client *rbd_client; 332 333 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 334 335 spinlock_t lock; /* queue, flags, open_count */ 336 337 struct rbd_image_header header; 338 unsigned long flags; /* possibly lock protected */ 339 struct rbd_spec *spec; 340 341 char *header_name; 342 343 struct ceph_file_layout layout; 344 345 struct ceph_osd_event *watch_event; 346 struct rbd_obj_request *watch_request; 347 348 struct rbd_spec *parent_spec; 349 u64 parent_overlap; 350 atomic_t parent_ref; 351 struct rbd_device *parent; 352 353 /* protects updating the header */ 354 struct rw_semaphore header_rwsem; 355 356 struct rbd_mapping mapping; 357 358 struct list_head node; 359 360 /* sysfs related */ 361 struct device dev; 362 unsigned long open_count; /* protected by lock */ 363 }; 364 365 /* 366 * Flag bits for rbd_dev->flags. If atomicity is required, 367 * rbd_dev->lock is used to protect access. 368 * 369 * Currently, only the "removing" flag (which is coupled with the 370 * "open_count" field) requires atomic access. 371 */ 372 enum rbd_dev_flags { 373 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 374 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 375 }; 376 377 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 378 379 static LIST_HEAD(rbd_dev_list); /* devices */ 380 static DEFINE_SPINLOCK(rbd_dev_list_lock); 381 382 static LIST_HEAD(rbd_client_list); /* clients */ 383 static DEFINE_SPINLOCK(rbd_client_list_lock); 384 385 /* Slab caches for frequently-allocated structures */ 386 387 static struct kmem_cache *rbd_img_request_cache; 388 static struct kmem_cache *rbd_obj_request_cache; 389 static struct kmem_cache *rbd_segment_name_cache; 390 391 static int rbd_major; 392 static DEFINE_IDA(rbd_dev_id_ida); 393 394 /* 395 * Default to false for now, as single-major requires >= 0.75 version of 396 * userspace rbd utility. 397 */ 398 static bool single_major = false; 399 module_param(single_major, bool, S_IRUGO); 400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 401 402 static int rbd_img_request_submit(struct rbd_img_request *img_request); 403 404 static void rbd_dev_device_release(struct device *dev); 405 406 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 407 size_t count); 408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 409 size_t count); 410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 411 size_t count); 412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 413 size_t count); 414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping); 415 static void rbd_spec_put(struct rbd_spec *spec); 416 417 static int rbd_dev_id_to_minor(int dev_id) 418 { 419 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 420 } 421 422 static int minor_to_rbd_dev_id(int minor) 423 { 424 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 425 } 426 427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 431 432 static struct attribute *rbd_bus_attrs[] = { 433 &bus_attr_add.attr, 434 &bus_attr_remove.attr, 435 &bus_attr_add_single_major.attr, 436 &bus_attr_remove_single_major.attr, 437 NULL, 438 }; 439 440 static umode_t rbd_bus_is_visible(struct kobject *kobj, 441 struct attribute *attr, int index) 442 { 443 if (!single_major && 444 (attr == &bus_attr_add_single_major.attr || 445 attr == &bus_attr_remove_single_major.attr)) 446 return 0; 447 448 return attr->mode; 449 } 450 451 static const struct attribute_group rbd_bus_group = { 452 .attrs = rbd_bus_attrs, 453 .is_visible = rbd_bus_is_visible, 454 }; 455 __ATTRIBUTE_GROUPS(rbd_bus); 456 457 static struct bus_type rbd_bus_type = { 458 .name = "rbd", 459 .bus_groups = rbd_bus_groups, 460 }; 461 462 static void rbd_root_dev_release(struct device *dev) 463 { 464 } 465 466 static struct device rbd_root_dev = { 467 .init_name = "rbd", 468 .release = rbd_root_dev_release, 469 }; 470 471 static __printf(2, 3) 472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 473 { 474 struct va_format vaf; 475 va_list args; 476 477 va_start(args, fmt); 478 vaf.fmt = fmt; 479 vaf.va = &args; 480 481 if (!rbd_dev) 482 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 483 else if (rbd_dev->disk) 484 printk(KERN_WARNING "%s: %s: %pV\n", 485 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 486 else if (rbd_dev->spec && rbd_dev->spec->image_name) 487 printk(KERN_WARNING "%s: image %s: %pV\n", 488 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 489 else if (rbd_dev->spec && rbd_dev->spec->image_id) 490 printk(KERN_WARNING "%s: id %s: %pV\n", 491 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 492 else /* punt */ 493 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 494 RBD_DRV_NAME, rbd_dev, &vaf); 495 va_end(args); 496 } 497 498 #ifdef RBD_DEBUG 499 #define rbd_assert(expr) \ 500 if (unlikely(!(expr))) { \ 501 printk(KERN_ERR "\nAssertion failure in %s() " \ 502 "at line %d:\n\n" \ 503 "\trbd_assert(%s);\n\n", \ 504 __func__, __LINE__, #expr); \ 505 BUG(); \ 506 } 507 #else /* !RBD_DEBUG */ 508 # define rbd_assert(expr) ((void) 0) 509 #endif /* !RBD_DEBUG */ 510 511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 514 515 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev); 518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 519 u64 snap_id); 520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 521 u8 *order, u64 *snap_size); 522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 523 u64 *snap_features); 524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 525 526 static int rbd_open(struct block_device *bdev, fmode_t mode) 527 { 528 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 529 bool removing = false; 530 531 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 532 return -EROFS; 533 534 spin_lock_irq(&rbd_dev->lock); 535 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 536 removing = true; 537 else 538 rbd_dev->open_count++; 539 spin_unlock_irq(&rbd_dev->lock); 540 if (removing) 541 return -ENOENT; 542 543 (void) get_device(&rbd_dev->dev); 544 545 return 0; 546 } 547 548 static void rbd_release(struct gendisk *disk, fmode_t mode) 549 { 550 struct rbd_device *rbd_dev = disk->private_data; 551 unsigned long open_count_before; 552 553 spin_lock_irq(&rbd_dev->lock); 554 open_count_before = rbd_dev->open_count--; 555 spin_unlock_irq(&rbd_dev->lock); 556 rbd_assert(open_count_before > 0); 557 558 put_device(&rbd_dev->dev); 559 } 560 561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 562 { 563 int ret = 0; 564 int val; 565 bool ro; 566 bool ro_changed = false; 567 568 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 569 if (get_user(val, (int __user *)(arg))) 570 return -EFAULT; 571 572 ro = val ? true : false; 573 /* Snapshot doesn't allow to write*/ 574 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 575 return -EROFS; 576 577 spin_lock_irq(&rbd_dev->lock); 578 /* prevent others open this device */ 579 if (rbd_dev->open_count > 1) { 580 ret = -EBUSY; 581 goto out; 582 } 583 584 if (rbd_dev->mapping.read_only != ro) { 585 rbd_dev->mapping.read_only = ro; 586 ro_changed = true; 587 } 588 589 out: 590 spin_unlock_irq(&rbd_dev->lock); 591 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 592 if (ret == 0 && ro_changed) 593 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 594 595 return ret; 596 } 597 598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 599 unsigned int cmd, unsigned long arg) 600 { 601 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 602 int ret = 0; 603 604 switch (cmd) { 605 case BLKROSET: 606 ret = rbd_ioctl_set_ro(rbd_dev, arg); 607 break; 608 default: 609 ret = -ENOTTY; 610 } 611 612 return ret; 613 } 614 615 #ifdef CONFIG_COMPAT 616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 617 unsigned int cmd, unsigned long arg) 618 { 619 return rbd_ioctl(bdev, mode, cmd, arg); 620 } 621 #endif /* CONFIG_COMPAT */ 622 623 static const struct block_device_operations rbd_bd_ops = { 624 .owner = THIS_MODULE, 625 .open = rbd_open, 626 .release = rbd_release, 627 .ioctl = rbd_ioctl, 628 #ifdef CONFIG_COMPAT 629 .compat_ioctl = rbd_compat_ioctl, 630 #endif 631 }; 632 633 /* 634 * Initialize an rbd client instance. Success or not, this function 635 * consumes ceph_opts. Caller holds client_mutex. 636 */ 637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 638 { 639 struct rbd_client *rbdc; 640 int ret = -ENOMEM; 641 642 dout("%s:\n", __func__); 643 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 644 if (!rbdc) 645 goto out_opt; 646 647 kref_init(&rbdc->kref); 648 INIT_LIST_HEAD(&rbdc->node); 649 650 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 651 if (IS_ERR(rbdc->client)) 652 goto out_rbdc; 653 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 654 655 ret = ceph_open_session(rbdc->client); 656 if (ret < 0) 657 goto out_client; 658 659 spin_lock(&rbd_client_list_lock); 660 list_add_tail(&rbdc->node, &rbd_client_list); 661 spin_unlock(&rbd_client_list_lock); 662 663 dout("%s: rbdc %p\n", __func__, rbdc); 664 665 return rbdc; 666 out_client: 667 ceph_destroy_client(rbdc->client); 668 out_rbdc: 669 kfree(rbdc); 670 out_opt: 671 if (ceph_opts) 672 ceph_destroy_options(ceph_opts); 673 dout("%s: error %d\n", __func__, ret); 674 675 return ERR_PTR(ret); 676 } 677 678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 679 { 680 kref_get(&rbdc->kref); 681 682 return rbdc; 683 } 684 685 /* 686 * Find a ceph client with specific addr and configuration. If 687 * found, bump its reference count. 688 */ 689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 690 { 691 struct rbd_client *client_node; 692 bool found = false; 693 694 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 695 return NULL; 696 697 spin_lock(&rbd_client_list_lock); 698 list_for_each_entry(client_node, &rbd_client_list, node) { 699 if (!ceph_compare_options(ceph_opts, client_node->client)) { 700 __rbd_get_client(client_node); 701 702 found = true; 703 break; 704 } 705 } 706 spin_unlock(&rbd_client_list_lock); 707 708 return found ? client_node : NULL; 709 } 710 711 /* 712 * mount options 713 */ 714 enum { 715 Opt_last_int, 716 /* int args above */ 717 Opt_last_string, 718 /* string args above */ 719 Opt_read_only, 720 Opt_read_write, 721 /* Boolean args above */ 722 Opt_last_bool, 723 }; 724 725 static match_table_t rbd_opts_tokens = { 726 /* int args above */ 727 /* string args above */ 728 {Opt_read_only, "read_only"}, 729 {Opt_read_only, "ro"}, /* Alternate spelling */ 730 {Opt_read_write, "read_write"}, 731 {Opt_read_write, "rw"}, /* Alternate spelling */ 732 /* Boolean args above */ 733 {-1, NULL} 734 }; 735 736 struct rbd_options { 737 bool read_only; 738 }; 739 740 #define RBD_READ_ONLY_DEFAULT false 741 742 static int parse_rbd_opts_token(char *c, void *private) 743 { 744 struct rbd_options *rbd_opts = private; 745 substring_t argstr[MAX_OPT_ARGS]; 746 int token, intval, ret; 747 748 token = match_token(c, rbd_opts_tokens, argstr); 749 if (token < 0) 750 return -EINVAL; 751 752 if (token < Opt_last_int) { 753 ret = match_int(&argstr[0], &intval); 754 if (ret < 0) { 755 pr_err("bad mount option arg (not int) " 756 "at '%s'\n", c); 757 return ret; 758 } 759 dout("got int token %d val %d\n", token, intval); 760 } else if (token > Opt_last_int && token < Opt_last_string) { 761 dout("got string token %d val %s\n", token, 762 argstr[0].from); 763 } else if (token > Opt_last_string && token < Opt_last_bool) { 764 dout("got Boolean token %d\n", token); 765 } else { 766 dout("got token %d\n", token); 767 } 768 769 switch (token) { 770 case Opt_read_only: 771 rbd_opts->read_only = true; 772 break; 773 case Opt_read_write: 774 rbd_opts->read_only = false; 775 break; 776 default: 777 rbd_assert(false); 778 break; 779 } 780 return 0; 781 } 782 783 /* 784 * Get a ceph client with specific addr and configuration, if one does 785 * not exist create it. Either way, ceph_opts is consumed by this 786 * function. 787 */ 788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 789 { 790 struct rbd_client *rbdc; 791 792 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 793 rbdc = rbd_client_find(ceph_opts); 794 if (rbdc) /* using an existing client */ 795 ceph_destroy_options(ceph_opts); 796 else 797 rbdc = rbd_client_create(ceph_opts); 798 mutex_unlock(&client_mutex); 799 800 return rbdc; 801 } 802 803 /* 804 * Destroy ceph client 805 * 806 * Caller must hold rbd_client_list_lock. 807 */ 808 static void rbd_client_release(struct kref *kref) 809 { 810 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 811 812 dout("%s: rbdc %p\n", __func__, rbdc); 813 spin_lock(&rbd_client_list_lock); 814 list_del(&rbdc->node); 815 spin_unlock(&rbd_client_list_lock); 816 817 ceph_destroy_client(rbdc->client); 818 kfree(rbdc); 819 } 820 821 /* 822 * Drop reference to ceph client node. If it's not referenced anymore, release 823 * it. 824 */ 825 static void rbd_put_client(struct rbd_client *rbdc) 826 { 827 if (rbdc) 828 kref_put(&rbdc->kref, rbd_client_release); 829 } 830 831 static bool rbd_image_format_valid(u32 image_format) 832 { 833 return image_format == 1 || image_format == 2; 834 } 835 836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 837 { 838 size_t size; 839 u32 snap_count; 840 841 /* The header has to start with the magic rbd header text */ 842 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 843 return false; 844 845 /* The bio layer requires at least sector-sized I/O */ 846 847 if (ondisk->options.order < SECTOR_SHIFT) 848 return false; 849 850 /* If we use u64 in a few spots we may be able to loosen this */ 851 852 if (ondisk->options.order > 8 * sizeof (int) - 1) 853 return false; 854 855 /* 856 * The size of a snapshot header has to fit in a size_t, and 857 * that limits the number of snapshots. 858 */ 859 snap_count = le32_to_cpu(ondisk->snap_count); 860 size = SIZE_MAX - sizeof (struct ceph_snap_context); 861 if (snap_count > size / sizeof (__le64)) 862 return false; 863 864 /* 865 * Not only that, but the size of the entire the snapshot 866 * header must also be representable in a size_t. 867 */ 868 size -= snap_count * sizeof (__le64); 869 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 870 return false; 871 872 return true; 873 } 874 875 /* 876 * Fill an rbd image header with information from the given format 1 877 * on-disk header. 878 */ 879 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 880 struct rbd_image_header_ondisk *ondisk) 881 { 882 struct rbd_image_header *header = &rbd_dev->header; 883 bool first_time = header->object_prefix == NULL; 884 struct ceph_snap_context *snapc; 885 char *object_prefix = NULL; 886 char *snap_names = NULL; 887 u64 *snap_sizes = NULL; 888 u32 snap_count; 889 size_t size; 890 int ret = -ENOMEM; 891 u32 i; 892 893 /* Allocate this now to avoid having to handle failure below */ 894 895 if (first_time) { 896 size_t len; 897 898 len = strnlen(ondisk->object_prefix, 899 sizeof (ondisk->object_prefix)); 900 object_prefix = kmalloc(len + 1, GFP_KERNEL); 901 if (!object_prefix) 902 return -ENOMEM; 903 memcpy(object_prefix, ondisk->object_prefix, len); 904 object_prefix[len] = '\0'; 905 } 906 907 /* Allocate the snapshot context and fill it in */ 908 909 snap_count = le32_to_cpu(ondisk->snap_count); 910 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 911 if (!snapc) 912 goto out_err; 913 snapc->seq = le64_to_cpu(ondisk->snap_seq); 914 if (snap_count) { 915 struct rbd_image_snap_ondisk *snaps; 916 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 917 918 /* We'll keep a copy of the snapshot names... */ 919 920 if (snap_names_len > (u64)SIZE_MAX) 921 goto out_2big; 922 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 923 if (!snap_names) 924 goto out_err; 925 926 /* ...as well as the array of their sizes. */ 927 928 size = snap_count * sizeof (*header->snap_sizes); 929 snap_sizes = kmalloc(size, GFP_KERNEL); 930 if (!snap_sizes) 931 goto out_err; 932 933 /* 934 * Copy the names, and fill in each snapshot's id 935 * and size. 936 * 937 * Note that rbd_dev_v1_header_info() guarantees the 938 * ondisk buffer we're working with has 939 * snap_names_len bytes beyond the end of the 940 * snapshot id array, this memcpy() is safe. 941 */ 942 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 943 snaps = ondisk->snaps; 944 for (i = 0; i < snap_count; i++) { 945 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 946 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 947 } 948 } 949 950 /* We won't fail any more, fill in the header */ 951 952 if (first_time) { 953 header->object_prefix = object_prefix; 954 header->obj_order = ondisk->options.order; 955 header->crypt_type = ondisk->options.crypt_type; 956 header->comp_type = ondisk->options.comp_type; 957 /* The rest aren't used for format 1 images */ 958 header->stripe_unit = 0; 959 header->stripe_count = 0; 960 header->features = 0; 961 } else { 962 ceph_put_snap_context(header->snapc); 963 kfree(header->snap_names); 964 kfree(header->snap_sizes); 965 } 966 967 /* The remaining fields always get updated (when we refresh) */ 968 969 header->image_size = le64_to_cpu(ondisk->image_size); 970 header->snapc = snapc; 971 header->snap_names = snap_names; 972 header->snap_sizes = snap_sizes; 973 974 /* Make sure mapping size is consistent with header info */ 975 976 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time) 977 if (rbd_dev->mapping.size != header->image_size) 978 rbd_dev->mapping.size = header->image_size; 979 980 return 0; 981 out_2big: 982 ret = -EIO; 983 out_err: 984 kfree(snap_sizes); 985 kfree(snap_names); 986 ceph_put_snap_context(snapc); 987 kfree(object_prefix); 988 989 return ret; 990 } 991 992 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 993 { 994 const char *snap_name; 995 996 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 997 998 /* Skip over names until we find the one we are looking for */ 999 1000 snap_name = rbd_dev->header.snap_names; 1001 while (which--) 1002 snap_name += strlen(snap_name) + 1; 1003 1004 return kstrdup(snap_name, GFP_KERNEL); 1005 } 1006 1007 /* 1008 * Snapshot id comparison function for use with qsort()/bsearch(). 1009 * Note that result is for snapshots in *descending* order. 1010 */ 1011 static int snapid_compare_reverse(const void *s1, const void *s2) 1012 { 1013 u64 snap_id1 = *(u64 *)s1; 1014 u64 snap_id2 = *(u64 *)s2; 1015 1016 if (snap_id1 < snap_id2) 1017 return 1; 1018 return snap_id1 == snap_id2 ? 0 : -1; 1019 } 1020 1021 /* 1022 * Search a snapshot context to see if the given snapshot id is 1023 * present. 1024 * 1025 * Returns the position of the snapshot id in the array if it's found, 1026 * or BAD_SNAP_INDEX otherwise. 1027 * 1028 * Note: The snapshot array is in kept sorted (by the osd) in 1029 * reverse order, highest snapshot id first. 1030 */ 1031 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1032 { 1033 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1034 u64 *found; 1035 1036 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1037 sizeof (snap_id), snapid_compare_reverse); 1038 1039 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1040 } 1041 1042 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1043 u64 snap_id) 1044 { 1045 u32 which; 1046 const char *snap_name; 1047 1048 which = rbd_dev_snap_index(rbd_dev, snap_id); 1049 if (which == BAD_SNAP_INDEX) 1050 return ERR_PTR(-ENOENT); 1051 1052 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1053 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1054 } 1055 1056 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1057 { 1058 if (snap_id == CEPH_NOSNAP) 1059 return RBD_SNAP_HEAD_NAME; 1060 1061 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1062 if (rbd_dev->image_format == 1) 1063 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1064 1065 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1066 } 1067 1068 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1069 u64 *snap_size) 1070 { 1071 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1072 if (snap_id == CEPH_NOSNAP) { 1073 *snap_size = rbd_dev->header.image_size; 1074 } else if (rbd_dev->image_format == 1) { 1075 u32 which; 1076 1077 which = rbd_dev_snap_index(rbd_dev, snap_id); 1078 if (which == BAD_SNAP_INDEX) 1079 return -ENOENT; 1080 1081 *snap_size = rbd_dev->header.snap_sizes[which]; 1082 } else { 1083 u64 size = 0; 1084 int ret; 1085 1086 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1087 if (ret) 1088 return ret; 1089 1090 *snap_size = size; 1091 } 1092 return 0; 1093 } 1094 1095 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1096 u64 *snap_features) 1097 { 1098 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1099 if (snap_id == CEPH_NOSNAP) { 1100 *snap_features = rbd_dev->header.features; 1101 } else if (rbd_dev->image_format == 1) { 1102 *snap_features = 0; /* No features for format 1 */ 1103 } else { 1104 u64 features = 0; 1105 int ret; 1106 1107 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1108 if (ret) 1109 return ret; 1110 1111 *snap_features = features; 1112 } 1113 return 0; 1114 } 1115 1116 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1117 { 1118 u64 snap_id = rbd_dev->spec->snap_id; 1119 u64 size = 0; 1120 u64 features = 0; 1121 int ret; 1122 1123 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1124 if (ret) 1125 return ret; 1126 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1127 if (ret) 1128 return ret; 1129 1130 rbd_dev->mapping.size = size; 1131 rbd_dev->mapping.features = features; 1132 1133 return 0; 1134 } 1135 1136 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1137 { 1138 rbd_dev->mapping.size = 0; 1139 rbd_dev->mapping.features = 0; 1140 } 1141 1142 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1143 { 1144 char *name; 1145 u64 segment; 1146 int ret; 1147 char *name_format; 1148 1149 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1150 if (!name) 1151 return NULL; 1152 segment = offset >> rbd_dev->header.obj_order; 1153 name_format = "%s.%012llx"; 1154 if (rbd_dev->image_format == 2) 1155 name_format = "%s.%016llx"; 1156 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1157 rbd_dev->header.object_prefix, segment); 1158 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1159 pr_err("error formatting segment name for #%llu (%d)\n", 1160 segment, ret); 1161 kfree(name); 1162 name = NULL; 1163 } 1164 1165 return name; 1166 } 1167 1168 static void rbd_segment_name_free(const char *name) 1169 { 1170 /* The explicit cast here is needed to drop the const qualifier */ 1171 1172 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1173 } 1174 1175 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1176 { 1177 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1178 1179 return offset & (segment_size - 1); 1180 } 1181 1182 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1183 u64 offset, u64 length) 1184 { 1185 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1186 1187 offset &= segment_size - 1; 1188 1189 rbd_assert(length <= U64_MAX - offset); 1190 if (offset + length > segment_size) 1191 length = segment_size - offset; 1192 1193 return length; 1194 } 1195 1196 /* 1197 * returns the size of an object in the image 1198 */ 1199 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1200 { 1201 return 1 << header->obj_order; 1202 } 1203 1204 /* 1205 * bio helpers 1206 */ 1207 1208 static void bio_chain_put(struct bio *chain) 1209 { 1210 struct bio *tmp; 1211 1212 while (chain) { 1213 tmp = chain; 1214 chain = chain->bi_next; 1215 bio_put(tmp); 1216 } 1217 } 1218 1219 /* 1220 * zeros a bio chain, starting at specific offset 1221 */ 1222 static void zero_bio_chain(struct bio *chain, int start_ofs) 1223 { 1224 struct bio_vec bv; 1225 struct bvec_iter iter; 1226 unsigned long flags; 1227 void *buf; 1228 int pos = 0; 1229 1230 while (chain) { 1231 bio_for_each_segment(bv, chain, iter) { 1232 if (pos + bv.bv_len > start_ofs) { 1233 int remainder = max(start_ofs - pos, 0); 1234 buf = bvec_kmap_irq(&bv, &flags); 1235 memset(buf + remainder, 0, 1236 bv.bv_len - remainder); 1237 flush_dcache_page(bv.bv_page); 1238 bvec_kunmap_irq(buf, &flags); 1239 } 1240 pos += bv.bv_len; 1241 } 1242 1243 chain = chain->bi_next; 1244 } 1245 } 1246 1247 /* 1248 * similar to zero_bio_chain(), zeros data defined by a page array, 1249 * starting at the given byte offset from the start of the array and 1250 * continuing up to the given end offset. The pages array is 1251 * assumed to be big enough to hold all bytes up to the end. 1252 */ 1253 static void zero_pages(struct page **pages, u64 offset, u64 end) 1254 { 1255 struct page **page = &pages[offset >> PAGE_SHIFT]; 1256 1257 rbd_assert(end > offset); 1258 rbd_assert(end - offset <= (u64)SIZE_MAX); 1259 while (offset < end) { 1260 size_t page_offset; 1261 size_t length; 1262 unsigned long flags; 1263 void *kaddr; 1264 1265 page_offset = offset & ~PAGE_MASK; 1266 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1267 local_irq_save(flags); 1268 kaddr = kmap_atomic(*page); 1269 memset(kaddr + page_offset, 0, length); 1270 flush_dcache_page(*page); 1271 kunmap_atomic(kaddr); 1272 local_irq_restore(flags); 1273 1274 offset += length; 1275 page++; 1276 } 1277 } 1278 1279 /* 1280 * Clone a portion of a bio, starting at the given byte offset 1281 * and continuing for the number of bytes indicated. 1282 */ 1283 static struct bio *bio_clone_range(struct bio *bio_src, 1284 unsigned int offset, 1285 unsigned int len, 1286 gfp_t gfpmask) 1287 { 1288 struct bio *bio; 1289 1290 bio = bio_clone(bio_src, gfpmask); 1291 if (!bio) 1292 return NULL; /* ENOMEM */ 1293 1294 bio_advance(bio, offset); 1295 bio->bi_iter.bi_size = len; 1296 1297 return bio; 1298 } 1299 1300 /* 1301 * Clone a portion of a bio chain, starting at the given byte offset 1302 * into the first bio in the source chain and continuing for the 1303 * number of bytes indicated. The result is another bio chain of 1304 * exactly the given length, or a null pointer on error. 1305 * 1306 * The bio_src and offset parameters are both in-out. On entry they 1307 * refer to the first source bio and the offset into that bio where 1308 * the start of data to be cloned is located. 1309 * 1310 * On return, bio_src is updated to refer to the bio in the source 1311 * chain that contains first un-cloned byte, and *offset will 1312 * contain the offset of that byte within that bio. 1313 */ 1314 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1315 unsigned int *offset, 1316 unsigned int len, 1317 gfp_t gfpmask) 1318 { 1319 struct bio *bi = *bio_src; 1320 unsigned int off = *offset; 1321 struct bio *chain = NULL; 1322 struct bio **end; 1323 1324 /* Build up a chain of clone bios up to the limit */ 1325 1326 if (!bi || off >= bi->bi_iter.bi_size || !len) 1327 return NULL; /* Nothing to clone */ 1328 1329 end = &chain; 1330 while (len) { 1331 unsigned int bi_size; 1332 struct bio *bio; 1333 1334 if (!bi) { 1335 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1336 goto out_err; /* EINVAL; ran out of bio's */ 1337 } 1338 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1339 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1340 if (!bio) 1341 goto out_err; /* ENOMEM */ 1342 1343 *end = bio; 1344 end = &bio->bi_next; 1345 1346 off += bi_size; 1347 if (off == bi->bi_iter.bi_size) { 1348 bi = bi->bi_next; 1349 off = 0; 1350 } 1351 len -= bi_size; 1352 } 1353 *bio_src = bi; 1354 *offset = off; 1355 1356 return chain; 1357 out_err: 1358 bio_chain_put(chain); 1359 1360 return NULL; 1361 } 1362 1363 /* 1364 * The default/initial value for all object request flags is 0. For 1365 * each flag, once its value is set to 1 it is never reset to 0 1366 * again. 1367 */ 1368 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1369 { 1370 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1371 struct rbd_device *rbd_dev; 1372 1373 rbd_dev = obj_request->img_request->rbd_dev; 1374 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n", 1375 obj_request); 1376 } 1377 } 1378 1379 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1380 { 1381 smp_mb(); 1382 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1383 } 1384 1385 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1386 { 1387 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1388 struct rbd_device *rbd_dev = NULL; 1389 1390 if (obj_request_img_data_test(obj_request)) 1391 rbd_dev = obj_request->img_request->rbd_dev; 1392 rbd_warn(rbd_dev, "obj_request %p already marked done\n", 1393 obj_request); 1394 } 1395 } 1396 1397 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1398 { 1399 smp_mb(); 1400 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1401 } 1402 1403 /* 1404 * This sets the KNOWN flag after (possibly) setting the EXISTS 1405 * flag. The latter is set based on the "exists" value provided. 1406 * 1407 * Note that for our purposes once an object exists it never goes 1408 * away again. It's possible that the response from two existence 1409 * checks are separated by the creation of the target object, and 1410 * the first ("doesn't exist") response arrives *after* the second 1411 * ("does exist"). In that case we ignore the second one. 1412 */ 1413 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1414 bool exists) 1415 { 1416 if (exists) 1417 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1418 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1419 smp_mb(); 1420 } 1421 1422 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1423 { 1424 smp_mb(); 1425 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1426 } 1427 1428 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1429 { 1430 smp_mb(); 1431 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1432 } 1433 1434 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1435 { 1436 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1437 atomic_read(&obj_request->kref.refcount)); 1438 kref_get(&obj_request->kref); 1439 } 1440 1441 static void rbd_obj_request_destroy(struct kref *kref); 1442 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1443 { 1444 rbd_assert(obj_request != NULL); 1445 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1446 atomic_read(&obj_request->kref.refcount)); 1447 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1448 } 1449 1450 static void rbd_img_request_get(struct rbd_img_request *img_request) 1451 { 1452 dout("%s: img %p (was %d)\n", __func__, img_request, 1453 atomic_read(&img_request->kref.refcount)); 1454 kref_get(&img_request->kref); 1455 } 1456 1457 static bool img_request_child_test(struct rbd_img_request *img_request); 1458 static void rbd_parent_request_destroy(struct kref *kref); 1459 static void rbd_img_request_destroy(struct kref *kref); 1460 static void rbd_img_request_put(struct rbd_img_request *img_request) 1461 { 1462 rbd_assert(img_request != NULL); 1463 dout("%s: img %p (was %d)\n", __func__, img_request, 1464 atomic_read(&img_request->kref.refcount)); 1465 if (img_request_child_test(img_request)) 1466 kref_put(&img_request->kref, rbd_parent_request_destroy); 1467 else 1468 kref_put(&img_request->kref, rbd_img_request_destroy); 1469 } 1470 1471 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1472 struct rbd_obj_request *obj_request) 1473 { 1474 rbd_assert(obj_request->img_request == NULL); 1475 1476 /* Image request now owns object's original reference */ 1477 obj_request->img_request = img_request; 1478 obj_request->which = img_request->obj_request_count; 1479 rbd_assert(!obj_request_img_data_test(obj_request)); 1480 obj_request_img_data_set(obj_request); 1481 rbd_assert(obj_request->which != BAD_WHICH); 1482 img_request->obj_request_count++; 1483 list_add_tail(&obj_request->links, &img_request->obj_requests); 1484 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1485 obj_request->which); 1486 } 1487 1488 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1489 struct rbd_obj_request *obj_request) 1490 { 1491 rbd_assert(obj_request->which != BAD_WHICH); 1492 1493 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1494 obj_request->which); 1495 list_del(&obj_request->links); 1496 rbd_assert(img_request->obj_request_count > 0); 1497 img_request->obj_request_count--; 1498 rbd_assert(obj_request->which == img_request->obj_request_count); 1499 obj_request->which = BAD_WHICH; 1500 rbd_assert(obj_request_img_data_test(obj_request)); 1501 rbd_assert(obj_request->img_request == img_request); 1502 obj_request->img_request = NULL; 1503 obj_request->callback = NULL; 1504 rbd_obj_request_put(obj_request); 1505 } 1506 1507 static bool obj_request_type_valid(enum obj_request_type type) 1508 { 1509 switch (type) { 1510 case OBJ_REQUEST_NODATA: 1511 case OBJ_REQUEST_BIO: 1512 case OBJ_REQUEST_PAGES: 1513 return true; 1514 default: 1515 return false; 1516 } 1517 } 1518 1519 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1520 struct rbd_obj_request *obj_request) 1521 { 1522 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request); 1523 1524 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1525 } 1526 1527 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1528 { 1529 1530 dout("%s: img %p\n", __func__, img_request); 1531 1532 /* 1533 * If no error occurred, compute the aggregate transfer 1534 * count for the image request. We could instead use 1535 * atomic64_cmpxchg() to update it as each object request 1536 * completes; not clear which way is better off hand. 1537 */ 1538 if (!img_request->result) { 1539 struct rbd_obj_request *obj_request; 1540 u64 xferred = 0; 1541 1542 for_each_obj_request(img_request, obj_request) 1543 xferred += obj_request->xferred; 1544 img_request->xferred = xferred; 1545 } 1546 1547 if (img_request->callback) 1548 img_request->callback(img_request); 1549 else 1550 rbd_img_request_put(img_request); 1551 } 1552 1553 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */ 1554 1555 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1556 { 1557 dout("%s: obj %p\n", __func__, obj_request); 1558 1559 return wait_for_completion_interruptible(&obj_request->completion); 1560 } 1561 1562 /* 1563 * The default/initial value for all image request flags is 0. Each 1564 * is conditionally set to 1 at image request initialization time 1565 * and currently never change thereafter. 1566 */ 1567 static void img_request_write_set(struct rbd_img_request *img_request) 1568 { 1569 set_bit(IMG_REQ_WRITE, &img_request->flags); 1570 smp_mb(); 1571 } 1572 1573 static bool img_request_write_test(struct rbd_img_request *img_request) 1574 { 1575 smp_mb(); 1576 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1577 } 1578 1579 static void img_request_child_set(struct rbd_img_request *img_request) 1580 { 1581 set_bit(IMG_REQ_CHILD, &img_request->flags); 1582 smp_mb(); 1583 } 1584 1585 static void img_request_child_clear(struct rbd_img_request *img_request) 1586 { 1587 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1588 smp_mb(); 1589 } 1590 1591 static bool img_request_child_test(struct rbd_img_request *img_request) 1592 { 1593 smp_mb(); 1594 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1595 } 1596 1597 static void img_request_layered_set(struct rbd_img_request *img_request) 1598 { 1599 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1600 smp_mb(); 1601 } 1602 1603 static void img_request_layered_clear(struct rbd_img_request *img_request) 1604 { 1605 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1606 smp_mb(); 1607 } 1608 1609 static bool img_request_layered_test(struct rbd_img_request *img_request) 1610 { 1611 smp_mb(); 1612 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1613 } 1614 1615 static void 1616 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1617 { 1618 u64 xferred = obj_request->xferred; 1619 u64 length = obj_request->length; 1620 1621 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1622 obj_request, obj_request->img_request, obj_request->result, 1623 xferred, length); 1624 /* 1625 * ENOENT means a hole in the image. We zero-fill the entire 1626 * length of the request. A short read also implies zero-fill 1627 * to the end of the request. An error requires the whole 1628 * length of the request to be reported finished with an error 1629 * to the block layer. In each case we update the xferred 1630 * count to indicate the whole request was satisfied. 1631 */ 1632 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1633 if (obj_request->result == -ENOENT) { 1634 if (obj_request->type == OBJ_REQUEST_BIO) 1635 zero_bio_chain(obj_request->bio_list, 0); 1636 else 1637 zero_pages(obj_request->pages, 0, length); 1638 obj_request->result = 0; 1639 } else if (xferred < length && !obj_request->result) { 1640 if (obj_request->type == OBJ_REQUEST_BIO) 1641 zero_bio_chain(obj_request->bio_list, xferred); 1642 else 1643 zero_pages(obj_request->pages, xferred, length); 1644 } 1645 obj_request->xferred = length; 1646 obj_request_done_set(obj_request); 1647 } 1648 1649 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1650 { 1651 dout("%s: obj %p cb %p\n", __func__, obj_request, 1652 obj_request->callback); 1653 if (obj_request->callback) 1654 obj_request->callback(obj_request); 1655 else 1656 complete_all(&obj_request->completion); 1657 } 1658 1659 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1660 { 1661 dout("%s: obj %p\n", __func__, obj_request); 1662 obj_request_done_set(obj_request); 1663 } 1664 1665 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1666 { 1667 struct rbd_img_request *img_request = NULL; 1668 struct rbd_device *rbd_dev = NULL; 1669 bool layered = false; 1670 1671 if (obj_request_img_data_test(obj_request)) { 1672 img_request = obj_request->img_request; 1673 layered = img_request && img_request_layered_test(img_request); 1674 rbd_dev = img_request->rbd_dev; 1675 } 1676 1677 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1678 obj_request, img_request, obj_request->result, 1679 obj_request->xferred, obj_request->length); 1680 if (layered && obj_request->result == -ENOENT && 1681 obj_request->img_offset < rbd_dev->parent_overlap) 1682 rbd_img_parent_read(obj_request); 1683 else if (img_request) 1684 rbd_img_obj_request_read_callback(obj_request); 1685 else 1686 obj_request_done_set(obj_request); 1687 } 1688 1689 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1690 { 1691 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1692 obj_request->result, obj_request->length); 1693 /* 1694 * There is no such thing as a successful short write. Set 1695 * it to our originally-requested length. 1696 */ 1697 obj_request->xferred = obj_request->length; 1698 obj_request_done_set(obj_request); 1699 } 1700 1701 /* 1702 * For a simple stat call there's nothing to do. We'll do more if 1703 * this is part of a write sequence for a layered image. 1704 */ 1705 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1706 { 1707 dout("%s: obj %p\n", __func__, obj_request); 1708 obj_request_done_set(obj_request); 1709 } 1710 1711 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1712 struct ceph_msg *msg) 1713 { 1714 struct rbd_obj_request *obj_request = osd_req->r_priv; 1715 u16 opcode; 1716 1717 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1718 rbd_assert(osd_req == obj_request->osd_req); 1719 if (obj_request_img_data_test(obj_request)) { 1720 rbd_assert(obj_request->img_request); 1721 rbd_assert(obj_request->which != BAD_WHICH); 1722 } else { 1723 rbd_assert(obj_request->which == BAD_WHICH); 1724 } 1725 1726 if (osd_req->r_result < 0) 1727 obj_request->result = osd_req->r_result; 1728 1729 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP); 1730 1731 /* 1732 * We support a 64-bit length, but ultimately it has to be 1733 * passed to blk_end_request(), which takes an unsigned int. 1734 */ 1735 obj_request->xferred = osd_req->r_reply_op_len[0]; 1736 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1737 1738 opcode = osd_req->r_ops[0].op; 1739 switch (opcode) { 1740 case CEPH_OSD_OP_READ: 1741 rbd_osd_read_callback(obj_request); 1742 break; 1743 case CEPH_OSD_OP_SETALLOCHINT: 1744 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE); 1745 /* fall through */ 1746 case CEPH_OSD_OP_WRITE: 1747 rbd_osd_write_callback(obj_request); 1748 break; 1749 case CEPH_OSD_OP_STAT: 1750 rbd_osd_stat_callback(obj_request); 1751 break; 1752 case CEPH_OSD_OP_CALL: 1753 case CEPH_OSD_OP_NOTIFY_ACK: 1754 case CEPH_OSD_OP_WATCH: 1755 rbd_osd_trivial_callback(obj_request); 1756 break; 1757 default: 1758 rbd_warn(NULL, "%s: unsupported op %hu\n", 1759 obj_request->object_name, (unsigned short) opcode); 1760 break; 1761 } 1762 1763 if (obj_request_done_test(obj_request)) 1764 rbd_obj_request_complete(obj_request); 1765 } 1766 1767 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1768 { 1769 struct rbd_img_request *img_request = obj_request->img_request; 1770 struct ceph_osd_request *osd_req = obj_request->osd_req; 1771 u64 snap_id; 1772 1773 rbd_assert(osd_req != NULL); 1774 1775 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1776 ceph_osdc_build_request(osd_req, obj_request->offset, 1777 NULL, snap_id, NULL); 1778 } 1779 1780 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1781 { 1782 struct rbd_img_request *img_request = obj_request->img_request; 1783 struct ceph_osd_request *osd_req = obj_request->osd_req; 1784 struct ceph_snap_context *snapc; 1785 struct timespec mtime = CURRENT_TIME; 1786 1787 rbd_assert(osd_req != NULL); 1788 1789 snapc = img_request ? img_request->snapc : NULL; 1790 ceph_osdc_build_request(osd_req, obj_request->offset, 1791 snapc, CEPH_NOSNAP, &mtime); 1792 } 1793 1794 /* 1795 * Create an osd request. A read request has one osd op (read). 1796 * A write request has either one (watch) or two (hint+write) osd ops. 1797 * (All rbd data writes are prefixed with an allocation hint op, but 1798 * technically osd watch is a write request, hence this distinction.) 1799 */ 1800 static struct ceph_osd_request *rbd_osd_req_create( 1801 struct rbd_device *rbd_dev, 1802 bool write_request, 1803 unsigned int num_ops, 1804 struct rbd_obj_request *obj_request) 1805 { 1806 struct ceph_snap_context *snapc = NULL; 1807 struct ceph_osd_client *osdc; 1808 struct ceph_osd_request *osd_req; 1809 1810 if (obj_request_img_data_test(obj_request)) { 1811 struct rbd_img_request *img_request = obj_request->img_request; 1812 1813 rbd_assert(write_request == 1814 img_request_write_test(img_request)); 1815 if (write_request) 1816 snapc = img_request->snapc; 1817 } 1818 1819 rbd_assert(num_ops == 1 || (write_request && num_ops == 2)); 1820 1821 /* Allocate and initialize the request, for the num_ops ops */ 1822 1823 osdc = &rbd_dev->rbd_client->client->osdc; 1824 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1825 GFP_ATOMIC); 1826 if (!osd_req) 1827 return NULL; /* ENOMEM */ 1828 1829 if (write_request) 1830 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1831 else 1832 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1833 1834 osd_req->r_callback = rbd_osd_req_callback; 1835 osd_req->r_priv = obj_request; 1836 1837 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1838 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1839 1840 return osd_req; 1841 } 1842 1843 /* 1844 * Create a copyup osd request based on the information in the 1845 * object request supplied. A copyup request has three osd ops, 1846 * a copyup method call, a hint op, and a write op. 1847 */ 1848 static struct ceph_osd_request * 1849 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1850 { 1851 struct rbd_img_request *img_request; 1852 struct ceph_snap_context *snapc; 1853 struct rbd_device *rbd_dev; 1854 struct ceph_osd_client *osdc; 1855 struct ceph_osd_request *osd_req; 1856 1857 rbd_assert(obj_request_img_data_test(obj_request)); 1858 img_request = obj_request->img_request; 1859 rbd_assert(img_request); 1860 rbd_assert(img_request_write_test(img_request)); 1861 1862 /* Allocate and initialize the request, for the three ops */ 1863 1864 snapc = img_request->snapc; 1865 rbd_dev = img_request->rbd_dev; 1866 osdc = &rbd_dev->rbd_client->client->osdc; 1867 osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC); 1868 if (!osd_req) 1869 return NULL; /* ENOMEM */ 1870 1871 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1872 osd_req->r_callback = rbd_osd_req_callback; 1873 osd_req->r_priv = obj_request; 1874 1875 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1876 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1877 1878 return osd_req; 1879 } 1880 1881 1882 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 1883 { 1884 ceph_osdc_put_request(osd_req); 1885 } 1886 1887 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 1888 1889 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 1890 u64 offset, u64 length, 1891 enum obj_request_type type) 1892 { 1893 struct rbd_obj_request *obj_request; 1894 size_t size; 1895 char *name; 1896 1897 rbd_assert(obj_request_type_valid(type)); 1898 1899 size = strlen(object_name) + 1; 1900 name = kmalloc(size, GFP_KERNEL); 1901 if (!name) 1902 return NULL; 1903 1904 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL); 1905 if (!obj_request) { 1906 kfree(name); 1907 return NULL; 1908 } 1909 1910 obj_request->object_name = memcpy(name, object_name, size); 1911 obj_request->offset = offset; 1912 obj_request->length = length; 1913 obj_request->flags = 0; 1914 obj_request->which = BAD_WHICH; 1915 obj_request->type = type; 1916 INIT_LIST_HEAD(&obj_request->links); 1917 init_completion(&obj_request->completion); 1918 kref_init(&obj_request->kref); 1919 1920 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 1921 offset, length, (int)type, obj_request); 1922 1923 return obj_request; 1924 } 1925 1926 static void rbd_obj_request_destroy(struct kref *kref) 1927 { 1928 struct rbd_obj_request *obj_request; 1929 1930 obj_request = container_of(kref, struct rbd_obj_request, kref); 1931 1932 dout("%s: obj %p\n", __func__, obj_request); 1933 1934 rbd_assert(obj_request->img_request == NULL); 1935 rbd_assert(obj_request->which == BAD_WHICH); 1936 1937 if (obj_request->osd_req) 1938 rbd_osd_req_destroy(obj_request->osd_req); 1939 1940 rbd_assert(obj_request_type_valid(obj_request->type)); 1941 switch (obj_request->type) { 1942 case OBJ_REQUEST_NODATA: 1943 break; /* Nothing to do */ 1944 case OBJ_REQUEST_BIO: 1945 if (obj_request->bio_list) 1946 bio_chain_put(obj_request->bio_list); 1947 break; 1948 case OBJ_REQUEST_PAGES: 1949 if (obj_request->pages) 1950 ceph_release_page_vector(obj_request->pages, 1951 obj_request->page_count); 1952 break; 1953 } 1954 1955 kfree(obj_request->object_name); 1956 obj_request->object_name = NULL; 1957 kmem_cache_free(rbd_obj_request_cache, obj_request); 1958 } 1959 1960 /* It's OK to call this for a device with no parent */ 1961 1962 static void rbd_spec_put(struct rbd_spec *spec); 1963 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1964 { 1965 rbd_dev_remove_parent(rbd_dev); 1966 rbd_spec_put(rbd_dev->parent_spec); 1967 rbd_dev->parent_spec = NULL; 1968 rbd_dev->parent_overlap = 0; 1969 } 1970 1971 /* 1972 * Parent image reference counting is used to determine when an 1973 * image's parent fields can be safely torn down--after there are no 1974 * more in-flight requests to the parent image. When the last 1975 * reference is dropped, cleaning them up is safe. 1976 */ 1977 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1978 { 1979 int counter; 1980 1981 if (!rbd_dev->parent_spec) 1982 return; 1983 1984 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1985 if (counter > 0) 1986 return; 1987 1988 /* Last reference; clean up parent data structures */ 1989 1990 if (!counter) 1991 rbd_dev_unparent(rbd_dev); 1992 else 1993 rbd_warn(rbd_dev, "parent reference underflow\n"); 1994 } 1995 1996 /* 1997 * If an image has a non-zero parent overlap, get a reference to its 1998 * parent. 1999 * 2000 * We must get the reference before checking for the overlap to 2001 * coordinate properly with zeroing the parent overlap in 2002 * rbd_dev_v2_parent_info() when an image gets flattened. We 2003 * drop it again if there is no overlap. 2004 * 2005 * Returns true if the rbd device has a parent with a non-zero 2006 * overlap and a reference for it was successfully taken, or 2007 * false otherwise. 2008 */ 2009 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2010 { 2011 int counter; 2012 2013 if (!rbd_dev->parent_spec) 2014 return false; 2015 2016 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2017 if (counter > 0 && rbd_dev->parent_overlap) 2018 return true; 2019 2020 /* Image was flattened, but parent is not yet torn down */ 2021 2022 if (counter < 0) 2023 rbd_warn(rbd_dev, "parent reference overflow\n"); 2024 2025 return false; 2026 } 2027 2028 /* 2029 * Caller is responsible for filling in the list of object requests 2030 * that comprises the image request, and the Linux request pointer 2031 * (if there is one). 2032 */ 2033 static struct rbd_img_request *rbd_img_request_create( 2034 struct rbd_device *rbd_dev, 2035 u64 offset, u64 length, 2036 bool write_request) 2037 { 2038 struct rbd_img_request *img_request; 2039 2040 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC); 2041 if (!img_request) 2042 return NULL; 2043 2044 if (write_request) { 2045 down_read(&rbd_dev->header_rwsem); 2046 ceph_get_snap_context(rbd_dev->header.snapc); 2047 up_read(&rbd_dev->header_rwsem); 2048 } 2049 2050 img_request->rq = NULL; 2051 img_request->rbd_dev = rbd_dev; 2052 img_request->offset = offset; 2053 img_request->length = length; 2054 img_request->flags = 0; 2055 if (write_request) { 2056 img_request_write_set(img_request); 2057 img_request->snapc = rbd_dev->header.snapc; 2058 } else { 2059 img_request->snap_id = rbd_dev->spec->snap_id; 2060 } 2061 if (rbd_dev_parent_get(rbd_dev)) 2062 img_request_layered_set(img_request); 2063 spin_lock_init(&img_request->completion_lock); 2064 img_request->next_completion = 0; 2065 img_request->callback = NULL; 2066 img_request->result = 0; 2067 img_request->obj_request_count = 0; 2068 INIT_LIST_HEAD(&img_request->obj_requests); 2069 kref_init(&img_request->kref); 2070 2071 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2072 write_request ? "write" : "read", offset, length, 2073 img_request); 2074 2075 return img_request; 2076 } 2077 2078 static void rbd_img_request_destroy(struct kref *kref) 2079 { 2080 struct rbd_img_request *img_request; 2081 struct rbd_obj_request *obj_request; 2082 struct rbd_obj_request *next_obj_request; 2083 2084 img_request = container_of(kref, struct rbd_img_request, kref); 2085 2086 dout("%s: img %p\n", __func__, img_request); 2087 2088 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2089 rbd_img_obj_request_del(img_request, obj_request); 2090 rbd_assert(img_request->obj_request_count == 0); 2091 2092 if (img_request_layered_test(img_request)) { 2093 img_request_layered_clear(img_request); 2094 rbd_dev_parent_put(img_request->rbd_dev); 2095 } 2096 2097 if (img_request_write_test(img_request)) 2098 ceph_put_snap_context(img_request->snapc); 2099 2100 kmem_cache_free(rbd_img_request_cache, img_request); 2101 } 2102 2103 static struct rbd_img_request *rbd_parent_request_create( 2104 struct rbd_obj_request *obj_request, 2105 u64 img_offset, u64 length) 2106 { 2107 struct rbd_img_request *parent_request; 2108 struct rbd_device *rbd_dev; 2109 2110 rbd_assert(obj_request->img_request); 2111 rbd_dev = obj_request->img_request->rbd_dev; 2112 2113 parent_request = rbd_img_request_create(rbd_dev->parent, 2114 img_offset, length, false); 2115 if (!parent_request) 2116 return NULL; 2117 2118 img_request_child_set(parent_request); 2119 rbd_obj_request_get(obj_request); 2120 parent_request->obj_request = obj_request; 2121 2122 return parent_request; 2123 } 2124 2125 static void rbd_parent_request_destroy(struct kref *kref) 2126 { 2127 struct rbd_img_request *parent_request; 2128 struct rbd_obj_request *orig_request; 2129 2130 parent_request = container_of(kref, struct rbd_img_request, kref); 2131 orig_request = parent_request->obj_request; 2132 2133 parent_request->obj_request = NULL; 2134 rbd_obj_request_put(orig_request); 2135 img_request_child_clear(parent_request); 2136 2137 rbd_img_request_destroy(kref); 2138 } 2139 2140 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2141 { 2142 struct rbd_img_request *img_request; 2143 unsigned int xferred; 2144 int result; 2145 bool more; 2146 2147 rbd_assert(obj_request_img_data_test(obj_request)); 2148 img_request = obj_request->img_request; 2149 2150 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2151 xferred = (unsigned int)obj_request->xferred; 2152 result = obj_request->result; 2153 if (result) { 2154 struct rbd_device *rbd_dev = img_request->rbd_dev; 2155 2156 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n", 2157 img_request_write_test(img_request) ? "write" : "read", 2158 obj_request->length, obj_request->img_offset, 2159 obj_request->offset); 2160 rbd_warn(rbd_dev, " result %d xferred %x\n", 2161 result, xferred); 2162 if (!img_request->result) 2163 img_request->result = result; 2164 } 2165 2166 /* Image object requests don't own their page array */ 2167 2168 if (obj_request->type == OBJ_REQUEST_PAGES) { 2169 obj_request->pages = NULL; 2170 obj_request->page_count = 0; 2171 } 2172 2173 if (img_request_child_test(img_request)) { 2174 rbd_assert(img_request->obj_request != NULL); 2175 more = obj_request->which < img_request->obj_request_count - 1; 2176 } else { 2177 rbd_assert(img_request->rq != NULL); 2178 more = blk_end_request(img_request->rq, result, xferred); 2179 } 2180 2181 return more; 2182 } 2183 2184 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2185 { 2186 struct rbd_img_request *img_request; 2187 u32 which = obj_request->which; 2188 bool more = true; 2189 2190 rbd_assert(obj_request_img_data_test(obj_request)); 2191 img_request = obj_request->img_request; 2192 2193 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2194 rbd_assert(img_request != NULL); 2195 rbd_assert(img_request->obj_request_count > 0); 2196 rbd_assert(which != BAD_WHICH); 2197 rbd_assert(which < img_request->obj_request_count); 2198 2199 spin_lock_irq(&img_request->completion_lock); 2200 if (which != img_request->next_completion) 2201 goto out; 2202 2203 for_each_obj_request_from(img_request, obj_request) { 2204 rbd_assert(more); 2205 rbd_assert(which < img_request->obj_request_count); 2206 2207 if (!obj_request_done_test(obj_request)) 2208 break; 2209 more = rbd_img_obj_end_request(obj_request); 2210 which++; 2211 } 2212 2213 rbd_assert(more ^ (which == img_request->obj_request_count)); 2214 img_request->next_completion = which; 2215 out: 2216 spin_unlock_irq(&img_request->completion_lock); 2217 rbd_img_request_put(img_request); 2218 2219 if (!more) 2220 rbd_img_request_complete(img_request); 2221 } 2222 2223 /* 2224 * Split up an image request into one or more object requests, each 2225 * to a different object. The "type" parameter indicates whether 2226 * "data_desc" is the pointer to the head of a list of bio 2227 * structures, or the base of a page array. In either case this 2228 * function assumes data_desc describes memory sufficient to hold 2229 * all data described by the image request. 2230 */ 2231 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2232 enum obj_request_type type, 2233 void *data_desc) 2234 { 2235 struct rbd_device *rbd_dev = img_request->rbd_dev; 2236 struct rbd_obj_request *obj_request = NULL; 2237 struct rbd_obj_request *next_obj_request; 2238 bool write_request = img_request_write_test(img_request); 2239 struct bio *bio_list = NULL; 2240 unsigned int bio_offset = 0; 2241 struct page **pages = NULL; 2242 u64 img_offset; 2243 u64 resid; 2244 u16 opcode; 2245 2246 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2247 (int)type, data_desc); 2248 2249 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ; 2250 img_offset = img_request->offset; 2251 resid = img_request->length; 2252 rbd_assert(resid > 0); 2253 2254 if (type == OBJ_REQUEST_BIO) { 2255 bio_list = data_desc; 2256 rbd_assert(img_offset == 2257 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2258 } else { 2259 rbd_assert(type == OBJ_REQUEST_PAGES); 2260 pages = data_desc; 2261 } 2262 2263 while (resid) { 2264 struct ceph_osd_request *osd_req; 2265 const char *object_name; 2266 u64 offset; 2267 u64 length; 2268 unsigned int which = 0; 2269 2270 object_name = rbd_segment_name(rbd_dev, img_offset); 2271 if (!object_name) 2272 goto out_unwind; 2273 offset = rbd_segment_offset(rbd_dev, img_offset); 2274 length = rbd_segment_length(rbd_dev, img_offset, resid); 2275 obj_request = rbd_obj_request_create(object_name, 2276 offset, length, type); 2277 /* object request has its own copy of the object name */ 2278 rbd_segment_name_free(object_name); 2279 if (!obj_request) 2280 goto out_unwind; 2281 2282 /* 2283 * set obj_request->img_request before creating the 2284 * osd_request so that it gets the right snapc 2285 */ 2286 rbd_img_obj_request_add(img_request, obj_request); 2287 2288 if (type == OBJ_REQUEST_BIO) { 2289 unsigned int clone_size; 2290 2291 rbd_assert(length <= (u64)UINT_MAX); 2292 clone_size = (unsigned int)length; 2293 obj_request->bio_list = 2294 bio_chain_clone_range(&bio_list, 2295 &bio_offset, 2296 clone_size, 2297 GFP_ATOMIC); 2298 if (!obj_request->bio_list) 2299 goto out_unwind; 2300 } else { 2301 unsigned int page_count; 2302 2303 obj_request->pages = pages; 2304 page_count = (u32)calc_pages_for(offset, length); 2305 obj_request->page_count = page_count; 2306 if ((offset + length) & ~PAGE_MASK) 2307 page_count--; /* more on last page */ 2308 pages += page_count; 2309 } 2310 2311 osd_req = rbd_osd_req_create(rbd_dev, write_request, 2312 (write_request ? 2 : 1), 2313 obj_request); 2314 if (!osd_req) 2315 goto out_unwind; 2316 obj_request->osd_req = osd_req; 2317 obj_request->callback = rbd_img_obj_callback; 2318 rbd_img_request_get(img_request); 2319 2320 if (write_request) { 2321 osd_req_op_alloc_hint_init(osd_req, which, 2322 rbd_obj_bytes(&rbd_dev->header), 2323 rbd_obj_bytes(&rbd_dev->header)); 2324 which++; 2325 } 2326 2327 osd_req_op_extent_init(osd_req, which, opcode, offset, length, 2328 0, 0); 2329 if (type == OBJ_REQUEST_BIO) 2330 osd_req_op_extent_osd_data_bio(osd_req, which, 2331 obj_request->bio_list, length); 2332 else 2333 osd_req_op_extent_osd_data_pages(osd_req, which, 2334 obj_request->pages, length, 2335 offset & ~PAGE_MASK, false, false); 2336 2337 if (write_request) 2338 rbd_osd_req_format_write(obj_request); 2339 else 2340 rbd_osd_req_format_read(obj_request); 2341 2342 obj_request->img_offset = img_offset; 2343 2344 img_offset += length; 2345 resid -= length; 2346 } 2347 2348 return 0; 2349 2350 out_unwind: 2351 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2352 rbd_img_obj_request_del(img_request, obj_request); 2353 2354 return -ENOMEM; 2355 } 2356 2357 static void 2358 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request) 2359 { 2360 struct rbd_img_request *img_request; 2361 struct rbd_device *rbd_dev; 2362 struct page **pages; 2363 u32 page_count; 2364 2365 rbd_assert(obj_request->type == OBJ_REQUEST_BIO); 2366 rbd_assert(obj_request_img_data_test(obj_request)); 2367 img_request = obj_request->img_request; 2368 rbd_assert(img_request); 2369 2370 rbd_dev = img_request->rbd_dev; 2371 rbd_assert(rbd_dev); 2372 2373 pages = obj_request->copyup_pages; 2374 rbd_assert(pages != NULL); 2375 obj_request->copyup_pages = NULL; 2376 page_count = obj_request->copyup_page_count; 2377 rbd_assert(page_count); 2378 obj_request->copyup_page_count = 0; 2379 ceph_release_page_vector(pages, page_count); 2380 2381 /* 2382 * We want the transfer count to reflect the size of the 2383 * original write request. There is no such thing as a 2384 * successful short write, so if the request was successful 2385 * we can just set it to the originally-requested length. 2386 */ 2387 if (!obj_request->result) 2388 obj_request->xferred = obj_request->length; 2389 2390 /* Finish up with the normal image object callback */ 2391 2392 rbd_img_obj_callback(obj_request); 2393 } 2394 2395 static void 2396 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2397 { 2398 struct rbd_obj_request *orig_request; 2399 struct ceph_osd_request *osd_req; 2400 struct ceph_osd_client *osdc; 2401 struct rbd_device *rbd_dev; 2402 struct page **pages; 2403 u32 page_count; 2404 int img_result; 2405 u64 parent_length; 2406 u64 offset; 2407 u64 length; 2408 2409 rbd_assert(img_request_child_test(img_request)); 2410 2411 /* First get what we need from the image request */ 2412 2413 pages = img_request->copyup_pages; 2414 rbd_assert(pages != NULL); 2415 img_request->copyup_pages = NULL; 2416 page_count = img_request->copyup_page_count; 2417 rbd_assert(page_count); 2418 img_request->copyup_page_count = 0; 2419 2420 orig_request = img_request->obj_request; 2421 rbd_assert(orig_request != NULL); 2422 rbd_assert(obj_request_type_valid(orig_request->type)); 2423 img_result = img_request->result; 2424 parent_length = img_request->length; 2425 rbd_assert(parent_length == img_request->xferred); 2426 rbd_img_request_put(img_request); 2427 2428 rbd_assert(orig_request->img_request); 2429 rbd_dev = orig_request->img_request->rbd_dev; 2430 rbd_assert(rbd_dev); 2431 2432 /* 2433 * If the overlap has become 0 (most likely because the 2434 * image has been flattened) we need to free the pages 2435 * and re-submit the original write request. 2436 */ 2437 if (!rbd_dev->parent_overlap) { 2438 struct ceph_osd_client *osdc; 2439 2440 ceph_release_page_vector(pages, page_count); 2441 osdc = &rbd_dev->rbd_client->client->osdc; 2442 img_result = rbd_obj_request_submit(osdc, orig_request); 2443 if (!img_result) 2444 return; 2445 } 2446 2447 if (img_result) 2448 goto out_err; 2449 2450 /* 2451 * The original osd request is of no use to use any more. 2452 * We need a new one that can hold the three ops in a copyup 2453 * request. Allocate the new copyup osd request for the 2454 * original request, and release the old one. 2455 */ 2456 img_result = -ENOMEM; 2457 osd_req = rbd_osd_req_create_copyup(orig_request); 2458 if (!osd_req) 2459 goto out_err; 2460 rbd_osd_req_destroy(orig_request->osd_req); 2461 orig_request->osd_req = osd_req; 2462 orig_request->copyup_pages = pages; 2463 orig_request->copyup_page_count = page_count; 2464 2465 /* Initialize the copyup op */ 2466 2467 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2468 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2469 false, false); 2470 2471 /* Then the hint op */ 2472 2473 osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header), 2474 rbd_obj_bytes(&rbd_dev->header)); 2475 2476 /* And the original write request op */ 2477 2478 offset = orig_request->offset; 2479 length = orig_request->length; 2480 osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE, 2481 offset, length, 0, 0); 2482 if (orig_request->type == OBJ_REQUEST_BIO) 2483 osd_req_op_extent_osd_data_bio(osd_req, 2, 2484 orig_request->bio_list, length); 2485 else 2486 osd_req_op_extent_osd_data_pages(osd_req, 2, 2487 orig_request->pages, length, 2488 offset & ~PAGE_MASK, false, false); 2489 2490 rbd_osd_req_format_write(orig_request); 2491 2492 /* All set, send it off. */ 2493 2494 orig_request->callback = rbd_img_obj_copyup_callback; 2495 osdc = &rbd_dev->rbd_client->client->osdc; 2496 img_result = rbd_obj_request_submit(osdc, orig_request); 2497 if (!img_result) 2498 return; 2499 out_err: 2500 /* Record the error code and complete the request */ 2501 2502 orig_request->result = img_result; 2503 orig_request->xferred = 0; 2504 obj_request_done_set(orig_request); 2505 rbd_obj_request_complete(orig_request); 2506 } 2507 2508 /* 2509 * Read from the parent image the range of data that covers the 2510 * entire target of the given object request. This is used for 2511 * satisfying a layered image write request when the target of an 2512 * object request from the image request does not exist. 2513 * 2514 * A page array big enough to hold the returned data is allocated 2515 * and supplied to rbd_img_request_fill() as the "data descriptor." 2516 * When the read completes, this page array will be transferred to 2517 * the original object request for the copyup operation. 2518 * 2519 * If an error occurs, record it as the result of the original 2520 * object request and mark it done so it gets completed. 2521 */ 2522 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2523 { 2524 struct rbd_img_request *img_request = NULL; 2525 struct rbd_img_request *parent_request = NULL; 2526 struct rbd_device *rbd_dev; 2527 u64 img_offset; 2528 u64 length; 2529 struct page **pages = NULL; 2530 u32 page_count; 2531 int result; 2532 2533 rbd_assert(obj_request_img_data_test(obj_request)); 2534 rbd_assert(obj_request_type_valid(obj_request->type)); 2535 2536 img_request = obj_request->img_request; 2537 rbd_assert(img_request != NULL); 2538 rbd_dev = img_request->rbd_dev; 2539 rbd_assert(rbd_dev->parent != NULL); 2540 2541 /* 2542 * Determine the byte range covered by the object in the 2543 * child image to which the original request was to be sent. 2544 */ 2545 img_offset = obj_request->img_offset - obj_request->offset; 2546 length = (u64)1 << rbd_dev->header.obj_order; 2547 2548 /* 2549 * There is no defined parent data beyond the parent 2550 * overlap, so limit what we read at that boundary if 2551 * necessary. 2552 */ 2553 if (img_offset + length > rbd_dev->parent_overlap) { 2554 rbd_assert(img_offset < rbd_dev->parent_overlap); 2555 length = rbd_dev->parent_overlap - img_offset; 2556 } 2557 2558 /* 2559 * Allocate a page array big enough to receive the data read 2560 * from the parent. 2561 */ 2562 page_count = (u32)calc_pages_for(0, length); 2563 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2564 if (IS_ERR(pages)) { 2565 result = PTR_ERR(pages); 2566 pages = NULL; 2567 goto out_err; 2568 } 2569 2570 result = -ENOMEM; 2571 parent_request = rbd_parent_request_create(obj_request, 2572 img_offset, length); 2573 if (!parent_request) 2574 goto out_err; 2575 2576 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2577 if (result) 2578 goto out_err; 2579 parent_request->copyup_pages = pages; 2580 parent_request->copyup_page_count = page_count; 2581 2582 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2583 result = rbd_img_request_submit(parent_request); 2584 if (!result) 2585 return 0; 2586 2587 parent_request->copyup_pages = NULL; 2588 parent_request->copyup_page_count = 0; 2589 parent_request->obj_request = NULL; 2590 rbd_obj_request_put(obj_request); 2591 out_err: 2592 if (pages) 2593 ceph_release_page_vector(pages, page_count); 2594 if (parent_request) 2595 rbd_img_request_put(parent_request); 2596 obj_request->result = result; 2597 obj_request->xferred = 0; 2598 obj_request_done_set(obj_request); 2599 2600 return result; 2601 } 2602 2603 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2604 { 2605 struct rbd_obj_request *orig_request; 2606 struct rbd_device *rbd_dev; 2607 int result; 2608 2609 rbd_assert(!obj_request_img_data_test(obj_request)); 2610 2611 /* 2612 * All we need from the object request is the original 2613 * request and the result of the STAT op. Grab those, then 2614 * we're done with the request. 2615 */ 2616 orig_request = obj_request->obj_request; 2617 obj_request->obj_request = NULL; 2618 rbd_obj_request_put(orig_request); 2619 rbd_assert(orig_request); 2620 rbd_assert(orig_request->img_request); 2621 2622 result = obj_request->result; 2623 obj_request->result = 0; 2624 2625 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2626 obj_request, orig_request, result, 2627 obj_request->xferred, obj_request->length); 2628 rbd_obj_request_put(obj_request); 2629 2630 /* 2631 * If the overlap has become 0 (most likely because the 2632 * image has been flattened) we need to free the pages 2633 * and re-submit the original write request. 2634 */ 2635 rbd_dev = orig_request->img_request->rbd_dev; 2636 if (!rbd_dev->parent_overlap) { 2637 struct ceph_osd_client *osdc; 2638 2639 osdc = &rbd_dev->rbd_client->client->osdc; 2640 result = rbd_obj_request_submit(osdc, orig_request); 2641 if (!result) 2642 return; 2643 } 2644 2645 /* 2646 * Our only purpose here is to determine whether the object 2647 * exists, and we don't want to treat the non-existence as 2648 * an error. If something else comes back, transfer the 2649 * error to the original request and complete it now. 2650 */ 2651 if (!result) { 2652 obj_request_existence_set(orig_request, true); 2653 } else if (result == -ENOENT) { 2654 obj_request_existence_set(orig_request, false); 2655 } else if (result) { 2656 orig_request->result = result; 2657 goto out; 2658 } 2659 2660 /* 2661 * Resubmit the original request now that we have recorded 2662 * whether the target object exists. 2663 */ 2664 orig_request->result = rbd_img_obj_request_submit(orig_request); 2665 out: 2666 if (orig_request->result) 2667 rbd_obj_request_complete(orig_request); 2668 } 2669 2670 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2671 { 2672 struct rbd_obj_request *stat_request; 2673 struct rbd_device *rbd_dev; 2674 struct ceph_osd_client *osdc; 2675 struct page **pages = NULL; 2676 u32 page_count; 2677 size_t size; 2678 int ret; 2679 2680 /* 2681 * The response data for a STAT call consists of: 2682 * le64 length; 2683 * struct { 2684 * le32 tv_sec; 2685 * le32 tv_nsec; 2686 * } mtime; 2687 */ 2688 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2689 page_count = (u32)calc_pages_for(0, size); 2690 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2691 if (IS_ERR(pages)) 2692 return PTR_ERR(pages); 2693 2694 ret = -ENOMEM; 2695 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2696 OBJ_REQUEST_PAGES); 2697 if (!stat_request) 2698 goto out; 2699 2700 rbd_obj_request_get(obj_request); 2701 stat_request->obj_request = obj_request; 2702 stat_request->pages = pages; 2703 stat_request->page_count = page_count; 2704 2705 rbd_assert(obj_request->img_request); 2706 rbd_dev = obj_request->img_request->rbd_dev; 2707 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 2708 stat_request); 2709 if (!stat_request->osd_req) 2710 goto out; 2711 stat_request->callback = rbd_img_obj_exists_callback; 2712 2713 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT); 2714 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2715 false, false); 2716 rbd_osd_req_format_read(stat_request); 2717 2718 osdc = &rbd_dev->rbd_client->client->osdc; 2719 ret = rbd_obj_request_submit(osdc, stat_request); 2720 out: 2721 if (ret) 2722 rbd_obj_request_put(obj_request); 2723 2724 return ret; 2725 } 2726 2727 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2728 { 2729 struct rbd_img_request *img_request; 2730 struct rbd_device *rbd_dev; 2731 bool known; 2732 2733 rbd_assert(obj_request_img_data_test(obj_request)); 2734 2735 img_request = obj_request->img_request; 2736 rbd_assert(img_request); 2737 rbd_dev = img_request->rbd_dev; 2738 2739 /* 2740 * Only writes to layered images need special handling. 2741 * Reads and non-layered writes are simple object requests. 2742 * Layered writes that start beyond the end of the overlap 2743 * with the parent have no parent data, so they too are 2744 * simple object requests. Finally, if the target object is 2745 * known to already exist, its parent data has already been 2746 * copied, so a write to the object can also be handled as a 2747 * simple object request. 2748 */ 2749 if (!img_request_write_test(img_request) || 2750 !img_request_layered_test(img_request) || 2751 rbd_dev->parent_overlap <= obj_request->img_offset || 2752 ((known = obj_request_known_test(obj_request)) && 2753 obj_request_exists_test(obj_request))) { 2754 2755 struct rbd_device *rbd_dev; 2756 struct ceph_osd_client *osdc; 2757 2758 rbd_dev = obj_request->img_request->rbd_dev; 2759 osdc = &rbd_dev->rbd_client->client->osdc; 2760 2761 return rbd_obj_request_submit(osdc, obj_request); 2762 } 2763 2764 /* 2765 * It's a layered write. The target object might exist but 2766 * we may not know that yet. If we know it doesn't exist, 2767 * start by reading the data for the full target object from 2768 * the parent so we can use it for a copyup to the target. 2769 */ 2770 if (known) 2771 return rbd_img_obj_parent_read_full(obj_request); 2772 2773 /* We don't know whether the target exists. Go find out. */ 2774 2775 return rbd_img_obj_exists_submit(obj_request); 2776 } 2777 2778 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2779 { 2780 struct rbd_obj_request *obj_request; 2781 struct rbd_obj_request *next_obj_request; 2782 2783 dout("%s: img %p\n", __func__, img_request); 2784 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2785 int ret; 2786 2787 ret = rbd_img_obj_request_submit(obj_request); 2788 if (ret) 2789 return ret; 2790 } 2791 2792 return 0; 2793 } 2794 2795 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2796 { 2797 struct rbd_obj_request *obj_request; 2798 struct rbd_device *rbd_dev; 2799 u64 obj_end; 2800 u64 img_xferred; 2801 int img_result; 2802 2803 rbd_assert(img_request_child_test(img_request)); 2804 2805 /* First get what we need from the image request and release it */ 2806 2807 obj_request = img_request->obj_request; 2808 img_xferred = img_request->xferred; 2809 img_result = img_request->result; 2810 rbd_img_request_put(img_request); 2811 2812 /* 2813 * If the overlap has become 0 (most likely because the 2814 * image has been flattened) we need to re-submit the 2815 * original request. 2816 */ 2817 rbd_assert(obj_request); 2818 rbd_assert(obj_request->img_request); 2819 rbd_dev = obj_request->img_request->rbd_dev; 2820 if (!rbd_dev->parent_overlap) { 2821 struct ceph_osd_client *osdc; 2822 2823 osdc = &rbd_dev->rbd_client->client->osdc; 2824 img_result = rbd_obj_request_submit(osdc, obj_request); 2825 if (!img_result) 2826 return; 2827 } 2828 2829 obj_request->result = img_result; 2830 if (obj_request->result) 2831 goto out; 2832 2833 /* 2834 * We need to zero anything beyond the parent overlap 2835 * boundary. Since rbd_img_obj_request_read_callback() 2836 * will zero anything beyond the end of a short read, an 2837 * easy way to do this is to pretend the data from the 2838 * parent came up short--ending at the overlap boundary. 2839 */ 2840 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 2841 obj_end = obj_request->img_offset + obj_request->length; 2842 if (obj_end > rbd_dev->parent_overlap) { 2843 u64 xferred = 0; 2844 2845 if (obj_request->img_offset < rbd_dev->parent_overlap) 2846 xferred = rbd_dev->parent_overlap - 2847 obj_request->img_offset; 2848 2849 obj_request->xferred = min(img_xferred, xferred); 2850 } else { 2851 obj_request->xferred = img_xferred; 2852 } 2853 out: 2854 rbd_img_obj_request_read_callback(obj_request); 2855 rbd_obj_request_complete(obj_request); 2856 } 2857 2858 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 2859 { 2860 struct rbd_img_request *img_request; 2861 int result; 2862 2863 rbd_assert(obj_request_img_data_test(obj_request)); 2864 rbd_assert(obj_request->img_request != NULL); 2865 rbd_assert(obj_request->result == (s32) -ENOENT); 2866 rbd_assert(obj_request_type_valid(obj_request->type)); 2867 2868 /* rbd_read_finish(obj_request, obj_request->length); */ 2869 img_request = rbd_parent_request_create(obj_request, 2870 obj_request->img_offset, 2871 obj_request->length); 2872 result = -ENOMEM; 2873 if (!img_request) 2874 goto out_err; 2875 2876 if (obj_request->type == OBJ_REQUEST_BIO) 2877 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 2878 obj_request->bio_list); 2879 else 2880 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 2881 obj_request->pages); 2882 if (result) 2883 goto out_err; 2884 2885 img_request->callback = rbd_img_parent_read_callback; 2886 result = rbd_img_request_submit(img_request); 2887 if (result) 2888 goto out_err; 2889 2890 return; 2891 out_err: 2892 if (img_request) 2893 rbd_img_request_put(img_request); 2894 obj_request->result = result; 2895 obj_request->xferred = 0; 2896 obj_request_done_set(obj_request); 2897 } 2898 2899 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 2900 { 2901 struct rbd_obj_request *obj_request; 2902 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2903 int ret; 2904 2905 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2906 OBJ_REQUEST_NODATA); 2907 if (!obj_request) 2908 return -ENOMEM; 2909 2910 ret = -ENOMEM; 2911 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 2912 obj_request); 2913 if (!obj_request->osd_req) 2914 goto out; 2915 2916 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 2917 notify_id, 0, 0); 2918 rbd_osd_req_format_read(obj_request); 2919 2920 ret = rbd_obj_request_submit(osdc, obj_request); 2921 if (ret) 2922 goto out; 2923 ret = rbd_obj_request_wait(obj_request); 2924 out: 2925 rbd_obj_request_put(obj_request); 2926 2927 return ret; 2928 } 2929 2930 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 2931 { 2932 struct rbd_device *rbd_dev = (struct rbd_device *)data; 2933 int ret; 2934 2935 if (!rbd_dev) 2936 return; 2937 2938 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 2939 rbd_dev->header_name, (unsigned long long)notify_id, 2940 (unsigned int)opcode); 2941 ret = rbd_dev_refresh(rbd_dev); 2942 if (ret) 2943 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret); 2944 2945 rbd_obj_notify_ack_sync(rbd_dev, notify_id); 2946 } 2947 2948 /* 2949 * Initiate a watch request, synchronously. 2950 */ 2951 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 2952 { 2953 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2954 struct rbd_obj_request *obj_request; 2955 int ret; 2956 2957 rbd_assert(!rbd_dev->watch_event); 2958 rbd_assert(!rbd_dev->watch_request); 2959 2960 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 2961 &rbd_dev->watch_event); 2962 if (ret < 0) 2963 return ret; 2964 2965 rbd_assert(rbd_dev->watch_event); 2966 2967 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 2968 OBJ_REQUEST_NODATA); 2969 if (!obj_request) { 2970 ret = -ENOMEM; 2971 goto out_cancel; 2972 } 2973 2974 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1, 2975 obj_request); 2976 if (!obj_request->osd_req) { 2977 ret = -ENOMEM; 2978 goto out_put; 2979 } 2980 2981 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 2982 2983 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 2984 rbd_dev->watch_event->cookie, 0, 1); 2985 rbd_osd_req_format_write(obj_request); 2986 2987 ret = rbd_obj_request_submit(osdc, obj_request); 2988 if (ret) 2989 goto out_linger; 2990 2991 ret = rbd_obj_request_wait(obj_request); 2992 if (ret) 2993 goto out_linger; 2994 2995 ret = obj_request->result; 2996 if (ret) 2997 goto out_linger; 2998 2999 /* 3000 * A watch request is set to linger, so the underlying osd 3001 * request won't go away until we unregister it. We retain 3002 * a pointer to the object request during that time (in 3003 * rbd_dev->watch_request), so we'll keep a reference to 3004 * it. We'll drop that reference (below) after we've 3005 * unregistered it. 3006 */ 3007 rbd_dev->watch_request = obj_request; 3008 3009 return 0; 3010 3011 out_linger: 3012 ceph_osdc_unregister_linger_request(osdc, obj_request->osd_req); 3013 out_put: 3014 rbd_obj_request_put(obj_request); 3015 out_cancel: 3016 ceph_osdc_cancel_event(rbd_dev->watch_event); 3017 rbd_dev->watch_event = NULL; 3018 3019 return ret; 3020 } 3021 3022 /* 3023 * Tear down a watch request, synchronously. 3024 */ 3025 static int __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3026 { 3027 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3028 struct rbd_obj_request *obj_request; 3029 int ret; 3030 3031 rbd_assert(rbd_dev->watch_event); 3032 rbd_assert(rbd_dev->watch_request); 3033 3034 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3035 OBJ_REQUEST_NODATA); 3036 if (!obj_request) { 3037 ret = -ENOMEM; 3038 goto out_cancel; 3039 } 3040 3041 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1, 3042 obj_request); 3043 if (!obj_request->osd_req) { 3044 ret = -ENOMEM; 3045 goto out_put; 3046 } 3047 3048 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 3049 rbd_dev->watch_event->cookie, 0, 0); 3050 rbd_osd_req_format_write(obj_request); 3051 3052 ret = rbd_obj_request_submit(osdc, obj_request); 3053 if (ret) 3054 goto out_put; 3055 3056 ret = rbd_obj_request_wait(obj_request); 3057 if (ret) 3058 goto out_put; 3059 3060 ret = obj_request->result; 3061 if (ret) 3062 goto out_put; 3063 3064 /* We have successfully torn down the watch request */ 3065 3066 ceph_osdc_unregister_linger_request(osdc, 3067 rbd_dev->watch_request->osd_req); 3068 rbd_obj_request_put(rbd_dev->watch_request); 3069 rbd_dev->watch_request = NULL; 3070 3071 out_put: 3072 rbd_obj_request_put(obj_request); 3073 out_cancel: 3074 ceph_osdc_cancel_event(rbd_dev->watch_event); 3075 rbd_dev->watch_event = NULL; 3076 3077 return ret; 3078 } 3079 3080 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3081 { 3082 int ret; 3083 3084 ret = __rbd_dev_header_unwatch_sync(rbd_dev); 3085 if (ret) { 3086 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n", 3087 ret); 3088 } 3089 } 3090 3091 /* 3092 * Synchronous osd object method call. Returns the number of bytes 3093 * returned in the outbound buffer, or a negative error code. 3094 */ 3095 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3096 const char *object_name, 3097 const char *class_name, 3098 const char *method_name, 3099 const void *outbound, 3100 size_t outbound_size, 3101 void *inbound, 3102 size_t inbound_size) 3103 { 3104 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3105 struct rbd_obj_request *obj_request; 3106 struct page **pages; 3107 u32 page_count; 3108 int ret; 3109 3110 /* 3111 * Method calls are ultimately read operations. The result 3112 * should placed into the inbound buffer provided. They 3113 * also supply outbound data--parameters for the object 3114 * method. Currently if this is present it will be a 3115 * snapshot id. 3116 */ 3117 page_count = (u32)calc_pages_for(0, inbound_size); 3118 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3119 if (IS_ERR(pages)) 3120 return PTR_ERR(pages); 3121 3122 ret = -ENOMEM; 3123 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3124 OBJ_REQUEST_PAGES); 3125 if (!obj_request) 3126 goto out; 3127 3128 obj_request->pages = pages; 3129 obj_request->page_count = page_count; 3130 3131 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 3132 obj_request); 3133 if (!obj_request->osd_req) 3134 goto out; 3135 3136 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3137 class_name, method_name); 3138 if (outbound_size) { 3139 struct ceph_pagelist *pagelist; 3140 3141 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3142 if (!pagelist) 3143 goto out; 3144 3145 ceph_pagelist_init(pagelist); 3146 ceph_pagelist_append(pagelist, outbound, outbound_size); 3147 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3148 pagelist); 3149 } 3150 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3151 obj_request->pages, inbound_size, 3152 0, false, false); 3153 rbd_osd_req_format_read(obj_request); 3154 3155 ret = rbd_obj_request_submit(osdc, obj_request); 3156 if (ret) 3157 goto out; 3158 ret = rbd_obj_request_wait(obj_request); 3159 if (ret) 3160 goto out; 3161 3162 ret = obj_request->result; 3163 if (ret < 0) 3164 goto out; 3165 3166 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3167 ret = (int)obj_request->xferred; 3168 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3169 out: 3170 if (obj_request) 3171 rbd_obj_request_put(obj_request); 3172 else 3173 ceph_release_page_vector(pages, page_count); 3174 3175 return ret; 3176 } 3177 3178 static void rbd_request_fn(struct request_queue *q) 3179 __releases(q->queue_lock) __acquires(q->queue_lock) 3180 { 3181 struct rbd_device *rbd_dev = q->queuedata; 3182 struct request *rq; 3183 int result; 3184 3185 while ((rq = blk_fetch_request(q))) { 3186 bool write_request = rq_data_dir(rq) == WRITE; 3187 struct rbd_img_request *img_request; 3188 u64 offset; 3189 u64 length; 3190 3191 /* Ignore any non-FS requests that filter through. */ 3192 3193 if (rq->cmd_type != REQ_TYPE_FS) { 3194 dout("%s: non-fs request type %d\n", __func__, 3195 (int) rq->cmd_type); 3196 __blk_end_request_all(rq, 0); 3197 continue; 3198 } 3199 3200 /* Ignore/skip any zero-length requests */ 3201 3202 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT; 3203 length = (u64) blk_rq_bytes(rq); 3204 3205 if (!length) { 3206 dout("%s: zero-length request\n", __func__); 3207 __blk_end_request_all(rq, 0); 3208 continue; 3209 } 3210 3211 spin_unlock_irq(q->queue_lock); 3212 3213 /* Disallow writes to a read-only device */ 3214 3215 if (write_request) { 3216 result = -EROFS; 3217 if (rbd_dev->mapping.read_only) 3218 goto end_request; 3219 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3220 } 3221 3222 /* 3223 * Quit early if the mapped snapshot no longer 3224 * exists. It's still possible the snapshot will 3225 * have disappeared by the time our request arrives 3226 * at the osd, but there's no sense in sending it if 3227 * we already know. 3228 */ 3229 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3230 dout("request for non-existent snapshot"); 3231 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3232 result = -ENXIO; 3233 goto end_request; 3234 } 3235 3236 result = -EINVAL; 3237 if (offset && length > U64_MAX - offset + 1) { 3238 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n", 3239 offset, length); 3240 goto end_request; /* Shouldn't happen */ 3241 } 3242 3243 result = -EIO; 3244 if (offset + length > rbd_dev->mapping.size) { 3245 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n", 3246 offset, length, rbd_dev->mapping.size); 3247 goto end_request; 3248 } 3249 3250 result = -ENOMEM; 3251 img_request = rbd_img_request_create(rbd_dev, offset, length, 3252 write_request); 3253 if (!img_request) 3254 goto end_request; 3255 3256 img_request->rq = rq; 3257 3258 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3259 rq->bio); 3260 if (!result) 3261 result = rbd_img_request_submit(img_request); 3262 if (result) 3263 rbd_img_request_put(img_request); 3264 end_request: 3265 spin_lock_irq(q->queue_lock); 3266 if (result < 0) { 3267 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n", 3268 write_request ? "write" : "read", 3269 length, offset, result); 3270 3271 __blk_end_request_all(rq, result); 3272 } 3273 } 3274 } 3275 3276 /* 3277 * a queue callback. Makes sure that we don't create a bio that spans across 3278 * multiple osd objects. One exception would be with a single page bios, 3279 * which we handle later at bio_chain_clone_range() 3280 */ 3281 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 3282 struct bio_vec *bvec) 3283 { 3284 struct rbd_device *rbd_dev = q->queuedata; 3285 sector_t sector_offset; 3286 sector_t sectors_per_obj; 3287 sector_t obj_sector_offset; 3288 int ret; 3289 3290 /* 3291 * Find how far into its rbd object the partition-relative 3292 * bio start sector is to offset relative to the enclosing 3293 * device. 3294 */ 3295 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector; 3296 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT); 3297 obj_sector_offset = sector_offset & (sectors_per_obj - 1); 3298 3299 /* 3300 * Compute the number of bytes from that offset to the end 3301 * of the object. Account for what's already used by the bio. 3302 */ 3303 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT; 3304 if (ret > bmd->bi_size) 3305 ret -= bmd->bi_size; 3306 else 3307 ret = 0; 3308 3309 /* 3310 * Don't send back more than was asked for. And if the bio 3311 * was empty, let the whole thing through because: "Note 3312 * that a block device *must* allow a single page to be 3313 * added to an empty bio." 3314 */ 3315 rbd_assert(bvec->bv_len <= PAGE_SIZE); 3316 if (ret > (int) bvec->bv_len || !bmd->bi_size) 3317 ret = (int) bvec->bv_len; 3318 3319 return ret; 3320 } 3321 3322 static void rbd_free_disk(struct rbd_device *rbd_dev) 3323 { 3324 struct gendisk *disk = rbd_dev->disk; 3325 3326 if (!disk) 3327 return; 3328 3329 rbd_dev->disk = NULL; 3330 if (disk->flags & GENHD_FL_UP) { 3331 del_gendisk(disk); 3332 if (disk->queue) 3333 blk_cleanup_queue(disk->queue); 3334 } 3335 put_disk(disk); 3336 } 3337 3338 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3339 const char *object_name, 3340 u64 offset, u64 length, void *buf) 3341 3342 { 3343 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3344 struct rbd_obj_request *obj_request; 3345 struct page **pages = NULL; 3346 u32 page_count; 3347 size_t size; 3348 int ret; 3349 3350 page_count = (u32) calc_pages_for(offset, length); 3351 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3352 if (IS_ERR(pages)) 3353 ret = PTR_ERR(pages); 3354 3355 ret = -ENOMEM; 3356 obj_request = rbd_obj_request_create(object_name, offset, length, 3357 OBJ_REQUEST_PAGES); 3358 if (!obj_request) 3359 goto out; 3360 3361 obj_request->pages = pages; 3362 obj_request->page_count = page_count; 3363 3364 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1, 3365 obj_request); 3366 if (!obj_request->osd_req) 3367 goto out; 3368 3369 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3370 offset, length, 0, 0); 3371 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3372 obj_request->pages, 3373 obj_request->length, 3374 obj_request->offset & ~PAGE_MASK, 3375 false, false); 3376 rbd_osd_req_format_read(obj_request); 3377 3378 ret = rbd_obj_request_submit(osdc, obj_request); 3379 if (ret) 3380 goto out; 3381 ret = rbd_obj_request_wait(obj_request); 3382 if (ret) 3383 goto out; 3384 3385 ret = obj_request->result; 3386 if (ret < 0) 3387 goto out; 3388 3389 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3390 size = (size_t) obj_request->xferred; 3391 ceph_copy_from_page_vector(pages, buf, 0, size); 3392 rbd_assert(size <= (size_t)INT_MAX); 3393 ret = (int)size; 3394 out: 3395 if (obj_request) 3396 rbd_obj_request_put(obj_request); 3397 else 3398 ceph_release_page_vector(pages, page_count); 3399 3400 return ret; 3401 } 3402 3403 /* 3404 * Read the complete header for the given rbd device. On successful 3405 * return, the rbd_dev->header field will contain up-to-date 3406 * information about the image. 3407 */ 3408 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3409 { 3410 struct rbd_image_header_ondisk *ondisk = NULL; 3411 u32 snap_count = 0; 3412 u64 names_size = 0; 3413 u32 want_count; 3414 int ret; 3415 3416 /* 3417 * The complete header will include an array of its 64-bit 3418 * snapshot ids, followed by the names of those snapshots as 3419 * a contiguous block of NUL-terminated strings. Note that 3420 * the number of snapshots could change by the time we read 3421 * it in, in which case we re-read it. 3422 */ 3423 do { 3424 size_t size; 3425 3426 kfree(ondisk); 3427 3428 size = sizeof (*ondisk); 3429 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3430 size += names_size; 3431 ondisk = kmalloc(size, GFP_KERNEL); 3432 if (!ondisk) 3433 return -ENOMEM; 3434 3435 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3436 0, size, ondisk); 3437 if (ret < 0) 3438 goto out; 3439 if ((size_t)ret < size) { 3440 ret = -ENXIO; 3441 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3442 size, ret); 3443 goto out; 3444 } 3445 if (!rbd_dev_ondisk_valid(ondisk)) { 3446 ret = -ENXIO; 3447 rbd_warn(rbd_dev, "invalid header"); 3448 goto out; 3449 } 3450 3451 names_size = le64_to_cpu(ondisk->snap_names_len); 3452 want_count = snap_count; 3453 snap_count = le32_to_cpu(ondisk->snap_count); 3454 } while (snap_count != want_count); 3455 3456 ret = rbd_header_from_disk(rbd_dev, ondisk); 3457 out: 3458 kfree(ondisk); 3459 3460 return ret; 3461 } 3462 3463 /* 3464 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3465 * has disappeared from the (just updated) snapshot context. 3466 */ 3467 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3468 { 3469 u64 snap_id; 3470 3471 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3472 return; 3473 3474 snap_id = rbd_dev->spec->snap_id; 3475 if (snap_id == CEPH_NOSNAP) 3476 return; 3477 3478 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3479 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3480 } 3481 3482 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3483 { 3484 sector_t size; 3485 bool removing; 3486 3487 /* 3488 * Don't hold the lock while doing disk operations, 3489 * or lock ordering will conflict with the bdev mutex via: 3490 * rbd_add() -> blkdev_get() -> rbd_open() 3491 */ 3492 spin_lock_irq(&rbd_dev->lock); 3493 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3494 spin_unlock_irq(&rbd_dev->lock); 3495 /* 3496 * If the device is being removed, rbd_dev->disk has 3497 * been destroyed, so don't try to update its size 3498 */ 3499 if (!removing) { 3500 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3501 dout("setting size to %llu sectors", (unsigned long long)size); 3502 set_capacity(rbd_dev->disk, size); 3503 revalidate_disk(rbd_dev->disk); 3504 } 3505 } 3506 3507 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3508 { 3509 u64 mapping_size; 3510 int ret; 3511 3512 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 3513 down_write(&rbd_dev->header_rwsem); 3514 mapping_size = rbd_dev->mapping.size; 3515 if (rbd_dev->image_format == 1) 3516 ret = rbd_dev_v1_header_info(rbd_dev); 3517 else 3518 ret = rbd_dev_v2_header_info(rbd_dev); 3519 3520 /* If it's a mapped snapshot, validate its EXISTS flag */ 3521 3522 rbd_exists_validate(rbd_dev); 3523 up_write(&rbd_dev->header_rwsem); 3524 3525 if (mapping_size != rbd_dev->mapping.size) { 3526 rbd_dev_update_size(rbd_dev); 3527 } 3528 3529 return ret; 3530 } 3531 3532 static int rbd_init_disk(struct rbd_device *rbd_dev) 3533 { 3534 struct gendisk *disk; 3535 struct request_queue *q; 3536 u64 segment_size; 3537 3538 /* create gendisk info */ 3539 disk = alloc_disk(single_major ? 3540 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3541 RBD_MINORS_PER_MAJOR); 3542 if (!disk) 3543 return -ENOMEM; 3544 3545 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3546 rbd_dev->dev_id); 3547 disk->major = rbd_dev->major; 3548 disk->first_minor = rbd_dev->minor; 3549 if (single_major) 3550 disk->flags |= GENHD_FL_EXT_DEVT; 3551 disk->fops = &rbd_bd_ops; 3552 disk->private_data = rbd_dev; 3553 3554 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock); 3555 if (!q) 3556 goto out_disk; 3557 3558 /* We use the default size, but let's be explicit about it. */ 3559 blk_queue_physical_block_size(q, SECTOR_SIZE); 3560 3561 /* set io sizes to object size */ 3562 segment_size = rbd_obj_bytes(&rbd_dev->header); 3563 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3564 blk_queue_max_segment_size(q, segment_size); 3565 blk_queue_io_min(q, segment_size); 3566 blk_queue_io_opt(q, segment_size); 3567 3568 blk_queue_merge_bvec(q, rbd_merge_bvec); 3569 disk->queue = q; 3570 3571 q->queuedata = rbd_dev; 3572 3573 rbd_dev->disk = disk; 3574 3575 return 0; 3576 out_disk: 3577 put_disk(disk); 3578 3579 return -ENOMEM; 3580 } 3581 3582 /* 3583 sysfs 3584 */ 3585 3586 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3587 { 3588 return container_of(dev, struct rbd_device, dev); 3589 } 3590 3591 static ssize_t rbd_size_show(struct device *dev, 3592 struct device_attribute *attr, char *buf) 3593 { 3594 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3595 3596 return sprintf(buf, "%llu\n", 3597 (unsigned long long)rbd_dev->mapping.size); 3598 } 3599 3600 /* 3601 * Note this shows the features for whatever's mapped, which is not 3602 * necessarily the base image. 3603 */ 3604 static ssize_t rbd_features_show(struct device *dev, 3605 struct device_attribute *attr, char *buf) 3606 { 3607 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3608 3609 return sprintf(buf, "0x%016llx\n", 3610 (unsigned long long)rbd_dev->mapping.features); 3611 } 3612 3613 static ssize_t rbd_major_show(struct device *dev, 3614 struct device_attribute *attr, char *buf) 3615 { 3616 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3617 3618 if (rbd_dev->major) 3619 return sprintf(buf, "%d\n", rbd_dev->major); 3620 3621 return sprintf(buf, "(none)\n"); 3622 } 3623 3624 static ssize_t rbd_minor_show(struct device *dev, 3625 struct device_attribute *attr, char *buf) 3626 { 3627 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3628 3629 return sprintf(buf, "%d\n", rbd_dev->minor); 3630 } 3631 3632 static ssize_t rbd_client_id_show(struct device *dev, 3633 struct device_attribute *attr, char *buf) 3634 { 3635 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3636 3637 return sprintf(buf, "client%lld\n", 3638 ceph_client_id(rbd_dev->rbd_client->client)); 3639 } 3640 3641 static ssize_t rbd_pool_show(struct device *dev, 3642 struct device_attribute *attr, char *buf) 3643 { 3644 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3645 3646 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3647 } 3648 3649 static ssize_t rbd_pool_id_show(struct device *dev, 3650 struct device_attribute *attr, char *buf) 3651 { 3652 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3653 3654 return sprintf(buf, "%llu\n", 3655 (unsigned long long) rbd_dev->spec->pool_id); 3656 } 3657 3658 static ssize_t rbd_name_show(struct device *dev, 3659 struct device_attribute *attr, char *buf) 3660 { 3661 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3662 3663 if (rbd_dev->spec->image_name) 3664 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3665 3666 return sprintf(buf, "(unknown)\n"); 3667 } 3668 3669 static ssize_t rbd_image_id_show(struct device *dev, 3670 struct device_attribute *attr, char *buf) 3671 { 3672 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3673 3674 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3675 } 3676 3677 /* 3678 * Shows the name of the currently-mapped snapshot (or 3679 * RBD_SNAP_HEAD_NAME for the base image). 3680 */ 3681 static ssize_t rbd_snap_show(struct device *dev, 3682 struct device_attribute *attr, 3683 char *buf) 3684 { 3685 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3686 3687 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3688 } 3689 3690 /* 3691 * For an rbd v2 image, shows the pool id, image id, and snapshot id 3692 * for the parent image. If there is no parent, simply shows 3693 * "(no parent image)". 3694 */ 3695 static ssize_t rbd_parent_show(struct device *dev, 3696 struct device_attribute *attr, 3697 char *buf) 3698 { 3699 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3700 struct rbd_spec *spec = rbd_dev->parent_spec; 3701 int count; 3702 char *bufp = buf; 3703 3704 if (!spec) 3705 return sprintf(buf, "(no parent image)\n"); 3706 3707 count = sprintf(bufp, "pool_id %llu\npool_name %s\n", 3708 (unsigned long long) spec->pool_id, spec->pool_name); 3709 if (count < 0) 3710 return count; 3711 bufp += count; 3712 3713 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id, 3714 spec->image_name ? spec->image_name : "(unknown)"); 3715 if (count < 0) 3716 return count; 3717 bufp += count; 3718 3719 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n", 3720 (unsigned long long) spec->snap_id, spec->snap_name); 3721 if (count < 0) 3722 return count; 3723 bufp += count; 3724 3725 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap); 3726 if (count < 0) 3727 return count; 3728 bufp += count; 3729 3730 return (ssize_t) (bufp - buf); 3731 } 3732 3733 static ssize_t rbd_image_refresh(struct device *dev, 3734 struct device_attribute *attr, 3735 const char *buf, 3736 size_t size) 3737 { 3738 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3739 int ret; 3740 3741 ret = rbd_dev_refresh(rbd_dev); 3742 if (ret) 3743 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret); 3744 3745 return ret < 0 ? ret : size; 3746 } 3747 3748 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3749 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3750 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3751 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3752 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3753 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3754 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3755 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3756 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3757 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3758 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3759 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3760 3761 static struct attribute *rbd_attrs[] = { 3762 &dev_attr_size.attr, 3763 &dev_attr_features.attr, 3764 &dev_attr_major.attr, 3765 &dev_attr_minor.attr, 3766 &dev_attr_client_id.attr, 3767 &dev_attr_pool.attr, 3768 &dev_attr_pool_id.attr, 3769 &dev_attr_name.attr, 3770 &dev_attr_image_id.attr, 3771 &dev_attr_current_snap.attr, 3772 &dev_attr_parent.attr, 3773 &dev_attr_refresh.attr, 3774 NULL 3775 }; 3776 3777 static struct attribute_group rbd_attr_group = { 3778 .attrs = rbd_attrs, 3779 }; 3780 3781 static const struct attribute_group *rbd_attr_groups[] = { 3782 &rbd_attr_group, 3783 NULL 3784 }; 3785 3786 static void rbd_sysfs_dev_release(struct device *dev) 3787 { 3788 } 3789 3790 static struct device_type rbd_device_type = { 3791 .name = "rbd", 3792 .groups = rbd_attr_groups, 3793 .release = rbd_sysfs_dev_release, 3794 }; 3795 3796 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 3797 { 3798 kref_get(&spec->kref); 3799 3800 return spec; 3801 } 3802 3803 static void rbd_spec_free(struct kref *kref); 3804 static void rbd_spec_put(struct rbd_spec *spec) 3805 { 3806 if (spec) 3807 kref_put(&spec->kref, rbd_spec_free); 3808 } 3809 3810 static struct rbd_spec *rbd_spec_alloc(void) 3811 { 3812 struct rbd_spec *spec; 3813 3814 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 3815 if (!spec) 3816 return NULL; 3817 kref_init(&spec->kref); 3818 3819 return spec; 3820 } 3821 3822 static void rbd_spec_free(struct kref *kref) 3823 { 3824 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 3825 3826 kfree(spec->pool_name); 3827 kfree(spec->image_id); 3828 kfree(spec->image_name); 3829 kfree(spec->snap_name); 3830 kfree(spec); 3831 } 3832 3833 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 3834 struct rbd_spec *spec) 3835 { 3836 struct rbd_device *rbd_dev; 3837 3838 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 3839 if (!rbd_dev) 3840 return NULL; 3841 3842 spin_lock_init(&rbd_dev->lock); 3843 rbd_dev->flags = 0; 3844 atomic_set(&rbd_dev->parent_ref, 0); 3845 INIT_LIST_HEAD(&rbd_dev->node); 3846 init_rwsem(&rbd_dev->header_rwsem); 3847 3848 rbd_dev->spec = spec; 3849 rbd_dev->rbd_client = rbdc; 3850 3851 /* Initialize the layout used for all rbd requests */ 3852 3853 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3854 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 3855 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 3856 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 3857 3858 return rbd_dev; 3859 } 3860 3861 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 3862 { 3863 rbd_put_client(rbd_dev->rbd_client); 3864 rbd_spec_put(rbd_dev->spec); 3865 kfree(rbd_dev); 3866 } 3867 3868 /* 3869 * Get the size and object order for an image snapshot, or if 3870 * snap_id is CEPH_NOSNAP, gets this information for the base 3871 * image. 3872 */ 3873 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 3874 u8 *order, u64 *snap_size) 3875 { 3876 __le64 snapid = cpu_to_le64(snap_id); 3877 int ret; 3878 struct { 3879 u8 order; 3880 __le64 size; 3881 } __attribute__ ((packed)) size_buf = { 0 }; 3882 3883 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3884 "rbd", "get_size", 3885 &snapid, sizeof (snapid), 3886 &size_buf, sizeof (size_buf)); 3887 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3888 if (ret < 0) 3889 return ret; 3890 if (ret < sizeof (size_buf)) 3891 return -ERANGE; 3892 3893 if (order) { 3894 *order = size_buf.order; 3895 dout(" order %u", (unsigned int)*order); 3896 } 3897 *snap_size = le64_to_cpu(size_buf.size); 3898 3899 dout(" snap_id 0x%016llx snap_size = %llu\n", 3900 (unsigned long long)snap_id, 3901 (unsigned long long)*snap_size); 3902 3903 return 0; 3904 } 3905 3906 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 3907 { 3908 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 3909 &rbd_dev->header.obj_order, 3910 &rbd_dev->header.image_size); 3911 } 3912 3913 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 3914 { 3915 void *reply_buf; 3916 int ret; 3917 void *p; 3918 3919 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 3920 if (!reply_buf) 3921 return -ENOMEM; 3922 3923 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3924 "rbd", "get_object_prefix", NULL, 0, 3925 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 3926 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3927 if (ret < 0) 3928 goto out; 3929 3930 p = reply_buf; 3931 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 3932 p + ret, NULL, GFP_NOIO); 3933 ret = 0; 3934 3935 if (IS_ERR(rbd_dev->header.object_prefix)) { 3936 ret = PTR_ERR(rbd_dev->header.object_prefix); 3937 rbd_dev->header.object_prefix = NULL; 3938 } else { 3939 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 3940 } 3941 out: 3942 kfree(reply_buf); 3943 3944 return ret; 3945 } 3946 3947 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 3948 u64 *snap_features) 3949 { 3950 __le64 snapid = cpu_to_le64(snap_id); 3951 struct { 3952 __le64 features; 3953 __le64 incompat; 3954 } __attribute__ ((packed)) features_buf = { 0 }; 3955 u64 incompat; 3956 int ret; 3957 3958 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 3959 "rbd", "get_features", 3960 &snapid, sizeof (snapid), 3961 &features_buf, sizeof (features_buf)); 3962 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 3963 if (ret < 0) 3964 return ret; 3965 if (ret < sizeof (features_buf)) 3966 return -ERANGE; 3967 3968 incompat = le64_to_cpu(features_buf.incompat); 3969 if (incompat & ~RBD_FEATURES_SUPPORTED) 3970 return -ENXIO; 3971 3972 *snap_features = le64_to_cpu(features_buf.features); 3973 3974 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 3975 (unsigned long long)snap_id, 3976 (unsigned long long)*snap_features, 3977 (unsigned long long)le64_to_cpu(features_buf.incompat)); 3978 3979 return 0; 3980 } 3981 3982 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 3983 { 3984 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 3985 &rbd_dev->header.features); 3986 } 3987 3988 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 3989 { 3990 struct rbd_spec *parent_spec; 3991 size_t size; 3992 void *reply_buf = NULL; 3993 __le64 snapid; 3994 void *p; 3995 void *end; 3996 u64 pool_id; 3997 char *image_id; 3998 u64 snap_id; 3999 u64 overlap; 4000 int ret; 4001 4002 parent_spec = rbd_spec_alloc(); 4003 if (!parent_spec) 4004 return -ENOMEM; 4005 4006 size = sizeof (__le64) + /* pool_id */ 4007 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4008 sizeof (__le64) + /* snap_id */ 4009 sizeof (__le64); /* overlap */ 4010 reply_buf = kmalloc(size, GFP_KERNEL); 4011 if (!reply_buf) { 4012 ret = -ENOMEM; 4013 goto out_err; 4014 } 4015 4016 snapid = cpu_to_le64(CEPH_NOSNAP); 4017 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4018 "rbd", "get_parent", 4019 &snapid, sizeof (snapid), 4020 reply_buf, size); 4021 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4022 if (ret < 0) 4023 goto out_err; 4024 4025 p = reply_buf; 4026 end = reply_buf + ret; 4027 ret = -ERANGE; 4028 ceph_decode_64_safe(&p, end, pool_id, out_err); 4029 if (pool_id == CEPH_NOPOOL) { 4030 /* 4031 * Either the parent never existed, or we have 4032 * record of it but the image got flattened so it no 4033 * longer has a parent. When the parent of a 4034 * layered image disappears we immediately set the 4035 * overlap to 0. The effect of this is that all new 4036 * requests will be treated as if the image had no 4037 * parent. 4038 */ 4039 if (rbd_dev->parent_overlap) { 4040 rbd_dev->parent_overlap = 0; 4041 smp_mb(); 4042 rbd_dev_parent_put(rbd_dev); 4043 pr_info("%s: clone image has been flattened\n", 4044 rbd_dev->disk->disk_name); 4045 } 4046 4047 goto out; /* No parent? No problem. */ 4048 } 4049 4050 /* The ceph file layout needs to fit pool id in 32 bits */ 4051 4052 ret = -EIO; 4053 if (pool_id > (u64)U32_MAX) { 4054 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n", 4055 (unsigned long long)pool_id, U32_MAX); 4056 goto out_err; 4057 } 4058 4059 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4060 if (IS_ERR(image_id)) { 4061 ret = PTR_ERR(image_id); 4062 goto out_err; 4063 } 4064 ceph_decode_64_safe(&p, end, snap_id, out_err); 4065 ceph_decode_64_safe(&p, end, overlap, out_err); 4066 4067 /* 4068 * The parent won't change (except when the clone is 4069 * flattened, already handled that). So we only need to 4070 * record the parent spec we have not already done so. 4071 */ 4072 if (!rbd_dev->parent_spec) { 4073 parent_spec->pool_id = pool_id; 4074 parent_spec->image_id = image_id; 4075 parent_spec->snap_id = snap_id; 4076 rbd_dev->parent_spec = parent_spec; 4077 parent_spec = NULL; /* rbd_dev now owns this */ 4078 } 4079 4080 /* 4081 * We always update the parent overlap. If it's zero we 4082 * treat it specially. 4083 */ 4084 rbd_dev->parent_overlap = overlap; 4085 smp_mb(); 4086 if (!overlap) { 4087 4088 /* A null parent_spec indicates it's the initial probe */ 4089 4090 if (parent_spec) { 4091 /* 4092 * The overlap has become zero, so the clone 4093 * must have been resized down to 0 at some 4094 * point. Treat this the same as a flatten. 4095 */ 4096 rbd_dev_parent_put(rbd_dev); 4097 pr_info("%s: clone image now standalone\n", 4098 rbd_dev->disk->disk_name); 4099 } else { 4100 /* 4101 * For the initial probe, if we find the 4102 * overlap is zero we just pretend there was 4103 * no parent image. 4104 */ 4105 rbd_warn(rbd_dev, "ignoring parent of " 4106 "clone with overlap 0\n"); 4107 } 4108 } 4109 out: 4110 ret = 0; 4111 out_err: 4112 kfree(reply_buf); 4113 rbd_spec_put(parent_spec); 4114 4115 return ret; 4116 } 4117 4118 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4119 { 4120 struct { 4121 __le64 stripe_unit; 4122 __le64 stripe_count; 4123 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4124 size_t size = sizeof (striping_info_buf); 4125 void *p; 4126 u64 obj_size; 4127 u64 stripe_unit; 4128 u64 stripe_count; 4129 int ret; 4130 4131 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4132 "rbd", "get_stripe_unit_count", NULL, 0, 4133 (char *)&striping_info_buf, size); 4134 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4135 if (ret < 0) 4136 return ret; 4137 if (ret < size) 4138 return -ERANGE; 4139 4140 /* 4141 * We don't actually support the "fancy striping" feature 4142 * (STRIPINGV2) yet, but if the striping sizes are the 4143 * defaults the behavior is the same as before. So find 4144 * out, and only fail if the image has non-default values. 4145 */ 4146 ret = -EINVAL; 4147 obj_size = (u64)1 << rbd_dev->header.obj_order; 4148 p = &striping_info_buf; 4149 stripe_unit = ceph_decode_64(&p); 4150 if (stripe_unit != obj_size) { 4151 rbd_warn(rbd_dev, "unsupported stripe unit " 4152 "(got %llu want %llu)", 4153 stripe_unit, obj_size); 4154 return -EINVAL; 4155 } 4156 stripe_count = ceph_decode_64(&p); 4157 if (stripe_count != 1) { 4158 rbd_warn(rbd_dev, "unsupported stripe count " 4159 "(got %llu want 1)", stripe_count); 4160 return -EINVAL; 4161 } 4162 rbd_dev->header.stripe_unit = stripe_unit; 4163 rbd_dev->header.stripe_count = stripe_count; 4164 4165 return 0; 4166 } 4167 4168 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4169 { 4170 size_t image_id_size; 4171 char *image_id; 4172 void *p; 4173 void *end; 4174 size_t size; 4175 void *reply_buf = NULL; 4176 size_t len = 0; 4177 char *image_name = NULL; 4178 int ret; 4179 4180 rbd_assert(!rbd_dev->spec->image_name); 4181 4182 len = strlen(rbd_dev->spec->image_id); 4183 image_id_size = sizeof (__le32) + len; 4184 image_id = kmalloc(image_id_size, GFP_KERNEL); 4185 if (!image_id) 4186 return NULL; 4187 4188 p = image_id; 4189 end = image_id + image_id_size; 4190 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4191 4192 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4193 reply_buf = kmalloc(size, GFP_KERNEL); 4194 if (!reply_buf) 4195 goto out; 4196 4197 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4198 "rbd", "dir_get_name", 4199 image_id, image_id_size, 4200 reply_buf, size); 4201 if (ret < 0) 4202 goto out; 4203 p = reply_buf; 4204 end = reply_buf + ret; 4205 4206 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4207 if (IS_ERR(image_name)) 4208 image_name = NULL; 4209 else 4210 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4211 out: 4212 kfree(reply_buf); 4213 kfree(image_id); 4214 4215 return image_name; 4216 } 4217 4218 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4219 { 4220 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4221 const char *snap_name; 4222 u32 which = 0; 4223 4224 /* Skip over names until we find the one we are looking for */ 4225 4226 snap_name = rbd_dev->header.snap_names; 4227 while (which < snapc->num_snaps) { 4228 if (!strcmp(name, snap_name)) 4229 return snapc->snaps[which]; 4230 snap_name += strlen(snap_name) + 1; 4231 which++; 4232 } 4233 return CEPH_NOSNAP; 4234 } 4235 4236 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4237 { 4238 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4239 u32 which; 4240 bool found = false; 4241 u64 snap_id; 4242 4243 for (which = 0; !found && which < snapc->num_snaps; which++) { 4244 const char *snap_name; 4245 4246 snap_id = snapc->snaps[which]; 4247 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4248 if (IS_ERR(snap_name)) { 4249 /* ignore no-longer existing snapshots */ 4250 if (PTR_ERR(snap_name) == -ENOENT) 4251 continue; 4252 else 4253 break; 4254 } 4255 found = !strcmp(name, snap_name); 4256 kfree(snap_name); 4257 } 4258 return found ? snap_id : CEPH_NOSNAP; 4259 } 4260 4261 /* 4262 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4263 * no snapshot by that name is found, or if an error occurs. 4264 */ 4265 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4266 { 4267 if (rbd_dev->image_format == 1) 4268 return rbd_v1_snap_id_by_name(rbd_dev, name); 4269 4270 return rbd_v2_snap_id_by_name(rbd_dev, name); 4271 } 4272 4273 /* 4274 * When an rbd image has a parent image, it is identified by the 4275 * pool, image, and snapshot ids (not names). This function fills 4276 * in the names for those ids. (It's OK if we can't figure out the 4277 * name for an image id, but the pool and snapshot ids should always 4278 * exist and have names.) All names in an rbd spec are dynamically 4279 * allocated. 4280 * 4281 * When an image being mapped (not a parent) is probed, we have the 4282 * pool name and pool id, image name and image id, and the snapshot 4283 * name. The only thing we're missing is the snapshot id. 4284 */ 4285 static int rbd_dev_spec_update(struct rbd_device *rbd_dev) 4286 { 4287 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4288 struct rbd_spec *spec = rbd_dev->spec; 4289 const char *pool_name; 4290 const char *image_name; 4291 const char *snap_name; 4292 int ret; 4293 4294 /* 4295 * An image being mapped will have the pool name (etc.), but 4296 * we need to look up the snapshot id. 4297 */ 4298 if (spec->pool_name) { 4299 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4300 u64 snap_id; 4301 4302 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4303 if (snap_id == CEPH_NOSNAP) 4304 return -ENOENT; 4305 spec->snap_id = snap_id; 4306 } else { 4307 spec->snap_id = CEPH_NOSNAP; 4308 } 4309 4310 return 0; 4311 } 4312 4313 /* Get the pool name; we have to make our own copy of this */ 4314 4315 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4316 if (!pool_name) { 4317 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4318 return -EIO; 4319 } 4320 pool_name = kstrdup(pool_name, GFP_KERNEL); 4321 if (!pool_name) 4322 return -ENOMEM; 4323 4324 /* Fetch the image name; tolerate failure here */ 4325 4326 image_name = rbd_dev_image_name(rbd_dev); 4327 if (!image_name) 4328 rbd_warn(rbd_dev, "unable to get image name"); 4329 4330 /* Look up the snapshot name, and make a copy */ 4331 4332 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4333 if (IS_ERR(snap_name)) { 4334 ret = PTR_ERR(snap_name); 4335 goto out_err; 4336 } 4337 4338 spec->pool_name = pool_name; 4339 spec->image_name = image_name; 4340 spec->snap_name = snap_name; 4341 4342 return 0; 4343 out_err: 4344 kfree(image_name); 4345 kfree(pool_name); 4346 4347 return ret; 4348 } 4349 4350 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4351 { 4352 size_t size; 4353 int ret; 4354 void *reply_buf; 4355 void *p; 4356 void *end; 4357 u64 seq; 4358 u32 snap_count; 4359 struct ceph_snap_context *snapc; 4360 u32 i; 4361 4362 /* 4363 * We'll need room for the seq value (maximum snapshot id), 4364 * snapshot count, and array of that many snapshot ids. 4365 * For now we have a fixed upper limit on the number we're 4366 * prepared to receive. 4367 */ 4368 size = sizeof (__le64) + sizeof (__le32) + 4369 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4370 reply_buf = kzalloc(size, GFP_KERNEL); 4371 if (!reply_buf) 4372 return -ENOMEM; 4373 4374 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4375 "rbd", "get_snapcontext", NULL, 0, 4376 reply_buf, size); 4377 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4378 if (ret < 0) 4379 goto out; 4380 4381 p = reply_buf; 4382 end = reply_buf + ret; 4383 ret = -ERANGE; 4384 ceph_decode_64_safe(&p, end, seq, out); 4385 ceph_decode_32_safe(&p, end, snap_count, out); 4386 4387 /* 4388 * Make sure the reported number of snapshot ids wouldn't go 4389 * beyond the end of our buffer. But before checking that, 4390 * make sure the computed size of the snapshot context we 4391 * allocate is representable in a size_t. 4392 */ 4393 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4394 / sizeof (u64)) { 4395 ret = -EINVAL; 4396 goto out; 4397 } 4398 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4399 goto out; 4400 ret = 0; 4401 4402 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4403 if (!snapc) { 4404 ret = -ENOMEM; 4405 goto out; 4406 } 4407 snapc->seq = seq; 4408 for (i = 0; i < snap_count; i++) 4409 snapc->snaps[i] = ceph_decode_64(&p); 4410 4411 ceph_put_snap_context(rbd_dev->header.snapc); 4412 rbd_dev->header.snapc = snapc; 4413 4414 dout(" snap context seq = %llu, snap_count = %u\n", 4415 (unsigned long long)seq, (unsigned int)snap_count); 4416 out: 4417 kfree(reply_buf); 4418 4419 return ret; 4420 } 4421 4422 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4423 u64 snap_id) 4424 { 4425 size_t size; 4426 void *reply_buf; 4427 __le64 snapid; 4428 int ret; 4429 void *p; 4430 void *end; 4431 char *snap_name; 4432 4433 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4434 reply_buf = kmalloc(size, GFP_KERNEL); 4435 if (!reply_buf) 4436 return ERR_PTR(-ENOMEM); 4437 4438 snapid = cpu_to_le64(snap_id); 4439 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4440 "rbd", "get_snapshot_name", 4441 &snapid, sizeof (snapid), 4442 reply_buf, size); 4443 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4444 if (ret < 0) { 4445 snap_name = ERR_PTR(ret); 4446 goto out; 4447 } 4448 4449 p = reply_buf; 4450 end = reply_buf + ret; 4451 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4452 if (IS_ERR(snap_name)) 4453 goto out; 4454 4455 dout(" snap_id 0x%016llx snap_name = %s\n", 4456 (unsigned long long)snap_id, snap_name); 4457 out: 4458 kfree(reply_buf); 4459 4460 return snap_name; 4461 } 4462 4463 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4464 { 4465 bool first_time = rbd_dev->header.object_prefix == NULL; 4466 int ret; 4467 4468 ret = rbd_dev_v2_image_size(rbd_dev); 4469 if (ret) 4470 return ret; 4471 4472 if (first_time) { 4473 ret = rbd_dev_v2_header_onetime(rbd_dev); 4474 if (ret) 4475 return ret; 4476 } 4477 4478 /* 4479 * If the image supports layering, get the parent info. We 4480 * need to probe the first time regardless. Thereafter we 4481 * only need to if there's a parent, to see if it has 4482 * disappeared due to the mapped image getting flattened. 4483 */ 4484 if (rbd_dev->header.features & RBD_FEATURE_LAYERING && 4485 (first_time || rbd_dev->parent_spec)) { 4486 bool warn; 4487 4488 ret = rbd_dev_v2_parent_info(rbd_dev); 4489 if (ret) 4490 return ret; 4491 4492 /* 4493 * Print a warning if this is the initial probe and 4494 * the image has a parent. Don't print it if the 4495 * image now being probed is itself a parent. We 4496 * can tell at this point because we won't know its 4497 * pool name yet (just its pool id). 4498 */ 4499 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name; 4500 if (first_time && warn) 4501 rbd_warn(rbd_dev, "WARNING: kernel layering " 4502 "is EXPERIMENTAL!"); 4503 } 4504 4505 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) 4506 if (rbd_dev->mapping.size != rbd_dev->header.image_size) 4507 rbd_dev->mapping.size = rbd_dev->header.image_size; 4508 4509 ret = rbd_dev_v2_snap_context(rbd_dev); 4510 dout("rbd_dev_v2_snap_context returned %d\n", ret); 4511 4512 return ret; 4513 } 4514 4515 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4516 { 4517 struct device *dev; 4518 int ret; 4519 4520 dev = &rbd_dev->dev; 4521 dev->bus = &rbd_bus_type; 4522 dev->type = &rbd_device_type; 4523 dev->parent = &rbd_root_dev; 4524 dev->release = rbd_dev_device_release; 4525 dev_set_name(dev, "%d", rbd_dev->dev_id); 4526 ret = device_register(dev); 4527 4528 return ret; 4529 } 4530 4531 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4532 { 4533 device_unregister(&rbd_dev->dev); 4534 } 4535 4536 /* 4537 * Get a unique rbd identifier for the given new rbd_dev, and add 4538 * the rbd_dev to the global list. 4539 */ 4540 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4541 { 4542 int new_dev_id; 4543 4544 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4545 0, minor_to_rbd_dev_id(1 << MINORBITS), 4546 GFP_KERNEL); 4547 if (new_dev_id < 0) 4548 return new_dev_id; 4549 4550 rbd_dev->dev_id = new_dev_id; 4551 4552 spin_lock(&rbd_dev_list_lock); 4553 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4554 spin_unlock(&rbd_dev_list_lock); 4555 4556 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4557 4558 return 0; 4559 } 4560 4561 /* 4562 * Remove an rbd_dev from the global list, and record that its 4563 * identifier is no longer in use. 4564 */ 4565 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4566 { 4567 spin_lock(&rbd_dev_list_lock); 4568 list_del_init(&rbd_dev->node); 4569 spin_unlock(&rbd_dev_list_lock); 4570 4571 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4572 4573 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4574 } 4575 4576 /* 4577 * Skips over white space at *buf, and updates *buf to point to the 4578 * first found non-space character (if any). Returns the length of 4579 * the token (string of non-white space characters) found. Note 4580 * that *buf must be terminated with '\0'. 4581 */ 4582 static inline size_t next_token(const char **buf) 4583 { 4584 /* 4585 * These are the characters that produce nonzero for 4586 * isspace() in the "C" and "POSIX" locales. 4587 */ 4588 const char *spaces = " \f\n\r\t\v"; 4589 4590 *buf += strspn(*buf, spaces); /* Find start of token */ 4591 4592 return strcspn(*buf, spaces); /* Return token length */ 4593 } 4594 4595 /* 4596 * Finds the next token in *buf, and if the provided token buffer is 4597 * big enough, copies the found token into it. The result, if 4598 * copied, is guaranteed to be terminated with '\0'. Note that *buf 4599 * must be terminated with '\0' on entry. 4600 * 4601 * Returns the length of the token found (not including the '\0'). 4602 * Return value will be 0 if no token is found, and it will be >= 4603 * token_size if the token would not fit. 4604 * 4605 * The *buf pointer will be updated to point beyond the end of the 4606 * found token. Note that this occurs even if the token buffer is 4607 * too small to hold it. 4608 */ 4609 static inline size_t copy_token(const char **buf, 4610 char *token, 4611 size_t token_size) 4612 { 4613 size_t len; 4614 4615 len = next_token(buf); 4616 if (len < token_size) { 4617 memcpy(token, *buf, len); 4618 *(token + len) = '\0'; 4619 } 4620 *buf += len; 4621 4622 return len; 4623 } 4624 4625 /* 4626 * Finds the next token in *buf, dynamically allocates a buffer big 4627 * enough to hold a copy of it, and copies the token into the new 4628 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4629 * that a duplicate buffer is created even for a zero-length token. 4630 * 4631 * Returns a pointer to the newly-allocated duplicate, or a null 4632 * pointer if memory for the duplicate was not available. If 4633 * the lenp argument is a non-null pointer, the length of the token 4634 * (not including the '\0') is returned in *lenp. 4635 * 4636 * If successful, the *buf pointer will be updated to point beyond 4637 * the end of the found token. 4638 * 4639 * Note: uses GFP_KERNEL for allocation. 4640 */ 4641 static inline char *dup_token(const char **buf, size_t *lenp) 4642 { 4643 char *dup; 4644 size_t len; 4645 4646 len = next_token(buf); 4647 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4648 if (!dup) 4649 return NULL; 4650 *(dup + len) = '\0'; 4651 *buf += len; 4652 4653 if (lenp) 4654 *lenp = len; 4655 4656 return dup; 4657 } 4658 4659 /* 4660 * Parse the options provided for an "rbd add" (i.e., rbd image 4661 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4662 * and the data written is passed here via a NUL-terminated buffer. 4663 * Returns 0 if successful or an error code otherwise. 4664 * 4665 * The information extracted from these options is recorded in 4666 * the other parameters which return dynamically-allocated 4667 * structures: 4668 * ceph_opts 4669 * The address of a pointer that will refer to a ceph options 4670 * structure. Caller must release the returned pointer using 4671 * ceph_destroy_options() when it is no longer needed. 4672 * rbd_opts 4673 * Address of an rbd options pointer. Fully initialized by 4674 * this function; caller must release with kfree(). 4675 * spec 4676 * Address of an rbd image specification pointer. Fully 4677 * initialized by this function based on parsed options. 4678 * Caller must release with rbd_spec_put(). 4679 * 4680 * The options passed take this form: 4681 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4682 * where: 4683 * <mon_addrs> 4684 * A comma-separated list of one or more monitor addresses. 4685 * A monitor address is an ip address, optionally followed 4686 * by a port number (separated by a colon). 4687 * I.e.: ip1[:port1][,ip2[:port2]...] 4688 * <options> 4689 * A comma-separated list of ceph and/or rbd options. 4690 * <pool_name> 4691 * The name of the rados pool containing the rbd image. 4692 * <image_name> 4693 * The name of the image in that pool to map. 4694 * <snap_id> 4695 * An optional snapshot id. If provided, the mapping will 4696 * present data from the image at the time that snapshot was 4697 * created. The image head is used if no snapshot id is 4698 * provided. Snapshot mappings are always read-only. 4699 */ 4700 static int rbd_add_parse_args(const char *buf, 4701 struct ceph_options **ceph_opts, 4702 struct rbd_options **opts, 4703 struct rbd_spec **rbd_spec) 4704 { 4705 size_t len; 4706 char *options; 4707 const char *mon_addrs; 4708 char *snap_name; 4709 size_t mon_addrs_size; 4710 struct rbd_spec *spec = NULL; 4711 struct rbd_options *rbd_opts = NULL; 4712 struct ceph_options *copts; 4713 int ret; 4714 4715 /* The first four tokens are required */ 4716 4717 len = next_token(&buf); 4718 if (!len) { 4719 rbd_warn(NULL, "no monitor address(es) provided"); 4720 return -EINVAL; 4721 } 4722 mon_addrs = buf; 4723 mon_addrs_size = len + 1; 4724 buf += len; 4725 4726 ret = -EINVAL; 4727 options = dup_token(&buf, NULL); 4728 if (!options) 4729 return -ENOMEM; 4730 if (!*options) { 4731 rbd_warn(NULL, "no options provided"); 4732 goto out_err; 4733 } 4734 4735 spec = rbd_spec_alloc(); 4736 if (!spec) 4737 goto out_mem; 4738 4739 spec->pool_name = dup_token(&buf, NULL); 4740 if (!spec->pool_name) 4741 goto out_mem; 4742 if (!*spec->pool_name) { 4743 rbd_warn(NULL, "no pool name provided"); 4744 goto out_err; 4745 } 4746 4747 spec->image_name = dup_token(&buf, NULL); 4748 if (!spec->image_name) 4749 goto out_mem; 4750 if (!*spec->image_name) { 4751 rbd_warn(NULL, "no image name provided"); 4752 goto out_err; 4753 } 4754 4755 /* 4756 * Snapshot name is optional; default is to use "-" 4757 * (indicating the head/no snapshot). 4758 */ 4759 len = next_token(&buf); 4760 if (!len) { 4761 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4762 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4763 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4764 ret = -ENAMETOOLONG; 4765 goto out_err; 4766 } 4767 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4768 if (!snap_name) 4769 goto out_mem; 4770 *(snap_name + len) = '\0'; 4771 spec->snap_name = snap_name; 4772 4773 /* Initialize all rbd options to the defaults */ 4774 4775 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4776 if (!rbd_opts) 4777 goto out_mem; 4778 4779 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4780 4781 copts = ceph_parse_options(options, mon_addrs, 4782 mon_addrs + mon_addrs_size - 1, 4783 parse_rbd_opts_token, rbd_opts); 4784 if (IS_ERR(copts)) { 4785 ret = PTR_ERR(copts); 4786 goto out_err; 4787 } 4788 kfree(options); 4789 4790 *ceph_opts = copts; 4791 *opts = rbd_opts; 4792 *rbd_spec = spec; 4793 4794 return 0; 4795 out_mem: 4796 ret = -ENOMEM; 4797 out_err: 4798 kfree(rbd_opts); 4799 rbd_spec_put(spec); 4800 kfree(options); 4801 4802 return ret; 4803 } 4804 4805 /* 4806 * Return pool id (>= 0) or a negative error code. 4807 */ 4808 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 4809 { 4810 u64 newest_epoch; 4811 unsigned long timeout = rbdc->client->options->mount_timeout * HZ; 4812 int tries = 0; 4813 int ret; 4814 4815 again: 4816 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 4817 if (ret == -ENOENT && tries++ < 1) { 4818 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap", 4819 &newest_epoch); 4820 if (ret < 0) 4821 return ret; 4822 4823 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 4824 ceph_monc_request_next_osdmap(&rbdc->client->monc); 4825 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 4826 newest_epoch, timeout); 4827 goto again; 4828 } else { 4829 /* the osdmap we have is new enough */ 4830 return -ENOENT; 4831 } 4832 } 4833 4834 return ret; 4835 } 4836 4837 /* 4838 * An rbd format 2 image has a unique identifier, distinct from the 4839 * name given to it by the user. Internally, that identifier is 4840 * what's used to specify the names of objects related to the image. 4841 * 4842 * A special "rbd id" object is used to map an rbd image name to its 4843 * id. If that object doesn't exist, then there is no v2 rbd image 4844 * with the supplied name. 4845 * 4846 * This function will record the given rbd_dev's image_id field if 4847 * it can be determined, and in that case will return 0. If any 4848 * errors occur a negative errno will be returned and the rbd_dev's 4849 * image_id field will be unchanged (and should be NULL). 4850 */ 4851 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 4852 { 4853 int ret; 4854 size_t size; 4855 char *object_name; 4856 void *response; 4857 char *image_id; 4858 4859 /* 4860 * When probing a parent image, the image id is already 4861 * known (and the image name likely is not). There's no 4862 * need to fetch the image id again in this case. We 4863 * do still need to set the image format though. 4864 */ 4865 if (rbd_dev->spec->image_id) { 4866 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 4867 4868 return 0; 4869 } 4870 4871 /* 4872 * First, see if the format 2 image id file exists, and if 4873 * so, get the image's persistent id from it. 4874 */ 4875 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 4876 object_name = kmalloc(size, GFP_NOIO); 4877 if (!object_name) 4878 return -ENOMEM; 4879 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 4880 dout("rbd id object name is %s\n", object_name); 4881 4882 /* Response will be an encoded string, which includes a length */ 4883 4884 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 4885 response = kzalloc(size, GFP_NOIO); 4886 if (!response) { 4887 ret = -ENOMEM; 4888 goto out; 4889 } 4890 4891 /* If it doesn't exist we'll assume it's a format 1 image */ 4892 4893 ret = rbd_obj_method_sync(rbd_dev, object_name, 4894 "rbd", "get_id", NULL, 0, 4895 response, RBD_IMAGE_ID_LEN_MAX); 4896 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4897 if (ret == -ENOENT) { 4898 image_id = kstrdup("", GFP_KERNEL); 4899 ret = image_id ? 0 : -ENOMEM; 4900 if (!ret) 4901 rbd_dev->image_format = 1; 4902 } else if (ret > sizeof (__le32)) { 4903 void *p = response; 4904 4905 image_id = ceph_extract_encoded_string(&p, p + ret, 4906 NULL, GFP_NOIO); 4907 ret = PTR_ERR_OR_ZERO(image_id); 4908 if (!ret) 4909 rbd_dev->image_format = 2; 4910 } else { 4911 ret = -EINVAL; 4912 } 4913 4914 if (!ret) { 4915 rbd_dev->spec->image_id = image_id; 4916 dout("image_id is %s\n", image_id); 4917 } 4918 out: 4919 kfree(response); 4920 kfree(object_name); 4921 4922 return ret; 4923 } 4924 4925 /* 4926 * Undo whatever state changes are made by v1 or v2 header info 4927 * call. 4928 */ 4929 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 4930 { 4931 struct rbd_image_header *header; 4932 4933 /* Drop parent reference unless it's already been done (or none) */ 4934 4935 if (rbd_dev->parent_overlap) 4936 rbd_dev_parent_put(rbd_dev); 4937 4938 /* Free dynamic fields from the header, then zero it out */ 4939 4940 header = &rbd_dev->header; 4941 ceph_put_snap_context(header->snapc); 4942 kfree(header->snap_sizes); 4943 kfree(header->snap_names); 4944 kfree(header->object_prefix); 4945 memset(header, 0, sizeof (*header)); 4946 } 4947 4948 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 4949 { 4950 int ret; 4951 4952 ret = rbd_dev_v2_object_prefix(rbd_dev); 4953 if (ret) 4954 goto out_err; 4955 4956 /* 4957 * Get the and check features for the image. Currently the 4958 * features are assumed to never change. 4959 */ 4960 ret = rbd_dev_v2_features(rbd_dev); 4961 if (ret) 4962 goto out_err; 4963 4964 /* If the image supports fancy striping, get its parameters */ 4965 4966 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 4967 ret = rbd_dev_v2_striping_info(rbd_dev); 4968 if (ret < 0) 4969 goto out_err; 4970 } 4971 /* No support for crypto and compression type format 2 images */ 4972 4973 return 0; 4974 out_err: 4975 rbd_dev->header.features = 0; 4976 kfree(rbd_dev->header.object_prefix); 4977 rbd_dev->header.object_prefix = NULL; 4978 4979 return ret; 4980 } 4981 4982 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 4983 { 4984 struct rbd_device *parent = NULL; 4985 struct rbd_spec *parent_spec; 4986 struct rbd_client *rbdc; 4987 int ret; 4988 4989 if (!rbd_dev->parent_spec) 4990 return 0; 4991 /* 4992 * We need to pass a reference to the client and the parent 4993 * spec when creating the parent rbd_dev. Images related by 4994 * parent/child relationships always share both. 4995 */ 4996 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 4997 rbdc = __rbd_get_client(rbd_dev->rbd_client); 4998 4999 ret = -ENOMEM; 5000 parent = rbd_dev_create(rbdc, parent_spec); 5001 if (!parent) 5002 goto out_err; 5003 5004 ret = rbd_dev_image_probe(parent, false); 5005 if (ret < 0) 5006 goto out_err; 5007 rbd_dev->parent = parent; 5008 atomic_set(&rbd_dev->parent_ref, 1); 5009 5010 return 0; 5011 out_err: 5012 if (parent) { 5013 rbd_dev_unparent(rbd_dev); 5014 kfree(rbd_dev->header_name); 5015 rbd_dev_destroy(parent); 5016 } else { 5017 rbd_put_client(rbdc); 5018 rbd_spec_put(parent_spec); 5019 } 5020 5021 return ret; 5022 } 5023 5024 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5025 { 5026 int ret; 5027 5028 /* Get an id and fill in device name. */ 5029 5030 ret = rbd_dev_id_get(rbd_dev); 5031 if (ret) 5032 return ret; 5033 5034 BUILD_BUG_ON(DEV_NAME_LEN 5035 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 5036 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 5037 5038 /* Record our major and minor device numbers. */ 5039 5040 if (!single_major) { 5041 ret = register_blkdev(0, rbd_dev->name); 5042 if (ret < 0) 5043 goto err_out_id; 5044 5045 rbd_dev->major = ret; 5046 rbd_dev->minor = 0; 5047 } else { 5048 rbd_dev->major = rbd_major; 5049 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5050 } 5051 5052 /* Set up the blkdev mapping. */ 5053 5054 ret = rbd_init_disk(rbd_dev); 5055 if (ret) 5056 goto err_out_blkdev; 5057 5058 ret = rbd_dev_mapping_set(rbd_dev); 5059 if (ret) 5060 goto err_out_disk; 5061 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5062 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5063 5064 ret = rbd_bus_add_dev(rbd_dev); 5065 if (ret) 5066 goto err_out_mapping; 5067 5068 /* Everything's ready. Announce the disk to the world. */ 5069 5070 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5071 add_disk(rbd_dev->disk); 5072 5073 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 5074 (unsigned long long) rbd_dev->mapping.size); 5075 5076 return ret; 5077 5078 err_out_mapping: 5079 rbd_dev_mapping_clear(rbd_dev); 5080 err_out_disk: 5081 rbd_free_disk(rbd_dev); 5082 err_out_blkdev: 5083 if (!single_major) 5084 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5085 err_out_id: 5086 rbd_dev_id_put(rbd_dev); 5087 rbd_dev_mapping_clear(rbd_dev); 5088 5089 return ret; 5090 } 5091 5092 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5093 { 5094 struct rbd_spec *spec = rbd_dev->spec; 5095 size_t size; 5096 5097 /* Record the header object name for this rbd image. */ 5098 5099 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5100 5101 if (rbd_dev->image_format == 1) 5102 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 5103 else 5104 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 5105 5106 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 5107 if (!rbd_dev->header_name) 5108 return -ENOMEM; 5109 5110 if (rbd_dev->image_format == 1) 5111 sprintf(rbd_dev->header_name, "%s%s", 5112 spec->image_name, RBD_SUFFIX); 5113 else 5114 sprintf(rbd_dev->header_name, "%s%s", 5115 RBD_HEADER_PREFIX, spec->image_id); 5116 return 0; 5117 } 5118 5119 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5120 { 5121 rbd_dev_unprobe(rbd_dev); 5122 kfree(rbd_dev->header_name); 5123 rbd_dev->header_name = NULL; 5124 rbd_dev->image_format = 0; 5125 kfree(rbd_dev->spec->image_id); 5126 rbd_dev->spec->image_id = NULL; 5127 5128 rbd_dev_destroy(rbd_dev); 5129 } 5130 5131 /* 5132 * Probe for the existence of the header object for the given rbd 5133 * device. If this image is the one being mapped (i.e., not a 5134 * parent), initiate a watch on its header object before using that 5135 * object to get detailed information about the rbd image. 5136 */ 5137 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping) 5138 { 5139 int ret; 5140 5141 /* 5142 * Get the id from the image id object. Unless there's an 5143 * error, rbd_dev->spec->image_id will be filled in with 5144 * a dynamically-allocated string, and rbd_dev->image_format 5145 * will be set to either 1 or 2. 5146 */ 5147 ret = rbd_dev_image_id(rbd_dev); 5148 if (ret) 5149 return ret; 5150 rbd_assert(rbd_dev->spec->image_id); 5151 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5152 5153 ret = rbd_dev_header_name(rbd_dev); 5154 if (ret) 5155 goto err_out_format; 5156 5157 if (mapping) { 5158 ret = rbd_dev_header_watch_sync(rbd_dev); 5159 if (ret) 5160 goto out_header_name; 5161 } 5162 5163 if (rbd_dev->image_format == 1) 5164 ret = rbd_dev_v1_header_info(rbd_dev); 5165 else 5166 ret = rbd_dev_v2_header_info(rbd_dev); 5167 if (ret) 5168 goto err_out_watch; 5169 5170 ret = rbd_dev_spec_update(rbd_dev); 5171 if (ret) 5172 goto err_out_probe; 5173 5174 ret = rbd_dev_probe_parent(rbd_dev); 5175 if (ret) 5176 goto err_out_probe; 5177 5178 dout("discovered format %u image, header name is %s\n", 5179 rbd_dev->image_format, rbd_dev->header_name); 5180 5181 return 0; 5182 err_out_probe: 5183 rbd_dev_unprobe(rbd_dev); 5184 err_out_watch: 5185 if (mapping) 5186 rbd_dev_header_unwatch_sync(rbd_dev); 5187 out_header_name: 5188 kfree(rbd_dev->header_name); 5189 rbd_dev->header_name = NULL; 5190 err_out_format: 5191 rbd_dev->image_format = 0; 5192 kfree(rbd_dev->spec->image_id); 5193 rbd_dev->spec->image_id = NULL; 5194 5195 dout("probe failed, returning %d\n", ret); 5196 5197 return ret; 5198 } 5199 5200 static ssize_t do_rbd_add(struct bus_type *bus, 5201 const char *buf, 5202 size_t count) 5203 { 5204 struct rbd_device *rbd_dev = NULL; 5205 struct ceph_options *ceph_opts = NULL; 5206 struct rbd_options *rbd_opts = NULL; 5207 struct rbd_spec *spec = NULL; 5208 struct rbd_client *rbdc; 5209 bool read_only; 5210 int rc = -ENOMEM; 5211 5212 if (!try_module_get(THIS_MODULE)) 5213 return -ENODEV; 5214 5215 /* parse add command */ 5216 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5217 if (rc < 0) 5218 goto err_out_module; 5219 read_only = rbd_opts->read_only; 5220 kfree(rbd_opts); 5221 rbd_opts = NULL; /* done with this */ 5222 5223 rbdc = rbd_get_client(ceph_opts); 5224 if (IS_ERR(rbdc)) { 5225 rc = PTR_ERR(rbdc); 5226 goto err_out_args; 5227 } 5228 5229 /* pick the pool */ 5230 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 5231 if (rc < 0) 5232 goto err_out_client; 5233 spec->pool_id = (u64)rc; 5234 5235 /* The ceph file layout needs to fit pool id in 32 bits */ 5236 5237 if (spec->pool_id > (u64)U32_MAX) { 5238 rbd_warn(NULL, "pool id too large (%llu > %u)\n", 5239 (unsigned long long)spec->pool_id, U32_MAX); 5240 rc = -EIO; 5241 goto err_out_client; 5242 } 5243 5244 rbd_dev = rbd_dev_create(rbdc, spec); 5245 if (!rbd_dev) 5246 goto err_out_client; 5247 rbdc = NULL; /* rbd_dev now owns this */ 5248 spec = NULL; /* rbd_dev now owns this */ 5249 5250 rc = rbd_dev_image_probe(rbd_dev, true); 5251 if (rc < 0) 5252 goto err_out_rbd_dev; 5253 5254 /* If we are mapping a snapshot it must be marked read-only */ 5255 5256 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5257 read_only = true; 5258 rbd_dev->mapping.read_only = read_only; 5259 5260 rc = rbd_dev_device_setup(rbd_dev); 5261 if (rc) { 5262 /* 5263 * rbd_dev_header_unwatch_sync() can't be moved into 5264 * rbd_dev_image_release() without refactoring, see 5265 * commit 1f3ef78861ac. 5266 */ 5267 rbd_dev_header_unwatch_sync(rbd_dev); 5268 rbd_dev_image_release(rbd_dev); 5269 goto err_out_module; 5270 } 5271 5272 return count; 5273 5274 err_out_rbd_dev: 5275 rbd_dev_destroy(rbd_dev); 5276 err_out_client: 5277 rbd_put_client(rbdc); 5278 err_out_args: 5279 rbd_spec_put(spec); 5280 err_out_module: 5281 module_put(THIS_MODULE); 5282 5283 dout("Error adding device %s\n", buf); 5284 5285 return (ssize_t)rc; 5286 } 5287 5288 static ssize_t rbd_add(struct bus_type *bus, 5289 const char *buf, 5290 size_t count) 5291 { 5292 if (single_major) 5293 return -EINVAL; 5294 5295 return do_rbd_add(bus, buf, count); 5296 } 5297 5298 static ssize_t rbd_add_single_major(struct bus_type *bus, 5299 const char *buf, 5300 size_t count) 5301 { 5302 return do_rbd_add(bus, buf, count); 5303 } 5304 5305 static void rbd_dev_device_release(struct device *dev) 5306 { 5307 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5308 5309 rbd_free_disk(rbd_dev); 5310 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5311 rbd_dev_mapping_clear(rbd_dev); 5312 if (!single_major) 5313 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5314 rbd_dev_id_put(rbd_dev); 5315 rbd_dev_mapping_clear(rbd_dev); 5316 } 5317 5318 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5319 { 5320 while (rbd_dev->parent) { 5321 struct rbd_device *first = rbd_dev; 5322 struct rbd_device *second = first->parent; 5323 struct rbd_device *third; 5324 5325 /* 5326 * Follow to the parent with no grandparent and 5327 * remove it. 5328 */ 5329 while (second && (third = second->parent)) { 5330 first = second; 5331 second = third; 5332 } 5333 rbd_assert(second); 5334 rbd_dev_image_release(second); 5335 first->parent = NULL; 5336 first->parent_overlap = 0; 5337 5338 rbd_assert(first->parent_spec); 5339 rbd_spec_put(first->parent_spec); 5340 first->parent_spec = NULL; 5341 } 5342 } 5343 5344 static ssize_t do_rbd_remove(struct bus_type *bus, 5345 const char *buf, 5346 size_t count) 5347 { 5348 struct rbd_device *rbd_dev = NULL; 5349 struct list_head *tmp; 5350 int dev_id; 5351 unsigned long ul; 5352 bool already = false; 5353 int ret; 5354 5355 ret = kstrtoul(buf, 10, &ul); 5356 if (ret) 5357 return ret; 5358 5359 /* convert to int; abort if we lost anything in the conversion */ 5360 dev_id = (int)ul; 5361 if (dev_id != ul) 5362 return -EINVAL; 5363 5364 ret = -ENOENT; 5365 spin_lock(&rbd_dev_list_lock); 5366 list_for_each(tmp, &rbd_dev_list) { 5367 rbd_dev = list_entry(tmp, struct rbd_device, node); 5368 if (rbd_dev->dev_id == dev_id) { 5369 ret = 0; 5370 break; 5371 } 5372 } 5373 if (!ret) { 5374 spin_lock_irq(&rbd_dev->lock); 5375 if (rbd_dev->open_count) 5376 ret = -EBUSY; 5377 else 5378 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5379 &rbd_dev->flags); 5380 spin_unlock_irq(&rbd_dev->lock); 5381 } 5382 spin_unlock(&rbd_dev_list_lock); 5383 if (ret < 0 || already) 5384 return ret; 5385 5386 rbd_dev_header_unwatch_sync(rbd_dev); 5387 /* 5388 * flush remaining watch callbacks - these must be complete 5389 * before the osd_client is shutdown 5390 */ 5391 dout("%s: flushing notifies", __func__); 5392 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5393 5394 /* 5395 * Don't free anything from rbd_dev->disk until after all 5396 * notifies are completely processed. Otherwise 5397 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5398 * in a potential use after free of rbd_dev->disk or rbd_dev. 5399 */ 5400 rbd_bus_del_dev(rbd_dev); 5401 rbd_dev_image_release(rbd_dev); 5402 module_put(THIS_MODULE); 5403 5404 return count; 5405 } 5406 5407 static ssize_t rbd_remove(struct bus_type *bus, 5408 const char *buf, 5409 size_t count) 5410 { 5411 if (single_major) 5412 return -EINVAL; 5413 5414 return do_rbd_remove(bus, buf, count); 5415 } 5416 5417 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5418 const char *buf, 5419 size_t count) 5420 { 5421 return do_rbd_remove(bus, buf, count); 5422 } 5423 5424 /* 5425 * create control files in sysfs 5426 * /sys/bus/rbd/... 5427 */ 5428 static int rbd_sysfs_init(void) 5429 { 5430 int ret; 5431 5432 ret = device_register(&rbd_root_dev); 5433 if (ret < 0) 5434 return ret; 5435 5436 ret = bus_register(&rbd_bus_type); 5437 if (ret < 0) 5438 device_unregister(&rbd_root_dev); 5439 5440 return ret; 5441 } 5442 5443 static void rbd_sysfs_cleanup(void) 5444 { 5445 bus_unregister(&rbd_bus_type); 5446 device_unregister(&rbd_root_dev); 5447 } 5448 5449 static int rbd_slab_init(void) 5450 { 5451 rbd_assert(!rbd_img_request_cache); 5452 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5453 sizeof (struct rbd_img_request), 5454 __alignof__(struct rbd_img_request), 5455 0, NULL); 5456 if (!rbd_img_request_cache) 5457 return -ENOMEM; 5458 5459 rbd_assert(!rbd_obj_request_cache); 5460 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5461 sizeof (struct rbd_obj_request), 5462 __alignof__(struct rbd_obj_request), 5463 0, NULL); 5464 if (!rbd_obj_request_cache) 5465 goto out_err; 5466 5467 rbd_assert(!rbd_segment_name_cache); 5468 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5469 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5470 if (rbd_segment_name_cache) 5471 return 0; 5472 out_err: 5473 if (rbd_obj_request_cache) { 5474 kmem_cache_destroy(rbd_obj_request_cache); 5475 rbd_obj_request_cache = NULL; 5476 } 5477 5478 kmem_cache_destroy(rbd_img_request_cache); 5479 rbd_img_request_cache = NULL; 5480 5481 return -ENOMEM; 5482 } 5483 5484 static void rbd_slab_exit(void) 5485 { 5486 rbd_assert(rbd_segment_name_cache); 5487 kmem_cache_destroy(rbd_segment_name_cache); 5488 rbd_segment_name_cache = NULL; 5489 5490 rbd_assert(rbd_obj_request_cache); 5491 kmem_cache_destroy(rbd_obj_request_cache); 5492 rbd_obj_request_cache = NULL; 5493 5494 rbd_assert(rbd_img_request_cache); 5495 kmem_cache_destroy(rbd_img_request_cache); 5496 rbd_img_request_cache = NULL; 5497 } 5498 5499 static int __init rbd_init(void) 5500 { 5501 int rc; 5502 5503 if (!libceph_compatible(NULL)) { 5504 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5505 return -EINVAL; 5506 } 5507 5508 rc = rbd_slab_init(); 5509 if (rc) 5510 return rc; 5511 5512 if (single_major) { 5513 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5514 if (rbd_major < 0) { 5515 rc = rbd_major; 5516 goto err_out_slab; 5517 } 5518 } 5519 5520 rc = rbd_sysfs_init(); 5521 if (rc) 5522 goto err_out_blkdev; 5523 5524 if (single_major) 5525 pr_info("loaded (major %d)\n", rbd_major); 5526 else 5527 pr_info("loaded\n"); 5528 5529 return 0; 5530 5531 err_out_blkdev: 5532 if (single_major) 5533 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5534 err_out_slab: 5535 rbd_slab_exit(); 5536 return rc; 5537 } 5538 5539 static void __exit rbd_exit(void) 5540 { 5541 ida_destroy(&rbd_dev_id_ida); 5542 rbd_sysfs_cleanup(); 5543 if (single_major) 5544 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5545 rbd_slab_exit(); 5546 } 5547 5548 module_init(rbd_init); 5549 module_exit(rbd_exit); 5550 5551 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5552 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5553 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5554 /* following authorship retained from original osdblk.c */ 5555 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5556 5557 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5558 MODULE_LICENSE("GPL"); 5559