xref: /linux/drivers/block/rbd.c (revision 5e4ff6950352ab2f4b6f18c66c235bfa95c39a2a)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 
46 #include "rbd_types.h"
47 
48 #define RBD_DEBUG	/* Activate rbd_assert() calls */
49 
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define	SECTOR_SHIFT	9
57 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
58 
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67 	unsigned int counter;
68 
69 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70 	if (counter <= (unsigned int)INT_MAX)
71 		return (int)counter;
72 
73 	atomic_dec(v);
74 
75 	return -EINVAL;
76 }
77 
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81 	int counter;
82 
83 	counter = atomic_dec_return(v);
84 	if (counter >= 0)
85 		return counter;
86 
87 	atomic_inc(v);
88 
89 	return -EINVAL;
90 }
91 
92 #define RBD_DRV_NAME "rbd"
93 
94 #define RBD_MINORS_PER_MAJOR		256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
96 
97 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
98 #define RBD_MAX_SNAP_NAME_LEN	\
99 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100 
101 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
102 
103 #define RBD_SNAP_HEAD_NAME	"-"
104 
105 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
106 
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX	64
110 
111 #define RBD_OBJ_PREFIX_LEN_MAX	64
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING	(1<<0)
116 #define RBD_FEATURE_STRIPINGV2	(1<<1)
117 #define RBD_FEATURES_ALL \
118 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119 
120 /* Features supported by this (client software) implementation. */
121 
122 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
123 
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN		32
131 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
132 
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137 	/* These six fields never change for a given rbd image */
138 	char *object_prefix;
139 	__u8 obj_order;
140 	__u8 crypt_type;
141 	__u8 comp_type;
142 	u64 stripe_unit;
143 	u64 stripe_count;
144 	u64 features;		/* Might be changeable someday? */
145 
146 	/* The remaining fields need to be updated occasionally */
147 	u64 image_size;
148 	struct ceph_snap_context *snapc;
149 	char *snap_names;	/* format 1 only */
150 	u64 *snap_sizes;	/* format 1 only */
151 };
152 
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179 	u64		pool_id;
180 	const char	*pool_name;
181 
182 	const char	*image_id;
183 	const char	*image_name;
184 
185 	u64		snap_id;
186 	const char	*snap_name;
187 
188 	struct kref	kref;
189 };
190 
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195 	struct ceph_client	*client;
196 	struct kref		kref;
197 	struct list_head	node;
198 };
199 
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202 
203 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
204 
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207 
208 enum obj_request_type {
209 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211 
212 enum obj_req_flags {
213 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
214 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
215 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
216 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
217 };
218 
219 struct rbd_obj_request {
220 	const char		*object_name;
221 	u64			offset;		/* object start byte */
222 	u64			length;		/* bytes from offset */
223 	unsigned long		flags;
224 
225 	/*
226 	 * An object request associated with an image will have its
227 	 * img_data flag set; a standalone object request will not.
228 	 *
229 	 * A standalone object request will have which == BAD_WHICH
230 	 * and a null obj_request pointer.
231 	 *
232 	 * An object request initiated in support of a layered image
233 	 * object (to check for its existence before a write) will
234 	 * have which == BAD_WHICH and a non-null obj_request pointer.
235 	 *
236 	 * Finally, an object request for rbd image data will have
237 	 * which != BAD_WHICH, and will have a non-null img_request
238 	 * pointer.  The value of which will be in the range
239 	 * 0..(img_request->obj_request_count-1).
240 	 */
241 	union {
242 		struct rbd_obj_request	*obj_request;	/* STAT op */
243 		struct {
244 			struct rbd_img_request	*img_request;
245 			u64			img_offset;
246 			/* links for img_request->obj_requests list */
247 			struct list_head	links;
248 		};
249 	};
250 	u32			which;		/* posn image request list */
251 
252 	enum obj_request_type	type;
253 	union {
254 		struct bio	*bio_list;
255 		struct {
256 			struct page	**pages;
257 			u32		page_count;
258 		};
259 	};
260 	struct page		**copyup_pages;
261 	u32			copyup_page_count;
262 
263 	struct ceph_osd_request	*osd_req;
264 
265 	u64			xferred;	/* bytes transferred */
266 	int			result;
267 
268 	rbd_obj_callback_t	callback;
269 	struct completion	completion;
270 
271 	struct kref		kref;
272 };
273 
274 enum img_req_flags {
275 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
276 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
277 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
278 };
279 
280 struct rbd_img_request {
281 	struct rbd_device	*rbd_dev;
282 	u64			offset;	/* starting image byte offset */
283 	u64			length;	/* byte count from offset */
284 	unsigned long		flags;
285 	union {
286 		u64			snap_id;	/* for reads */
287 		struct ceph_snap_context *snapc;	/* for writes */
288 	};
289 	union {
290 		struct request		*rq;		/* block request */
291 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
292 	};
293 	struct page		**copyup_pages;
294 	u32			copyup_page_count;
295 	spinlock_t		completion_lock;/* protects next_completion */
296 	u32			next_completion;
297 	rbd_img_callback_t	callback;
298 	u64			xferred;/* aggregate bytes transferred */
299 	int			result;	/* first nonzero obj_request result */
300 
301 	u32			obj_request_count;
302 	struct list_head	obj_requests;	/* rbd_obj_request structs */
303 
304 	struct kref		kref;
305 };
306 
307 #define for_each_obj_request(ireq, oreq) \
308 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313 
314 struct rbd_mapping {
315 	u64                     size;
316 	u64                     features;
317 	bool			read_only;
318 };
319 
320 /*
321  * a single device
322  */
323 struct rbd_device {
324 	int			dev_id;		/* blkdev unique id */
325 
326 	int			major;		/* blkdev assigned major */
327 	int			minor;
328 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
329 
330 	u32			image_format;	/* Either 1 or 2 */
331 	struct rbd_client	*rbd_client;
332 
333 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334 
335 	spinlock_t		lock;		/* queue, flags, open_count */
336 
337 	struct rbd_image_header	header;
338 	unsigned long		flags;		/* possibly lock protected */
339 	struct rbd_spec		*spec;
340 
341 	char			*header_name;
342 
343 	struct ceph_file_layout	layout;
344 
345 	struct ceph_osd_event   *watch_event;
346 	struct rbd_obj_request	*watch_request;
347 
348 	struct rbd_spec		*parent_spec;
349 	u64			parent_overlap;
350 	atomic_t		parent_ref;
351 	struct rbd_device	*parent;
352 
353 	/* protects updating the header */
354 	struct rw_semaphore     header_rwsem;
355 
356 	struct rbd_mapping	mapping;
357 
358 	struct list_head	node;
359 
360 	/* sysfs related */
361 	struct device		dev;
362 	unsigned long		open_count;	/* protected by lock */
363 };
364 
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
374 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
375 };
376 
377 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
378 
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381 
382 static LIST_HEAD(rbd_client_list);		/* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384 
385 /* Slab caches for frequently-allocated structures */
386 
387 static struct kmem_cache	*rbd_img_request_cache;
388 static struct kmem_cache	*rbd_obj_request_cache;
389 static struct kmem_cache	*rbd_segment_name_cache;
390 
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393 
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401 
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403 
404 static void rbd_dev_device_release(struct device *dev);
405 
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407 		       size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409 			  size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411 				    size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413 				       size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416 
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421 
422 static int minor_to_rbd_dev_id(int minor)
423 {
424 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426 
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431 
432 static struct attribute *rbd_bus_attrs[] = {
433 	&bus_attr_add.attr,
434 	&bus_attr_remove.attr,
435 	&bus_attr_add_single_major.attr,
436 	&bus_attr_remove_single_major.attr,
437 	NULL,
438 };
439 
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441 				  struct attribute *attr, int index)
442 {
443 	if (!single_major &&
444 	    (attr == &bus_attr_add_single_major.attr ||
445 	     attr == &bus_attr_remove_single_major.attr))
446 		return 0;
447 
448 	return attr->mode;
449 }
450 
451 static const struct attribute_group rbd_bus_group = {
452 	.attrs = rbd_bus_attrs,
453 	.is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456 
457 static struct bus_type rbd_bus_type = {
458 	.name		= "rbd",
459 	.bus_groups	= rbd_bus_groups,
460 };
461 
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465 
466 static struct device rbd_root_dev = {
467 	.init_name =    "rbd",
468 	.release =      rbd_root_dev_release,
469 };
470 
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474 	struct va_format vaf;
475 	va_list args;
476 
477 	va_start(args, fmt);
478 	vaf.fmt = fmt;
479 	vaf.va = &args;
480 
481 	if (!rbd_dev)
482 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483 	else if (rbd_dev->disk)
484 		printk(KERN_WARNING "%s: %s: %pV\n",
485 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
487 		printk(KERN_WARNING "%s: image %s: %pV\n",
488 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
490 		printk(KERN_WARNING "%s: id %s: %pV\n",
491 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492 	else	/* punt */
493 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494 			RBD_DRV_NAME, rbd_dev, &vaf);
495 	va_end(args);
496 }
497 
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)						\
500 		if (unlikely(!(expr))) {				\
501 			printk(KERN_ERR "\nAssertion failure in %s() "	\
502 						"at line %d:\n\n"	\
503 					"\trbd_assert(%s);\n\n",	\
504 					__func__, __LINE__, #expr);	\
505 			BUG();						\
506 		}
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)	((void) 0)
509 #endif /* !RBD_DEBUG */
510 
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514 
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519 					u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521 				u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523 		u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525 
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529 	bool removing = false;
530 
531 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532 		return -EROFS;
533 
534 	spin_lock_irq(&rbd_dev->lock);
535 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536 		removing = true;
537 	else
538 		rbd_dev->open_count++;
539 	spin_unlock_irq(&rbd_dev->lock);
540 	if (removing)
541 		return -ENOENT;
542 
543 	(void) get_device(&rbd_dev->dev);
544 
545 	return 0;
546 }
547 
548 static void rbd_release(struct gendisk *disk, fmode_t mode)
549 {
550 	struct rbd_device *rbd_dev = disk->private_data;
551 	unsigned long open_count_before;
552 
553 	spin_lock_irq(&rbd_dev->lock);
554 	open_count_before = rbd_dev->open_count--;
555 	spin_unlock_irq(&rbd_dev->lock);
556 	rbd_assert(open_count_before > 0);
557 
558 	put_device(&rbd_dev->dev);
559 }
560 
561 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
562 {
563 	int ret = 0;
564 	int val;
565 	bool ro;
566 	bool ro_changed = false;
567 
568 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
569 	if (get_user(val, (int __user *)(arg)))
570 		return -EFAULT;
571 
572 	ro = val ? true : false;
573 	/* Snapshot doesn't allow to write*/
574 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
575 		return -EROFS;
576 
577 	spin_lock_irq(&rbd_dev->lock);
578 	/* prevent others open this device */
579 	if (rbd_dev->open_count > 1) {
580 		ret = -EBUSY;
581 		goto out;
582 	}
583 
584 	if (rbd_dev->mapping.read_only != ro) {
585 		rbd_dev->mapping.read_only = ro;
586 		ro_changed = true;
587 	}
588 
589 out:
590 	spin_unlock_irq(&rbd_dev->lock);
591 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
592 	if (ret == 0 && ro_changed)
593 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
594 
595 	return ret;
596 }
597 
598 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
599 			unsigned int cmd, unsigned long arg)
600 {
601 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
602 	int ret = 0;
603 
604 	switch (cmd) {
605 	case BLKROSET:
606 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
607 		break;
608 	default:
609 		ret = -ENOTTY;
610 	}
611 
612 	return ret;
613 }
614 
615 #ifdef CONFIG_COMPAT
616 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
617 				unsigned int cmd, unsigned long arg)
618 {
619 	return rbd_ioctl(bdev, mode, cmd, arg);
620 }
621 #endif /* CONFIG_COMPAT */
622 
623 static const struct block_device_operations rbd_bd_ops = {
624 	.owner			= THIS_MODULE,
625 	.open			= rbd_open,
626 	.release		= rbd_release,
627 	.ioctl			= rbd_ioctl,
628 #ifdef CONFIG_COMPAT
629 	.compat_ioctl		= rbd_compat_ioctl,
630 #endif
631 };
632 
633 /*
634  * Initialize an rbd client instance.  Success or not, this function
635  * consumes ceph_opts.  Caller holds client_mutex.
636  */
637 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
638 {
639 	struct rbd_client *rbdc;
640 	int ret = -ENOMEM;
641 
642 	dout("%s:\n", __func__);
643 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
644 	if (!rbdc)
645 		goto out_opt;
646 
647 	kref_init(&rbdc->kref);
648 	INIT_LIST_HEAD(&rbdc->node);
649 
650 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
651 	if (IS_ERR(rbdc->client))
652 		goto out_rbdc;
653 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
654 
655 	ret = ceph_open_session(rbdc->client);
656 	if (ret < 0)
657 		goto out_client;
658 
659 	spin_lock(&rbd_client_list_lock);
660 	list_add_tail(&rbdc->node, &rbd_client_list);
661 	spin_unlock(&rbd_client_list_lock);
662 
663 	dout("%s: rbdc %p\n", __func__, rbdc);
664 
665 	return rbdc;
666 out_client:
667 	ceph_destroy_client(rbdc->client);
668 out_rbdc:
669 	kfree(rbdc);
670 out_opt:
671 	if (ceph_opts)
672 		ceph_destroy_options(ceph_opts);
673 	dout("%s: error %d\n", __func__, ret);
674 
675 	return ERR_PTR(ret);
676 }
677 
678 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
679 {
680 	kref_get(&rbdc->kref);
681 
682 	return rbdc;
683 }
684 
685 /*
686  * Find a ceph client with specific addr and configuration.  If
687  * found, bump its reference count.
688  */
689 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
690 {
691 	struct rbd_client *client_node;
692 	bool found = false;
693 
694 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
695 		return NULL;
696 
697 	spin_lock(&rbd_client_list_lock);
698 	list_for_each_entry(client_node, &rbd_client_list, node) {
699 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
700 			__rbd_get_client(client_node);
701 
702 			found = true;
703 			break;
704 		}
705 	}
706 	spin_unlock(&rbd_client_list_lock);
707 
708 	return found ? client_node : NULL;
709 }
710 
711 /*
712  * mount options
713  */
714 enum {
715 	Opt_last_int,
716 	/* int args above */
717 	Opt_last_string,
718 	/* string args above */
719 	Opt_read_only,
720 	Opt_read_write,
721 	/* Boolean args above */
722 	Opt_last_bool,
723 };
724 
725 static match_table_t rbd_opts_tokens = {
726 	/* int args above */
727 	/* string args above */
728 	{Opt_read_only, "read_only"},
729 	{Opt_read_only, "ro"},		/* Alternate spelling */
730 	{Opt_read_write, "read_write"},
731 	{Opt_read_write, "rw"},		/* Alternate spelling */
732 	/* Boolean args above */
733 	{-1, NULL}
734 };
735 
736 struct rbd_options {
737 	bool	read_only;
738 };
739 
740 #define RBD_READ_ONLY_DEFAULT	false
741 
742 static int parse_rbd_opts_token(char *c, void *private)
743 {
744 	struct rbd_options *rbd_opts = private;
745 	substring_t argstr[MAX_OPT_ARGS];
746 	int token, intval, ret;
747 
748 	token = match_token(c, rbd_opts_tokens, argstr);
749 	if (token < 0)
750 		return -EINVAL;
751 
752 	if (token < Opt_last_int) {
753 		ret = match_int(&argstr[0], &intval);
754 		if (ret < 0) {
755 			pr_err("bad mount option arg (not int) "
756 			       "at '%s'\n", c);
757 			return ret;
758 		}
759 		dout("got int token %d val %d\n", token, intval);
760 	} else if (token > Opt_last_int && token < Opt_last_string) {
761 		dout("got string token %d val %s\n", token,
762 		     argstr[0].from);
763 	} else if (token > Opt_last_string && token < Opt_last_bool) {
764 		dout("got Boolean token %d\n", token);
765 	} else {
766 		dout("got token %d\n", token);
767 	}
768 
769 	switch (token) {
770 	case Opt_read_only:
771 		rbd_opts->read_only = true;
772 		break;
773 	case Opt_read_write:
774 		rbd_opts->read_only = false;
775 		break;
776 	default:
777 		rbd_assert(false);
778 		break;
779 	}
780 	return 0;
781 }
782 
783 /*
784  * Get a ceph client with specific addr and configuration, if one does
785  * not exist create it.  Either way, ceph_opts is consumed by this
786  * function.
787  */
788 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
789 {
790 	struct rbd_client *rbdc;
791 
792 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
793 	rbdc = rbd_client_find(ceph_opts);
794 	if (rbdc)	/* using an existing client */
795 		ceph_destroy_options(ceph_opts);
796 	else
797 		rbdc = rbd_client_create(ceph_opts);
798 	mutex_unlock(&client_mutex);
799 
800 	return rbdc;
801 }
802 
803 /*
804  * Destroy ceph client
805  *
806  * Caller must hold rbd_client_list_lock.
807  */
808 static void rbd_client_release(struct kref *kref)
809 {
810 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
811 
812 	dout("%s: rbdc %p\n", __func__, rbdc);
813 	spin_lock(&rbd_client_list_lock);
814 	list_del(&rbdc->node);
815 	spin_unlock(&rbd_client_list_lock);
816 
817 	ceph_destroy_client(rbdc->client);
818 	kfree(rbdc);
819 }
820 
821 /*
822  * Drop reference to ceph client node. If it's not referenced anymore, release
823  * it.
824  */
825 static void rbd_put_client(struct rbd_client *rbdc)
826 {
827 	if (rbdc)
828 		kref_put(&rbdc->kref, rbd_client_release);
829 }
830 
831 static bool rbd_image_format_valid(u32 image_format)
832 {
833 	return image_format == 1 || image_format == 2;
834 }
835 
836 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
837 {
838 	size_t size;
839 	u32 snap_count;
840 
841 	/* The header has to start with the magic rbd header text */
842 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
843 		return false;
844 
845 	/* The bio layer requires at least sector-sized I/O */
846 
847 	if (ondisk->options.order < SECTOR_SHIFT)
848 		return false;
849 
850 	/* If we use u64 in a few spots we may be able to loosen this */
851 
852 	if (ondisk->options.order > 8 * sizeof (int) - 1)
853 		return false;
854 
855 	/*
856 	 * The size of a snapshot header has to fit in a size_t, and
857 	 * that limits the number of snapshots.
858 	 */
859 	snap_count = le32_to_cpu(ondisk->snap_count);
860 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
861 	if (snap_count > size / sizeof (__le64))
862 		return false;
863 
864 	/*
865 	 * Not only that, but the size of the entire the snapshot
866 	 * header must also be representable in a size_t.
867 	 */
868 	size -= snap_count * sizeof (__le64);
869 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
870 		return false;
871 
872 	return true;
873 }
874 
875 /*
876  * Fill an rbd image header with information from the given format 1
877  * on-disk header.
878  */
879 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
880 				 struct rbd_image_header_ondisk *ondisk)
881 {
882 	struct rbd_image_header *header = &rbd_dev->header;
883 	bool first_time = header->object_prefix == NULL;
884 	struct ceph_snap_context *snapc;
885 	char *object_prefix = NULL;
886 	char *snap_names = NULL;
887 	u64 *snap_sizes = NULL;
888 	u32 snap_count;
889 	size_t size;
890 	int ret = -ENOMEM;
891 	u32 i;
892 
893 	/* Allocate this now to avoid having to handle failure below */
894 
895 	if (first_time) {
896 		size_t len;
897 
898 		len = strnlen(ondisk->object_prefix,
899 				sizeof (ondisk->object_prefix));
900 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
901 		if (!object_prefix)
902 			return -ENOMEM;
903 		memcpy(object_prefix, ondisk->object_prefix, len);
904 		object_prefix[len] = '\0';
905 	}
906 
907 	/* Allocate the snapshot context and fill it in */
908 
909 	snap_count = le32_to_cpu(ondisk->snap_count);
910 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
911 	if (!snapc)
912 		goto out_err;
913 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
914 	if (snap_count) {
915 		struct rbd_image_snap_ondisk *snaps;
916 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
917 
918 		/* We'll keep a copy of the snapshot names... */
919 
920 		if (snap_names_len > (u64)SIZE_MAX)
921 			goto out_2big;
922 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
923 		if (!snap_names)
924 			goto out_err;
925 
926 		/* ...as well as the array of their sizes. */
927 
928 		size = snap_count * sizeof (*header->snap_sizes);
929 		snap_sizes = kmalloc(size, GFP_KERNEL);
930 		if (!snap_sizes)
931 			goto out_err;
932 
933 		/*
934 		 * Copy the names, and fill in each snapshot's id
935 		 * and size.
936 		 *
937 		 * Note that rbd_dev_v1_header_info() guarantees the
938 		 * ondisk buffer we're working with has
939 		 * snap_names_len bytes beyond the end of the
940 		 * snapshot id array, this memcpy() is safe.
941 		 */
942 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
943 		snaps = ondisk->snaps;
944 		for (i = 0; i < snap_count; i++) {
945 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
946 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
947 		}
948 	}
949 
950 	/* We won't fail any more, fill in the header */
951 
952 	if (first_time) {
953 		header->object_prefix = object_prefix;
954 		header->obj_order = ondisk->options.order;
955 		header->crypt_type = ondisk->options.crypt_type;
956 		header->comp_type = ondisk->options.comp_type;
957 		/* The rest aren't used for format 1 images */
958 		header->stripe_unit = 0;
959 		header->stripe_count = 0;
960 		header->features = 0;
961 	} else {
962 		ceph_put_snap_context(header->snapc);
963 		kfree(header->snap_names);
964 		kfree(header->snap_sizes);
965 	}
966 
967 	/* The remaining fields always get updated (when we refresh) */
968 
969 	header->image_size = le64_to_cpu(ondisk->image_size);
970 	header->snapc = snapc;
971 	header->snap_names = snap_names;
972 	header->snap_sizes = snap_sizes;
973 
974 	/* Make sure mapping size is consistent with header info */
975 
976 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
977 		if (rbd_dev->mapping.size != header->image_size)
978 			rbd_dev->mapping.size = header->image_size;
979 
980 	return 0;
981 out_2big:
982 	ret = -EIO;
983 out_err:
984 	kfree(snap_sizes);
985 	kfree(snap_names);
986 	ceph_put_snap_context(snapc);
987 	kfree(object_prefix);
988 
989 	return ret;
990 }
991 
992 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
993 {
994 	const char *snap_name;
995 
996 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
997 
998 	/* Skip over names until we find the one we are looking for */
999 
1000 	snap_name = rbd_dev->header.snap_names;
1001 	while (which--)
1002 		snap_name += strlen(snap_name) + 1;
1003 
1004 	return kstrdup(snap_name, GFP_KERNEL);
1005 }
1006 
1007 /*
1008  * Snapshot id comparison function for use with qsort()/bsearch().
1009  * Note that result is for snapshots in *descending* order.
1010  */
1011 static int snapid_compare_reverse(const void *s1, const void *s2)
1012 {
1013 	u64 snap_id1 = *(u64 *)s1;
1014 	u64 snap_id2 = *(u64 *)s2;
1015 
1016 	if (snap_id1 < snap_id2)
1017 		return 1;
1018 	return snap_id1 == snap_id2 ? 0 : -1;
1019 }
1020 
1021 /*
1022  * Search a snapshot context to see if the given snapshot id is
1023  * present.
1024  *
1025  * Returns the position of the snapshot id in the array if it's found,
1026  * or BAD_SNAP_INDEX otherwise.
1027  *
1028  * Note: The snapshot array is in kept sorted (by the osd) in
1029  * reverse order, highest snapshot id first.
1030  */
1031 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1032 {
1033 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1034 	u64 *found;
1035 
1036 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1037 				sizeof (snap_id), snapid_compare_reverse);
1038 
1039 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1040 }
1041 
1042 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1043 					u64 snap_id)
1044 {
1045 	u32 which;
1046 	const char *snap_name;
1047 
1048 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1049 	if (which == BAD_SNAP_INDEX)
1050 		return ERR_PTR(-ENOENT);
1051 
1052 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1053 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1054 }
1055 
1056 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1057 {
1058 	if (snap_id == CEPH_NOSNAP)
1059 		return RBD_SNAP_HEAD_NAME;
1060 
1061 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1062 	if (rbd_dev->image_format == 1)
1063 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1064 
1065 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1066 }
1067 
1068 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1069 				u64 *snap_size)
1070 {
1071 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1072 	if (snap_id == CEPH_NOSNAP) {
1073 		*snap_size = rbd_dev->header.image_size;
1074 	} else if (rbd_dev->image_format == 1) {
1075 		u32 which;
1076 
1077 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1078 		if (which == BAD_SNAP_INDEX)
1079 			return -ENOENT;
1080 
1081 		*snap_size = rbd_dev->header.snap_sizes[which];
1082 	} else {
1083 		u64 size = 0;
1084 		int ret;
1085 
1086 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1087 		if (ret)
1088 			return ret;
1089 
1090 		*snap_size = size;
1091 	}
1092 	return 0;
1093 }
1094 
1095 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1096 			u64 *snap_features)
1097 {
1098 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099 	if (snap_id == CEPH_NOSNAP) {
1100 		*snap_features = rbd_dev->header.features;
1101 	} else if (rbd_dev->image_format == 1) {
1102 		*snap_features = 0;	/* No features for format 1 */
1103 	} else {
1104 		u64 features = 0;
1105 		int ret;
1106 
1107 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1108 		if (ret)
1109 			return ret;
1110 
1111 		*snap_features = features;
1112 	}
1113 	return 0;
1114 }
1115 
1116 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1117 {
1118 	u64 snap_id = rbd_dev->spec->snap_id;
1119 	u64 size = 0;
1120 	u64 features = 0;
1121 	int ret;
1122 
1123 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1124 	if (ret)
1125 		return ret;
1126 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1127 	if (ret)
1128 		return ret;
1129 
1130 	rbd_dev->mapping.size = size;
1131 	rbd_dev->mapping.features = features;
1132 
1133 	return 0;
1134 }
1135 
1136 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1137 {
1138 	rbd_dev->mapping.size = 0;
1139 	rbd_dev->mapping.features = 0;
1140 }
1141 
1142 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1143 {
1144 	char *name;
1145 	u64 segment;
1146 	int ret;
1147 	char *name_format;
1148 
1149 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1150 	if (!name)
1151 		return NULL;
1152 	segment = offset >> rbd_dev->header.obj_order;
1153 	name_format = "%s.%012llx";
1154 	if (rbd_dev->image_format == 2)
1155 		name_format = "%s.%016llx";
1156 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1157 			rbd_dev->header.object_prefix, segment);
1158 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1159 		pr_err("error formatting segment name for #%llu (%d)\n",
1160 			segment, ret);
1161 		kfree(name);
1162 		name = NULL;
1163 	}
1164 
1165 	return name;
1166 }
1167 
1168 static void rbd_segment_name_free(const char *name)
1169 {
1170 	/* The explicit cast here is needed to drop the const qualifier */
1171 
1172 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1173 }
1174 
1175 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1176 {
1177 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1178 
1179 	return offset & (segment_size - 1);
1180 }
1181 
1182 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1183 				u64 offset, u64 length)
1184 {
1185 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1186 
1187 	offset &= segment_size - 1;
1188 
1189 	rbd_assert(length <= U64_MAX - offset);
1190 	if (offset + length > segment_size)
1191 		length = segment_size - offset;
1192 
1193 	return length;
1194 }
1195 
1196 /*
1197  * returns the size of an object in the image
1198  */
1199 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1200 {
1201 	return 1 << header->obj_order;
1202 }
1203 
1204 /*
1205  * bio helpers
1206  */
1207 
1208 static void bio_chain_put(struct bio *chain)
1209 {
1210 	struct bio *tmp;
1211 
1212 	while (chain) {
1213 		tmp = chain;
1214 		chain = chain->bi_next;
1215 		bio_put(tmp);
1216 	}
1217 }
1218 
1219 /*
1220  * zeros a bio chain, starting at specific offset
1221  */
1222 static void zero_bio_chain(struct bio *chain, int start_ofs)
1223 {
1224 	struct bio_vec bv;
1225 	struct bvec_iter iter;
1226 	unsigned long flags;
1227 	void *buf;
1228 	int pos = 0;
1229 
1230 	while (chain) {
1231 		bio_for_each_segment(bv, chain, iter) {
1232 			if (pos + bv.bv_len > start_ofs) {
1233 				int remainder = max(start_ofs - pos, 0);
1234 				buf = bvec_kmap_irq(&bv, &flags);
1235 				memset(buf + remainder, 0,
1236 				       bv.bv_len - remainder);
1237 				flush_dcache_page(bv.bv_page);
1238 				bvec_kunmap_irq(buf, &flags);
1239 			}
1240 			pos += bv.bv_len;
1241 		}
1242 
1243 		chain = chain->bi_next;
1244 	}
1245 }
1246 
1247 /*
1248  * similar to zero_bio_chain(), zeros data defined by a page array,
1249  * starting at the given byte offset from the start of the array and
1250  * continuing up to the given end offset.  The pages array is
1251  * assumed to be big enough to hold all bytes up to the end.
1252  */
1253 static void zero_pages(struct page **pages, u64 offset, u64 end)
1254 {
1255 	struct page **page = &pages[offset >> PAGE_SHIFT];
1256 
1257 	rbd_assert(end > offset);
1258 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1259 	while (offset < end) {
1260 		size_t page_offset;
1261 		size_t length;
1262 		unsigned long flags;
1263 		void *kaddr;
1264 
1265 		page_offset = offset & ~PAGE_MASK;
1266 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1267 		local_irq_save(flags);
1268 		kaddr = kmap_atomic(*page);
1269 		memset(kaddr + page_offset, 0, length);
1270 		flush_dcache_page(*page);
1271 		kunmap_atomic(kaddr);
1272 		local_irq_restore(flags);
1273 
1274 		offset += length;
1275 		page++;
1276 	}
1277 }
1278 
1279 /*
1280  * Clone a portion of a bio, starting at the given byte offset
1281  * and continuing for the number of bytes indicated.
1282  */
1283 static struct bio *bio_clone_range(struct bio *bio_src,
1284 					unsigned int offset,
1285 					unsigned int len,
1286 					gfp_t gfpmask)
1287 {
1288 	struct bio *bio;
1289 
1290 	bio = bio_clone(bio_src, gfpmask);
1291 	if (!bio)
1292 		return NULL;	/* ENOMEM */
1293 
1294 	bio_advance(bio, offset);
1295 	bio->bi_iter.bi_size = len;
1296 
1297 	return bio;
1298 }
1299 
1300 /*
1301  * Clone a portion of a bio chain, starting at the given byte offset
1302  * into the first bio in the source chain and continuing for the
1303  * number of bytes indicated.  The result is another bio chain of
1304  * exactly the given length, or a null pointer on error.
1305  *
1306  * The bio_src and offset parameters are both in-out.  On entry they
1307  * refer to the first source bio and the offset into that bio where
1308  * the start of data to be cloned is located.
1309  *
1310  * On return, bio_src is updated to refer to the bio in the source
1311  * chain that contains first un-cloned byte, and *offset will
1312  * contain the offset of that byte within that bio.
1313  */
1314 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1315 					unsigned int *offset,
1316 					unsigned int len,
1317 					gfp_t gfpmask)
1318 {
1319 	struct bio *bi = *bio_src;
1320 	unsigned int off = *offset;
1321 	struct bio *chain = NULL;
1322 	struct bio **end;
1323 
1324 	/* Build up a chain of clone bios up to the limit */
1325 
1326 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1327 		return NULL;		/* Nothing to clone */
1328 
1329 	end = &chain;
1330 	while (len) {
1331 		unsigned int bi_size;
1332 		struct bio *bio;
1333 
1334 		if (!bi) {
1335 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1336 			goto out_err;	/* EINVAL; ran out of bio's */
1337 		}
1338 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1339 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1340 		if (!bio)
1341 			goto out_err;	/* ENOMEM */
1342 
1343 		*end = bio;
1344 		end = &bio->bi_next;
1345 
1346 		off += bi_size;
1347 		if (off == bi->bi_iter.bi_size) {
1348 			bi = bi->bi_next;
1349 			off = 0;
1350 		}
1351 		len -= bi_size;
1352 	}
1353 	*bio_src = bi;
1354 	*offset = off;
1355 
1356 	return chain;
1357 out_err:
1358 	bio_chain_put(chain);
1359 
1360 	return NULL;
1361 }
1362 
1363 /*
1364  * The default/initial value for all object request flags is 0.  For
1365  * each flag, once its value is set to 1 it is never reset to 0
1366  * again.
1367  */
1368 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1369 {
1370 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1371 		struct rbd_device *rbd_dev;
1372 
1373 		rbd_dev = obj_request->img_request->rbd_dev;
1374 		rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1375 			obj_request);
1376 	}
1377 }
1378 
1379 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1380 {
1381 	smp_mb();
1382 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1383 }
1384 
1385 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1386 {
1387 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1388 		struct rbd_device *rbd_dev = NULL;
1389 
1390 		if (obj_request_img_data_test(obj_request))
1391 			rbd_dev = obj_request->img_request->rbd_dev;
1392 		rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1393 			obj_request);
1394 	}
1395 }
1396 
1397 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1398 {
1399 	smp_mb();
1400 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1401 }
1402 
1403 /*
1404  * This sets the KNOWN flag after (possibly) setting the EXISTS
1405  * flag.  The latter is set based on the "exists" value provided.
1406  *
1407  * Note that for our purposes once an object exists it never goes
1408  * away again.  It's possible that the response from two existence
1409  * checks are separated by the creation of the target object, and
1410  * the first ("doesn't exist") response arrives *after* the second
1411  * ("does exist").  In that case we ignore the second one.
1412  */
1413 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1414 				bool exists)
1415 {
1416 	if (exists)
1417 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1418 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1419 	smp_mb();
1420 }
1421 
1422 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1423 {
1424 	smp_mb();
1425 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1426 }
1427 
1428 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1429 {
1430 	smp_mb();
1431 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1432 }
1433 
1434 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1435 {
1436 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1437 		atomic_read(&obj_request->kref.refcount));
1438 	kref_get(&obj_request->kref);
1439 }
1440 
1441 static void rbd_obj_request_destroy(struct kref *kref);
1442 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1443 {
1444 	rbd_assert(obj_request != NULL);
1445 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1446 		atomic_read(&obj_request->kref.refcount));
1447 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1448 }
1449 
1450 static void rbd_img_request_get(struct rbd_img_request *img_request)
1451 {
1452 	dout("%s: img %p (was %d)\n", __func__, img_request,
1453 	     atomic_read(&img_request->kref.refcount));
1454 	kref_get(&img_request->kref);
1455 }
1456 
1457 static bool img_request_child_test(struct rbd_img_request *img_request);
1458 static void rbd_parent_request_destroy(struct kref *kref);
1459 static void rbd_img_request_destroy(struct kref *kref);
1460 static void rbd_img_request_put(struct rbd_img_request *img_request)
1461 {
1462 	rbd_assert(img_request != NULL);
1463 	dout("%s: img %p (was %d)\n", __func__, img_request,
1464 		atomic_read(&img_request->kref.refcount));
1465 	if (img_request_child_test(img_request))
1466 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1467 	else
1468 		kref_put(&img_request->kref, rbd_img_request_destroy);
1469 }
1470 
1471 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1472 					struct rbd_obj_request *obj_request)
1473 {
1474 	rbd_assert(obj_request->img_request == NULL);
1475 
1476 	/* Image request now owns object's original reference */
1477 	obj_request->img_request = img_request;
1478 	obj_request->which = img_request->obj_request_count;
1479 	rbd_assert(!obj_request_img_data_test(obj_request));
1480 	obj_request_img_data_set(obj_request);
1481 	rbd_assert(obj_request->which != BAD_WHICH);
1482 	img_request->obj_request_count++;
1483 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1484 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1485 		obj_request->which);
1486 }
1487 
1488 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1489 					struct rbd_obj_request *obj_request)
1490 {
1491 	rbd_assert(obj_request->which != BAD_WHICH);
1492 
1493 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1494 		obj_request->which);
1495 	list_del(&obj_request->links);
1496 	rbd_assert(img_request->obj_request_count > 0);
1497 	img_request->obj_request_count--;
1498 	rbd_assert(obj_request->which == img_request->obj_request_count);
1499 	obj_request->which = BAD_WHICH;
1500 	rbd_assert(obj_request_img_data_test(obj_request));
1501 	rbd_assert(obj_request->img_request == img_request);
1502 	obj_request->img_request = NULL;
1503 	obj_request->callback = NULL;
1504 	rbd_obj_request_put(obj_request);
1505 }
1506 
1507 static bool obj_request_type_valid(enum obj_request_type type)
1508 {
1509 	switch (type) {
1510 	case OBJ_REQUEST_NODATA:
1511 	case OBJ_REQUEST_BIO:
1512 	case OBJ_REQUEST_PAGES:
1513 		return true;
1514 	default:
1515 		return false;
1516 	}
1517 }
1518 
1519 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1520 				struct rbd_obj_request *obj_request)
1521 {
1522 	dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1523 
1524 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1525 }
1526 
1527 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1528 {
1529 
1530 	dout("%s: img %p\n", __func__, img_request);
1531 
1532 	/*
1533 	 * If no error occurred, compute the aggregate transfer
1534 	 * count for the image request.  We could instead use
1535 	 * atomic64_cmpxchg() to update it as each object request
1536 	 * completes; not clear which way is better off hand.
1537 	 */
1538 	if (!img_request->result) {
1539 		struct rbd_obj_request *obj_request;
1540 		u64 xferred = 0;
1541 
1542 		for_each_obj_request(img_request, obj_request)
1543 			xferred += obj_request->xferred;
1544 		img_request->xferred = xferred;
1545 	}
1546 
1547 	if (img_request->callback)
1548 		img_request->callback(img_request);
1549 	else
1550 		rbd_img_request_put(img_request);
1551 }
1552 
1553 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1554 
1555 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1556 {
1557 	dout("%s: obj %p\n", __func__, obj_request);
1558 
1559 	return wait_for_completion_interruptible(&obj_request->completion);
1560 }
1561 
1562 /*
1563  * The default/initial value for all image request flags is 0.  Each
1564  * is conditionally set to 1 at image request initialization time
1565  * and currently never change thereafter.
1566  */
1567 static void img_request_write_set(struct rbd_img_request *img_request)
1568 {
1569 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1570 	smp_mb();
1571 }
1572 
1573 static bool img_request_write_test(struct rbd_img_request *img_request)
1574 {
1575 	smp_mb();
1576 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1577 }
1578 
1579 static void img_request_child_set(struct rbd_img_request *img_request)
1580 {
1581 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1582 	smp_mb();
1583 }
1584 
1585 static void img_request_child_clear(struct rbd_img_request *img_request)
1586 {
1587 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1588 	smp_mb();
1589 }
1590 
1591 static bool img_request_child_test(struct rbd_img_request *img_request)
1592 {
1593 	smp_mb();
1594 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1595 }
1596 
1597 static void img_request_layered_set(struct rbd_img_request *img_request)
1598 {
1599 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1600 	smp_mb();
1601 }
1602 
1603 static void img_request_layered_clear(struct rbd_img_request *img_request)
1604 {
1605 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1606 	smp_mb();
1607 }
1608 
1609 static bool img_request_layered_test(struct rbd_img_request *img_request)
1610 {
1611 	smp_mb();
1612 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1613 }
1614 
1615 static void
1616 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1617 {
1618 	u64 xferred = obj_request->xferred;
1619 	u64 length = obj_request->length;
1620 
1621 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1622 		obj_request, obj_request->img_request, obj_request->result,
1623 		xferred, length);
1624 	/*
1625 	 * ENOENT means a hole in the image.  We zero-fill the entire
1626 	 * length of the request.  A short read also implies zero-fill
1627 	 * to the end of the request.  An error requires the whole
1628 	 * length of the request to be reported finished with an error
1629 	 * to the block layer.  In each case we update the xferred
1630 	 * count to indicate the whole request was satisfied.
1631 	 */
1632 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1633 	if (obj_request->result == -ENOENT) {
1634 		if (obj_request->type == OBJ_REQUEST_BIO)
1635 			zero_bio_chain(obj_request->bio_list, 0);
1636 		else
1637 			zero_pages(obj_request->pages, 0, length);
1638 		obj_request->result = 0;
1639 	} else if (xferred < length && !obj_request->result) {
1640 		if (obj_request->type == OBJ_REQUEST_BIO)
1641 			zero_bio_chain(obj_request->bio_list, xferred);
1642 		else
1643 			zero_pages(obj_request->pages, xferred, length);
1644 	}
1645 	obj_request->xferred = length;
1646 	obj_request_done_set(obj_request);
1647 }
1648 
1649 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1650 {
1651 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1652 		obj_request->callback);
1653 	if (obj_request->callback)
1654 		obj_request->callback(obj_request);
1655 	else
1656 		complete_all(&obj_request->completion);
1657 }
1658 
1659 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1660 {
1661 	dout("%s: obj %p\n", __func__, obj_request);
1662 	obj_request_done_set(obj_request);
1663 }
1664 
1665 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1666 {
1667 	struct rbd_img_request *img_request = NULL;
1668 	struct rbd_device *rbd_dev = NULL;
1669 	bool layered = false;
1670 
1671 	if (obj_request_img_data_test(obj_request)) {
1672 		img_request = obj_request->img_request;
1673 		layered = img_request && img_request_layered_test(img_request);
1674 		rbd_dev = img_request->rbd_dev;
1675 	}
1676 
1677 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1678 		obj_request, img_request, obj_request->result,
1679 		obj_request->xferred, obj_request->length);
1680 	if (layered && obj_request->result == -ENOENT &&
1681 			obj_request->img_offset < rbd_dev->parent_overlap)
1682 		rbd_img_parent_read(obj_request);
1683 	else if (img_request)
1684 		rbd_img_obj_request_read_callback(obj_request);
1685 	else
1686 		obj_request_done_set(obj_request);
1687 }
1688 
1689 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1690 {
1691 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1692 		obj_request->result, obj_request->length);
1693 	/*
1694 	 * There is no such thing as a successful short write.  Set
1695 	 * it to our originally-requested length.
1696 	 */
1697 	obj_request->xferred = obj_request->length;
1698 	obj_request_done_set(obj_request);
1699 }
1700 
1701 /*
1702  * For a simple stat call there's nothing to do.  We'll do more if
1703  * this is part of a write sequence for a layered image.
1704  */
1705 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1706 {
1707 	dout("%s: obj %p\n", __func__, obj_request);
1708 	obj_request_done_set(obj_request);
1709 }
1710 
1711 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1712 				struct ceph_msg *msg)
1713 {
1714 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1715 	u16 opcode;
1716 
1717 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1718 	rbd_assert(osd_req == obj_request->osd_req);
1719 	if (obj_request_img_data_test(obj_request)) {
1720 		rbd_assert(obj_request->img_request);
1721 		rbd_assert(obj_request->which != BAD_WHICH);
1722 	} else {
1723 		rbd_assert(obj_request->which == BAD_WHICH);
1724 	}
1725 
1726 	if (osd_req->r_result < 0)
1727 		obj_request->result = osd_req->r_result;
1728 
1729 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1730 
1731 	/*
1732 	 * We support a 64-bit length, but ultimately it has to be
1733 	 * passed to blk_end_request(), which takes an unsigned int.
1734 	 */
1735 	obj_request->xferred = osd_req->r_reply_op_len[0];
1736 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1737 
1738 	opcode = osd_req->r_ops[0].op;
1739 	switch (opcode) {
1740 	case CEPH_OSD_OP_READ:
1741 		rbd_osd_read_callback(obj_request);
1742 		break;
1743 	case CEPH_OSD_OP_SETALLOCHINT:
1744 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1745 		/* fall through */
1746 	case CEPH_OSD_OP_WRITE:
1747 		rbd_osd_write_callback(obj_request);
1748 		break;
1749 	case CEPH_OSD_OP_STAT:
1750 		rbd_osd_stat_callback(obj_request);
1751 		break;
1752 	case CEPH_OSD_OP_CALL:
1753 	case CEPH_OSD_OP_NOTIFY_ACK:
1754 	case CEPH_OSD_OP_WATCH:
1755 		rbd_osd_trivial_callback(obj_request);
1756 		break;
1757 	default:
1758 		rbd_warn(NULL, "%s: unsupported op %hu\n",
1759 			obj_request->object_name, (unsigned short) opcode);
1760 		break;
1761 	}
1762 
1763 	if (obj_request_done_test(obj_request))
1764 		rbd_obj_request_complete(obj_request);
1765 }
1766 
1767 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1768 {
1769 	struct rbd_img_request *img_request = obj_request->img_request;
1770 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1771 	u64 snap_id;
1772 
1773 	rbd_assert(osd_req != NULL);
1774 
1775 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1776 	ceph_osdc_build_request(osd_req, obj_request->offset,
1777 			NULL, snap_id, NULL);
1778 }
1779 
1780 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1781 {
1782 	struct rbd_img_request *img_request = obj_request->img_request;
1783 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1784 	struct ceph_snap_context *snapc;
1785 	struct timespec mtime = CURRENT_TIME;
1786 
1787 	rbd_assert(osd_req != NULL);
1788 
1789 	snapc = img_request ? img_request->snapc : NULL;
1790 	ceph_osdc_build_request(osd_req, obj_request->offset,
1791 			snapc, CEPH_NOSNAP, &mtime);
1792 }
1793 
1794 /*
1795  * Create an osd request.  A read request has one osd op (read).
1796  * A write request has either one (watch) or two (hint+write) osd ops.
1797  * (All rbd data writes are prefixed with an allocation hint op, but
1798  * technically osd watch is a write request, hence this distinction.)
1799  */
1800 static struct ceph_osd_request *rbd_osd_req_create(
1801 					struct rbd_device *rbd_dev,
1802 					bool write_request,
1803 					unsigned int num_ops,
1804 					struct rbd_obj_request *obj_request)
1805 {
1806 	struct ceph_snap_context *snapc = NULL;
1807 	struct ceph_osd_client *osdc;
1808 	struct ceph_osd_request *osd_req;
1809 
1810 	if (obj_request_img_data_test(obj_request)) {
1811 		struct rbd_img_request *img_request = obj_request->img_request;
1812 
1813 		rbd_assert(write_request ==
1814 				img_request_write_test(img_request));
1815 		if (write_request)
1816 			snapc = img_request->snapc;
1817 	}
1818 
1819 	rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1820 
1821 	/* Allocate and initialize the request, for the num_ops ops */
1822 
1823 	osdc = &rbd_dev->rbd_client->client->osdc;
1824 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1825 					  GFP_ATOMIC);
1826 	if (!osd_req)
1827 		return NULL;	/* ENOMEM */
1828 
1829 	if (write_request)
1830 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1831 	else
1832 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1833 
1834 	osd_req->r_callback = rbd_osd_req_callback;
1835 	osd_req->r_priv = obj_request;
1836 
1837 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1838 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1839 
1840 	return osd_req;
1841 }
1842 
1843 /*
1844  * Create a copyup osd request based on the information in the
1845  * object request supplied.  A copyup request has three osd ops,
1846  * a copyup method call, a hint op, and a write op.
1847  */
1848 static struct ceph_osd_request *
1849 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1850 {
1851 	struct rbd_img_request *img_request;
1852 	struct ceph_snap_context *snapc;
1853 	struct rbd_device *rbd_dev;
1854 	struct ceph_osd_client *osdc;
1855 	struct ceph_osd_request *osd_req;
1856 
1857 	rbd_assert(obj_request_img_data_test(obj_request));
1858 	img_request = obj_request->img_request;
1859 	rbd_assert(img_request);
1860 	rbd_assert(img_request_write_test(img_request));
1861 
1862 	/* Allocate and initialize the request, for the three ops */
1863 
1864 	snapc = img_request->snapc;
1865 	rbd_dev = img_request->rbd_dev;
1866 	osdc = &rbd_dev->rbd_client->client->osdc;
1867 	osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1868 	if (!osd_req)
1869 		return NULL;	/* ENOMEM */
1870 
1871 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1872 	osd_req->r_callback = rbd_osd_req_callback;
1873 	osd_req->r_priv = obj_request;
1874 
1875 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1876 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1877 
1878 	return osd_req;
1879 }
1880 
1881 
1882 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1883 {
1884 	ceph_osdc_put_request(osd_req);
1885 }
1886 
1887 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1888 
1889 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1890 						u64 offset, u64 length,
1891 						enum obj_request_type type)
1892 {
1893 	struct rbd_obj_request *obj_request;
1894 	size_t size;
1895 	char *name;
1896 
1897 	rbd_assert(obj_request_type_valid(type));
1898 
1899 	size = strlen(object_name) + 1;
1900 	name = kmalloc(size, GFP_KERNEL);
1901 	if (!name)
1902 		return NULL;
1903 
1904 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1905 	if (!obj_request) {
1906 		kfree(name);
1907 		return NULL;
1908 	}
1909 
1910 	obj_request->object_name = memcpy(name, object_name, size);
1911 	obj_request->offset = offset;
1912 	obj_request->length = length;
1913 	obj_request->flags = 0;
1914 	obj_request->which = BAD_WHICH;
1915 	obj_request->type = type;
1916 	INIT_LIST_HEAD(&obj_request->links);
1917 	init_completion(&obj_request->completion);
1918 	kref_init(&obj_request->kref);
1919 
1920 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1921 		offset, length, (int)type, obj_request);
1922 
1923 	return obj_request;
1924 }
1925 
1926 static void rbd_obj_request_destroy(struct kref *kref)
1927 {
1928 	struct rbd_obj_request *obj_request;
1929 
1930 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1931 
1932 	dout("%s: obj %p\n", __func__, obj_request);
1933 
1934 	rbd_assert(obj_request->img_request == NULL);
1935 	rbd_assert(obj_request->which == BAD_WHICH);
1936 
1937 	if (obj_request->osd_req)
1938 		rbd_osd_req_destroy(obj_request->osd_req);
1939 
1940 	rbd_assert(obj_request_type_valid(obj_request->type));
1941 	switch (obj_request->type) {
1942 	case OBJ_REQUEST_NODATA:
1943 		break;		/* Nothing to do */
1944 	case OBJ_REQUEST_BIO:
1945 		if (obj_request->bio_list)
1946 			bio_chain_put(obj_request->bio_list);
1947 		break;
1948 	case OBJ_REQUEST_PAGES:
1949 		if (obj_request->pages)
1950 			ceph_release_page_vector(obj_request->pages,
1951 						obj_request->page_count);
1952 		break;
1953 	}
1954 
1955 	kfree(obj_request->object_name);
1956 	obj_request->object_name = NULL;
1957 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1958 }
1959 
1960 /* It's OK to call this for a device with no parent */
1961 
1962 static void rbd_spec_put(struct rbd_spec *spec);
1963 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1964 {
1965 	rbd_dev_remove_parent(rbd_dev);
1966 	rbd_spec_put(rbd_dev->parent_spec);
1967 	rbd_dev->parent_spec = NULL;
1968 	rbd_dev->parent_overlap = 0;
1969 }
1970 
1971 /*
1972  * Parent image reference counting is used to determine when an
1973  * image's parent fields can be safely torn down--after there are no
1974  * more in-flight requests to the parent image.  When the last
1975  * reference is dropped, cleaning them up is safe.
1976  */
1977 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1978 {
1979 	int counter;
1980 
1981 	if (!rbd_dev->parent_spec)
1982 		return;
1983 
1984 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1985 	if (counter > 0)
1986 		return;
1987 
1988 	/* Last reference; clean up parent data structures */
1989 
1990 	if (!counter)
1991 		rbd_dev_unparent(rbd_dev);
1992 	else
1993 		rbd_warn(rbd_dev, "parent reference underflow\n");
1994 }
1995 
1996 /*
1997  * If an image has a non-zero parent overlap, get a reference to its
1998  * parent.
1999  *
2000  * We must get the reference before checking for the overlap to
2001  * coordinate properly with zeroing the parent overlap in
2002  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2003  * drop it again if there is no overlap.
2004  *
2005  * Returns true if the rbd device has a parent with a non-zero
2006  * overlap and a reference for it was successfully taken, or
2007  * false otherwise.
2008  */
2009 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2010 {
2011 	int counter;
2012 
2013 	if (!rbd_dev->parent_spec)
2014 		return false;
2015 
2016 	counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2017 	if (counter > 0 && rbd_dev->parent_overlap)
2018 		return true;
2019 
2020 	/* Image was flattened, but parent is not yet torn down */
2021 
2022 	if (counter < 0)
2023 		rbd_warn(rbd_dev, "parent reference overflow\n");
2024 
2025 	return false;
2026 }
2027 
2028 /*
2029  * Caller is responsible for filling in the list of object requests
2030  * that comprises the image request, and the Linux request pointer
2031  * (if there is one).
2032  */
2033 static struct rbd_img_request *rbd_img_request_create(
2034 					struct rbd_device *rbd_dev,
2035 					u64 offset, u64 length,
2036 					bool write_request)
2037 {
2038 	struct rbd_img_request *img_request;
2039 
2040 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
2041 	if (!img_request)
2042 		return NULL;
2043 
2044 	if (write_request) {
2045 		down_read(&rbd_dev->header_rwsem);
2046 		ceph_get_snap_context(rbd_dev->header.snapc);
2047 		up_read(&rbd_dev->header_rwsem);
2048 	}
2049 
2050 	img_request->rq = NULL;
2051 	img_request->rbd_dev = rbd_dev;
2052 	img_request->offset = offset;
2053 	img_request->length = length;
2054 	img_request->flags = 0;
2055 	if (write_request) {
2056 		img_request_write_set(img_request);
2057 		img_request->snapc = rbd_dev->header.snapc;
2058 	} else {
2059 		img_request->snap_id = rbd_dev->spec->snap_id;
2060 	}
2061 	if (rbd_dev_parent_get(rbd_dev))
2062 		img_request_layered_set(img_request);
2063 	spin_lock_init(&img_request->completion_lock);
2064 	img_request->next_completion = 0;
2065 	img_request->callback = NULL;
2066 	img_request->result = 0;
2067 	img_request->obj_request_count = 0;
2068 	INIT_LIST_HEAD(&img_request->obj_requests);
2069 	kref_init(&img_request->kref);
2070 
2071 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2072 		write_request ? "write" : "read", offset, length,
2073 		img_request);
2074 
2075 	return img_request;
2076 }
2077 
2078 static void rbd_img_request_destroy(struct kref *kref)
2079 {
2080 	struct rbd_img_request *img_request;
2081 	struct rbd_obj_request *obj_request;
2082 	struct rbd_obj_request *next_obj_request;
2083 
2084 	img_request = container_of(kref, struct rbd_img_request, kref);
2085 
2086 	dout("%s: img %p\n", __func__, img_request);
2087 
2088 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2089 		rbd_img_obj_request_del(img_request, obj_request);
2090 	rbd_assert(img_request->obj_request_count == 0);
2091 
2092 	if (img_request_layered_test(img_request)) {
2093 		img_request_layered_clear(img_request);
2094 		rbd_dev_parent_put(img_request->rbd_dev);
2095 	}
2096 
2097 	if (img_request_write_test(img_request))
2098 		ceph_put_snap_context(img_request->snapc);
2099 
2100 	kmem_cache_free(rbd_img_request_cache, img_request);
2101 }
2102 
2103 static struct rbd_img_request *rbd_parent_request_create(
2104 					struct rbd_obj_request *obj_request,
2105 					u64 img_offset, u64 length)
2106 {
2107 	struct rbd_img_request *parent_request;
2108 	struct rbd_device *rbd_dev;
2109 
2110 	rbd_assert(obj_request->img_request);
2111 	rbd_dev = obj_request->img_request->rbd_dev;
2112 
2113 	parent_request = rbd_img_request_create(rbd_dev->parent,
2114 						img_offset, length, false);
2115 	if (!parent_request)
2116 		return NULL;
2117 
2118 	img_request_child_set(parent_request);
2119 	rbd_obj_request_get(obj_request);
2120 	parent_request->obj_request = obj_request;
2121 
2122 	return parent_request;
2123 }
2124 
2125 static void rbd_parent_request_destroy(struct kref *kref)
2126 {
2127 	struct rbd_img_request *parent_request;
2128 	struct rbd_obj_request *orig_request;
2129 
2130 	parent_request = container_of(kref, struct rbd_img_request, kref);
2131 	orig_request = parent_request->obj_request;
2132 
2133 	parent_request->obj_request = NULL;
2134 	rbd_obj_request_put(orig_request);
2135 	img_request_child_clear(parent_request);
2136 
2137 	rbd_img_request_destroy(kref);
2138 }
2139 
2140 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2141 {
2142 	struct rbd_img_request *img_request;
2143 	unsigned int xferred;
2144 	int result;
2145 	bool more;
2146 
2147 	rbd_assert(obj_request_img_data_test(obj_request));
2148 	img_request = obj_request->img_request;
2149 
2150 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2151 	xferred = (unsigned int)obj_request->xferred;
2152 	result = obj_request->result;
2153 	if (result) {
2154 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2155 
2156 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2157 			img_request_write_test(img_request) ? "write" : "read",
2158 			obj_request->length, obj_request->img_offset,
2159 			obj_request->offset);
2160 		rbd_warn(rbd_dev, "  result %d xferred %x\n",
2161 			result, xferred);
2162 		if (!img_request->result)
2163 			img_request->result = result;
2164 	}
2165 
2166 	/* Image object requests don't own their page array */
2167 
2168 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2169 		obj_request->pages = NULL;
2170 		obj_request->page_count = 0;
2171 	}
2172 
2173 	if (img_request_child_test(img_request)) {
2174 		rbd_assert(img_request->obj_request != NULL);
2175 		more = obj_request->which < img_request->obj_request_count - 1;
2176 	} else {
2177 		rbd_assert(img_request->rq != NULL);
2178 		more = blk_end_request(img_request->rq, result, xferred);
2179 	}
2180 
2181 	return more;
2182 }
2183 
2184 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2185 {
2186 	struct rbd_img_request *img_request;
2187 	u32 which = obj_request->which;
2188 	bool more = true;
2189 
2190 	rbd_assert(obj_request_img_data_test(obj_request));
2191 	img_request = obj_request->img_request;
2192 
2193 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2194 	rbd_assert(img_request != NULL);
2195 	rbd_assert(img_request->obj_request_count > 0);
2196 	rbd_assert(which != BAD_WHICH);
2197 	rbd_assert(which < img_request->obj_request_count);
2198 
2199 	spin_lock_irq(&img_request->completion_lock);
2200 	if (which != img_request->next_completion)
2201 		goto out;
2202 
2203 	for_each_obj_request_from(img_request, obj_request) {
2204 		rbd_assert(more);
2205 		rbd_assert(which < img_request->obj_request_count);
2206 
2207 		if (!obj_request_done_test(obj_request))
2208 			break;
2209 		more = rbd_img_obj_end_request(obj_request);
2210 		which++;
2211 	}
2212 
2213 	rbd_assert(more ^ (which == img_request->obj_request_count));
2214 	img_request->next_completion = which;
2215 out:
2216 	spin_unlock_irq(&img_request->completion_lock);
2217 	rbd_img_request_put(img_request);
2218 
2219 	if (!more)
2220 		rbd_img_request_complete(img_request);
2221 }
2222 
2223 /*
2224  * Split up an image request into one or more object requests, each
2225  * to a different object.  The "type" parameter indicates whether
2226  * "data_desc" is the pointer to the head of a list of bio
2227  * structures, or the base of a page array.  In either case this
2228  * function assumes data_desc describes memory sufficient to hold
2229  * all data described by the image request.
2230  */
2231 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2232 					enum obj_request_type type,
2233 					void *data_desc)
2234 {
2235 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2236 	struct rbd_obj_request *obj_request = NULL;
2237 	struct rbd_obj_request *next_obj_request;
2238 	bool write_request = img_request_write_test(img_request);
2239 	struct bio *bio_list = NULL;
2240 	unsigned int bio_offset = 0;
2241 	struct page **pages = NULL;
2242 	u64 img_offset;
2243 	u64 resid;
2244 	u16 opcode;
2245 
2246 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2247 		(int)type, data_desc);
2248 
2249 	opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2250 	img_offset = img_request->offset;
2251 	resid = img_request->length;
2252 	rbd_assert(resid > 0);
2253 
2254 	if (type == OBJ_REQUEST_BIO) {
2255 		bio_list = data_desc;
2256 		rbd_assert(img_offset ==
2257 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2258 	} else {
2259 		rbd_assert(type == OBJ_REQUEST_PAGES);
2260 		pages = data_desc;
2261 	}
2262 
2263 	while (resid) {
2264 		struct ceph_osd_request *osd_req;
2265 		const char *object_name;
2266 		u64 offset;
2267 		u64 length;
2268 		unsigned int which = 0;
2269 
2270 		object_name = rbd_segment_name(rbd_dev, img_offset);
2271 		if (!object_name)
2272 			goto out_unwind;
2273 		offset = rbd_segment_offset(rbd_dev, img_offset);
2274 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2275 		obj_request = rbd_obj_request_create(object_name,
2276 						offset, length, type);
2277 		/* object request has its own copy of the object name */
2278 		rbd_segment_name_free(object_name);
2279 		if (!obj_request)
2280 			goto out_unwind;
2281 
2282 		/*
2283 		 * set obj_request->img_request before creating the
2284 		 * osd_request so that it gets the right snapc
2285 		 */
2286 		rbd_img_obj_request_add(img_request, obj_request);
2287 
2288 		if (type == OBJ_REQUEST_BIO) {
2289 			unsigned int clone_size;
2290 
2291 			rbd_assert(length <= (u64)UINT_MAX);
2292 			clone_size = (unsigned int)length;
2293 			obj_request->bio_list =
2294 					bio_chain_clone_range(&bio_list,
2295 								&bio_offset,
2296 								clone_size,
2297 								GFP_ATOMIC);
2298 			if (!obj_request->bio_list)
2299 				goto out_unwind;
2300 		} else {
2301 			unsigned int page_count;
2302 
2303 			obj_request->pages = pages;
2304 			page_count = (u32)calc_pages_for(offset, length);
2305 			obj_request->page_count = page_count;
2306 			if ((offset + length) & ~PAGE_MASK)
2307 				page_count--;	/* more on last page */
2308 			pages += page_count;
2309 		}
2310 
2311 		osd_req = rbd_osd_req_create(rbd_dev, write_request,
2312 					     (write_request ? 2 : 1),
2313 					     obj_request);
2314 		if (!osd_req)
2315 			goto out_unwind;
2316 		obj_request->osd_req = osd_req;
2317 		obj_request->callback = rbd_img_obj_callback;
2318 		rbd_img_request_get(img_request);
2319 
2320 		if (write_request) {
2321 			osd_req_op_alloc_hint_init(osd_req, which,
2322 					     rbd_obj_bytes(&rbd_dev->header),
2323 					     rbd_obj_bytes(&rbd_dev->header));
2324 			which++;
2325 		}
2326 
2327 		osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2328 				       0, 0);
2329 		if (type == OBJ_REQUEST_BIO)
2330 			osd_req_op_extent_osd_data_bio(osd_req, which,
2331 					obj_request->bio_list, length);
2332 		else
2333 			osd_req_op_extent_osd_data_pages(osd_req, which,
2334 					obj_request->pages, length,
2335 					offset & ~PAGE_MASK, false, false);
2336 
2337 		if (write_request)
2338 			rbd_osd_req_format_write(obj_request);
2339 		else
2340 			rbd_osd_req_format_read(obj_request);
2341 
2342 		obj_request->img_offset = img_offset;
2343 
2344 		img_offset += length;
2345 		resid -= length;
2346 	}
2347 
2348 	return 0;
2349 
2350 out_unwind:
2351 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2352 		rbd_img_obj_request_del(img_request, obj_request);
2353 
2354 	return -ENOMEM;
2355 }
2356 
2357 static void
2358 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2359 {
2360 	struct rbd_img_request *img_request;
2361 	struct rbd_device *rbd_dev;
2362 	struct page **pages;
2363 	u32 page_count;
2364 
2365 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2366 	rbd_assert(obj_request_img_data_test(obj_request));
2367 	img_request = obj_request->img_request;
2368 	rbd_assert(img_request);
2369 
2370 	rbd_dev = img_request->rbd_dev;
2371 	rbd_assert(rbd_dev);
2372 
2373 	pages = obj_request->copyup_pages;
2374 	rbd_assert(pages != NULL);
2375 	obj_request->copyup_pages = NULL;
2376 	page_count = obj_request->copyup_page_count;
2377 	rbd_assert(page_count);
2378 	obj_request->copyup_page_count = 0;
2379 	ceph_release_page_vector(pages, page_count);
2380 
2381 	/*
2382 	 * We want the transfer count to reflect the size of the
2383 	 * original write request.  There is no such thing as a
2384 	 * successful short write, so if the request was successful
2385 	 * we can just set it to the originally-requested length.
2386 	 */
2387 	if (!obj_request->result)
2388 		obj_request->xferred = obj_request->length;
2389 
2390 	/* Finish up with the normal image object callback */
2391 
2392 	rbd_img_obj_callback(obj_request);
2393 }
2394 
2395 static void
2396 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2397 {
2398 	struct rbd_obj_request *orig_request;
2399 	struct ceph_osd_request *osd_req;
2400 	struct ceph_osd_client *osdc;
2401 	struct rbd_device *rbd_dev;
2402 	struct page **pages;
2403 	u32 page_count;
2404 	int img_result;
2405 	u64 parent_length;
2406 	u64 offset;
2407 	u64 length;
2408 
2409 	rbd_assert(img_request_child_test(img_request));
2410 
2411 	/* First get what we need from the image request */
2412 
2413 	pages = img_request->copyup_pages;
2414 	rbd_assert(pages != NULL);
2415 	img_request->copyup_pages = NULL;
2416 	page_count = img_request->copyup_page_count;
2417 	rbd_assert(page_count);
2418 	img_request->copyup_page_count = 0;
2419 
2420 	orig_request = img_request->obj_request;
2421 	rbd_assert(orig_request != NULL);
2422 	rbd_assert(obj_request_type_valid(orig_request->type));
2423 	img_result = img_request->result;
2424 	parent_length = img_request->length;
2425 	rbd_assert(parent_length == img_request->xferred);
2426 	rbd_img_request_put(img_request);
2427 
2428 	rbd_assert(orig_request->img_request);
2429 	rbd_dev = orig_request->img_request->rbd_dev;
2430 	rbd_assert(rbd_dev);
2431 
2432 	/*
2433 	 * If the overlap has become 0 (most likely because the
2434 	 * image has been flattened) we need to free the pages
2435 	 * and re-submit the original write request.
2436 	 */
2437 	if (!rbd_dev->parent_overlap) {
2438 		struct ceph_osd_client *osdc;
2439 
2440 		ceph_release_page_vector(pages, page_count);
2441 		osdc = &rbd_dev->rbd_client->client->osdc;
2442 		img_result = rbd_obj_request_submit(osdc, orig_request);
2443 		if (!img_result)
2444 			return;
2445 	}
2446 
2447 	if (img_result)
2448 		goto out_err;
2449 
2450 	/*
2451 	 * The original osd request is of no use to use any more.
2452 	 * We need a new one that can hold the three ops in a copyup
2453 	 * request.  Allocate the new copyup osd request for the
2454 	 * original request, and release the old one.
2455 	 */
2456 	img_result = -ENOMEM;
2457 	osd_req = rbd_osd_req_create_copyup(orig_request);
2458 	if (!osd_req)
2459 		goto out_err;
2460 	rbd_osd_req_destroy(orig_request->osd_req);
2461 	orig_request->osd_req = osd_req;
2462 	orig_request->copyup_pages = pages;
2463 	orig_request->copyup_page_count = page_count;
2464 
2465 	/* Initialize the copyup op */
2466 
2467 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2468 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2469 						false, false);
2470 
2471 	/* Then the hint op */
2472 
2473 	osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2474 				   rbd_obj_bytes(&rbd_dev->header));
2475 
2476 	/* And the original write request op */
2477 
2478 	offset = orig_request->offset;
2479 	length = orig_request->length;
2480 	osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2481 					offset, length, 0, 0);
2482 	if (orig_request->type == OBJ_REQUEST_BIO)
2483 		osd_req_op_extent_osd_data_bio(osd_req, 2,
2484 					orig_request->bio_list, length);
2485 	else
2486 		osd_req_op_extent_osd_data_pages(osd_req, 2,
2487 					orig_request->pages, length,
2488 					offset & ~PAGE_MASK, false, false);
2489 
2490 	rbd_osd_req_format_write(orig_request);
2491 
2492 	/* All set, send it off. */
2493 
2494 	orig_request->callback = rbd_img_obj_copyup_callback;
2495 	osdc = &rbd_dev->rbd_client->client->osdc;
2496 	img_result = rbd_obj_request_submit(osdc, orig_request);
2497 	if (!img_result)
2498 		return;
2499 out_err:
2500 	/* Record the error code and complete the request */
2501 
2502 	orig_request->result = img_result;
2503 	orig_request->xferred = 0;
2504 	obj_request_done_set(orig_request);
2505 	rbd_obj_request_complete(orig_request);
2506 }
2507 
2508 /*
2509  * Read from the parent image the range of data that covers the
2510  * entire target of the given object request.  This is used for
2511  * satisfying a layered image write request when the target of an
2512  * object request from the image request does not exist.
2513  *
2514  * A page array big enough to hold the returned data is allocated
2515  * and supplied to rbd_img_request_fill() as the "data descriptor."
2516  * When the read completes, this page array will be transferred to
2517  * the original object request for the copyup operation.
2518  *
2519  * If an error occurs, record it as the result of the original
2520  * object request and mark it done so it gets completed.
2521  */
2522 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2523 {
2524 	struct rbd_img_request *img_request = NULL;
2525 	struct rbd_img_request *parent_request = NULL;
2526 	struct rbd_device *rbd_dev;
2527 	u64 img_offset;
2528 	u64 length;
2529 	struct page **pages = NULL;
2530 	u32 page_count;
2531 	int result;
2532 
2533 	rbd_assert(obj_request_img_data_test(obj_request));
2534 	rbd_assert(obj_request_type_valid(obj_request->type));
2535 
2536 	img_request = obj_request->img_request;
2537 	rbd_assert(img_request != NULL);
2538 	rbd_dev = img_request->rbd_dev;
2539 	rbd_assert(rbd_dev->parent != NULL);
2540 
2541 	/*
2542 	 * Determine the byte range covered by the object in the
2543 	 * child image to which the original request was to be sent.
2544 	 */
2545 	img_offset = obj_request->img_offset - obj_request->offset;
2546 	length = (u64)1 << rbd_dev->header.obj_order;
2547 
2548 	/*
2549 	 * There is no defined parent data beyond the parent
2550 	 * overlap, so limit what we read at that boundary if
2551 	 * necessary.
2552 	 */
2553 	if (img_offset + length > rbd_dev->parent_overlap) {
2554 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2555 		length = rbd_dev->parent_overlap - img_offset;
2556 	}
2557 
2558 	/*
2559 	 * Allocate a page array big enough to receive the data read
2560 	 * from the parent.
2561 	 */
2562 	page_count = (u32)calc_pages_for(0, length);
2563 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2564 	if (IS_ERR(pages)) {
2565 		result = PTR_ERR(pages);
2566 		pages = NULL;
2567 		goto out_err;
2568 	}
2569 
2570 	result = -ENOMEM;
2571 	parent_request = rbd_parent_request_create(obj_request,
2572 						img_offset, length);
2573 	if (!parent_request)
2574 		goto out_err;
2575 
2576 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2577 	if (result)
2578 		goto out_err;
2579 	parent_request->copyup_pages = pages;
2580 	parent_request->copyup_page_count = page_count;
2581 
2582 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2583 	result = rbd_img_request_submit(parent_request);
2584 	if (!result)
2585 		return 0;
2586 
2587 	parent_request->copyup_pages = NULL;
2588 	parent_request->copyup_page_count = 0;
2589 	parent_request->obj_request = NULL;
2590 	rbd_obj_request_put(obj_request);
2591 out_err:
2592 	if (pages)
2593 		ceph_release_page_vector(pages, page_count);
2594 	if (parent_request)
2595 		rbd_img_request_put(parent_request);
2596 	obj_request->result = result;
2597 	obj_request->xferred = 0;
2598 	obj_request_done_set(obj_request);
2599 
2600 	return result;
2601 }
2602 
2603 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2604 {
2605 	struct rbd_obj_request *orig_request;
2606 	struct rbd_device *rbd_dev;
2607 	int result;
2608 
2609 	rbd_assert(!obj_request_img_data_test(obj_request));
2610 
2611 	/*
2612 	 * All we need from the object request is the original
2613 	 * request and the result of the STAT op.  Grab those, then
2614 	 * we're done with the request.
2615 	 */
2616 	orig_request = obj_request->obj_request;
2617 	obj_request->obj_request = NULL;
2618 	rbd_obj_request_put(orig_request);
2619 	rbd_assert(orig_request);
2620 	rbd_assert(orig_request->img_request);
2621 
2622 	result = obj_request->result;
2623 	obj_request->result = 0;
2624 
2625 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2626 		obj_request, orig_request, result,
2627 		obj_request->xferred, obj_request->length);
2628 	rbd_obj_request_put(obj_request);
2629 
2630 	/*
2631 	 * If the overlap has become 0 (most likely because the
2632 	 * image has been flattened) we need to free the pages
2633 	 * and re-submit the original write request.
2634 	 */
2635 	rbd_dev = orig_request->img_request->rbd_dev;
2636 	if (!rbd_dev->parent_overlap) {
2637 		struct ceph_osd_client *osdc;
2638 
2639 		osdc = &rbd_dev->rbd_client->client->osdc;
2640 		result = rbd_obj_request_submit(osdc, orig_request);
2641 		if (!result)
2642 			return;
2643 	}
2644 
2645 	/*
2646 	 * Our only purpose here is to determine whether the object
2647 	 * exists, and we don't want to treat the non-existence as
2648 	 * an error.  If something else comes back, transfer the
2649 	 * error to the original request and complete it now.
2650 	 */
2651 	if (!result) {
2652 		obj_request_existence_set(orig_request, true);
2653 	} else if (result == -ENOENT) {
2654 		obj_request_existence_set(orig_request, false);
2655 	} else if (result) {
2656 		orig_request->result = result;
2657 		goto out;
2658 	}
2659 
2660 	/*
2661 	 * Resubmit the original request now that we have recorded
2662 	 * whether the target object exists.
2663 	 */
2664 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2665 out:
2666 	if (orig_request->result)
2667 		rbd_obj_request_complete(orig_request);
2668 }
2669 
2670 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2671 {
2672 	struct rbd_obj_request *stat_request;
2673 	struct rbd_device *rbd_dev;
2674 	struct ceph_osd_client *osdc;
2675 	struct page **pages = NULL;
2676 	u32 page_count;
2677 	size_t size;
2678 	int ret;
2679 
2680 	/*
2681 	 * The response data for a STAT call consists of:
2682 	 *     le64 length;
2683 	 *     struct {
2684 	 *         le32 tv_sec;
2685 	 *         le32 tv_nsec;
2686 	 *     } mtime;
2687 	 */
2688 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2689 	page_count = (u32)calc_pages_for(0, size);
2690 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2691 	if (IS_ERR(pages))
2692 		return PTR_ERR(pages);
2693 
2694 	ret = -ENOMEM;
2695 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2696 							OBJ_REQUEST_PAGES);
2697 	if (!stat_request)
2698 		goto out;
2699 
2700 	rbd_obj_request_get(obj_request);
2701 	stat_request->obj_request = obj_request;
2702 	stat_request->pages = pages;
2703 	stat_request->page_count = page_count;
2704 
2705 	rbd_assert(obj_request->img_request);
2706 	rbd_dev = obj_request->img_request->rbd_dev;
2707 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2708 						   stat_request);
2709 	if (!stat_request->osd_req)
2710 		goto out;
2711 	stat_request->callback = rbd_img_obj_exists_callback;
2712 
2713 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2714 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2715 					false, false);
2716 	rbd_osd_req_format_read(stat_request);
2717 
2718 	osdc = &rbd_dev->rbd_client->client->osdc;
2719 	ret = rbd_obj_request_submit(osdc, stat_request);
2720 out:
2721 	if (ret)
2722 		rbd_obj_request_put(obj_request);
2723 
2724 	return ret;
2725 }
2726 
2727 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2728 {
2729 	struct rbd_img_request *img_request;
2730 	struct rbd_device *rbd_dev;
2731 	bool known;
2732 
2733 	rbd_assert(obj_request_img_data_test(obj_request));
2734 
2735 	img_request = obj_request->img_request;
2736 	rbd_assert(img_request);
2737 	rbd_dev = img_request->rbd_dev;
2738 
2739 	/*
2740 	 * Only writes to layered images need special handling.
2741 	 * Reads and non-layered writes are simple object requests.
2742 	 * Layered writes that start beyond the end of the overlap
2743 	 * with the parent have no parent data, so they too are
2744 	 * simple object requests.  Finally, if the target object is
2745 	 * known to already exist, its parent data has already been
2746 	 * copied, so a write to the object can also be handled as a
2747 	 * simple object request.
2748 	 */
2749 	if (!img_request_write_test(img_request) ||
2750 		!img_request_layered_test(img_request) ||
2751 		rbd_dev->parent_overlap <= obj_request->img_offset ||
2752 		((known = obj_request_known_test(obj_request)) &&
2753 			obj_request_exists_test(obj_request))) {
2754 
2755 		struct rbd_device *rbd_dev;
2756 		struct ceph_osd_client *osdc;
2757 
2758 		rbd_dev = obj_request->img_request->rbd_dev;
2759 		osdc = &rbd_dev->rbd_client->client->osdc;
2760 
2761 		return rbd_obj_request_submit(osdc, obj_request);
2762 	}
2763 
2764 	/*
2765 	 * It's a layered write.  The target object might exist but
2766 	 * we may not know that yet.  If we know it doesn't exist,
2767 	 * start by reading the data for the full target object from
2768 	 * the parent so we can use it for a copyup to the target.
2769 	 */
2770 	if (known)
2771 		return rbd_img_obj_parent_read_full(obj_request);
2772 
2773 	/* We don't know whether the target exists.  Go find out. */
2774 
2775 	return rbd_img_obj_exists_submit(obj_request);
2776 }
2777 
2778 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2779 {
2780 	struct rbd_obj_request *obj_request;
2781 	struct rbd_obj_request *next_obj_request;
2782 
2783 	dout("%s: img %p\n", __func__, img_request);
2784 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2785 		int ret;
2786 
2787 		ret = rbd_img_obj_request_submit(obj_request);
2788 		if (ret)
2789 			return ret;
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2796 {
2797 	struct rbd_obj_request *obj_request;
2798 	struct rbd_device *rbd_dev;
2799 	u64 obj_end;
2800 	u64 img_xferred;
2801 	int img_result;
2802 
2803 	rbd_assert(img_request_child_test(img_request));
2804 
2805 	/* First get what we need from the image request and release it */
2806 
2807 	obj_request = img_request->obj_request;
2808 	img_xferred = img_request->xferred;
2809 	img_result = img_request->result;
2810 	rbd_img_request_put(img_request);
2811 
2812 	/*
2813 	 * If the overlap has become 0 (most likely because the
2814 	 * image has been flattened) we need to re-submit the
2815 	 * original request.
2816 	 */
2817 	rbd_assert(obj_request);
2818 	rbd_assert(obj_request->img_request);
2819 	rbd_dev = obj_request->img_request->rbd_dev;
2820 	if (!rbd_dev->parent_overlap) {
2821 		struct ceph_osd_client *osdc;
2822 
2823 		osdc = &rbd_dev->rbd_client->client->osdc;
2824 		img_result = rbd_obj_request_submit(osdc, obj_request);
2825 		if (!img_result)
2826 			return;
2827 	}
2828 
2829 	obj_request->result = img_result;
2830 	if (obj_request->result)
2831 		goto out;
2832 
2833 	/*
2834 	 * We need to zero anything beyond the parent overlap
2835 	 * boundary.  Since rbd_img_obj_request_read_callback()
2836 	 * will zero anything beyond the end of a short read, an
2837 	 * easy way to do this is to pretend the data from the
2838 	 * parent came up short--ending at the overlap boundary.
2839 	 */
2840 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2841 	obj_end = obj_request->img_offset + obj_request->length;
2842 	if (obj_end > rbd_dev->parent_overlap) {
2843 		u64 xferred = 0;
2844 
2845 		if (obj_request->img_offset < rbd_dev->parent_overlap)
2846 			xferred = rbd_dev->parent_overlap -
2847 					obj_request->img_offset;
2848 
2849 		obj_request->xferred = min(img_xferred, xferred);
2850 	} else {
2851 		obj_request->xferred = img_xferred;
2852 	}
2853 out:
2854 	rbd_img_obj_request_read_callback(obj_request);
2855 	rbd_obj_request_complete(obj_request);
2856 }
2857 
2858 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2859 {
2860 	struct rbd_img_request *img_request;
2861 	int result;
2862 
2863 	rbd_assert(obj_request_img_data_test(obj_request));
2864 	rbd_assert(obj_request->img_request != NULL);
2865 	rbd_assert(obj_request->result == (s32) -ENOENT);
2866 	rbd_assert(obj_request_type_valid(obj_request->type));
2867 
2868 	/* rbd_read_finish(obj_request, obj_request->length); */
2869 	img_request = rbd_parent_request_create(obj_request,
2870 						obj_request->img_offset,
2871 						obj_request->length);
2872 	result = -ENOMEM;
2873 	if (!img_request)
2874 		goto out_err;
2875 
2876 	if (obj_request->type == OBJ_REQUEST_BIO)
2877 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2878 						obj_request->bio_list);
2879 	else
2880 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2881 						obj_request->pages);
2882 	if (result)
2883 		goto out_err;
2884 
2885 	img_request->callback = rbd_img_parent_read_callback;
2886 	result = rbd_img_request_submit(img_request);
2887 	if (result)
2888 		goto out_err;
2889 
2890 	return;
2891 out_err:
2892 	if (img_request)
2893 		rbd_img_request_put(img_request);
2894 	obj_request->result = result;
2895 	obj_request->xferred = 0;
2896 	obj_request_done_set(obj_request);
2897 }
2898 
2899 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2900 {
2901 	struct rbd_obj_request *obj_request;
2902 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2903 	int ret;
2904 
2905 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2906 							OBJ_REQUEST_NODATA);
2907 	if (!obj_request)
2908 		return -ENOMEM;
2909 
2910 	ret = -ENOMEM;
2911 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2912 						  obj_request);
2913 	if (!obj_request->osd_req)
2914 		goto out;
2915 
2916 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2917 					notify_id, 0, 0);
2918 	rbd_osd_req_format_read(obj_request);
2919 
2920 	ret = rbd_obj_request_submit(osdc, obj_request);
2921 	if (ret)
2922 		goto out;
2923 	ret = rbd_obj_request_wait(obj_request);
2924 out:
2925 	rbd_obj_request_put(obj_request);
2926 
2927 	return ret;
2928 }
2929 
2930 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2931 {
2932 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
2933 	int ret;
2934 
2935 	if (!rbd_dev)
2936 		return;
2937 
2938 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2939 		rbd_dev->header_name, (unsigned long long)notify_id,
2940 		(unsigned int)opcode);
2941 	ret = rbd_dev_refresh(rbd_dev);
2942 	if (ret)
2943 		rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2944 
2945 	rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2946 }
2947 
2948 /*
2949  * Initiate a watch request, synchronously.
2950  */
2951 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2952 {
2953 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2954 	struct rbd_obj_request *obj_request;
2955 	int ret;
2956 
2957 	rbd_assert(!rbd_dev->watch_event);
2958 	rbd_assert(!rbd_dev->watch_request);
2959 
2960 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2961 				     &rbd_dev->watch_event);
2962 	if (ret < 0)
2963 		return ret;
2964 
2965 	rbd_assert(rbd_dev->watch_event);
2966 
2967 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2968 					     OBJ_REQUEST_NODATA);
2969 	if (!obj_request) {
2970 		ret = -ENOMEM;
2971 		goto out_cancel;
2972 	}
2973 
2974 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2975 						  obj_request);
2976 	if (!obj_request->osd_req) {
2977 		ret = -ENOMEM;
2978 		goto out_put;
2979 	}
2980 
2981 	ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2982 
2983 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2984 			      rbd_dev->watch_event->cookie, 0, 1);
2985 	rbd_osd_req_format_write(obj_request);
2986 
2987 	ret = rbd_obj_request_submit(osdc, obj_request);
2988 	if (ret)
2989 		goto out_linger;
2990 
2991 	ret = rbd_obj_request_wait(obj_request);
2992 	if (ret)
2993 		goto out_linger;
2994 
2995 	ret = obj_request->result;
2996 	if (ret)
2997 		goto out_linger;
2998 
2999 	/*
3000 	 * A watch request is set to linger, so the underlying osd
3001 	 * request won't go away until we unregister it.  We retain
3002 	 * a pointer to the object request during that time (in
3003 	 * rbd_dev->watch_request), so we'll keep a reference to
3004 	 * it.  We'll drop that reference (below) after we've
3005 	 * unregistered it.
3006 	 */
3007 	rbd_dev->watch_request = obj_request;
3008 
3009 	return 0;
3010 
3011 out_linger:
3012 	ceph_osdc_unregister_linger_request(osdc, obj_request->osd_req);
3013 out_put:
3014 	rbd_obj_request_put(obj_request);
3015 out_cancel:
3016 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3017 	rbd_dev->watch_event = NULL;
3018 
3019 	return ret;
3020 }
3021 
3022 /*
3023  * Tear down a watch request, synchronously.
3024  */
3025 static int __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3026 {
3027 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3028 	struct rbd_obj_request *obj_request;
3029 	int ret;
3030 
3031 	rbd_assert(rbd_dev->watch_event);
3032 	rbd_assert(rbd_dev->watch_request);
3033 
3034 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3035 					     OBJ_REQUEST_NODATA);
3036 	if (!obj_request) {
3037 		ret = -ENOMEM;
3038 		goto out_cancel;
3039 	}
3040 
3041 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
3042 						  obj_request);
3043 	if (!obj_request->osd_req) {
3044 		ret = -ENOMEM;
3045 		goto out_put;
3046 	}
3047 
3048 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3049 			      rbd_dev->watch_event->cookie, 0, 0);
3050 	rbd_osd_req_format_write(obj_request);
3051 
3052 	ret = rbd_obj_request_submit(osdc, obj_request);
3053 	if (ret)
3054 		goto out_put;
3055 
3056 	ret = rbd_obj_request_wait(obj_request);
3057 	if (ret)
3058 		goto out_put;
3059 
3060 	ret = obj_request->result;
3061 	if (ret)
3062 		goto out_put;
3063 
3064 	/* We have successfully torn down the watch request */
3065 
3066 	ceph_osdc_unregister_linger_request(osdc,
3067 					    rbd_dev->watch_request->osd_req);
3068 	rbd_obj_request_put(rbd_dev->watch_request);
3069 	rbd_dev->watch_request = NULL;
3070 
3071 out_put:
3072 	rbd_obj_request_put(obj_request);
3073 out_cancel:
3074 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3075 	rbd_dev->watch_event = NULL;
3076 
3077 	return ret;
3078 }
3079 
3080 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3081 {
3082 	int ret;
3083 
3084 	ret = __rbd_dev_header_unwatch_sync(rbd_dev);
3085 	if (ret) {
3086 		rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
3087 			 ret);
3088 	}
3089 }
3090 
3091 /*
3092  * Synchronous osd object method call.  Returns the number of bytes
3093  * returned in the outbound buffer, or a negative error code.
3094  */
3095 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3096 			     const char *object_name,
3097 			     const char *class_name,
3098 			     const char *method_name,
3099 			     const void *outbound,
3100 			     size_t outbound_size,
3101 			     void *inbound,
3102 			     size_t inbound_size)
3103 {
3104 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3105 	struct rbd_obj_request *obj_request;
3106 	struct page **pages;
3107 	u32 page_count;
3108 	int ret;
3109 
3110 	/*
3111 	 * Method calls are ultimately read operations.  The result
3112 	 * should placed into the inbound buffer provided.  They
3113 	 * also supply outbound data--parameters for the object
3114 	 * method.  Currently if this is present it will be a
3115 	 * snapshot id.
3116 	 */
3117 	page_count = (u32)calc_pages_for(0, inbound_size);
3118 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3119 	if (IS_ERR(pages))
3120 		return PTR_ERR(pages);
3121 
3122 	ret = -ENOMEM;
3123 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3124 							OBJ_REQUEST_PAGES);
3125 	if (!obj_request)
3126 		goto out;
3127 
3128 	obj_request->pages = pages;
3129 	obj_request->page_count = page_count;
3130 
3131 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3132 						  obj_request);
3133 	if (!obj_request->osd_req)
3134 		goto out;
3135 
3136 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3137 					class_name, method_name);
3138 	if (outbound_size) {
3139 		struct ceph_pagelist *pagelist;
3140 
3141 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3142 		if (!pagelist)
3143 			goto out;
3144 
3145 		ceph_pagelist_init(pagelist);
3146 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3147 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3148 						pagelist);
3149 	}
3150 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3151 					obj_request->pages, inbound_size,
3152 					0, false, false);
3153 	rbd_osd_req_format_read(obj_request);
3154 
3155 	ret = rbd_obj_request_submit(osdc, obj_request);
3156 	if (ret)
3157 		goto out;
3158 	ret = rbd_obj_request_wait(obj_request);
3159 	if (ret)
3160 		goto out;
3161 
3162 	ret = obj_request->result;
3163 	if (ret < 0)
3164 		goto out;
3165 
3166 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3167 	ret = (int)obj_request->xferred;
3168 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3169 out:
3170 	if (obj_request)
3171 		rbd_obj_request_put(obj_request);
3172 	else
3173 		ceph_release_page_vector(pages, page_count);
3174 
3175 	return ret;
3176 }
3177 
3178 static void rbd_request_fn(struct request_queue *q)
3179 		__releases(q->queue_lock) __acquires(q->queue_lock)
3180 {
3181 	struct rbd_device *rbd_dev = q->queuedata;
3182 	struct request *rq;
3183 	int result;
3184 
3185 	while ((rq = blk_fetch_request(q))) {
3186 		bool write_request = rq_data_dir(rq) == WRITE;
3187 		struct rbd_img_request *img_request;
3188 		u64 offset;
3189 		u64 length;
3190 
3191 		/* Ignore any non-FS requests that filter through. */
3192 
3193 		if (rq->cmd_type != REQ_TYPE_FS) {
3194 			dout("%s: non-fs request type %d\n", __func__,
3195 				(int) rq->cmd_type);
3196 			__blk_end_request_all(rq, 0);
3197 			continue;
3198 		}
3199 
3200 		/* Ignore/skip any zero-length requests */
3201 
3202 		offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3203 		length = (u64) blk_rq_bytes(rq);
3204 
3205 		if (!length) {
3206 			dout("%s: zero-length request\n", __func__);
3207 			__blk_end_request_all(rq, 0);
3208 			continue;
3209 		}
3210 
3211 		spin_unlock_irq(q->queue_lock);
3212 
3213 		/* Disallow writes to a read-only device */
3214 
3215 		if (write_request) {
3216 			result = -EROFS;
3217 			if (rbd_dev->mapping.read_only)
3218 				goto end_request;
3219 			rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3220 		}
3221 
3222 		/*
3223 		 * Quit early if the mapped snapshot no longer
3224 		 * exists.  It's still possible the snapshot will
3225 		 * have disappeared by the time our request arrives
3226 		 * at the osd, but there's no sense in sending it if
3227 		 * we already know.
3228 		 */
3229 		if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3230 			dout("request for non-existent snapshot");
3231 			rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3232 			result = -ENXIO;
3233 			goto end_request;
3234 		}
3235 
3236 		result = -EINVAL;
3237 		if (offset && length > U64_MAX - offset + 1) {
3238 			rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3239 				offset, length);
3240 			goto end_request;	/* Shouldn't happen */
3241 		}
3242 
3243 		result = -EIO;
3244 		if (offset + length > rbd_dev->mapping.size) {
3245 			rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3246 				offset, length, rbd_dev->mapping.size);
3247 			goto end_request;
3248 		}
3249 
3250 		result = -ENOMEM;
3251 		img_request = rbd_img_request_create(rbd_dev, offset, length,
3252 							write_request);
3253 		if (!img_request)
3254 			goto end_request;
3255 
3256 		img_request->rq = rq;
3257 
3258 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3259 						rq->bio);
3260 		if (!result)
3261 			result = rbd_img_request_submit(img_request);
3262 		if (result)
3263 			rbd_img_request_put(img_request);
3264 end_request:
3265 		spin_lock_irq(q->queue_lock);
3266 		if (result < 0) {
3267 			rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3268 				write_request ? "write" : "read",
3269 				length, offset, result);
3270 
3271 			__blk_end_request_all(rq, result);
3272 		}
3273 	}
3274 }
3275 
3276 /*
3277  * a queue callback. Makes sure that we don't create a bio that spans across
3278  * multiple osd objects. One exception would be with a single page bios,
3279  * which we handle later at bio_chain_clone_range()
3280  */
3281 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3282 			  struct bio_vec *bvec)
3283 {
3284 	struct rbd_device *rbd_dev = q->queuedata;
3285 	sector_t sector_offset;
3286 	sector_t sectors_per_obj;
3287 	sector_t obj_sector_offset;
3288 	int ret;
3289 
3290 	/*
3291 	 * Find how far into its rbd object the partition-relative
3292 	 * bio start sector is to offset relative to the enclosing
3293 	 * device.
3294 	 */
3295 	sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3296 	sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3297 	obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3298 
3299 	/*
3300 	 * Compute the number of bytes from that offset to the end
3301 	 * of the object.  Account for what's already used by the bio.
3302 	 */
3303 	ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3304 	if (ret > bmd->bi_size)
3305 		ret -= bmd->bi_size;
3306 	else
3307 		ret = 0;
3308 
3309 	/*
3310 	 * Don't send back more than was asked for.  And if the bio
3311 	 * was empty, let the whole thing through because:  "Note
3312 	 * that a block device *must* allow a single page to be
3313 	 * added to an empty bio."
3314 	 */
3315 	rbd_assert(bvec->bv_len <= PAGE_SIZE);
3316 	if (ret > (int) bvec->bv_len || !bmd->bi_size)
3317 		ret = (int) bvec->bv_len;
3318 
3319 	return ret;
3320 }
3321 
3322 static void rbd_free_disk(struct rbd_device *rbd_dev)
3323 {
3324 	struct gendisk *disk = rbd_dev->disk;
3325 
3326 	if (!disk)
3327 		return;
3328 
3329 	rbd_dev->disk = NULL;
3330 	if (disk->flags & GENHD_FL_UP) {
3331 		del_gendisk(disk);
3332 		if (disk->queue)
3333 			blk_cleanup_queue(disk->queue);
3334 	}
3335 	put_disk(disk);
3336 }
3337 
3338 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3339 				const char *object_name,
3340 				u64 offset, u64 length, void *buf)
3341 
3342 {
3343 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3344 	struct rbd_obj_request *obj_request;
3345 	struct page **pages = NULL;
3346 	u32 page_count;
3347 	size_t size;
3348 	int ret;
3349 
3350 	page_count = (u32) calc_pages_for(offset, length);
3351 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3352 	if (IS_ERR(pages))
3353 		ret = PTR_ERR(pages);
3354 
3355 	ret = -ENOMEM;
3356 	obj_request = rbd_obj_request_create(object_name, offset, length,
3357 							OBJ_REQUEST_PAGES);
3358 	if (!obj_request)
3359 		goto out;
3360 
3361 	obj_request->pages = pages;
3362 	obj_request->page_count = page_count;
3363 
3364 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3365 						  obj_request);
3366 	if (!obj_request->osd_req)
3367 		goto out;
3368 
3369 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3370 					offset, length, 0, 0);
3371 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3372 					obj_request->pages,
3373 					obj_request->length,
3374 					obj_request->offset & ~PAGE_MASK,
3375 					false, false);
3376 	rbd_osd_req_format_read(obj_request);
3377 
3378 	ret = rbd_obj_request_submit(osdc, obj_request);
3379 	if (ret)
3380 		goto out;
3381 	ret = rbd_obj_request_wait(obj_request);
3382 	if (ret)
3383 		goto out;
3384 
3385 	ret = obj_request->result;
3386 	if (ret < 0)
3387 		goto out;
3388 
3389 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3390 	size = (size_t) obj_request->xferred;
3391 	ceph_copy_from_page_vector(pages, buf, 0, size);
3392 	rbd_assert(size <= (size_t)INT_MAX);
3393 	ret = (int)size;
3394 out:
3395 	if (obj_request)
3396 		rbd_obj_request_put(obj_request);
3397 	else
3398 		ceph_release_page_vector(pages, page_count);
3399 
3400 	return ret;
3401 }
3402 
3403 /*
3404  * Read the complete header for the given rbd device.  On successful
3405  * return, the rbd_dev->header field will contain up-to-date
3406  * information about the image.
3407  */
3408 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3409 {
3410 	struct rbd_image_header_ondisk *ondisk = NULL;
3411 	u32 snap_count = 0;
3412 	u64 names_size = 0;
3413 	u32 want_count;
3414 	int ret;
3415 
3416 	/*
3417 	 * The complete header will include an array of its 64-bit
3418 	 * snapshot ids, followed by the names of those snapshots as
3419 	 * a contiguous block of NUL-terminated strings.  Note that
3420 	 * the number of snapshots could change by the time we read
3421 	 * it in, in which case we re-read it.
3422 	 */
3423 	do {
3424 		size_t size;
3425 
3426 		kfree(ondisk);
3427 
3428 		size = sizeof (*ondisk);
3429 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3430 		size += names_size;
3431 		ondisk = kmalloc(size, GFP_KERNEL);
3432 		if (!ondisk)
3433 			return -ENOMEM;
3434 
3435 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3436 				       0, size, ondisk);
3437 		if (ret < 0)
3438 			goto out;
3439 		if ((size_t)ret < size) {
3440 			ret = -ENXIO;
3441 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3442 				size, ret);
3443 			goto out;
3444 		}
3445 		if (!rbd_dev_ondisk_valid(ondisk)) {
3446 			ret = -ENXIO;
3447 			rbd_warn(rbd_dev, "invalid header");
3448 			goto out;
3449 		}
3450 
3451 		names_size = le64_to_cpu(ondisk->snap_names_len);
3452 		want_count = snap_count;
3453 		snap_count = le32_to_cpu(ondisk->snap_count);
3454 	} while (snap_count != want_count);
3455 
3456 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3457 out:
3458 	kfree(ondisk);
3459 
3460 	return ret;
3461 }
3462 
3463 /*
3464  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3465  * has disappeared from the (just updated) snapshot context.
3466  */
3467 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3468 {
3469 	u64 snap_id;
3470 
3471 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3472 		return;
3473 
3474 	snap_id = rbd_dev->spec->snap_id;
3475 	if (snap_id == CEPH_NOSNAP)
3476 		return;
3477 
3478 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3479 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3480 }
3481 
3482 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3483 {
3484 	sector_t size;
3485 	bool removing;
3486 
3487 	/*
3488 	 * Don't hold the lock while doing disk operations,
3489 	 * or lock ordering will conflict with the bdev mutex via:
3490 	 * rbd_add() -> blkdev_get() -> rbd_open()
3491 	 */
3492 	spin_lock_irq(&rbd_dev->lock);
3493 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3494 	spin_unlock_irq(&rbd_dev->lock);
3495 	/*
3496 	 * If the device is being removed, rbd_dev->disk has
3497 	 * been destroyed, so don't try to update its size
3498 	 */
3499 	if (!removing) {
3500 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3501 		dout("setting size to %llu sectors", (unsigned long long)size);
3502 		set_capacity(rbd_dev->disk, size);
3503 		revalidate_disk(rbd_dev->disk);
3504 	}
3505 }
3506 
3507 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3508 {
3509 	u64 mapping_size;
3510 	int ret;
3511 
3512 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3513 	down_write(&rbd_dev->header_rwsem);
3514 	mapping_size = rbd_dev->mapping.size;
3515 	if (rbd_dev->image_format == 1)
3516 		ret = rbd_dev_v1_header_info(rbd_dev);
3517 	else
3518 		ret = rbd_dev_v2_header_info(rbd_dev);
3519 
3520 	/* If it's a mapped snapshot, validate its EXISTS flag */
3521 
3522 	rbd_exists_validate(rbd_dev);
3523 	up_write(&rbd_dev->header_rwsem);
3524 
3525 	if (mapping_size != rbd_dev->mapping.size) {
3526 		rbd_dev_update_size(rbd_dev);
3527 	}
3528 
3529 	return ret;
3530 }
3531 
3532 static int rbd_init_disk(struct rbd_device *rbd_dev)
3533 {
3534 	struct gendisk *disk;
3535 	struct request_queue *q;
3536 	u64 segment_size;
3537 
3538 	/* create gendisk info */
3539 	disk = alloc_disk(single_major ?
3540 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3541 			  RBD_MINORS_PER_MAJOR);
3542 	if (!disk)
3543 		return -ENOMEM;
3544 
3545 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3546 		 rbd_dev->dev_id);
3547 	disk->major = rbd_dev->major;
3548 	disk->first_minor = rbd_dev->minor;
3549 	if (single_major)
3550 		disk->flags |= GENHD_FL_EXT_DEVT;
3551 	disk->fops = &rbd_bd_ops;
3552 	disk->private_data = rbd_dev;
3553 
3554 	q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3555 	if (!q)
3556 		goto out_disk;
3557 
3558 	/* We use the default size, but let's be explicit about it. */
3559 	blk_queue_physical_block_size(q, SECTOR_SIZE);
3560 
3561 	/* set io sizes to object size */
3562 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3563 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3564 	blk_queue_max_segment_size(q, segment_size);
3565 	blk_queue_io_min(q, segment_size);
3566 	blk_queue_io_opt(q, segment_size);
3567 
3568 	blk_queue_merge_bvec(q, rbd_merge_bvec);
3569 	disk->queue = q;
3570 
3571 	q->queuedata = rbd_dev;
3572 
3573 	rbd_dev->disk = disk;
3574 
3575 	return 0;
3576 out_disk:
3577 	put_disk(disk);
3578 
3579 	return -ENOMEM;
3580 }
3581 
3582 /*
3583   sysfs
3584 */
3585 
3586 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3587 {
3588 	return container_of(dev, struct rbd_device, dev);
3589 }
3590 
3591 static ssize_t rbd_size_show(struct device *dev,
3592 			     struct device_attribute *attr, char *buf)
3593 {
3594 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3595 
3596 	return sprintf(buf, "%llu\n",
3597 		(unsigned long long)rbd_dev->mapping.size);
3598 }
3599 
3600 /*
3601  * Note this shows the features for whatever's mapped, which is not
3602  * necessarily the base image.
3603  */
3604 static ssize_t rbd_features_show(struct device *dev,
3605 			     struct device_attribute *attr, char *buf)
3606 {
3607 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3608 
3609 	return sprintf(buf, "0x%016llx\n",
3610 			(unsigned long long)rbd_dev->mapping.features);
3611 }
3612 
3613 static ssize_t rbd_major_show(struct device *dev,
3614 			      struct device_attribute *attr, char *buf)
3615 {
3616 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3617 
3618 	if (rbd_dev->major)
3619 		return sprintf(buf, "%d\n", rbd_dev->major);
3620 
3621 	return sprintf(buf, "(none)\n");
3622 }
3623 
3624 static ssize_t rbd_minor_show(struct device *dev,
3625 			      struct device_attribute *attr, char *buf)
3626 {
3627 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3628 
3629 	return sprintf(buf, "%d\n", rbd_dev->minor);
3630 }
3631 
3632 static ssize_t rbd_client_id_show(struct device *dev,
3633 				  struct device_attribute *attr, char *buf)
3634 {
3635 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3636 
3637 	return sprintf(buf, "client%lld\n",
3638 			ceph_client_id(rbd_dev->rbd_client->client));
3639 }
3640 
3641 static ssize_t rbd_pool_show(struct device *dev,
3642 			     struct device_attribute *attr, char *buf)
3643 {
3644 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3645 
3646 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3647 }
3648 
3649 static ssize_t rbd_pool_id_show(struct device *dev,
3650 			     struct device_attribute *attr, char *buf)
3651 {
3652 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3653 
3654 	return sprintf(buf, "%llu\n",
3655 			(unsigned long long) rbd_dev->spec->pool_id);
3656 }
3657 
3658 static ssize_t rbd_name_show(struct device *dev,
3659 			     struct device_attribute *attr, char *buf)
3660 {
3661 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3662 
3663 	if (rbd_dev->spec->image_name)
3664 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3665 
3666 	return sprintf(buf, "(unknown)\n");
3667 }
3668 
3669 static ssize_t rbd_image_id_show(struct device *dev,
3670 			     struct device_attribute *attr, char *buf)
3671 {
3672 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3673 
3674 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3675 }
3676 
3677 /*
3678  * Shows the name of the currently-mapped snapshot (or
3679  * RBD_SNAP_HEAD_NAME for the base image).
3680  */
3681 static ssize_t rbd_snap_show(struct device *dev,
3682 			     struct device_attribute *attr,
3683 			     char *buf)
3684 {
3685 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3686 
3687 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3688 }
3689 
3690 /*
3691  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3692  * for the parent image.  If there is no parent, simply shows
3693  * "(no parent image)".
3694  */
3695 static ssize_t rbd_parent_show(struct device *dev,
3696 			     struct device_attribute *attr,
3697 			     char *buf)
3698 {
3699 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3700 	struct rbd_spec *spec = rbd_dev->parent_spec;
3701 	int count;
3702 	char *bufp = buf;
3703 
3704 	if (!spec)
3705 		return sprintf(buf, "(no parent image)\n");
3706 
3707 	count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3708 			(unsigned long long) spec->pool_id, spec->pool_name);
3709 	if (count < 0)
3710 		return count;
3711 	bufp += count;
3712 
3713 	count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3714 			spec->image_name ? spec->image_name : "(unknown)");
3715 	if (count < 0)
3716 		return count;
3717 	bufp += count;
3718 
3719 	count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3720 			(unsigned long long) spec->snap_id, spec->snap_name);
3721 	if (count < 0)
3722 		return count;
3723 	bufp += count;
3724 
3725 	count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3726 	if (count < 0)
3727 		return count;
3728 	bufp += count;
3729 
3730 	return (ssize_t) (bufp - buf);
3731 }
3732 
3733 static ssize_t rbd_image_refresh(struct device *dev,
3734 				 struct device_attribute *attr,
3735 				 const char *buf,
3736 				 size_t size)
3737 {
3738 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3739 	int ret;
3740 
3741 	ret = rbd_dev_refresh(rbd_dev);
3742 	if (ret)
3743 		rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3744 
3745 	return ret < 0 ? ret : size;
3746 }
3747 
3748 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3749 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3750 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3751 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3752 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3753 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3754 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3755 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3756 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3757 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3758 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3759 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3760 
3761 static struct attribute *rbd_attrs[] = {
3762 	&dev_attr_size.attr,
3763 	&dev_attr_features.attr,
3764 	&dev_attr_major.attr,
3765 	&dev_attr_minor.attr,
3766 	&dev_attr_client_id.attr,
3767 	&dev_attr_pool.attr,
3768 	&dev_attr_pool_id.attr,
3769 	&dev_attr_name.attr,
3770 	&dev_attr_image_id.attr,
3771 	&dev_attr_current_snap.attr,
3772 	&dev_attr_parent.attr,
3773 	&dev_attr_refresh.attr,
3774 	NULL
3775 };
3776 
3777 static struct attribute_group rbd_attr_group = {
3778 	.attrs = rbd_attrs,
3779 };
3780 
3781 static const struct attribute_group *rbd_attr_groups[] = {
3782 	&rbd_attr_group,
3783 	NULL
3784 };
3785 
3786 static void rbd_sysfs_dev_release(struct device *dev)
3787 {
3788 }
3789 
3790 static struct device_type rbd_device_type = {
3791 	.name		= "rbd",
3792 	.groups		= rbd_attr_groups,
3793 	.release	= rbd_sysfs_dev_release,
3794 };
3795 
3796 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3797 {
3798 	kref_get(&spec->kref);
3799 
3800 	return spec;
3801 }
3802 
3803 static void rbd_spec_free(struct kref *kref);
3804 static void rbd_spec_put(struct rbd_spec *spec)
3805 {
3806 	if (spec)
3807 		kref_put(&spec->kref, rbd_spec_free);
3808 }
3809 
3810 static struct rbd_spec *rbd_spec_alloc(void)
3811 {
3812 	struct rbd_spec *spec;
3813 
3814 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3815 	if (!spec)
3816 		return NULL;
3817 	kref_init(&spec->kref);
3818 
3819 	return spec;
3820 }
3821 
3822 static void rbd_spec_free(struct kref *kref)
3823 {
3824 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3825 
3826 	kfree(spec->pool_name);
3827 	kfree(spec->image_id);
3828 	kfree(spec->image_name);
3829 	kfree(spec->snap_name);
3830 	kfree(spec);
3831 }
3832 
3833 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3834 				struct rbd_spec *spec)
3835 {
3836 	struct rbd_device *rbd_dev;
3837 
3838 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3839 	if (!rbd_dev)
3840 		return NULL;
3841 
3842 	spin_lock_init(&rbd_dev->lock);
3843 	rbd_dev->flags = 0;
3844 	atomic_set(&rbd_dev->parent_ref, 0);
3845 	INIT_LIST_HEAD(&rbd_dev->node);
3846 	init_rwsem(&rbd_dev->header_rwsem);
3847 
3848 	rbd_dev->spec = spec;
3849 	rbd_dev->rbd_client = rbdc;
3850 
3851 	/* Initialize the layout used for all rbd requests */
3852 
3853 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3854 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3855 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3856 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3857 
3858 	return rbd_dev;
3859 }
3860 
3861 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3862 {
3863 	rbd_put_client(rbd_dev->rbd_client);
3864 	rbd_spec_put(rbd_dev->spec);
3865 	kfree(rbd_dev);
3866 }
3867 
3868 /*
3869  * Get the size and object order for an image snapshot, or if
3870  * snap_id is CEPH_NOSNAP, gets this information for the base
3871  * image.
3872  */
3873 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3874 				u8 *order, u64 *snap_size)
3875 {
3876 	__le64 snapid = cpu_to_le64(snap_id);
3877 	int ret;
3878 	struct {
3879 		u8 order;
3880 		__le64 size;
3881 	} __attribute__ ((packed)) size_buf = { 0 };
3882 
3883 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3884 				"rbd", "get_size",
3885 				&snapid, sizeof (snapid),
3886 				&size_buf, sizeof (size_buf));
3887 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3888 	if (ret < 0)
3889 		return ret;
3890 	if (ret < sizeof (size_buf))
3891 		return -ERANGE;
3892 
3893 	if (order) {
3894 		*order = size_buf.order;
3895 		dout("  order %u", (unsigned int)*order);
3896 	}
3897 	*snap_size = le64_to_cpu(size_buf.size);
3898 
3899 	dout("  snap_id 0x%016llx snap_size = %llu\n",
3900 		(unsigned long long)snap_id,
3901 		(unsigned long long)*snap_size);
3902 
3903 	return 0;
3904 }
3905 
3906 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3907 {
3908 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3909 					&rbd_dev->header.obj_order,
3910 					&rbd_dev->header.image_size);
3911 }
3912 
3913 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3914 {
3915 	void *reply_buf;
3916 	int ret;
3917 	void *p;
3918 
3919 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3920 	if (!reply_buf)
3921 		return -ENOMEM;
3922 
3923 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3924 				"rbd", "get_object_prefix", NULL, 0,
3925 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3926 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3927 	if (ret < 0)
3928 		goto out;
3929 
3930 	p = reply_buf;
3931 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3932 						p + ret, NULL, GFP_NOIO);
3933 	ret = 0;
3934 
3935 	if (IS_ERR(rbd_dev->header.object_prefix)) {
3936 		ret = PTR_ERR(rbd_dev->header.object_prefix);
3937 		rbd_dev->header.object_prefix = NULL;
3938 	} else {
3939 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3940 	}
3941 out:
3942 	kfree(reply_buf);
3943 
3944 	return ret;
3945 }
3946 
3947 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3948 		u64 *snap_features)
3949 {
3950 	__le64 snapid = cpu_to_le64(snap_id);
3951 	struct {
3952 		__le64 features;
3953 		__le64 incompat;
3954 	} __attribute__ ((packed)) features_buf = { 0 };
3955 	u64 incompat;
3956 	int ret;
3957 
3958 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3959 				"rbd", "get_features",
3960 				&snapid, sizeof (snapid),
3961 				&features_buf, sizeof (features_buf));
3962 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3963 	if (ret < 0)
3964 		return ret;
3965 	if (ret < sizeof (features_buf))
3966 		return -ERANGE;
3967 
3968 	incompat = le64_to_cpu(features_buf.incompat);
3969 	if (incompat & ~RBD_FEATURES_SUPPORTED)
3970 		return -ENXIO;
3971 
3972 	*snap_features = le64_to_cpu(features_buf.features);
3973 
3974 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3975 		(unsigned long long)snap_id,
3976 		(unsigned long long)*snap_features,
3977 		(unsigned long long)le64_to_cpu(features_buf.incompat));
3978 
3979 	return 0;
3980 }
3981 
3982 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3983 {
3984 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3985 						&rbd_dev->header.features);
3986 }
3987 
3988 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3989 {
3990 	struct rbd_spec *parent_spec;
3991 	size_t size;
3992 	void *reply_buf = NULL;
3993 	__le64 snapid;
3994 	void *p;
3995 	void *end;
3996 	u64 pool_id;
3997 	char *image_id;
3998 	u64 snap_id;
3999 	u64 overlap;
4000 	int ret;
4001 
4002 	parent_spec = rbd_spec_alloc();
4003 	if (!parent_spec)
4004 		return -ENOMEM;
4005 
4006 	size = sizeof (__le64) +				/* pool_id */
4007 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4008 		sizeof (__le64) +				/* snap_id */
4009 		sizeof (__le64);				/* overlap */
4010 	reply_buf = kmalloc(size, GFP_KERNEL);
4011 	if (!reply_buf) {
4012 		ret = -ENOMEM;
4013 		goto out_err;
4014 	}
4015 
4016 	snapid = cpu_to_le64(CEPH_NOSNAP);
4017 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4018 				"rbd", "get_parent",
4019 				&snapid, sizeof (snapid),
4020 				reply_buf, size);
4021 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4022 	if (ret < 0)
4023 		goto out_err;
4024 
4025 	p = reply_buf;
4026 	end = reply_buf + ret;
4027 	ret = -ERANGE;
4028 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4029 	if (pool_id == CEPH_NOPOOL) {
4030 		/*
4031 		 * Either the parent never existed, or we have
4032 		 * record of it but the image got flattened so it no
4033 		 * longer has a parent.  When the parent of a
4034 		 * layered image disappears we immediately set the
4035 		 * overlap to 0.  The effect of this is that all new
4036 		 * requests will be treated as if the image had no
4037 		 * parent.
4038 		 */
4039 		if (rbd_dev->parent_overlap) {
4040 			rbd_dev->parent_overlap = 0;
4041 			smp_mb();
4042 			rbd_dev_parent_put(rbd_dev);
4043 			pr_info("%s: clone image has been flattened\n",
4044 				rbd_dev->disk->disk_name);
4045 		}
4046 
4047 		goto out;	/* No parent?  No problem. */
4048 	}
4049 
4050 	/* The ceph file layout needs to fit pool id in 32 bits */
4051 
4052 	ret = -EIO;
4053 	if (pool_id > (u64)U32_MAX) {
4054 		rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
4055 			(unsigned long long)pool_id, U32_MAX);
4056 		goto out_err;
4057 	}
4058 
4059 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4060 	if (IS_ERR(image_id)) {
4061 		ret = PTR_ERR(image_id);
4062 		goto out_err;
4063 	}
4064 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4065 	ceph_decode_64_safe(&p, end, overlap, out_err);
4066 
4067 	/*
4068 	 * The parent won't change (except when the clone is
4069 	 * flattened, already handled that).  So we only need to
4070 	 * record the parent spec we have not already done so.
4071 	 */
4072 	if (!rbd_dev->parent_spec) {
4073 		parent_spec->pool_id = pool_id;
4074 		parent_spec->image_id = image_id;
4075 		parent_spec->snap_id = snap_id;
4076 		rbd_dev->parent_spec = parent_spec;
4077 		parent_spec = NULL;	/* rbd_dev now owns this */
4078 	}
4079 
4080 	/*
4081 	 * We always update the parent overlap.  If it's zero we
4082 	 * treat it specially.
4083 	 */
4084 	rbd_dev->parent_overlap = overlap;
4085 	smp_mb();
4086 	if (!overlap) {
4087 
4088 		/* A null parent_spec indicates it's the initial probe */
4089 
4090 		if (parent_spec) {
4091 			/*
4092 			 * The overlap has become zero, so the clone
4093 			 * must have been resized down to 0 at some
4094 			 * point.  Treat this the same as a flatten.
4095 			 */
4096 			rbd_dev_parent_put(rbd_dev);
4097 			pr_info("%s: clone image now standalone\n",
4098 				rbd_dev->disk->disk_name);
4099 		} else {
4100 			/*
4101 			 * For the initial probe, if we find the
4102 			 * overlap is zero we just pretend there was
4103 			 * no parent image.
4104 			 */
4105 			rbd_warn(rbd_dev, "ignoring parent of "
4106 						"clone with overlap 0\n");
4107 		}
4108 	}
4109 out:
4110 	ret = 0;
4111 out_err:
4112 	kfree(reply_buf);
4113 	rbd_spec_put(parent_spec);
4114 
4115 	return ret;
4116 }
4117 
4118 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4119 {
4120 	struct {
4121 		__le64 stripe_unit;
4122 		__le64 stripe_count;
4123 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4124 	size_t size = sizeof (striping_info_buf);
4125 	void *p;
4126 	u64 obj_size;
4127 	u64 stripe_unit;
4128 	u64 stripe_count;
4129 	int ret;
4130 
4131 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4132 				"rbd", "get_stripe_unit_count", NULL, 0,
4133 				(char *)&striping_info_buf, size);
4134 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4135 	if (ret < 0)
4136 		return ret;
4137 	if (ret < size)
4138 		return -ERANGE;
4139 
4140 	/*
4141 	 * We don't actually support the "fancy striping" feature
4142 	 * (STRIPINGV2) yet, but if the striping sizes are the
4143 	 * defaults the behavior is the same as before.  So find
4144 	 * out, and only fail if the image has non-default values.
4145 	 */
4146 	ret = -EINVAL;
4147 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4148 	p = &striping_info_buf;
4149 	stripe_unit = ceph_decode_64(&p);
4150 	if (stripe_unit != obj_size) {
4151 		rbd_warn(rbd_dev, "unsupported stripe unit "
4152 				"(got %llu want %llu)",
4153 				stripe_unit, obj_size);
4154 		return -EINVAL;
4155 	}
4156 	stripe_count = ceph_decode_64(&p);
4157 	if (stripe_count != 1) {
4158 		rbd_warn(rbd_dev, "unsupported stripe count "
4159 				"(got %llu want 1)", stripe_count);
4160 		return -EINVAL;
4161 	}
4162 	rbd_dev->header.stripe_unit = stripe_unit;
4163 	rbd_dev->header.stripe_count = stripe_count;
4164 
4165 	return 0;
4166 }
4167 
4168 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4169 {
4170 	size_t image_id_size;
4171 	char *image_id;
4172 	void *p;
4173 	void *end;
4174 	size_t size;
4175 	void *reply_buf = NULL;
4176 	size_t len = 0;
4177 	char *image_name = NULL;
4178 	int ret;
4179 
4180 	rbd_assert(!rbd_dev->spec->image_name);
4181 
4182 	len = strlen(rbd_dev->spec->image_id);
4183 	image_id_size = sizeof (__le32) + len;
4184 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4185 	if (!image_id)
4186 		return NULL;
4187 
4188 	p = image_id;
4189 	end = image_id + image_id_size;
4190 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4191 
4192 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4193 	reply_buf = kmalloc(size, GFP_KERNEL);
4194 	if (!reply_buf)
4195 		goto out;
4196 
4197 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4198 				"rbd", "dir_get_name",
4199 				image_id, image_id_size,
4200 				reply_buf, size);
4201 	if (ret < 0)
4202 		goto out;
4203 	p = reply_buf;
4204 	end = reply_buf + ret;
4205 
4206 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4207 	if (IS_ERR(image_name))
4208 		image_name = NULL;
4209 	else
4210 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4211 out:
4212 	kfree(reply_buf);
4213 	kfree(image_id);
4214 
4215 	return image_name;
4216 }
4217 
4218 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4219 {
4220 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4221 	const char *snap_name;
4222 	u32 which = 0;
4223 
4224 	/* Skip over names until we find the one we are looking for */
4225 
4226 	snap_name = rbd_dev->header.snap_names;
4227 	while (which < snapc->num_snaps) {
4228 		if (!strcmp(name, snap_name))
4229 			return snapc->snaps[which];
4230 		snap_name += strlen(snap_name) + 1;
4231 		which++;
4232 	}
4233 	return CEPH_NOSNAP;
4234 }
4235 
4236 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4237 {
4238 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4239 	u32 which;
4240 	bool found = false;
4241 	u64 snap_id;
4242 
4243 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4244 		const char *snap_name;
4245 
4246 		snap_id = snapc->snaps[which];
4247 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4248 		if (IS_ERR(snap_name)) {
4249 			/* ignore no-longer existing snapshots */
4250 			if (PTR_ERR(snap_name) == -ENOENT)
4251 				continue;
4252 			else
4253 				break;
4254 		}
4255 		found = !strcmp(name, snap_name);
4256 		kfree(snap_name);
4257 	}
4258 	return found ? snap_id : CEPH_NOSNAP;
4259 }
4260 
4261 /*
4262  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4263  * no snapshot by that name is found, or if an error occurs.
4264  */
4265 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4266 {
4267 	if (rbd_dev->image_format == 1)
4268 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4269 
4270 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4271 }
4272 
4273 /*
4274  * When an rbd image has a parent image, it is identified by the
4275  * pool, image, and snapshot ids (not names).  This function fills
4276  * in the names for those ids.  (It's OK if we can't figure out the
4277  * name for an image id, but the pool and snapshot ids should always
4278  * exist and have names.)  All names in an rbd spec are dynamically
4279  * allocated.
4280  *
4281  * When an image being mapped (not a parent) is probed, we have the
4282  * pool name and pool id, image name and image id, and the snapshot
4283  * name.  The only thing we're missing is the snapshot id.
4284  */
4285 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4286 {
4287 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4288 	struct rbd_spec *spec = rbd_dev->spec;
4289 	const char *pool_name;
4290 	const char *image_name;
4291 	const char *snap_name;
4292 	int ret;
4293 
4294 	/*
4295 	 * An image being mapped will have the pool name (etc.), but
4296 	 * we need to look up the snapshot id.
4297 	 */
4298 	if (spec->pool_name) {
4299 		if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4300 			u64 snap_id;
4301 
4302 			snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4303 			if (snap_id == CEPH_NOSNAP)
4304 				return -ENOENT;
4305 			spec->snap_id = snap_id;
4306 		} else {
4307 			spec->snap_id = CEPH_NOSNAP;
4308 		}
4309 
4310 		return 0;
4311 	}
4312 
4313 	/* Get the pool name; we have to make our own copy of this */
4314 
4315 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4316 	if (!pool_name) {
4317 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4318 		return -EIO;
4319 	}
4320 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4321 	if (!pool_name)
4322 		return -ENOMEM;
4323 
4324 	/* Fetch the image name; tolerate failure here */
4325 
4326 	image_name = rbd_dev_image_name(rbd_dev);
4327 	if (!image_name)
4328 		rbd_warn(rbd_dev, "unable to get image name");
4329 
4330 	/* Look up the snapshot name, and make a copy */
4331 
4332 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4333 	if (IS_ERR(snap_name)) {
4334 		ret = PTR_ERR(snap_name);
4335 		goto out_err;
4336 	}
4337 
4338 	spec->pool_name = pool_name;
4339 	spec->image_name = image_name;
4340 	spec->snap_name = snap_name;
4341 
4342 	return 0;
4343 out_err:
4344 	kfree(image_name);
4345 	kfree(pool_name);
4346 
4347 	return ret;
4348 }
4349 
4350 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4351 {
4352 	size_t size;
4353 	int ret;
4354 	void *reply_buf;
4355 	void *p;
4356 	void *end;
4357 	u64 seq;
4358 	u32 snap_count;
4359 	struct ceph_snap_context *snapc;
4360 	u32 i;
4361 
4362 	/*
4363 	 * We'll need room for the seq value (maximum snapshot id),
4364 	 * snapshot count, and array of that many snapshot ids.
4365 	 * For now we have a fixed upper limit on the number we're
4366 	 * prepared to receive.
4367 	 */
4368 	size = sizeof (__le64) + sizeof (__le32) +
4369 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4370 	reply_buf = kzalloc(size, GFP_KERNEL);
4371 	if (!reply_buf)
4372 		return -ENOMEM;
4373 
4374 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4375 				"rbd", "get_snapcontext", NULL, 0,
4376 				reply_buf, size);
4377 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4378 	if (ret < 0)
4379 		goto out;
4380 
4381 	p = reply_buf;
4382 	end = reply_buf + ret;
4383 	ret = -ERANGE;
4384 	ceph_decode_64_safe(&p, end, seq, out);
4385 	ceph_decode_32_safe(&p, end, snap_count, out);
4386 
4387 	/*
4388 	 * Make sure the reported number of snapshot ids wouldn't go
4389 	 * beyond the end of our buffer.  But before checking that,
4390 	 * make sure the computed size of the snapshot context we
4391 	 * allocate is representable in a size_t.
4392 	 */
4393 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4394 				 / sizeof (u64)) {
4395 		ret = -EINVAL;
4396 		goto out;
4397 	}
4398 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4399 		goto out;
4400 	ret = 0;
4401 
4402 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4403 	if (!snapc) {
4404 		ret = -ENOMEM;
4405 		goto out;
4406 	}
4407 	snapc->seq = seq;
4408 	for (i = 0; i < snap_count; i++)
4409 		snapc->snaps[i] = ceph_decode_64(&p);
4410 
4411 	ceph_put_snap_context(rbd_dev->header.snapc);
4412 	rbd_dev->header.snapc = snapc;
4413 
4414 	dout("  snap context seq = %llu, snap_count = %u\n",
4415 		(unsigned long long)seq, (unsigned int)snap_count);
4416 out:
4417 	kfree(reply_buf);
4418 
4419 	return ret;
4420 }
4421 
4422 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4423 					u64 snap_id)
4424 {
4425 	size_t size;
4426 	void *reply_buf;
4427 	__le64 snapid;
4428 	int ret;
4429 	void *p;
4430 	void *end;
4431 	char *snap_name;
4432 
4433 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4434 	reply_buf = kmalloc(size, GFP_KERNEL);
4435 	if (!reply_buf)
4436 		return ERR_PTR(-ENOMEM);
4437 
4438 	snapid = cpu_to_le64(snap_id);
4439 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4440 				"rbd", "get_snapshot_name",
4441 				&snapid, sizeof (snapid),
4442 				reply_buf, size);
4443 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4444 	if (ret < 0) {
4445 		snap_name = ERR_PTR(ret);
4446 		goto out;
4447 	}
4448 
4449 	p = reply_buf;
4450 	end = reply_buf + ret;
4451 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4452 	if (IS_ERR(snap_name))
4453 		goto out;
4454 
4455 	dout("  snap_id 0x%016llx snap_name = %s\n",
4456 		(unsigned long long)snap_id, snap_name);
4457 out:
4458 	kfree(reply_buf);
4459 
4460 	return snap_name;
4461 }
4462 
4463 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4464 {
4465 	bool first_time = rbd_dev->header.object_prefix == NULL;
4466 	int ret;
4467 
4468 	ret = rbd_dev_v2_image_size(rbd_dev);
4469 	if (ret)
4470 		return ret;
4471 
4472 	if (first_time) {
4473 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4474 		if (ret)
4475 			return ret;
4476 	}
4477 
4478 	/*
4479 	 * If the image supports layering, get the parent info.  We
4480 	 * need to probe the first time regardless.  Thereafter we
4481 	 * only need to if there's a parent, to see if it has
4482 	 * disappeared due to the mapped image getting flattened.
4483 	 */
4484 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4485 			(first_time || rbd_dev->parent_spec)) {
4486 		bool warn;
4487 
4488 		ret = rbd_dev_v2_parent_info(rbd_dev);
4489 		if (ret)
4490 			return ret;
4491 
4492 		/*
4493 		 * Print a warning if this is the initial probe and
4494 		 * the image has a parent.  Don't print it if the
4495 		 * image now being probed is itself a parent.  We
4496 		 * can tell at this point because we won't know its
4497 		 * pool name yet (just its pool id).
4498 		 */
4499 		warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4500 		if (first_time && warn)
4501 			rbd_warn(rbd_dev, "WARNING: kernel layering "
4502 					"is EXPERIMENTAL!");
4503 	}
4504 
4505 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4506 		if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4507 			rbd_dev->mapping.size = rbd_dev->header.image_size;
4508 
4509 	ret = rbd_dev_v2_snap_context(rbd_dev);
4510 	dout("rbd_dev_v2_snap_context returned %d\n", ret);
4511 
4512 	return ret;
4513 }
4514 
4515 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4516 {
4517 	struct device *dev;
4518 	int ret;
4519 
4520 	dev = &rbd_dev->dev;
4521 	dev->bus = &rbd_bus_type;
4522 	dev->type = &rbd_device_type;
4523 	dev->parent = &rbd_root_dev;
4524 	dev->release = rbd_dev_device_release;
4525 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4526 	ret = device_register(dev);
4527 
4528 	return ret;
4529 }
4530 
4531 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4532 {
4533 	device_unregister(&rbd_dev->dev);
4534 }
4535 
4536 /*
4537  * Get a unique rbd identifier for the given new rbd_dev, and add
4538  * the rbd_dev to the global list.
4539  */
4540 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4541 {
4542 	int new_dev_id;
4543 
4544 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4545 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4546 				    GFP_KERNEL);
4547 	if (new_dev_id < 0)
4548 		return new_dev_id;
4549 
4550 	rbd_dev->dev_id = new_dev_id;
4551 
4552 	spin_lock(&rbd_dev_list_lock);
4553 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4554 	spin_unlock(&rbd_dev_list_lock);
4555 
4556 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4557 
4558 	return 0;
4559 }
4560 
4561 /*
4562  * Remove an rbd_dev from the global list, and record that its
4563  * identifier is no longer in use.
4564  */
4565 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4566 {
4567 	spin_lock(&rbd_dev_list_lock);
4568 	list_del_init(&rbd_dev->node);
4569 	spin_unlock(&rbd_dev_list_lock);
4570 
4571 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4572 
4573 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4574 }
4575 
4576 /*
4577  * Skips over white space at *buf, and updates *buf to point to the
4578  * first found non-space character (if any). Returns the length of
4579  * the token (string of non-white space characters) found.  Note
4580  * that *buf must be terminated with '\0'.
4581  */
4582 static inline size_t next_token(const char **buf)
4583 {
4584         /*
4585         * These are the characters that produce nonzero for
4586         * isspace() in the "C" and "POSIX" locales.
4587         */
4588         const char *spaces = " \f\n\r\t\v";
4589 
4590         *buf += strspn(*buf, spaces);	/* Find start of token */
4591 
4592 	return strcspn(*buf, spaces);   /* Return token length */
4593 }
4594 
4595 /*
4596  * Finds the next token in *buf, and if the provided token buffer is
4597  * big enough, copies the found token into it.  The result, if
4598  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4599  * must be terminated with '\0' on entry.
4600  *
4601  * Returns the length of the token found (not including the '\0').
4602  * Return value will be 0 if no token is found, and it will be >=
4603  * token_size if the token would not fit.
4604  *
4605  * The *buf pointer will be updated to point beyond the end of the
4606  * found token.  Note that this occurs even if the token buffer is
4607  * too small to hold it.
4608  */
4609 static inline size_t copy_token(const char **buf,
4610 				char *token,
4611 				size_t token_size)
4612 {
4613         size_t len;
4614 
4615 	len = next_token(buf);
4616 	if (len < token_size) {
4617 		memcpy(token, *buf, len);
4618 		*(token + len) = '\0';
4619 	}
4620 	*buf += len;
4621 
4622         return len;
4623 }
4624 
4625 /*
4626  * Finds the next token in *buf, dynamically allocates a buffer big
4627  * enough to hold a copy of it, and copies the token into the new
4628  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4629  * that a duplicate buffer is created even for a zero-length token.
4630  *
4631  * Returns a pointer to the newly-allocated duplicate, or a null
4632  * pointer if memory for the duplicate was not available.  If
4633  * the lenp argument is a non-null pointer, the length of the token
4634  * (not including the '\0') is returned in *lenp.
4635  *
4636  * If successful, the *buf pointer will be updated to point beyond
4637  * the end of the found token.
4638  *
4639  * Note: uses GFP_KERNEL for allocation.
4640  */
4641 static inline char *dup_token(const char **buf, size_t *lenp)
4642 {
4643 	char *dup;
4644 	size_t len;
4645 
4646 	len = next_token(buf);
4647 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4648 	if (!dup)
4649 		return NULL;
4650 	*(dup + len) = '\0';
4651 	*buf += len;
4652 
4653 	if (lenp)
4654 		*lenp = len;
4655 
4656 	return dup;
4657 }
4658 
4659 /*
4660  * Parse the options provided for an "rbd add" (i.e., rbd image
4661  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4662  * and the data written is passed here via a NUL-terminated buffer.
4663  * Returns 0 if successful or an error code otherwise.
4664  *
4665  * The information extracted from these options is recorded in
4666  * the other parameters which return dynamically-allocated
4667  * structures:
4668  *  ceph_opts
4669  *      The address of a pointer that will refer to a ceph options
4670  *      structure.  Caller must release the returned pointer using
4671  *      ceph_destroy_options() when it is no longer needed.
4672  *  rbd_opts
4673  *	Address of an rbd options pointer.  Fully initialized by
4674  *	this function; caller must release with kfree().
4675  *  spec
4676  *	Address of an rbd image specification pointer.  Fully
4677  *	initialized by this function based on parsed options.
4678  *	Caller must release with rbd_spec_put().
4679  *
4680  * The options passed take this form:
4681  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4682  * where:
4683  *  <mon_addrs>
4684  *      A comma-separated list of one or more monitor addresses.
4685  *      A monitor address is an ip address, optionally followed
4686  *      by a port number (separated by a colon).
4687  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4688  *  <options>
4689  *      A comma-separated list of ceph and/or rbd options.
4690  *  <pool_name>
4691  *      The name of the rados pool containing the rbd image.
4692  *  <image_name>
4693  *      The name of the image in that pool to map.
4694  *  <snap_id>
4695  *      An optional snapshot id.  If provided, the mapping will
4696  *      present data from the image at the time that snapshot was
4697  *      created.  The image head is used if no snapshot id is
4698  *      provided.  Snapshot mappings are always read-only.
4699  */
4700 static int rbd_add_parse_args(const char *buf,
4701 				struct ceph_options **ceph_opts,
4702 				struct rbd_options **opts,
4703 				struct rbd_spec **rbd_spec)
4704 {
4705 	size_t len;
4706 	char *options;
4707 	const char *mon_addrs;
4708 	char *snap_name;
4709 	size_t mon_addrs_size;
4710 	struct rbd_spec *spec = NULL;
4711 	struct rbd_options *rbd_opts = NULL;
4712 	struct ceph_options *copts;
4713 	int ret;
4714 
4715 	/* The first four tokens are required */
4716 
4717 	len = next_token(&buf);
4718 	if (!len) {
4719 		rbd_warn(NULL, "no monitor address(es) provided");
4720 		return -EINVAL;
4721 	}
4722 	mon_addrs = buf;
4723 	mon_addrs_size = len + 1;
4724 	buf += len;
4725 
4726 	ret = -EINVAL;
4727 	options = dup_token(&buf, NULL);
4728 	if (!options)
4729 		return -ENOMEM;
4730 	if (!*options) {
4731 		rbd_warn(NULL, "no options provided");
4732 		goto out_err;
4733 	}
4734 
4735 	spec = rbd_spec_alloc();
4736 	if (!spec)
4737 		goto out_mem;
4738 
4739 	spec->pool_name = dup_token(&buf, NULL);
4740 	if (!spec->pool_name)
4741 		goto out_mem;
4742 	if (!*spec->pool_name) {
4743 		rbd_warn(NULL, "no pool name provided");
4744 		goto out_err;
4745 	}
4746 
4747 	spec->image_name = dup_token(&buf, NULL);
4748 	if (!spec->image_name)
4749 		goto out_mem;
4750 	if (!*spec->image_name) {
4751 		rbd_warn(NULL, "no image name provided");
4752 		goto out_err;
4753 	}
4754 
4755 	/*
4756 	 * Snapshot name is optional; default is to use "-"
4757 	 * (indicating the head/no snapshot).
4758 	 */
4759 	len = next_token(&buf);
4760 	if (!len) {
4761 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4762 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4763 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4764 		ret = -ENAMETOOLONG;
4765 		goto out_err;
4766 	}
4767 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4768 	if (!snap_name)
4769 		goto out_mem;
4770 	*(snap_name + len) = '\0';
4771 	spec->snap_name = snap_name;
4772 
4773 	/* Initialize all rbd options to the defaults */
4774 
4775 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4776 	if (!rbd_opts)
4777 		goto out_mem;
4778 
4779 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4780 
4781 	copts = ceph_parse_options(options, mon_addrs,
4782 					mon_addrs + mon_addrs_size - 1,
4783 					parse_rbd_opts_token, rbd_opts);
4784 	if (IS_ERR(copts)) {
4785 		ret = PTR_ERR(copts);
4786 		goto out_err;
4787 	}
4788 	kfree(options);
4789 
4790 	*ceph_opts = copts;
4791 	*opts = rbd_opts;
4792 	*rbd_spec = spec;
4793 
4794 	return 0;
4795 out_mem:
4796 	ret = -ENOMEM;
4797 out_err:
4798 	kfree(rbd_opts);
4799 	rbd_spec_put(spec);
4800 	kfree(options);
4801 
4802 	return ret;
4803 }
4804 
4805 /*
4806  * Return pool id (>= 0) or a negative error code.
4807  */
4808 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4809 {
4810 	u64 newest_epoch;
4811 	unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4812 	int tries = 0;
4813 	int ret;
4814 
4815 again:
4816 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4817 	if (ret == -ENOENT && tries++ < 1) {
4818 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4819 					       &newest_epoch);
4820 		if (ret < 0)
4821 			return ret;
4822 
4823 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4824 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4825 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4826 						     newest_epoch, timeout);
4827 			goto again;
4828 		} else {
4829 			/* the osdmap we have is new enough */
4830 			return -ENOENT;
4831 		}
4832 	}
4833 
4834 	return ret;
4835 }
4836 
4837 /*
4838  * An rbd format 2 image has a unique identifier, distinct from the
4839  * name given to it by the user.  Internally, that identifier is
4840  * what's used to specify the names of objects related to the image.
4841  *
4842  * A special "rbd id" object is used to map an rbd image name to its
4843  * id.  If that object doesn't exist, then there is no v2 rbd image
4844  * with the supplied name.
4845  *
4846  * This function will record the given rbd_dev's image_id field if
4847  * it can be determined, and in that case will return 0.  If any
4848  * errors occur a negative errno will be returned and the rbd_dev's
4849  * image_id field will be unchanged (and should be NULL).
4850  */
4851 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4852 {
4853 	int ret;
4854 	size_t size;
4855 	char *object_name;
4856 	void *response;
4857 	char *image_id;
4858 
4859 	/*
4860 	 * When probing a parent image, the image id is already
4861 	 * known (and the image name likely is not).  There's no
4862 	 * need to fetch the image id again in this case.  We
4863 	 * do still need to set the image format though.
4864 	 */
4865 	if (rbd_dev->spec->image_id) {
4866 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4867 
4868 		return 0;
4869 	}
4870 
4871 	/*
4872 	 * First, see if the format 2 image id file exists, and if
4873 	 * so, get the image's persistent id from it.
4874 	 */
4875 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4876 	object_name = kmalloc(size, GFP_NOIO);
4877 	if (!object_name)
4878 		return -ENOMEM;
4879 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4880 	dout("rbd id object name is %s\n", object_name);
4881 
4882 	/* Response will be an encoded string, which includes a length */
4883 
4884 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4885 	response = kzalloc(size, GFP_NOIO);
4886 	if (!response) {
4887 		ret = -ENOMEM;
4888 		goto out;
4889 	}
4890 
4891 	/* If it doesn't exist we'll assume it's a format 1 image */
4892 
4893 	ret = rbd_obj_method_sync(rbd_dev, object_name,
4894 				"rbd", "get_id", NULL, 0,
4895 				response, RBD_IMAGE_ID_LEN_MAX);
4896 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4897 	if (ret == -ENOENT) {
4898 		image_id = kstrdup("", GFP_KERNEL);
4899 		ret = image_id ? 0 : -ENOMEM;
4900 		if (!ret)
4901 			rbd_dev->image_format = 1;
4902 	} else if (ret > sizeof (__le32)) {
4903 		void *p = response;
4904 
4905 		image_id = ceph_extract_encoded_string(&p, p + ret,
4906 						NULL, GFP_NOIO);
4907 		ret = PTR_ERR_OR_ZERO(image_id);
4908 		if (!ret)
4909 			rbd_dev->image_format = 2;
4910 	} else {
4911 		ret = -EINVAL;
4912 	}
4913 
4914 	if (!ret) {
4915 		rbd_dev->spec->image_id = image_id;
4916 		dout("image_id is %s\n", image_id);
4917 	}
4918 out:
4919 	kfree(response);
4920 	kfree(object_name);
4921 
4922 	return ret;
4923 }
4924 
4925 /*
4926  * Undo whatever state changes are made by v1 or v2 header info
4927  * call.
4928  */
4929 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4930 {
4931 	struct rbd_image_header	*header;
4932 
4933 	/* Drop parent reference unless it's already been done (or none) */
4934 
4935 	if (rbd_dev->parent_overlap)
4936 		rbd_dev_parent_put(rbd_dev);
4937 
4938 	/* Free dynamic fields from the header, then zero it out */
4939 
4940 	header = &rbd_dev->header;
4941 	ceph_put_snap_context(header->snapc);
4942 	kfree(header->snap_sizes);
4943 	kfree(header->snap_names);
4944 	kfree(header->object_prefix);
4945 	memset(header, 0, sizeof (*header));
4946 }
4947 
4948 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4949 {
4950 	int ret;
4951 
4952 	ret = rbd_dev_v2_object_prefix(rbd_dev);
4953 	if (ret)
4954 		goto out_err;
4955 
4956 	/*
4957 	 * Get the and check features for the image.  Currently the
4958 	 * features are assumed to never change.
4959 	 */
4960 	ret = rbd_dev_v2_features(rbd_dev);
4961 	if (ret)
4962 		goto out_err;
4963 
4964 	/* If the image supports fancy striping, get its parameters */
4965 
4966 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4967 		ret = rbd_dev_v2_striping_info(rbd_dev);
4968 		if (ret < 0)
4969 			goto out_err;
4970 	}
4971 	/* No support for crypto and compression type format 2 images */
4972 
4973 	return 0;
4974 out_err:
4975 	rbd_dev->header.features = 0;
4976 	kfree(rbd_dev->header.object_prefix);
4977 	rbd_dev->header.object_prefix = NULL;
4978 
4979 	return ret;
4980 }
4981 
4982 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4983 {
4984 	struct rbd_device *parent = NULL;
4985 	struct rbd_spec *parent_spec;
4986 	struct rbd_client *rbdc;
4987 	int ret;
4988 
4989 	if (!rbd_dev->parent_spec)
4990 		return 0;
4991 	/*
4992 	 * We need to pass a reference to the client and the parent
4993 	 * spec when creating the parent rbd_dev.  Images related by
4994 	 * parent/child relationships always share both.
4995 	 */
4996 	parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4997 	rbdc = __rbd_get_client(rbd_dev->rbd_client);
4998 
4999 	ret = -ENOMEM;
5000 	parent = rbd_dev_create(rbdc, parent_spec);
5001 	if (!parent)
5002 		goto out_err;
5003 
5004 	ret = rbd_dev_image_probe(parent, false);
5005 	if (ret < 0)
5006 		goto out_err;
5007 	rbd_dev->parent = parent;
5008 	atomic_set(&rbd_dev->parent_ref, 1);
5009 
5010 	return 0;
5011 out_err:
5012 	if (parent) {
5013 		rbd_dev_unparent(rbd_dev);
5014 		kfree(rbd_dev->header_name);
5015 		rbd_dev_destroy(parent);
5016 	} else {
5017 		rbd_put_client(rbdc);
5018 		rbd_spec_put(parent_spec);
5019 	}
5020 
5021 	return ret;
5022 }
5023 
5024 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5025 {
5026 	int ret;
5027 
5028 	/* Get an id and fill in device name. */
5029 
5030 	ret = rbd_dev_id_get(rbd_dev);
5031 	if (ret)
5032 		return ret;
5033 
5034 	BUILD_BUG_ON(DEV_NAME_LEN
5035 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5036 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5037 
5038 	/* Record our major and minor device numbers. */
5039 
5040 	if (!single_major) {
5041 		ret = register_blkdev(0, rbd_dev->name);
5042 		if (ret < 0)
5043 			goto err_out_id;
5044 
5045 		rbd_dev->major = ret;
5046 		rbd_dev->minor = 0;
5047 	} else {
5048 		rbd_dev->major = rbd_major;
5049 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5050 	}
5051 
5052 	/* Set up the blkdev mapping. */
5053 
5054 	ret = rbd_init_disk(rbd_dev);
5055 	if (ret)
5056 		goto err_out_blkdev;
5057 
5058 	ret = rbd_dev_mapping_set(rbd_dev);
5059 	if (ret)
5060 		goto err_out_disk;
5061 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5062 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5063 
5064 	ret = rbd_bus_add_dev(rbd_dev);
5065 	if (ret)
5066 		goto err_out_mapping;
5067 
5068 	/* Everything's ready.  Announce the disk to the world. */
5069 
5070 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5071 	add_disk(rbd_dev->disk);
5072 
5073 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5074 		(unsigned long long) rbd_dev->mapping.size);
5075 
5076 	return ret;
5077 
5078 err_out_mapping:
5079 	rbd_dev_mapping_clear(rbd_dev);
5080 err_out_disk:
5081 	rbd_free_disk(rbd_dev);
5082 err_out_blkdev:
5083 	if (!single_major)
5084 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5085 err_out_id:
5086 	rbd_dev_id_put(rbd_dev);
5087 	rbd_dev_mapping_clear(rbd_dev);
5088 
5089 	return ret;
5090 }
5091 
5092 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5093 {
5094 	struct rbd_spec *spec = rbd_dev->spec;
5095 	size_t size;
5096 
5097 	/* Record the header object name for this rbd image. */
5098 
5099 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5100 
5101 	if (rbd_dev->image_format == 1)
5102 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5103 	else
5104 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5105 
5106 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5107 	if (!rbd_dev->header_name)
5108 		return -ENOMEM;
5109 
5110 	if (rbd_dev->image_format == 1)
5111 		sprintf(rbd_dev->header_name, "%s%s",
5112 			spec->image_name, RBD_SUFFIX);
5113 	else
5114 		sprintf(rbd_dev->header_name, "%s%s",
5115 			RBD_HEADER_PREFIX, spec->image_id);
5116 	return 0;
5117 }
5118 
5119 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5120 {
5121 	rbd_dev_unprobe(rbd_dev);
5122 	kfree(rbd_dev->header_name);
5123 	rbd_dev->header_name = NULL;
5124 	rbd_dev->image_format = 0;
5125 	kfree(rbd_dev->spec->image_id);
5126 	rbd_dev->spec->image_id = NULL;
5127 
5128 	rbd_dev_destroy(rbd_dev);
5129 }
5130 
5131 /*
5132  * Probe for the existence of the header object for the given rbd
5133  * device.  If this image is the one being mapped (i.e., not a
5134  * parent), initiate a watch on its header object before using that
5135  * object to get detailed information about the rbd image.
5136  */
5137 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5138 {
5139 	int ret;
5140 
5141 	/*
5142 	 * Get the id from the image id object.  Unless there's an
5143 	 * error, rbd_dev->spec->image_id will be filled in with
5144 	 * a dynamically-allocated string, and rbd_dev->image_format
5145 	 * will be set to either 1 or 2.
5146 	 */
5147 	ret = rbd_dev_image_id(rbd_dev);
5148 	if (ret)
5149 		return ret;
5150 	rbd_assert(rbd_dev->spec->image_id);
5151 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5152 
5153 	ret = rbd_dev_header_name(rbd_dev);
5154 	if (ret)
5155 		goto err_out_format;
5156 
5157 	if (mapping) {
5158 		ret = rbd_dev_header_watch_sync(rbd_dev);
5159 		if (ret)
5160 			goto out_header_name;
5161 	}
5162 
5163 	if (rbd_dev->image_format == 1)
5164 		ret = rbd_dev_v1_header_info(rbd_dev);
5165 	else
5166 		ret = rbd_dev_v2_header_info(rbd_dev);
5167 	if (ret)
5168 		goto err_out_watch;
5169 
5170 	ret = rbd_dev_spec_update(rbd_dev);
5171 	if (ret)
5172 		goto err_out_probe;
5173 
5174 	ret = rbd_dev_probe_parent(rbd_dev);
5175 	if (ret)
5176 		goto err_out_probe;
5177 
5178 	dout("discovered format %u image, header name is %s\n",
5179 		rbd_dev->image_format, rbd_dev->header_name);
5180 
5181 	return 0;
5182 err_out_probe:
5183 	rbd_dev_unprobe(rbd_dev);
5184 err_out_watch:
5185 	if (mapping)
5186 		rbd_dev_header_unwatch_sync(rbd_dev);
5187 out_header_name:
5188 	kfree(rbd_dev->header_name);
5189 	rbd_dev->header_name = NULL;
5190 err_out_format:
5191 	rbd_dev->image_format = 0;
5192 	kfree(rbd_dev->spec->image_id);
5193 	rbd_dev->spec->image_id = NULL;
5194 
5195 	dout("probe failed, returning %d\n", ret);
5196 
5197 	return ret;
5198 }
5199 
5200 static ssize_t do_rbd_add(struct bus_type *bus,
5201 			  const char *buf,
5202 			  size_t count)
5203 {
5204 	struct rbd_device *rbd_dev = NULL;
5205 	struct ceph_options *ceph_opts = NULL;
5206 	struct rbd_options *rbd_opts = NULL;
5207 	struct rbd_spec *spec = NULL;
5208 	struct rbd_client *rbdc;
5209 	bool read_only;
5210 	int rc = -ENOMEM;
5211 
5212 	if (!try_module_get(THIS_MODULE))
5213 		return -ENODEV;
5214 
5215 	/* parse add command */
5216 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5217 	if (rc < 0)
5218 		goto err_out_module;
5219 	read_only = rbd_opts->read_only;
5220 	kfree(rbd_opts);
5221 	rbd_opts = NULL;	/* done with this */
5222 
5223 	rbdc = rbd_get_client(ceph_opts);
5224 	if (IS_ERR(rbdc)) {
5225 		rc = PTR_ERR(rbdc);
5226 		goto err_out_args;
5227 	}
5228 
5229 	/* pick the pool */
5230 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5231 	if (rc < 0)
5232 		goto err_out_client;
5233 	spec->pool_id = (u64)rc;
5234 
5235 	/* The ceph file layout needs to fit pool id in 32 bits */
5236 
5237 	if (spec->pool_id > (u64)U32_MAX) {
5238 		rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5239 				(unsigned long long)spec->pool_id, U32_MAX);
5240 		rc = -EIO;
5241 		goto err_out_client;
5242 	}
5243 
5244 	rbd_dev = rbd_dev_create(rbdc, spec);
5245 	if (!rbd_dev)
5246 		goto err_out_client;
5247 	rbdc = NULL;		/* rbd_dev now owns this */
5248 	spec = NULL;		/* rbd_dev now owns this */
5249 
5250 	rc = rbd_dev_image_probe(rbd_dev, true);
5251 	if (rc < 0)
5252 		goto err_out_rbd_dev;
5253 
5254 	/* If we are mapping a snapshot it must be marked read-only */
5255 
5256 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5257 		read_only = true;
5258 	rbd_dev->mapping.read_only = read_only;
5259 
5260 	rc = rbd_dev_device_setup(rbd_dev);
5261 	if (rc) {
5262 		/*
5263 		 * rbd_dev_header_unwatch_sync() can't be moved into
5264 		 * rbd_dev_image_release() without refactoring, see
5265 		 * commit 1f3ef78861ac.
5266 		 */
5267 		rbd_dev_header_unwatch_sync(rbd_dev);
5268 		rbd_dev_image_release(rbd_dev);
5269 		goto err_out_module;
5270 	}
5271 
5272 	return count;
5273 
5274 err_out_rbd_dev:
5275 	rbd_dev_destroy(rbd_dev);
5276 err_out_client:
5277 	rbd_put_client(rbdc);
5278 err_out_args:
5279 	rbd_spec_put(spec);
5280 err_out_module:
5281 	module_put(THIS_MODULE);
5282 
5283 	dout("Error adding device %s\n", buf);
5284 
5285 	return (ssize_t)rc;
5286 }
5287 
5288 static ssize_t rbd_add(struct bus_type *bus,
5289 		       const char *buf,
5290 		       size_t count)
5291 {
5292 	if (single_major)
5293 		return -EINVAL;
5294 
5295 	return do_rbd_add(bus, buf, count);
5296 }
5297 
5298 static ssize_t rbd_add_single_major(struct bus_type *bus,
5299 				    const char *buf,
5300 				    size_t count)
5301 {
5302 	return do_rbd_add(bus, buf, count);
5303 }
5304 
5305 static void rbd_dev_device_release(struct device *dev)
5306 {
5307 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5308 
5309 	rbd_free_disk(rbd_dev);
5310 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5311 	rbd_dev_mapping_clear(rbd_dev);
5312 	if (!single_major)
5313 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5314 	rbd_dev_id_put(rbd_dev);
5315 	rbd_dev_mapping_clear(rbd_dev);
5316 }
5317 
5318 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5319 {
5320 	while (rbd_dev->parent) {
5321 		struct rbd_device *first = rbd_dev;
5322 		struct rbd_device *second = first->parent;
5323 		struct rbd_device *third;
5324 
5325 		/*
5326 		 * Follow to the parent with no grandparent and
5327 		 * remove it.
5328 		 */
5329 		while (second && (third = second->parent)) {
5330 			first = second;
5331 			second = third;
5332 		}
5333 		rbd_assert(second);
5334 		rbd_dev_image_release(second);
5335 		first->parent = NULL;
5336 		first->parent_overlap = 0;
5337 
5338 		rbd_assert(first->parent_spec);
5339 		rbd_spec_put(first->parent_spec);
5340 		first->parent_spec = NULL;
5341 	}
5342 }
5343 
5344 static ssize_t do_rbd_remove(struct bus_type *bus,
5345 			     const char *buf,
5346 			     size_t count)
5347 {
5348 	struct rbd_device *rbd_dev = NULL;
5349 	struct list_head *tmp;
5350 	int dev_id;
5351 	unsigned long ul;
5352 	bool already = false;
5353 	int ret;
5354 
5355 	ret = kstrtoul(buf, 10, &ul);
5356 	if (ret)
5357 		return ret;
5358 
5359 	/* convert to int; abort if we lost anything in the conversion */
5360 	dev_id = (int)ul;
5361 	if (dev_id != ul)
5362 		return -EINVAL;
5363 
5364 	ret = -ENOENT;
5365 	spin_lock(&rbd_dev_list_lock);
5366 	list_for_each(tmp, &rbd_dev_list) {
5367 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5368 		if (rbd_dev->dev_id == dev_id) {
5369 			ret = 0;
5370 			break;
5371 		}
5372 	}
5373 	if (!ret) {
5374 		spin_lock_irq(&rbd_dev->lock);
5375 		if (rbd_dev->open_count)
5376 			ret = -EBUSY;
5377 		else
5378 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5379 							&rbd_dev->flags);
5380 		spin_unlock_irq(&rbd_dev->lock);
5381 	}
5382 	spin_unlock(&rbd_dev_list_lock);
5383 	if (ret < 0 || already)
5384 		return ret;
5385 
5386 	rbd_dev_header_unwatch_sync(rbd_dev);
5387 	/*
5388 	 * flush remaining watch callbacks - these must be complete
5389 	 * before the osd_client is shutdown
5390 	 */
5391 	dout("%s: flushing notifies", __func__);
5392 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5393 
5394 	/*
5395 	 * Don't free anything from rbd_dev->disk until after all
5396 	 * notifies are completely processed. Otherwise
5397 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5398 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5399 	 */
5400 	rbd_bus_del_dev(rbd_dev);
5401 	rbd_dev_image_release(rbd_dev);
5402 	module_put(THIS_MODULE);
5403 
5404 	return count;
5405 }
5406 
5407 static ssize_t rbd_remove(struct bus_type *bus,
5408 			  const char *buf,
5409 			  size_t count)
5410 {
5411 	if (single_major)
5412 		return -EINVAL;
5413 
5414 	return do_rbd_remove(bus, buf, count);
5415 }
5416 
5417 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5418 				       const char *buf,
5419 				       size_t count)
5420 {
5421 	return do_rbd_remove(bus, buf, count);
5422 }
5423 
5424 /*
5425  * create control files in sysfs
5426  * /sys/bus/rbd/...
5427  */
5428 static int rbd_sysfs_init(void)
5429 {
5430 	int ret;
5431 
5432 	ret = device_register(&rbd_root_dev);
5433 	if (ret < 0)
5434 		return ret;
5435 
5436 	ret = bus_register(&rbd_bus_type);
5437 	if (ret < 0)
5438 		device_unregister(&rbd_root_dev);
5439 
5440 	return ret;
5441 }
5442 
5443 static void rbd_sysfs_cleanup(void)
5444 {
5445 	bus_unregister(&rbd_bus_type);
5446 	device_unregister(&rbd_root_dev);
5447 }
5448 
5449 static int rbd_slab_init(void)
5450 {
5451 	rbd_assert(!rbd_img_request_cache);
5452 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5453 					sizeof (struct rbd_img_request),
5454 					__alignof__(struct rbd_img_request),
5455 					0, NULL);
5456 	if (!rbd_img_request_cache)
5457 		return -ENOMEM;
5458 
5459 	rbd_assert(!rbd_obj_request_cache);
5460 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5461 					sizeof (struct rbd_obj_request),
5462 					__alignof__(struct rbd_obj_request),
5463 					0, NULL);
5464 	if (!rbd_obj_request_cache)
5465 		goto out_err;
5466 
5467 	rbd_assert(!rbd_segment_name_cache);
5468 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5469 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5470 	if (rbd_segment_name_cache)
5471 		return 0;
5472 out_err:
5473 	if (rbd_obj_request_cache) {
5474 		kmem_cache_destroy(rbd_obj_request_cache);
5475 		rbd_obj_request_cache = NULL;
5476 	}
5477 
5478 	kmem_cache_destroy(rbd_img_request_cache);
5479 	rbd_img_request_cache = NULL;
5480 
5481 	return -ENOMEM;
5482 }
5483 
5484 static void rbd_slab_exit(void)
5485 {
5486 	rbd_assert(rbd_segment_name_cache);
5487 	kmem_cache_destroy(rbd_segment_name_cache);
5488 	rbd_segment_name_cache = NULL;
5489 
5490 	rbd_assert(rbd_obj_request_cache);
5491 	kmem_cache_destroy(rbd_obj_request_cache);
5492 	rbd_obj_request_cache = NULL;
5493 
5494 	rbd_assert(rbd_img_request_cache);
5495 	kmem_cache_destroy(rbd_img_request_cache);
5496 	rbd_img_request_cache = NULL;
5497 }
5498 
5499 static int __init rbd_init(void)
5500 {
5501 	int rc;
5502 
5503 	if (!libceph_compatible(NULL)) {
5504 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5505 		return -EINVAL;
5506 	}
5507 
5508 	rc = rbd_slab_init();
5509 	if (rc)
5510 		return rc;
5511 
5512 	if (single_major) {
5513 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5514 		if (rbd_major < 0) {
5515 			rc = rbd_major;
5516 			goto err_out_slab;
5517 		}
5518 	}
5519 
5520 	rc = rbd_sysfs_init();
5521 	if (rc)
5522 		goto err_out_blkdev;
5523 
5524 	if (single_major)
5525 		pr_info("loaded (major %d)\n", rbd_major);
5526 	else
5527 		pr_info("loaded\n");
5528 
5529 	return 0;
5530 
5531 err_out_blkdev:
5532 	if (single_major)
5533 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5534 err_out_slab:
5535 	rbd_slab_exit();
5536 	return rc;
5537 }
5538 
5539 static void __exit rbd_exit(void)
5540 {
5541 	ida_destroy(&rbd_dev_id_ida);
5542 	rbd_sysfs_cleanup();
5543 	if (single_major)
5544 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5545 	rbd_slab_exit();
5546 }
5547 
5548 module_init(rbd_init);
5549 module_exit(rbd_exit);
5550 
5551 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5552 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5553 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5554 /* following authorship retained from original osdblk.c */
5555 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5556 
5557 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5558 MODULE_LICENSE("GPL");
5559