1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/blk-mq.h> 42 #include <linux/fs.h> 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/idr.h> 46 #include <linux/workqueue.h> 47 48 #include "rbd_types.h" 49 50 #define RBD_DEBUG /* Activate rbd_assert() calls */ 51 52 /* 53 * The basic unit of block I/O is a sector. It is interpreted in a 54 * number of contexts in Linux (blk, bio, genhd), but the default is 55 * universally 512 bytes. These symbols are just slightly more 56 * meaningful than the bare numbers they represent. 57 */ 58 #define SECTOR_SHIFT 9 59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 60 61 /* 62 * Increment the given counter and return its updated value. 63 * If the counter is already 0 it will not be incremented. 64 * If the counter is already at its maximum value returns 65 * -EINVAL without updating it. 66 */ 67 static int atomic_inc_return_safe(atomic_t *v) 68 { 69 unsigned int counter; 70 71 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 72 if (counter <= (unsigned int)INT_MAX) 73 return (int)counter; 74 75 atomic_dec(v); 76 77 return -EINVAL; 78 } 79 80 /* Decrement the counter. Return the resulting value, or -EINVAL */ 81 static int atomic_dec_return_safe(atomic_t *v) 82 { 83 int counter; 84 85 counter = atomic_dec_return(v); 86 if (counter >= 0) 87 return counter; 88 89 atomic_inc(v); 90 91 return -EINVAL; 92 } 93 94 #define RBD_DRV_NAME "rbd" 95 96 #define RBD_MINORS_PER_MAJOR 256 97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 98 99 #define RBD_MAX_PARENT_CHAIN_LEN 16 100 101 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 102 #define RBD_MAX_SNAP_NAME_LEN \ 103 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 104 105 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 106 107 #define RBD_SNAP_HEAD_NAME "-" 108 109 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 110 111 /* This allows a single page to hold an image name sent by OSD */ 112 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 113 #define RBD_IMAGE_ID_LEN_MAX 64 114 115 #define RBD_OBJ_PREFIX_LEN_MAX 64 116 117 /* Feature bits */ 118 119 #define RBD_FEATURE_LAYERING (1<<0) 120 #define RBD_FEATURE_STRIPINGV2 (1<<1) 121 #define RBD_FEATURES_ALL \ 122 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 123 124 /* Features supported by this (client software) implementation. */ 125 126 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 127 128 /* 129 * An RBD device name will be "rbd#", where the "rbd" comes from 130 * RBD_DRV_NAME above, and # is a unique integer identifier. 131 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 132 * enough to hold all possible device names. 133 */ 134 #define DEV_NAME_LEN 32 135 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 136 137 /* 138 * block device image metadata (in-memory version) 139 */ 140 struct rbd_image_header { 141 /* These six fields never change for a given rbd image */ 142 char *object_prefix; 143 __u8 obj_order; 144 __u8 crypt_type; 145 __u8 comp_type; 146 u64 stripe_unit; 147 u64 stripe_count; 148 u64 features; /* Might be changeable someday? */ 149 150 /* The remaining fields need to be updated occasionally */ 151 u64 image_size; 152 struct ceph_snap_context *snapc; 153 char *snap_names; /* format 1 only */ 154 u64 *snap_sizes; /* format 1 only */ 155 }; 156 157 /* 158 * An rbd image specification. 159 * 160 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 161 * identify an image. Each rbd_dev structure includes a pointer to 162 * an rbd_spec structure that encapsulates this identity. 163 * 164 * Each of the id's in an rbd_spec has an associated name. For a 165 * user-mapped image, the names are supplied and the id's associated 166 * with them are looked up. For a layered image, a parent image is 167 * defined by the tuple, and the names are looked up. 168 * 169 * An rbd_dev structure contains a parent_spec pointer which is 170 * non-null if the image it represents is a child in a layered 171 * image. This pointer will refer to the rbd_spec structure used 172 * by the parent rbd_dev for its own identity (i.e., the structure 173 * is shared between the parent and child). 174 * 175 * Since these structures are populated once, during the discovery 176 * phase of image construction, they are effectively immutable so 177 * we make no effort to synchronize access to them. 178 * 179 * Note that code herein does not assume the image name is known (it 180 * could be a null pointer). 181 */ 182 struct rbd_spec { 183 u64 pool_id; 184 const char *pool_name; 185 186 const char *image_id; 187 const char *image_name; 188 189 u64 snap_id; 190 const char *snap_name; 191 192 struct kref kref; 193 }; 194 195 /* 196 * an instance of the client. multiple devices may share an rbd client. 197 */ 198 struct rbd_client { 199 struct ceph_client *client; 200 struct kref kref; 201 struct list_head node; 202 }; 203 204 struct rbd_img_request; 205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 206 207 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 208 209 struct rbd_obj_request; 210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 211 212 enum obj_request_type { 213 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 214 }; 215 216 enum obj_operation_type { 217 OBJ_OP_WRITE, 218 OBJ_OP_READ, 219 OBJ_OP_DISCARD, 220 }; 221 222 enum obj_req_flags { 223 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 224 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 225 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 226 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 227 }; 228 229 struct rbd_obj_request { 230 const char *object_name; 231 u64 offset; /* object start byte */ 232 u64 length; /* bytes from offset */ 233 unsigned long flags; 234 235 /* 236 * An object request associated with an image will have its 237 * img_data flag set; a standalone object request will not. 238 * 239 * A standalone object request will have which == BAD_WHICH 240 * and a null obj_request pointer. 241 * 242 * An object request initiated in support of a layered image 243 * object (to check for its existence before a write) will 244 * have which == BAD_WHICH and a non-null obj_request pointer. 245 * 246 * Finally, an object request for rbd image data will have 247 * which != BAD_WHICH, and will have a non-null img_request 248 * pointer. The value of which will be in the range 249 * 0..(img_request->obj_request_count-1). 250 */ 251 union { 252 struct rbd_obj_request *obj_request; /* STAT op */ 253 struct { 254 struct rbd_img_request *img_request; 255 u64 img_offset; 256 /* links for img_request->obj_requests list */ 257 struct list_head links; 258 }; 259 }; 260 u32 which; /* posn image request list */ 261 262 enum obj_request_type type; 263 union { 264 struct bio *bio_list; 265 struct { 266 struct page **pages; 267 u32 page_count; 268 }; 269 }; 270 struct page **copyup_pages; 271 u32 copyup_page_count; 272 273 struct ceph_osd_request *osd_req; 274 275 u64 xferred; /* bytes transferred */ 276 int result; 277 278 rbd_obj_callback_t callback; 279 struct completion completion; 280 281 struct kref kref; 282 }; 283 284 enum img_req_flags { 285 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 286 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 287 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 288 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 289 }; 290 291 struct rbd_img_request { 292 struct rbd_device *rbd_dev; 293 u64 offset; /* starting image byte offset */ 294 u64 length; /* byte count from offset */ 295 unsigned long flags; 296 union { 297 u64 snap_id; /* for reads */ 298 struct ceph_snap_context *snapc; /* for writes */ 299 }; 300 union { 301 struct request *rq; /* block request */ 302 struct rbd_obj_request *obj_request; /* obj req initiator */ 303 }; 304 struct page **copyup_pages; 305 u32 copyup_page_count; 306 spinlock_t completion_lock;/* protects next_completion */ 307 u32 next_completion; 308 rbd_img_callback_t callback; 309 u64 xferred;/* aggregate bytes transferred */ 310 int result; /* first nonzero obj_request result */ 311 312 u32 obj_request_count; 313 struct list_head obj_requests; /* rbd_obj_request structs */ 314 315 struct kref kref; 316 }; 317 318 #define for_each_obj_request(ireq, oreq) \ 319 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 320 #define for_each_obj_request_from(ireq, oreq) \ 321 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 322 #define for_each_obj_request_safe(ireq, oreq, n) \ 323 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 324 325 struct rbd_mapping { 326 u64 size; 327 u64 features; 328 bool read_only; 329 }; 330 331 /* 332 * a single device 333 */ 334 struct rbd_device { 335 int dev_id; /* blkdev unique id */ 336 337 int major; /* blkdev assigned major */ 338 int minor; 339 struct gendisk *disk; /* blkdev's gendisk and rq */ 340 341 u32 image_format; /* Either 1 or 2 */ 342 struct rbd_client *rbd_client; 343 344 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 345 346 spinlock_t lock; /* queue, flags, open_count */ 347 348 struct rbd_image_header header; 349 unsigned long flags; /* possibly lock protected */ 350 struct rbd_spec *spec; 351 struct rbd_options *opts; 352 353 char *header_name; 354 355 struct ceph_file_layout layout; 356 357 struct ceph_osd_event *watch_event; 358 struct rbd_obj_request *watch_request; 359 360 struct rbd_spec *parent_spec; 361 u64 parent_overlap; 362 atomic_t parent_ref; 363 struct rbd_device *parent; 364 365 /* Block layer tags. */ 366 struct blk_mq_tag_set tag_set; 367 368 /* protects updating the header */ 369 struct rw_semaphore header_rwsem; 370 371 struct rbd_mapping mapping; 372 373 struct list_head node; 374 375 /* sysfs related */ 376 struct device dev; 377 unsigned long open_count; /* protected by lock */ 378 }; 379 380 /* 381 * Flag bits for rbd_dev->flags. If atomicity is required, 382 * rbd_dev->lock is used to protect access. 383 * 384 * Currently, only the "removing" flag (which is coupled with the 385 * "open_count" field) requires atomic access. 386 */ 387 enum rbd_dev_flags { 388 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 389 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 390 }; 391 392 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 393 394 static LIST_HEAD(rbd_dev_list); /* devices */ 395 static DEFINE_SPINLOCK(rbd_dev_list_lock); 396 397 static LIST_HEAD(rbd_client_list); /* clients */ 398 static DEFINE_SPINLOCK(rbd_client_list_lock); 399 400 /* Slab caches for frequently-allocated structures */ 401 402 static struct kmem_cache *rbd_img_request_cache; 403 static struct kmem_cache *rbd_obj_request_cache; 404 static struct kmem_cache *rbd_segment_name_cache; 405 406 static int rbd_major; 407 static DEFINE_IDA(rbd_dev_id_ida); 408 409 static struct workqueue_struct *rbd_wq; 410 411 /* 412 * Default to false for now, as single-major requires >= 0.75 version of 413 * userspace rbd utility. 414 */ 415 static bool single_major = false; 416 module_param(single_major, bool, S_IRUGO); 417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 418 419 static int rbd_img_request_submit(struct rbd_img_request *img_request); 420 421 static void rbd_dev_device_release(struct device *dev); 422 423 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 424 size_t count); 425 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 426 size_t count); 427 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 428 size_t count); 429 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 430 size_t count); 431 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 432 static void rbd_spec_put(struct rbd_spec *spec); 433 434 static int rbd_dev_id_to_minor(int dev_id) 435 { 436 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 437 } 438 439 static int minor_to_rbd_dev_id(int minor) 440 { 441 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 442 } 443 444 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 445 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 446 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 447 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 448 449 static struct attribute *rbd_bus_attrs[] = { 450 &bus_attr_add.attr, 451 &bus_attr_remove.attr, 452 &bus_attr_add_single_major.attr, 453 &bus_attr_remove_single_major.attr, 454 NULL, 455 }; 456 457 static umode_t rbd_bus_is_visible(struct kobject *kobj, 458 struct attribute *attr, int index) 459 { 460 if (!single_major && 461 (attr == &bus_attr_add_single_major.attr || 462 attr == &bus_attr_remove_single_major.attr)) 463 return 0; 464 465 return attr->mode; 466 } 467 468 static const struct attribute_group rbd_bus_group = { 469 .attrs = rbd_bus_attrs, 470 .is_visible = rbd_bus_is_visible, 471 }; 472 __ATTRIBUTE_GROUPS(rbd_bus); 473 474 static struct bus_type rbd_bus_type = { 475 .name = "rbd", 476 .bus_groups = rbd_bus_groups, 477 }; 478 479 static void rbd_root_dev_release(struct device *dev) 480 { 481 } 482 483 static struct device rbd_root_dev = { 484 .init_name = "rbd", 485 .release = rbd_root_dev_release, 486 }; 487 488 static __printf(2, 3) 489 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 490 { 491 struct va_format vaf; 492 va_list args; 493 494 va_start(args, fmt); 495 vaf.fmt = fmt; 496 vaf.va = &args; 497 498 if (!rbd_dev) 499 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 500 else if (rbd_dev->disk) 501 printk(KERN_WARNING "%s: %s: %pV\n", 502 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 503 else if (rbd_dev->spec && rbd_dev->spec->image_name) 504 printk(KERN_WARNING "%s: image %s: %pV\n", 505 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 506 else if (rbd_dev->spec && rbd_dev->spec->image_id) 507 printk(KERN_WARNING "%s: id %s: %pV\n", 508 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 509 else /* punt */ 510 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 511 RBD_DRV_NAME, rbd_dev, &vaf); 512 va_end(args); 513 } 514 515 #ifdef RBD_DEBUG 516 #define rbd_assert(expr) \ 517 if (unlikely(!(expr))) { \ 518 printk(KERN_ERR "\nAssertion failure in %s() " \ 519 "at line %d:\n\n" \ 520 "\trbd_assert(%s);\n\n", \ 521 __func__, __LINE__, #expr); \ 522 BUG(); \ 523 } 524 #else /* !RBD_DEBUG */ 525 # define rbd_assert(expr) ((void) 0) 526 #endif /* !RBD_DEBUG */ 527 528 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request); 529 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 530 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 531 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 532 533 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 534 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 535 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 536 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 537 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 538 u64 snap_id); 539 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 540 u8 *order, u64 *snap_size); 541 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 542 u64 *snap_features); 543 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 544 545 static int rbd_open(struct block_device *bdev, fmode_t mode) 546 { 547 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 548 bool removing = false; 549 550 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 551 return -EROFS; 552 553 spin_lock_irq(&rbd_dev->lock); 554 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 555 removing = true; 556 else 557 rbd_dev->open_count++; 558 spin_unlock_irq(&rbd_dev->lock); 559 if (removing) 560 return -ENOENT; 561 562 (void) get_device(&rbd_dev->dev); 563 564 return 0; 565 } 566 567 static void rbd_release(struct gendisk *disk, fmode_t mode) 568 { 569 struct rbd_device *rbd_dev = disk->private_data; 570 unsigned long open_count_before; 571 572 spin_lock_irq(&rbd_dev->lock); 573 open_count_before = rbd_dev->open_count--; 574 spin_unlock_irq(&rbd_dev->lock); 575 rbd_assert(open_count_before > 0); 576 577 put_device(&rbd_dev->dev); 578 } 579 580 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 581 { 582 int ret = 0; 583 int val; 584 bool ro; 585 bool ro_changed = false; 586 587 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 588 if (get_user(val, (int __user *)(arg))) 589 return -EFAULT; 590 591 ro = val ? true : false; 592 /* Snapshot doesn't allow to write*/ 593 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 594 return -EROFS; 595 596 spin_lock_irq(&rbd_dev->lock); 597 /* prevent others open this device */ 598 if (rbd_dev->open_count > 1) { 599 ret = -EBUSY; 600 goto out; 601 } 602 603 if (rbd_dev->mapping.read_only != ro) { 604 rbd_dev->mapping.read_only = ro; 605 ro_changed = true; 606 } 607 608 out: 609 spin_unlock_irq(&rbd_dev->lock); 610 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 611 if (ret == 0 && ro_changed) 612 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 613 614 return ret; 615 } 616 617 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 618 unsigned int cmd, unsigned long arg) 619 { 620 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 621 int ret = 0; 622 623 switch (cmd) { 624 case BLKROSET: 625 ret = rbd_ioctl_set_ro(rbd_dev, arg); 626 break; 627 default: 628 ret = -ENOTTY; 629 } 630 631 return ret; 632 } 633 634 #ifdef CONFIG_COMPAT 635 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 636 unsigned int cmd, unsigned long arg) 637 { 638 return rbd_ioctl(bdev, mode, cmd, arg); 639 } 640 #endif /* CONFIG_COMPAT */ 641 642 static const struct block_device_operations rbd_bd_ops = { 643 .owner = THIS_MODULE, 644 .open = rbd_open, 645 .release = rbd_release, 646 .ioctl = rbd_ioctl, 647 #ifdef CONFIG_COMPAT 648 .compat_ioctl = rbd_compat_ioctl, 649 #endif 650 }; 651 652 /* 653 * Initialize an rbd client instance. Success or not, this function 654 * consumes ceph_opts. Caller holds client_mutex. 655 */ 656 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 657 { 658 struct rbd_client *rbdc; 659 int ret = -ENOMEM; 660 661 dout("%s:\n", __func__); 662 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 663 if (!rbdc) 664 goto out_opt; 665 666 kref_init(&rbdc->kref); 667 INIT_LIST_HEAD(&rbdc->node); 668 669 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 670 if (IS_ERR(rbdc->client)) 671 goto out_rbdc; 672 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 673 674 ret = ceph_open_session(rbdc->client); 675 if (ret < 0) 676 goto out_client; 677 678 spin_lock(&rbd_client_list_lock); 679 list_add_tail(&rbdc->node, &rbd_client_list); 680 spin_unlock(&rbd_client_list_lock); 681 682 dout("%s: rbdc %p\n", __func__, rbdc); 683 684 return rbdc; 685 out_client: 686 ceph_destroy_client(rbdc->client); 687 out_rbdc: 688 kfree(rbdc); 689 out_opt: 690 if (ceph_opts) 691 ceph_destroy_options(ceph_opts); 692 dout("%s: error %d\n", __func__, ret); 693 694 return ERR_PTR(ret); 695 } 696 697 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 698 { 699 kref_get(&rbdc->kref); 700 701 return rbdc; 702 } 703 704 /* 705 * Find a ceph client with specific addr and configuration. If 706 * found, bump its reference count. 707 */ 708 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 709 { 710 struct rbd_client *client_node; 711 bool found = false; 712 713 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 714 return NULL; 715 716 spin_lock(&rbd_client_list_lock); 717 list_for_each_entry(client_node, &rbd_client_list, node) { 718 if (!ceph_compare_options(ceph_opts, client_node->client)) { 719 __rbd_get_client(client_node); 720 721 found = true; 722 break; 723 } 724 } 725 spin_unlock(&rbd_client_list_lock); 726 727 return found ? client_node : NULL; 728 } 729 730 /* 731 * (Per device) rbd map options 732 */ 733 enum { 734 Opt_queue_depth, 735 Opt_last_int, 736 /* int args above */ 737 Opt_last_string, 738 /* string args above */ 739 Opt_read_only, 740 Opt_read_write, 741 Opt_err 742 }; 743 744 static match_table_t rbd_opts_tokens = { 745 {Opt_queue_depth, "queue_depth=%d"}, 746 /* int args above */ 747 /* string args above */ 748 {Opt_read_only, "read_only"}, 749 {Opt_read_only, "ro"}, /* Alternate spelling */ 750 {Opt_read_write, "read_write"}, 751 {Opt_read_write, "rw"}, /* Alternate spelling */ 752 {Opt_err, NULL} 753 }; 754 755 struct rbd_options { 756 int queue_depth; 757 bool read_only; 758 }; 759 760 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 761 #define RBD_READ_ONLY_DEFAULT false 762 763 static int parse_rbd_opts_token(char *c, void *private) 764 { 765 struct rbd_options *rbd_opts = private; 766 substring_t argstr[MAX_OPT_ARGS]; 767 int token, intval, ret; 768 769 token = match_token(c, rbd_opts_tokens, argstr); 770 if (token < Opt_last_int) { 771 ret = match_int(&argstr[0], &intval); 772 if (ret < 0) { 773 pr_err("bad mount option arg (not int) at '%s'\n", c); 774 return ret; 775 } 776 dout("got int token %d val %d\n", token, intval); 777 } else if (token > Opt_last_int && token < Opt_last_string) { 778 dout("got string token %d val %s\n", token, argstr[0].from); 779 } else { 780 dout("got token %d\n", token); 781 } 782 783 switch (token) { 784 case Opt_queue_depth: 785 if (intval < 1) { 786 pr_err("queue_depth out of range\n"); 787 return -EINVAL; 788 } 789 rbd_opts->queue_depth = intval; 790 break; 791 case Opt_read_only: 792 rbd_opts->read_only = true; 793 break; 794 case Opt_read_write: 795 rbd_opts->read_only = false; 796 break; 797 default: 798 /* libceph prints "bad option" msg */ 799 return -EINVAL; 800 } 801 802 return 0; 803 } 804 805 static char* obj_op_name(enum obj_operation_type op_type) 806 { 807 switch (op_type) { 808 case OBJ_OP_READ: 809 return "read"; 810 case OBJ_OP_WRITE: 811 return "write"; 812 case OBJ_OP_DISCARD: 813 return "discard"; 814 default: 815 return "???"; 816 } 817 } 818 819 /* 820 * Get a ceph client with specific addr and configuration, if one does 821 * not exist create it. Either way, ceph_opts is consumed by this 822 * function. 823 */ 824 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 825 { 826 struct rbd_client *rbdc; 827 828 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 829 rbdc = rbd_client_find(ceph_opts); 830 if (rbdc) /* using an existing client */ 831 ceph_destroy_options(ceph_opts); 832 else 833 rbdc = rbd_client_create(ceph_opts); 834 mutex_unlock(&client_mutex); 835 836 return rbdc; 837 } 838 839 /* 840 * Destroy ceph client 841 * 842 * Caller must hold rbd_client_list_lock. 843 */ 844 static void rbd_client_release(struct kref *kref) 845 { 846 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 847 848 dout("%s: rbdc %p\n", __func__, rbdc); 849 spin_lock(&rbd_client_list_lock); 850 list_del(&rbdc->node); 851 spin_unlock(&rbd_client_list_lock); 852 853 ceph_destroy_client(rbdc->client); 854 kfree(rbdc); 855 } 856 857 /* 858 * Drop reference to ceph client node. If it's not referenced anymore, release 859 * it. 860 */ 861 static void rbd_put_client(struct rbd_client *rbdc) 862 { 863 if (rbdc) 864 kref_put(&rbdc->kref, rbd_client_release); 865 } 866 867 static bool rbd_image_format_valid(u32 image_format) 868 { 869 return image_format == 1 || image_format == 2; 870 } 871 872 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 873 { 874 size_t size; 875 u32 snap_count; 876 877 /* The header has to start with the magic rbd header text */ 878 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 879 return false; 880 881 /* The bio layer requires at least sector-sized I/O */ 882 883 if (ondisk->options.order < SECTOR_SHIFT) 884 return false; 885 886 /* If we use u64 in a few spots we may be able to loosen this */ 887 888 if (ondisk->options.order > 8 * sizeof (int) - 1) 889 return false; 890 891 /* 892 * The size of a snapshot header has to fit in a size_t, and 893 * that limits the number of snapshots. 894 */ 895 snap_count = le32_to_cpu(ondisk->snap_count); 896 size = SIZE_MAX - sizeof (struct ceph_snap_context); 897 if (snap_count > size / sizeof (__le64)) 898 return false; 899 900 /* 901 * Not only that, but the size of the entire the snapshot 902 * header must also be representable in a size_t. 903 */ 904 size -= snap_count * sizeof (__le64); 905 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 906 return false; 907 908 return true; 909 } 910 911 /* 912 * Fill an rbd image header with information from the given format 1 913 * on-disk header. 914 */ 915 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 916 struct rbd_image_header_ondisk *ondisk) 917 { 918 struct rbd_image_header *header = &rbd_dev->header; 919 bool first_time = header->object_prefix == NULL; 920 struct ceph_snap_context *snapc; 921 char *object_prefix = NULL; 922 char *snap_names = NULL; 923 u64 *snap_sizes = NULL; 924 u32 snap_count; 925 size_t size; 926 int ret = -ENOMEM; 927 u32 i; 928 929 /* Allocate this now to avoid having to handle failure below */ 930 931 if (first_time) { 932 size_t len; 933 934 len = strnlen(ondisk->object_prefix, 935 sizeof (ondisk->object_prefix)); 936 object_prefix = kmalloc(len + 1, GFP_KERNEL); 937 if (!object_prefix) 938 return -ENOMEM; 939 memcpy(object_prefix, ondisk->object_prefix, len); 940 object_prefix[len] = '\0'; 941 } 942 943 /* Allocate the snapshot context and fill it in */ 944 945 snap_count = le32_to_cpu(ondisk->snap_count); 946 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 947 if (!snapc) 948 goto out_err; 949 snapc->seq = le64_to_cpu(ondisk->snap_seq); 950 if (snap_count) { 951 struct rbd_image_snap_ondisk *snaps; 952 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 953 954 /* We'll keep a copy of the snapshot names... */ 955 956 if (snap_names_len > (u64)SIZE_MAX) 957 goto out_2big; 958 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 959 if (!snap_names) 960 goto out_err; 961 962 /* ...as well as the array of their sizes. */ 963 964 size = snap_count * sizeof (*header->snap_sizes); 965 snap_sizes = kmalloc(size, GFP_KERNEL); 966 if (!snap_sizes) 967 goto out_err; 968 969 /* 970 * Copy the names, and fill in each snapshot's id 971 * and size. 972 * 973 * Note that rbd_dev_v1_header_info() guarantees the 974 * ondisk buffer we're working with has 975 * snap_names_len bytes beyond the end of the 976 * snapshot id array, this memcpy() is safe. 977 */ 978 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 979 snaps = ondisk->snaps; 980 for (i = 0; i < snap_count; i++) { 981 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 982 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 983 } 984 } 985 986 /* We won't fail any more, fill in the header */ 987 988 if (first_time) { 989 header->object_prefix = object_prefix; 990 header->obj_order = ondisk->options.order; 991 header->crypt_type = ondisk->options.crypt_type; 992 header->comp_type = ondisk->options.comp_type; 993 /* The rest aren't used for format 1 images */ 994 header->stripe_unit = 0; 995 header->stripe_count = 0; 996 header->features = 0; 997 } else { 998 ceph_put_snap_context(header->snapc); 999 kfree(header->snap_names); 1000 kfree(header->snap_sizes); 1001 } 1002 1003 /* The remaining fields always get updated (when we refresh) */ 1004 1005 header->image_size = le64_to_cpu(ondisk->image_size); 1006 header->snapc = snapc; 1007 header->snap_names = snap_names; 1008 header->snap_sizes = snap_sizes; 1009 1010 return 0; 1011 out_2big: 1012 ret = -EIO; 1013 out_err: 1014 kfree(snap_sizes); 1015 kfree(snap_names); 1016 ceph_put_snap_context(snapc); 1017 kfree(object_prefix); 1018 1019 return ret; 1020 } 1021 1022 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1023 { 1024 const char *snap_name; 1025 1026 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1027 1028 /* Skip over names until we find the one we are looking for */ 1029 1030 snap_name = rbd_dev->header.snap_names; 1031 while (which--) 1032 snap_name += strlen(snap_name) + 1; 1033 1034 return kstrdup(snap_name, GFP_KERNEL); 1035 } 1036 1037 /* 1038 * Snapshot id comparison function for use with qsort()/bsearch(). 1039 * Note that result is for snapshots in *descending* order. 1040 */ 1041 static int snapid_compare_reverse(const void *s1, const void *s2) 1042 { 1043 u64 snap_id1 = *(u64 *)s1; 1044 u64 snap_id2 = *(u64 *)s2; 1045 1046 if (snap_id1 < snap_id2) 1047 return 1; 1048 return snap_id1 == snap_id2 ? 0 : -1; 1049 } 1050 1051 /* 1052 * Search a snapshot context to see if the given snapshot id is 1053 * present. 1054 * 1055 * Returns the position of the snapshot id in the array if it's found, 1056 * or BAD_SNAP_INDEX otherwise. 1057 * 1058 * Note: The snapshot array is in kept sorted (by the osd) in 1059 * reverse order, highest snapshot id first. 1060 */ 1061 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1062 { 1063 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1064 u64 *found; 1065 1066 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1067 sizeof (snap_id), snapid_compare_reverse); 1068 1069 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1070 } 1071 1072 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1073 u64 snap_id) 1074 { 1075 u32 which; 1076 const char *snap_name; 1077 1078 which = rbd_dev_snap_index(rbd_dev, snap_id); 1079 if (which == BAD_SNAP_INDEX) 1080 return ERR_PTR(-ENOENT); 1081 1082 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1083 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1084 } 1085 1086 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1087 { 1088 if (snap_id == CEPH_NOSNAP) 1089 return RBD_SNAP_HEAD_NAME; 1090 1091 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1092 if (rbd_dev->image_format == 1) 1093 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1094 1095 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1096 } 1097 1098 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1099 u64 *snap_size) 1100 { 1101 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1102 if (snap_id == CEPH_NOSNAP) { 1103 *snap_size = rbd_dev->header.image_size; 1104 } else if (rbd_dev->image_format == 1) { 1105 u32 which; 1106 1107 which = rbd_dev_snap_index(rbd_dev, snap_id); 1108 if (which == BAD_SNAP_INDEX) 1109 return -ENOENT; 1110 1111 *snap_size = rbd_dev->header.snap_sizes[which]; 1112 } else { 1113 u64 size = 0; 1114 int ret; 1115 1116 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1117 if (ret) 1118 return ret; 1119 1120 *snap_size = size; 1121 } 1122 return 0; 1123 } 1124 1125 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1126 u64 *snap_features) 1127 { 1128 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1129 if (snap_id == CEPH_NOSNAP) { 1130 *snap_features = rbd_dev->header.features; 1131 } else if (rbd_dev->image_format == 1) { 1132 *snap_features = 0; /* No features for format 1 */ 1133 } else { 1134 u64 features = 0; 1135 int ret; 1136 1137 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1138 if (ret) 1139 return ret; 1140 1141 *snap_features = features; 1142 } 1143 return 0; 1144 } 1145 1146 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1147 { 1148 u64 snap_id = rbd_dev->spec->snap_id; 1149 u64 size = 0; 1150 u64 features = 0; 1151 int ret; 1152 1153 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1154 if (ret) 1155 return ret; 1156 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1157 if (ret) 1158 return ret; 1159 1160 rbd_dev->mapping.size = size; 1161 rbd_dev->mapping.features = features; 1162 1163 return 0; 1164 } 1165 1166 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1167 { 1168 rbd_dev->mapping.size = 0; 1169 rbd_dev->mapping.features = 0; 1170 } 1171 1172 static void rbd_segment_name_free(const char *name) 1173 { 1174 /* The explicit cast here is needed to drop the const qualifier */ 1175 1176 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1177 } 1178 1179 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1180 { 1181 char *name; 1182 u64 segment; 1183 int ret; 1184 char *name_format; 1185 1186 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1187 if (!name) 1188 return NULL; 1189 segment = offset >> rbd_dev->header.obj_order; 1190 name_format = "%s.%012llx"; 1191 if (rbd_dev->image_format == 2) 1192 name_format = "%s.%016llx"; 1193 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1194 rbd_dev->header.object_prefix, segment); 1195 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1196 pr_err("error formatting segment name for #%llu (%d)\n", 1197 segment, ret); 1198 rbd_segment_name_free(name); 1199 name = NULL; 1200 } 1201 1202 return name; 1203 } 1204 1205 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1206 { 1207 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1208 1209 return offset & (segment_size - 1); 1210 } 1211 1212 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1213 u64 offset, u64 length) 1214 { 1215 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1216 1217 offset &= segment_size - 1; 1218 1219 rbd_assert(length <= U64_MAX - offset); 1220 if (offset + length > segment_size) 1221 length = segment_size - offset; 1222 1223 return length; 1224 } 1225 1226 /* 1227 * returns the size of an object in the image 1228 */ 1229 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1230 { 1231 return 1 << header->obj_order; 1232 } 1233 1234 /* 1235 * bio helpers 1236 */ 1237 1238 static void bio_chain_put(struct bio *chain) 1239 { 1240 struct bio *tmp; 1241 1242 while (chain) { 1243 tmp = chain; 1244 chain = chain->bi_next; 1245 bio_put(tmp); 1246 } 1247 } 1248 1249 /* 1250 * zeros a bio chain, starting at specific offset 1251 */ 1252 static void zero_bio_chain(struct bio *chain, int start_ofs) 1253 { 1254 struct bio_vec bv; 1255 struct bvec_iter iter; 1256 unsigned long flags; 1257 void *buf; 1258 int pos = 0; 1259 1260 while (chain) { 1261 bio_for_each_segment(bv, chain, iter) { 1262 if (pos + bv.bv_len > start_ofs) { 1263 int remainder = max(start_ofs - pos, 0); 1264 buf = bvec_kmap_irq(&bv, &flags); 1265 memset(buf + remainder, 0, 1266 bv.bv_len - remainder); 1267 flush_dcache_page(bv.bv_page); 1268 bvec_kunmap_irq(buf, &flags); 1269 } 1270 pos += bv.bv_len; 1271 } 1272 1273 chain = chain->bi_next; 1274 } 1275 } 1276 1277 /* 1278 * similar to zero_bio_chain(), zeros data defined by a page array, 1279 * starting at the given byte offset from the start of the array and 1280 * continuing up to the given end offset. The pages array is 1281 * assumed to be big enough to hold all bytes up to the end. 1282 */ 1283 static void zero_pages(struct page **pages, u64 offset, u64 end) 1284 { 1285 struct page **page = &pages[offset >> PAGE_SHIFT]; 1286 1287 rbd_assert(end > offset); 1288 rbd_assert(end - offset <= (u64)SIZE_MAX); 1289 while (offset < end) { 1290 size_t page_offset; 1291 size_t length; 1292 unsigned long flags; 1293 void *kaddr; 1294 1295 page_offset = offset & ~PAGE_MASK; 1296 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1297 local_irq_save(flags); 1298 kaddr = kmap_atomic(*page); 1299 memset(kaddr + page_offset, 0, length); 1300 flush_dcache_page(*page); 1301 kunmap_atomic(kaddr); 1302 local_irq_restore(flags); 1303 1304 offset += length; 1305 page++; 1306 } 1307 } 1308 1309 /* 1310 * Clone a portion of a bio, starting at the given byte offset 1311 * and continuing for the number of bytes indicated. 1312 */ 1313 static struct bio *bio_clone_range(struct bio *bio_src, 1314 unsigned int offset, 1315 unsigned int len, 1316 gfp_t gfpmask) 1317 { 1318 struct bio *bio; 1319 1320 bio = bio_clone(bio_src, gfpmask); 1321 if (!bio) 1322 return NULL; /* ENOMEM */ 1323 1324 bio_advance(bio, offset); 1325 bio->bi_iter.bi_size = len; 1326 1327 return bio; 1328 } 1329 1330 /* 1331 * Clone a portion of a bio chain, starting at the given byte offset 1332 * into the first bio in the source chain and continuing for the 1333 * number of bytes indicated. The result is another bio chain of 1334 * exactly the given length, or a null pointer on error. 1335 * 1336 * The bio_src and offset parameters are both in-out. On entry they 1337 * refer to the first source bio and the offset into that bio where 1338 * the start of data to be cloned is located. 1339 * 1340 * On return, bio_src is updated to refer to the bio in the source 1341 * chain that contains first un-cloned byte, and *offset will 1342 * contain the offset of that byte within that bio. 1343 */ 1344 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1345 unsigned int *offset, 1346 unsigned int len, 1347 gfp_t gfpmask) 1348 { 1349 struct bio *bi = *bio_src; 1350 unsigned int off = *offset; 1351 struct bio *chain = NULL; 1352 struct bio **end; 1353 1354 /* Build up a chain of clone bios up to the limit */ 1355 1356 if (!bi || off >= bi->bi_iter.bi_size || !len) 1357 return NULL; /* Nothing to clone */ 1358 1359 end = &chain; 1360 while (len) { 1361 unsigned int bi_size; 1362 struct bio *bio; 1363 1364 if (!bi) { 1365 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1366 goto out_err; /* EINVAL; ran out of bio's */ 1367 } 1368 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1369 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1370 if (!bio) 1371 goto out_err; /* ENOMEM */ 1372 1373 *end = bio; 1374 end = &bio->bi_next; 1375 1376 off += bi_size; 1377 if (off == bi->bi_iter.bi_size) { 1378 bi = bi->bi_next; 1379 off = 0; 1380 } 1381 len -= bi_size; 1382 } 1383 *bio_src = bi; 1384 *offset = off; 1385 1386 return chain; 1387 out_err: 1388 bio_chain_put(chain); 1389 1390 return NULL; 1391 } 1392 1393 /* 1394 * The default/initial value for all object request flags is 0. For 1395 * each flag, once its value is set to 1 it is never reset to 0 1396 * again. 1397 */ 1398 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1399 { 1400 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1401 struct rbd_device *rbd_dev; 1402 1403 rbd_dev = obj_request->img_request->rbd_dev; 1404 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1405 obj_request); 1406 } 1407 } 1408 1409 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1410 { 1411 smp_mb(); 1412 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1413 } 1414 1415 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1416 { 1417 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1418 struct rbd_device *rbd_dev = NULL; 1419 1420 if (obj_request_img_data_test(obj_request)) 1421 rbd_dev = obj_request->img_request->rbd_dev; 1422 rbd_warn(rbd_dev, "obj_request %p already marked done", 1423 obj_request); 1424 } 1425 } 1426 1427 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1428 { 1429 smp_mb(); 1430 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1431 } 1432 1433 /* 1434 * This sets the KNOWN flag after (possibly) setting the EXISTS 1435 * flag. The latter is set based on the "exists" value provided. 1436 * 1437 * Note that for our purposes once an object exists it never goes 1438 * away again. It's possible that the response from two existence 1439 * checks are separated by the creation of the target object, and 1440 * the first ("doesn't exist") response arrives *after* the second 1441 * ("does exist"). In that case we ignore the second one. 1442 */ 1443 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1444 bool exists) 1445 { 1446 if (exists) 1447 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1448 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1449 smp_mb(); 1450 } 1451 1452 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1453 { 1454 smp_mb(); 1455 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1456 } 1457 1458 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1459 { 1460 smp_mb(); 1461 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1462 } 1463 1464 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1465 { 1466 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1467 1468 return obj_request->img_offset < 1469 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1470 } 1471 1472 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1473 { 1474 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1475 atomic_read(&obj_request->kref.refcount)); 1476 kref_get(&obj_request->kref); 1477 } 1478 1479 static void rbd_obj_request_destroy(struct kref *kref); 1480 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1481 { 1482 rbd_assert(obj_request != NULL); 1483 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1484 atomic_read(&obj_request->kref.refcount)); 1485 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1486 } 1487 1488 static void rbd_img_request_get(struct rbd_img_request *img_request) 1489 { 1490 dout("%s: img %p (was %d)\n", __func__, img_request, 1491 atomic_read(&img_request->kref.refcount)); 1492 kref_get(&img_request->kref); 1493 } 1494 1495 static bool img_request_child_test(struct rbd_img_request *img_request); 1496 static void rbd_parent_request_destroy(struct kref *kref); 1497 static void rbd_img_request_destroy(struct kref *kref); 1498 static void rbd_img_request_put(struct rbd_img_request *img_request) 1499 { 1500 rbd_assert(img_request != NULL); 1501 dout("%s: img %p (was %d)\n", __func__, img_request, 1502 atomic_read(&img_request->kref.refcount)); 1503 if (img_request_child_test(img_request)) 1504 kref_put(&img_request->kref, rbd_parent_request_destroy); 1505 else 1506 kref_put(&img_request->kref, rbd_img_request_destroy); 1507 } 1508 1509 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1510 struct rbd_obj_request *obj_request) 1511 { 1512 rbd_assert(obj_request->img_request == NULL); 1513 1514 /* Image request now owns object's original reference */ 1515 obj_request->img_request = img_request; 1516 obj_request->which = img_request->obj_request_count; 1517 rbd_assert(!obj_request_img_data_test(obj_request)); 1518 obj_request_img_data_set(obj_request); 1519 rbd_assert(obj_request->which != BAD_WHICH); 1520 img_request->obj_request_count++; 1521 list_add_tail(&obj_request->links, &img_request->obj_requests); 1522 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1523 obj_request->which); 1524 } 1525 1526 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1527 struct rbd_obj_request *obj_request) 1528 { 1529 rbd_assert(obj_request->which != BAD_WHICH); 1530 1531 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1532 obj_request->which); 1533 list_del(&obj_request->links); 1534 rbd_assert(img_request->obj_request_count > 0); 1535 img_request->obj_request_count--; 1536 rbd_assert(obj_request->which == img_request->obj_request_count); 1537 obj_request->which = BAD_WHICH; 1538 rbd_assert(obj_request_img_data_test(obj_request)); 1539 rbd_assert(obj_request->img_request == img_request); 1540 obj_request->img_request = NULL; 1541 obj_request->callback = NULL; 1542 rbd_obj_request_put(obj_request); 1543 } 1544 1545 static bool obj_request_type_valid(enum obj_request_type type) 1546 { 1547 switch (type) { 1548 case OBJ_REQUEST_NODATA: 1549 case OBJ_REQUEST_BIO: 1550 case OBJ_REQUEST_PAGES: 1551 return true; 1552 default: 1553 return false; 1554 } 1555 } 1556 1557 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1558 struct rbd_obj_request *obj_request) 1559 { 1560 dout("%s %p\n", __func__, obj_request); 1561 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1562 } 1563 1564 static void rbd_obj_request_end(struct rbd_obj_request *obj_request) 1565 { 1566 dout("%s %p\n", __func__, obj_request); 1567 ceph_osdc_cancel_request(obj_request->osd_req); 1568 } 1569 1570 /* 1571 * Wait for an object request to complete. If interrupted, cancel the 1572 * underlying osd request. 1573 * 1574 * @timeout: in jiffies, 0 means "wait forever" 1575 */ 1576 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request, 1577 unsigned long timeout) 1578 { 1579 long ret; 1580 1581 dout("%s %p\n", __func__, obj_request); 1582 ret = wait_for_completion_interruptible_timeout( 1583 &obj_request->completion, 1584 ceph_timeout_jiffies(timeout)); 1585 if (ret <= 0) { 1586 if (ret == 0) 1587 ret = -ETIMEDOUT; 1588 rbd_obj_request_end(obj_request); 1589 } else { 1590 ret = 0; 1591 } 1592 1593 dout("%s %p ret %d\n", __func__, obj_request, (int)ret); 1594 return ret; 1595 } 1596 1597 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1598 { 1599 return __rbd_obj_request_wait(obj_request, 0); 1600 } 1601 1602 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request, 1603 unsigned long timeout) 1604 { 1605 return __rbd_obj_request_wait(obj_request, timeout); 1606 } 1607 1608 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1609 { 1610 1611 dout("%s: img %p\n", __func__, img_request); 1612 1613 /* 1614 * If no error occurred, compute the aggregate transfer 1615 * count for the image request. We could instead use 1616 * atomic64_cmpxchg() to update it as each object request 1617 * completes; not clear which way is better off hand. 1618 */ 1619 if (!img_request->result) { 1620 struct rbd_obj_request *obj_request; 1621 u64 xferred = 0; 1622 1623 for_each_obj_request(img_request, obj_request) 1624 xferred += obj_request->xferred; 1625 img_request->xferred = xferred; 1626 } 1627 1628 if (img_request->callback) 1629 img_request->callback(img_request); 1630 else 1631 rbd_img_request_put(img_request); 1632 } 1633 1634 /* 1635 * The default/initial value for all image request flags is 0. Each 1636 * is conditionally set to 1 at image request initialization time 1637 * and currently never change thereafter. 1638 */ 1639 static void img_request_write_set(struct rbd_img_request *img_request) 1640 { 1641 set_bit(IMG_REQ_WRITE, &img_request->flags); 1642 smp_mb(); 1643 } 1644 1645 static bool img_request_write_test(struct rbd_img_request *img_request) 1646 { 1647 smp_mb(); 1648 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1649 } 1650 1651 /* 1652 * Set the discard flag when the img_request is an discard request 1653 */ 1654 static void img_request_discard_set(struct rbd_img_request *img_request) 1655 { 1656 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1657 smp_mb(); 1658 } 1659 1660 static bool img_request_discard_test(struct rbd_img_request *img_request) 1661 { 1662 smp_mb(); 1663 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1664 } 1665 1666 static void img_request_child_set(struct rbd_img_request *img_request) 1667 { 1668 set_bit(IMG_REQ_CHILD, &img_request->flags); 1669 smp_mb(); 1670 } 1671 1672 static void img_request_child_clear(struct rbd_img_request *img_request) 1673 { 1674 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1675 smp_mb(); 1676 } 1677 1678 static bool img_request_child_test(struct rbd_img_request *img_request) 1679 { 1680 smp_mb(); 1681 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1682 } 1683 1684 static void img_request_layered_set(struct rbd_img_request *img_request) 1685 { 1686 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1687 smp_mb(); 1688 } 1689 1690 static void img_request_layered_clear(struct rbd_img_request *img_request) 1691 { 1692 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1693 smp_mb(); 1694 } 1695 1696 static bool img_request_layered_test(struct rbd_img_request *img_request) 1697 { 1698 smp_mb(); 1699 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1700 } 1701 1702 static enum obj_operation_type 1703 rbd_img_request_op_type(struct rbd_img_request *img_request) 1704 { 1705 if (img_request_write_test(img_request)) 1706 return OBJ_OP_WRITE; 1707 else if (img_request_discard_test(img_request)) 1708 return OBJ_OP_DISCARD; 1709 else 1710 return OBJ_OP_READ; 1711 } 1712 1713 static void 1714 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1715 { 1716 u64 xferred = obj_request->xferred; 1717 u64 length = obj_request->length; 1718 1719 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1720 obj_request, obj_request->img_request, obj_request->result, 1721 xferred, length); 1722 /* 1723 * ENOENT means a hole in the image. We zero-fill the entire 1724 * length of the request. A short read also implies zero-fill 1725 * to the end of the request. An error requires the whole 1726 * length of the request to be reported finished with an error 1727 * to the block layer. In each case we update the xferred 1728 * count to indicate the whole request was satisfied. 1729 */ 1730 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1731 if (obj_request->result == -ENOENT) { 1732 if (obj_request->type == OBJ_REQUEST_BIO) 1733 zero_bio_chain(obj_request->bio_list, 0); 1734 else 1735 zero_pages(obj_request->pages, 0, length); 1736 obj_request->result = 0; 1737 } else if (xferred < length && !obj_request->result) { 1738 if (obj_request->type == OBJ_REQUEST_BIO) 1739 zero_bio_chain(obj_request->bio_list, xferred); 1740 else 1741 zero_pages(obj_request->pages, xferred, length); 1742 } 1743 obj_request->xferred = length; 1744 obj_request_done_set(obj_request); 1745 } 1746 1747 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1748 { 1749 dout("%s: obj %p cb %p\n", __func__, obj_request, 1750 obj_request->callback); 1751 if (obj_request->callback) 1752 obj_request->callback(obj_request); 1753 else 1754 complete_all(&obj_request->completion); 1755 } 1756 1757 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1758 { 1759 dout("%s: obj %p\n", __func__, obj_request); 1760 obj_request_done_set(obj_request); 1761 } 1762 1763 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1764 { 1765 struct rbd_img_request *img_request = NULL; 1766 struct rbd_device *rbd_dev = NULL; 1767 bool layered = false; 1768 1769 if (obj_request_img_data_test(obj_request)) { 1770 img_request = obj_request->img_request; 1771 layered = img_request && img_request_layered_test(img_request); 1772 rbd_dev = img_request->rbd_dev; 1773 } 1774 1775 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1776 obj_request, img_request, obj_request->result, 1777 obj_request->xferred, obj_request->length); 1778 if (layered && obj_request->result == -ENOENT && 1779 obj_request->img_offset < rbd_dev->parent_overlap) 1780 rbd_img_parent_read(obj_request); 1781 else if (img_request) 1782 rbd_img_obj_request_read_callback(obj_request); 1783 else 1784 obj_request_done_set(obj_request); 1785 } 1786 1787 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1788 { 1789 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1790 obj_request->result, obj_request->length); 1791 /* 1792 * There is no such thing as a successful short write. Set 1793 * it to our originally-requested length. 1794 */ 1795 obj_request->xferred = obj_request->length; 1796 obj_request_done_set(obj_request); 1797 } 1798 1799 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1800 { 1801 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1802 obj_request->result, obj_request->length); 1803 /* 1804 * There is no such thing as a successful short discard. Set 1805 * it to our originally-requested length. 1806 */ 1807 obj_request->xferred = obj_request->length; 1808 /* discarding a non-existent object is not a problem */ 1809 if (obj_request->result == -ENOENT) 1810 obj_request->result = 0; 1811 obj_request_done_set(obj_request); 1812 } 1813 1814 /* 1815 * For a simple stat call there's nothing to do. We'll do more if 1816 * this is part of a write sequence for a layered image. 1817 */ 1818 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1819 { 1820 dout("%s: obj %p\n", __func__, obj_request); 1821 obj_request_done_set(obj_request); 1822 } 1823 1824 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request) 1825 { 1826 dout("%s: obj %p\n", __func__, obj_request); 1827 1828 if (obj_request_img_data_test(obj_request)) 1829 rbd_osd_copyup_callback(obj_request); 1830 else 1831 obj_request_done_set(obj_request); 1832 } 1833 1834 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1835 struct ceph_msg *msg) 1836 { 1837 struct rbd_obj_request *obj_request = osd_req->r_priv; 1838 u16 opcode; 1839 1840 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1841 rbd_assert(osd_req == obj_request->osd_req); 1842 if (obj_request_img_data_test(obj_request)) { 1843 rbd_assert(obj_request->img_request); 1844 rbd_assert(obj_request->which != BAD_WHICH); 1845 } else { 1846 rbd_assert(obj_request->which == BAD_WHICH); 1847 } 1848 1849 if (osd_req->r_result < 0) 1850 obj_request->result = osd_req->r_result; 1851 1852 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP); 1853 1854 /* 1855 * We support a 64-bit length, but ultimately it has to be 1856 * passed to the block layer, which just supports a 32-bit 1857 * length field. 1858 */ 1859 obj_request->xferred = osd_req->r_reply_op_len[0]; 1860 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1861 1862 opcode = osd_req->r_ops[0].op; 1863 switch (opcode) { 1864 case CEPH_OSD_OP_READ: 1865 rbd_osd_read_callback(obj_request); 1866 break; 1867 case CEPH_OSD_OP_SETALLOCHINT: 1868 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE || 1869 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL); 1870 /* fall through */ 1871 case CEPH_OSD_OP_WRITE: 1872 case CEPH_OSD_OP_WRITEFULL: 1873 rbd_osd_write_callback(obj_request); 1874 break; 1875 case CEPH_OSD_OP_STAT: 1876 rbd_osd_stat_callback(obj_request); 1877 break; 1878 case CEPH_OSD_OP_DELETE: 1879 case CEPH_OSD_OP_TRUNCATE: 1880 case CEPH_OSD_OP_ZERO: 1881 rbd_osd_discard_callback(obj_request); 1882 break; 1883 case CEPH_OSD_OP_CALL: 1884 rbd_osd_call_callback(obj_request); 1885 break; 1886 case CEPH_OSD_OP_NOTIFY_ACK: 1887 case CEPH_OSD_OP_WATCH: 1888 rbd_osd_trivial_callback(obj_request); 1889 break; 1890 default: 1891 rbd_warn(NULL, "%s: unsupported op %hu", 1892 obj_request->object_name, (unsigned short) opcode); 1893 break; 1894 } 1895 1896 if (obj_request_done_test(obj_request)) 1897 rbd_obj_request_complete(obj_request); 1898 } 1899 1900 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1901 { 1902 struct rbd_img_request *img_request = obj_request->img_request; 1903 struct ceph_osd_request *osd_req = obj_request->osd_req; 1904 u64 snap_id; 1905 1906 rbd_assert(osd_req != NULL); 1907 1908 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1909 ceph_osdc_build_request(osd_req, obj_request->offset, 1910 NULL, snap_id, NULL); 1911 } 1912 1913 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1914 { 1915 struct rbd_img_request *img_request = obj_request->img_request; 1916 struct ceph_osd_request *osd_req = obj_request->osd_req; 1917 struct ceph_snap_context *snapc; 1918 struct timespec mtime = CURRENT_TIME; 1919 1920 rbd_assert(osd_req != NULL); 1921 1922 snapc = img_request ? img_request->snapc : NULL; 1923 ceph_osdc_build_request(osd_req, obj_request->offset, 1924 snapc, CEPH_NOSNAP, &mtime); 1925 } 1926 1927 /* 1928 * Create an osd request. A read request has one osd op (read). 1929 * A write request has either one (watch) or two (hint+write) osd ops. 1930 * (All rbd data writes are prefixed with an allocation hint op, but 1931 * technically osd watch is a write request, hence this distinction.) 1932 */ 1933 static struct ceph_osd_request *rbd_osd_req_create( 1934 struct rbd_device *rbd_dev, 1935 enum obj_operation_type op_type, 1936 unsigned int num_ops, 1937 struct rbd_obj_request *obj_request) 1938 { 1939 struct ceph_snap_context *snapc = NULL; 1940 struct ceph_osd_client *osdc; 1941 struct ceph_osd_request *osd_req; 1942 1943 if (obj_request_img_data_test(obj_request) && 1944 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1945 struct rbd_img_request *img_request = obj_request->img_request; 1946 if (op_type == OBJ_OP_WRITE) { 1947 rbd_assert(img_request_write_test(img_request)); 1948 } else { 1949 rbd_assert(img_request_discard_test(img_request)); 1950 } 1951 snapc = img_request->snapc; 1952 } 1953 1954 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1955 1956 /* Allocate and initialize the request, for the num_ops ops */ 1957 1958 osdc = &rbd_dev->rbd_client->client->osdc; 1959 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1960 GFP_ATOMIC); 1961 if (!osd_req) 1962 return NULL; /* ENOMEM */ 1963 1964 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 1965 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1966 else 1967 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1968 1969 osd_req->r_callback = rbd_osd_req_callback; 1970 osd_req->r_priv = obj_request; 1971 1972 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1973 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1974 1975 return osd_req; 1976 } 1977 1978 /* 1979 * Create a copyup osd request based on the information in the object 1980 * request supplied. A copyup request has two or three osd ops, a 1981 * copyup method call, potentially a hint op, and a write or truncate 1982 * or zero op. 1983 */ 1984 static struct ceph_osd_request * 1985 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1986 { 1987 struct rbd_img_request *img_request; 1988 struct ceph_snap_context *snapc; 1989 struct rbd_device *rbd_dev; 1990 struct ceph_osd_client *osdc; 1991 struct ceph_osd_request *osd_req; 1992 int num_osd_ops = 3; 1993 1994 rbd_assert(obj_request_img_data_test(obj_request)); 1995 img_request = obj_request->img_request; 1996 rbd_assert(img_request); 1997 rbd_assert(img_request_write_test(img_request) || 1998 img_request_discard_test(img_request)); 1999 2000 if (img_request_discard_test(img_request)) 2001 num_osd_ops = 2; 2002 2003 /* Allocate and initialize the request, for all the ops */ 2004 2005 snapc = img_request->snapc; 2006 rbd_dev = img_request->rbd_dev; 2007 osdc = &rbd_dev->rbd_client->client->osdc; 2008 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops, 2009 false, GFP_ATOMIC); 2010 if (!osd_req) 2011 return NULL; /* ENOMEM */ 2012 2013 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 2014 osd_req->r_callback = rbd_osd_req_callback; 2015 osd_req->r_priv = obj_request; 2016 2017 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 2018 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 2019 2020 return osd_req; 2021 } 2022 2023 2024 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 2025 { 2026 ceph_osdc_put_request(osd_req); 2027 } 2028 2029 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 2030 2031 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 2032 u64 offset, u64 length, 2033 enum obj_request_type type) 2034 { 2035 struct rbd_obj_request *obj_request; 2036 size_t size; 2037 char *name; 2038 2039 rbd_assert(obj_request_type_valid(type)); 2040 2041 size = strlen(object_name) + 1; 2042 name = kmalloc(size, GFP_NOIO); 2043 if (!name) 2044 return NULL; 2045 2046 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2047 if (!obj_request) { 2048 kfree(name); 2049 return NULL; 2050 } 2051 2052 obj_request->object_name = memcpy(name, object_name, size); 2053 obj_request->offset = offset; 2054 obj_request->length = length; 2055 obj_request->flags = 0; 2056 obj_request->which = BAD_WHICH; 2057 obj_request->type = type; 2058 INIT_LIST_HEAD(&obj_request->links); 2059 init_completion(&obj_request->completion); 2060 kref_init(&obj_request->kref); 2061 2062 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 2063 offset, length, (int)type, obj_request); 2064 2065 return obj_request; 2066 } 2067 2068 static void rbd_obj_request_destroy(struct kref *kref) 2069 { 2070 struct rbd_obj_request *obj_request; 2071 2072 obj_request = container_of(kref, struct rbd_obj_request, kref); 2073 2074 dout("%s: obj %p\n", __func__, obj_request); 2075 2076 rbd_assert(obj_request->img_request == NULL); 2077 rbd_assert(obj_request->which == BAD_WHICH); 2078 2079 if (obj_request->osd_req) 2080 rbd_osd_req_destroy(obj_request->osd_req); 2081 2082 rbd_assert(obj_request_type_valid(obj_request->type)); 2083 switch (obj_request->type) { 2084 case OBJ_REQUEST_NODATA: 2085 break; /* Nothing to do */ 2086 case OBJ_REQUEST_BIO: 2087 if (obj_request->bio_list) 2088 bio_chain_put(obj_request->bio_list); 2089 break; 2090 case OBJ_REQUEST_PAGES: 2091 if (obj_request->pages) 2092 ceph_release_page_vector(obj_request->pages, 2093 obj_request->page_count); 2094 break; 2095 } 2096 2097 kfree(obj_request->object_name); 2098 obj_request->object_name = NULL; 2099 kmem_cache_free(rbd_obj_request_cache, obj_request); 2100 } 2101 2102 /* It's OK to call this for a device with no parent */ 2103 2104 static void rbd_spec_put(struct rbd_spec *spec); 2105 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2106 { 2107 rbd_dev_remove_parent(rbd_dev); 2108 rbd_spec_put(rbd_dev->parent_spec); 2109 rbd_dev->parent_spec = NULL; 2110 rbd_dev->parent_overlap = 0; 2111 } 2112 2113 /* 2114 * Parent image reference counting is used to determine when an 2115 * image's parent fields can be safely torn down--after there are no 2116 * more in-flight requests to the parent image. When the last 2117 * reference is dropped, cleaning them up is safe. 2118 */ 2119 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2120 { 2121 int counter; 2122 2123 if (!rbd_dev->parent_spec) 2124 return; 2125 2126 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2127 if (counter > 0) 2128 return; 2129 2130 /* Last reference; clean up parent data structures */ 2131 2132 if (!counter) 2133 rbd_dev_unparent(rbd_dev); 2134 else 2135 rbd_warn(rbd_dev, "parent reference underflow"); 2136 } 2137 2138 /* 2139 * If an image has a non-zero parent overlap, get a reference to its 2140 * parent. 2141 * 2142 * Returns true if the rbd device has a parent with a non-zero 2143 * overlap and a reference for it was successfully taken, or 2144 * false otherwise. 2145 */ 2146 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2147 { 2148 int counter = 0; 2149 2150 if (!rbd_dev->parent_spec) 2151 return false; 2152 2153 down_read(&rbd_dev->header_rwsem); 2154 if (rbd_dev->parent_overlap) 2155 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2156 up_read(&rbd_dev->header_rwsem); 2157 2158 if (counter < 0) 2159 rbd_warn(rbd_dev, "parent reference overflow"); 2160 2161 return counter > 0; 2162 } 2163 2164 /* 2165 * Caller is responsible for filling in the list of object requests 2166 * that comprises the image request, and the Linux request pointer 2167 * (if there is one). 2168 */ 2169 static struct rbd_img_request *rbd_img_request_create( 2170 struct rbd_device *rbd_dev, 2171 u64 offset, u64 length, 2172 enum obj_operation_type op_type, 2173 struct ceph_snap_context *snapc) 2174 { 2175 struct rbd_img_request *img_request; 2176 2177 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2178 if (!img_request) 2179 return NULL; 2180 2181 img_request->rq = NULL; 2182 img_request->rbd_dev = rbd_dev; 2183 img_request->offset = offset; 2184 img_request->length = length; 2185 img_request->flags = 0; 2186 if (op_type == OBJ_OP_DISCARD) { 2187 img_request_discard_set(img_request); 2188 img_request->snapc = snapc; 2189 } else if (op_type == OBJ_OP_WRITE) { 2190 img_request_write_set(img_request); 2191 img_request->snapc = snapc; 2192 } else { 2193 img_request->snap_id = rbd_dev->spec->snap_id; 2194 } 2195 if (rbd_dev_parent_get(rbd_dev)) 2196 img_request_layered_set(img_request); 2197 spin_lock_init(&img_request->completion_lock); 2198 img_request->next_completion = 0; 2199 img_request->callback = NULL; 2200 img_request->result = 0; 2201 img_request->obj_request_count = 0; 2202 INIT_LIST_HEAD(&img_request->obj_requests); 2203 kref_init(&img_request->kref); 2204 2205 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2206 obj_op_name(op_type), offset, length, img_request); 2207 2208 return img_request; 2209 } 2210 2211 static void rbd_img_request_destroy(struct kref *kref) 2212 { 2213 struct rbd_img_request *img_request; 2214 struct rbd_obj_request *obj_request; 2215 struct rbd_obj_request *next_obj_request; 2216 2217 img_request = container_of(kref, struct rbd_img_request, kref); 2218 2219 dout("%s: img %p\n", __func__, img_request); 2220 2221 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2222 rbd_img_obj_request_del(img_request, obj_request); 2223 rbd_assert(img_request->obj_request_count == 0); 2224 2225 if (img_request_layered_test(img_request)) { 2226 img_request_layered_clear(img_request); 2227 rbd_dev_parent_put(img_request->rbd_dev); 2228 } 2229 2230 if (img_request_write_test(img_request) || 2231 img_request_discard_test(img_request)) 2232 ceph_put_snap_context(img_request->snapc); 2233 2234 kmem_cache_free(rbd_img_request_cache, img_request); 2235 } 2236 2237 static struct rbd_img_request *rbd_parent_request_create( 2238 struct rbd_obj_request *obj_request, 2239 u64 img_offset, u64 length) 2240 { 2241 struct rbd_img_request *parent_request; 2242 struct rbd_device *rbd_dev; 2243 2244 rbd_assert(obj_request->img_request); 2245 rbd_dev = obj_request->img_request->rbd_dev; 2246 2247 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2248 length, OBJ_OP_READ, NULL); 2249 if (!parent_request) 2250 return NULL; 2251 2252 img_request_child_set(parent_request); 2253 rbd_obj_request_get(obj_request); 2254 parent_request->obj_request = obj_request; 2255 2256 return parent_request; 2257 } 2258 2259 static void rbd_parent_request_destroy(struct kref *kref) 2260 { 2261 struct rbd_img_request *parent_request; 2262 struct rbd_obj_request *orig_request; 2263 2264 parent_request = container_of(kref, struct rbd_img_request, kref); 2265 orig_request = parent_request->obj_request; 2266 2267 parent_request->obj_request = NULL; 2268 rbd_obj_request_put(orig_request); 2269 img_request_child_clear(parent_request); 2270 2271 rbd_img_request_destroy(kref); 2272 } 2273 2274 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2275 { 2276 struct rbd_img_request *img_request; 2277 unsigned int xferred; 2278 int result; 2279 bool more; 2280 2281 rbd_assert(obj_request_img_data_test(obj_request)); 2282 img_request = obj_request->img_request; 2283 2284 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2285 xferred = (unsigned int)obj_request->xferred; 2286 result = obj_request->result; 2287 if (result) { 2288 struct rbd_device *rbd_dev = img_request->rbd_dev; 2289 enum obj_operation_type op_type; 2290 2291 if (img_request_discard_test(img_request)) 2292 op_type = OBJ_OP_DISCARD; 2293 else if (img_request_write_test(img_request)) 2294 op_type = OBJ_OP_WRITE; 2295 else 2296 op_type = OBJ_OP_READ; 2297 2298 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2299 obj_op_name(op_type), obj_request->length, 2300 obj_request->img_offset, obj_request->offset); 2301 rbd_warn(rbd_dev, " result %d xferred %x", 2302 result, xferred); 2303 if (!img_request->result) 2304 img_request->result = result; 2305 /* 2306 * Need to end I/O on the entire obj_request worth of 2307 * bytes in case of error. 2308 */ 2309 xferred = obj_request->length; 2310 } 2311 2312 /* Image object requests don't own their page array */ 2313 2314 if (obj_request->type == OBJ_REQUEST_PAGES) { 2315 obj_request->pages = NULL; 2316 obj_request->page_count = 0; 2317 } 2318 2319 if (img_request_child_test(img_request)) { 2320 rbd_assert(img_request->obj_request != NULL); 2321 more = obj_request->which < img_request->obj_request_count - 1; 2322 } else { 2323 rbd_assert(img_request->rq != NULL); 2324 2325 more = blk_update_request(img_request->rq, result, xferred); 2326 if (!more) 2327 __blk_mq_end_request(img_request->rq, result); 2328 } 2329 2330 return more; 2331 } 2332 2333 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2334 { 2335 struct rbd_img_request *img_request; 2336 u32 which = obj_request->which; 2337 bool more = true; 2338 2339 rbd_assert(obj_request_img_data_test(obj_request)); 2340 img_request = obj_request->img_request; 2341 2342 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2343 rbd_assert(img_request != NULL); 2344 rbd_assert(img_request->obj_request_count > 0); 2345 rbd_assert(which != BAD_WHICH); 2346 rbd_assert(which < img_request->obj_request_count); 2347 2348 spin_lock_irq(&img_request->completion_lock); 2349 if (which != img_request->next_completion) 2350 goto out; 2351 2352 for_each_obj_request_from(img_request, obj_request) { 2353 rbd_assert(more); 2354 rbd_assert(which < img_request->obj_request_count); 2355 2356 if (!obj_request_done_test(obj_request)) 2357 break; 2358 more = rbd_img_obj_end_request(obj_request); 2359 which++; 2360 } 2361 2362 rbd_assert(more ^ (which == img_request->obj_request_count)); 2363 img_request->next_completion = which; 2364 out: 2365 spin_unlock_irq(&img_request->completion_lock); 2366 rbd_img_request_put(img_request); 2367 2368 if (!more) 2369 rbd_img_request_complete(img_request); 2370 } 2371 2372 /* 2373 * Add individual osd ops to the given ceph_osd_request and prepare 2374 * them for submission. num_ops is the current number of 2375 * osd operations already to the object request. 2376 */ 2377 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2378 struct ceph_osd_request *osd_request, 2379 enum obj_operation_type op_type, 2380 unsigned int num_ops) 2381 { 2382 struct rbd_img_request *img_request = obj_request->img_request; 2383 struct rbd_device *rbd_dev = img_request->rbd_dev; 2384 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2385 u64 offset = obj_request->offset; 2386 u64 length = obj_request->length; 2387 u64 img_end; 2388 u16 opcode; 2389 2390 if (op_type == OBJ_OP_DISCARD) { 2391 if (!offset && length == object_size && 2392 (!img_request_layered_test(img_request) || 2393 !obj_request_overlaps_parent(obj_request))) { 2394 opcode = CEPH_OSD_OP_DELETE; 2395 } else if ((offset + length == object_size)) { 2396 opcode = CEPH_OSD_OP_TRUNCATE; 2397 } else { 2398 down_read(&rbd_dev->header_rwsem); 2399 img_end = rbd_dev->header.image_size; 2400 up_read(&rbd_dev->header_rwsem); 2401 2402 if (obj_request->img_offset + length == img_end) 2403 opcode = CEPH_OSD_OP_TRUNCATE; 2404 else 2405 opcode = CEPH_OSD_OP_ZERO; 2406 } 2407 } else if (op_type == OBJ_OP_WRITE) { 2408 if (!offset && length == object_size) 2409 opcode = CEPH_OSD_OP_WRITEFULL; 2410 else 2411 opcode = CEPH_OSD_OP_WRITE; 2412 osd_req_op_alloc_hint_init(osd_request, num_ops, 2413 object_size, object_size); 2414 num_ops++; 2415 } else { 2416 opcode = CEPH_OSD_OP_READ; 2417 } 2418 2419 if (opcode == CEPH_OSD_OP_DELETE) 2420 osd_req_op_init(osd_request, num_ops, opcode, 0); 2421 else 2422 osd_req_op_extent_init(osd_request, num_ops, opcode, 2423 offset, length, 0, 0); 2424 2425 if (obj_request->type == OBJ_REQUEST_BIO) 2426 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2427 obj_request->bio_list, length); 2428 else if (obj_request->type == OBJ_REQUEST_PAGES) 2429 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2430 obj_request->pages, length, 2431 offset & ~PAGE_MASK, false, false); 2432 2433 /* Discards are also writes */ 2434 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2435 rbd_osd_req_format_write(obj_request); 2436 else 2437 rbd_osd_req_format_read(obj_request); 2438 } 2439 2440 /* 2441 * Split up an image request into one or more object requests, each 2442 * to a different object. The "type" parameter indicates whether 2443 * "data_desc" is the pointer to the head of a list of bio 2444 * structures, or the base of a page array. In either case this 2445 * function assumes data_desc describes memory sufficient to hold 2446 * all data described by the image request. 2447 */ 2448 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2449 enum obj_request_type type, 2450 void *data_desc) 2451 { 2452 struct rbd_device *rbd_dev = img_request->rbd_dev; 2453 struct rbd_obj_request *obj_request = NULL; 2454 struct rbd_obj_request *next_obj_request; 2455 struct bio *bio_list = NULL; 2456 unsigned int bio_offset = 0; 2457 struct page **pages = NULL; 2458 enum obj_operation_type op_type; 2459 u64 img_offset; 2460 u64 resid; 2461 2462 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2463 (int)type, data_desc); 2464 2465 img_offset = img_request->offset; 2466 resid = img_request->length; 2467 rbd_assert(resid > 0); 2468 op_type = rbd_img_request_op_type(img_request); 2469 2470 if (type == OBJ_REQUEST_BIO) { 2471 bio_list = data_desc; 2472 rbd_assert(img_offset == 2473 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2474 } else if (type == OBJ_REQUEST_PAGES) { 2475 pages = data_desc; 2476 } 2477 2478 while (resid) { 2479 struct ceph_osd_request *osd_req; 2480 const char *object_name; 2481 u64 offset; 2482 u64 length; 2483 2484 object_name = rbd_segment_name(rbd_dev, img_offset); 2485 if (!object_name) 2486 goto out_unwind; 2487 offset = rbd_segment_offset(rbd_dev, img_offset); 2488 length = rbd_segment_length(rbd_dev, img_offset, resid); 2489 obj_request = rbd_obj_request_create(object_name, 2490 offset, length, type); 2491 /* object request has its own copy of the object name */ 2492 rbd_segment_name_free(object_name); 2493 if (!obj_request) 2494 goto out_unwind; 2495 2496 /* 2497 * set obj_request->img_request before creating the 2498 * osd_request so that it gets the right snapc 2499 */ 2500 rbd_img_obj_request_add(img_request, obj_request); 2501 2502 if (type == OBJ_REQUEST_BIO) { 2503 unsigned int clone_size; 2504 2505 rbd_assert(length <= (u64)UINT_MAX); 2506 clone_size = (unsigned int)length; 2507 obj_request->bio_list = 2508 bio_chain_clone_range(&bio_list, 2509 &bio_offset, 2510 clone_size, 2511 GFP_ATOMIC); 2512 if (!obj_request->bio_list) 2513 goto out_unwind; 2514 } else if (type == OBJ_REQUEST_PAGES) { 2515 unsigned int page_count; 2516 2517 obj_request->pages = pages; 2518 page_count = (u32)calc_pages_for(offset, length); 2519 obj_request->page_count = page_count; 2520 if ((offset + length) & ~PAGE_MASK) 2521 page_count--; /* more on last page */ 2522 pages += page_count; 2523 } 2524 2525 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2526 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2527 obj_request); 2528 if (!osd_req) 2529 goto out_unwind; 2530 2531 obj_request->osd_req = osd_req; 2532 obj_request->callback = rbd_img_obj_callback; 2533 obj_request->img_offset = img_offset; 2534 2535 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2536 2537 rbd_img_request_get(img_request); 2538 2539 img_offset += length; 2540 resid -= length; 2541 } 2542 2543 return 0; 2544 2545 out_unwind: 2546 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2547 rbd_img_obj_request_del(img_request, obj_request); 2548 2549 return -ENOMEM; 2550 } 2551 2552 static void 2553 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request) 2554 { 2555 struct rbd_img_request *img_request; 2556 struct rbd_device *rbd_dev; 2557 struct page **pages; 2558 u32 page_count; 2559 2560 dout("%s: obj %p\n", __func__, obj_request); 2561 2562 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2563 obj_request->type == OBJ_REQUEST_NODATA); 2564 rbd_assert(obj_request_img_data_test(obj_request)); 2565 img_request = obj_request->img_request; 2566 rbd_assert(img_request); 2567 2568 rbd_dev = img_request->rbd_dev; 2569 rbd_assert(rbd_dev); 2570 2571 pages = obj_request->copyup_pages; 2572 rbd_assert(pages != NULL); 2573 obj_request->copyup_pages = NULL; 2574 page_count = obj_request->copyup_page_count; 2575 rbd_assert(page_count); 2576 obj_request->copyup_page_count = 0; 2577 ceph_release_page_vector(pages, page_count); 2578 2579 /* 2580 * We want the transfer count to reflect the size of the 2581 * original write request. There is no such thing as a 2582 * successful short write, so if the request was successful 2583 * we can just set it to the originally-requested length. 2584 */ 2585 if (!obj_request->result) 2586 obj_request->xferred = obj_request->length; 2587 2588 obj_request_done_set(obj_request); 2589 } 2590 2591 static void 2592 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2593 { 2594 struct rbd_obj_request *orig_request; 2595 struct ceph_osd_request *osd_req; 2596 struct ceph_osd_client *osdc; 2597 struct rbd_device *rbd_dev; 2598 struct page **pages; 2599 enum obj_operation_type op_type; 2600 u32 page_count; 2601 int img_result; 2602 u64 parent_length; 2603 2604 rbd_assert(img_request_child_test(img_request)); 2605 2606 /* First get what we need from the image request */ 2607 2608 pages = img_request->copyup_pages; 2609 rbd_assert(pages != NULL); 2610 img_request->copyup_pages = NULL; 2611 page_count = img_request->copyup_page_count; 2612 rbd_assert(page_count); 2613 img_request->copyup_page_count = 0; 2614 2615 orig_request = img_request->obj_request; 2616 rbd_assert(orig_request != NULL); 2617 rbd_assert(obj_request_type_valid(orig_request->type)); 2618 img_result = img_request->result; 2619 parent_length = img_request->length; 2620 rbd_assert(parent_length == img_request->xferred); 2621 rbd_img_request_put(img_request); 2622 2623 rbd_assert(orig_request->img_request); 2624 rbd_dev = orig_request->img_request->rbd_dev; 2625 rbd_assert(rbd_dev); 2626 2627 /* 2628 * If the overlap has become 0 (most likely because the 2629 * image has been flattened) we need to free the pages 2630 * and re-submit the original write request. 2631 */ 2632 if (!rbd_dev->parent_overlap) { 2633 struct ceph_osd_client *osdc; 2634 2635 ceph_release_page_vector(pages, page_count); 2636 osdc = &rbd_dev->rbd_client->client->osdc; 2637 img_result = rbd_obj_request_submit(osdc, orig_request); 2638 if (!img_result) 2639 return; 2640 } 2641 2642 if (img_result) 2643 goto out_err; 2644 2645 /* 2646 * The original osd request is of no use to use any more. 2647 * We need a new one that can hold the three ops in a copyup 2648 * request. Allocate the new copyup osd request for the 2649 * original request, and release the old one. 2650 */ 2651 img_result = -ENOMEM; 2652 osd_req = rbd_osd_req_create_copyup(orig_request); 2653 if (!osd_req) 2654 goto out_err; 2655 rbd_osd_req_destroy(orig_request->osd_req); 2656 orig_request->osd_req = osd_req; 2657 orig_request->copyup_pages = pages; 2658 orig_request->copyup_page_count = page_count; 2659 2660 /* Initialize the copyup op */ 2661 2662 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2663 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2664 false, false); 2665 2666 /* Add the other op(s) */ 2667 2668 op_type = rbd_img_request_op_type(orig_request->img_request); 2669 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2670 2671 /* All set, send it off. */ 2672 2673 osdc = &rbd_dev->rbd_client->client->osdc; 2674 img_result = rbd_obj_request_submit(osdc, orig_request); 2675 if (!img_result) 2676 return; 2677 out_err: 2678 /* Record the error code and complete the request */ 2679 2680 orig_request->result = img_result; 2681 orig_request->xferred = 0; 2682 obj_request_done_set(orig_request); 2683 rbd_obj_request_complete(orig_request); 2684 } 2685 2686 /* 2687 * Read from the parent image the range of data that covers the 2688 * entire target of the given object request. This is used for 2689 * satisfying a layered image write request when the target of an 2690 * object request from the image request does not exist. 2691 * 2692 * A page array big enough to hold the returned data is allocated 2693 * and supplied to rbd_img_request_fill() as the "data descriptor." 2694 * When the read completes, this page array will be transferred to 2695 * the original object request for the copyup operation. 2696 * 2697 * If an error occurs, record it as the result of the original 2698 * object request and mark it done so it gets completed. 2699 */ 2700 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2701 { 2702 struct rbd_img_request *img_request = NULL; 2703 struct rbd_img_request *parent_request = NULL; 2704 struct rbd_device *rbd_dev; 2705 u64 img_offset; 2706 u64 length; 2707 struct page **pages = NULL; 2708 u32 page_count; 2709 int result; 2710 2711 rbd_assert(obj_request_img_data_test(obj_request)); 2712 rbd_assert(obj_request_type_valid(obj_request->type)); 2713 2714 img_request = obj_request->img_request; 2715 rbd_assert(img_request != NULL); 2716 rbd_dev = img_request->rbd_dev; 2717 rbd_assert(rbd_dev->parent != NULL); 2718 2719 /* 2720 * Determine the byte range covered by the object in the 2721 * child image to which the original request was to be sent. 2722 */ 2723 img_offset = obj_request->img_offset - obj_request->offset; 2724 length = (u64)1 << rbd_dev->header.obj_order; 2725 2726 /* 2727 * There is no defined parent data beyond the parent 2728 * overlap, so limit what we read at that boundary if 2729 * necessary. 2730 */ 2731 if (img_offset + length > rbd_dev->parent_overlap) { 2732 rbd_assert(img_offset < rbd_dev->parent_overlap); 2733 length = rbd_dev->parent_overlap - img_offset; 2734 } 2735 2736 /* 2737 * Allocate a page array big enough to receive the data read 2738 * from the parent. 2739 */ 2740 page_count = (u32)calc_pages_for(0, length); 2741 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2742 if (IS_ERR(pages)) { 2743 result = PTR_ERR(pages); 2744 pages = NULL; 2745 goto out_err; 2746 } 2747 2748 result = -ENOMEM; 2749 parent_request = rbd_parent_request_create(obj_request, 2750 img_offset, length); 2751 if (!parent_request) 2752 goto out_err; 2753 2754 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2755 if (result) 2756 goto out_err; 2757 parent_request->copyup_pages = pages; 2758 parent_request->copyup_page_count = page_count; 2759 2760 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2761 result = rbd_img_request_submit(parent_request); 2762 if (!result) 2763 return 0; 2764 2765 parent_request->copyup_pages = NULL; 2766 parent_request->copyup_page_count = 0; 2767 parent_request->obj_request = NULL; 2768 rbd_obj_request_put(obj_request); 2769 out_err: 2770 if (pages) 2771 ceph_release_page_vector(pages, page_count); 2772 if (parent_request) 2773 rbd_img_request_put(parent_request); 2774 obj_request->result = result; 2775 obj_request->xferred = 0; 2776 obj_request_done_set(obj_request); 2777 2778 return result; 2779 } 2780 2781 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2782 { 2783 struct rbd_obj_request *orig_request; 2784 struct rbd_device *rbd_dev; 2785 int result; 2786 2787 rbd_assert(!obj_request_img_data_test(obj_request)); 2788 2789 /* 2790 * All we need from the object request is the original 2791 * request and the result of the STAT op. Grab those, then 2792 * we're done with the request. 2793 */ 2794 orig_request = obj_request->obj_request; 2795 obj_request->obj_request = NULL; 2796 rbd_obj_request_put(orig_request); 2797 rbd_assert(orig_request); 2798 rbd_assert(orig_request->img_request); 2799 2800 result = obj_request->result; 2801 obj_request->result = 0; 2802 2803 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2804 obj_request, orig_request, result, 2805 obj_request->xferred, obj_request->length); 2806 rbd_obj_request_put(obj_request); 2807 2808 /* 2809 * If the overlap has become 0 (most likely because the 2810 * image has been flattened) we need to free the pages 2811 * and re-submit the original write request. 2812 */ 2813 rbd_dev = orig_request->img_request->rbd_dev; 2814 if (!rbd_dev->parent_overlap) { 2815 struct ceph_osd_client *osdc; 2816 2817 osdc = &rbd_dev->rbd_client->client->osdc; 2818 result = rbd_obj_request_submit(osdc, orig_request); 2819 if (!result) 2820 return; 2821 } 2822 2823 /* 2824 * Our only purpose here is to determine whether the object 2825 * exists, and we don't want to treat the non-existence as 2826 * an error. If something else comes back, transfer the 2827 * error to the original request and complete it now. 2828 */ 2829 if (!result) { 2830 obj_request_existence_set(orig_request, true); 2831 } else if (result == -ENOENT) { 2832 obj_request_existence_set(orig_request, false); 2833 } else if (result) { 2834 orig_request->result = result; 2835 goto out; 2836 } 2837 2838 /* 2839 * Resubmit the original request now that we have recorded 2840 * whether the target object exists. 2841 */ 2842 orig_request->result = rbd_img_obj_request_submit(orig_request); 2843 out: 2844 if (orig_request->result) 2845 rbd_obj_request_complete(orig_request); 2846 } 2847 2848 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2849 { 2850 struct rbd_obj_request *stat_request; 2851 struct rbd_device *rbd_dev; 2852 struct ceph_osd_client *osdc; 2853 struct page **pages = NULL; 2854 u32 page_count; 2855 size_t size; 2856 int ret; 2857 2858 /* 2859 * The response data for a STAT call consists of: 2860 * le64 length; 2861 * struct { 2862 * le32 tv_sec; 2863 * le32 tv_nsec; 2864 * } mtime; 2865 */ 2866 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2867 page_count = (u32)calc_pages_for(0, size); 2868 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2869 if (IS_ERR(pages)) 2870 return PTR_ERR(pages); 2871 2872 ret = -ENOMEM; 2873 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2874 OBJ_REQUEST_PAGES); 2875 if (!stat_request) 2876 goto out; 2877 2878 rbd_obj_request_get(obj_request); 2879 stat_request->obj_request = obj_request; 2880 stat_request->pages = pages; 2881 stat_request->page_count = page_count; 2882 2883 rbd_assert(obj_request->img_request); 2884 rbd_dev = obj_request->img_request->rbd_dev; 2885 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2886 stat_request); 2887 if (!stat_request->osd_req) 2888 goto out; 2889 stat_request->callback = rbd_img_obj_exists_callback; 2890 2891 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2892 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2893 false, false); 2894 rbd_osd_req_format_read(stat_request); 2895 2896 osdc = &rbd_dev->rbd_client->client->osdc; 2897 ret = rbd_obj_request_submit(osdc, stat_request); 2898 out: 2899 if (ret) 2900 rbd_obj_request_put(obj_request); 2901 2902 return ret; 2903 } 2904 2905 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2906 { 2907 struct rbd_img_request *img_request; 2908 struct rbd_device *rbd_dev; 2909 2910 rbd_assert(obj_request_img_data_test(obj_request)); 2911 2912 img_request = obj_request->img_request; 2913 rbd_assert(img_request); 2914 rbd_dev = img_request->rbd_dev; 2915 2916 /* Reads */ 2917 if (!img_request_write_test(img_request) && 2918 !img_request_discard_test(img_request)) 2919 return true; 2920 2921 /* Non-layered writes */ 2922 if (!img_request_layered_test(img_request)) 2923 return true; 2924 2925 /* 2926 * Layered writes outside of the parent overlap range don't 2927 * share any data with the parent. 2928 */ 2929 if (!obj_request_overlaps_parent(obj_request)) 2930 return true; 2931 2932 /* 2933 * Entire-object layered writes - we will overwrite whatever 2934 * parent data there is anyway. 2935 */ 2936 if (!obj_request->offset && 2937 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2938 return true; 2939 2940 /* 2941 * If the object is known to already exist, its parent data has 2942 * already been copied. 2943 */ 2944 if (obj_request_known_test(obj_request) && 2945 obj_request_exists_test(obj_request)) 2946 return true; 2947 2948 return false; 2949 } 2950 2951 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2952 { 2953 if (img_obj_request_simple(obj_request)) { 2954 struct rbd_device *rbd_dev; 2955 struct ceph_osd_client *osdc; 2956 2957 rbd_dev = obj_request->img_request->rbd_dev; 2958 osdc = &rbd_dev->rbd_client->client->osdc; 2959 2960 return rbd_obj_request_submit(osdc, obj_request); 2961 } 2962 2963 /* 2964 * It's a layered write. The target object might exist but 2965 * we may not know that yet. If we know it doesn't exist, 2966 * start by reading the data for the full target object from 2967 * the parent so we can use it for a copyup to the target. 2968 */ 2969 if (obj_request_known_test(obj_request)) 2970 return rbd_img_obj_parent_read_full(obj_request); 2971 2972 /* We don't know whether the target exists. Go find out. */ 2973 2974 return rbd_img_obj_exists_submit(obj_request); 2975 } 2976 2977 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2978 { 2979 struct rbd_obj_request *obj_request; 2980 struct rbd_obj_request *next_obj_request; 2981 2982 dout("%s: img %p\n", __func__, img_request); 2983 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2984 int ret; 2985 2986 ret = rbd_img_obj_request_submit(obj_request); 2987 if (ret) 2988 return ret; 2989 } 2990 2991 return 0; 2992 } 2993 2994 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2995 { 2996 struct rbd_obj_request *obj_request; 2997 struct rbd_device *rbd_dev; 2998 u64 obj_end; 2999 u64 img_xferred; 3000 int img_result; 3001 3002 rbd_assert(img_request_child_test(img_request)); 3003 3004 /* First get what we need from the image request and release it */ 3005 3006 obj_request = img_request->obj_request; 3007 img_xferred = img_request->xferred; 3008 img_result = img_request->result; 3009 rbd_img_request_put(img_request); 3010 3011 /* 3012 * If the overlap has become 0 (most likely because the 3013 * image has been flattened) we need to re-submit the 3014 * original request. 3015 */ 3016 rbd_assert(obj_request); 3017 rbd_assert(obj_request->img_request); 3018 rbd_dev = obj_request->img_request->rbd_dev; 3019 if (!rbd_dev->parent_overlap) { 3020 struct ceph_osd_client *osdc; 3021 3022 osdc = &rbd_dev->rbd_client->client->osdc; 3023 img_result = rbd_obj_request_submit(osdc, obj_request); 3024 if (!img_result) 3025 return; 3026 } 3027 3028 obj_request->result = img_result; 3029 if (obj_request->result) 3030 goto out; 3031 3032 /* 3033 * We need to zero anything beyond the parent overlap 3034 * boundary. Since rbd_img_obj_request_read_callback() 3035 * will zero anything beyond the end of a short read, an 3036 * easy way to do this is to pretend the data from the 3037 * parent came up short--ending at the overlap boundary. 3038 */ 3039 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 3040 obj_end = obj_request->img_offset + obj_request->length; 3041 if (obj_end > rbd_dev->parent_overlap) { 3042 u64 xferred = 0; 3043 3044 if (obj_request->img_offset < rbd_dev->parent_overlap) 3045 xferred = rbd_dev->parent_overlap - 3046 obj_request->img_offset; 3047 3048 obj_request->xferred = min(img_xferred, xferred); 3049 } else { 3050 obj_request->xferred = img_xferred; 3051 } 3052 out: 3053 rbd_img_obj_request_read_callback(obj_request); 3054 rbd_obj_request_complete(obj_request); 3055 } 3056 3057 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 3058 { 3059 struct rbd_img_request *img_request; 3060 int result; 3061 3062 rbd_assert(obj_request_img_data_test(obj_request)); 3063 rbd_assert(obj_request->img_request != NULL); 3064 rbd_assert(obj_request->result == (s32) -ENOENT); 3065 rbd_assert(obj_request_type_valid(obj_request->type)); 3066 3067 /* rbd_read_finish(obj_request, obj_request->length); */ 3068 img_request = rbd_parent_request_create(obj_request, 3069 obj_request->img_offset, 3070 obj_request->length); 3071 result = -ENOMEM; 3072 if (!img_request) 3073 goto out_err; 3074 3075 if (obj_request->type == OBJ_REQUEST_BIO) 3076 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3077 obj_request->bio_list); 3078 else 3079 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3080 obj_request->pages); 3081 if (result) 3082 goto out_err; 3083 3084 img_request->callback = rbd_img_parent_read_callback; 3085 result = rbd_img_request_submit(img_request); 3086 if (result) 3087 goto out_err; 3088 3089 return; 3090 out_err: 3091 if (img_request) 3092 rbd_img_request_put(img_request); 3093 obj_request->result = result; 3094 obj_request->xferred = 0; 3095 obj_request_done_set(obj_request); 3096 } 3097 3098 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 3099 { 3100 struct rbd_obj_request *obj_request; 3101 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3102 int ret; 3103 3104 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3105 OBJ_REQUEST_NODATA); 3106 if (!obj_request) 3107 return -ENOMEM; 3108 3109 ret = -ENOMEM; 3110 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3111 obj_request); 3112 if (!obj_request->osd_req) 3113 goto out; 3114 3115 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 3116 notify_id, 0, 0); 3117 rbd_osd_req_format_read(obj_request); 3118 3119 ret = rbd_obj_request_submit(osdc, obj_request); 3120 if (ret) 3121 goto out; 3122 ret = rbd_obj_request_wait(obj_request); 3123 out: 3124 rbd_obj_request_put(obj_request); 3125 3126 return ret; 3127 } 3128 3129 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 3130 { 3131 struct rbd_device *rbd_dev = (struct rbd_device *)data; 3132 int ret; 3133 3134 if (!rbd_dev) 3135 return; 3136 3137 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 3138 rbd_dev->header_name, (unsigned long long)notify_id, 3139 (unsigned int)opcode); 3140 3141 /* 3142 * Until adequate refresh error handling is in place, there is 3143 * not much we can do here, except warn. 3144 * 3145 * See http://tracker.ceph.com/issues/5040 3146 */ 3147 ret = rbd_dev_refresh(rbd_dev); 3148 if (ret) 3149 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3150 3151 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id); 3152 if (ret) 3153 rbd_warn(rbd_dev, "notify_ack ret %d", ret); 3154 } 3155 3156 /* 3157 * Send a (un)watch request and wait for the ack. Return a request 3158 * with a ref held on success or error. 3159 */ 3160 static struct rbd_obj_request *rbd_obj_watch_request_helper( 3161 struct rbd_device *rbd_dev, 3162 bool watch) 3163 { 3164 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3165 struct ceph_options *opts = osdc->client->options; 3166 struct rbd_obj_request *obj_request; 3167 int ret; 3168 3169 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3170 OBJ_REQUEST_NODATA); 3171 if (!obj_request) 3172 return ERR_PTR(-ENOMEM); 3173 3174 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1, 3175 obj_request); 3176 if (!obj_request->osd_req) { 3177 ret = -ENOMEM; 3178 goto out; 3179 } 3180 3181 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 3182 rbd_dev->watch_event->cookie, 0, watch); 3183 rbd_osd_req_format_write(obj_request); 3184 3185 if (watch) 3186 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 3187 3188 ret = rbd_obj_request_submit(osdc, obj_request); 3189 if (ret) 3190 goto out; 3191 3192 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout); 3193 if (ret) 3194 goto out; 3195 3196 ret = obj_request->result; 3197 if (ret) { 3198 if (watch) 3199 rbd_obj_request_end(obj_request); 3200 goto out; 3201 } 3202 3203 return obj_request; 3204 3205 out: 3206 rbd_obj_request_put(obj_request); 3207 return ERR_PTR(ret); 3208 } 3209 3210 /* 3211 * Initiate a watch request, synchronously. 3212 */ 3213 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 3214 { 3215 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3216 struct rbd_obj_request *obj_request; 3217 int ret; 3218 3219 rbd_assert(!rbd_dev->watch_event); 3220 rbd_assert(!rbd_dev->watch_request); 3221 3222 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 3223 &rbd_dev->watch_event); 3224 if (ret < 0) 3225 return ret; 3226 3227 obj_request = rbd_obj_watch_request_helper(rbd_dev, true); 3228 if (IS_ERR(obj_request)) { 3229 ceph_osdc_cancel_event(rbd_dev->watch_event); 3230 rbd_dev->watch_event = NULL; 3231 return PTR_ERR(obj_request); 3232 } 3233 3234 /* 3235 * A watch request is set to linger, so the underlying osd 3236 * request won't go away until we unregister it. We retain 3237 * a pointer to the object request during that time (in 3238 * rbd_dev->watch_request), so we'll keep a reference to it. 3239 * We'll drop that reference after we've unregistered it in 3240 * rbd_dev_header_unwatch_sync(). 3241 */ 3242 rbd_dev->watch_request = obj_request; 3243 3244 return 0; 3245 } 3246 3247 /* 3248 * Tear down a watch request, synchronously. 3249 */ 3250 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3251 { 3252 struct rbd_obj_request *obj_request; 3253 3254 rbd_assert(rbd_dev->watch_event); 3255 rbd_assert(rbd_dev->watch_request); 3256 3257 rbd_obj_request_end(rbd_dev->watch_request); 3258 rbd_obj_request_put(rbd_dev->watch_request); 3259 rbd_dev->watch_request = NULL; 3260 3261 obj_request = rbd_obj_watch_request_helper(rbd_dev, false); 3262 if (!IS_ERR(obj_request)) 3263 rbd_obj_request_put(obj_request); 3264 else 3265 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)", 3266 PTR_ERR(obj_request)); 3267 3268 ceph_osdc_cancel_event(rbd_dev->watch_event); 3269 rbd_dev->watch_event = NULL; 3270 } 3271 3272 /* 3273 * Synchronous osd object method call. Returns the number of bytes 3274 * returned in the outbound buffer, or a negative error code. 3275 */ 3276 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3277 const char *object_name, 3278 const char *class_name, 3279 const char *method_name, 3280 const void *outbound, 3281 size_t outbound_size, 3282 void *inbound, 3283 size_t inbound_size) 3284 { 3285 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3286 struct rbd_obj_request *obj_request; 3287 struct page **pages; 3288 u32 page_count; 3289 int ret; 3290 3291 /* 3292 * Method calls are ultimately read operations. The result 3293 * should placed into the inbound buffer provided. They 3294 * also supply outbound data--parameters for the object 3295 * method. Currently if this is present it will be a 3296 * snapshot id. 3297 */ 3298 page_count = (u32)calc_pages_for(0, inbound_size); 3299 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3300 if (IS_ERR(pages)) 3301 return PTR_ERR(pages); 3302 3303 ret = -ENOMEM; 3304 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3305 OBJ_REQUEST_PAGES); 3306 if (!obj_request) 3307 goto out; 3308 3309 obj_request->pages = pages; 3310 obj_request->page_count = page_count; 3311 3312 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3313 obj_request); 3314 if (!obj_request->osd_req) 3315 goto out; 3316 3317 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3318 class_name, method_name); 3319 if (outbound_size) { 3320 struct ceph_pagelist *pagelist; 3321 3322 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3323 if (!pagelist) 3324 goto out; 3325 3326 ceph_pagelist_init(pagelist); 3327 ceph_pagelist_append(pagelist, outbound, outbound_size); 3328 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3329 pagelist); 3330 } 3331 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3332 obj_request->pages, inbound_size, 3333 0, false, false); 3334 rbd_osd_req_format_read(obj_request); 3335 3336 ret = rbd_obj_request_submit(osdc, obj_request); 3337 if (ret) 3338 goto out; 3339 ret = rbd_obj_request_wait(obj_request); 3340 if (ret) 3341 goto out; 3342 3343 ret = obj_request->result; 3344 if (ret < 0) 3345 goto out; 3346 3347 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3348 ret = (int)obj_request->xferred; 3349 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3350 out: 3351 if (obj_request) 3352 rbd_obj_request_put(obj_request); 3353 else 3354 ceph_release_page_vector(pages, page_count); 3355 3356 return ret; 3357 } 3358 3359 static void rbd_queue_workfn(struct work_struct *work) 3360 { 3361 struct request *rq = blk_mq_rq_from_pdu(work); 3362 struct rbd_device *rbd_dev = rq->q->queuedata; 3363 struct rbd_img_request *img_request; 3364 struct ceph_snap_context *snapc = NULL; 3365 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3366 u64 length = blk_rq_bytes(rq); 3367 enum obj_operation_type op_type; 3368 u64 mapping_size; 3369 int result; 3370 3371 if (rq->cmd_type != REQ_TYPE_FS) { 3372 dout("%s: non-fs request type %d\n", __func__, 3373 (int) rq->cmd_type); 3374 result = -EIO; 3375 goto err; 3376 } 3377 3378 if (rq->cmd_flags & REQ_DISCARD) 3379 op_type = OBJ_OP_DISCARD; 3380 else if (rq->cmd_flags & REQ_WRITE) 3381 op_type = OBJ_OP_WRITE; 3382 else 3383 op_type = OBJ_OP_READ; 3384 3385 /* Ignore/skip any zero-length requests */ 3386 3387 if (!length) { 3388 dout("%s: zero-length request\n", __func__); 3389 result = 0; 3390 goto err_rq; 3391 } 3392 3393 /* Only reads are allowed to a read-only device */ 3394 3395 if (op_type != OBJ_OP_READ) { 3396 if (rbd_dev->mapping.read_only) { 3397 result = -EROFS; 3398 goto err_rq; 3399 } 3400 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3401 } 3402 3403 /* 3404 * Quit early if the mapped snapshot no longer exists. It's 3405 * still possible the snapshot will have disappeared by the 3406 * time our request arrives at the osd, but there's no sense in 3407 * sending it if we already know. 3408 */ 3409 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3410 dout("request for non-existent snapshot"); 3411 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3412 result = -ENXIO; 3413 goto err_rq; 3414 } 3415 3416 if (offset && length > U64_MAX - offset + 1) { 3417 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3418 length); 3419 result = -EINVAL; 3420 goto err_rq; /* Shouldn't happen */ 3421 } 3422 3423 blk_mq_start_request(rq); 3424 3425 down_read(&rbd_dev->header_rwsem); 3426 mapping_size = rbd_dev->mapping.size; 3427 if (op_type != OBJ_OP_READ) { 3428 snapc = rbd_dev->header.snapc; 3429 ceph_get_snap_context(snapc); 3430 } 3431 up_read(&rbd_dev->header_rwsem); 3432 3433 if (offset + length > mapping_size) { 3434 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3435 length, mapping_size); 3436 result = -EIO; 3437 goto err_rq; 3438 } 3439 3440 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 3441 snapc); 3442 if (!img_request) { 3443 result = -ENOMEM; 3444 goto err_rq; 3445 } 3446 img_request->rq = rq; 3447 3448 if (op_type == OBJ_OP_DISCARD) 3449 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 3450 NULL); 3451 else 3452 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3453 rq->bio); 3454 if (result) 3455 goto err_img_request; 3456 3457 result = rbd_img_request_submit(img_request); 3458 if (result) 3459 goto err_img_request; 3460 3461 return; 3462 3463 err_img_request: 3464 rbd_img_request_put(img_request); 3465 err_rq: 3466 if (result) 3467 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3468 obj_op_name(op_type), length, offset, result); 3469 ceph_put_snap_context(snapc); 3470 err: 3471 blk_mq_end_request(rq, result); 3472 } 3473 3474 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 3475 const struct blk_mq_queue_data *bd) 3476 { 3477 struct request *rq = bd->rq; 3478 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3479 3480 queue_work(rbd_wq, work); 3481 return BLK_MQ_RQ_QUEUE_OK; 3482 } 3483 3484 static void rbd_free_disk(struct rbd_device *rbd_dev) 3485 { 3486 struct gendisk *disk = rbd_dev->disk; 3487 3488 if (!disk) 3489 return; 3490 3491 rbd_dev->disk = NULL; 3492 if (disk->flags & GENHD_FL_UP) { 3493 del_gendisk(disk); 3494 if (disk->queue) 3495 blk_cleanup_queue(disk->queue); 3496 blk_mq_free_tag_set(&rbd_dev->tag_set); 3497 } 3498 put_disk(disk); 3499 } 3500 3501 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3502 const char *object_name, 3503 u64 offset, u64 length, void *buf) 3504 3505 { 3506 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3507 struct rbd_obj_request *obj_request; 3508 struct page **pages = NULL; 3509 u32 page_count; 3510 size_t size; 3511 int ret; 3512 3513 page_count = (u32) calc_pages_for(offset, length); 3514 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3515 if (IS_ERR(pages)) 3516 return PTR_ERR(pages); 3517 3518 ret = -ENOMEM; 3519 obj_request = rbd_obj_request_create(object_name, offset, length, 3520 OBJ_REQUEST_PAGES); 3521 if (!obj_request) 3522 goto out; 3523 3524 obj_request->pages = pages; 3525 obj_request->page_count = page_count; 3526 3527 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3528 obj_request); 3529 if (!obj_request->osd_req) 3530 goto out; 3531 3532 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3533 offset, length, 0, 0); 3534 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3535 obj_request->pages, 3536 obj_request->length, 3537 obj_request->offset & ~PAGE_MASK, 3538 false, false); 3539 rbd_osd_req_format_read(obj_request); 3540 3541 ret = rbd_obj_request_submit(osdc, obj_request); 3542 if (ret) 3543 goto out; 3544 ret = rbd_obj_request_wait(obj_request); 3545 if (ret) 3546 goto out; 3547 3548 ret = obj_request->result; 3549 if (ret < 0) 3550 goto out; 3551 3552 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3553 size = (size_t) obj_request->xferred; 3554 ceph_copy_from_page_vector(pages, buf, 0, size); 3555 rbd_assert(size <= (size_t)INT_MAX); 3556 ret = (int)size; 3557 out: 3558 if (obj_request) 3559 rbd_obj_request_put(obj_request); 3560 else 3561 ceph_release_page_vector(pages, page_count); 3562 3563 return ret; 3564 } 3565 3566 /* 3567 * Read the complete header for the given rbd device. On successful 3568 * return, the rbd_dev->header field will contain up-to-date 3569 * information about the image. 3570 */ 3571 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3572 { 3573 struct rbd_image_header_ondisk *ondisk = NULL; 3574 u32 snap_count = 0; 3575 u64 names_size = 0; 3576 u32 want_count; 3577 int ret; 3578 3579 /* 3580 * The complete header will include an array of its 64-bit 3581 * snapshot ids, followed by the names of those snapshots as 3582 * a contiguous block of NUL-terminated strings. Note that 3583 * the number of snapshots could change by the time we read 3584 * it in, in which case we re-read it. 3585 */ 3586 do { 3587 size_t size; 3588 3589 kfree(ondisk); 3590 3591 size = sizeof (*ondisk); 3592 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3593 size += names_size; 3594 ondisk = kmalloc(size, GFP_KERNEL); 3595 if (!ondisk) 3596 return -ENOMEM; 3597 3598 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3599 0, size, ondisk); 3600 if (ret < 0) 3601 goto out; 3602 if ((size_t)ret < size) { 3603 ret = -ENXIO; 3604 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3605 size, ret); 3606 goto out; 3607 } 3608 if (!rbd_dev_ondisk_valid(ondisk)) { 3609 ret = -ENXIO; 3610 rbd_warn(rbd_dev, "invalid header"); 3611 goto out; 3612 } 3613 3614 names_size = le64_to_cpu(ondisk->snap_names_len); 3615 want_count = snap_count; 3616 snap_count = le32_to_cpu(ondisk->snap_count); 3617 } while (snap_count != want_count); 3618 3619 ret = rbd_header_from_disk(rbd_dev, ondisk); 3620 out: 3621 kfree(ondisk); 3622 3623 return ret; 3624 } 3625 3626 /* 3627 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3628 * has disappeared from the (just updated) snapshot context. 3629 */ 3630 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3631 { 3632 u64 snap_id; 3633 3634 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3635 return; 3636 3637 snap_id = rbd_dev->spec->snap_id; 3638 if (snap_id == CEPH_NOSNAP) 3639 return; 3640 3641 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3642 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3643 } 3644 3645 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3646 { 3647 sector_t size; 3648 bool removing; 3649 3650 /* 3651 * Don't hold the lock while doing disk operations, 3652 * or lock ordering will conflict with the bdev mutex via: 3653 * rbd_add() -> blkdev_get() -> rbd_open() 3654 */ 3655 spin_lock_irq(&rbd_dev->lock); 3656 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3657 spin_unlock_irq(&rbd_dev->lock); 3658 /* 3659 * If the device is being removed, rbd_dev->disk has 3660 * been destroyed, so don't try to update its size 3661 */ 3662 if (!removing) { 3663 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3664 dout("setting size to %llu sectors", (unsigned long long)size); 3665 set_capacity(rbd_dev->disk, size); 3666 revalidate_disk(rbd_dev->disk); 3667 } 3668 } 3669 3670 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3671 { 3672 u64 mapping_size; 3673 int ret; 3674 3675 down_write(&rbd_dev->header_rwsem); 3676 mapping_size = rbd_dev->mapping.size; 3677 3678 ret = rbd_dev_header_info(rbd_dev); 3679 if (ret) 3680 goto out; 3681 3682 /* 3683 * If there is a parent, see if it has disappeared due to the 3684 * mapped image getting flattened. 3685 */ 3686 if (rbd_dev->parent) { 3687 ret = rbd_dev_v2_parent_info(rbd_dev); 3688 if (ret) 3689 goto out; 3690 } 3691 3692 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3693 rbd_dev->mapping.size = rbd_dev->header.image_size; 3694 } else { 3695 /* validate mapped snapshot's EXISTS flag */ 3696 rbd_exists_validate(rbd_dev); 3697 } 3698 3699 out: 3700 up_write(&rbd_dev->header_rwsem); 3701 if (!ret && mapping_size != rbd_dev->mapping.size) 3702 rbd_dev_update_size(rbd_dev); 3703 3704 return ret; 3705 } 3706 3707 static int rbd_init_request(void *data, struct request *rq, 3708 unsigned int hctx_idx, unsigned int request_idx, 3709 unsigned int numa_node) 3710 { 3711 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3712 3713 INIT_WORK(work, rbd_queue_workfn); 3714 return 0; 3715 } 3716 3717 static struct blk_mq_ops rbd_mq_ops = { 3718 .queue_rq = rbd_queue_rq, 3719 .map_queue = blk_mq_map_queue, 3720 .init_request = rbd_init_request, 3721 }; 3722 3723 static int rbd_init_disk(struct rbd_device *rbd_dev) 3724 { 3725 struct gendisk *disk; 3726 struct request_queue *q; 3727 u64 segment_size; 3728 int err; 3729 3730 /* create gendisk info */ 3731 disk = alloc_disk(single_major ? 3732 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3733 RBD_MINORS_PER_MAJOR); 3734 if (!disk) 3735 return -ENOMEM; 3736 3737 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3738 rbd_dev->dev_id); 3739 disk->major = rbd_dev->major; 3740 disk->first_minor = rbd_dev->minor; 3741 if (single_major) 3742 disk->flags |= GENHD_FL_EXT_DEVT; 3743 disk->fops = &rbd_bd_ops; 3744 disk->private_data = rbd_dev; 3745 3746 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 3747 rbd_dev->tag_set.ops = &rbd_mq_ops; 3748 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 3749 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 3750 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 3751 rbd_dev->tag_set.nr_hw_queues = 1; 3752 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 3753 3754 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 3755 if (err) 3756 goto out_disk; 3757 3758 q = blk_mq_init_queue(&rbd_dev->tag_set); 3759 if (IS_ERR(q)) { 3760 err = PTR_ERR(q); 3761 goto out_tag_set; 3762 } 3763 3764 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 3765 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 3766 3767 /* set io sizes to object size */ 3768 segment_size = rbd_obj_bytes(&rbd_dev->header); 3769 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3770 q->limits.max_sectors = queue_max_hw_sectors(q); 3771 blk_queue_max_segments(q, segment_size / SECTOR_SIZE); 3772 blk_queue_max_segment_size(q, segment_size); 3773 blk_queue_io_min(q, segment_size); 3774 blk_queue_io_opt(q, segment_size); 3775 3776 /* enable the discard support */ 3777 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 3778 q->limits.discard_granularity = segment_size; 3779 q->limits.discard_alignment = segment_size; 3780 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE); 3781 q->limits.discard_zeroes_data = 1; 3782 3783 disk->queue = q; 3784 3785 q->queuedata = rbd_dev; 3786 3787 rbd_dev->disk = disk; 3788 3789 return 0; 3790 out_tag_set: 3791 blk_mq_free_tag_set(&rbd_dev->tag_set); 3792 out_disk: 3793 put_disk(disk); 3794 return err; 3795 } 3796 3797 /* 3798 sysfs 3799 */ 3800 3801 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3802 { 3803 return container_of(dev, struct rbd_device, dev); 3804 } 3805 3806 static ssize_t rbd_size_show(struct device *dev, 3807 struct device_attribute *attr, char *buf) 3808 { 3809 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3810 3811 return sprintf(buf, "%llu\n", 3812 (unsigned long long)rbd_dev->mapping.size); 3813 } 3814 3815 /* 3816 * Note this shows the features for whatever's mapped, which is not 3817 * necessarily the base image. 3818 */ 3819 static ssize_t rbd_features_show(struct device *dev, 3820 struct device_attribute *attr, char *buf) 3821 { 3822 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3823 3824 return sprintf(buf, "0x%016llx\n", 3825 (unsigned long long)rbd_dev->mapping.features); 3826 } 3827 3828 static ssize_t rbd_major_show(struct device *dev, 3829 struct device_attribute *attr, char *buf) 3830 { 3831 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3832 3833 if (rbd_dev->major) 3834 return sprintf(buf, "%d\n", rbd_dev->major); 3835 3836 return sprintf(buf, "(none)\n"); 3837 } 3838 3839 static ssize_t rbd_minor_show(struct device *dev, 3840 struct device_attribute *attr, char *buf) 3841 { 3842 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3843 3844 return sprintf(buf, "%d\n", rbd_dev->minor); 3845 } 3846 3847 static ssize_t rbd_client_id_show(struct device *dev, 3848 struct device_attribute *attr, char *buf) 3849 { 3850 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3851 3852 return sprintf(buf, "client%lld\n", 3853 ceph_client_id(rbd_dev->rbd_client->client)); 3854 } 3855 3856 static ssize_t rbd_pool_show(struct device *dev, 3857 struct device_attribute *attr, char *buf) 3858 { 3859 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3860 3861 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3862 } 3863 3864 static ssize_t rbd_pool_id_show(struct device *dev, 3865 struct device_attribute *attr, char *buf) 3866 { 3867 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3868 3869 return sprintf(buf, "%llu\n", 3870 (unsigned long long) rbd_dev->spec->pool_id); 3871 } 3872 3873 static ssize_t rbd_name_show(struct device *dev, 3874 struct device_attribute *attr, char *buf) 3875 { 3876 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3877 3878 if (rbd_dev->spec->image_name) 3879 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3880 3881 return sprintf(buf, "(unknown)\n"); 3882 } 3883 3884 static ssize_t rbd_image_id_show(struct device *dev, 3885 struct device_attribute *attr, char *buf) 3886 { 3887 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3888 3889 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3890 } 3891 3892 /* 3893 * Shows the name of the currently-mapped snapshot (or 3894 * RBD_SNAP_HEAD_NAME for the base image). 3895 */ 3896 static ssize_t rbd_snap_show(struct device *dev, 3897 struct device_attribute *attr, 3898 char *buf) 3899 { 3900 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3901 3902 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3903 } 3904 3905 /* 3906 * For a v2 image, shows the chain of parent images, separated by empty 3907 * lines. For v1 images or if there is no parent, shows "(no parent 3908 * image)". 3909 */ 3910 static ssize_t rbd_parent_show(struct device *dev, 3911 struct device_attribute *attr, 3912 char *buf) 3913 { 3914 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3915 ssize_t count = 0; 3916 3917 if (!rbd_dev->parent) 3918 return sprintf(buf, "(no parent image)\n"); 3919 3920 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 3921 struct rbd_spec *spec = rbd_dev->parent_spec; 3922 3923 count += sprintf(&buf[count], "%s" 3924 "pool_id %llu\npool_name %s\n" 3925 "image_id %s\nimage_name %s\n" 3926 "snap_id %llu\nsnap_name %s\n" 3927 "overlap %llu\n", 3928 !count ? "" : "\n", /* first? */ 3929 spec->pool_id, spec->pool_name, 3930 spec->image_id, spec->image_name ?: "(unknown)", 3931 spec->snap_id, spec->snap_name, 3932 rbd_dev->parent_overlap); 3933 } 3934 3935 return count; 3936 } 3937 3938 static ssize_t rbd_image_refresh(struct device *dev, 3939 struct device_attribute *attr, 3940 const char *buf, 3941 size_t size) 3942 { 3943 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3944 int ret; 3945 3946 ret = rbd_dev_refresh(rbd_dev); 3947 if (ret) 3948 return ret; 3949 3950 return size; 3951 } 3952 3953 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3954 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3955 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3956 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3957 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3958 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3959 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3960 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3961 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3962 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3963 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3964 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3965 3966 static struct attribute *rbd_attrs[] = { 3967 &dev_attr_size.attr, 3968 &dev_attr_features.attr, 3969 &dev_attr_major.attr, 3970 &dev_attr_minor.attr, 3971 &dev_attr_client_id.attr, 3972 &dev_attr_pool.attr, 3973 &dev_attr_pool_id.attr, 3974 &dev_attr_name.attr, 3975 &dev_attr_image_id.attr, 3976 &dev_attr_current_snap.attr, 3977 &dev_attr_parent.attr, 3978 &dev_attr_refresh.attr, 3979 NULL 3980 }; 3981 3982 static struct attribute_group rbd_attr_group = { 3983 .attrs = rbd_attrs, 3984 }; 3985 3986 static const struct attribute_group *rbd_attr_groups[] = { 3987 &rbd_attr_group, 3988 NULL 3989 }; 3990 3991 static void rbd_sysfs_dev_release(struct device *dev) 3992 { 3993 } 3994 3995 static struct device_type rbd_device_type = { 3996 .name = "rbd", 3997 .groups = rbd_attr_groups, 3998 .release = rbd_sysfs_dev_release, 3999 }; 4000 4001 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4002 { 4003 kref_get(&spec->kref); 4004 4005 return spec; 4006 } 4007 4008 static void rbd_spec_free(struct kref *kref); 4009 static void rbd_spec_put(struct rbd_spec *spec) 4010 { 4011 if (spec) 4012 kref_put(&spec->kref, rbd_spec_free); 4013 } 4014 4015 static struct rbd_spec *rbd_spec_alloc(void) 4016 { 4017 struct rbd_spec *spec; 4018 4019 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4020 if (!spec) 4021 return NULL; 4022 4023 spec->pool_id = CEPH_NOPOOL; 4024 spec->snap_id = CEPH_NOSNAP; 4025 kref_init(&spec->kref); 4026 4027 return spec; 4028 } 4029 4030 static void rbd_spec_free(struct kref *kref) 4031 { 4032 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4033 4034 kfree(spec->pool_name); 4035 kfree(spec->image_id); 4036 kfree(spec->image_name); 4037 kfree(spec->snap_name); 4038 kfree(spec); 4039 } 4040 4041 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4042 struct rbd_spec *spec, 4043 struct rbd_options *opts) 4044 { 4045 struct rbd_device *rbd_dev; 4046 4047 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 4048 if (!rbd_dev) 4049 return NULL; 4050 4051 spin_lock_init(&rbd_dev->lock); 4052 rbd_dev->flags = 0; 4053 atomic_set(&rbd_dev->parent_ref, 0); 4054 INIT_LIST_HEAD(&rbd_dev->node); 4055 init_rwsem(&rbd_dev->header_rwsem); 4056 4057 rbd_dev->rbd_client = rbdc; 4058 rbd_dev->spec = spec; 4059 rbd_dev->opts = opts; 4060 4061 /* Initialize the layout used for all rbd requests */ 4062 4063 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4064 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 4065 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4066 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 4067 4068 return rbd_dev; 4069 } 4070 4071 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4072 { 4073 rbd_put_client(rbd_dev->rbd_client); 4074 rbd_spec_put(rbd_dev->spec); 4075 kfree(rbd_dev->opts); 4076 kfree(rbd_dev); 4077 } 4078 4079 /* 4080 * Get the size and object order for an image snapshot, or if 4081 * snap_id is CEPH_NOSNAP, gets this information for the base 4082 * image. 4083 */ 4084 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4085 u8 *order, u64 *snap_size) 4086 { 4087 __le64 snapid = cpu_to_le64(snap_id); 4088 int ret; 4089 struct { 4090 u8 order; 4091 __le64 size; 4092 } __attribute__ ((packed)) size_buf = { 0 }; 4093 4094 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4095 "rbd", "get_size", 4096 &snapid, sizeof (snapid), 4097 &size_buf, sizeof (size_buf)); 4098 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4099 if (ret < 0) 4100 return ret; 4101 if (ret < sizeof (size_buf)) 4102 return -ERANGE; 4103 4104 if (order) { 4105 *order = size_buf.order; 4106 dout(" order %u", (unsigned int)*order); 4107 } 4108 *snap_size = le64_to_cpu(size_buf.size); 4109 4110 dout(" snap_id 0x%016llx snap_size = %llu\n", 4111 (unsigned long long)snap_id, 4112 (unsigned long long)*snap_size); 4113 4114 return 0; 4115 } 4116 4117 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4118 { 4119 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4120 &rbd_dev->header.obj_order, 4121 &rbd_dev->header.image_size); 4122 } 4123 4124 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4125 { 4126 void *reply_buf; 4127 int ret; 4128 void *p; 4129 4130 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4131 if (!reply_buf) 4132 return -ENOMEM; 4133 4134 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4135 "rbd", "get_object_prefix", NULL, 0, 4136 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4137 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4138 if (ret < 0) 4139 goto out; 4140 4141 p = reply_buf; 4142 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4143 p + ret, NULL, GFP_NOIO); 4144 ret = 0; 4145 4146 if (IS_ERR(rbd_dev->header.object_prefix)) { 4147 ret = PTR_ERR(rbd_dev->header.object_prefix); 4148 rbd_dev->header.object_prefix = NULL; 4149 } else { 4150 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4151 } 4152 out: 4153 kfree(reply_buf); 4154 4155 return ret; 4156 } 4157 4158 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4159 u64 *snap_features) 4160 { 4161 __le64 snapid = cpu_to_le64(snap_id); 4162 struct { 4163 __le64 features; 4164 __le64 incompat; 4165 } __attribute__ ((packed)) features_buf = { 0 }; 4166 u64 incompat; 4167 int ret; 4168 4169 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4170 "rbd", "get_features", 4171 &snapid, sizeof (snapid), 4172 &features_buf, sizeof (features_buf)); 4173 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4174 if (ret < 0) 4175 return ret; 4176 if (ret < sizeof (features_buf)) 4177 return -ERANGE; 4178 4179 incompat = le64_to_cpu(features_buf.incompat); 4180 if (incompat & ~RBD_FEATURES_SUPPORTED) 4181 return -ENXIO; 4182 4183 *snap_features = le64_to_cpu(features_buf.features); 4184 4185 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4186 (unsigned long long)snap_id, 4187 (unsigned long long)*snap_features, 4188 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4189 4190 return 0; 4191 } 4192 4193 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4194 { 4195 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4196 &rbd_dev->header.features); 4197 } 4198 4199 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4200 { 4201 struct rbd_spec *parent_spec; 4202 size_t size; 4203 void *reply_buf = NULL; 4204 __le64 snapid; 4205 void *p; 4206 void *end; 4207 u64 pool_id; 4208 char *image_id; 4209 u64 snap_id; 4210 u64 overlap; 4211 int ret; 4212 4213 parent_spec = rbd_spec_alloc(); 4214 if (!parent_spec) 4215 return -ENOMEM; 4216 4217 size = sizeof (__le64) + /* pool_id */ 4218 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4219 sizeof (__le64) + /* snap_id */ 4220 sizeof (__le64); /* overlap */ 4221 reply_buf = kmalloc(size, GFP_KERNEL); 4222 if (!reply_buf) { 4223 ret = -ENOMEM; 4224 goto out_err; 4225 } 4226 4227 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4228 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4229 "rbd", "get_parent", 4230 &snapid, sizeof (snapid), 4231 reply_buf, size); 4232 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4233 if (ret < 0) 4234 goto out_err; 4235 4236 p = reply_buf; 4237 end = reply_buf + ret; 4238 ret = -ERANGE; 4239 ceph_decode_64_safe(&p, end, pool_id, out_err); 4240 if (pool_id == CEPH_NOPOOL) { 4241 /* 4242 * Either the parent never existed, or we have 4243 * record of it but the image got flattened so it no 4244 * longer has a parent. When the parent of a 4245 * layered image disappears we immediately set the 4246 * overlap to 0. The effect of this is that all new 4247 * requests will be treated as if the image had no 4248 * parent. 4249 */ 4250 if (rbd_dev->parent_overlap) { 4251 rbd_dev->parent_overlap = 0; 4252 rbd_dev_parent_put(rbd_dev); 4253 pr_info("%s: clone image has been flattened\n", 4254 rbd_dev->disk->disk_name); 4255 } 4256 4257 goto out; /* No parent? No problem. */ 4258 } 4259 4260 /* The ceph file layout needs to fit pool id in 32 bits */ 4261 4262 ret = -EIO; 4263 if (pool_id > (u64)U32_MAX) { 4264 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4265 (unsigned long long)pool_id, U32_MAX); 4266 goto out_err; 4267 } 4268 4269 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4270 if (IS_ERR(image_id)) { 4271 ret = PTR_ERR(image_id); 4272 goto out_err; 4273 } 4274 ceph_decode_64_safe(&p, end, snap_id, out_err); 4275 ceph_decode_64_safe(&p, end, overlap, out_err); 4276 4277 /* 4278 * The parent won't change (except when the clone is 4279 * flattened, already handled that). So we only need to 4280 * record the parent spec we have not already done so. 4281 */ 4282 if (!rbd_dev->parent_spec) { 4283 parent_spec->pool_id = pool_id; 4284 parent_spec->image_id = image_id; 4285 parent_spec->snap_id = snap_id; 4286 rbd_dev->parent_spec = parent_spec; 4287 parent_spec = NULL; /* rbd_dev now owns this */ 4288 } else { 4289 kfree(image_id); 4290 } 4291 4292 /* 4293 * We always update the parent overlap. If it's zero we issue 4294 * a warning, as we will proceed as if there was no parent. 4295 */ 4296 if (!overlap) { 4297 if (parent_spec) { 4298 /* refresh, careful to warn just once */ 4299 if (rbd_dev->parent_overlap) 4300 rbd_warn(rbd_dev, 4301 "clone now standalone (overlap became 0)"); 4302 } else { 4303 /* initial probe */ 4304 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 4305 } 4306 } 4307 rbd_dev->parent_overlap = overlap; 4308 4309 out: 4310 ret = 0; 4311 out_err: 4312 kfree(reply_buf); 4313 rbd_spec_put(parent_spec); 4314 4315 return ret; 4316 } 4317 4318 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4319 { 4320 struct { 4321 __le64 stripe_unit; 4322 __le64 stripe_count; 4323 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4324 size_t size = sizeof (striping_info_buf); 4325 void *p; 4326 u64 obj_size; 4327 u64 stripe_unit; 4328 u64 stripe_count; 4329 int ret; 4330 4331 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4332 "rbd", "get_stripe_unit_count", NULL, 0, 4333 (char *)&striping_info_buf, size); 4334 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4335 if (ret < 0) 4336 return ret; 4337 if (ret < size) 4338 return -ERANGE; 4339 4340 /* 4341 * We don't actually support the "fancy striping" feature 4342 * (STRIPINGV2) yet, but if the striping sizes are the 4343 * defaults the behavior is the same as before. So find 4344 * out, and only fail if the image has non-default values. 4345 */ 4346 ret = -EINVAL; 4347 obj_size = (u64)1 << rbd_dev->header.obj_order; 4348 p = &striping_info_buf; 4349 stripe_unit = ceph_decode_64(&p); 4350 if (stripe_unit != obj_size) { 4351 rbd_warn(rbd_dev, "unsupported stripe unit " 4352 "(got %llu want %llu)", 4353 stripe_unit, obj_size); 4354 return -EINVAL; 4355 } 4356 stripe_count = ceph_decode_64(&p); 4357 if (stripe_count != 1) { 4358 rbd_warn(rbd_dev, "unsupported stripe count " 4359 "(got %llu want 1)", stripe_count); 4360 return -EINVAL; 4361 } 4362 rbd_dev->header.stripe_unit = stripe_unit; 4363 rbd_dev->header.stripe_count = stripe_count; 4364 4365 return 0; 4366 } 4367 4368 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4369 { 4370 size_t image_id_size; 4371 char *image_id; 4372 void *p; 4373 void *end; 4374 size_t size; 4375 void *reply_buf = NULL; 4376 size_t len = 0; 4377 char *image_name = NULL; 4378 int ret; 4379 4380 rbd_assert(!rbd_dev->spec->image_name); 4381 4382 len = strlen(rbd_dev->spec->image_id); 4383 image_id_size = sizeof (__le32) + len; 4384 image_id = kmalloc(image_id_size, GFP_KERNEL); 4385 if (!image_id) 4386 return NULL; 4387 4388 p = image_id; 4389 end = image_id + image_id_size; 4390 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4391 4392 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4393 reply_buf = kmalloc(size, GFP_KERNEL); 4394 if (!reply_buf) 4395 goto out; 4396 4397 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4398 "rbd", "dir_get_name", 4399 image_id, image_id_size, 4400 reply_buf, size); 4401 if (ret < 0) 4402 goto out; 4403 p = reply_buf; 4404 end = reply_buf + ret; 4405 4406 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4407 if (IS_ERR(image_name)) 4408 image_name = NULL; 4409 else 4410 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4411 out: 4412 kfree(reply_buf); 4413 kfree(image_id); 4414 4415 return image_name; 4416 } 4417 4418 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4419 { 4420 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4421 const char *snap_name; 4422 u32 which = 0; 4423 4424 /* Skip over names until we find the one we are looking for */ 4425 4426 snap_name = rbd_dev->header.snap_names; 4427 while (which < snapc->num_snaps) { 4428 if (!strcmp(name, snap_name)) 4429 return snapc->snaps[which]; 4430 snap_name += strlen(snap_name) + 1; 4431 which++; 4432 } 4433 return CEPH_NOSNAP; 4434 } 4435 4436 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4437 { 4438 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4439 u32 which; 4440 bool found = false; 4441 u64 snap_id; 4442 4443 for (which = 0; !found && which < snapc->num_snaps; which++) { 4444 const char *snap_name; 4445 4446 snap_id = snapc->snaps[which]; 4447 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4448 if (IS_ERR(snap_name)) { 4449 /* ignore no-longer existing snapshots */ 4450 if (PTR_ERR(snap_name) == -ENOENT) 4451 continue; 4452 else 4453 break; 4454 } 4455 found = !strcmp(name, snap_name); 4456 kfree(snap_name); 4457 } 4458 return found ? snap_id : CEPH_NOSNAP; 4459 } 4460 4461 /* 4462 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4463 * no snapshot by that name is found, or if an error occurs. 4464 */ 4465 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4466 { 4467 if (rbd_dev->image_format == 1) 4468 return rbd_v1_snap_id_by_name(rbd_dev, name); 4469 4470 return rbd_v2_snap_id_by_name(rbd_dev, name); 4471 } 4472 4473 /* 4474 * An image being mapped will have everything but the snap id. 4475 */ 4476 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4477 { 4478 struct rbd_spec *spec = rbd_dev->spec; 4479 4480 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4481 rbd_assert(spec->image_id && spec->image_name); 4482 rbd_assert(spec->snap_name); 4483 4484 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4485 u64 snap_id; 4486 4487 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4488 if (snap_id == CEPH_NOSNAP) 4489 return -ENOENT; 4490 4491 spec->snap_id = snap_id; 4492 } else { 4493 spec->snap_id = CEPH_NOSNAP; 4494 } 4495 4496 return 0; 4497 } 4498 4499 /* 4500 * A parent image will have all ids but none of the names. 4501 * 4502 * All names in an rbd spec are dynamically allocated. It's OK if we 4503 * can't figure out the name for an image id. 4504 */ 4505 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4506 { 4507 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4508 struct rbd_spec *spec = rbd_dev->spec; 4509 const char *pool_name; 4510 const char *image_name; 4511 const char *snap_name; 4512 int ret; 4513 4514 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4515 rbd_assert(spec->image_id); 4516 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4517 4518 /* Get the pool name; we have to make our own copy of this */ 4519 4520 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4521 if (!pool_name) { 4522 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4523 return -EIO; 4524 } 4525 pool_name = kstrdup(pool_name, GFP_KERNEL); 4526 if (!pool_name) 4527 return -ENOMEM; 4528 4529 /* Fetch the image name; tolerate failure here */ 4530 4531 image_name = rbd_dev_image_name(rbd_dev); 4532 if (!image_name) 4533 rbd_warn(rbd_dev, "unable to get image name"); 4534 4535 /* Fetch the snapshot name */ 4536 4537 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4538 if (IS_ERR(snap_name)) { 4539 ret = PTR_ERR(snap_name); 4540 goto out_err; 4541 } 4542 4543 spec->pool_name = pool_name; 4544 spec->image_name = image_name; 4545 spec->snap_name = snap_name; 4546 4547 return 0; 4548 4549 out_err: 4550 kfree(image_name); 4551 kfree(pool_name); 4552 return ret; 4553 } 4554 4555 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4556 { 4557 size_t size; 4558 int ret; 4559 void *reply_buf; 4560 void *p; 4561 void *end; 4562 u64 seq; 4563 u32 snap_count; 4564 struct ceph_snap_context *snapc; 4565 u32 i; 4566 4567 /* 4568 * We'll need room for the seq value (maximum snapshot id), 4569 * snapshot count, and array of that many snapshot ids. 4570 * For now we have a fixed upper limit on the number we're 4571 * prepared to receive. 4572 */ 4573 size = sizeof (__le64) + sizeof (__le32) + 4574 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4575 reply_buf = kzalloc(size, GFP_KERNEL); 4576 if (!reply_buf) 4577 return -ENOMEM; 4578 4579 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4580 "rbd", "get_snapcontext", NULL, 0, 4581 reply_buf, size); 4582 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4583 if (ret < 0) 4584 goto out; 4585 4586 p = reply_buf; 4587 end = reply_buf + ret; 4588 ret = -ERANGE; 4589 ceph_decode_64_safe(&p, end, seq, out); 4590 ceph_decode_32_safe(&p, end, snap_count, out); 4591 4592 /* 4593 * Make sure the reported number of snapshot ids wouldn't go 4594 * beyond the end of our buffer. But before checking that, 4595 * make sure the computed size of the snapshot context we 4596 * allocate is representable in a size_t. 4597 */ 4598 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4599 / sizeof (u64)) { 4600 ret = -EINVAL; 4601 goto out; 4602 } 4603 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4604 goto out; 4605 ret = 0; 4606 4607 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4608 if (!snapc) { 4609 ret = -ENOMEM; 4610 goto out; 4611 } 4612 snapc->seq = seq; 4613 for (i = 0; i < snap_count; i++) 4614 snapc->snaps[i] = ceph_decode_64(&p); 4615 4616 ceph_put_snap_context(rbd_dev->header.snapc); 4617 rbd_dev->header.snapc = snapc; 4618 4619 dout(" snap context seq = %llu, snap_count = %u\n", 4620 (unsigned long long)seq, (unsigned int)snap_count); 4621 out: 4622 kfree(reply_buf); 4623 4624 return ret; 4625 } 4626 4627 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4628 u64 snap_id) 4629 { 4630 size_t size; 4631 void *reply_buf; 4632 __le64 snapid; 4633 int ret; 4634 void *p; 4635 void *end; 4636 char *snap_name; 4637 4638 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4639 reply_buf = kmalloc(size, GFP_KERNEL); 4640 if (!reply_buf) 4641 return ERR_PTR(-ENOMEM); 4642 4643 snapid = cpu_to_le64(snap_id); 4644 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4645 "rbd", "get_snapshot_name", 4646 &snapid, sizeof (snapid), 4647 reply_buf, size); 4648 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4649 if (ret < 0) { 4650 snap_name = ERR_PTR(ret); 4651 goto out; 4652 } 4653 4654 p = reply_buf; 4655 end = reply_buf + ret; 4656 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4657 if (IS_ERR(snap_name)) 4658 goto out; 4659 4660 dout(" snap_id 0x%016llx snap_name = %s\n", 4661 (unsigned long long)snap_id, snap_name); 4662 out: 4663 kfree(reply_buf); 4664 4665 return snap_name; 4666 } 4667 4668 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4669 { 4670 bool first_time = rbd_dev->header.object_prefix == NULL; 4671 int ret; 4672 4673 ret = rbd_dev_v2_image_size(rbd_dev); 4674 if (ret) 4675 return ret; 4676 4677 if (first_time) { 4678 ret = rbd_dev_v2_header_onetime(rbd_dev); 4679 if (ret) 4680 return ret; 4681 } 4682 4683 ret = rbd_dev_v2_snap_context(rbd_dev); 4684 if (ret && first_time) { 4685 kfree(rbd_dev->header.object_prefix); 4686 rbd_dev->header.object_prefix = NULL; 4687 } 4688 4689 return ret; 4690 } 4691 4692 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 4693 { 4694 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4695 4696 if (rbd_dev->image_format == 1) 4697 return rbd_dev_v1_header_info(rbd_dev); 4698 4699 return rbd_dev_v2_header_info(rbd_dev); 4700 } 4701 4702 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4703 { 4704 struct device *dev; 4705 int ret; 4706 4707 dev = &rbd_dev->dev; 4708 dev->bus = &rbd_bus_type; 4709 dev->type = &rbd_device_type; 4710 dev->parent = &rbd_root_dev; 4711 dev->release = rbd_dev_device_release; 4712 dev_set_name(dev, "%d", rbd_dev->dev_id); 4713 ret = device_register(dev); 4714 4715 return ret; 4716 } 4717 4718 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4719 { 4720 device_unregister(&rbd_dev->dev); 4721 } 4722 4723 /* 4724 * Get a unique rbd identifier for the given new rbd_dev, and add 4725 * the rbd_dev to the global list. 4726 */ 4727 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4728 { 4729 int new_dev_id; 4730 4731 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4732 0, minor_to_rbd_dev_id(1 << MINORBITS), 4733 GFP_KERNEL); 4734 if (new_dev_id < 0) 4735 return new_dev_id; 4736 4737 rbd_dev->dev_id = new_dev_id; 4738 4739 spin_lock(&rbd_dev_list_lock); 4740 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4741 spin_unlock(&rbd_dev_list_lock); 4742 4743 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4744 4745 return 0; 4746 } 4747 4748 /* 4749 * Remove an rbd_dev from the global list, and record that its 4750 * identifier is no longer in use. 4751 */ 4752 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4753 { 4754 spin_lock(&rbd_dev_list_lock); 4755 list_del_init(&rbd_dev->node); 4756 spin_unlock(&rbd_dev_list_lock); 4757 4758 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4759 4760 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4761 } 4762 4763 /* 4764 * Skips over white space at *buf, and updates *buf to point to the 4765 * first found non-space character (if any). Returns the length of 4766 * the token (string of non-white space characters) found. Note 4767 * that *buf must be terminated with '\0'. 4768 */ 4769 static inline size_t next_token(const char **buf) 4770 { 4771 /* 4772 * These are the characters that produce nonzero for 4773 * isspace() in the "C" and "POSIX" locales. 4774 */ 4775 const char *spaces = " \f\n\r\t\v"; 4776 4777 *buf += strspn(*buf, spaces); /* Find start of token */ 4778 4779 return strcspn(*buf, spaces); /* Return token length */ 4780 } 4781 4782 /* 4783 * Finds the next token in *buf, dynamically allocates a buffer big 4784 * enough to hold a copy of it, and copies the token into the new 4785 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4786 * that a duplicate buffer is created even for a zero-length token. 4787 * 4788 * Returns a pointer to the newly-allocated duplicate, or a null 4789 * pointer if memory for the duplicate was not available. If 4790 * the lenp argument is a non-null pointer, the length of the token 4791 * (not including the '\0') is returned in *lenp. 4792 * 4793 * If successful, the *buf pointer will be updated to point beyond 4794 * the end of the found token. 4795 * 4796 * Note: uses GFP_KERNEL for allocation. 4797 */ 4798 static inline char *dup_token(const char **buf, size_t *lenp) 4799 { 4800 char *dup; 4801 size_t len; 4802 4803 len = next_token(buf); 4804 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4805 if (!dup) 4806 return NULL; 4807 *(dup + len) = '\0'; 4808 *buf += len; 4809 4810 if (lenp) 4811 *lenp = len; 4812 4813 return dup; 4814 } 4815 4816 /* 4817 * Parse the options provided for an "rbd add" (i.e., rbd image 4818 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4819 * and the data written is passed here via a NUL-terminated buffer. 4820 * Returns 0 if successful or an error code otherwise. 4821 * 4822 * The information extracted from these options is recorded in 4823 * the other parameters which return dynamically-allocated 4824 * structures: 4825 * ceph_opts 4826 * The address of a pointer that will refer to a ceph options 4827 * structure. Caller must release the returned pointer using 4828 * ceph_destroy_options() when it is no longer needed. 4829 * rbd_opts 4830 * Address of an rbd options pointer. Fully initialized by 4831 * this function; caller must release with kfree(). 4832 * spec 4833 * Address of an rbd image specification pointer. Fully 4834 * initialized by this function based on parsed options. 4835 * Caller must release with rbd_spec_put(). 4836 * 4837 * The options passed take this form: 4838 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4839 * where: 4840 * <mon_addrs> 4841 * A comma-separated list of one or more monitor addresses. 4842 * A monitor address is an ip address, optionally followed 4843 * by a port number (separated by a colon). 4844 * I.e.: ip1[:port1][,ip2[:port2]...] 4845 * <options> 4846 * A comma-separated list of ceph and/or rbd options. 4847 * <pool_name> 4848 * The name of the rados pool containing the rbd image. 4849 * <image_name> 4850 * The name of the image in that pool to map. 4851 * <snap_id> 4852 * An optional snapshot id. If provided, the mapping will 4853 * present data from the image at the time that snapshot was 4854 * created. The image head is used if no snapshot id is 4855 * provided. Snapshot mappings are always read-only. 4856 */ 4857 static int rbd_add_parse_args(const char *buf, 4858 struct ceph_options **ceph_opts, 4859 struct rbd_options **opts, 4860 struct rbd_spec **rbd_spec) 4861 { 4862 size_t len; 4863 char *options; 4864 const char *mon_addrs; 4865 char *snap_name; 4866 size_t mon_addrs_size; 4867 struct rbd_spec *spec = NULL; 4868 struct rbd_options *rbd_opts = NULL; 4869 struct ceph_options *copts; 4870 int ret; 4871 4872 /* The first four tokens are required */ 4873 4874 len = next_token(&buf); 4875 if (!len) { 4876 rbd_warn(NULL, "no monitor address(es) provided"); 4877 return -EINVAL; 4878 } 4879 mon_addrs = buf; 4880 mon_addrs_size = len + 1; 4881 buf += len; 4882 4883 ret = -EINVAL; 4884 options = dup_token(&buf, NULL); 4885 if (!options) 4886 return -ENOMEM; 4887 if (!*options) { 4888 rbd_warn(NULL, "no options provided"); 4889 goto out_err; 4890 } 4891 4892 spec = rbd_spec_alloc(); 4893 if (!spec) 4894 goto out_mem; 4895 4896 spec->pool_name = dup_token(&buf, NULL); 4897 if (!spec->pool_name) 4898 goto out_mem; 4899 if (!*spec->pool_name) { 4900 rbd_warn(NULL, "no pool name provided"); 4901 goto out_err; 4902 } 4903 4904 spec->image_name = dup_token(&buf, NULL); 4905 if (!spec->image_name) 4906 goto out_mem; 4907 if (!*spec->image_name) { 4908 rbd_warn(NULL, "no image name provided"); 4909 goto out_err; 4910 } 4911 4912 /* 4913 * Snapshot name is optional; default is to use "-" 4914 * (indicating the head/no snapshot). 4915 */ 4916 len = next_token(&buf); 4917 if (!len) { 4918 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4919 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4920 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4921 ret = -ENAMETOOLONG; 4922 goto out_err; 4923 } 4924 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4925 if (!snap_name) 4926 goto out_mem; 4927 *(snap_name + len) = '\0'; 4928 spec->snap_name = snap_name; 4929 4930 /* Initialize all rbd options to the defaults */ 4931 4932 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4933 if (!rbd_opts) 4934 goto out_mem; 4935 4936 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4937 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 4938 4939 copts = ceph_parse_options(options, mon_addrs, 4940 mon_addrs + mon_addrs_size - 1, 4941 parse_rbd_opts_token, rbd_opts); 4942 if (IS_ERR(copts)) { 4943 ret = PTR_ERR(copts); 4944 goto out_err; 4945 } 4946 kfree(options); 4947 4948 *ceph_opts = copts; 4949 *opts = rbd_opts; 4950 *rbd_spec = spec; 4951 4952 return 0; 4953 out_mem: 4954 ret = -ENOMEM; 4955 out_err: 4956 kfree(rbd_opts); 4957 rbd_spec_put(spec); 4958 kfree(options); 4959 4960 return ret; 4961 } 4962 4963 /* 4964 * Return pool id (>= 0) or a negative error code. 4965 */ 4966 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 4967 { 4968 struct ceph_options *opts = rbdc->client->options; 4969 u64 newest_epoch; 4970 int tries = 0; 4971 int ret; 4972 4973 again: 4974 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 4975 if (ret == -ENOENT && tries++ < 1) { 4976 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap", 4977 &newest_epoch); 4978 if (ret < 0) 4979 return ret; 4980 4981 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 4982 ceph_monc_request_next_osdmap(&rbdc->client->monc); 4983 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 4984 newest_epoch, 4985 opts->mount_timeout); 4986 goto again; 4987 } else { 4988 /* the osdmap we have is new enough */ 4989 return -ENOENT; 4990 } 4991 } 4992 4993 return ret; 4994 } 4995 4996 /* 4997 * An rbd format 2 image has a unique identifier, distinct from the 4998 * name given to it by the user. Internally, that identifier is 4999 * what's used to specify the names of objects related to the image. 5000 * 5001 * A special "rbd id" object is used to map an rbd image name to its 5002 * id. If that object doesn't exist, then there is no v2 rbd image 5003 * with the supplied name. 5004 * 5005 * This function will record the given rbd_dev's image_id field if 5006 * it can be determined, and in that case will return 0. If any 5007 * errors occur a negative errno will be returned and the rbd_dev's 5008 * image_id field will be unchanged (and should be NULL). 5009 */ 5010 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5011 { 5012 int ret; 5013 size_t size; 5014 char *object_name; 5015 void *response; 5016 char *image_id; 5017 5018 /* 5019 * When probing a parent image, the image id is already 5020 * known (and the image name likely is not). There's no 5021 * need to fetch the image id again in this case. We 5022 * do still need to set the image format though. 5023 */ 5024 if (rbd_dev->spec->image_id) { 5025 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5026 5027 return 0; 5028 } 5029 5030 /* 5031 * First, see if the format 2 image id file exists, and if 5032 * so, get the image's persistent id from it. 5033 */ 5034 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 5035 object_name = kmalloc(size, GFP_NOIO); 5036 if (!object_name) 5037 return -ENOMEM; 5038 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 5039 dout("rbd id object name is %s\n", object_name); 5040 5041 /* Response will be an encoded string, which includes a length */ 5042 5043 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5044 response = kzalloc(size, GFP_NOIO); 5045 if (!response) { 5046 ret = -ENOMEM; 5047 goto out; 5048 } 5049 5050 /* If it doesn't exist we'll assume it's a format 1 image */ 5051 5052 ret = rbd_obj_method_sync(rbd_dev, object_name, 5053 "rbd", "get_id", NULL, 0, 5054 response, RBD_IMAGE_ID_LEN_MAX); 5055 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5056 if (ret == -ENOENT) { 5057 image_id = kstrdup("", GFP_KERNEL); 5058 ret = image_id ? 0 : -ENOMEM; 5059 if (!ret) 5060 rbd_dev->image_format = 1; 5061 } else if (ret >= 0) { 5062 void *p = response; 5063 5064 image_id = ceph_extract_encoded_string(&p, p + ret, 5065 NULL, GFP_NOIO); 5066 ret = PTR_ERR_OR_ZERO(image_id); 5067 if (!ret) 5068 rbd_dev->image_format = 2; 5069 } 5070 5071 if (!ret) { 5072 rbd_dev->spec->image_id = image_id; 5073 dout("image_id is %s\n", image_id); 5074 } 5075 out: 5076 kfree(response); 5077 kfree(object_name); 5078 5079 return ret; 5080 } 5081 5082 /* 5083 * Undo whatever state changes are made by v1 or v2 header info 5084 * call. 5085 */ 5086 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5087 { 5088 struct rbd_image_header *header; 5089 5090 rbd_dev_parent_put(rbd_dev); 5091 5092 /* Free dynamic fields from the header, then zero it out */ 5093 5094 header = &rbd_dev->header; 5095 ceph_put_snap_context(header->snapc); 5096 kfree(header->snap_sizes); 5097 kfree(header->snap_names); 5098 kfree(header->object_prefix); 5099 memset(header, 0, sizeof (*header)); 5100 } 5101 5102 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5103 { 5104 int ret; 5105 5106 ret = rbd_dev_v2_object_prefix(rbd_dev); 5107 if (ret) 5108 goto out_err; 5109 5110 /* 5111 * Get the and check features for the image. Currently the 5112 * features are assumed to never change. 5113 */ 5114 ret = rbd_dev_v2_features(rbd_dev); 5115 if (ret) 5116 goto out_err; 5117 5118 /* If the image supports fancy striping, get its parameters */ 5119 5120 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5121 ret = rbd_dev_v2_striping_info(rbd_dev); 5122 if (ret < 0) 5123 goto out_err; 5124 } 5125 /* No support for crypto and compression type format 2 images */ 5126 5127 return 0; 5128 out_err: 5129 rbd_dev->header.features = 0; 5130 kfree(rbd_dev->header.object_prefix); 5131 rbd_dev->header.object_prefix = NULL; 5132 5133 return ret; 5134 } 5135 5136 /* 5137 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 5138 * rbd_dev_image_probe() recursion depth, which means it's also the 5139 * length of the already discovered part of the parent chain. 5140 */ 5141 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 5142 { 5143 struct rbd_device *parent = NULL; 5144 int ret; 5145 5146 if (!rbd_dev->parent_spec) 5147 return 0; 5148 5149 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 5150 pr_info("parent chain is too long (%d)\n", depth); 5151 ret = -EINVAL; 5152 goto out_err; 5153 } 5154 5155 parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec, 5156 NULL); 5157 if (!parent) { 5158 ret = -ENOMEM; 5159 goto out_err; 5160 } 5161 5162 /* 5163 * Images related by parent/child relationships always share 5164 * rbd_client and spec/parent_spec, so bump their refcounts. 5165 */ 5166 __rbd_get_client(rbd_dev->rbd_client); 5167 rbd_spec_get(rbd_dev->parent_spec); 5168 5169 ret = rbd_dev_image_probe(parent, depth); 5170 if (ret < 0) 5171 goto out_err; 5172 5173 rbd_dev->parent = parent; 5174 atomic_set(&rbd_dev->parent_ref, 1); 5175 return 0; 5176 5177 out_err: 5178 rbd_dev_unparent(rbd_dev); 5179 if (parent) 5180 rbd_dev_destroy(parent); 5181 return ret; 5182 } 5183 5184 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5185 { 5186 int ret; 5187 5188 /* Get an id and fill in device name. */ 5189 5190 ret = rbd_dev_id_get(rbd_dev); 5191 if (ret) 5192 return ret; 5193 5194 BUILD_BUG_ON(DEV_NAME_LEN 5195 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 5196 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 5197 5198 /* Record our major and minor device numbers. */ 5199 5200 if (!single_major) { 5201 ret = register_blkdev(0, rbd_dev->name); 5202 if (ret < 0) 5203 goto err_out_id; 5204 5205 rbd_dev->major = ret; 5206 rbd_dev->minor = 0; 5207 } else { 5208 rbd_dev->major = rbd_major; 5209 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5210 } 5211 5212 /* Set up the blkdev mapping. */ 5213 5214 ret = rbd_init_disk(rbd_dev); 5215 if (ret) 5216 goto err_out_blkdev; 5217 5218 ret = rbd_dev_mapping_set(rbd_dev); 5219 if (ret) 5220 goto err_out_disk; 5221 5222 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5223 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5224 5225 ret = rbd_bus_add_dev(rbd_dev); 5226 if (ret) 5227 goto err_out_mapping; 5228 5229 /* Everything's ready. Announce the disk to the world. */ 5230 5231 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5232 add_disk(rbd_dev->disk); 5233 5234 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 5235 (unsigned long long) rbd_dev->mapping.size); 5236 5237 return ret; 5238 5239 err_out_mapping: 5240 rbd_dev_mapping_clear(rbd_dev); 5241 err_out_disk: 5242 rbd_free_disk(rbd_dev); 5243 err_out_blkdev: 5244 if (!single_major) 5245 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5246 err_out_id: 5247 rbd_dev_id_put(rbd_dev); 5248 rbd_dev_mapping_clear(rbd_dev); 5249 5250 return ret; 5251 } 5252 5253 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5254 { 5255 struct rbd_spec *spec = rbd_dev->spec; 5256 size_t size; 5257 5258 /* Record the header object name for this rbd image. */ 5259 5260 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5261 5262 if (rbd_dev->image_format == 1) 5263 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 5264 else 5265 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 5266 5267 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 5268 if (!rbd_dev->header_name) 5269 return -ENOMEM; 5270 5271 if (rbd_dev->image_format == 1) 5272 sprintf(rbd_dev->header_name, "%s%s", 5273 spec->image_name, RBD_SUFFIX); 5274 else 5275 sprintf(rbd_dev->header_name, "%s%s", 5276 RBD_HEADER_PREFIX, spec->image_id); 5277 return 0; 5278 } 5279 5280 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5281 { 5282 rbd_dev_unprobe(rbd_dev); 5283 kfree(rbd_dev->header_name); 5284 rbd_dev->header_name = NULL; 5285 rbd_dev->image_format = 0; 5286 kfree(rbd_dev->spec->image_id); 5287 rbd_dev->spec->image_id = NULL; 5288 5289 rbd_dev_destroy(rbd_dev); 5290 } 5291 5292 /* 5293 * Probe for the existence of the header object for the given rbd 5294 * device. If this image is the one being mapped (i.e., not a 5295 * parent), initiate a watch on its header object before using that 5296 * object to get detailed information about the rbd image. 5297 */ 5298 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 5299 { 5300 int ret; 5301 5302 /* 5303 * Get the id from the image id object. Unless there's an 5304 * error, rbd_dev->spec->image_id will be filled in with 5305 * a dynamically-allocated string, and rbd_dev->image_format 5306 * will be set to either 1 or 2. 5307 */ 5308 ret = rbd_dev_image_id(rbd_dev); 5309 if (ret) 5310 return ret; 5311 5312 ret = rbd_dev_header_name(rbd_dev); 5313 if (ret) 5314 goto err_out_format; 5315 5316 if (!depth) { 5317 ret = rbd_dev_header_watch_sync(rbd_dev); 5318 if (ret) { 5319 if (ret == -ENOENT) 5320 pr_info("image %s/%s does not exist\n", 5321 rbd_dev->spec->pool_name, 5322 rbd_dev->spec->image_name); 5323 goto out_header_name; 5324 } 5325 } 5326 5327 ret = rbd_dev_header_info(rbd_dev); 5328 if (ret) 5329 goto err_out_watch; 5330 5331 /* 5332 * If this image is the one being mapped, we have pool name and 5333 * id, image name and id, and snap name - need to fill snap id. 5334 * Otherwise this is a parent image, identified by pool, image 5335 * and snap ids - need to fill in names for those ids. 5336 */ 5337 if (!depth) 5338 ret = rbd_spec_fill_snap_id(rbd_dev); 5339 else 5340 ret = rbd_spec_fill_names(rbd_dev); 5341 if (ret) { 5342 if (ret == -ENOENT) 5343 pr_info("snap %s/%s@%s does not exist\n", 5344 rbd_dev->spec->pool_name, 5345 rbd_dev->spec->image_name, 5346 rbd_dev->spec->snap_name); 5347 goto err_out_probe; 5348 } 5349 5350 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5351 ret = rbd_dev_v2_parent_info(rbd_dev); 5352 if (ret) 5353 goto err_out_probe; 5354 5355 /* 5356 * Need to warn users if this image is the one being 5357 * mapped and has a parent. 5358 */ 5359 if (!depth && rbd_dev->parent_spec) 5360 rbd_warn(rbd_dev, 5361 "WARNING: kernel layering is EXPERIMENTAL!"); 5362 } 5363 5364 ret = rbd_dev_probe_parent(rbd_dev, depth); 5365 if (ret) 5366 goto err_out_probe; 5367 5368 dout("discovered format %u image, header name is %s\n", 5369 rbd_dev->image_format, rbd_dev->header_name); 5370 return 0; 5371 5372 err_out_probe: 5373 rbd_dev_unprobe(rbd_dev); 5374 err_out_watch: 5375 if (!depth) 5376 rbd_dev_header_unwatch_sync(rbd_dev); 5377 out_header_name: 5378 kfree(rbd_dev->header_name); 5379 rbd_dev->header_name = NULL; 5380 err_out_format: 5381 rbd_dev->image_format = 0; 5382 kfree(rbd_dev->spec->image_id); 5383 rbd_dev->spec->image_id = NULL; 5384 return ret; 5385 } 5386 5387 static ssize_t do_rbd_add(struct bus_type *bus, 5388 const char *buf, 5389 size_t count) 5390 { 5391 struct rbd_device *rbd_dev = NULL; 5392 struct ceph_options *ceph_opts = NULL; 5393 struct rbd_options *rbd_opts = NULL; 5394 struct rbd_spec *spec = NULL; 5395 struct rbd_client *rbdc; 5396 bool read_only; 5397 int rc = -ENOMEM; 5398 5399 if (!try_module_get(THIS_MODULE)) 5400 return -ENODEV; 5401 5402 /* parse add command */ 5403 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5404 if (rc < 0) 5405 goto err_out_module; 5406 5407 rbdc = rbd_get_client(ceph_opts); 5408 if (IS_ERR(rbdc)) { 5409 rc = PTR_ERR(rbdc); 5410 goto err_out_args; 5411 } 5412 5413 /* pick the pool */ 5414 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 5415 if (rc < 0) { 5416 if (rc == -ENOENT) 5417 pr_info("pool %s does not exist\n", spec->pool_name); 5418 goto err_out_client; 5419 } 5420 spec->pool_id = (u64)rc; 5421 5422 /* The ceph file layout needs to fit pool id in 32 bits */ 5423 5424 if (spec->pool_id > (u64)U32_MAX) { 5425 rbd_warn(NULL, "pool id too large (%llu > %u)", 5426 (unsigned long long)spec->pool_id, U32_MAX); 5427 rc = -EIO; 5428 goto err_out_client; 5429 } 5430 5431 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 5432 if (!rbd_dev) 5433 goto err_out_client; 5434 rbdc = NULL; /* rbd_dev now owns this */ 5435 spec = NULL; /* rbd_dev now owns this */ 5436 rbd_opts = NULL; /* rbd_dev now owns this */ 5437 5438 rc = rbd_dev_image_probe(rbd_dev, 0); 5439 if (rc < 0) 5440 goto err_out_rbd_dev; 5441 5442 /* If we are mapping a snapshot it must be marked read-only */ 5443 5444 read_only = rbd_dev->opts->read_only; 5445 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5446 read_only = true; 5447 rbd_dev->mapping.read_only = read_only; 5448 5449 rc = rbd_dev_device_setup(rbd_dev); 5450 if (rc) { 5451 /* 5452 * rbd_dev_header_unwatch_sync() can't be moved into 5453 * rbd_dev_image_release() without refactoring, see 5454 * commit 1f3ef78861ac. 5455 */ 5456 rbd_dev_header_unwatch_sync(rbd_dev); 5457 rbd_dev_image_release(rbd_dev); 5458 goto err_out_module; 5459 } 5460 5461 return count; 5462 5463 err_out_rbd_dev: 5464 rbd_dev_destroy(rbd_dev); 5465 err_out_client: 5466 rbd_put_client(rbdc); 5467 err_out_args: 5468 rbd_spec_put(spec); 5469 kfree(rbd_opts); 5470 err_out_module: 5471 module_put(THIS_MODULE); 5472 5473 dout("Error adding device %s\n", buf); 5474 5475 return (ssize_t)rc; 5476 } 5477 5478 static ssize_t rbd_add(struct bus_type *bus, 5479 const char *buf, 5480 size_t count) 5481 { 5482 if (single_major) 5483 return -EINVAL; 5484 5485 return do_rbd_add(bus, buf, count); 5486 } 5487 5488 static ssize_t rbd_add_single_major(struct bus_type *bus, 5489 const char *buf, 5490 size_t count) 5491 { 5492 return do_rbd_add(bus, buf, count); 5493 } 5494 5495 static void rbd_dev_device_release(struct device *dev) 5496 { 5497 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5498 5499 rbd_free_disk(rbd_dev); 5500 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5501 rbd_dev_mapping_clear(rbd_dev); 5502 if (!single_major) 5503 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5504 rbd_dev_id_put(rbd_dev); 5505 rbd_dev_mapping_clear(rbd_dev); 5506 } 5507 5508 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5509 { 5510 while (rbd_dev->parent) { 5511 struct rbd_device *first = rbd_dev; 5512 struct rbd_device *second = first->parent; 5513 struct rbd_device *third; 5514 5515 /* 5516 * Follow to the parent with no grandparent and 5517 * remove it. 5518 */ 5519 while (second && (third = second->parent)) { 5520 first = second; 5521 second = third; 5522 } 5523 rbd_assert(second); 5524 rbd_dev_image_release(second); 5525 first->parent = NULL; 5526 first->parent_overlap = 0; 5527 5528 rbd_assert(first->parent_spec); 5529 rbd_spec_put(first->parent_spec); 5530 first->parent_spec = NULL; 5531 } 5532 } 5533 5534 static ssize_t do_rbd_remove(struct bus_type *bus, 5535 const char *buf, 5536 size_t count) 5537 { 5538 struct rbd_device *rbd_dev = NULL; 5539 struct list_head *tmp; 5540 int dev_id; 5541 unsigned long ul; 5542 bool already = false; 5543 int ret; 5544 5545 ret = kstrtoul(buf, 10, &ul); 5546 if (ret) 5547 return ret; 5548 5549 /* convert to int; abort if we lost anything in the conversion */ 5550 dev_id = (int)ul; 5551 if (dev_id != ul) 5552 return -EINVAL; 5553 5554 ret = -ENOENT; 5555 spin_lock(&rbd_dev_list_lock); 5556 list_for_each(tmp, &rbd_dev_list) { 5557 rbd_dev = list_entry(tmp, struct rbd_device, node); 5558 if (rbd_dev->dev_id == dev_id) { 5559 ret = 0; 5560 break; 5561 } 5562 } 5563 if (!ret) { 5564 spin_lock_irq(&rbd_dev->lock); 5565 if (rbd_dev->open_count) 5566 ret = -EBUSY; 5567 else 5568 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5569 &rbd_dev->flags); 5570 spin_unlock_irq(&rbd_dev->lock); 5571 } 5572 spin_unlock(&rbd_dev_list_lock); 5573 if (ret < 0 || already) 5574 return ret; 5575 5576 rbd_dev_header_unwatch_sync(rbd_dev); 5577 /* 5578 * flush remaining watch callbacks - these must be complete 5579 * before the osd_client is shutdown 5580 */ 5581 dout("%s: flushing notifies", __func__); 5582 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5583 5584 /* 5585 * Don't free anything from rbd_dev->disk until after all 5586 * notifies are completely processed. Otherwise 5587 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5588 * in a potential use after free of rbd_dev->disk or rbd_dev. 5589 */ 5590 rbd_bus_del_dev(rbd_dev); 5591 rbd_dev_image_release(rbd_dev); 5592 module_put(THIS_MODULE); 5593 5594 return count; 5595 } 5596 5597 static ssize_t rbd_remove(struct bus_type *bus, 5598 const char *buf, 5599 size_t count) 5600 { 5601 if (single_major) 5602 return -EINVAL; 5603 5604 return do_rbd_remove(bus, buf, count); 5605 } 5606 5607 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5608 const char *buf, 5609 size_t count) 5610 { 5611 return do_rbd_remove(bus, buf, count); 5612 } 5613 5614 /* 5615 * create control files in sysfs 5616 * /sys/bus/rbd/... 5617 */ 5618 static int rbd_sysfs_init(void) 5619 { 5620 int ret; 5621 5622 ret = device_register(&rbd_root_dev); 5623 if (ret < 0) 5624 return ret; 5625 5626 ret = bus_register(&rbd_bus_type); 5627 if (ret < 0) 5628 device_unregister(&rbd_root_dev); 5629 5630 return ret; 5631 } 5632 5633 static void rbd_sysfs_cleanup(void) 5634 { 5635 bus_unregister(&rbd_bus_type); 5636 device_unregister(&rbd_root_dev); 5637 } 5638 5639 static int rbd_slab_init(void) 5640 { 5641 rbd_assert(!rbd_img_request_cache); 5642 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5643 sizeof (struct rbd_img_request), 5644 __alignof__(struct rbd_img_request), 5645 0, NULL); 5646 if (!rbd_img_request_cache) 5647 return -ENOMEM; 5648 5649 rbd_assert(!rbd_obj_request_cache); 5650 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5651 sizeof (struct rbd_obj_request), 5652 __alignof__(struct rbd_obj_request), 5653 0, NULL); 5654 if (!rbd_obj_request_cache) 5655 goto out_err; 5656 5657 rbd_assert(!rbd_segment_name_cache); 5658 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5659 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5660 if (rbd_segment_name_cache) 5661 return 0; 5662 out_err: 5663 if (rbd_obj_request_cache) { 5664 kmem_cache_destroy(rbd_obj_request_cache); 5665 rbd_obj_request_cache = NULL; 5666 } 5667 5668 kmem_cache_destroy(rbd_img_request_cache); 5669 rbd_img_request_cache = NULL; 5670 5671 return -ENOMEM; 5672 } 5673 5674 static void rbd_slab_exit(void) 5675 { 5676 rbd_assert(rbd_segment_name_cache); 5677 kmem_cache_destroy(rbd_segment_name_cache); 5678 rbd_segment_name_cache = NULL; 5679 5680 rbd_assert(rbd_obj_request_cache); 5681 kmem_cache_destroy(rbd_obj_request_cache); 5682 rbd_obj_request_cache = NULL; 5683 5684 rbd_assert(rbd_img_request_cache); 5685 kmem_cache_destroy(rbd_img_request_cache); 5686 rbd_img_request_cache = NULL; 5687 } 5688 5689 static int __init rbd_init(void) 5690 { 5691 int rc; 5692 5693 if (!libceph_compatible(NULL)) { 5694 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5695 return -EINVAL; 5696 } 5697 5698 rc = rbd_slab_init(); 5699 if (rc) 5700 return rc; 5701 5702 /* 5703 * The number of active work items is limited by the number of 5704 * rbd devices * queue depth, so leave @max_active at default. 5705 */ 5706 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 5707 if (!rbd_wq) { 5708 rc = -ENOMEM; 5709 goto err_out_slab; 5710 } 5711 5712 if (single_major) { 5713 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5714 if (rbd_major < 0) { 5715 rc = rbd_major; 5716 goto err_out_wq; 5717 } 5718 } 5719 5720 rc = rbd_sysfs_init(); 5721 if (rc) 5722 goto err_out_blkdev; 5723 5724 if (single_major) 5725 pr_info("loaded (major %d)\n", rbd_major); 5726 else 5727 pr_info("loaded\n"); 5728 5729 return 0; 5730 5731 err_out_blkdev: 5732 if (single_major) 5733 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5734 err_out_wq: 5735 destroy_workqueue(rbd_wq); 5736 err_out_slab: 5737 rbd_slab_exit(); 5738 return rc; 5739 } 5740 5741 static void __exit rbd_exit(void) 5742 { 5743 ida_destroy(&rbd_dev_id_ida); 5744 rbd_sysfs_cleanup(); 5745 if (single_major) 5746 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5747 destroy_workqueue(rbd_wq); 5748 rbd_slab_exit(); 5749 } 5750 5751 module_init(rbd_init); 5752 module_exit(rbd_exit); 5753 5754 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5755 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5756 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5757 /* following authorship retained from original osdblk.c */ 5758 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5759 5760 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5761 MODULE_LICENSE("GPL"); 5762