xref: /linux/drivers/block/rbd.c (revision 3c2f85b8ce8acee0502d61fb53015eabd7d4c8fb)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37 
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47 
48 #include "rbd_types.h"
49 
50 #define RBD_DEBUG	/* Activate rbd_assert() calls */
51 
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define	SECTOR_SHIFT	9
59 #define	SECTOR_SIZE	(1ULL << SECTOR_SHIFT)
60 
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 	unsigned int counter;
70 
71 	counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 	if (counter <= (unsigned int)INT_MAX)
73 		return (int)counter;
74 
75 	atomic_dec(v);
76 
77 	return -EINVAL;
78 }
79 
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 	int counter;
84 
85 	counter = atomic_dec_return(v);
86 	if (counter >= 0)
87 		return counter;
88 
89 	atomic_inc(v);
90 
91 	return -EINVAL;
92 }
93 
94 #define RBD_DRV_NAME "rbd"
95 
96 #define RBD_MINORS_PER_MAJOR		256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
98 
99 #define RBD_MAX_PARENT_CHAIN_LEN	16
100 
101 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
102 #define RBD_MAX_SNAP_NAME_LEN	\
103 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104 
105 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
106 
107 #define RBD_SNAP_HEAD_NAME	"-"
108 
109 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
110 
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX	64
114 
115 #define RBD_OBJ_PREFIX_LEN_MAX	64
116 
117 /* Feature bits */
118 
119 #define RBD_FEATURE_LAYERING	(1<<0)
120 #define RBD_FEATURE_STRIPINGV2	(1<<1)
121 #define RBD_FEATURES_ALL \
122 	    (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123 
124 /* Features supported by this (client software) implementation. */
125 
126 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
127 
128 /*
129  * An RBD device name will be "rbd#", where the "rbd" comes from
130  * RBD_DRV_NAME above, and # is a unique integer identifier.
131  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132  * enough to hold all possible device names.
133  */
134 #define DEV_NAME_LEN		32
135 #define MAX_INT_FORMAT_WIDTH	((5 * sizeof (int)) / 2 + 1)
136 
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141 	/* These six fields never change for a given rbd image */
142 	char *object_prefix;
143 	__u8 obj_order;
144 	__u8 crypt_type;
145 	__u8 comp_type;
146 	u64 stripe_unit;
147 	u64 stripe_count;
148 	u64 features;		/* Might be changeable someday? */
149 
150 	/* The remaining fields need to be updated occasionally */
151 	u64 image_size;
152 	struct ceph_snap_context *snapc;
153 	char *snap_names;	/* format 1 only */
154 	u64 *snap_sizes;	/* format 1 only */
155 };
156 
157 /*
158  * An rbd image specification.
159  *
160  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161  * identify an image.  Each rbd_dev structure includes a pointer to
162  * an rbd_spec structure that encapsulates this identity.
163  *
164  * Each of the id's in an rbd_spec has an associated name.  For a
165  * user-mapped image, the names are supplied and the id's associated
166  * with them are looked up.  For a layered image, a parent image is
167  * defined by the tuple, and the names are looked up.
168  *
169  * An rbd_dev structure contains a parent_spec pointer which is
170  * non-null if the image it represents is a child in a layered
171  * image.  This pointer will refer to the rbd_spec structure used
172  * by the parent rbd_dev for its own identity (i.e., the structure
173  * is shared between the parent and child).
174  *
175  * Since these structures are populated once, during the discovery
176  * phase of image construction, they are effectively immutable so
177  * we make no effort to synchronize access to them.
178  *
179  * Note that code herein does not assume the image name is known (it
180  * could be a null pointer).
181  */
182 struct rbd_spec {
183 	u64		pool_id;
184 	const char	*pool_name;
185 
186 	const char	*image_id;
187 	const char	*image_name;
188 
189 	u64		snap_id;
190 	const char	*snap_name;
191 
192 	struct kref	kref;
193 };
194 
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199 	struct ceph_client	*client;
200 	struct kref		kref;
201 	struct list_head	node;
202 };
203 
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206 
207 #define	BAD_WHICH	U32_MAX		/* Good which or bad which, which? */
208 
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211 
212 enum obj_request_type {
213 	OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215 
216 enum obj_operation_type {
217 	OBJ_OP_WRITE,
218 	OBJ_OP_READ,
219 	OBJ_OP_DISCARD,
220 };
221 
222 enum obj_req_flags {
223 	OBJ_REQ_DONE,		/* completion flag: not done = 0, done = 1 */
224 	OBJ_REQ_IMG_DATA,	/* object usage: standalone = 0, image = 1 */
225 	OBJ_REQ_KNOWN,		/* EXISTS flag valid: no = 0, yes = 1 */
226 	OBJ_REQ_EXISTS,		/* target exists: no = 0, yes = 1 */
227 };
228 
229 struct rbd_obj_request {
230 	const char		*object_name;
231 	u64			offset;		/* object start byte */
232 	u64			length;		/* bytes from offset */
233 	unsigned long		flags;
234 
235 	/*
236 	 * An object request associated with an image will have its
237 	 * img_data flag set; a standalone object request will not.
238 	 *
239 	 * A standalone object request will have which == BAD_WHICH
240 	 * and a null obj_request pointer.
241 	 *
242 	 * An object request initiated in support of a layered image
243 	 * object (to check for its existence before a write) will
244 	 * have which == BAD_WHICH and a non-null obj_request pointer.
245 	 *
246 	 * Finally, an object request for rbd image data will have
247 	 * which != BAD_WHICH, and will have a non-null img_request
248 	 * pointer.  The value of which will be in the range
249 	 * 0..(img_request->obj_request_count-1).
250 	 */
251 	union {
252 		struct rbd_obj_request	*obj_request;	/* STAT op */
253 		struct {
254 			struct rbd_img_request	*img_request;
255 			u64			img_offset;
256 			/* links for img_request->obj_requests list */
257 			struct list_head	links;
258 		};
259 	};
260 	u32			which;		/* posn image request list */
261 
262 	enum obj_request_type	type;
263 	union {
264 		struct bio	*bio_list;
265 		struct {
266 			struct page	**pages;
267 			u32		page_count;
268 		};
269 	};
270 	struct page		**copyup_pages;
271 	u32			copyup_page_count;
272 
273 	struct ceph_osd_request	*osd_req;
274 
275 	u64			xferred;	/* bytes transferred */
276 	int			result;
277 
278 	rbd_obj_callback_t	callback;
279 	struct completion	completion;
280 
281 	struct kref		kref;
282 };
283 
284 enum img_req_flags {
285 	IMG_REQ_WRITE,		/* I/O direction: read = 0, write = 1 */
286 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
287 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
288 	IMG_REQ_DISCARD,	/* discard: normal = 0, discard request = 1 */
289 };
290 
291 struct rbd_img_request {
292 	struct rbd_device	*rbd_dev;
293 	u64			offset;	/* starting image byte offset */
294 	u64			length;	/* byte count from offset */
295 	unsigned long		flags;
296 	union {
297 		u64			snap_id;	/* for reads */
298 		struct ceph_snap_context *snapc;	/* for writes */
299 	};
300 	union {
301 		struct request		*rq;		/* block request */
302 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
303 	};
304 	struct page		**copyup_pages;
305 	u32			copyup_page_count;
306 	spinlock_t		completion_lock;/* protects next_completion */
307 	u32			next_completion;
308 	rbd_img_callback_t	callback;
309 	u64			xferred;/* aggregate bytes transferred */
310 	int			result;	/* first nonzero obj_request result */
311 
312 	u32			obj_request_count;
313 	struct list_head	obj_requests;	/* rbd_obj_request structs */
314 
315 	struct kref		kref;
316 };
317 
318 #define for_each_obj_request(ireq, oreq) \
319 	list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 	list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 	list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324 
325 struct rbd_mapping {
326 	u64                     size;
327 	u64                     features;
328 	bool			read_only;
329 };
330 
331 /*
332  * a single device
333  */
334 struct rbd_device {
335 	int			dev_id;		/* blkdev unique id */
336 
337 	int			major;		/* blkdev assigned major */
338 	int			minor;
339 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
340 
341 	u32			image_format;	/* Either 1 or 2 */
342 	struct rbd_client	*rbd_client;
343 
344 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345 
346 	spinlock_t		lock;		/* queue, flags, open_count */
347 
348 	struct rbd_image_header	header;
349 	unsigned long		flags;		/* possibly lock protected */
350 	struct rbd_spec		*spec;
351 	struct rbd_options	*opts;
352 
353 	char			*header_name;
354 
355 	struct ceph_file_layout	layout;
356 
357 	struct ceph_osd_event   *watch_event;
358 	struct rbd_obj_request	*watch_request;
359 
360 	struct rbd_spec		*parent_spec;
361 	u64			parent_overlap;
362 	atomic_t		parent_ref;
363 	struct rbd_device	*parent;
364 
365 	/* Block layer tags. */
366 	struct blk_mq_tag_set	tag_set;
367 
368 	/* protects updating the header */
369 	struct rw_semaphore     header_rwsem;
370 
371 	struct rbd_mapping	mapping;
372 
373 	struct list_head	node;
374 
375 	/* sysfs related */
376 	struct device		dev;
377 	unsigned long		open_count;	/* protected by lock */
378 };
379 
380 /*
381  * Flag bits for rbd_dev->flags.  If atomicity is required,
382  * rbd_dev->lock is used to protect access.
383  *
384  * Currently, only the "removing" flag (which is coupled with the
385  * "open_count" field) requires atomic access.
386  */
387 enum rbd_dev_flags {
388 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
389 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
390 };
391 
392 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
393 
394 static LIST_HEAD(rbd_dev_list);    /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396 
397 static LIST_HEAD(rbd_client_list);		/* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399 
400 /* Slab caches for frequently-allocated structures */
401 
402 static struct kmem_cache	*rbd_img_request_cache;
403 static struct kmem_cache	*rbd_obj_request_cache;
404 static struct kmem_cache	*rbd_segment_name_cache;
405 
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408 
409 static struct workqueue_struct *rbd_wq;
410 
411 /*
412  * Default to false for now, as single-major requires >= 0.75 version of
413  * userspace rbd utility.
414  */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418 
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420 
421 static void rbd_dev_device_release(struct device *dev);
422 
423 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
424 		       size_t count);
425 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
426 			  size_t count);
427 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
428 				    size_t count);
429 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
430 				       size_t count);
431 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
432 static void rbd_spec_put(struct rbd_spec *spec);
433 
434 static int rbd_dev_id_to_minor(int dev_id)
435 {
436 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
437 }
438 
439 static int minor_to_rbd_dev_id(int minor)
440 {
441 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
442 }
443 
444 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
445 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
446 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
447 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
448 
449 static struct attribute *rbd_bus_attrs[] = {
450 	&bus_attr_add.attr,
451 	&bus_attr_remove.attr,
452 	&bus_attr_add_single_major.attr,
453 	&bus_attr_remove_single_major.attr,
454 	NULL,
455 };
456 
457 static umode_t rbd_bus_is_visible(struct kobject *kobj,
458 				  struct attribute *attr, int index)
459 {
460 	if (!single_major &&
461 	    (attr == &bus_attr_add_single_major.attr ||
462 	     attr == &bus_attr_remove_single_major.attr))
463 		return 0;
464 
465 	return attr->mode;
466 }
467 
468 static const struct attribute_group rbd_bus_group = {
469 	.attrs = rbd_bus_attrs,
470 	.is_visible = rbd_bus_is_visible,
471 };
472 __ATTRIBUTE_GROUPS(rbd_bus);
473 
474 static struct bus_type rbd_bus_type = {
475 	.name		= "rbd",
476 	.bus_groups	= rbd_bus_groups,
477 };
478 
479 static void rbd_root_dev_release(struct device *dev)
480 {
481 }
482 
483 static struct device rbd_root_dev = {
484 	.init_name =    "rbd",
485 	.release =      rbd_root_dev_release,
486 };
487 
488 static __printf(2, 3)
489 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
490 {
491 	struct va_format vaf;
492 	va_list args;
493 
494 	va_start(args, fmt);
495 	vaf.fmt = fmt;
496 	vaf.va = &args;
497 
498 	if (!rbd_dev)
499 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
500 	else if (rbd_dev->disk)
501 		printk(KERN_WARNING "%s: %s: %pV\n",
502 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
503 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
504 		printk(KERN_WARNING "%s: image %s: %pV\n",
505 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
506 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
507 		printk(KERN_WARNING "%s: id %s: %pV\n",
508 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
509 	else	/* punt */
510 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
511 			RBD_DRV_NAME, rbd_dev, &vaf);
512 	va_end(args);
513 }
514 
515 #ifdef RBD_DEBUG
516 #define rbd_assert(expr)						\
517 		if (unlikely(!(expr))) {				\
518 			printk(KERN_ERR "\nAssertion failure in %s() "	\
519 						"at line %d:\n\n"	\
520 					"\trbd_assert(%s);\n\n",	\
521 					__func__, __LINE__, #expr);	\
522 			BUG();						\
523 		}
524 #else /* !RBD_DEBUG */
525 #  define rbd_assert(expr)	((void) 0)
526 #endif /* !RBD_DEBUG */
527 
528 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
529 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
530 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
531 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
532 
533 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
535 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
536 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
537 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
538 					u64 snap_id);
539 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
540 				u8 *order, u64 *snap_size);
541 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
542 		u64 *snap_features);
543 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
544 
545 static int rbd_open(struct block_device *bdev, fmode_t mode)
546 {
547 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
548 	bool removing = false;
549 
550 	if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
551 		return -EROFS;
552 
553 	spin_lock_irq(&rbd_dev->lock);
554 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
555 		removing = true;
556 	else
557 		rbd_dev->open_count++;
558 	spin_unlock_irq(&rbd_dev->lock);
559 	if (removing)
560 		return -ENOENT;
561 
562 	(void) get_device(&rbd_dev->dev);
563 
564 	return 0;
565 }
566 
567 static void rbd_release(struct gendisk *disk, fmode_t mode)
568 {
569 	struct rbd_device *rbd_dev = disk->private_data;
570 	unsigned long open_count_before;
571 
572 	spin_lock_irq(&rbd_dev->lock);
573 	open_count_before = rbd_dev->open_count--;
574 	spin_unlock_irq(&rbd_dev->lock);
575 	rbd_assert(open_count_before > 0);
576 
577 	put_device(&rbd_dev->dev);
578 }
579 
580 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
581 {
582 	int ret = 0;
583 	int val;
584 	bool ro;
585 	bool ro_changed = false;
586 
587 	/* get_user() may sleep, so call it before taking rbd_dev->lock */
588 	if (get_user(val, (int __user *)(arg)))
589 		return -EFAULT;
590 
591 	ro = val ? true : false;
592 	/* Snapshot doesn't allow to write*/
593 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
594 		return -EROFS;
595 
596 	spin_lock_irq(&rbd_dev->lock);
597 	/* prevent others open this device */
598 	if (rbd_dev->open_count > 1) {
599 		ret = -EBUSY;
600 		goto out;
601 	}
602 
603 	if (rbd_dev->mapping.read_only != ro) {
604 		rbd_dev->mapping.read_only = ro;
605 		ro_changed = true;
606 	}
607 
608 out:
609 	spin_unlock_irq(&rbd_dev->lock);
610 	/* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
611 	if (ret == 0 && ro_changed)
612 		set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
613 
614 	return ret;
615 }
616 
617 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
618 			unsigned int cmd, unsigned long arg)
619 {
620 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
621 	int ret = 0;
622 
623 	switch (cmd) {
624 	case BLKROSET:
625 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
626 		break;
627 	default:
628 		ret = -ENOTTY;
629 	}
630 
631 	return ret;
632 }
633 
634 #ifdef CONFIG_COMPAT
635 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
636 				unsigned int cmd, unsigned long arg)
637 {
638 	return rbd_ioctl(bdev, mode, cmd, arg);
639 }
640 #endif /* CONFIG_COMPAT */
641 
642 static const struct block_device_operations rbd_bd_ops = {
643 	.owner			= THIS_MODULE,
644 	.open			= rbd_open,
645 	.release		= rbd_release,
646 	.ioctl			= rbd_ioctl,
647 #ifdef CONFIG_COMPAT
648 	.compat_ioctl		= rbd_compat_ioctl,
649 #endif
650 };
651 
652 /*
653  * Initialize an rbd client instance.  Success or not, this function
654  * consumes ceph_opts.  Caller holds client_mutex.
655  */
656 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
657 {
658 	struct rbd_client *rbdc;
659 	int ret = -ENOMEM;
660 
661 	dout("%s:\n", __func__);
662 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
663 	if (!rbdc)
664 		goto out_opt;
665 
666 	kref_init(&rbdc->kref);
667 	INIT_LIST_HEAD(&rbdc->node);
668 
669 	rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
670 	if (IS_ERR(rbdc->client))
671 		goto out_rbdc;
672 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
673 
674 	ret = ceph_open_session(rbdc->client);
675 	if (ret < 0)
676 		goto out_client;
677 
678 	spin_lock(&rbd_client_list_lock);
679 	list_add_tail(&rbdc->node, &rbd_client_list);
680 	spin_unlock(&rbd_client_list_lock);
681 
682 	dout("%s: rbdc %p\n", __func__, rbdc);
683 
684 	return rbdc;
685 out_client:
686 	ceph_destroy_client(rbdc->client);
687 out_rbdc:
688 	kfree(rbdc);
689 out_opt:
690 	if (ceph_opts)
691 		ceph_destroy_options(ceph_opts);
692 	dout("%s: error %d\n", __func__, ret);
693 
694 	return ERR_PTR(ret);
695 }
696 
697 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
698 {
699 	kref_get(&rbdc->kref);
700 
701 	return rbdc;
702 }
703 
704 /*
705  * Find a ceph client with specific addr and configuration.  If
706  * found, bump its reference count.
707  */
708 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
709 {
710 	struct rbd_client *client_node;
711 	bool found = false;
712 
713 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
714 		return NULL;
715 
716 	spin_lock(&rbd_client_list_lock);
717 	list_for_each_entry(client_node, &rbd_client_list, node) {
718 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
719 			__rbd_get_client(client_node);
720 
721 			found = true;
722 			break;
723 		}
724 	}
725 	spin_unlock(&rbd_client_list_lock);
726 
727 	return found ? client_node : NULL;
728 }
729 
730 /*
731  * (Per device) rbd map options
732  */
733 enum {
734 	Opt_queue_depth,
735 	Opt_last_int,
736 	/* int args above */
737 	Opt_last_string,
738 	/* string args above */
739 	Opt_read_only,
740 	Opt_read_write,
741 	Opt_err
742 };
743 
744 static match_table_t rbd_opts_tokens = {
745 	{Opt_queue_depth, "queue_depth=%d"},
746 	/* int args above */
747 	/* string args above */
748 	{Opt_read_only, "read_only"},
749 	{Opt_read_only, "ro"},		/* Alternate spelling */
750 	{Opt_read_write, "read_write"},
751 	{Opt_read_write, "rw"},		/* Alternate spelling */
752 	{Opt_err, NULL}
753 };
754 
755 struct rbd_options {
756 	int	queue_depth;
757 	bool	read_only;
758 };
759 
760 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
761 #define RBD_READ_ONLY_DEFAULT	false
762 
763 static int parse_rbd_opts_token(char *c, void *private)
764 {
765 	struct rbd_options *rbd_opts = private;
766 	substring_t argstr[MAX_OPT_ARGS];
767 	int token, intval, ret;
768 
769 	token = match_token(c, rbd_opts_tokens, argstr);
770 	if (token < Opt_last_int) {
771 		ret = match_int(&argstr[0], &intval);
772 		if (ret < 0) {
773 			pr_err("bad mount option arg (not int) at '%s'\n", c);
774 			return ret;
775 		}
776 		dout("got int token %d val %d\n", token, intval);
777 	} else if (token > Opt_last_int && token < Opt_last_string) {
778 		dout("got string token %d val %s\n", token, argstr[0].from);
779 	} else {
780 		dout("got token %d\n", token);
781 	}
782 
783 	switch (token) {
784 	case Opt_queue_depth:
785 		if (intval < 1) {
786 			pr_err("queue_depth out of range\n");
787 			return -EINVAL;
788 		}
789 		rbd_opts->queue_depth = intval;
790 		break;
791 	case Opt_read_only:
792 		rbd_opts->read_only = true;
793 		break;
794 	case Opt_read_write:
795 		rbd_opts->read_only = false;
796 		break;
797 	default:
798 		/* libceph prints "bad option" msg */
799 		return -EINVAL;
800 	}
801 
802 	return 0;
803 }
804 
805 static char* obj_op_name(enum obj_operation_type op_type)
806 {
807 	switch (op_type) {
808 	case OBJ_OP_READ:
809 		return "read";
810 	case OBJ_OP_WRITE:
811 		return "write";
812 	case OBJ_OP_DISCARD:
813 		return "discard";
814 	default:
815 		return "???";
816 	}
817 }
818 
819 /*
820  * Get a ceph client with specific addr and configuration, if one does
821  * not exist create it.  Either way, ceph_opts is consumed by this
822  * function.
823  */
824 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
825 {
826 	struct rbd_client *rbdc;
827 
828 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
829 	rbdc = rbd_client_find(ceph_opts);
830 	if (rbdc)	/* using an existing client */
831 		ceph_destroy_options(ceph_opts);
832 	else
833 		rbdc = rbd_client_create(ceph_opts);
834 	mutex_unlock(&client_mutex);
835 
836 	return rbdc;
837 }
838 
839 /*
840  * Destroy ceph client
841  *
842  * Caller must hold rbd_client_list_lock.
843  */
844 static void rbd_client_release(struct kref *kref)
845 {
846 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
847 
848 	dout("%s: rbdc %p\n", __func__, rbdc);
849 	spin_lock(&rbd_client_list_lock);
850 	list_del(&rbdc->node);
851 	spin_unlock(&rbd_client_list_lock);
852 
853 	ceph_destroy_client(rbdc->client);
854 	kfree(rbdc);
855 }
856 
857 /*
858  * Drop reference to ceph client node. If it's not referenced anymore, release
859  * it.
860  */
861 static void rbd_put_client(struct rbd_client *rbdc)
862 {
863 	if (rbdc)
864 		kref_put(&rbdc->kref, rbd_client_release);
865 }
866 
867 static bool rbd_image_format_valid(u32 image_format)
868 {
869 	return image_format == 1 || image_format == 2;
870 }
871 
872 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
873 {
874 	size_t size;
875 	u32 snap_count;
876 
877 	/* The header has to start with the magic rbd header text */
878 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
879 		return false;
880 
881 	/* The bio layer requires at least sector-sized I/O */
882 
883 	if (ondisk->options.order < SECTOR_SHIFT)
884 		return false;
885 
886 	/* If we use u64 in a few spots we may be able to loosen this */
887 
888 	if (ondisk->options.order > 8 * sizeof (int) - 1)
889 		return false;
890 
891 	/*
892 	 * The size of a snapshot header has to fit in a size_t, and
893 	 * that limits the number of snapshots.
894 	 */
895 	snap_count = le32_to_cpu(ondisk->snap_count);
896 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
897 	if (snap_count > size / sizeof (__le64))
898 		return false;
899 
900 	/*
901 	 * Not only that, but the size of the entire the snapshot
902 	 * header must also be representable in a size_t.
903 	 */
904 	size -= snap_count * sizeof (__le64);
905 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
906 		return false;
907 
908 	return true;
909 }
910 
911 /*
912  * Fill an rbd image header with information from the given format 1
913  * on-disk header.
914  */
915 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
916 				 struct rbd_image_header_ondisk *ondisk)
917 {
918 	struct rbd_image_header *header = &rbd_dev->header;
919 	bool first_time = header->object_prefix == NULL;
920 	struct ceph_snap_context *snapc;
921 	char *object_prefix = NULL;
922 	char *snap_names = NULL;
923 	u64 *snap_sizes = NULL;
924 	u32 snap_count;
925 	size_t size;
926 	int ret = -ENOMEM;
927 	u32 i;
928 
929 	/* Allocate this now to avoid having to handle failure below */
930 
931 	if (first_time) {
932 		size_t len;
933 
934 		len = strnlen(ondisk->object_prefix,
935 				sizeof (ondisk->object_prefix));
936 		object_prefix = kmalloc(len + 1, GFP_KERNEL);
937 		if (!object_prefix)
938 			return -ENOMEM;
939 		memcpy(object_prefix, ondisk->object_prefix, len);
940 		object_prefix[len] = '\0';
941 	}
942 
943 	/* Allocate the snapshot context and fill it in */
944 
945 	snap_count = le32_to_cpu(ondisk->snap_count);
946 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
947 	if (!snapc)
948 		goto out_err;
949 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
950 	if (snap_count) {
951 		struct rbd_image_snap_ondisk *snaps;
952 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
953 
954 		/* We'll keep a copy of the snapshot names... */
955 
956 		if (snap_names_len > (u64)SIZE_MAX)
957 			goto out_2big;
958 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
959 		if (!snap_names)
960 			goto out_err;
961 
962 		/* ...as well as the array of their sizes. */
963 
964 		size = snap_count * sizeof (*header->snap_sizes);
965 		snap_sizes = kmalloc(size, GFP_KERNEL);
966 		if (!snap_sizes)
967 			goto out_err;
968 
969 		/*
970 		 * Copy the names, and fill in each snapshot's id
971 		 * and size.
972 		 *
973 		 * Note that rbd_dev_v1_header_info() guarantees the
974 		 * ondisk buffer we're working with has
975 		 * snap_names_len bytes beyond the end of the
976 		 * snapshot id array, this memcpy() is safe.
977 		 */
978 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
979 		snaps = ondisk->snaps;
980 		for (i = 0; i < snap_count; i++) {
981 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
982 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
983 		}
984 	}
985 
986 	/* We won't fail any more, fill in the header */
987 
988 	if (first_time) {
989 		header->object_prefix = object_prefix;
990 		header->obj_order = ondisk->options.order;
991 		header->crypt_type = ondisk->options.crypt_type;
992 		header->comp_type = ondisk->options.comp_type;
993 		/* The rest aren't used for format 1 images */
994 		header->stripe_unit = 0;
995 		header->stripe_count = 0;
996 		header->features = 0;
997 	} else {
998 		ceph_put_snap_context(header->snapc);
999 		kfree(header->snap_names);
1000 		kfree(header->snap_sizes);
1001 	}
1002 
1003 	/* The remaining fields always get updated (when we refresh) */
1004 
1005 	header->image_size = le64_to_cpu(ondisk->image_size);
1006 	header->snapc = snapc;
1007 	header->snap_names = snap_names;
1008 	header->snap_sizes = snap_sizes;
1009 
1010 	return 0;
1011 out_2big:
1012 	ret = -EIO;
1013 out_err:
1014 	kfree(snap_sizes);
1015 	kfree(snap_names);
1016 	ceph_put_snap_context(snapc);
1017 	kfree(object_prefix);
1018 
1019 	return ret;
1020 }
1021 
1022 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1023 {
1024 	const char *snap_name;
1025 
1026 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1027 
1028 	/* Skip over names until we find the one we are looking for */
1029 
1030 	snap_name = rbd_dev->header.snap_names;
1031 	while (which--)
1032 		snap_name += strlen(snap_name) + 1;
1033 
1034 	return kstrdup(snap_name, GFP_KERNEL);
1035 }
1036 
1037 /*
1038  * Snapshot id comparison function for use with qsort()/bsearch().
1039  * Note that result is for snapshots in *descending* order.
1040  */
1041 static int snapid_compare_reverse(const void *s1, const void *s2)
1042 {
1043 	u64 snap_id1 = *(u64 *)s1;
1044 	u64 snap_id2 = *(u64 *)s2;
1045 
1046 	if (snap_id1 < snap_id2)
1047 		return 1;
1048 	return snap_id1 == snap_id2 ? 0 : -1;
1049 }
1050 
1051 /*
1052  * Search a snapshot context to see if the given snapshot id is
1053  * present.
1054  *
1055  * Returns the position of the snapshot id in the array if it's found,
1056  * or BAD_SNAP_INDEX otherwise.
1057  *
1058  * Note: The snapshot array is in kept sorted (by the osd) in
1059  * reverse order, highest snapshot id first.
1060  */
1061 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1062 {
1063 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1064 	u64 *found;
1065 
1066 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1067 				sizeof (snap_id), snapid_compare_reverse);
1068 
1069 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1070 }
1071 
1072 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1073 					u64 snap_id)
1074 {
1075 	u32 which;
1076 	const char *snap_name;
1077 
1078 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1079 	if (which == BAD_SNAP_INDEX)
1080 		return ERR_PTR(-ENOENT);
1081 
1082 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1083 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1084 }
1085 
1086 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1087 {
1088 	if (snap_id == CEPH_NOSNAP)
1089 		return RBD_SNAP_HEAD_NAME;
1090 
1091 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1092 	if (rbd_dev->image_format == 1)
1093 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1094 
1095 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1096 }
1097 
1098 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1099 				u64 *snap_size)
1100 {
1101 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1102 	if (snap_id == CEPH_NOSNAP) {
1103 		*snap_size = rbd_dev->header.image_size;
1104 	} else if (rbd_dev->image_format == 1) {
1105 		u32 which;
1106 
1107 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1108 		if (which == BAD_SNAP_INDEX)
1109 			return -ENOENT;
1110 
1111 		*snap_size = rbd_dev->header.snap_sizes[which];
1112 	} else {
1113 		u64 size = 0;
1114 		int ret;
1115 
1116 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1117 		if (ret)
1118 			return ret;
1119 
1120 		*snap_size = size;
1121 	}
1122 	return 0;
1123 }
1124 
1125 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1126 			u64 *snap_features)
1127 {
1128 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1129 	if (snap_id == CEPH_NOSNAP) {
1130 		*snap_features = rbd_dev->header.features;
1131 	} else if (rbd_dev->image_format == 1) {
1132 		*snap_features = 0;	/* No features for format 1 */
1133 	} else {
1134 		u64 features = 0;
1135 		int ret;
1136 
1137 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1138 		if (ret)
1139 			return ret;
1140 
1141 		*snap_features = features;
1142 	}
1143 	return 0;
1144 }
1145 
1146 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1147 {
1148 	u64 snap_id = rbd_dev->spec->snap_id;
1149 	u64 size = 0;
1150 	u64 features = 0;
1151 	int ret;
1152 
1153 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1154 	if (ret)
1155 		return ret;
1156 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1157 	if (ret)
1158 		return ret;
1159 
1160 	rbd_dev->mapping.size = size;
1161 	rbd_dev->mapping.features = features;
1162 
1163 	return 0;
1164 }
1165 
1166 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1167 {
1168 	rbd_dev->mapping.size = 0;
1169 	rbd_dev->mapping.features = 0;
1170 }
1171 
1172 static void rbd_segment_name_free(const char *name)
1173 {
1174 	/* The explicit cast here is needed to drop the const qualifier */
1175 
1176 	kmem_cache_free(rbd_segment_name_cache, (void *)name);
1177 }
1178 
1179 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1180 {
1181 	char *name;
1182 	u64 segment;
1183 	int ret;
1184 	char *name_format;
1185 
1186 	name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1187 	if (!name)
1188 		return NULL;
1189 	segment = offset >> rbd_dev->header.obj_order;
1190 	name_format = "%s.%012llx";
1191 	if (rbd_dev->image_format == 2)
1192 		name_format = "%s.%016llx";
1193 	ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1194 			rbd_dev->header.object_prefix, segment);
1195 	if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1196 		pr_err("error formatting segment name for #%llu (%d)\n",
1197 			segment, ret);
1198 		rbd_segment_name_free(name);
1199 		name = NULL;
1200 	}
1201 
1202 	return name;
1203 }
1204 
1205 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1206 {
1207 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1208 
1209 	return offset & (segment_size - 1);
1210 }
1211 
1212 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1213 				u64 offset, u64 length)
1214 {
1215 	u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1216 
1217 	offset &= segment_size - 1;
1218 
1219 	rbd_assert(length <= U64_MAX - offset);
1220 	if (offset + length > segment_size)
1221 		length = segment_size - offset;
1222 
1223 	return length;
1224 }
1225 
1226 /*
1227  * returns the size of an object in the image
1228  */
1229 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1230 {
1231 	return 1 << header->obj_order;
1232 }
1233 
1234 /*
1235  * bio helpers
1236  */
1237 
1238 static void bio_chain_put(struct bio *chain)
1239 {
1240 	struct bio *tmp;
1241 
1242 	while (chain) {
1243 		tmp = chain;
1244 		chain = chain->bi_next;
1245 		bio_put(tmp);
1246 	}
1247 }
1248 
1249 /*
1250  * zeros a bio chain, starting at specific offset
1251  */
1252 static void zero_bio_chain(struct bio *chain, int start_ofs)
1253 {
1254 	struct bio_vec bv;
1255 	struct bvec_iter iter;
1256 	unsigned long flags;
1257 	void *buf;
1258 	int pos = 0;
1259 
1260 	while (chain) {
1261 		bio_for_each_segment(bv, chain, iter) {
1262 			if (pos + bv.bv_len > start_ofs) {
1263 				int remainder = max(start_ofs - pos, 0);
1264 				buf = bvec_kmap_irq(&bv, &flags);
1265 				memset(buf + remainder, 0,
1266 				       bv.bv_len - remainder);
1267 				flush_dcache_page(bv.bv_page);
1268 				bvec_kunmap_irq(buf, &flags);
1269 			}
1270 			pos += bv.bv_len;
1271 		}
1272 
1273 		chain = chain->bi_next;
1274 	}
1275 }
1276 
1277 /*
1278  * similar to zero_bio_chain(), zeros data defined by a page array,
1279  * starting at the given byte offset from the start of the array and
1280  * continuing up to the given end offset.  The pages array is
1281  * assumed to be big enough to hold all bytes up to the end.
1282  */
1283 static void zero_pages(struct page **pages, u64 offset, u64 end)
1284 {
1285 	struct page **page = &pages[offset >> PAGE_SHIFT];
1286 
1287 	rbd_assert(end > offset);
1288 	rbd_assert(end - offset <= (u64)SIZE_MAX);
1289 	while (offset < end) {
1290 		size_t page_offset;
1291 		size_t length;
1292 		unsigned long flags;
1293 		void *kaddr;
1294 
1295 		page_offset = offset & ~PAGE_MASK;
1296 		length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1297 		local_irq_save(flags);
1298 		kaddr = kmap_atomic(*page);
1299 		memset(kaddr + page_offset, 0, length);
1300 		flush_dcache_page(*page);
1301 		kunmap_atomic(kaddr);
1302 		local_irq_restore(flags);
1303 
1304 		offset += length;
1305 		page++;
1306 	}
1307 }
1308 
1309 /*
1310  * Clone a portion of a bio, starting at the given byte offset
1311  * and continuing for the number of bytes indicated.
1312  */
1313 static struct bio *bio_clone_range(struct bio *bio_src,
1314 					unsigned int offset,
1315 					unsigned int len,
1316 					gfp_t gfpmask)
1317 {
1318 	struct bio *bio;
1319 
1320 	bio = bio_clone(bio_src, gfpmask);
1321 	if (!bio)
1322 		return NULL;	/* ENOMEM */
1323 
1324 	bio_advance(bio, offset);
1325 	bio->bi_iter.bi_size = len;
1326 
1327 	return bio;
1328 }
1329 
1330 /*
1331  * Clone a portion of a bio chain, starting at the given byte offset
1332  * into the first bio in the source chain and continuing for the
1333  * number of bytes indicated.  The result is another bio chain of
1334  * exactly the given length, or a null pointer on error.
1335  *
1336  * The bio_src and offset parameters are both in-out.  On entry they
1337  * refer to the first source bio and the offset into that bio where
1338  * the start of data to be cloned is located.
1339  *
1340  * On return, bio_src is updated to refer to the bio in the source
1341  * chain that contains first un-cloned byte, and *offset will
1342  * contain the offset of that byte within that bio.
1343  */
1344 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1345 					unsigned int *offset,
1346 					unsigned int len,
1347 					gfp_t gfpmask)
1348 {
1349 	struct bio *bi = *bio_src;
1350 	unsigned int off = *offset;
1351 	struct bio *chain = NULL;
1352 	struct bio **end;
1353 
1354 	/* Build up a chain of clone bios up to the limit */
1355 
1356 	if (!bi || off >= bi->bi_iter.bi_size || !len)
1357 		return NULL;		/* Nothing to clone */
1358 
1359 	end = &chain;
1360 	while (len) {
1361 		unsigned int bi_size;
1362 		struct bio *bio;
1363 
1364 		if (!bi) {
1365 			rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1366 			goto out_err;	/* EINVAL; ran out of bio's */
1367 		}
1368 		bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1369 		bio = bio_clone_range(bi, off, bi_size, gfpmask);
1370 		if (!bio)
1371 			goto out_err;	/* ENOMEM */
1372 
1373 		*end = bio;
1374 		end = &bio->bi_next;
1375 
1376 		off += bi_size;
1377 		if (off == bi->bi_iter.bi_size) {
1378 			bi = bi->bi_next;
1379 			off = 0;
1380 		}
1381 		len -= bi_size;
1382 	}
1383 	*bio_src = bi;
1384 	*offset = off;
1385 
1386 	return chain;
1387 out_err:
1388 	bio_chain_put(chain);
1389 
1390 	return NULL;
1391 }
1392 
1393 /*
1394  * The default/initial value for all object request flags is 0.  For
1395  * each flag, once its value is set to 1 it is never reset to 0
1396  * again.
1397  */
1398 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1399 {
1400 	if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1401 		struct rbd_device *rbd_dev;
1402 
1403 		rbd_dev = obj_request->img_request->rbd_dev;
1404 		rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1405 			obj_request);
1406 	}
1407 }
1408 
1409 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1410 {
1411 	smp_mb();
1412 	return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1413 }
1414 
1415 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1416 {
1417 	if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1418 		struct rbd_device *rbd_dev = NULL;
1419 
1420 		if (obj_request_img_data_test(obj_request))
1421 			rbd_dev = obj_request->img_request->rbd_dev;
1422 		rbd_warn(rbd_dev, "obj_request %p already marked done",
1423 			obj_request);
1424 	}
1425 }
1426 
1427 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1428 {
1429 	smp_mb();
1430 	return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1431 }
1432 
1433 /*
1434  * This sets the KNOWN flag after (possibly) setting the EXISTS
1435  * flag.  The latter is set based on the "exists" value provided.
1436  *
1437  * Note that for our purposes once an object exists it never goes
1438  * away again.  It's possible that the response from two existence
1439  * checks are separated by the creation of the target object, and
1440  * the first ("doesn't exist") response arrives *after* the second
1441  * ("does exist").  In that case we ignore the second one.
1442  */
1443 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1444 				bool exists)
1445 {
1446 	if (exists)
1447 		set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1448 	set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1449 	smp_mb();
1450 }
1451 
1452 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1453 {
1454 	smp_mb();
1455 	return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1456 }
1457 
1458 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1459 {
1460 	smp_mb();
1461 	return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1462 }
1463 
1464 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1465 {
1466 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1467 
1468 	return obj_request->img_offset <
1469 	    round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1470 }
1471 
1472 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1473 {
1474 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1475 		atomic_read(&obj_request->kref.refcount));
1476 	kref_get(&obj_request->kref);
1477 }
1478 
1479 static void rbd_obj_request_destroy(struct kref *kref);
1480 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1481 {
1482 	rbd_assert(obj_request != NULL);
1483 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1484 		atomic_read(&obj_request->kref.refcount));
1485 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1486 }
1487 
1488 static void rbd_img_request_get(struct rbd_img_request *img_request)
1489 {
1490 	dout("%s: img %p (was %d)\n", __func__, img_request,
1491 	     atomic_read(&img_request->kref.refcount));
1492 	kref_get(&img_request->kref);
1493 }
1494 
1495 static bool img_request_child_test(struct rbd_img_request *img_request);
1496 static void rbd_parent_request_destroy(struct kref *kref);
1497 static void rbd_img_request_destroy(struct kref *kref);
1498 static void rbd_img_request_put(struct rbd_img_request *img_request)
1499 {
1500 	rbd_assert(img_request != NULL);
1501 	dout("%s: img %p (was %d)\n", __func__, img_request,
1502 		atomic_read(&img_request->kref.refcount));
1503 	if (img_request_child_test(img_request))
1504 		kref_put(&img_request->kref, rbd_parent_request_destroy);
1505 	else
1506 		kref_put(&img_request->kref, rbd_img_request_destroy);
1507 }
1508 
1509 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1510 					struct rbd_obj_request *obj_request)
1511 {
1512 	rbd_assert(obj_request->img_request == NULL);
1513 
1514 	/* Image request now owns object's original reference */
1515 	obj_request->img_request = img_request;
1516 	obj_request->which = img_request->obj_request_count;
1517 	rbd_assert(!obj_request_img_data_test(obj_request));
1518 	obj_request_img_data_set(obj_request);
1519 	rbd_assert(obj_request->which != BAD_WHICH);
1520 	img_request->obj_request_count++;
1521 	list_add_tail(&obj_request->links, &img_request->obj_requests);
1522 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1523 		obj_request->which);
1524 }
1525 
1526 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1527 					struct rbd_obj_request *obj_request)
1528 {
1529 	rbd_assert(obj_request->which != BAD_WHICH);
1530 
1531 	dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1532 		obj_request->which);
1533 	list_del(&obj_request->links);
1534 	rbd_assert(img_request->obj_request_count > 0);
1535 	img_request->obj_request_count--;
1536 	rbd_assert(obj_request->which == img_request->obj_request_count);
1537 	obj_request->which = BAD_WHICH;
1538 	rbd_assert(obj_request_img_data_test(obj_request));
1539 	rbd_assert(obj_request->img_request == img_request);
1540 	obj_request->img_request = NULL;
1541 	obj_request->callback = NULL;
1542 	rbd_obj_request_put(obj_request);
1543 }
1544 
1545 static bool obj_request_type_valid(enum obj_request_type type)
1546 {
1547 	switch (type) {
1548 	case OBJ_REQUEST_NODATA:
1549 	case OBJ_REQUEST_BIO:
1550 	case OBJ_REQUEST_PAGES:
1551 		return true;
1552 	default:
1553 		return false;
1554 	}
1555 }
1556 
1557 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1558 				struct rbd_obj_request *obj_request)
1559 {
1560 	dout("%s %p\n", __func__, obj_request);
1561 	return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1562 }
1563 
1564 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1565 {
1566 	dout("%s %p\n", __func__, obj_request);
1567 	ceph_osdc_cancel_request(obj_request->osd_req);
1568 }
1569 
1570 /*
1571  * Wait for an object request to complete.  If interrupted, cancel the
1572  * underlying osd request.
1573  *
1574  * @timeout: in jiffies, 0 means "wait forever"
1575  */
1576 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1577 				  unsigned long timeout)
1578 {
1579 	long ret;
1580 
1581 	dout("%s %p\n", __func__, obj_request);
1582 	ret = wait_for_completion_interruptible_timeout(
1583 					&obj_request->completion,
1584 					ceph_timeout_jiffies(timeout));
1585 	if (ret <= 0) {
1586 		if (ret == 0)
1587 			ret = -ETIMEDOUT;
1588 		rbd_obj_request_end(obj_request);
1589 	} else {
1590 		ret = 0;
1591 	}
1592 
1593 	dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1594 	return ret;
1595 }
1596 
1597 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1598 {
1599 	return __rbd_obj_request_wait(obj_request, 0);
1600 }
1601 
1602 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1603 					unsigned long timeout)
1604 {
1605 	return __rbd_obj_request_wait(obj_request, timeout);
1606 }
1607 
1608 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1609 {
1610 
1611 	dout("%s: img %p\n", __func__, img_request);
1612 
1613 	/*
1614 	 * If no error occurred, compute the aggregate transfer
1615 	 * count for the image request.  We could instead use
1616 	 * atomic64_cmpxchg() to update it as each object request
1617 	 * completes; not clear which way is better off hand.
1618 	 */
1619 	if (!img_request->result) {
1620 		struct rbd_obj_request *obj_request;
1621 		u64 xferred = 0;
1622 
1623 		for_each_obj_request(img_request, obj_request)
1624 			xferred += obj_request->xferred;
1625 		img_request->xferred = xferred;
1626 	}
1627 
1628 	if (img_request->callback)
1629 		img_request->callback(img_request);
1630 	else
1631 		rbd_img_request_put(img_request);
1632 }
1633 
1634 /*
1635  * The default/initial value for all image request flags is 0.  Each
1636  * is conditionally set to 1 at image request initialization time
1637  * and currently never change thereafter.
1638  */
1639 static void img_request_write_set(struct rbd_img_request *img_request)
1640 {
1641 	set_bit(IMG_REQ_WRITE, &img_request->flags);
1642 	smp_mb();
1643 }
1644 
1645 static bool img_request_write_test(struct rbd_img_request *img_request)
1646 {
1647 	smp_mb();
1648 	return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1649 }
1650 
1651 /*
1652  * Set the discard flag when the img_request is an discard request
1653  */
1654 static void img_request_discard_set(struct rbd_img_request *img_request)
1655 {
1656 	set_bit(IMG_REQ_DISCARD, &img_request->flags);
1657 	smp_mb();
1658 }
1659 
1660 static bool img_request_discard_test(struct rbd_img_request *img_request)
1661 {
1662 	smp_mb();
1663 	return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1664 }
1665 
1666 static void img_request_child_set(struct rbd_img_request *img_request)
1667 {
1668 	set_bit(IMG_REQ_CHILD, &img_request->flags);
1669 	smp_mb();
1670 }
1671 
1672 static void img_request_child_clear(struct rbd_img_request *img_request)
1673 {
1674 	clear_bit(IMG_REQ_CHILD, &img_request->flags);
1675 	smp_mb();
1676 }
1677 
1678 static bool img_request_child_test(struct rbd_img_request *img_request)
1679 {
1680 	smp_mb();
1681 	return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1682 }
1683 
1684 static void img_request_layered_set(struct rbd_img_request *img_request)
1685 {
1686 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1687 	smp_mb();
1688 }
1689 
1690 static void img_request_layered_clear(struct rbd_img_request *img_request)
1691 {
1692 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1693 	smp_mb();
1694 }
1695 
1696 static bool img_request_layered_test(struct rbd_img_request *img_request)
1697 {
1698 	smp_mb();
1699 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1700 }
1701 
1702 static enum obj_operation_type
1703 rbd_img_request_op_type(struct rbd_img_request *img_request)
1704 {
1705 	if (img_request_write_test(img_request))
1706 		return OBJ_OP_WRITE;
1707 	else if (img_request_discard_test(img_request))
1708 		return OBJ_OP_DISCARD;
1709 	else
1710 		return OBJ_OP_READ;
1711 }
1712 
1713 static void
1714 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1715 {
1716 	u64 xferred = obj_request->xferred;
1717 	u64 length = obj_request->length;
1718 
1719 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1720 		obj_request, obj_request->img_request, obj_request->result,
1721 		xferred, length);
1722 	/*
1723 	 * ENOENT means a hole in the image.  We zero-fill the entire
1724 	 * length of the request.  A short read also implies zero-fill
1725 	 * to the end of the request.  An error requires the whole
1726 	 * length of the request to be reported finished with an error
1727 	 * to the block layer.  In each case we update the xferred
1728 	 * count to indicate the whole request was satisfied.
1729 	 */
1730 	rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1731 	if (obj_request->result == -ENOENT) {
1732 		if (obj_request->type == OBJ_REQUEST_BIO)
1733 			zero_bio_chain(obj_request->bio_list, 0);
1734 		else
1735 			zero_pages(obj_request->pages, 0, length);
1736 		obj_request->result = 0;
1737 	} else if (xferred < length && !obj_request->result) {
1738 		if (obj_request->type == OBJ_REQUEST_BIO)
1739 			zero_bio_chain(obj_request->bio_list, xferred);
1740 		else
1741 			zero_pages(obj_request->pages, xferred, length);
1742 	}
1743 	obj_request->xferred = length;
1744 	obj_request_done_set(obj_request);
1745 }
1746 
1747 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1748 {
1749 	dout("%s: obj %p cb %p\n", __func__, obj_request,
1750 		obj_request->callback);
1751 	if (obj_request->callback)
1752 		obj_request->callback(obj_request);
1753 	else
1754 		complete_all(&obj_request->completion);
1755 }
1756 
1757 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1758 {
1759 	dout("%s: obj %p\n", __func__, obj_request);
1760 	obj_request_done_set(obj_request);
1761 }
1762 
1763 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1764 {
1765 	struct rbd_img_request *img_request = NULL;
1766 	struct rbd_device *rbd_dev = NULL;
1767 	bool layered = false;
1768 
1769 	if (obj_request_img_data_test(obj_request)) {
1770 		img_request = obj_request->img_request;
1771 		layered = img_request && img_request_layered_test(img_request);
1772 		rbd_dev = img_request->rbd_dev;
1773 	}
1774 
1775 	dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1776 		obj_request, img_request, obj_request->result,
1777 		obj_request->xferred, obj_request->length);
1778 	if (layered && obj_request->result == -ENOENT &&
1779 			obj_request->img_offset < rbd_dev->parent_overlap)
1780 		rbd_img_parent_read(obj_request);
1781 	else if (img_request)
1782 		rbd_img_obj_request_read_callback(obj_request);
1783 	else
1784 		obj_request_done_set(obj_request);
1785 }
1786 
1787 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1788 {
1789 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1790 		obj_request->result, obj_request->length);
1791 	/*
1792 	 * There is no such thing as a successful short write.  Set
1793 	 * it to our originally-requested length.
1794 	 */
1795 	obj_request->xferred = obj_request->length;
1796 	obj_request_done_set(obj_request);
1797 }
1798 
1799 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1800 {
1801 	dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1802 		obj_request->result, obj_request->length);
1803 	/*
1804 	 * There is no such thing as a successful short discard.  Set
1805 	 * it to our originally-requested length.
1806 	 */
1807 	obj_request->xferred = obj_request->length;
1808 	/* discarding a non-existent object is not a problem */
1809 	if (obj_request->result == -ENOENT)
1810 		obj_request->result = 0;
1811 	obj_request_done_set(obj_request);
1812 }
1813 
1814 /*
1815  * For a simple stat call there's nothing to do.  We'll do more if
1816  * this is part of a write sequence for a layered image.
1817  */
1818 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1819 {
1820 	dout("%s: obj %p\n", __func__, obj_request);
1821 	obj_request_done_set(obj_request);
1822 }
1823 
1824 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1825 {
1826 	dout("%s: obj %p\n", __func__, obj_request);
1827 
1828 	if (obj_request_img_data_test(obj_request))
1829 		rbd_osd_copyup_callback(obj_request);
1830 	else
1831 		obj_request_done_set(obj_request);
1832 }
1833 
1834 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1835 				struct ceph_msg *msg)
1836 {
1837 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1838 	u16 opcode;
1839 
1840 	dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1841 	rbd_assert(osd_req == obj_request->osd_req);
1842 	if (obj_request_img_data_test(obj_request)) {
1843 		rbd_assert(obj_request->img_request);
1844 		rbd_assert(obj_request->which != BAD_WHICH);
1845 	} else {
1846 		rbd_assert(obj_request->which == BAD_WHICH);
1847 	}
1848 
1849 	if (osd_req->r_result < 0)
1850 		obj_request->result = osd_req->r_result;
1851 
1852 	rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1853 
1854 	/*
1855 	 * We support a 64-bit length, but ultimately it has to be
1856 	 * passed to the block layer, which just supports a 32-bit
1857 	 * length field.
1858 	 */
1859 	obj_request->xferred = osd_req->r_reply_op_len[0];
1860 	rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1861 
1862 	opcode = osd_req->r_ops[0].op;
1863 	switch (opcode) {
1864 	case CEPH_OSD_OP_READ:
1865 		rbd_osd_read_callback(obj_request);
1866 		break;
1867 	case CEPH_OSD_OP_SETALLOCHINT:
1868 		rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1869 			   osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1870 		/* fall through */
1871 	case CEPH_OSD_OP_WRITE:
1872 	case CEPH_OSD_OP_WRITEFULL:
1873 		rbd_osd_write_callback(obj_request);
1874 		break;
1875 	case CEPH_OSD_OP_STAT:
1876 		rbd_osd_stat_callback(obj_request);
1877 		break;
1878 	case CEPH_OSD_OP_DELETE:
1879 	case CEPH_OSD_OP_TRUNCATE:
1880 	case CEPH_OSD_OP_ZERO:
1881 		rbd_osd_discard_callback(obj_request);
1882 		break;
1883 	case CEPH_OSD_OP_CALL:
1884 		rbd_osd_call_callback(obj_request);
1885 		break;
1886 	case CEPH_OSD_OP_NOTIFY_ACK:
1887 	case CEPH_OSD_OP_WATCH:
1888 		rbd_osd_trivial_callback(obj_request);
1889 		break;
1890 	default:
1891 		rbd_warn(NULL, "%s: unsupported op %hu",
1892 			obj_request->object_name, (unsigned short) opcode);
1893 		break;
1894 	}
1895 
1896 	if (obj_request_done_test(obj_request))
1897 		rbd_obj_request_complete(obj_request);
1898 }
1899 
1900 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1901 {
1902 	struct rbd_img_request *img_request = obj_request->img_request;
1903 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1904 	u64 snap_id;
1905 
1906 	rbd_assert(osd_req != NULL);
1907 
1908 	snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1909 	ceph_osdc_build_request(osd_req, obj_request->offset,
1910 			NULL, snap_id, NULL);
1911 }
1912 
1913 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1914 {
1915 	struct rbd_img_request *img_request = obj_request->img_request;
1916 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1917 	struct ceph_snap_context *snapc;
1918 	struct timespec mtime = CURRENT_TIME;
1919 
1920 	rbd_assert(osd_req != NULL);
1921 
1922 	snapc = img_request ? img_request->snapc : NULL;
1923 	ceph_osdc_build_request(osd_req, obj_request->offset,
1924 			snapc, CEPH_NOSNAP, &mtime);
1925 }
1926 
1927 /*
1928  * Create an osd request.  A read request has one osd op (read).
1929  * A write request has either one (watch) or two (hint+write) osd ops.
1930  * (All rbd data writes are prefixed with an allocation hint op, but
1931  * technically osd watch is a write request, hence this distinction.)
1932  */
1933 static struct ceph_osd_request *rbd_osd_req_create(
1934 					struct rbd_device *rbd_dev,
1935 					enum obj_operation_type op_type,
1936 					unsigned int num_ops,
1937 					struct rbd_obj_request *obj_request)
1938 {
1939 	struct ceph_snap_context *snapc = NULL;
1940 	struct ceph_osd_client *osdc;
1941 	struct ceph_osd_request *osd_req;
1942 
1943 	if (obj_request_img_data_test(obj_request) &&
1944 		(op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1945 		struct rbd_img_request *img_request = obj_request->img_request;
1946 		if (op_type == OBJ_OP_WRITE) {
1947 			rbd_assert(img_request_write_test(img_request));
1948 		} else {
1949 			rbd_assert(img_request_discard_test(img_request));
1950 		}
1951 		snapc = img_request->snapc;
1952 	}
1953 
1954 	rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1955 
1956 	/* Allocate and initialize the request, for the num_ops ops */
1957 
1958 	osdc = &rbd_dev->rbd_client->client->osdc;
1959 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1960 					  GFP_ATOMIC);
1961 	if (!osd_req)
1962 		return NULL;	/* ENOMEM */
1963 
1964 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1965 		osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1966 	else
1967 		osd_req->r_flags = CEPH_OSD_FLAG_READ;
1968 
1969 	osd_req->r_callback = rbd_osd_req_callback;
1970 	osd_req->r_priv = obj_request;
1971 
1972 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1973 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1974 
1975 	return osd_req;
1976 }
1977 
1978 /*
1979  * Create a copyup osd request based on the information in the object
1980  * request supplied.  A copyup request has two or three osd ops, a
1981  * copyup method call, potentially a hint op, and a write or truncate
1982  * or zero op.
1983  */
1984 static struct ceph_osd_request *
1985 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1986 {
1987 	struct rbd_img_request *img_request;
1988 	struct ceph_snap_context *snapc;
1989 	struct rbd_device *rbd_dev;
1990 	struct ceph_osd_client *osdc;
1991 	struct ceph_osd_request *osd_req;
1992 	int num_osd_ops = 3;
1993 
1994 	rbd_assert(obj_request_img_data_test(obj_request));
1995 	img_request = obj_request->img_request;
1996 	rbd_assert(img_request);
1997 	rbd_assert(img_request_write_test(img_request) ||
1998 			img_request_discard_test(img_request));
1999 
2000 	if (img_request_discard_test(img_request))
2001 		num_osd_ops = 2;
2002 
2003 	/* Allocate and initialize the request, for all the ops */
2004 
2005 	snapc = img_request->snapc;
2006 	rbd_dev = img_request->rbd_dev;
2007 	osdc = &rbd_dev->rbd_client->client->osdc;
2008 	osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2009 						false, GFP_ATOMIC);
2010 	if (!osd_req)
2011 		return NULL;	/* ENOMEM */
2012 
2013 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2014 	osd_req->r_callback = rbd_osd_req_callback;
2015 	osd_req->r_priv = obj_request;
2016 
2017 	osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2018 	ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2019 
2020 	return osd_req;
2021 }
2022 
2023 
2024 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2025 {
2026 	ceph_osdc_put_request(osd_req);
2027 }
2028 
2029 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2030 
2031 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2032 						u64 offset, u64 length,
2033 						enum obj_request_type type)
2034 {
2035 	struct rbd_obj_request *obj_request;
2036 	size_t size;
2037 	char *name;
2038 
2039 	rbd_assert(obj_request_type_valid(type));
2040 
2041 	size = strlen(object_name) + 1;
2042 	name = kmalloc(size, GFP_NOIO);
2043 	if (!name)
2044 		return NULL;
2045 
2046 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2047 	if (!obj_request) {
2048 		kfree(name);
2049 		return NULL;
2050 	}
2051 
2052 	obj_request->object_name = memcpy(name, object_name, size);
2053 	obj_request->offset = offset;
2054 	obj_request->length = length;
2055 	obj_request->flags = 0;
2056 	obj_request->which = BAD_WHICH;
2057 	obj_request->type = type;
2058 	INIT_LIST_HEAD(&obj_request->links);
2059 	init_completion(&obj_request->completion);
2060 	kref_init(&obj_request->kref);
2061 
2062 	dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2063 		offset, length, (int)type, obj_request);
2064 
2065 	return obj_request;
2066 }
2067 
2068 static void rbd_obj_request_destroy(struct kref *kref)
2069 {
2070 	struct rbd_obj_request *obj_request;
2071 
2072 	obj_request = container_of(kref, struct rbd_obj_request, kref);
2073 
2074 	dout("%s: obj %p\n", __func__, obj_request);
2075 
2076 	rbd_assert(obj_request->img_request == NULL);
2077 	rbd_assert(obj_request->which == BAD_WHICH);
2078 
2079 	if (obj_request->osd_req)
2080 		rbd_osd_req_destroy(obj_request->osd_req);
2081 
2082 	rbd_assert(obj_request_type_valid(obj_request->type));
2083 	switch (obj_request->type) {
2084 	case OBJ_REQUEST_NODATA:
2085 		break;		/* Nothing to do */
2086 	case OBJ_REQUEST_BIO:
2087 		if (obj_request->bio_list)
2088 			bio_chain_put(obj_request->bio_list);
2089 		break;
2090 	case OBJ_REQUEST_PAGES:
2091 		if (obj_request->pages)
2092 			ceph_release_page_vector(obj_request->pages,
2093 						obj_request->page_count);
2094 		break;
2095 	}
2096 
2097 	kfree(obj_request->object_name);
2098 	obj_request->object_name = NULL;
2099 	kmem_cache_free(rbd_obj_request_cache, obj_request);
2100 }
2101 
2102 /* It's OK to call this for a device with no parent */
2103 
2104 static void rbd_spec_put(struct rbd_spec *spec);
2105 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2106 {
2107 	rbd_dev_remove_parent(rbd_dev);
2108 	rbd_spec_put(rbd_dev->parent_spec);
2109 	rbd_dev->parent_spec = NULL;
2110 	rbd_dev->parent_overlap = 0;
2111 }
2112 
2113 /*
2114  * Parent image reference counting is used to determine when an
2115  * image's parent fields can be safely torn down--after there are no
2116  * more in-flight requests to the parent image.  When the last
2117  * reference is dropped, cleaning them up is safe.
2118  */
2119 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2120 {
2121 	int counter;
2122 
2123 	if (!rbd_dev->parent_spec)
2124 		return;
2125 
2126 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2127 	if (counter > 0)
2128 		return;
2129 
2130 	/* Last reference; clean up parent data structures */
2131 
2132 	if (!counter)
2133 		rbd_dev_unparent(rbd_dev);
2134 	else
2135 		rbd_warn(rbd_dev, "parent reference underflow");
2136 }
2137 
2138 /*
2139  * If an image has a non-zero parent overlap, get a reference to its
2140  * parent.
2141  *
2142  * Returns true if the rbd device has a parent with a non-zero
2143  * overlap and a reference for it was successfully taken, or
2144  * false otherwise.
2145  */
2146 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2147 {
2148 	int counter = 0;
2149 
2150 	if (!rbd_dev->parent_spec)
2151 		return false;
2152 
2153 	down_read(&rbd_dev->header_rwsem);
2154 	if (rbd_dev->parent_overlap)
2155 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2156 	up_read(&rbd_dev->header_rwsem);
2157 
2158 	if (counter < 0)
2159 		rbd_warn(rbd_dev, "parent reference overflow");
2160 
2161 	return counter > 0;
2162 }
2163 
2164 /*
2165  * Caller is responsible for filling in the list of object requests
2166  * that comprises the image request, and the Linux request pointer
2167  * (if there is one).
2168  */
2169 static struct rbd_img_request *rbd_img_request_create(
2170 					struct rbd_device *rbd_dev,
2171 					u64 offset, u64 length,
2172 					enum obj_operation_type op_type,
2173 					struct ceph_snap_context *snapc)
2174 {
2175 	struct rbd_img_request *img_request;
2176 
2177 	img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2178 	if (!img_request)
2179 		return NULL;
2180 
2181 	img_request->rq = NULL;
2182 	img_request->rbd_dev = rbd_dev;
2183 	img_request->offset = offset;
2184 	img_request->length = length;
2185 	img_request->flags = 0;
2186 	if (op_type == OBJ_OP_DISCARD) {
2187 		img_request_discard_set(img_request);
2188 		img_request->snapc = snapc;
2189 	} else if (op_type == OBJ_OP_WRITE) {
2190 		img_request_write_set(img_request);
2191 		img_request->snapc = snapc;
2192 	} else {
2193 		img_request->snap_id = rbd_dev->spec->snap_id;
2194 	}
2195 	if (rbd_dev_parent_get(rbd_dev))
2196 		img_request_layered_set(img_request);
2197 	spin_lock_init(&img_request->completion_lock);
2198 	img_request->next_completion = 0;
2199 	img_request->callback = NULL;
2200 	img_request->result = 0;
2201 	img_request->obj_request_count = 0;
2202 	INIT_LIST_HEAD(&img_request->obj_requests);
2203 	kref_init(&img_request->kref);
2204 
2205 	dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2206 		obj_op_name(op_type), offset, length, img_request);
2207 
2208 	return img_request;
2209 }
2210 
2211 static void rbd_img_request_destroy(struct kref *kref)
2212 {
2213 	struct rbd_img_request *img_request;
2214 	struct rbd_obj_request *obj_request;
2215 	struct rbd_obj_request *next_obj_request;
2216 
2217 	img_request = container_of(kref, struct rbd_img_request, kref);
2218 
2219 	dout("%s: img %p\n", __func__, img_request);
2220 
2221 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2222 		rbd_img_obj_request_del(img_request, obj_request);
2223 	rbd_assert(img_request->obj_request_count == 0);
2224 
2225 	if (img_request_layered_test(img_request)) {
2226 		img_request_layered_clear(img_request);
2227 		rbd_dev_parent_put(img_request->rbd_dev);
2228 	}
2229 
2230 	if (img_request_write_test(img_request) ||
2231 		img_request_discard_test(img_request))
2232 		ceph_put_snap_context(img_request->snapc);
2233 
2234 	kmem_cache_free(rbd_img_request_cache, img_request);
2235 }
2236 
2237 static struct rbd_img_request *rbd_parent_request_create(
2238 					struct rbd_obj_request *obj_request,
2239 					u64 img_offset, u64 length)
2240 {
2241 	struct rbd_img_request *parent_request;
2242 	struct rbd_device *rbd_dev;
2243 
2244 	rbd_assert(obj_request->img_request);
2245 	rbd_dev = obj_request->img_request->rbd_dev;
2246 
2247 	parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2248 						length, OBJ_OP_READ, NULL);
2249 	if (!parent_request)
2250 		return NULL;
2251 
2252 	img_request_child_set(parent_request);
2253 	rbd_obj_request_get(obj_request);
2254 	parent_request->obj_request = obj_request;
2255 
2256 	return parent_request;
2257 }
2258 
2259 static void rbd_parent_request_destroy(struct kref *kref)
2260 {
2261 	struct rbd_img_request *parent_request;
2262 	struct rbd_obj_request *orig_request;
2263 
2264 	parent_request = container_of(kref, struct rbd_img_request, kref);
2265 	orig_request = parent_request->obj_request;
2266 
2267 	parent_request->obj_request = NULL;
2268 	rbd_obj_request_put(orig_request);
2269 	img_request_child_clear(parent_request);
2270 
2271 	rbd_img_request_destroy(kref);
2272 }
2273 
2274 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2275 {
2276 	struct rbd_img_request *img_request;
2277 	unsigned int xferred;
2278 	int result;
2279 	bool more;
2280 
2281 	rbd_assert(obj_request_img_data_test(obj_request));
2282 	img_request = obj_request->img_request;
2283 
2284 	rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2285 	xferred = (unsigned int)obj_request->xferred;
2286 	result = obj_request->result;
2287 	if (result) {
2288 		struct rbd_device *rbd_dev = img_request->rbd_dev;
2289 		enum obj_operation_type op_type;
2290 
2291 		if (img_request_discard_test(img_request))
2292 			op_type = OBJ_OP_DISCARD;
2293 		else if (img_request_write_test(img_request))
2294 			op_type = OBJ_OP_WRITE;
2295 		else
2296 			op_type = OBJ_OP_READ;
2297 
2298 		rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2299 			obj_op_name(op_type), obj_request->length,
2300 			obj_request->img_offset, obj_request->offset);
2301 		rbd_warn(rbd_dev, "  result %d xferred %x",
2302 			result, xferred);
2303 		if (!img_request->result)
2304 			img_request->result = result;
2305 		/*
2306 		 * Need to end I/O on the entire obj_request worth of
2307 		 * bytes in case of error.
2308 		 */
2309 		xferred = obj_request->length;
2310 	}
2311 
2312 	/* Image object requests don't own their page array */
2313 
2314 	if (obj_request->type == OBJ_REQUEST_PAGES) {
2315 		obj_request->pages = NULL;
2316 		obj_request->page_count = 0;
2317 	}
2318 
2319 	if (img_request_child_test(img_request)) {
2320 		rbd_assert(img_request->obj_request != NULL);
2321 		more = obj_request->which < img_request->obj_request_count - 1;
2322 	} else {
2323 		rbd_assert(img_request->rq != NULL);
2324 
2325 		more = blk_update_request(img_request->rq, result, xferred);
2326 		if (!more)
2327 			__blk_mq_end_request(img_request->rq, result);
2328 	}
2329 
2330 	return more;
2331 }
2332 
2333 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2334 {
2335 	struct rbd_img_request *img_request;
2336 	u32 which = obj_request->which;
2337 	bool more = true;
2338 
2339 	rbd_assert(obj_request_img_data_test(obj_request));
2340 	img_request = obj_request->img_request;
2341 
2342 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2343 	rbd_assert(img_request != NULL);
2344 	rbd_assert(img_request->obj_request_count > 0);
2345 	rbd_assert(which != BAD_WHICH);
2346 	rbd_assert(which < img_request->obj_request_count);
2347 
2348 	spin_lock_irq(&img_request->completion_lock);
2349 	if (which != img_request->next_completion)
2350 		goto out;
2351 
2352 	for_each_obj_request_from(img_request, obj_request) {
2353 		rbd_assert(more);
2354 		rbd_assert(which < img_request->obj_request_count);
2355 
2356 		if (!obj_request_done_test(obj_request))
2357 			break;
2358 		more = rbd_img_obj_end_request(obj_request);
2359 		which++;
2360 	}
2361 
2362 	rbd_assert(more ^ (which == img_request->obj_request_count));
2363 	img_request->next_completion = which;
2364 out:
2365 	spin_unlock_irq(&img_request->completion_lock);
2366 	rbd_img_request_put(img_request);
2367 
2368 	if (!more)
2369 		rbd_img_request_complete(img_request);
2370 }
2371 
2372 /*
2373  * Add individual osd ops to the given ceph_osd_request and prepare
2374  * them for submission. num_ops is the current number of
2375  * osd operations already to the object request.
2376  */
2377 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2378 				struct ceph_osd_request *osd_request,
2379 				enum obj_operation_type op_type,
2380 				unsigned int num_ops)
2381 {
2382 	struct rbd_img_request *img_request = obj_request->img_request;
2383 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2384 	u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2385 	u64 offset = obj_request->offset;
2386 	u64 length = obj_request->length;
2387 	u64 img_end;
2388 	u16 opcode;
2389 
2390 	if (op_type == OBJ_OP_DISCARD) {
2391 		if (!offset && length == object_size &&
2392 		    (!img_request_layered_test(img_request) ||
2393 		     !obj_request_overlaps_parent(obj_request))) {
2394 			opcode = CEPH_OSD_OP_DELETE;
2395 		} else if ((offset + length == object_size)) {
2396 			opcode = CEPH_OSD_OP_TRUNCATE;
2397 		} else {
2398 			down_read(&rbd_dev->header_rwsem);
2399 			img_end = rbd_dev->header.image_size;
2400 			up_read(&rbd_dev->header_rwsem);
2401 
2402 			if (obj_request->img_offset + length == img_end)
2403 				opcode = CEPH_OSD_OP_TRUNCATE;
2404 			else
2405 				opcode = CEPH_OSD_OP_ZERO;
2406 		}
2407 	} else if (op_type == OBJ_OP_WRITE) {
2408 		if (!offset && length == object_size)
2409 			opcode = CEPH_OSD_OP_WRITEFULL;
2410 		else
2411 			opcode = CEPH_OSD_OP_WRITE;
2412 		osd_req_op_alloc_hint_init(osd_request, num_ops,
2413 					object_size, object_size);
2414 		num_ops++;
2415 	} else {
2416 		opcode = CEPH_OSD_OP_READ;
2417 	}
2418 
2419 	if (opcode == CEPH_OSD_OP_DELETE)
2420 		osd_req_op_init(osd_request, num_ops, opcode, 0);
2421 	else
2422 		osd_req_op_extent_init(osd_request, num_ops, opcode,
2423 				       offset, length, 0, 0);
2424 
2425 	if (obj_request->type == OBJ_REQUEST_BIO)
2426 		osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2427 					obj_request->bio_list, length);
2428 	else if (obj_request->type == OBJ_REQUEST_PAGES)
2429 		osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2430 					obj_request->pages, length,
2431 					offset & ~PAGE_MASK, false, false);
2432 
2433 	/* Discards are also writes */
2434 	if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2435 		rbd_osd_req_format_write(obj_request);
2436 	else
2437 		rbd_osd_req_format_read(obj_request);
2438 }
2439 
2440 /*
2441  * Split up an image request into one or more object requests, each
2442  * to a different object.  The "type" parameter indicates whether
2443  * "data_desc" is the pointer to the head of a list of bio
2444  * structures, or the base of a page array.  In either case this
2445  * function assumes data_desc describes memory sufficient to hold
2446  * all data described by the image request.
2447  */
2448 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2449 					enum obj_request_type type,
2450 					void *data_desc)
2451 {
2452 	struct rbd_device *rbd_dev = img_request->rbd_dev;
2453 	struct rbd_obj_request *obj_request = NULL;
2454 	struct rbd_obj_request *next_obj_request;
2455 	struct bio *bio_list = NULL;
2456 	unsigned int bio_offset = 0;
2457 	struct page **pages = NULL;
2458 	enum obj_operation_type op_type;
2459 	u64 img_offset;
2460 	u64 resid;
2461 
2462 	dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2463 		(int)type, data_desc);
2464 
2465 	img_offset = img_request->offset;
2466 	resid = img_request->length;
2467 	rbd_assert(resid > 0);
2468 	op_type = rbd_img_request_op_type(img_request);
2469 
2470 	if (type == OBJ_REQUEST_BIO) {
2471 		bio_list = data_desc;
2472 		rbd_assert(img_offset ==
2473 			   bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2474 	} else if (type == OBJ_REQUEST_PAGES) {
2475 		pages = data_desc;
2476 	}
2477 
2478 	while (resid) {
2479 		struct ceph_osd_request *osd_req;
2480 		const char *object_name;
2481 		u64 offset;
2482 		u64 length;
2483 
2484 		object_name = rbd_segment_name(rbd_dev, img_offset);
2485 		if (!object_name)
2486 			goto out_unwind;
2487 		offset = rbd_segment_offset(rbd_dev, img_offset);
2488 		length = rbd_segment_length(rbd_dev, img_offset, resid);
2489 		obj_request = rbd_obj_request_create(object_name,
2490 						offset, length, type);
2491 		/* object request has its own copy of the object name */
2492 		rbd_segment_name_free(object_name);
2493 		if (!obj_request)
2494 			goto out_unwind;
2495 
2496 		/*
2497 		 * set obj_request->img_request before creating the
2498 		 * osd_request so that it gets the right snapc
2499 		 */
2500 		rbd_img_obj_request_add(img_request, obj_request);
2501 
2502 		if (type == OBJ_REQUEST_BIO) {
2503 			unsigned int clone_size;
2504 
2505 			rbd_assert(length <= (u64)UINT_MAX);
2506 			clone_size = (unsigned int)length;
2507 			obj_request->bio_list =
2508 					bio_chain_clone_range(&bio_list,
2509 								&bio_offset,
2510 								clone_size,
2511 								GFP_ATOMIC);
2512 			if (!obj_request->bio_list)
2513 				goto out_unwind;
2514 		} else if (type == OBJ_REQUEST_PAGES) {
2515 			unsigned int page_count;
2516 
2517 			obj_request->pages = pages;
2518 			page_count = (u32)calc_pages_for(offset, length);
2519 			obj_request->page_count = page_count;
2520 			if ((offset + length) & ~PAGE_MASK)
2521 				page_count--;	/* more on last page */
2522 			pages += page_count;
2523 		}
2524 
2525 		osd_req = rbd_osd_req_create(rbd_dev, op_type,
2526 					(op_type == OBJ_OP_WRITE) ? 2 : 1,
2527 					obj_request);
2528 		if (!osd_req)
2529 			goto out_unwind;
2530 
2531 		obj_request->osd_req = osd_req;
2532 		obj_request->callback = rbd_img_obj_callback;
2533 		obj_request->img_offset = img_offset;
2534 
2535 		rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2536 
2537 		rbd_img_request_get(img_request);
2538 
2539 		img_offset += length;
2540 		resid -= length;
2541 	}
2542 
2543 	return 0;
2544 
2545 out_unwind:
2546 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2547 		rbd_img_obj_request_del(img_request, obj_request);
2548 
2549 	return -ENOMEM;
2550 }
2551 
2552 static void
2553 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2554 {
2555 	struct rbd_img_request *img_request;
2556 	struct rbd_device *rbd_dev;
2557 	struct page **pages;
2558 	u32 page_count;
2559 
2560 	dout("%s: obj %p\n", __func__, obj_request);
2561 
2562 	rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2563 		obj_request->type == OBJ_REQUEST_NODATA);
2564 	rbd_assert(obj_request_img_data_test(obj_request));
2565 	img_request = obj_request->img_request;
2566 	rbd_assert(img_request);
2567 
2568 	rbd_dev = img_request->rbd_dev;
2569 	rbd_assert(rbd_dev);
2570 
2571 	pages = obj_request->copyup_pages;
2572 	rbd_assert(pages != NULL);
2573 	obj_request->copyup_pages = NULL;
2574 	page_count = obj_request->copyup_page_count;
2575 	rbd_assert(page_count);
2576 	obj_request->copyup_page_count = 0;
2577 	ceph_release_page_vector(pages, page_count);
2578 
2579 	/*
2580 	 * We want the transfer count to reflect the size of the
2581 	 * original write request.  There is no such thing as a
2582 	 * successful short write, so if the request was successful
2583 	 * we can just set it to the originally-requested length.
2584 	 */
2585 	if (!obj_request->result)
2586 		obj_request->xferred = obj_request->length;
2587 
2588 	obj_request_done_set(obj_request);
2589 }
2590 
2591 static void
2592 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2593 {
2594 	struct rbd_obj_request *orig_request;
2595 	struct ceph_osd_request *osd_req;
2596 	struct ceph_osd_client *osdc;
2597 	struct rbd_device *rbd_dev;
2598 	struct page **pages;
2599 	enum obj_operation_type op_type;
2600 	u32 page_count;
2601 	int img_result;
2602 	u64 parent_length;
2603 
2604 	rbd_assert(img_request_child_test(img_request));
2605 
2606 	/* First get what we need from the image request */
2607 
2608 	pages = img_request->copyup_pages;
2609 	rbd_assert(pages != NULL);
2610 	img_request->copyup_pages = NULL;
2611 	page_count = img_request->copyup_page_count;
2612 	rbd_assert(page_count);
2613 	img_request->copyup_page_count = 0;
2614 
2615 	orig_request = img_request->obj_request;
2616 	rbd_assert(orig_request != NULL);
2617 	rbd_assert(obj_request_type_valid(orig_request->type));
2618 	img_result = img_request->result;
2619 	parent_length = img_request->length;
2620 	rbd_assert(parent_length == img_request->xferred);
2621 	rbd_img_request_put(img_request);
2622 
2623 	rbd_assert(orig_request->img_request);
2624 	rbd_dev = orig_request->img_request->rbd_dev;
2625 	rbd_assert(rbd_dev);
2626 
2627 	/*
2628 	 * If the overlap has become 0 (most likely because the
2629 	 * image has been flattened) we need to free the pages
2630 	 * and re-submit the original write request.
2631 	 */
2632 	if (!rbd_dev->parent_overlap) {
2633 		struct ceph_osd_client *osdc;
2634 
2635 		ceph_release_page_vector(pages, page_count);
2636 		osdc = &rbd_dev->rbd_client->client->osdc;
2637 		img_result = rbd_obj_request_submit(osdc, orig_request);
2638 		if (!img_result)
2639 			return;
2640 	}
2641 
2642 	if (img_result)
2643 		goto out_err;
2644 
2645 	/*
2646 	 * The original osd request is of no use to use any more.
2647 	 * We need a new one that can hold the three ops in a copyup
2648 	 * request.  Allocate the new copyup osd request for the
2649 	 * original request, and release the old one.
2650 	 */
2651 	img_result = -ENOMEM;
2652 	osd_req = rbd_osd_req_create_copyup(orig_request);
2653 	if (!osd_req)
2654 		goto out_err;
2655 	rbd_osd_req_destroy(orig_request->osd_req);
2656 	orig_request->osd_req = osd_req;
2657 	orig_request->copyup_pages = pages;
2658 	orig_request->copyup_page_count = page_count;
2659 
2660 	/* Initialize the copyup op */
2661 
2662 	osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2663 	osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2664 						false, false);
2665 
2666 	/* Add the other op(s) */
2667 
2668 	op_type = rbd_img_request_op_type(orig_request->img_request);
2669 	rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2670 
2671 	/* All set, send it off. */
2672 
2673 	osdc = &rbd_dev->rbd_client->client->osdc;
2674 	img_result = rbd_obj_request_submit(osdc, orig_request);
2675 	if (!img_result)
2676 		return;
2677 out_err:
2678 	/* Record the error code and complete the request */
2679 
2680 	orig_request->result = img_result;
2681 	orig_request->xferred = 0;
2682 	obj_request_done_set(orig_request);
2683 	rbd_obj_request_complete(orig_request);
2684 }
2685 
2686 /*
2687  * Read from the parent image the range of data that covers the
2688  * entire target of the given object request.  This is used for
2689  * satisfying a layered image write request when the target of an
2690  * object request from the image request does not exist.
2691  *
2692  * A page array big enough to hold the returned data is allocated
2693  * and supplied to rbd_img_request_fill() as the "data descriptor."
2694  * When the read completes, this page array will be transferred to
2695  * the original object request for the copyup operation.
2696  *
2697  * If an error occurs, record it as the result of the original
2698  * object request and mark it done so it gets completed.
2699  */
2700 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2701 {
2702 	struct rbd_img_request *img_request = NULL;
2703 	struct rbd_img_request *parent_request = NULL;
2704 	struct rbd_device *rbd_dev;
2705 	u64 img_offset;
2706 	u64 length;
2707 	struct page **pages = NULL;
2708 	u32 page_count;
2709 	int result;
2710 
2711 	rbd_assert(obj_request_img_data_test(obj_request));
2712 	rbd_assert(obj_request_type_valid(obj_request->type));
2713 
2714 	img_request = obj_request->img_request;
2715 	rbd_assert(img_request != NULL);
2716 	rbd_dev = img_request->rbd_dev;
2717 	rbd_assert(rbd_dev->parent != NULL);
2718 
2719 	/*
2720 	 * Determine the byte range covered by the object in the
2721 	 * child image to which the original request was to be sent.
2722 	 */
2723 	img_offset = obj_request->img_offset - obj_request->offset;
2724 	length = (u64)1 << rbd_dev->header.obj_order;
2725 
2726 	/*
2727 	 * There is no defined parent data beyond the parent
2728 	 * overlap, so limit what we read at that boundary if
2729 	 * necessary.
2730 	 */
2731 	if (img_offset + length > rbd_dev->parent_overlap) {
2732 		rbd_assert(img_offset < rbd_dev->parent_overlap);
2733 		length = rbd_dev->parent_overlap - img_offset;
2734 	}
2735 
2736 	/*
2737 	 * Allocate a page array big enough to receive the data read
2738 	 * from the parent.
2739 	 */
2740 	page_count = (u32)calc_pages_for(0, length);
2741 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2742 	if (IS_ERR(pages)) {
2743 		result = PTR_ERR(pages);
2744 		pages = NULL;
2745 		goto out_err;
2746 	}
2747 
2748 	result = -ENOMEM;
2749 	parent_request = rbd_parent_request_create(obj_request,
2750 						img_offset, length);
2751 	if (!parent_request)
2752 		goto out_err;
2753 
2754 	result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2755 	if (result)
2756 		goto out_err;
2757 	parent_request->copyup_pages = pages;
2758 	parent_request->copyup_page_count = page_count;
2759 
2760 	parent_request->callback = rbd_img_obj_parent_read_full_callback;
2761 	result = rbd_img_request_submit(parent_request);
2762 	if (!result)
2763 		return 0;
2764 
2765 	parent_request->copyup_pages = NULL;
2766 	parent_request->copyup_page_count = 0;
2767 	parent_request->obj_request = NULL;
2768 	rbd_obj_request_put(obj_request);
2769 out_err:
2770 	if (pages)
2771 		ceph_release_page_vector(pages, page_count);
2772 	if (parent_request)
2773 		rbd_img_request_put(parent_request);
2774 	obj_request->result = result;
2775 	obj_request->xferred = 0;
2776 	obj_request_done_set(obj_request);
2777 
2778 	return result;
2779 }
2780 
2781 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2782 {
2783 	struct rbd_obj_request *orig_request;
2784 	struct rbd_device *rbd_dev;
2785 	int result;
2786 
2787 	rbd_assert(!obj_request_img_data_test(obj_request));
2788 
2789 	/*
2790 	 * All we need from the object request is the original
2791 	 * request and the result of the STAT op.  Grab those, then
2792 	 * we're done with the request.
2793 	 */
2794 	orig_request = obj_request->obj_request;
2795 	obj_request->obj_request = NULL;
2796 	rbd_obj_request_put(orig_request);
2797 	rbd_assert(orig_request);
2798 	rbd_assert(orig_request->img_request);
2799 
2800 	result = obj_request->result;
2801 	obj_request->result = 0;
2802 
2803 	dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2804 		obj_request, orig_request, result,
2805 		obj_request->xferred, obj_request->length);
2806 	rbd_obj_request_put(obj_request);
2807 
2808 	/*
2809 	 * If the overlap has become 0 (most likely because the
2810 	 * image has been flattened) we need to free the pages
2811 	 * and re-submit the original write request.
2812 	 */
2813 	rbd_dev = orig_request->img_request->rbd_dev;
2814 	if (!rbd_dev->parent_overlap) {
2815 		struct ceph_osd_client *osdc;
2816 
2817 		osdc = &rbd_dev->rbd_client->client->osdc;
2818 		result = rbd_obj_request_submit(osdc, orig_request);
2819 		if (!result)
2820 			return;
2821 	}
2822 
2823 	/*
2824 	 * Our only purpose here is to determine whether the object
2825 	 * exists, and we don't want to treat the non-existence as
2826 	 * an error.  If something else comes back, transfer the
2827 	 * error to the original request and complete it now.
2828 	 */
2829 	if (!result) {
2830 		obj_request_existence_set(orig_request, true);
2831 	} else if (result == -ENOENT) {
2832 		obj_request_existence_set(orig_request, false);
2833 	} else if (result) {
2834 		orig_request->result = result;
2835 		goto out;
2836 	}
2837 
2838 	/*
2839 	 * Resubmit the original request now that we have recorded
2840 	 * whether the target object exists.
2841 	 */
2842 	orig_request->result = rbd_img_obj_request_submit(orig_request);
2843 out:
2844 	if (orig_request->result)
2845 		rbd_obj_request_complete(orig_request);
2846 }
2847 
2848 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2849 {
2850 	struct rbd_obj_request *stat_request;
2851 	struct rbd_device *rbd_dev;
2852 	struct ceph_osd_client *osdc;
2853 	struct page **pages = NULL;
2854 	u32 page_count;
2855 	size_t size;
2856 	int ret;
2857 
2858 	/*
2859 	 * The response data for a STAT call consists of:
2860 	 *     le64 length;
2861 	 *     struct {
2862 	 *         le32 tv_sec;
2863 	 *         le32 tv_nsec;
2864 	 *     } mtime;
2865 	 */
2866 	size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2867 	page_count = (u32)calc_pages_for(0, size);
2868 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2869 	if (IS_ERR(pages))
2870 		return PTR_ERR(pages);
2871 
2872 	ret = -ENOMEM;
2873 	stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2874 							OBJ_REQUEST_PAGES);
2875 	if (!stat_request)
2876 		goto out;
2877 
2878 	rbd_obj_request_get(obj_request);
2879 	stat_request->obj_request = obj_request;
2880 	stat_request->pages = pages;
2881 	stat_request->page_count = page_count;
2882 
2883 	rbd_assert(obj_request->img_request);
2884 	rbd_dev = obj_request->img_request->rbd_dev;
2885 	stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2886 						   stat_request);
2887 	if (!stat_request->osd_req)
2888 		goto out;
2889 	stat_request->callback = rbd_img_obj_exists_callback;
2890 
2891 	osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2892 	osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2893 					false, false);
2894 	rbd_osd_req_format_read(stat_request);
2895 
2896 	osdc = &rbd_dev->rbd_client->client->osdc;
2897 	ret = rbd_obj_request_submit(osdc, stat_request);
2898 out:
2899 	if (ret)
2900 		rbd_obj_request_put(obj_request);
2901 
2902 	return ret;
2903 }
2904 
2905 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2906 {
2907 	struct rbd_img_request *img_request;
2908 	struct rbd_device *rbd_dev;
2909 
2910 	rbd_assert(obj_request_img_data_test(obj_request));
2911 
2912 	img_request = obj_request->img_request;
2913 	rbd_assert(img_request);
2914 	rbd_dev = img_request->rbd_dev;
2915 
2916 	/* Reads */
2917 	if (!img_request_write_test(img_request) &&
2918 	    !img_request_discard_test(img_request))
2919 		return true;
2920 
2921 	/* Non-layered writes */
2922 	if (!img_request_layered_test(img_request))
2923 		return true;
2924 
2925 	/*
2926 	 * Layered writes outside of the parent overlap range don't
2927 	 * share any data with the parent.
2928 	 */
2929 	if (!obj_request_overlaps_parent(obj_request))
2930 		return true;
2931 
2932 	/*
2933 	 * Entire-object layered writes - we will overwrite whatever
2934 	 * parent data there is anyway.
2935 	 */
2936 	if (!obj_request->offset &&
2937 	    obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2938 		return true;
2939 
2940 	/*
2941 	 * If the object is known to already exist, its parent data has
2942 	 * already been copied.
2943 	 */
2944 	if (obj_request_known_test(obj_request) &&
2945 	    obj_request_exists_test(obj_request))
2946 		return true;
2947 
2948 	return false;
2949 }
2950 
2951 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2952 {
2953 	if (img_obj_request_simple(obj_request)) {
2954 		struct rbd_device *rbd_dev;
2955 		struct ceph_osd_client *osdc;
2956 
2957 		rbd_dev = obj_request->img_request->rbd_dev;
2958 		osdc = &rbd_dev->rbd_client->client->osdc;
2959 
2960 		return rbd_obj_request_submit(osdc, obj_request);
2961 	}
2962 
2963 	/*
2964 	 * It's a layered write.  The target object might exist but
2965 	 * we may not know that yet.  If we know it doesn't exist,
2966 	 * start by reading the data for the full target object from
2967 	 * the parent so we can use it for a copyup to the target.
2968 	 */
2969 	if (obj_request_known_test(obj_request))
2970 		return rbd_img_obj_parent_read_full(obj_request);
2971 
2972 	/* We don't know whether the target exists.  Go find out. */
2973 
2974 	return rbd_img_obj_exists_submit(obj_request);
2975 }
2976 
2977 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2978 {
2979 	struct rbd_obj_request *obj_request;
2980 	struct rbd_obj_request *next_obj_request;
2981 
2982 	dout("%s: img %p\n", __func__, img_request);
2983 	for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2984 		int ret;
2985 
2986 		ret = rbd_img_obj_request_submit(obj_request);
2987 		if (ret)
2988 			return ret;
2989 	}
2990 
2991 	return 0;
2992 }
2993 
2994 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2995 {
2996 	struct rbd_obj_request *obj_request;
2997 	struct rbd_device *rbd_dev;
2998 	u64 obj_end;
2999 	u64 img_xferred;
3000 	int img_result;
3001 
3002 	rbd_assert(img_request_child_test(img_request));
3003 
3004 	/* First get what we need from the image request and release it */
3005 
3006 	obj_request = img_request->obj_request;
3007 	img_xferred = img_request->xferred;
3008 	img_result = img_request->result;
3009 	rbd_img_request_put(img_request);
3010 
3011 	/*
3012 	 * If the overlap has become 0 (most likely because the
3013 	 * image has been flattened) we need to re-submit the
3014 	 * original request.
3015 	 */
3016 	rbd_assert(obj_request);
3017 	rbd_assert(obj_request->img_request);
3018 	rbd_dev = obj_request->img_request->rbd_dev;
3019 	if (!rbd_dev->parent_overlap) {
3020 		struct ceph_osd_client *osdc;
3021 
3022 		osdc = &rbd_dev->rbd_client->client->osdc;
3023 		img_result = rbd_obj_request_submit(osdc, obj_request);
3024 		if (!img_result)
3025 			return;
3026 	}
3027 
3028 	obj_request->result = img_result;
3029 	if (obj_request->result)
3030 		goto out;
3031 
3032 	/*
3033 	 * We need to zero anything beyond the parent overlap
3034 	 * boundary.  Since rbd_img_obj_request_read_callback()
3035 	 * will zero anything beyond the end of a short read, an
3036 	 * easy way to do this is to pretend the data from the
3037 	 * parent came up short--ending at the overlap boundary.
3038 	 */
3039 	rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3040 	obj_end = obj_request->img_offset + obj_request->length;
3041 	if (obj_end > rbd_dev->parent_overlap) {
3042 		u64 xferred = 0;
3043 
3044 		if (obj_request->img_offset < rbd_dev->parent_overlap)
3045 			xferred = rbd_dev->parent_overlap -
3046 					obj_request->img_offset;
3047 
3048 		obj_request->xferred = min(img_xferred, xferred);
3049 	} else {
3050 		obj_request->xferred = img_xferred;
3051 	}
3052 out:
3053 	rbd_img_obj_request_read_callback(obj_request);
3054 	rbd_obj_request_complete(obj_request);
3055 }
3056 
3057 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3058 {
3059 	struct rbd_img_request *img_request;
3060 	int result;
3061 
3062 	rbd_assert(obj_request_img_data_test(obj_request));
3063 	rbd_assert(obj_request->img_request != NULL);
3064 	rbd_assert(obj_request->result == (s32) -ENOENT);
3065 	rbd_assert(obj_request_type_valid(obj_request->type));
3066 
3067 	/* rbd_read_finish(obj_request, obj_request->length); */
3068 	img_request = rbd_parent_request_create(obj_request,
3069 						obj_request->img_offset,
3070 						obj_request->length);
3071 	result = -ENOMEM;
3072 	if (!img_request)
3073 		goto out_err;
3074 
3075 	if (obj_request->type == OBJ_REQUEST_BIO)
3076 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3077 						obj_request->bio_list);
3078 	else
3079 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3080 						obj_request->pages);
3081 	if (result)
3082 		goto out_err;
3083 
3084 	img_request->callback = rbd_img_parent_read_callback;
3085 	result = rbd_img_request_submit(img_request);
3086 	if (result)
3087 		goto out_err;
3088 
3089 	return;
3090 out_err:
3091 	if (img_request)
3092 		rbd_img_request_put(img_request);
3093 	obj_request->result = result;
3094 	obj_request->xferred = 0;
3095 	obj_request_done_set(obj_request);
3096 }
3097 
3098 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3099 {
3100 	struct rbd_obj_request *obj_request;
3101 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3102 	int ret;
3103 
3104 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3105 							OBJ_REQUEST_NODATA);
3106 	if (!obj_request)
3107 		return -ENOMEM;
3108 
3109 	ret = -ENOMEM;
3110 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3111 						  obj_request);
3112 	if (!obj_request->osd_req)
3113 		goto out;
3114 
3115 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3116 					notify_id, 0, 0);
3117 	rbd_osd_req_format_read(obj_request);
3118 
3119 	ret = rbd_obj_request_submit(osdc, obj_request);
3120 	if (ret)
3121 		goto out;
3122 	ret = rbd_obj_request_wait(obj_request);
3123 out:
3124 	rbd_obj_request_put(obj_request);
3125 
3126 	return ret;
3127 }
3128 
3129 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3130 {
3131 	struct rbd_device *rbd_dev = (struct rbd_device *)data;
3132 	int ret;
3133 
3134 	if (!rbd_dev)
3135 		return;
3136 
3137 	dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3138 		rbd_dev->header_name, (unsigned long long)notify_id,
3139 		(unsigned int)opcode);
3140 
3141 	/*
3142 	 * Until adequate refresh error handling is in place, there is
3143 	 * not much we can do here, except warn.
3144 	 *
3145 	 * See http://tracker.ceph.com/issues/5040
3146 	 */
3147 	ret = rbd_dev_refresh(rbd_dev);
3148 	if (ret)
3149 		rbd_warn(rbd_dev, "refresh failed: %d", ret);
3150 
3151 	ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3152 	if (ret)
3153 		rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3154 }
3155 
3156 /*
3157  * Send a (un)watch request and wait for the ack.  Return a request
3158  * with a ref held on success or error.
3159  */
3160 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3161 						struct rbd_device *rbd_dev,
3162 						bool watch)
3163 {
3164 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3165 	struct ceph_options *opts = osdc->client->options;
3166 	struct rbd_obj_request *obj_request;
3167 	int ret;
3168 
3169 	obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3170 					     OBJ_REQUEST_NODATA);
3171 	if (!obj_request)
3172 		return ERR_PTR(-ENOMEM);
3173 
3174 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3175 						  obj_request);
3176 	if (!obj_request->osd_req) {
3177 		ret = -ENOMEM;
3178 		goto out;
3179 	}
3180 
3181 	osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3182 			      rbd_dev->watch_event->cookie, 0, watch);
3183 	rbd_osd_req_format_write(obj_request);
3184 
3185 	if (watch)
3186 		ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3187 
3188 	ret = rbd_obj_request_submit(osdc, obj_request);
3189 	if (ret)
3190 		goto out;
3191 
3192 	ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3193 	if (ret)
3194 		goto out;
3195 
3196 	ret = obj_request->result;
3197 	if (ret) {
3198 		if (watch)
3199 			rbd_obj_request_end(obj_request);
3200 		goto out;
3201 	}
3202 
3203 	return obj_request;
3204 
3205 out:
3206 	rbd_obj_request_put(obj_request);
3207 	return ERR_PTR(ret);
3208 }
3209 
3210 /*
3211  * Initiate a watch request, synchronously.
3212  */
3213 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3214 {
3215 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3216 	struct rbd_obj_request *obj_request;
3217 	int ret;
3218 
3219 	rbd_assert(!rbd_dev->watch_event);
3220 	rbd_assert(!rbd_dev->watch_request);
3221 
3222 	ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3223 				     &rbd_dev->watch_event);
3224 	if (ret < 0)
3225 		return ret;
3226 
3227 	obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3228 	if (IS_ERR(obj_request)) {
3229 		ceph_osdc_cancel_event(rbd_dev->watch_event);
3230 		rbd_dev->watch_event = NULL;
3231 		return PTR_ERR(obj_request);
3232 	}
3233 
3234 	/*
3235 	 * A watch request is set to linger, so the underlying osd
3236 	 * request won't go away until we unregister it.  We retain
3237 	 * a pointer to the object request during that time (in
3238 	 * rbd_dev->watch_request), so we'll keep a reference to it.
3239 	 * We'll drop that reference after we've unregistered it in
3240 	 * rbd_dev_header_unwatch_sync().
3241 	 */
3242 	rbd_dev->watch_request = obj_request;
3243 
3244 	return 0;
3245 }
3246 
3247 /*
3248  * Tear down a watch request, synchronously.
3249  */
3250 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3251 {
3252 	struct rbd_obj_request *obj_request;
3253 
3254 	rbd_assert(rbd_dev->watch_event);
3255 	rbd_assert(rbd_dev->watch_request);
3256 
3257 	rbd_obj_request_end(rbd_dev->watch_request);
3258 	rbd_obj_request_put(rbd_dev->watch_request);
3259 	rbd_dev->watch_request = NULL;
3260 
3261 	obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3262 	if (!IS_ERR(obj_request))
3263 		rbd_obj_request_put(obj_request);
3264 	else
3265 		rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3266 			 PTR_ERR(obj_request));
3267 
3268 	ceph_osdc_cancel_event(rbd_dev->watch_event);
3269 	rbd_dev->watch_event = NULL;
3270 }
3271 
3272 /*
3273  * Synchronous osd object method call.  Returns the number of bytes
3274  * returned in the outbound buffer, or a negative error code.
3275  */
3276 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3277 			     const char *object_name,
3278 			     const char *class_name,
3279 			     const char *method_name,
3280 			     const void *outbound,
3281 			     size_t outbound_size,
3282 			     void *inbound,
3283 			     size_t inbound_size)
3284 {
3285 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3286 	struct rbd_obj_request *obj_request;
3287 	struct page **pages;
3288 	u32 page_count;
3289 	int ret;
3290 
3291 	/*
3292 	 * Method calls are ultimately read operations.  The result
3293 	 * should placed into the inbound buffer provided.  They
3294 	 * also supply outbound data--parameters for the object
3295 	 * method.  Currently if this is present it will be a
3296 	 * snapshot id.
3297 	 */
3298 	page_count = (u32)calc_pages_for(0, inbound_size);
3299 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3300 	if (IS_ERR(pages))
3301 		return PTR_ERR(pages);
3302 
3303 	ret = -ENOMEM;
3304 	obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3305 							OBJ_REQUEST_PAGES);
3306 	if (!obj_request)
3307 		goto out;
3308 
3309 	obj_request->pages = pages;
3310 	obj_request->page_count = page_count;
3311 
3312 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3313 						  obj_request);
3314 	if (!obj_request->osd_req)
3315 		goto out;
3316 
3317 	osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3318 					class_name, method_name);
3319 	if (outbound_size) {
3320 		struct ceph_pagelist *pagelist;
3321 
3322 		pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3323 		if (!pagelist)
3324 			goto out;
3325 
3326 		ceph_pagelist_init(pagelist);
3327 		ceph_pagelist_append(pagelist, outbound, outbound_size);
3328 		osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3329 						pagelist);
3330 	}
3331 	osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3332 					obj_request->pages, inbound_size,
3333 					0, false, false);
3334 	rbd_osd_req_format_read(obj_request);
3335 
3336 	ret = rbd_obj_request_submit(osdc, obj_request);
3337 	if (ret)
3338 		goto out;
3339 	ret = rbd_obj_request_wait(obj_request);
3340 	if (ret)
3341 		goto out;
3342 
3343 	ret = obj_request->result;
3344 	if (ret < 0)
3345 		goto out;
3346 
3347 	rbd_assert(obj_request->xferred < (u64)INT_MAX);
3348 	ret = (int)obj_request->xferred;
3349 	ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3350 out:
3351 	if (obj_request)
3352 		rbd_obj_request_put(obj_request);
3353 	else
3354 		ceph_release_page_vector(pages, page_count);
3355 
3356 	return ret;
3357 }
3358 
3359 static void rbd_queue_workfn(struct work_struct *work)
3360 {
3361 	struct request *rq = blk_mq_rq_from_pdu(work);
3362 	struct rbd_device *rbd_dev = rq->q->queuedata;
3363 	struct rbd_img_request *img_request;
3364 	struct ceph_snap_context *snapc = NULL;
3365 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3366 	u64 length = blk_rq_bytes(rq);
3367 	enum obj_operation_type op_type;
3368 	u64 mapping_size;
3369 	int result;
3370 
3371 	if (rq->cmd_type != REQ_TYPE_FS) {
3372 		dout("%s: non-fs request type %d\n", __func__,
3373 			(int) rq->cmd_type);
3374 		result = -EIO;
3375 		goto err;
3376 	}
3377 
3378 	if (rq->cmd_flags & REQ_DISCARD)
3379 		op_type = OBJ_OP_DISCARD;
3380 	else if (rq->cmd_flags & REQ_WRITE)
3381 		op_type = OBJ_OP_WRITE;
3382 	else
3383 		op_type = OBJ_OP_READ;
3384 
3385 	/* Ignore/skip any zero-length requests */
3386 
3387 	if (!length) {
3388 		dout("%s: zero-length request\n", __func__);
3389 		result = 0;
3390 		goto err_rq;
3391 	}
3392 
3393 	/* Only reads are allowed to a read-only device */
3394 
3395 	if (op_type != OBJ_OP_READ) {
3396 		if (rbd_dev->mapping.read_only) {
3397 			result = -EROFS;
3398 			goto err_rq;
3399 		}
3400 		rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3401 	}
3402 
3403 	/*
3404 	 * Quit early if the mapped snapshot no longer exists.  It's
3405 	 * still possible the snapshot will have disappeared by the
3406 	 * time our request arrives at the osd, but there's no sense in
3407 	 * sending it if we already know.
3408 	 */
3409 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3410 		dout("request for non-existent snapshot");
3411 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3412 		result = -ENXIO;
3413 		goto err_rq;
3414 	}
3415 
3416 	if (offset && length > U64_MAX - offset + 1) {
3417 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3418 			 length);
3419 		result = -EINVAL;
3420 		goto err_rq;	/* Shouldn't happen */
3421 	}
3422 
3423 	blk_mq_start_request(rq);
3424 
3425 	down_read(&rbd_dev->header_rwsem);
3426 	mapping_size = rbd_dev->mapping.size;
3427 	if (op_type != OBJ_OP_READ) {
3428 		snapc = rbd_dev->header.snapc;
3429 		ceph_get_snap_context(snapc);
3430 	}
3431 	up_read(&rbd_dev->header_rwsem);
3432 
3433 	if (offset + length > mapping_size) {
3434 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3435 			 length, mapping_size);
3436 		result = -EIO;
3437 		goto err_rq;
3438 	}
3439 
3440 	img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3441 					     snapc);
3442 	if (!img_request) {
3443 		result = -ENOMEM;
3444 		goto err_rq;
3445 	}
3446 	img_request->rq = rq;
3447 
3448 	if (op_type == OBJ_OP_DISCARD)
3449 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3450 					      NULL);
3451 	else
3452 		result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3453 					      rq->bio);
3454 	if (result)
3455 		goto err_img_request;
3456 
3457 	result = rbd_img_request_submit(img_request);
3458 	if (result)
3459 		goto err_img_request;
3460 
3461 	return;
3462 
3463 err_img_request:
3464 	rbd_img_request_put(img_request);
3465 err_rq:
3466 	if (result)
3467 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3468 			 obj_op_name(op_type), length, offset, result);
3469 	ceph_put_snap_context(snapc);
3470 err:
3471 	blk_mq_end_request(rq, result);
3472 }
3473 
3474 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3475 		const struct blk_mq_queue_data *bd)
3476 {
3477 	struct request *rq = bd->rq;
3478 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3479 
3480 	queue_work(rbd_wq, work);
3481 	return BLK_MQ_RQ_QUEUE_OK;
3482 }
3483 
3484 static void rbd_free_disk(struct rbd_device *rbd_dev)
3485 {
3486 	struct gendisk *disk = rbd_dev->disk;
3487 
3488 	if (!disk)
3489 		return;
3490 
3491 	rbd_dev->disk = NULL;
3492 	if (disk->flags & GENHD_FL_UP) {
3493 		del_gendisk(disk);
3494 		if (disk->queue)
3495 			blk_cleanup_queue(disk->queue);
3496 		blk_mq_free_tag_set(&rbd_dev->tag_set);
3497 	}
3498 	put_disk(disk);
3499 }
3500 
3501 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3502 				const char *object_name,
3503 				u64 offset, u64 length, void *buf)
3504 
3505 {
3506 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3507 	struct rbd_obj_request *obj_request;
3508 	struct page **pages = NULL;
3509 	u32 page_count;
3510 	size_t size;
3511 	int ret;
3512 
3513 	page_count = (u32) calc_pages_for(offset, length);
3514 	pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3515 	if (IS_ERR(pages))
3516 		return PTR_ERR(pages);
3517 
3518 	ret = -ENOMEM;
3519 	obj_request = rbd_obj_request_create(object_name, offset, length,
3520 							OBJ_REQUEST_PAGES);
3521 	if (!obj_request)
3522 		goto out;
3523 
3524 	obj_request->pages = pages;
3525 	obj_request->page_count = page_count;
3526 
3527 	obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3528 						  obj_request);
3529 	if (!obj_request->osd_req)
3530 		goto out;
3531 
3532 	osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3533 					offset, length, 0, 0);
3534 	osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3535 					obj_request->pages,
3536 					obj_request->length,
3537 					obj_request->offset & ~PAGE_MASK,
3538 					false, false);
3539 	rbd_osd_req_format_read(obj_request);
3540 
3541 	ret = rbd_obj_request_submit(osdc, obj_request);
3542 	if (ret)
3543 		goto out;
3544 	ret = rbd_obj_request_wait(obj_request);
3545 	if (ret)
3546 		goto out;
3547 
3548 	ret = obj_request->result;
3549 	if (ret < 0)
3550 		goto out;
3551 
3552 	rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3553 	size = (size_t) obj_request->xferred;
3554 	ceph_copy_from_page_vector(pages, buf, 0, size);
3555 	rbd_assert(size <= (size_t)INT_MAX);
3556 	ret = (int)size;
3557 out:
3558 	if (obj_request)
3559 		rbd_obj_request_put(obj_request);
3560 	else
3561 		ceph_release_page_vector(pages, page_count);
3562 
3563 	return ret;
3564 }
3565 
3566 /*
3567  * Read the complete header for the given rbd device.  On successful
3568  * return, the rbd_dev->header field will contain up-to-date
3569  * information about the image.
3570  */
3571 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3572 {
3573 	struct rbd_image_header_ondisk *ondisk = NULL;
3574 	u32 snap_count = 0;
3575 	u64 names_size = 0;
3576 	u32 want_count;
3577 	int ret;
3578 
3579 	/*
3580 	 * The complete header will include an array of its 64-bit
3581 	 * snapshot ids, followed by the names of those snapshots as
3582 	 * a contiguous block of NUL-terminated strings.  Note that
3583 	 * the number of snapshots could change by the time we read
3584 	 * it in, in which case we re-read it.
3585 	 */
3586 	do {
3587 		size_t size;
3588 
3589 		kfree(ondisk);
3590 
3591 		size = sizeof (*ondisk);
3592 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3593 		size += names_size;
3594 		ondisk = kmalloc(size, GFP_KERNEL);
3595 		if (!ondisk)
3596 			return -ENOMEM;
3597 
3598 		ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3599 				       0, size, ondisk);
3600 		if (ret < 0)
3601 			goto out;
3602 		if ((size_t)ret < size) {
3603 			ret = -ENXIO;
3604 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3605 				size, ret);
3606 			goto out;
3607 		}
3608 		if (!rbd_dev_ondisk_valid(ondisk)) {
3609 			ret = -ENXIO;
3610 			rbd_warn(rbd_dev, "invalid header");
3611 			goto out;
3612 		}
3613 
3614 		names_size = le64_to_cpu(ondisk->snap_names_len);
3615 		want_count = snap_count;
3616 		snap_count = le32_to_cpu(ondisk->snap_count);
3617 	} while (snap_count != want_count);
3618 
3619 	ret = rbd_header_from_disk(rbd_dev, ondisk);
3620 out:
3621 	kfree(ondisk);
3622 
3623 	return ret;
3624 }
3625 
3626 /*
3627  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3628  * has disappeared from the (just updated) snapshot context.
3629  */
3630 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3631 {
3632 	u64 snap_id;
3633 
3634 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3635 		return;
3636 
3637 	snap_id = rbd_dev->spec->snap_id;
3638 	if (snap_id == CEPH_NOSNAP)
3639 		return;
3640 
3641 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3642 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3643 }
3644 
3645 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3646 {
3647 	sector_t size;
3648 	bool removing;
3649 
3650 	/*
3651 	 * Don't hold the lock while doing disk operations,
3652 	 * or lock ordering will conflict with the bdev mutex via:
3653 	 * rbd_add() -> blkdev_get() -> rbd_open()
3654 	 */
3655 	spin_lock_irq(&rbd_dev->lock);
3656 	removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3657 	spin_unlock_irq(&rbd_dev->lock);
3658 	/*
3659 	 * If the device is being removed, rbd_dev->disk has
3660 	 * been destroyed, so don't try to update its size
3661 	 */
3662 	if (!removing) {
3663 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3664 		dout("setting size to %llu sectors", (unsigned long long)size);
3665 		set_capacity(rbd_dev->disk, size);
3666 		revalidate_disk(rbd_dev->disk);
3667 	}
3668 }
3669 
3670 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3671 {
3672 	u64 mapping_size;
3673 	int ret;
3674 
3675 	down_write(&rbd_dev->header_rwsem);
3676 	mapping_size = rbd_dev->mapping.size;
3677 
3678 	ret = rbd_dev_header_info(rbd_dev);
3679 	if (ret)
3680 		goto out;
3681 
3682 	/*
3683 	 * If there is a parent, see if it has disappeared due to the
3684 	 * mapped image getting flattened.
3685 	 */
3686 	if (rbd_dev->parent) {
3687 		ret = rbd_dev_v2_parent_info(rbd_dev);
3688 		if (ret)
3689 			goto out;
3690 	}
3691 
3692 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3693 		rbd_dev->mapping.size = rbd_dev->header.image_size;
3694 	} else {
3695 		/* validate mapped snapshot's EXISTS flag */
3696 		rbd_exists_validate(rbd_dev);
3697 	}
3698 
3699 out:
3700 	up_write(&rbd_dev->header_rwsem);
3701 	if (!ret && mapping_size != rbd_dev->mapping.size)
3702 		rbd_dev_update_size(rbd_dev);
3703 
3704 	return ret;
3705 }
3706 
3707 static int rbd_init_request(void *data, struct request *rq,
3708 		unsigned int hctx_idx, unsigned int request_idx,
3709 		unsigned int numa_node)
3710 {
3711 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3712 
3713 	INIT_WORK(work, rbd_queue_workfn);
3714 	return 0;
3715 }
3716 
3717 static struct blk_mq_ops rbd_mq_ops = {
3718 	.queue_rq	= rbd_queue_rq,
3719 	.map_queue	= blk_mq_map_queue,
3720 	.init_request	= rbd_init_request,
3721 };
3722 
3723 static int rbd_init_disk(struct rbd_device *rbd_dev)
3724 {
3725 	struct gendisk *disk;
3726 	struct request_queue *q;
3727 	u64 segment_size;
3728 	int err;
3729 
3730 	/* create gendisk info */
3731 	disk = alloc_disk(single_major ?
3732 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3733 			  RBD_MINORS_PER_MAJOR);
3734 	if (!disk)
3735 		return -ENOMEM;
3736 
3737 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3738 		 rbd_dev->dev_id);
3739 	disk->major = rbd_dev->major;
3740 	disk->first_minor = rbd_dev->minor;
3741 	if (single_major)
3742 		disk->flags |= GENHD_FL_EXT_DEVT;
3743 	disk->fops = &rbd_bd_ops;
3744 	disk->private_data = rbd_dev;
3745 
3746 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3747 	rbd_dev->tag_set.ops = &rbd_mq_ops;
3748 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3749 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3750 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3751 	rbd_dev->tag_set.nr_hw_queues = 1;
3752 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3753 
3754 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3755 	if (err)
3756 		goto out_disk;
3757 
3758 	q = blk_mq_init_queue(&rbd_dev->tag_set);
3759 	if (IS_ERR(q)) {
3760 		err = PTR_ERR(q);
3761 		goto out_tag_set;
3762 	}
3763 
3764 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3765 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3766 
3767 	/* set io sizes to object size */
3768 	segment_size = rbd_obj_bytes(&rbd_dev->header);
3769 	blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3770 	q->limits.max_sectors = queue_max_hw_sectors(q);
3771 	blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3772 	blk_queue_max_segment_size(q, segment_size);
3773 	blk_queue_io_min(q, segment_size);
3774 	blk_queue_io_opt(q, segment_size);
3775 
3776 	/* enable the discard support */
3777 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3778 	q->limits.discard_granularity = segment_size;
3779 	q->limits.discard_alignment = segment_size;
3780 	blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3781 	q->limits.discard_zeroes_data = 1;
3782 
3783 	disk->queue = q;
3784 
3785 	q->queuedata = rbd_dev;
3786 
3787 	rbd_dev->disk = disk;
3788 
3789 	return 0;
3790 out_tag_set:
3791 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3792 out_disk:
3793 	put_disk(disk);
3794 	return err;
3795 }
3796 
3797 /*
3798   sysfs
3799 */
3800 
3801 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3802 {
3803 	return container_of(dev, struct rbd_device, dev);
3804 }
3805 
3806 static ssize_t rbd_size_show(struct device *dev,
3807 			     struct device_attribute *attr, char *buf)
3808 {
3809 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3810 
3811 	return sprintf(buf, "%llu\n",
3812 		(unsigned long long)rbd_dev->mapping.size);
3813 }
3814 
3815 /*
3816  * Note this shows the features for whatever's mapped, which is not
3817  * necessarily the base image.
3818  */
3819 static ssize_t rbd_features_show(struct device *dev,
3820 			     struct device_attribute *attr, char *buf)
3821 {
3822 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3823 
3824 	return sprintf(buf, "0x%016llx\n",
3825 			(unsigned long long)rbd_dev->mapping.features);
3826 }
3827 
3828 static ssize_t rbd_major_show(struct device *dev,
3829 			      struct device_attribute *attr, char *buf)
3830 {
3831 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3832 
3833 	if (rbd_dev->major)
3834 		return sprintf(buf, "%d\n", rbd_dev->major);
3835 
3836 	return sprintf(buf, "(none)\n");
3837 }
3838 
3839 static ssize_t rbd_minor_show(struct device *dev,
3840 			      struct device_attribute *attr, char *buf)
3841 {
3842 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843 
3844 	return sprintf(buf, "%d\n", rbd_dev->minor);
3845 }
3846 
3847 static ssize_t rbd_client_id_show(struct device *dev,
3848 				  struct device_attribute *attr, char *buf)
3849 {
3850 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3851 
3852 	return sprintf(buf, "client%lld\n",
3853 			ceph_client_id(rbd_dev->rbd_client->client));
3854 }
3855 
3856 static ssize_t rbd_pool_show(struct device *dev,
3857 			     struct device_attribute *attr, char *buf)
3858 {
3859 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860 
3861 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3862 }
3863 
3864 static ssize_t rbd_pool_id_show(struct device *dev,
3865 			     struct device_attribute *attr, char *buf)
3866 {
3867 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3868 
3869 	return sprintf(buf, "%llu\n",
3870 			(unsigned long long) rbd_dev->spec->pool_id);
3871 }
3872 
3873 static ssize_t rbd_name_show(struct device *dev,
3874 			     struct device_attribute *attr, char *buf)
3875 {
3876 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3877 
3878 	if (rbd_dev->spec->image_name)
3879 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3880 
3881 	return sprintf(buf, "(unknown)\n");
3882 }
3883 
3884 static ssize_t rbd_image_id_show(struct device *dev,
3885 			     struct device_attribute *attr, char *buf)
3886 {
3887 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3888 
3889 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3890 }
3891 
3892 /*
3893  * Shows the name of the currently-mapped snapshot (or
3894  * RBD_SNAP_HEAD_NAME for the base image).
3895  */
3896 static ssize_t rbd_snap_show(struct device *dev,
3897 			     struct device_attribute *attr,
3898 			     char *buf)
3899 {
3900 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3901 
3902 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3903 }
3904 
3905 /*
3906  * For a v2 image, shows the chain of parent images, separated by empty
3907  * lines.  For v1 images or if there is no parent, shows "(no parent
3908  * image)".
3909  */
3910 static ssize_t rbd_parent_show(struct device *dev,
3911 			       struct device_attribute *attr,
3912 			       char *buf)
3913 {
3914 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3915 	ssize_t count = 0;
3916 
3917 	if (!rbd_dev->parent)
3918 		return sprintf(buf, "(no parent image)\n");
3919 
3920 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3921 		struct rbd_spec *spec = rbd_dev->parent_spec;
3922 
3923 		count += sprintf(&buf[count], "%s"
3924 			    "pool_id %llu\npool_name %s\n"
3925 			    "image_id %s\nimage_name %s\n"
3926 			    "snap_id %llu\nsnap_name %s\n"
3927 			    "overlap %llu\n",
3928 			    !count ? "" : "\n", /* first? */
3929 			    spec->pool_id, spec->pool_name,
3930 			    spec->image_id, spec->image_name ?: "(unknown)",
3931 			    spec->snap_id, spec->snap_name,
3932 			    rbd_dev->parent_overlap);
3933 	}
3934 
3935 	return count;
3936 }
3937 
3938 static ssize_t rbd_image_refresh(struct device *dev,
3939 				 struct device_attribute *attr,
3940 				 const char *buf,
3941 				 size_t size)
3942 {
3943 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3944 	int ret;
3945 
3946 	ret = rbd_dev_refresh(rbd_dev);
3947 	if (ret)
3948 		return ret;
3949 
3950 	return size;
3951 }
3952 
3953 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3954 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3955 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3956 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3957 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3958 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3959 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3960 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3961 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3962 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3963 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3964 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3965 
3966 static struct attribute *rbd_attrs[] = {
3967 	&dev_attr_size.attr,
3968 	&dev_attr_features.attr,
3969 	&dev_attr_major.attr,
3970 	&dev_attr_minor.attr,
3971 	&dev_attr_client_id.attr,
3972 	&dev_attr_pool.attr,
3973 	&dev_attr_pool_id.attr,
3974 	&dev_attr_name.attr,
3975 	&dev_attr_image_id.attr,
3976 	&dev_attr_current_snap.attr,
3977 	&dev_attr_parent.attr,
3978 	&dev_attr_refresh.attr,
3979 	NULL
3980 };
3981 
3982 static struct attribute_group rbd_attr_group = {
3983 	.attrs = rbd_attrs,
3984 };
3985 
3986 static const struct attribute_group *rbd_attr_groups[] = {
3987 	&rbd_attr_group,
3988 	NULL
3989 };
3990 
3991 static void rbd_sysfs_dev_release(struct device *dev)
3992 {
3993 }
3994 
3995 static struct device_type rbd_device_type = {
3996 	.name		= "rbd",
3997 	.groups		= rbd_attr_groups,
3998 	.release	= rbd_sysfs_dev_release,
3999 };
4000 
4001 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4002 {
4003 	kref_get(&spec->kref);
4004 
4005 	return spec;
4006 }
4007 
4008 static void rbd_spec_free(struct kref *kref);
4009 static void rbd_spec_put(struct rbd_spec *spec)
4010 {
4011 	if (spec)
4012 		kref_put(&spec->kref, rbd_spec_free);
4013 }
4014 
4015 static struct rbd_spec *rbd_spec_alloc(void)
4016 {
4017 	struct rbd_spec *spec;
4018 
4019 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4020 	if (!spec)
4021 		return NULL;
4022 
4023 	spec->pool_id = CEPH_NOPOOL;
4024 	spec->snap_id = CEPH_NOSNAP;
4025 	kref_init(&spec->kref);
4026 
4027 	return spec;
4028 }
4029 
4030 static void rbd_spec_free(struct kref *kref)
4031 {
4032 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4033 
4034 	kfree(spec->pool_name);
4035 	kfree(spec->image_id);
4036 	kfree(spec->image_name);
4037 	kfree(spec->snap_name);
4038 	kfree(spec);
4039 }
4040 
4041 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4042 					 struct rbd_spec *spec,
4043 					 struct rbd_options *opts)
4044 {
4045 	struct rbd_device *rbd_dev;
4046 
4047 	rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4048 	if (!rbd_dev)
4049 		return NULL;
4050 
4051 	spin_lock_init(&rbd_dev->lock);
4052 	rbd_dev->flags = 0;
4053 	atomic_set(&rbd_dev->parent_ref, 0);
4054 	INIT_LIST_HEAD(&rbd_dev->node);
4055 	init_rwsem(&rbd_dev->header_rwsem);
4056 
4057 	rbd_dev->rbd_client = rbdc;
4058 	rbd_dev->spec = spec;
4059 	rbd_dev->opts = opts;
4060 
4061 	/* Initialize the layout used for all rbd requests */
4062 
4063 	rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4064 	rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4065 	rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4066 	rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4067 
4068 	return rbd_dev;
4069 }
4070 
4071 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4072 {
4073 	rbd_put_client(rbd_dev->rbd_client);
4074 	rbd_spec_put(rbd_dev->spec);
4075 	kfree(rbd_dev->opts);
4076 	kfree(rbd_dev);
4077 }
4078 
4079 /*
4080  * Get the size and object order for an image snapshot, or if
4081  * snap_id is CEPH_NOSNAP, gets this information for the base
4082  * image.
4083  */
4084 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4085 				u8 *order, u64 *snap_size)
4086 {
4087 	__le64 snapid = cpu_to_le64(snap_id);
4088 	int ret;
4089 	struct {
4090 		u8 order;
4091 		__le64 size;
4092 	} __attribute__ ((packed)) size_buf = { 0 };
4093 
4094 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4095 				"rbd", "get_size",
4096 				&snapid, sizeof (snapid),
4097 				&size_buf, sizeof (size_buf));
4098 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4099 	if (ret < 0)
4100 		return ret;
4101 	if (ret < sizeof (size_buf))
4102 		return -ERANGE;
4103 
4104 	if (order) {
4105 		*order = size_buf.order;
4106 		dout("  order %u", (unsigned int)*order);
4107 	}
4108 	*snap_size = le64_to_cpu(size_buf.size);
4109 
4110 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4111 		(unsigned long long)snap_id,
4112 		(unsigned long long)*snap_size);
4113 
4114 	return 0;
4115 }
4116 
4117 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4118 {
4119 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4120 					&rbd_dev->header.obj_order,
4121 					&rbd_dev->header.image_size);
4122 }
4123 
4124 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4125 {
4126 	void *reply_buf;
4127 	int ret;
4128 	void *p;
4129 
4130 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4131 	if (!reply_buf)
4132 		return -ENOMEM;
4133 
4134 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4135 				"rbd", "get_object_prefix", NULL, 0,
4136 				reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4137 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4138 	if (ret < 0)
4139 		goto out;
4140 
4141 	p = reply_buf;
4142 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4143 						p + ret, NULL, GFP_NOIO);
4144 	ret = 0;
4145 
4146 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4147 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4148 		rbd_dev->header.object_prefix = NULL;
4149 	} else {
4150 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4151 	}
4152 out:
4153 	kfree(reply_buf);
4154 
4155 	return ret;
4156 }
4157 
4158 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4159 		u64 *snap_features)
4160 {
4161 	__le64 snapid = cpu_to_le64(snap_id);
4162 	struct {
4163 		__le64 features;
4164 		__le64 incompat;
4165 	} __attribute__ ((packed)) features_buf = { 0 };
4166 	u64 incompat;
4167 	int ret;
4168 
4169 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4170 				"rbd", "get_features",
4171 				&snapid, sizeof (snapid),
4172 				&features_buf, sizeof (features_buf));
4173 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4174 	if (ret < 0)
4175 		return ret;
4176 	if (ret < sizeof (features_buf))
4177 		return -ERANGE;
4178 
4179 	incompat = le64_to_cpu(features_buf.incompat);
4180 	if (incompat & ~RBD_FEATURES_SUPPORTED)
4181 		return -ENXIO;
4182 
4183 	*snap_features = le64_to_cpu(features_buf.features);
4184 
4185 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4186 		(unsigned long long)snap_id,
4187 		(unsigned long long)*snap_features,
4188 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4189 
4190 	return 0;
4191 }
4192 
4193 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4194 {
4195 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4196 						&rbd_dev->header.features);
4197 }
4198 
4199 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4200 {
4201 	struct rbd_spec *parent_spec;
4202 	size_t size;
4203 	void *reply_buf = NULL;
4204 	__le64 snapid;
4205 	void *p;
4206 	void *end;
4207 	u64 pool_id;
4208 	char *image_id;
4209 	u64 snap_id;
4210 	u64 overlap;
4211 	int ret;
4212 
4213 	parent_spec = rbd_spec_alloc();
4214 	if (!parent_spec)
4215 		return -ENOMEM;
4216 
4217 	size = sizeof (__le64) +				/* pool_id */
4218 		sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +	/* image_id */
4219 		sizeof (__le64) +				/* snap_id */
4220 		sizeof (__le64);				/* overlap */
4221 	reply_buf = kmalloc(size, GFP_KERNEL);
4222 	if (!reply_buf) {
4223 		ret = -ENOMEM;
4224 		goto out_err;
4225 	}
4226 
4227 	snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4228 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4229 				"rbd", "get_parent",
4230 				&snapid, sizeof (snapid),
4231 				reply_buf, size);
4232 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4233 	if (ret < 0)
4234 		goto out_err;
4235 
4236 	p = reply_buf;
4237 	end = reply_buf + ret;
4238 	ret = -ERANGE;
4239 	ceph_decode_64_safe(&p, end, pool_id, out_err);
4240 	if (pool_id == CEPH_NOPOOL) {
4241 		/*
4242 		 * Either the parent never existed, or we have
4243 		 * record of it but the image got flattened so it no
4244 		 * longer has a parent.  When the parent of a
4245 		 * layered image disappears we immediately set the
4246 		 * overlap to 0.  The effect of this is that all new
4247 		 * requests will be treated as if the image had no
4248 		 * parent.
4249 		 */
4250 		if (rbd_dev->parent_overlap) {
4251 			rbd_dev->parent_overlap = 0;
4252 			rbd_dev_parent_put(rbd_dev);
4253 			pr_info("%s: clone image has been flattened\n",
4254 				rbd_dev->disk->disk_name);
4255 		}
4256 
4257 		goto out;	/* No parent?  No problem. */
4258 	}
4259 
4260 	/* The ceph file layout needs to fit pool id in 32 bits */
4261 
4262 	ret = -EIO;
4263 	if (pool_id > (u64)U32_MAX) {
4264 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4265 			(unsigned long long)pool_id, U32_MAX);
4266 		goto out_err;
4267 	}
4268 
4269 	image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4270 	if (IS_ERR(image_id)) {
4271 		ret = PTR_ERR(image_id);
4272 		goto out_err;
4273 	}
4274 	ceph_decode_64_safe(&p, end, snap_id, out_err);
4275 	ceph_decode_64_safe(&p, end, overlap, out_err);
4276 
4277 	/*
4278 	 * The parent won't change (except when the clone is
4279 	 * flattened, already handled that).  So we only need to
4280 	 * record the parent spec we have not already done so.
4281 	 */
4282 	if (!rbd_dev->parent_spec) {
4283 		parent_spec->pool_id = pool_id;
4284 		parent_spec->image_id = image_id;
4285 		parent_spec->snap_id = snap_id;
4286 		rbd_dev->parent_spec = parent_spec;
4287 		parent_spec = NULL;	/* rbd_dev now owns this */
4288 	} else {
4289 		kfree(image_id);
4290 	}
4291 
4292 	/*
4293 	 * We always update the parent overlap.  If it's zero we issue
4294 	 * a warning, as we will proceed as if there was no parent.
4295 	 */
4296 	if (!overlap) {
4297 		if (parent_spec) {
4298 			/* refresh, careful to warn just once */
4299 			if (rbd_dev->parent_overlap)
4300 				rbd_warn(rbd_dev,
4301 				    "clone now standalone (overlap became 0)");
4302 		} else {
4303 			/* initial probe */
4304 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4305 		}
4306 	}
4307 	rbd_dev->parent_overlap = overlap;
4308 
4309 out:
4310 	ret = 0;
4311 out_err:
4312 	kfree(reply_buf);
4313 	rbd_spec_put(parent_spec);
4314 
4315 	return ret;
4316 }
4317 
4318 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4319 {
4320 	struct {
4321 		__le64 stripe_unit;
4322 		__le64 stripe_count;
4323 	} __attribute__ ((packed)) striping_info_buf = { 0 };
4324 	size_t size = sizeof (striping_info_buf);
4325 	void *p;
4326 	u64 obj_size;
4327 	u64 stripe_unit;
4328 	u64 stripe_count;
4329 	int ret;
4330 
4331 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4332 				"rbd", "get_stripe_unit_count", NULL, 0,
4333 				(char *)&striping_info_buf, size);
4334 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4335 	if (ret < 0)
4336 		return ret;
4337 	if (ret < size)
4338 		return -ERANGE;
4339 
4340 	/*
4341 	 * We don't actually support the "fancy striping" feature
4342 	 * (STRIPINGV2) yet, but if the striping sizes are the
4343 	 * defaults the behavior is the same as before.  So find
4344 	 * out, and only fail if the image has non-default values.
4345 	 */
4346 	ret = -EINVAL;
4347 	obj_size = (u64)1 << rbd_dev->header.obj_order;
4348 	p = &striping_info_buf;
4349 	stripe_unit = ceph_decode_64(&p);
4350 	if (stripe_unit != obj_size) {
4351 		rbd_warn(rbd_dev, "unsupported stripe unit "
4352 				"(got %llu want %llu)",
4353 				stripe_unit, obj_size);
4354 		return -EINVAL;
4355 	}
4356 	stripe_count = ceph_decode_64(&p);
4357 	if (stripe_count != 1) {
4358 		rbd_warn(rbd_dev, "unsupported stripe count "
4359 				"(got %llu want 1)", stripe_count);
4360 		return -EINVAL;
4361 	}
4362 	rbd_dev->header.stripe_unit = stripe_unit;
4363 	rbd_dev->header.stripe_count = stripe_count;
4364 
4365 	return 0;
4366 }
4367 
4368 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4369 {
4370 	size_t image_id_size;
4371 	char *image_id;
4372 	void *p;
4373 	void *end;
4374 	size_t size;
4375 	void *reply_buf = NULL;
4376 	size_t len = 0;
4377 	char *image_name = NULL;
4378 	int ret;
4379 
4380 	rbd_assert(!rbd_dev->spec->image_name);
4381 
4382 	len = strlen(rbd_dev->spec->image_id);
4383 	image_id_size = sizeof (__le32) + len;
4384 	image_id = kmalloc(image_id_size, GFP_KERNEL);
4385 	if (!image_id)
4386 		return NULL;
4387 
4388 	p = image_id;
4389 	end = image_id + image_id_size;
4390 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4391 
4392 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4393 	reply_buf = kmalloc(size, GFP_KERNEL);
4394 	if (!reply_buf)
4395 		goto out;
4396 
4397 	ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4398 				"rbd", "dir_get_name",
4399 				image_id, image_id_size,
4400 				reply_buf, size);
4401 	if (ret < 0)
4402 		goto out;
4403 	p = reply_buf;
4404 	end = reply_buf + ret;
4405 
4406 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4407 	if (IS_ERR(image_name))
4408 		image_name = NULL;
4409 	else
4410 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4411 out:
4412 	kfree(reply_buf);
4413 	kfree(image_id);
4414 
4415 	return image_name;
4416 }
4417 
4418 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4419 {
4420 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4421 	const char *snap_name;
4422 	u32 which = 0;
4423 
4424 	/* Skip over names until we find the one we are looking for */
4425 
4426 	snap_name = rbd_dev->header.snap_names;
4427 	while (which < snapc->num_snaps) {
4428 		if (!strcmp(name, snap_name))
4429 			return snapc->snaps[which];
4430 		snap_name += strlen(snap_name) + 1;
4431 		which++;
4432 	}
4433 	return CEPH_NOSNAP;
4434 }
4435 
4436 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4437 {
4438 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4439 	u32 which;
4440 	bool found = false;
4441 	u64 snap_id;
4442 
4443 	for (which = 0; !found && which < snapc->num_snaps; which++) {
4444 		const char *snap_name;
4445 
4446 		snap_id = snapc->snaps[which];
4447 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4448 		if (IS_ERR(snap_name)) {
4449 			/* ignore no-longer existing snapshots */
4450 			if (PTR_ERR(snap_name) == -ENOENT)
4451 				continue;
4452 			else
4453 				break;
4454 		}
4455 		found = !strcmp(name, snap_name);
4456 		kfree(snap_name);
4457 	}
4458 	return found ? snap_id : CEPH_NOSNAP;
4459 }
4460 
4461 /*
4462  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4463  * no snapshot by that name is found, or if an error occurs.
4464  */
4465 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4466 {
4467 	if (rbd_dev->image_format == 1)
4468 		return rbd_v1_snap_id_by_name(rbd_dev, name);
4469 
4470 	return rbd_v2_snap_id_by_name(rbd_dev, name);
4471 }
4472 
4473 /*
4474  * An image being mapped will have everything but the snap id.
4475  */
4476 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4477 {
4478 	struct rbd_spec *spec = rbd_dev->spec;
4479 
4480 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4481 	rbd_assert(spec->image_id && spec->image_name);
4482 	rbd_assert(spec->snap_name);
4483 
4484 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4485 		u64 snap_id;
4486 
4487 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4488 		if (snap_id == CEPH_NOSNAP)
4489 			return -ENOENT;
4490 
4491 		spec->snap_id = snap_id;
4492 	} else {
4493 		spec->snap_id = CEPH_NOSNAP;
4494 	}
4495 
4496 	return 0;
4497 }
4498 
4499 /*
4500  * A parent image will have all ids but none of the names.
4501  *
4502  * All names in an rbd spec are dynamically allocated.  It's OK if we
4503  * can't figure out the name for an image id.
4504  */
4505 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4506 {
4507 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4508 	struct rbd_spec *spec = rbd_dev->spec;
4509 	const char *pool_name;
4510 	const char *image_name;
4511 	const char *snap_name;
4512 	int ret;
4513 
4514 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
4515 	rbd_assert(spec->image_id);
4516 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
4517 
4518 	/* Get the pool name; we have to make our own copy of this */
4519 
4520 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4521 	if (!pool_name) {
4522 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4523 		return -EIO;
4524 	}
4525 	pool_name = kstrdup(pool_name, GFP_KERNEL);
4526 	if (!pool_name)
4527 		return -ENOMEM;
4528 
4529 	/* Fetch the image name; tolerate failure here */
4530 
4531 	image_name = rbd_dev_image_name(rbd_dev);
4532 	if (!image_name)
4533 		rbd_warn(rbd_dev, "unable to get image name");
4534 
4535 	/* Fetch the snapshot name */
4536 
4537 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4538 	if (IS_ERR(snap_name)) {
4539 		ret = PTR_ERR(snap_name);
4540 		goto out_err;
4541 	}
4542 
4543 	spec->pool_name = pool_name;
4544 	spec->image_name = image_name;
4545 	spec->snap_name = snap_name;
4546 
4547 	return 0;
4548 
4549 out_err:
4550 	kfree(image_name);
4551 	kfree(pool_name);
4552 	return ret;
4553 }
4554 
4555 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4556 {
4557 	size_t size;
4558 	int ret;
4559 	void *reply_buf;
4560 	void *p;
4561 	void *end;
4562 	u64 seq;
4563 	u32 snap_count;
4564 	struct ceph_snap_context *snapc;
4565 	u32 i;
4566 
4567 	/*
4568 	 * We'll need room for the seq value (maximum snapshot id),
4569 	 * snapshot count, and array of that many snapshot ids.
4570 	 * For now we have a fixed upper limit on the number we're
4571 	 * prepared to receive.
4572 	 */
4573 	size = sizeof (__le64) + sizeof (__le32) +
4574 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
4575 	reply_buf = kzalloc(size, GFP_KERNEL);
4576 	if (!reply_buf)
4577 		return -ENOMEM;
4578 
4579 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4580 				"rbd", "get_snapcontext", NULL, 0,
4581 				reply_buf, size);
4582 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4583 	if (ret < 0)
4584 		goto out;
4585 
4586 	p = reply_buf;
4587 	end = reply_buf + ret;
4588 	ret = -ERANGE;
4589 	ceph_decode_64_safe(&p, end, seq, out);
4590 	ceph_decode_32_safe(&p, end, snap_count, out);
4591 
4592 	/*
4593 	 * Make sure the reported number of snapshot ids wouldn't go
4594 	 * beyond the end of our buffer.  But before checking that,
4595 	 * make sure the computed size of the snapshot context we
4596 	 * allocate is representable in a size_t.
4597 	 */
4598 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4599 				 / sizeof (u64)) {
4600 		ret = -EINVAL;
4601 		goto out;
4602 	}
4603 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4604 		goto out;
4605 	ret = 0;
4606 
4607 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4608 	if (!snapc) {
4609 		ret = -ENOMEM;
4610 		goto out;
4611 	}
4612 	snapc->seq = seq;
4613 	for (i = 0; i < snap_count; i++)
4614 		snapc->snaps[i] = ceph_decode_64(&p);
4615 
4616 	ceph_put_snap_context(rbd_dev->header.snapc);
4617 	rbd_dev->header.snapc = snapc;
4618 
4619 	dout("  snap context seq = %llu, snap_count = %u\n",
4620 		(unsigned long long)seq, (unsigned int)snap_count);
4621 out:
4622 	kfree(reply_buf);
4623 
4624 	return ret;
4625 }
4626 
4627 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4628 					u64 snap_id)
4629 {
4630 	size_t size;
4631 	void *reply_buf;
4632 	__le64 snapid;
4633 	int ret;
4634 	void *p;
4635 	void *end;
4636 	char *snap_name;
4637 
4638 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4639 	reply_buf = kmalloc(size, GFP_KERNEL);
4640 	if (!reply_buf)
4641 		return ERR_PTR(-ENOMEM);
4642 
4643 	snapid = cpu_to_le64(snap_id);
4644 	ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4645 				"rbd", "get_snapshot_name",
4646 				&snapid, sizeof (snapid),
4647 				reply_buf, size);
4648 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4649 	if (ret < 0) {
4650 		snap_name = ERR_PTR(ret);
4651 		goto out;
4652 	}
4653 
4654 	p = reply_buf;
4655 	end = reply_buf + ret;
4656 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4657 	if (IS_ERR(snap_name))
4658 		goto out;
4659 
4660 	dout("  snap_id 0x%016llx snap_name = %s\n",
4661 		(unsigned long long)snap_id, snap_name);
4662 out:
4663 	kfree(reply_buf);
4664 
4665 	return snap_name;
4666 }
4667 
4668 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4669 {
4670 	bool first_time = rbd_dev->header.object_prefix == NULL;
4671 	int ret;
4672 
4673 	ret = rbd_dev_v2_image_size(rbd_dev);
4674 	if (ret)
4675 		return ret;
4676 
4677 	if (first_time) {
4678 		ret = rbd_dev_v2_header_onetime(rbd_dev);
4679 		if (ret)
4680 			return ret;
4681 	}
4682 
4683 	ret = rbd_dev_v2_snap_context(rbd_dev);
4684 	if (ret && first_time) {
4685 		kfree(rbd_dev->header.object_prefix);
4686 		rbd_dev->header.object_prefix = NULL;
4687 	}
4688 
4689 	return ret;
4690 }
4691 
4692 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4693 {
4694 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4695 
4696 	if (rbd_dev->image_format == 1)
4697 		return rbd_dev_v1_header_info(rbd_dev);
4698 
4699 	return rbd_dev_v2_header_info(rbd_dev);
4700 }
4701 
4702 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4703 {
4704 	struct device *dev;
4705 	int ret;
4706 
4707 	dev = &rbd_dev->dev;
4708 	dev->bus = &rbd_bus_type;
4709 	dev->type = &rbd_device_type;
4710 	dev->parent = &rbd_root_dev;
4711 	dev->release = rbd_dev_device_release;
4712 	dev_set_name(dev, "%d", rbd_dev->dev_id);
4713 	ret = device_register(dev);
4714 
4715 	return ret;
4716 }
4717 
4718 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4719 {
4720 	device_unregister(&rbd_dev->dev);
4721 }
4722 
4723 /*
4724  * Get a unique rbd identifier for the given new rbd_dev, and add
4725  * the rbd_dev to the global list.
4726  */
4727 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4728 {
4729 	int new_dev_id;
4730 
4731 	new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4732 				    0, minor_to_rbd_dev_id(1 << MINORBITS),
4733 				    GFP_KERNEL);
4734 	if (new_dev_id < 0)
4735 		return new_dev_id;
4736 
4737 	rbd_dev->dev_id = new_dev_id;
4738 
4739 	spin_lock(&rbd_dev_list_lock);
4740 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
4741 	spin_unlock(&rbd_dev_list_lock);
4742 
4743 	dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4744 
4745 	return 0;
4746 }
4747 
4748 /*
4749  * Remove an rbd_dev from the global list, and record that its
4750  * identifier is no longer in use.
4751  */
4752 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4753 {
4754 	spin_lock(&rbd_dev_list_lock);
4755 	list_del_init(&rbd_dev->node);
4756 	spin_unlock(&rbd_dev_list_lock);
4757 
4758 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4759 
4760 	dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4761 }
4762 
4763 /*
4764  * Skips over white space at *buf, and updates *buf to point to the
4765  * first found non-space character (if any). Returns the length of
4766  * the token (string of non-white space characters) found.  Note
4767  * that *buf must be terminated with '\0'.
4768  */
4769 static inline size_t next_token(const char **buf)
4770 {
4771         /*
4772         * These are the characters that produce nonzero for
4773         * isspace() in the "C" and "POSIX" locales.
4774         */
4775         const char *spaces = " \f\n\r\t\v";
4776 
4777         *buf += strspn(*buf, spaces);	/* Find start of token */
4778 
4779 	return strcspn(*buf, spaces);   /* Return token length */
4780 }
4781 
4782 /*
4783  * Finds the next token in *buf, dynamically allocates a buffer big
4784  * enough to hold a copy of it, and copies the token into the new
4785  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4786  * that a duplicate buffer is created even for a zero-length token.
4787  *
4788  * Returns a pointer to the newly-allocated duplicate, or a null
4789  * pointer if memory for the duplicate was not available.  If
4790  * the lenp argument is a non-null pointer, the length of the token
4791  * (not including the '\0') is returned in *lenp.
4792  *
4793  * If successful, the *buf pointer will be updated to point beyond
4794  * the end of the found token.
4795  *
4796  * Note: uses GFP_KERNEL for allocation.
4797  */
4798 static inline char *dup_token(const char **buf, size_t *lenp)
4799 {
4800 	char *dup;
4801 	size_t len;
4802 
4803 	len = next_token(buf);
4804 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4805 	if (!dup)
4806 		return NULL;
4807 	*(dup + len) = '\0';
4808 	*buf += len;
4809 
4810 	if (lenp)
4811 		*lenp = len;
4812 
4813 	return dup;
4814 }
4815 
4816 /*
4817  * Parse the options provided for an "rbd add" (i.e., rbd image
4818  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4819  * and the data written is passed here via a NUL-terminated buffer.
4820  * Returns 0 if successful or an error code otherwise.
4821  *
4822  * The information extracted from these options is recorded in
4823  * the other parameters which return dynamically-allocated
4824  * structures:
4825  *  ceph_opts
4826  *      The address of a pointer that will refer to a ceph options
4827  *      structure.  Caller must release the returned pointer using
4828  *      ceph_destroy_options() when it is no longer needed.
4829  *  rbd_opts
4830  *	Address of an rbd options pointer.  Fully initialized by
4831  *	this function; caller must release with kfree().
4832  *  spec
4833  *	Address of an rbd image specification pointer.  Fully
4834  *	initialized by this function based on parsed options.
4835  *	Caller must release with rbd_spec_put().
4836  *
4837  * The options passed take this form:
4838  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4839  * where:
4840  *  <mon_addrs>
4841  *      A comma-separated list of one or more monitor addresses.
4842  *      A monitor address is an ip address, optionally followed
4843  *      by a port number (separated by a colon).
4844  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4845  *  <options>
4846  *      A comma-separated list of ceph and/or rbd options.
4847  *  <pool_name>
4848  *      The name of the rados pool containing the rbd image.
4849  *  <image_name>
4850  *      The name of the image in that pool to map.
4851  *  <snap_id>
4852  *      An optional snapshot id.  If provided, the mapping will
4853  *      present data from the image at the time that snapshot was
4854  *      created.  The image head is used if no snapshot id is
4855  *      provided.  Snapshot mappings are always read-only.
4856  */
4857 static int rbd_add_parse_args(const char *buf,
4858 				struct ceph_options **ceph_opts,
4859 				struct rbd_options **opts,
4860 				struct rbd_spec **rbd_spec)
4861 {
4862 	size_t len;
4863 	char *options;
4864 	const char *mon_addrs;
4865 	char *snap_name;
4866 	size_t mon_addrs_size;
4867 	struct rbd_spec *spec = NULL;
4868 	struct rbd_options *rbd_opts = NULL;
4869 	struct ceph_options *copts;
4870 	int ret;
4871 
4872 	/* The first four tokens are required */
4873 
4874 	len = next_token(&buf);
4875 	if (!len) {
4876 		rbd_warn(NULL, "no monitor address(es) provided");
4877 		return -EINVAL;
4878 	}
4879 	mon_addrs = buf;
4880 	mon_addrs_size = len + 1;
4881 	buf += len;
4882 
4883 	ret = -EINVAL;
4884 	options = dup_token(&buf, NULL);
4885 	if (!options)
4886 		return -ENOMEM;
4887 	if (!*options) {
4888 		rbd_warn(NULL, "no options provided");
4889 		goto out_err;
4890 	}
4891 
4892 	spec = rbd_spec_alloc();
4893 	if (!spec)
4894 		goto out_mem;
4895 
4896 	spec->pool_name = dup_token(&buf, NULL);
4897 	if (!spec->pool_name)
4898 		goto out_mem;
4899 	if (!*spec->pool_name) {
4900 		rbd_warn(NULL, "no pool name provided");
4901 		goto out_err;
4902 	}
4903 
4904 	spec->image_name = dup_token(&buf, NULL);
4905 	if (!spec->image_name)
4906 		goto out_mem;
4907 	if (!*spec->image_name) {
4908 		rbd_warn(NULL, "no image name provided");
4909 		goto out_err;
4910 	}
4911 
4912 	/*
4913 	 * Snapshot name is optional; default is to use "-"
4914 	 * (indicating the head/no snapshot).
4915 	 */
4916 	len = next_token(&buf);
4917 	if (!len) {
4918 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4919 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4920 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
4921 		ret = -ENAMETOOLONG;
4922 		goto out_err;
4923 	}
4924 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4925 	if (!snap_name)
4926 		goto out_mem;
4927 	*(snap_name + len) = '\0';
4928 	spec->snap_name = snap_name;
4929 
4930 	/* Initialize all rbd options to the defaults */
4931 
4932 	rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4933 	if (!rbd_opts)
4934 		goto out_mem;
4935 
4936 	rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4937 	rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4938 
4939 	copts = ceph_parse_options(options, mon_addrs,
4940 					mon_addrs + mon_addrs_size - 1,
4941 					parse_rbd_opts_token, rbd_opts);
4942 	if (IS_ERR(copts)) {
4943 		ret = PTR_ERR(copts);
4944 		goto out_err;
4945 	}
4946 	kfree(options);
4947 
4948 	*ceph_opts = copts;
4949 	*opts = rbd_opts;
4950 	*rbd_spec = spec;
4951 
4952 	return 0;
4953 out_mem:
4954 	ret = -ENOMEM;
4955 out_err:
4956 	kfree(rbd_opts);
4957 	rbd_spec_put(spec);
4958 	kfree(options);
4959 
4960 	return ret;
4961 }
4962 
4963 /*
4964  * Return pool id (>= 0) or a negative error code.
4965  */
4966 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4967 {
4968 	struct ceph_options *opts = rbdc->client->options;
4969 	u64 newest_epoch;
4970 	int tries = 0;
4971 	int ret;
4972 
4973 again:
4974 	ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4975 	if (ret == -ENOENT && tries++ < 1) {
4976 		ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4977 					       &newest_epoch);
4978 		if (ret < 0)
4979 			return ret;
4980 
4981 		if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4982 			ceph_monc_request_next_osdmap(&rbdc->client->monc);
4983 			(void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4984 						     newest_epoch,
4985 						     opts->mount_timeout);
4986 			goto again;
4987 		} else {
4988 			/* the osdmap we have is new enough */
4989 			return -ENOENT;
4990 		}
4991 	}
4992 
4993 	return ret;
4994 }
4995 
4996 /*
4997  * An rbd format 2 image has a unique identifier, distinct from the
4998  * name given to it by the user.  Internally, that identifier is
4999  * what's used to specify the names of objects related to the image.
5000  *
5001  * A special "rbd id" object is used to map an rbd image name to its
5002  * id.  If that object doesn't exist, then there is no v2 rbd image
5003  * with the supplied name.
5004  *
5005  * This function will record the given rbd_dev's image_id field if
5006  * it can be determined, and in that case will return 0.  If any
5007  * errors occur a negative errno will be returned and the rbd_dev's
5008  * image_id field will be unchanged (and should be NULL).
5009  */
5010 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5011 {
5012 	int ret;
5013 	size_t size;
5014 	char *object_name;
5015 	void *response;
5016 	char *image_id;
5017 
5018 	/*
5019 	 * When probing a parent image, the image id is already
5020 	 * known (and the image name likely is not).  There's no
5021 	 * need to fetch the image id again in this case.  We
5022 	 * do still need to set the image format though.
5023 	 */
5024 	if (rbd_dev->spec->image_id) {
5025 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5026 
5027 		return 0;
5028 	}
5029 
5030 	/*
5031 	 * First, see if the format 2 image id file exists, and if
5032 	 * so, get the image's persistent id from it.
5033 	 */
5034 	size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5035 	object_name = kmalloc(size, GFP_NOIO);
5036 	if (!object_name)
5037 		return -ENOMEM;
5038 	sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5039 	dout("rbd id object name is %s\n", object_name);
5040 
5041 	/* Response will be an encoded string, which includes a length */
5042 
5043 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5044 	response = kzalloc(size, GFP_NOIO);
5045 	if (!response) {
5046 		ret = -ENOMEM;
5047 		goto out;
5048 	}
5049 
5050 	/* If it doesn't exist we'll assume it's a format 1 image */
5051 
5052 	ret = rbd_obj_method_sync(rbd_dev, object_name,
5053 				"rbd", "get_id", NULL, 0,
5054 				response, RBD_IMAGE_ID_LEN_MAX);
5055 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5056 	if (ret == -ENOENT) {
5057 		image_id = kstrdup("", GFP_KERNEL);
5058 		ret = image_id ? 0 : -ENOMEM;
5059 		if (!ret)
5060 			rbd_dev->image_format = 1;
5061 	} else if (ret >= 0) {
5062 		void *p = response;
5063 
5064 		image_id = ceph_extract_encoded_string(&p, p + ret,
5065 						NULL, GFP_NOIO);
5066 		ret = PTR_ERR_OR_ZERO(image_id);
5067 		if (!ret)
5068 			rbd_dev->image_format = 2;
5069 	}
5070 
5071 	if (!ret) {
5072 		rbd_dev->spec->image_id = image_id;
5073 		dout("image_id is %s\n", image_id);
5074 	}
5075 out:
5076 	kfree(response);
5077 	kfree(object_name);
5078 
5079 	return ret;
5080 }
5081 
5082 /*
5083  * Undo whatever state changes are made by v1 or v2 header info
5084  * call.
5085  */
5086 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5087 {
5088 	struct rbd_image_header	*header;
5089 
5090 	rbd_dev_parent_put(rbd_dev);
5091 
5092 	/* Free dynamic fields from the header, then zero it out */
5093 
5094 	header = &rbd_dev->header;
5095 	ceph_put_snap_context(header->snapc);
5096 	kfree(header->snap_sizes);
5097 	kfree(header->snap_names);
5098 	kfree(header->object_prefix);
5099 	memset(header, 0, sizeof (*header));
5100 }
5101 
5102 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5103 {
5104 	int ret;
5105 
5106 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5107 	if (ret)
5108 		goto out_err;
5109 
5110 	/*
5111 	 * Get the and check features for the image.  Currently the
5112 	 * features are assumed to never change.
5113 	 */
5114 	ret = rbd_dev_v2_features(rbd_dev);
5115 	if (ret)
5116 		goto out_err;
5117 
5118 	/* If the image supports fancy striping, get its parameters */
5119 
5120 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5121 		ret = rbd_dev_v2_striping_info(rbd_dev);
5122 		if (ret < 0)
5123 			goto out_err;
5124 	}
5125 	/* No support for crypto and compression type format 2 images */
5126 
5127 	return 0;
5128 out_err:
5129 	rbd_dev->header.features = 0;
5130 	kfree(rbd_dev->header.object_prefix);
5131 	rbd_dev->header.object_prefix = NULL;
5132 
5133 	return ret;
5134 }
5135 
5136 /*
5137  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5138  * rbd_dev_image_probe() recursion depth, which means it's also the
5139  * length of the already discovered part of the parent chain.
5140  */
5141 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5142 {
5143 	struct rbd_device *parent = NULL;
5144 	int ret;
5145 
5146 	if (!rbd_dev->parent_spec)
5147 		return 0;
5148 
5149 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5150 		pr_info("parent chain is too long (%d)\n", depth);
5151 		ret = -EINVAL;
5152 		goto out_err;
5153 	}
5154 
5155 	parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5156 				NULL);
5157 	if (!parent) {
5158 		ret = -ENOMEM;
5159 		goto out_err;
5160 	}
5161 
5162 	/*
5163 	 * Images related by parent/child relationships always share
5164 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5165 	 */
5166 	__rbd_get_client(rbd_dev->rbd_client);
5167 	rbd_spec_get(rbd_dev->parent_spec);
5168 
5169 	ret = rbd_dev_image_probe(parent, depth);
5170 	if (ret < 0)
5171 		goto out_err;
5172 
5173 	rbd_dev->parent = parent;
5174 	atomic_set(&rbd_dev->parent_ref, 1);
5175 	return 0;
5176 
5177 out_err:
5178 	rbd_dev_unparent(rbd_dev);
5179 	if (parent)
5180 		rbd_dev_destroy(parent);
5181 	return ret;
5182 }
5183 
5184 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5185 {
5186 	int ret;
5187 
5188 	/* Get an id and fill in device name. */
5189 
5190 	ret = rbd_dev_id_get(rbd_dev);
5191 	if (ret)
5192 		return ret;
5193 
5194 	BUILD_BUG_ON(DEV_NAME_LEN
5195 			< sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5196 	sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5197 
5198 	/* Record our major and minor device numbers. */
5199 
5200 	if (!single_major) {
5201 		ret = register_blkdev(0, rbd_dev->name);
5202 		if (ret < 0)
5203 			goto err_out_id;
5204 
5205 		rbd_dev->major = ret;
5206 		rbd_dev->minor = 0;
5207 	} else {
5208 		rbd_dev->major = rbd_major;
5209 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5210 	}
5211 
5212 	/* Set up the blkdev mapping. */
5213 
5214 	ret = rbd_init_disk(rbd_dev);
5215 	if (ret)
5216 		goto err_out_blkdev;
5217 
5218 	ret = rbd_dev_mapping_set(rbd_dev);
5219 	if (ret)
5220 		goto err_out_disk;
5221 
5222 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5223 	set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5224 
5225 	ret = rbd_bus_add_dev(rbd_dev);
5226 	if (ret)
5227 		goto err_out_mapping;
5228 
5229 	/* Everything's ready.  Announce the disk to the world. */
5230 
5231 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5232 	add_disk(rbd_dev->disk);
5233 
5234 	pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5235 		(unsigned long long) rbd_dev->mapping.size);
5236 
5237 	return ret;
5238 
5239 err_out_mapping:
5240 	rbd_dev_mapping_clear(rbd_dev);
5241 err_out_disk:
5242 	rbd_free_disk(rbd_dev);
5243 err_out_blkdev:
5244 	if (!single_major)
5245 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5246 err_out_id:
5247 	rbd_dev_id_put(rbd_dev);
5248 	rbd_dev_mapping_clear(rbd_dev);
5249 
5250 	return ret;
5251 }
5252 
5253 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5254 {
5255 	struct rbd_spec *spec = rbd_dev->spec;
5256 	size_t size;
5257 
5258 	/* Record the header object name for this rbd image. */
5259 
5260 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5261 
5262 	if (rbd_dev->image_format == 1)
5263 		size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5264 	else
5265 		size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5266 
5267 	rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5268 	if (!rbd_dev->header_name)
5269 		return -ENOMEM;
5270 
5271 	if (rbd_dev->image_format == 1)
5272 		sprintf(rbd_dev->header_name, "%s%s",
5273 			spec->image_name, RBD_SUFFIX);
5274 	else
5275 		sprintf(rbd_dev->header_name, "%s%s",
5276 			RBD_HEADER_PREFIX, spec->image_id);
5277 	return 0;
5278 }
5279 
5280 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5281 {
5282 	rbd_dev_unprobe(rbd_dev);
5283 	kfree(rbd_dev->header_name);
5284 	rbd_dev->header_name = NULL;
5285 	rbd_dev->image_format = 0;
5286 	kfree(rbd_dev->spec->image_id);
5287 	rbd_dev->spec->image_id = NULL;
5288 
5289 	rbd_dev_destroy(rbd_dev);
5290 }
5291 
5292 /*
5293  * Probe for the existence of the header object for the given rbd
5294  * device.  If this image is the one being mapped (i.e., not a
5295  * parent), initiate a watch on its header object before using that
5296  * object to get detailed information about the rbd image.
5297  */
5298 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5299 {
5300 	int ret;
5301 
5302 	/*
5303 	 * Get the id from the image id object.  Unless there's an
5304 	 * error, rbd_dev->spec->image_id will be filled in with
5305 	 * a dynamically-allocated string, and rbd_dev->image_format
5306 	 * will be set to either 1 or 2.
5307 	 */
5308 	ret = rbd_dev_image_id(rbd_dev);
5309 	if (ret)
5310 		return ret;
5311 
5312 	ret = rbd_dev_header_name(rbd_dev);
5313 	if (ret)
5314 		goto err_out_format;
5315 
5316 	if (!depth) {
5317 		ret = rbd_dev_header_watch_sync(rbd_dev);
5318 		if (ret) {
5319 			if (ret == -ENOENT)
5320 				pr_info("image %s/%s does not exist\n",
5321 					rbd_dev->spec->pool_name,
5322 					rbd_dev->spec->image_name);
5323 			goto out_header_name;
5324 		}
5325 	}
5326 
5327 	ret = rbd_dev_header_info(rbd_dev);
5328 	if (ret)
5329 		goto err_out_watch;
5330 
5331 	/*
5332 	 * If this image is the one being mapped, we have pool name and
5333 	 * id, image name and id, and snap name - need to fill snap id.
5334 	 * Otherwise this is a parent image, identified by pool, image
5335 	 * and snap ids - need to fill in names for those ids.
5336 	 */
5337 	if (!depth)
5338 		ret = rbd_spec_fill_snap_id(rbd_dev);
5339 	else
5340 		ret = rbd_spec_fill_names(rbd_dev);
5341 	if (ret) {
5342 		if (ret == -ENOENT)
5343 			pr_info("snap %s/%s@%s does not exist\n",
5344 				rbd_dev->spec->pool_name,
5345 				rbd_dev->spec->image_name,
5346 				rbd_dev->spec->snap_name);
5347 		goto err_out_probe;
5348 	}
5349 
5350 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5351 		ret = rbd_dev_v2_parent_info(rbd_dev);
5352 		if (ret)
5353 			goto err_out_probe;
5354 
5355 		/*
5356 		 * Need to warn users if this image is the one being
5357 		 * mapped and has a parent.
5358 		 */
5359 		if (!depth && rbd_dev->parent_spec)
5360 			rbd_warn(rbd_dev,
5361 				 "WARNING: kernel layering is EXPERIMENTAL!");
5362 	}
5363 
5364 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5365 	if (ret)
5366 		goto err_out_probe;
5367 
5368 	dout("discovered format %u image, header name is %s\n",
5369 		rbd_dev->image_format, rbd_dev->header_name);
5370 	return 0;
5371 
5372 err_out_probe:
5373 	rbd_dev_unprobe(rbd_dev);
5374 err_out_watch:
5375 	if (!depth)
5376 		rbd_dev_header_unwatch_sync(rbd_dev);
5377 out_header_name:
5378 	kfree(rbd_dev->header_name);
5379 	rbd_dev->header_name = NULL;
5380 err_out_format:
5381 	rbd_dev->image_format = 0;
5382 	kfree(rbd_dev->spec->image_id);
5383 	rbd_dev->spec->image_id = NULL;
5384 	return ret;
5385 }
5386 
5387 static ssize_t do_rbd_add(struct bus_type *bus,
5388 			  const char *buf,
5389 			  size_t count)
5390 {
5391 	struct rbd_device *rbd_dev = NULL;
5392 	struct ceph_options *ceph_opts = NULL;
5393 	struct rbd_options *rbd_opts = NULL;
5394 	struct rbd_spec *spec = NULL;
5395 	struct rbd_client *rbdc;
5396 	bool read_only;
5397 	int rc = -ENOMEM;
5398 
5399 	if (!try_module_get(THIS_MODULE))
5400 		return -ENODEV;
5401 
5402 	/* parse add command */
5403 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5404 	if (rc < 0)
5405 		goto err_out_module;
5406 
5407 	rbdc = rbd_get_client(ceph_opts);
5408 	if (IS_ERR(rbdc)) {
5409 		rc = PTR_ERR(rbdc);
5410 		goto err_out_args;
5411 	}
5412 
5413 	/* pick the pool */
5414 	rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5415 	if (rc < 0) {
5416 		if (rc == -ENOENT)
5417 			pr_info("pool %s does not exist\n", spec->pool_name);
5418 		goto err_out_client;
5419 	}
5420 	spec->pool_id = (u64)rc;
5421 
5422 	/* The ceph file layout needs to fit pool id in 32 bits */
5423 
5424 	if (spec->pool_id > (u64)U32_MAX) {
5425 		rbd_warn(NULL, "pool id too large (%llu > %u)",
5426 				(unsigned long long)spec->pool_id, U32_MAX);
5427 		rc = -EIO;
5428 		goto err_out_client;
5429 	}
5430 
5431 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5432 	if (!rbd_dev)
5433 		goto err_out_client;
5434 	rbdc = NULL;		/* rbd_dev now owns this */
5435 	spec = NULL;		/* rbd_dev now owns this */
5436 	rbd_opts = NULL;	/* rbd_dev now owns this */
5437 
5438 	rc = rbd_dev_image_probe(rbd_dev, 0);
5439 	if (rc < 0)
5440 		goto err_out_rbd_dev;
5441 
5442 	/* If we are mapping a snapshot it must be marked read-only */
5443 
5444 	read_only = rbd_dev->opts->read_only;
5445 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5446 		read_only = true;
5447 	rbd_dev->mapping.read_only = read_only;
5448 
5449 	rc = rbd_dev_device_setup(rbd_dev);
5450 	if (rc) {
5451 		/*
5452 		 * rbd_dev_header_unwatch_sync() can't be moved into
5453 		 * rbd_dev_image_release() without refactoring, see
5454 		 * commit 1f3ef78861ac.
5455 		 */
5456 		rbd_dev_header_unwatch_sync(rbd_dev);
5457 		rbd_dev_image_release(rbd_dev);
5458 		goto err_out_module;
5459 	}
5460 
5461 	return count;
5462 
5463 err_out_rbd_dev:
5464 	rbd_dev_destroy(rbd_dev);
5465 err_out_client:
5466 	rbd_put_client(rbdc);
5467 err_out_args:
5468 	rbd_spec_put(spec);
5469 	kfree(rbd_opts);
5470 err_out_module:
5471 	module_put(THIS_MODULE);
5472 
5473 	dout("Error adding device %s\n", buf);
5474 
5475 	return (ssize_t)rc;
5476 }
5477 
5478 static ssize_t rbd_add(struct bus_type *bus,
5479 		       const char *buf,
5480 		       size_t count)
5481 {
5482 	if (single_major)
5483 		return -EINVAL;
5484 
5485 	return do_rbd_add(bus, buf, count);
5486 }
5487 
5488 static ssize_t rbd_add_single_major(struct bus_type *bus,
5489 				    const char *buf,
5490 				    size_t count)
5491 {
5492 	return do_rbd_add(bus, buf, count);
5493 }
5494 
5495 static void rbd_dev_device_release(struct device *dev)
5496 {
5497 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5498 
5499 	rbd_free_disk(rbd_dev);
5500 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5501 	rbd_dev_mapping_clear(rbd_dev);
5502 	if (!single_major)
5503 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5504 	rbd_dev_id_put(rbd_dev);
5505 	rbd_dev_mapping_clear(rbd_dev);
5506 }
5507 
5508 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5509 {
5510 	while (rbd_dev->parent) {
5511 		struct rbd_device *first = rbd_dev;
5512 		struct rbd_device *second = first->parent;
5513 		struct rbd_device *third;
5514 
5515 		/*
5516 		 * Follow to the parent with no grandparent and
5517 		 * remove it.
5518 		 */
5519 		while (second && (third = second->parent)) {
5520 			first = second;
5521 			second = third;
5522 		}
5523 		rbd_assert(second);
5524 		rbd_dev_image_release(second);
5525 		first->parent = NULL;
5526 		first->parent_overlap = 0;
5527 
5528 		rbd_assert(first->parent_spec);
5529 		rbd_spec_put(first->parent_spec);
5530 		first->parent_spec = NULL;
5531 	}
5532 }
5533 
5534 static ssize_t do_rbd_remove(struct bus_type *bus,
5535 			     const char *buf,
5536 			     size_t count)
5537 {
5538 	struct rbd_device *rbd_dev = NULL;
5539 	struct list_head *tmp;
5540 	int dev_id;
5541 	unsigned long ul;
5542 	bool already = false;
5543 	int ret;
5544 
5545 	ret = kstrtoul(buf, 10, &ul);
5546 	if (ret)
5547 		return ret;
5548 
5549 	/* convert to int; abort if we lost anything in the conversion */
5550 	dev_id = (int)ul;
5551 	if (dev_id != ul)
5552 		return -EINVAL;
5553 
5554 	ret = -ENOENT;
5555 	spin_lock(&rbd_dev_list_lock);
5556 	list_for_each(tmp, &rbd_dev_list) {
5557 		rbd_dev = list_entry(tmp, struct rbd_device, node);
5558 		if (rbd_dev->dev_id == dev_id) {
5559 			ret = 0;
5560 			break;
5561 		}
5562 	}
5563 	if (!ret) {
5564 		spin_lock_irq(&rbd_dev->lock);
5565 		if (rbd_dev->open_count)
5566 			ret = -EBUSY;
5567 		else
5568 			already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5569 							&rbd_dev->flags);
5570 		spin_unlock_irq(&rbd_dev->lock);
5571 	}
5572 	spin_unlock(&rbd_dev_list_lock);
5573 	if (ret < 0 || already)
5574 		return ret;
5575 
5576 	rbd_dev_header_unwatch_sync(rbd_dev);
5577 	/*
5578 	 * flush remaining watch callbacks - these must be complete
5579 	 * before the osd_client is shutdown
5580 	 */
5581 	dout("%s: flushing notifies", __func__);
5582 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5583 
5584 	/*
5585 	 * Don't free anything from rbd_dev->disk until after all
5586 	 * notifies are completely processed. Otherwise
5587 	 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5588 	 * in a potential use after free of rbd_dev->disk or rbd_dev.
5589 	 */
5590 	rbd_bus_del_dev(rbd_dev);
5591 	rbd_dev_image_release(rbd_dev);
5592 	module_put(THIS_MODULE);
5593 
5594 	return count;
5595 }
5596 
5597 static ssize_t rbd_remove(struct bus_type *bus,
5598 			  const char *buf,
5599 			  size_t count)
5600 {
5601 	if (single_major)
5602 		return -EINVAL;
5603 
5604 	return do_rbd_remove(bus, buf, count);
5605 }
5606 
5607 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5608 				       const char *buf,
5609 				       size_t count)
5610 {
5611 	return do_rbd_remove(bus, buf, count);
5612 }
5613 
5614 /*
5615  * create control files in sysfs
5616  * /sys/bus/rbd/...
5617  */
5618 static int rbd_sysfs_init(void)
5619 {
5620 	int ret;
5621 
5622 	ret = device_register(&rbd_root_dev);
5623 	if (ret < 0)
5624 		return ret;
5625 
5626 	ret = bus_register(&rbd_bus_type);
5627 	if (ret < 0)
5628 		device_unregister(&rbd_root_dev);
5629 
5630 	return ret;
5631 }
5632 
5633 static void rbd_sysfs_cleanup(void)
5634 {
5635 	bus_unregister(&rbd_bus_type);
5636 	device_unregister(&rbd_root_dev);
5637 }
5638 
5639 static int rbd_slab_init(void)
5640 {
5641 	rbd_assert(!rbd_img_request_cache);
5642 	rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5643 					sizeof (struct rbd_img_request),
5644 					__alignof__(struct rbd_img_request),
5645 					0, NULL);
5646 	if (!rbd_img_request_cache)
5647 		return -ENOMEM;
5648 
5649 	rbd_assert(!rbd_obj_request_cache);
5650 	rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5651 					sizeof (struct rbd_obj_request),
5652 					__alignof__(struct rbd_obj_request),
5653 					0, NULL);
5654 	if (!rbd_obj_request_cache)
5655 		goto out_err;
5656 
5657 	rbd_assert(!rbd_segment_name_cache);
5658 	rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5659 					CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5660 	if (rbd_segment_name_cache)
5661 		return 0;
5662 out_err:
5663 	if (rbd_obj_request_cache) {
5664 		kmem_cache_destroy(rbd_obj_request_cache);
5665 		rbd_obj_request_cache = NULL;
5666 	}
5667 
5668 	kmem_cache_destroy(rbd_img_request_cache);
5669 	rbd_img_request_cache = NULL;
5670 
5671 	return -ENOMEM;
5672 }
5673 
5674 static void rbd_slab_exit(void)
5675 {
5676 	rbd_assert(rbd_segment_name_cache);
5677 	kmem_cache_destroy(rbd_segment_name_cache);
5678 	rbd_segment_name_cache = NULL;
5679 
5680 	rbd_assert(rbd_obj_request_cache);
5681 	kmem_cache_destroy(rbd_obj_request_cache);
5682 	rbd_obj_request_cache = NULL;
5683 
5684 	rbd_assert(rbd_img_request_cache);
5685 	kmem_cache_destroy(rbd_img_request_cache);
5686 	rbd_img_request_cache = NULL;
5687 }
5688 
5689 static int __init rbd_init(void)
5690 {
5691 	int rc;
5692 
5693 	if (!libceph_compatible(NULL)) {
5694 		rbd_warn(NULL, "libceph incompatibility (quitting)");
5695 		return -EINVAL;
5696 	}
5697 
5698 	rc = rbd_slab_init();
5699 	if (rc)
5700 		return rc;
5701 
5702 	/*
5703 	 * The number of active work items is limited by the number of
5704 	 * rbd devices * queue depth, so leave @max_active at default.
5705 	 */
5706 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5707 	if (!rbd_wq) {
5708 		rc = -ENOMEM;
5709 		goto err_out_slab;
5710 	}
5711 
5712 	if (single_major) {
5713 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
5714 		if (rbd_major < 0) {
5715 			rc = rbd_major;
5716 			goto err_out_wq;
5717 		}
5718 	}
5719 
5720 	rc = rbd_sysfs_init();
5721 	if (rc)
5722 		goto err_out_blkdev;
5723 
5724 	if (single_major)
5725 		pr_info("loaded (major %d)\n", rbd_major);
5726 	else
5727 		pr_info("loaded\n");
5728 
5729 	return 0;
5730 
5731 err_out_blkdev:
5732 	if (single_major)
5733 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5734 err_out_wq:
5735 	destroy_workqueue(rbd_wq);
5736 err_out_slab:
5737 	rbd_slab_exit();
5738 	return rc;
5739 }
5740 
5741 static void __exit rbd_exit(void)
5742 {
5743 	ida_destroy(&rbd_dev_id_ida);
5744 	rbd_sysfs_cleanup();
5745 	if (single_major)
5746 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
5747 	destroy_workqueue(rbd_wq);
5748 	rbd_slab_exit();
5749 }
5750 
5751 module_init(rbd_init);
5752 module_exit(rbd_exit);
5753 
5754 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5755 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5756 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5757 /* following authorship retained from original osdblk.c */
5758 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5759 
5760 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5761 MODULE_LICENSE("GPL");
5762