1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/cls_lock_client.h> 35 #include <linux/ceph/striper.h> 36 #include <linux/ceph/decode.h> 37 #include <linux/fs_parser.h> 38 #include <linux/bsearch.h> 39 40 #include <linux/kernel.h> 41 #include <linux/device.h> 42 #include <linux/module.h> 43 #include <linux/blk-mq.h> 44 #include <linux/fs.h> 45 #include <linux/blkdev.h> 46 #include <linux/slab.h> 47 #include <linux/idr.h> 48 #include <linux/workqueue.h> 49 50 #include "rbd_types.h" 51 52 #define RBD_DEBUG /* Activate rbd_assert() calls */ 53 54 /* 55 * Increment the given counter and return its updated value. 56 * If the counter is already 0 it will not be incremented. 57 * If the counter is already at its maximum value returns 58 * -EINVAL without updating it. 59 */ 60 static int atomic_inc_return_safe(atomic_t *v) 61 { 62 unsigned int counter; 63 64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0); 65 if (counter <= (unsigned int)INT_MAX) 66 return (int)counter; 67 68 atomic_dec(v); 69 70 return -EINVAL; 71 } 72 73 /* Decrement the counter. Return the resulting value, or -EINVAL */ 74 static int atomic_dec_return_safe(atomic_t *v) 75 { 76 int counter; 77 78 counter = atomic_dec_return(v); 79 if (counter >= 0) 80 return counter; 81 82 atomic_inc(v); 83 84 return -EINVAL; 85 } 86 87 #define RBD_DRV_NAME "rbd" 88 89 #define RBD_MINORS_PER_MAJOR 256 90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 91 92 #define RBD_MAX_PARENT_CHAIN_LEN 16 93 94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 95 #define RBD_MAX_SNAP_NAME_LEN \ 96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 97 98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 99 100 #define RBD_SNAP_HEAD_NAME "-" 101 102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 103 104 /* This allows a single page to hold an image name sent by OSD */ 105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 106 #define RBD_IMAGE_ID_LEN_MAX 64 107 108 #define RBD_OBJ_PREFIX_LEN_MAX 64 109 110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */ 111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000) 112 113 /* Feature bits */ 114 115 #define RBD_FEATURE_LAYERING (1ULL<<0) 116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1) 117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2) 118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3) 119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4) 120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5) 121 #define RBD_FEATURE_DATA_POOL (1ULL<<7) 122 #define RBD_FEATURE_OPERATIONS (1ULL<<8) 123 124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \ 125 RBD_FEATURE_STRIPINGV2 | \ 126 RBD_FEATURE_EXCLUSIVE_LOCK | \ 127 RBD_FEATURE_OBJECT_MAP | \ 128 RBD_FEATURE_FAST_DIFF | \ 129 RBD_FEATURE_DEEP_FLATTEN | \ 130 RBD_FEATURE_DATA_POOL | \ 131 RBD_FEATURE_OPERATIONS) 132 133 /* Features supported by this (client software) implementation. */ 134 135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 136 137 /* 138 * An RBD device name will be "rbd#", where the "rbd" comes from 139 * RBD_DRV_NAME above, and # is a unique integer identifier. 140 */ 141 #define DEV_NAME_LEN 32 142 143 /* 144 * block device image metadata (in-memory version) 145 */ 146 struct rbd_image_header { 147 /* These six fields never change for a given rbd image */ 148 char *object_prefix; 149 __u8 obj_order; 150 u64 stripe_unit; 151 u64 stripe_count; 152 s64 data_pool_id; 153 u64 features; /* Might be changeable someday? */ 154 155 /* The remaining fields need to be updated occasionally */ 156 u64 image_size; 157 struct ceph_snap_context *snapc; 158 char *snap_names; /* format 1 only */ 159 u64 *snap_sizes; /* format 1 only */ 160 }; 161 162 /* 163 * An rbd image specification. 164 * 165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 166 * identify an image. Each rbd_dev structure includes a pointer to 167 * an rbd_spec structure that encapsulates this identity. 168 * 169 * Each of the id's in an rbd_spec has an associated name. For a 170 * user-mapped image, the names are supplied and the id's associated 171 * with them are looked up. For a layered image, a parent image is 172 * defined by the tuple, and the names are looked up. 173 * 174 * An rbd_dev structure contains a parent_spec pointer which is 175 * non-null if the image it represents is a child in a layered 176 * image. This pointer will refer to the rbd_spec structure used 177 * by the parent rbd_dev for its own identity (i.e., the structure 178 * is shared between the parent and child). 179 * 180 * Since these structures are populated once, during the discovery 181 * phase of image construction, they are effectively immutable so 182 * we make no effort to synchronize access to them. 183 * 184 * Note that code herein does not assume the image name is known (it 185 * could be a null pointer). 186 */ 187 struct rbd_spec { 188 u64 pool_id; 189 const char *pool_name; 190 const char *pool_ns; /* NULL if default, never "" */ 191 192 const char *image_id; 193 const char *image_name; 194 195 u64 snap_id; 196 const char *snap_name; 197 198 struct kref kref; 199 }; 200 201 /* 202 * an instance of the client. multiple devices may share an rbd client. 203 */ 204 struct rbd_client { 205 struct ceph_client *client; 206 struct kref kref; 207 struct list_head node; 208 }; 209 210 struct pending_result { 211 int result; /* first nonzero result */ 212 int num_pending; 213 }; 214 215 struct rbd_img_request; 216 217 enum obj_request_type { 218 OBJ_REQUEST_NODATA = 1, 219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */ 220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */ 221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */ 222 }; 223 224 enum obj_operation_type { 225 OBJ_OP_READ = 1, 226 OBJ_OP_WRITE, 227 OBJ_OP_DISCARD, 228 OBJ_OP_ZEROOUT, 229 }; 230 231 #define RBD_OBJ_FLAG_DELETION (1U << 0) 232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1) 233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2) 234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3) 235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4) 236 237 enum rbd_obj_read_state { 238 RBD_OBJ_READ_START = 1, 239 RBD_OBJ_READ_OBJECT, 240 RBD_OBJ_READ_PARENT, 241 }; 242 243 /* 244 * Writes go through the following state machine to deal with 245 * layering: 246 * 247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . . 248 * . | . 249 * . v . 250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . . 251 * . | . . 252 * . v v (deep-copyup . 253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) . 254 * flattened) v | . . 255 * . v . . 256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup . 257 * | not needed) v 258 * v . 259 * done . . . . . . . . . . . . . . . . . . 260 * ^ 261 * | 262 * RBD_OBJ_WRITE_FLAT 263 * 264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether 265 * assert_exists guard is needed or not (in some cases it's not needed 266 * even if there is a parent). 267 */ 268 enum rbd_obj_write_state { 269 RBD_OBJ_WRITE_START = 1, 270 RBD_OBJ_WRITE_PRE_OBJECT_MAP, 271 RBD_OBJ_WRITE_OBJECT, 272 __RBD_OBJ_WRITE_COPYUP, 273 RBD_OBJ_WRITE_COPYUP, 274 RBD_OBJ_WRITE_POST_OBJECT_MAP, 275 }; 276 277 enum rbd_obj_copyup_state { 278 RBD_OBJ_COPYUP_START = 1, 279 RBD_OBJ_COPYUP_READ_PARENT, 280 __RBD_OBJ_COPYUP_OBJECT_MAPS, 281 RBD_OBJ_COPYUP_OBJECT_MAPS, 282 __RBD_OBJ_COPYUP_WRITE_OBJECT, 283 RBD_OBJ_COPYUP_WRITE_OBJECT, 284 }; 285 286 struct rbd_obj_request { 287 struct ceph_object_extent ex; 288 unsigned int flags; /* RBD_OBJ_FLAG_* */ 289 union { 290 enum rbd_obj_read_state read_state; /* for reads */ 291 enum rbd_obj_write_state write_state; /* for writes */ 292 }; 293 294 struct rbd_img_request *img_request; 295 struct ceph_file_extent *img_extents; 296 u32 num_img_extents; 297 298 union { 299 struct ceph_bio_iter bio_pos; 300 struct { 301 struct ceph_bvec_iter bvec_pos; 302 u32 bvec_count; 303 u32 bvec_idx; 304 }; 305 }; 306 307 enum rbd_obj_copyup_state copyup_state; 308 struct bio_vec *copyup_bvecs; 309 u32 copyup_bvec_count; 310 311 struct list_head osd_reqs; /* w/ r_private_item */ 312 313 struct mutex state_mutex; 314 struct pending_result pending; 315 struct kref kref; 316 }; 317 318 enum img_req_flags { 319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 321 }; 322 323 enum rbd_img_state { 324 RBD_IMG_START = 1, 325 RBD_IMG_EXCLUSIVE_LOCK, 326 __RBD_IMG_OBJECT_REQUESTS, 327 RBD_IMG_OBJECT_REQUESTS, 328 }; 329 330 struct rbd_img_request { 331 struct rbd_device *rbd_dev; 332 enum obj_operation_type op_type; 333 enum obj_request_type data_type; 334 unsigned long flags; 335 enum rbd_img_state state; 336 union { 337 u64 snap_id; /* for reads */ 338 struct ceph_snap_context *snapc; /* for writes */ 339 }; 340 struct rbd_obj_request *obj_request; /* obj req initiator */ 341 342 struct list_head lock_item; 343 struct list_head object_extents; /* obj_req.ex structs */ 344 345 struct mutex state_mutex; 346 struct pending_result pending; 347 struct work_struct work; 348 int work_result; 349 }; 350 351 #define for_each_obj_request(ireq, oreq) \ 352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item) 353 #define for_each_obj_request_safe(ireq, oreq, n) \ 354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item) 355 356 enum rbd_watch_state { 357 RBD_WATCH_STATE_UNREGISTERED, 358 RBD_WATCH_STATE_REGISTERED, 359 RBD_WATCH_STATE_ERROR, 360 }; 361 362 enum rbd_lock_state { 363 RBD_LOCK_STATE_UNLOCKED, 364 RBD_LOCK_STATE_LOCKED, 365 RBD_LOCK_STATE_RELEASING, 366 }; 367 368 /* WatchNotify::ClientId */ 369 struct rbd_client_id { 370 u64 gid; 371 u64 handle; 372 }; 373 374 struct rbd_mapping { 375 u64 size; 376 }; 377 378 /* 379 * a single device 380 */ 381 struct rbd_device { 382 int dev_id; /* blkdev unique id */ 383 384 int major; /* blkdev assigned major */ 385 int minor; 386 struct gendisk *disk; /* blkdev's gendisk and rq */ 387 388 u32 image_format; /* Either 1 or 2 */ 389 struct rbd_client *rbd_client; 390 391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 392 393 spinlock_t lock; /* queue, flags, open_count */ 394 395 struct rbd_image_header header; 396 unsigned long flags; /* possibly lock protected */ 397 struct rbd_spec *spec; 398 struct rbd_options *opts; 399 char *config_info; /* add{,_single_major} string */ 400 401 struct ceph_object_id header_oid; 402 struct ceph_object_locator header_oloc; 403 404 struct ceph_file_layout layout; /* used for all rbd requests */ 405 406 struct mutex watch_mutex; 407 enum rbd_watch_state watch_state; 408 struct ceph_osd_linger_request *watch_handle; 409 u64 watch_cookie; 410 struct delayed_work watch_dwork; 411 412 struct rw_semaphore lock_rwsem; 413 enum rbd_lock_state lock_state; 414 char lock_cookie[32]; 415 struct rbd_client_id owner_cid; 416 struct work_struct acquired_lock_work; 417 struct work_struct released_lock_work; 418 struct delayed_work lock_dwork; 419 struct work_struct unlock_work; 420 spinlock_t lock_lists_lock; 421 struct list_head acquiring_list; 422 struct list_head running_list; 423 struct completion acquire_wait; 424 int acquire_err; 425 struct completion releasing_wait; 426 427 spinlock_t object_map_lock; 428 u8 *object_map; 429 u64 object_map_size; /* in objects */ 430 u64 object_map_flags; 431 432 struct workqueue_struct *task_wq; 433 434 struct rbd_spec *parent_spec; 435 u64 parent_overlap; 436 atomic_t parent_ref; 437 struct rbd_device *parent; 438 439 /* Block layer tags. */ 440 struct blk_mq_tag_set tag_set; 441 442 /* protects updating the header */ 443 struct rw_semaphore header_rwsem; 444 445 struct rbd_mapping mapping; 446 447 struct list_head node; 448 449 /* sysfs related */ 450 struct device dev; 451 unsigned long open_count; /* protected by lock */ 452 }; 453 454 /* 455 * Flag bits for rbd_dev->flags: 456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected 457 * by rbd_dev->lock 458 */ 459 enum rbd_dev_flags { 460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */ 461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */ 463 }; 464 465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 466 467 static LIST_HEAD(rbd_dev_list); /* devices */ 468 static DEFINE_SPINLOCK(rbd_dev_list_lock); 469 470 static LIST_HEAD(rbd_client_list); /* clients */ 471 static DEFINE_SPINLOCK(rbd_client_list_lock); 472 473 /* Slab caches for frequently-allocated structures */ 474 475 static struct kmem_cache *rbd_img_request_cache; 476 static struct kmem_cache *rbd_obj_request_cache; 477 478 static int rbd_major; 479 static DEFINE_IDA(rbd_dev_id_ida); 480 481 static struct workqueue_struct *rbd_wq; 482 483 static struct ceph_snap_context rbd_empty_snapc = { 484 .nref = REFCOUNT_INIT(1), 485 }; 486 487 /* 488 * single-major requires >= 0.75 version of userspace rbd utility. 489 */ 490 static bool single_major = true; 491 module_param(single_major, bool, 0444); 492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)"); 493 494 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count); 495 static ssize_t remove_store(struct bus_type *bus, const char *buf, 496 size_t count); 497 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf, 498 size_t count); 499 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf, 500 size_t count); 501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth); 502 503 static int rbd_dev_id_to_minor(int dev_id) 504 { 505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 506 } 507 508 static int minor_to_rbd_dev_id(int minor) 509 { 510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 511 } 512 513 static bool rbd_is_ro(struct rbd_device *rbd_dev) 514 { 515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 516 } 517 518 static bool rbd_is_snap(struct rbd_device *rbd_dev) 519 { 520 return rbd_dev->spec->snap_id != CEPH_NOSNAP; 521 } 522 523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev) 524 { 525 lockdep_assert_held(&rbd_dev->lock_rwsem); 526 527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED || 528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING; 529 } 530 531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev) 532 { 533 bool is_lock_owner; 534 535 down_read(&rbd_dev->lock_rwsem); 536 is_lock_owner = __rbd_is_lock_owner(rbd_dev); 537 up_read(&rbd_dev->lock_rwsem); 538 return is_lock_owner; 539 } 540 541 static ssize_t supported_features_show(struct bus_type *bus, char *buf) 542 { 543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED); 544 } 545 546 static BUS_ATTR_WO(add); 547 static BUS_ATTR_WO(remove); 548 static BUS_ATTR_WO(add_single_major); 549 static BUS_ATTR_WO(remove_single_major); 550 static BUS_ATTR_RO(supported_features); 551 552 static struct attribute *rbd_bus_attrs[] = { 553 &bus_attr_add.attr, 554 &bus_attr_remove.attr, 555 &bus_attr_add_single_major.attr, 556 &bus_attr_remove_single_major.attr, 557 &bus_attr_supported_features.attr, 558 NULL, 559 }; 560 561 static umode_t rbd_bus_is_visible(struct kobject *kobj, 562 struct attribute *attr, int index) 563 { 564 if (!single_major && 565 (attr == &bus_attr_add_single_major.attr || 566 attr == &bus_attr_remove_single_major.attr)) 567 return 0; 568 569 return attr->mode; 570 } 571 572 static const struct attribute_group rbd_bus_group = { 573 .attrs = rbd_bus_attrs, 574 .is_visible = rbd_bus_is_visible, 575 }; 576 __ATTRIBUTE_GROUPS(rbd_bus); 577 578 static struct bus_type rbd_bus_type = { 579 .name = "rbd", 580 .bus_groups = rbd_bus_groups, 581 }; 582 583 static void rbd_root_dev_release(struct device *dev) 584 { 585 } 586 587 static struct device rbd_root_dev = { 588 .init_name = "rbd", 589 .release = rbd_root_dev_release, 590 }; 591 592 static __printf(2, 3) 593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 594 { 595 struct va_format vaf; 596 va_list args; 597 598 va_start(args, fmt); 599 vaf.fmt = fmt; 600 vaf.va = &args; 601 602 if (!rbd_dev) 603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 604 else if (rbd_dev->disk) 605 printk(KERN_WARNING "%s: %s: %pV\n", 606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 607 else if (rbd_dev->spec && rbd_dev->spec->image_name) 608 printk(KERN_WARNING "%s: image %s: %pV\n", 609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 610 else if (rbd_dev->spec && rbd_dev->spec->image_id) 611 printk(KERN_WARNING "%s: id %s: %pV\n", 612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 613 else /* punt */ 614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 615 RBD_DRV_NAME, rbd_dev, &vaf); 616 va_end(args); 617 } 618 619 #ifdef RBD_DEBUG 620 #define rbd_assert(expr) \ 621 if (unlikely(!(expr))) { \ 622 printk(KERN_ERR "\nAssertion failure in %s() " \ 623 "at line %d:\n\n" \ 624 "\trbd_assert(%s);\n\n", \ 625 __func__, __LINE__, #expr); \ 626 BUG(); \ 627 } 628 #else /* !RBD_DEBUG */ 629 # define rbd_assert(expr) ((void) 0) 630 #endif /* !RBD_DEBUG */ 631 632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 633 634 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 636 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 637 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 638 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 639 u64 snap_id); 640 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 641 u8 *order, u64 *snap_size); 642 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev); 643 644 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result); 645 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result); 646 647 /* 648 * Return true if nothing else is pending. 649 */ 650 static bool pending_result_dec(struct pending_result *pending, int *result) 651 { 652 rbd_assert(pending->num_pending > 0); 653 654 if (*result && !pending->result) 655 pending->result = *result; 656 if (--pending->num_pending) 657 return false; 658 659 *result = pending->result; 660 return true; 661 } 662 663 static int rbd_open(struct block_device *bdev, fmode_t mode) 664 { 665 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 666 bool removing = false; 667 668 spin_lock_irq(&rbd_dev->lock); 669 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 670 removing = true; 671 else 672 rbd_dev->open_count++; 673 spin_unlock_irq(&rbd_dev->lock); 674 if (removing) 675 return -ENOENT; 676 677 (void) get_device(&rbd_dev->dev); 678 679 return 0; 680 } 681 682 static void rbd_release(struct gendisk *disk, fmode_t mode) 683 { 684 struct rbd_device *rbd_dev = disk->private_data; 685 unsigned long open_count_before; 686 687 spin_lock_irq(&rbd_dev->lock); 688 open_count_before = rbd_dev->open_count--; 689 spin_unlock_irq(&rbd_dev->lock); 690 rbd_assert(open_count_before > 0); 691 692 put_device(&rbd_dev->dev); 693 } 694 695 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 696 { 697 int ro; 698 699 if (get_user(ro, (int __user *)arg)) 700 return -EFAULT; 701 702 /* 703 * Both images mapped read-only and snapshots can't be marked 704 * read-write. 705 */ 706 if (!ro) { 707 if (rbd_is_ro(rbd_dev)) 708 return -EROFS; 709 710 rbd_assert(!rbd_is_snap(rbd_dev)); 711 } 712 713 /* Let blkdev_roset() handle it */ 714 return -ENOTTY; 715 } 716 717 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 718 unsigned int cmd, unsigned long arg) 719 { 720 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 721 int ret; 722 723 switch (cmd) { 724 case BLKROSET: 725 ret = rbd_ioctl_set_ro(rbd_dev, arg); 726 break; 727 default: 728 ret = -ENOTTY; 729 } 730 731 return ret; 732 } 733 734 #ifdef CONFIG_COMPAT 735 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 736 unsigned int cmd, unsigned long arg) 737 { 738 return rbd_ioctl(bdev, mode, cmd, arg); 739 } 740 #endif /* CONFIG_COMPAT */ 741 742 static const struct block_device_operations rbd_bd_ops = { 743 .owner = THIS_MODULE, 744 .open = rbd_open, 745 .release = rbd_release, 746 .ioctl = rbd_ioctl, 747 #ifdef CONFIG_COMPAT 748 .compat_ioctl = rbd_compat_ioctl, 749 #endif 750 }; 751 752 /* 753 * Initialize an rbd client instance. Success or not, this function 754 * consumes ceph_opts. Caller holds client_mutex. 755 */ 756 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 757 { 758 struct rbd_client *rbdc; 759 int ret = -ENOMEM; 760 761 dout("%s:\n", __func__); 762 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 763 if (!rbdc) 764 goto out_opt; 765 766 kref_init(&rbdc->kref); 767 INIT_LIST_HEAD(&rbdc->node); 768 769 rbdc->client = ceph_create_client(ceph_opts, rbdc); 770 if (IS_ERR(rbdc->client)) 771 goto out_rbdc; 772 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 773 774 ret = ceph_open_session(rbdc->client); 775 if (ret < 0) 776 goto out_client; 777 778 spin_lock(&rbd_client_list_lock); 779 list_add_tail(&rbdc->node, &rbd_client_list); 780 spin_unlock(&rbd_client_list_lock); 781 782 dout("%s: rbdc %p\n", __func__, rbdc); 783 784 return rbdc; 785 out_client: 786 ceph_destroy_client(rbdc->client); 787 out_rbdc: 788 kfree(rbdc); 789 out_opt: 790 if (ceph_opts) 791 ceph_destroy_options(ceph_opts); 792 dout("%s: error %d\n", __func__, ret); 793 794 return ERR_PTR(ret); 795 } 796 797 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 798 { 799 kref_get(&rbdc->kref); 800 801 return rbdc; 802 } 803 804 /* 805 * Find a ceph client with specific addr and configuration. If 806 * found, bump its reference count. 807 */ 808 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 809 { 810 struct rbd_client *client_node; 811 bool found = false; 812 813 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 814 return NULL; 815 816 spin_lock(&rbd_client_list_lock); 817 list_for_each_entry(client_node, &rbd_client_list, node) { 818 if (!ceph_compare_options(ceph_opts, client_node->client)) { 819 __rbd_get_client(client_node); 820 821 found = true; 822 break; 823 } 824 } 825 spin_unlock(&rbd_client_list_lock); 826 827 return found ? client_node : NULL; 828 } 829 830 /* 831 * (Per device) rbd map options 832 */ 833 enum { 834 Opt_queue_depth, 835 Opt_alloc_size, 836 Opt_lock_timeout, 837 /* int args above */ 838 Opt_pool_ns, 839 /* string args above */ 840 Opt_read_only, 841 Opt_read_write, 842 Opt_lock_on_read, 843 Opt_exclusive, 844 Opt_notrim, 845 }; 846 847 static const struct fs_parameter_spec rbd_parameters[] = { 848 fsparam_u32 ("alloc_size", Opt_alloc_size), 849 fsparam_flag ("exclusive", Opt_exclusive), 850 fsparam_flag ("lock_on_read", Opt_lock_on_read), 851 fsparam_u32 ("lock_timeout", Opt_lock_timeout), 852 fsparam_flag ("notrim", Opt_notrim), 853 fsparam_string ("_pool_ns", Opt_pool_ns), 854 fsparam_u32 ("queue_depth", Opt_queue_depth), 855 fsparam_flag ("read_only", Opt_read_only), 856 fsparam_flag ("read_write", Opt_read_write), 857 fsparam_flag ("ro", Opt_read_only), 858 fsparam_flag ("rw", Opt_read_write), 859 {} 860 }; 861 862 struct rbd_options { 863 int queue_depth; 864 int alloc_size; 865 unsigned long lock_timeout; 866 bool read_only; 867 bool lock_on_read; 868 bool exclusive; 869 bool trim; 870 }; 871 872 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 873 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024) 874 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */ 875 #define RBD_READ_ONLY_DEFAULT false 876 #define RBD_LOCK_ON_READ_DEFAULT false 877 #define RBD_EXCLUSIVE_DEFAULT false 878 #define RBD_TRIM_DEFAULT true 879 880 struct rbd_parse_opts_ctx { 881 struct rbd_spec *spec; 882 struct ceph_options *copts; 883 struct rbd_options *opts; 884 }; 885 886 static char* obj_op_name(enum obj_operation_type op_type) 887 { 888 switch (op_type) { 889 case OBJ_OP_READ: 890 return "read"; 891 case OBJ_OP_WRITE: 892 return "write"; 893 case OBJ_OP_DISCARD: 894 return "discard"; 895 case OBJ_OP_ZEROOUT: 896 return "zeroout"; 897 default: 898 return "???"; 899 } 900 } 901 902 /* 903 * Destroy ceph client 904 * 905 * Caller must hold rbd_client_list_lock. 906 */ 907 static void rbd_client_release(struct kref *kref) 908 { 909 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 910 911 dout("%s: rbdc %p\n", __func__, rbdc); 912 spin_lock(&rbd_client_list_lock); 913 list_del(&rbdc->node); 914 spin_unlock(&rbd_client_list_lock); 915 916 ceph_destroy_client(rbdc->client); 917 kfree(rbdc); 918 } 919 920 /* 921 * Drop reference to ceph client node. If it's not referenced anymore, release 922 * it. 923 */ 924 static void rbd_put_client(struct rbd_client *rbdc) 925 { 926 if (rbdc) 927 kref_put(&rbdc->kref, rbd_client_release); 928 } 929 930 /* 931 * Get a ceph client with specific addr and configuration, if one does 932 * not exist create it. Either way, ceph_opts is consumed by this 933 * function. 934 */ 935 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 936 { 937 struct rbd_client *rbdc; 938 int ret; 939 940 mutex_lock(&client_mutex); 941 rbdc = rbd_client_find(ceph_opts); 942 if (rbdc) { 943 ceph_destroy_options(ceph_opts); 944 945 /* 946 * Using an existing client. Make sure ->pg_pools is up to 947 * date before we look up the pool id in do_rbd_add(). 948 */ 949 ret = ceph_wait_for_latest_osdmap(rbdc->client, 950 rbdc->client->options->mount_timeout); 951 if (ret) { 952 rbd_warn(NULL, "failed to get latest osdmap: %d", ret); 953 rbd_put_client(rbdc); 954 rbdc = ERR_PTR(ret); 955 } 956 } else { 957 rbdc = rbd_client_create(ceph_opts); 958 } 959 mutex_unlock(&client_mutex); 960 961 return rbdc; 962 } 963 964 static bool rbd_image_format_valid(u32 image_format) 965 { 966 return image_format == 1 || image_format == 2; 967 } 968 969 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 970 { 971 size_t size; 972 u32 snap_count; 973 974 /* The header has to start with the magic rbd header text */ 975 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 976 return false; 977 978 /* The bio layer requires at least sector-sized I/O */ 979 980 if (ondisk->options.order < SECTOR_SHIFT) 981 return false; 982 983 /* If we use u64 in a few spots we may be able to loosen this */ 984 985 if (ondisk->options.order > 8 * sizeof (int) - 1) 986 return false; 987 988 /* 989 * The size of a snapshot header has to fit in a size_t, and 990 * that limits the number of snapshots. 991 */ 992 snap_count = le32_to_cpu(ondisk->snap_count); 993 size = SIZE_MAX - sizeof (struct ceph_snap_context); 994 if (snap_count > size / sizeof (__le64)) 995 return false; 996 997 /* 998 * Not only that, but the size of the entire the snapshot 999 * header must also be representable in a size_t. 1000 */ 1001 size -= snap_count * sizeof (__le64); 1002 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 1003 return false; 1004 1005 return true; 1006 } 1007 1008 /* 1009 * returns the size of an object in the image 1010 */ 1011 static u32 rbd_obj_bytes(struct rbd_image_header *header) 1012 { 1013 return 1U << header->obj_order; 1014 } 1015 1016 static void rbd_init_layout(struct rbd_device *rbd_dev) 1017 { 1018 if (rbd_dev->header.stripe_unit == 0 || 1019 rbd_dev->header.stripe_count == 0) { 1020 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header); 1021 rbd_dev->header.stripe_count = 1; 1022 } 1023 1024 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit; 1025 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count; 1026 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header); 1027 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ? 1028 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id; 1029 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL); 1030 } 1031 1032 /* 1033 * Fill an rbd image header with information from the given format 1 1034 * on-disk header. 1035 */ 1036 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 1037 struct rbd_image_header_ondisk *ondisk) 1038 { 1039 struct rbd_image_header *header = &rbd_dev->header; 1040 bool first_time = header->object_prefix == NULL; 1041 struct ceph_snap_context *snapc; 1042 char *object_prefix = NULL; 1043 char *snap_names = NULL; 1044 u64 *snap_sizes = NULL; 1045 u32 snap_count; 1046 int ret = -ENOMEM; 1047 u32 i; 1048 1049 /* Allocate this now to avoid having to handle failure below */ 1050 1051 if (first_time) { 1052 object_prefix = kstrndup(ondisk->object_prefix, 1053 sizeof(ondisk->object_prefix), 1054 GFP_KERNEL); 1055 if (!object_prefix) 1056 return -ENOMEM; 1057 } 1058 1059 /* Allocate the snapshot context and fill it in */ 1060 1061 snap_count = le32_to_cpu(ondisk->snap_count); 1062 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 1063 if (!snapc) 1064 goto out_err; 1065 snapc->seq = le64_to_cpu(ondisk->snap_seq); 1066 if (snap_count) { 1067 struct rbd_image_snap_ondisk *snaps; 1068 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 1069 1070 /* We'll keep a copy of the snapshot names... */ 1071 1072 if (snap_names_len > (u64)SIZE_MAX) 1073 goto out_2big; 1074 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 1075 if (!snap_names) 1076 goto out_err; 1077 1078 /* ...as well as the array of their sizes. */ 1079 snap_sizes = kmalloc_array(snap_count, 1080 sizeof(*header->snap_sizes), 1081 GFP_KERNEL); 1082 if (!snap_sizes) 1083 goto out_err; 1084 1085 /* 1086 * Copy the names, and fill in each snapshot's id 1087 * and size. 1088 * 1089 * Note that rbd_dev_v1_header_info() guarantees the 1090 * ondisk buffer we're working with has 1091 * snap_names_len bytes beyond the end of the 1092 * snapshot id array, this memcpy() is safe. 1093 */ 1094 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 1095 snaps = ondisk->snaps; 1096 for (i = 0; i < snap_count; i++) { 1097 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 1098 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 1099 } 1100 } 1101 1102 /* We won't fail any more, fill in the header */ 1103 1104 if (first_time) { 1105 header->object_prefix = object_prefix; 1106 header->obj_order = ondisk->options.order; 1107 rbd_init_layout(rbd_dev); 1108 } else { 1109 ceph_put_snap_context(header->snapc); 1110 kfree(header->snap_names); 1111 kfree(header->snap_sizes); 1112 } 1113 1114 /* The remaining fields always get updated (when we refresh) */ 1115 1116 header->image_size = le64_to_cpu(ondisk->image_size); 1117 header->snapc = snapc; 1118 header->snap_names = snap_names; 1119 header->snap_sizes = snap_sizes; 1120 1121 return 0; 1122 out_2big: 1123 ret = -EIO; 1124 out_err: 1125 kfree(snap_sizes); 1126 kfree(snap_names); 1127 ceph_put_snap_context(snapc); 1128 kfree(object_prefix); 1129 1130 return ret; 1131 } 1132 1133 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1134 { 1135 const char *snap_name; 1136 1137 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1138 1139 /* Skip over names until we find the one we are looking for */ 1140 1141 snap_name = rbd_dev->header.snap_names; 1142 while (which--) 1143 snap_name += strlen(snap_name) + 1; 1144 1145 return kstrdup(snap_name, GFP_KERNEL); 1146 } 1147 1148 /* 1149 * Snapshot id comparison function for use with qsort()/bsearch(). 1150 * Note that result is for snapshots in *descending* order. 1151 */ 1152 static int snapid_compare_reverse(const void *s1, const void *s2) 1153 { 1154 u64 snap_id1 = *(u64 *)s1; 1155 u64 snap_id2 = *(u64 *)s2; 1156 1157 if (snap_id1 < snap_id2) 1158 return 1; 1159 return snap_id1 == snap_id2 ? 0 : -1; 1160 } 1161 1162 /* 1163 * Search a snapshot context to see if the given snapshot id is 1164 * present. 1165 * 1166 * Returns the position of the snapshot id in the array if it's found, 1167 * or BAD_SNAP_INDEX otherwise. 1168 * 1169 * Note: The snapshot array is in kept sorted (by the osd) in 1170 * reverse order, highest snapshot id first. 1171 */ 1172 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1173 { 1174 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1175 u64 *found; 1176 1177 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1178 sizeof (snap_id), snapid_compare_reverse); 1179 1180 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1181 } 1182 1183 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1184 u64 snap_id) 1185 { 1186 u32 which; 1187 const char *snap_name; 1188 1189 which = rbd_dev_snap_index(rbd_dev, snap_id); 1190 if (which == BAD_SNAP_INDEX) 1191 return ERR_PTR(-ENOENT); 1192 1193 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1194 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1195 } 1196 1197 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1198 { 1199 if (snap_id == CEPH_NOSNAP) 1200 return RBD_SNAP_HEAD_NAME; 1201 1202 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1203 if (rbd_dev->image_format == 1) 1204 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1205 1206 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1207 } 1208 1209 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1210 u64 *snap_size) 1211 { 1212 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1213 if (snap_id == CEPH_NOSNAP) { 1214 *snap_size = rbd_dev->header.image_size; 1215 } else if (rbd_dev->image_format == 1) { 1216 u32 which; 1217 1218 which = rbd_dev_snap_index(rbd_dev, snap_id); 1219 if (which == BAD_SNAP_INDEX) 1220 return -ENOENT; 1221 1222 *snap_size = rbd_dev->header.snap_sizes[which]; 1223 } else { 1224 u64 size = 0; 1225 int ret; 1226 1227 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1228 if (ret) 1229 return ret; 1230 1231 *snap_size = size; 1232 } 1233 return 0; 1234 } 1235 1236 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1237 { 1238 u64 snap_id = rbd_dev->spec->snap_id; 1239 u64 size = 0; 1240 int ret; 1241 1242 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1243 if (ret) 1244 return ret; 1245 1246 rbd_dev->mapping.size = size; 1247 return 0; 1248 } 1249 1250 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1251 { 1252 rbd_dev->mapping.size = 0; 1253 } 1254 1255 static void zero_bvec(struct bio_vec *bv) 1256 { 1257 void *buf; 1258 unsigned long flags; 1259 1260 buf = bvec_kmap_irq(bv, &flags); 1261 memset(buf, 0, bv->bv_len); 1262 flush_dcache_page(bv->bv_page); 1263 bvec_kunmap_irq(buf, &flags); 1264 } 1265 1266 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes) 1267 { 1268 struct ceph_bio_iter it = *bio_pos; 1269 1270 ceph_bio_iter_advance(&it, off); 1271 ceph_bio_iter_advance_step(&it, bytes, ({ 1272 zero_bvec(&bv); 1273 })); 1274 } 1275 1276 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes) 1277 { 1278 struct ceph_bvec_iter it = *bvec_pos; 1279 1280 ceph_bvec_iter_advance(&it, off); 1281 ceph_bvec_iter_advance_step(&it, bytes, ({ 1282 zero_bvec(&bv); 1283 })); 1284 } 1285 1286 /* 1287 * Zero a range in @obj_req data buffer defined by a bio (list) or 1288 * (private) bio_vec array. 1289 * 1290 * @off is relative to the start of the data buffer. 1291 */ 1292 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off, 1293 u32 bytes) 1294 { 1295 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes); 1296 1297 switch (obj_req->img_request->data_type) { 1298 case OBJ_REQUEST_BIO: 1299 zero_bios(&obj_req->bio_pos, off, bytes); 1300 break; 1301 case OBJ_REQUEST_BVECS: 1302 case OBJ_REQUEST_OWN_BVECS: 1303 zero_bvecs(&obj_req->bvec_pos, off, bytes); 1304 break; 1305 default: 1306 BUG(); 1307 } 1308 } 1309 1310 static void rbd_obj_request_destroy(struct kref *kref); 1311 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1312 { 1313 rbd_assert(obj_request != NULL); 1314 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1315 kref_read(&obj_request->kref)); 1316 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1317 } 1318 1319 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1320 struct rbd_obj_request *obj_request) 1321 { 1322 rbd_assert(obj_request->img_request == NULL); 1323 1324 /* Image request now owns object's original reference */ 1325 obj_request->img_request = img_request; 1326 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1327 } 1328 1329 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1330 struct rbd_obj_request *obj_request) 1331 { 1332 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 1333 list_del(&obj_request->ex.oe_item); 1334 rbd_assert(obj_request->img_request == img_request); 1335 rbd_obj_request_put(obj_request); 1336 } 1337 1338 static void rbd_osd_submit(struct ceph_osd_request *osd_req) 1339 { 1340 struct rbd_obj_request *obj_req = osd_req->r_priv; 1341 1342 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n", 1343 __func__, osd_req, obj_req, obj_req->ex.oe_objno, 1344 obj_req->ex.oe_off, obj_req->ex.oe_len); 1345 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false); 1346 } 1347 1348 /* 1349 * The default/initial value for all image request flags is 0. Each 1350 * is conditionally set to 1 at image request initialization time 1351 * and currently never change thereafter. 1352 */ 1353 static void img_request_layered_set(struct rbd_img_request *img_request) 1354 { 1355 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1356 } 1357 1358 static bool img_request_layered_test(struct rbd_img_request *img_request) 1359 { 1360 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1361 } 1362 1363 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req) 1364 { 1365 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1366 1367 return !obj_req->ex.oe_off && 1368 obj_req->ex.oe_len == rbd_dev->layout.object_size; 1369 } 1370 1371 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req) 1372 { 1373 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1374 1375 return obj_req->ex.oe_off + obj_req->ex.oe_len == 1376 rbd_dev->layout.object_size; 1377 } 1378 1379 /* 1380 * Must be called after rbd_obj_calc_img_extents(). 1381 */ 1382 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req) 1383 { 1384 if (!obj_req->num_img_extents || 1385 (rbd_obj_is_entire(obj_req) && 1386 !obj_req->img_request->snapc->num_snaps)) 1387 return false; 1388 1389 return true; 1390 } 1391 1392 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req) 1393 { 1394 return ceph_file_extents_bytes(obj_req->img_extents, 1395 obj_req->num_img_extents); 1396 } 1397 1398 static bool rbd_img_is_write(struct rbd_img_request *img_req) 1399 { 1400 switch (img_req->op_type) { 1401 case OBJ_OP_READ: 1402 return false; 1403 case OBJ_OP_WRITE: 1404 case OBJ_OP_DISCARD: 1405 case OBJ_OP_ZEROOUT: 1406 return true; 1407 default: 1408 BUG(); 1409 } 1410 } 1411 1412 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req) 1413 { 1414 struct rbd_obj_request *obj_req = osd_req->r_priv; 1415 int result; 1416 1417 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 1418 osd_req->r_result, obj_req); 1419 1420 /* 1421 * Writes aren't allowed to return a data payload. In some 1422 * guarded write cases (e.g. stat + zero on an empty object) 1423 * a stat response makes it through, but we don't care. 1424 */ 1425 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request)) 1426 result = 0; 1427 else 1428 result = osd_req->r_result; 1429 1430 rbd_obj_handle_request(obj_req, result); 1431 } 1432 1433 static void rbd_osd_format_read(struct ceph_osd_request *osd_req) 1434 { 1435 struct rbd_obj_request *obj_request = osd_req->r_priv; 1436 1437 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1438 osd_req->r_snapid = obj_request->img_request->snap_id; 1439 } 1440 1441 static void rbd_osd_format_write(struct ceph_osd_request *osd_req) 1442 { 1443 struct rbd_obj_request *obj_request = osd_req->r_priv; 1444 1445 osd_req->r_flags = CEPH_OSD_FLAG_WRITE; 1446 ktime_get_real_ts64(&osd_req->r_mtime); 1447 osd_req->r_data_offset = obj_request->ex.oe_off; 1448 } 1449 1450 static struct ceph_osd_request * 1451 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, 1452 struct ceph_snap_context *snapc, int num_ops) 1453 { 1454 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1455 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1456 struct ceph_osd_request *req; 1457 const char *name_format = rbd_dev->image_format == 1 ? 1458 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT; 1459 int ret; 1460 1461 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO); 1462 if (!req) 1463 return ERR_PTR(-ENOMEM); 1464 1465 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 1466 req->r_callback = rbd_osd_req_callback; 1467 req->r_priv = obj_req; 1468 1469 /* 1470 * Data objects may be stored in a separate pool, but always in 1471 * the same namespace in that pool as the header in its pool. 1472 */ 1473 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 1474 req->r_base_oloc.pool = rbd_dev->layout.pool_id; 1475 1476 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format, 1477 rbd_dev->header.object_prefix, 1478 obj_req->ex.oe_objno); 1479 if (ret) 1480 return ERR_PTR(ret); 1481 1482 return req; 1483 } 1484 1485 static struct ceph_osd_request * 1486 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops) 1487 { 1488 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc, 1489 num_ops); 1490 } 1491 1492 static struct rbd_obj_request *rbd_obj_request_create(void) 1493 { 1494 struct rbd_obj_request *obj_request; 1495 1496 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 1497 if (!obj_request) 1498 return NULL; 1499 1500 ceph_object_extent_init(&obj_request->ex); 1501 INIT_LIST_HEAD(&obj_request->osd_reqs); 1502 mutex_init(&obj_request->state_mutex); 1503 kref_init(&obj_request->kref); 1504 1505 dout("%s %p\n", __func__, obj_request); 1506 return obj_request; 1507 } 1508 1509 static void rbd_obj_request_destroy(struct kref *kref) 1510 { 1511 struct rbd_obj_request *obj_request; 1512 struct ceph_osd_request *osd_req; 1513 u32 i; 1514 1515 obj_request = container_of(kref, struct rbd_obj_request, kref); 1516 1517 dout("%s: obj %p\n", __func__, obj_request); 1518 1519 while (!list_empty(&obj_request->osd_reqs)) { 1520 osd_req = list_first_entry(&obj_request->osd_reqs, 1521 struct ceph_osd_request, r_private_item); 1522 list_del_init(&osd_req->r_private_item); 1523 ceph_osdc_put_request(osd_req); 1524 } 1525 1526 switch (obj_request->img_request->data_type) { 1527 case OBJ_REQUEST_NODATA: 1528 case OBJ_REQUEST_BIO: 1529 case OBJ_REQUEST_BVECS: 1530 break; /* Nothing to do */ 1531 case OBJ_REQUEST_OWN_BVECS: 1532 kfree(obj_request->bvec_pos.bvecs); 1533 break; 1534 default: 1535 BUG(); 1536 } 1537 1538 kfree(obj_request->img_extents); 1539 if (obj_request->copyup_bvecs) { 1540 for (i = 0; i < obj_request->copyup_bvec_count; i++) { 1541 if (obj_request->copyup_bvecs[i].bv_page) 1542 __free_page(obj_request->copyup_bvecs[i].bv_page); 1543 } 1544 kfree(obj_request->copyup_bvecs); 1545 } 1546 1547 kmem_cache_free(rbd_obj_request_cache, obj_request); 1548 } 1549 1550 /* It's OK to call this for a device with no parent */ 1551 1552 static void rbd_spec_put(struct rbd_spec *spec); 1553 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 1554 { 1555 rbd_dev_remove_parent(rbd_dev); 1556 rbd_spec_put(rbd_dev->parent_spec); 1557 rbd_dev->parent_spec = NULL; 1558 rbd_dev->parent_overlap = 0; 1559 } 1560 1561 /* 1562 * Parent image reference counting is used to determine when an 1563 * image's parent fields can be safely torn down--after there are no 1564 * more in-flight requests to the parent image. When the last 1565 * reference is dropped, cleaning them up is safe. 1566 */ 1567 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 1568 { 1569 int counter; 1570 1571 if (!rbd_dev->parent_spec) 1572 return; 1573 1574 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 1575 if (counter > 0) 1576 return; 1577 1578 /* Last reference; clean up parent data structures */ 1579 1580 if (!counter) 1581 rbd_dev_unparent(rbd_dev); 1582 else 1583 rbd_warn(rbd_dev, "parent reference underflow"); 1584 } 1585 1586 /* 1587 * If an image has a non-zero parent overlap, get a reference to its 1588 * parent. 1589 * 1590 * Returns true if the rbd device has a parent with a non-zero 1591 * overlap and a reference for it was successfully taken, or 1592 * false otherwise. 1593 */ 1594 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 1595 { 1596 int counter = 0; 1597 1598 if (!rbd_dev->parent_spec) 1599 return false; 1600 1601 if (rbd_dev->parent_overlap) 1602 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 1603 1604 if (counter < 0) 1605 rbd_warn(rbd_dev, "parent reference overflow"); 1606 1607 return counter > 0; 1608 } 1609 1610 static void rbd_img_request_init(struct rbd_img_request *img_request, 1611 struct rbd_device *rbd_dev, 1612 enum obj_operation_type op_type) 1613 { 1614 memset(img_request, 0, sizeof(*img_request)); 1615 1616 img_request->rbd_dev = rbd_dev; 1617 img_request->op_type = op_type; 1618 1619 INIT_LIST_HEAD(&img_request->lock_item); 1620 INIT_LIST_HEAD(&img_request->object_extents); 1621 mutex_init(&img_request->state_mutex); 1622 } 1623 1624 static void rbd_img_capture_header(struct rbd_img_request *img_req) 1625 { 1626 struct rbd_device *rbd_dev = img_req->rbd_dev; 1627 1628 lockdep_assert_held(&rbd_dev->header_rwsem); 1629 1630 if (rbd_img_is_write(img_req)) 1631 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc); 1632 else 1633 img_req->snap_id = rbd_dev->spec->snap_id; 1634 1635 if (rbd_dev_parent_get(rbd_dev)) 1636 img_request_layered_set(img_req); 1637 } 1638 1639 static void rbd_img_request_destroy(struct rbd_img_request *img_request) 1640 { 1641 struct rbd_obj_request *obj_request; 1642 struct rbd_obj_request *next_obj_request; 1643 1644 dout("%s: img %p\n", __func__, img_request); 1645 1646 WARN_ON(!list_empty(&img_request->lock_item)); 1647 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 1648 rbd_img_obj_request_del(img_request, obj_request); 1649 1650 if (img_request_layered_test(img_request)) 1651 rbd_dev_parent_put(img_request->rbd_dev); 1652 1653 if (rbd_img_is_write(img_request)) 1654 ceph_put_snap_context(img_request->snapc); 1655 1656 if (test_bit(IMG_REQ_CHILD, &img_request->flags)) 1657 kmem_cache_free(rbd_img_request_cache, img_request); 1658 } 1659 1660 #define BITS_PER_OBJ 2 1661 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ) 1662 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1) 1663 1664 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno, 1665 u64 *index, u8 *shift) 1666 { 1667 u32 off; 1668 1669 rbd_assert(objno < rbd_dev->object_map_size); 1670 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off); 1671 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ; 1672 } 1673 1674 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1675 { 1676 u64 index; 1677 u8 shift; 1678 1679 lockdep_assert_held(&rbd_dev->object_map_lock); 1680 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1681 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK; 1682 } 1683 1684 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val) 1685 { 1686 u64 index; 1687 u8 shift; 1688 u8 *p; 1689 1690 lockdep_assert_held(&rbd_dev->object_map_lock); 1691 rbd_assert(!(val & ~OBJ_MASK)); 1692 1693 __rbd_object_map_index(rbd_dev, objno, &index, &shift); 1694 p = &rbd_dev->object_map[index]; 1695 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift); 1696 } 1697 1698 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno) 1699 { 1700 u8 state; 1701 1702 spin_lock(&rbd_dev->object_map_lock); 1703 state = __rbd_object_map_get(rbd_dev, objno); 1704 spin_unlock(&rbd_dev->object_map_lock); 1705 return state; 1706 } 1707 1708 static bool use_object_map(struct rbd_device *rbd_dev) 1709 { 1710 /* 1711 * An image mapped read-only can't use the object map -- it isn't 1712 * loaded because the header lock isn't acquired. Someone else can 1713 * write to the image and update the object map behind our back. 1714 * 1715 * A snapshot can't be written to, so using the object map is always 1716 * safe. 1717 */ 1718 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev)) 1719 return false; 1720 1721 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) && 1722 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)); 1723 } 1724 1725 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno) 1726 { 1727 u8 state; 1728 1729 /* fall back to default logic if object map is disabled or invalid */ 1730 if (!use_object_map(rbd_dev)) 1731 return true; 1732 1733 state = rbd_object_map_get(rbd_dev, objno); 1734 return state != OBJECT_NONEXISTENT; 1735 } 1736 1737 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id, 1738 struct ceph_object_id *oid) 1739 { 1740 if (snap_id == CEPH_NOSNAP) 1741 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX, 1742 rbd_dev->spec->image_id); 1743 else 1744 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX, 1745 rbd_dev->spec->image_id, snap_id); 1746 } 1747 1748 static int rbd_object_map_lock(struct rbd_device *rbd_dev) 1749 { 1750 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1751 CEPH_DEFINE_OID_ONSTACK(oid); 1752 u8 lock_type; 1753 char *lock_tag; 1754 struct ceph_locker *lockers; 1755 u32 num_lockers; 1756 bool broke_lock = false; 1757 int ret; 1758 1759 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1760 1761 again: 1762 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1763 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0); 1764 if (ret != -EBUSY || broke_lock) { 1765 if (ret == -EEXIST) 1766 ret = 0; /* already locked by myself */ 1767 if (ret) 1768 rbd_warn(rbd_dev, "failed to lock object map: %d", ret); 1769 return ret; 1770 } 1771 1772 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc, 1773 RBD_LOCK_NAME, &lock_type, &lock_tag, 1774 &lockers, &num_lockers); 1775 if (ret) { 1776 if (ret == -ENOENT) 1777 goto again; 1778 1779 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret); 1780 return ret; 1781 } 1782 1783 kfree(lock_tag); 1784 if (num_lockers == 0) 1785 goto again; 1786 1787 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu", 1788 ENTITY_NAME(lockers[0].id.name)); 1789 1790 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc, 1791 RBD_LOCK_NAME, lockers[0].id.cookie, 1792 &lockers[0].id.name); 1793 ceph_free_lockers(lockers, num_lockers); 1794 if (ret) { 1795 if (ret == -ENOENT) 1796 goto again; 1797 1798 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret); 1799 return ret; 1800 } 1801 1802 broke_lock = true; 1803 goto again; 1804 } 1805 1806 static void rbd_object_map_unlock(struct rbd_device *rbd_dev) 1807 { 1808 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1809 CEPH_DEFINE_OID_ONSTACK(oid); 1810 int ret; 1811 1812 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid); 1813 1814 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME, 1815 ""); 1816 if (ret && ret != -ENOENT) 1817 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret); 1818 } 1819 1820 static int decode_object_map_header(void **p, void *end, u64 *object_map_size) 1821 { 1822 u8 struct_v; 1823 u32 struct_len; 1824 u32 header_len; 1825 void *header_end; 1826 int ret; 1827 1828 ceph_decode_32_safe(p, end, header_len, e_inval); 1829 header_end = *p + header_len; 1830 1831 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v, 1832 &struct_len); 1833 if (ret) 1834 return ret; 1835 1836 ceph_decode_64_safe(p, end, *object_map_size, e_inval); 1837 1838 *p = header_end; 1839 return 0; 1840 1841 e_inval: 1842 return -EINVAL; 1843 } 1844 1845 static int __rbd_object_map_load(struct rbd_device *rbd_dev) 1846 { 1847 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 1848 CEPH_DEFINE_OID_ONSTACK(oid); 1849 struct page **pages; 1850 void *p, *end; 1851 size_t reply_len; 1852 u64 num_objects; 1853 u64 object_map_bytes; 1854 u64 object_map_size; 1855 int num_pages; 1856 int ret; 1857 1858 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size); 1859 1860 num_objects = ceph_get_num_objects(&rbd_dev->layout, 1861 rbd_dev->mapping.size); 1862 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ, 1863 BITS_PER_BYTE); 1864 num_pages = calc_pages_for(0, object_map_bytes) + 1; 1865 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 1866 if (IS_ERR(pages)) 1867 return PTR_ERR(pages); 1868 1869 reply_len = num_pages * PAGE_SIZE; 1870 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid); 1871 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc, 1872 "rbd", "object_map_load", CEPH_OSD_FLAG_READ, 1873 NULL, 0, pages, &reply_len); 1874 if (ret) 1875 goto out; 1876 1877 p = page_address(pages[0]); 1878 end = p + min(reply_len, (size_t)PAGE_SIZE); 1879 ret = decode_object_map_header(&p, end, &object_map_size); 1880 if (ret) 1881 goto out; 1882 1883 if (object_map_size != num_objects) { 1884 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu", 1885 object_map_size, num_objects); 1886 ret = -EINVAL; 1887 goto out; 1888 } 1889 1890 if (offset_in_page(p) + object_map_bytes > reply_len) { 1891 ret = -EINVAL; 1892 goto out; 1893 } 1894 1895 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL); 1896 if (!rbd_dev->object_map) { 1897 ret = -ENOMEM; 1898 goto out; 1899 } 1900 1901 rbd_dev->object_map_size = object_map_size; 1902 ceph_copy_from_page_vector(pages, rbd_dev->object_map, 1903 offset_in_page(p), object_map_bytes); 1904 1905 out: 1906 ceph_release_page_vector(pages, num_pages); 1907 return ret; 1908 } 1909 1910 static void rbd_object_map_free(struct rbd_device *rbd_dev) 1911 { 1912 kvfree(rbd_dev->object_map); 1913 rbd_dev->object_map = NULL; 1914 rbd_dev->object_map_size = 0; 1915 } 1916 1917 static int rbd_object_map_load(struct rbd_device *rbd_dev) 1918 { 1919 int ret; 1920 1921 ret = __rbd_object_map_load(rbd_dev); 1922 if (ret) 1923 return ret; 1924 1925 ret = rbd_dev_v2_get_flags(rbd_dev); 1926 if (ret) { 1927 rbd_object_map_free(rbd_dev); 1928 return ret; 1929 } 1930 1931 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID) 1932 rbd_warn(rbd_dev, "object map is invalid"); 1933 1934 return 0; 1935 } 1936 1937 static int rbd_object_map_open(struct rbd_device *rbd_dev) 1938 { 1939 int ret; 1940 1941 ret = rbd_object_map_lock(rbd_dev); 1942 if (ret) 1943 return ret; 1944 1945 ret = rbd_object_map_load(rbd_dev); 1946 if (ret) { 1947 rbd_object_map_unlock(rbd_dev); 1948 return ret; 1949 } 1950 1951 return 0; 1952 } 1953 1954 static void rbd_object_map_close(struct rbd_device *rbd_dev) 1955 { 1956 rbd_object_map_free(rbd_dev); 1957 rbd_object_map_unlock(rbd_dev); 1958 } 1959 1960 /* 1961 * This function needs snap_id (or more precisely just something to 1962 * distinguish between HEAD and snapshot object maps), new_state and 1963 * current_state that were passed to rbd_object_map_update(). 1964 * 1965 * To avoid allocating and stashing a context we piggyback on the OSD 1966 * request. A HEAD update has two ops (assert_locked). For new_state 1967 * and current_state we decode our own object_map_update op, encoded in 1968 * rbd_cls_object_map_update(). 1969 */ 1970 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req, 1971 struct ceph_osd_request *osd_req) 1972 { 1973 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 1974 struct ceph_osd_data *osd_data; 1975 u64 objno; 1976 u8 state, new_state, uninitialized_var(current_state); 1977 bool has_current_state; 1978 void *p; 1979 1980 if (osd_req->r_result) 1981 return osd_req->r_result; 1982 1983 /* 1984 * Nothing to do for a snapshot object map. 1985 */ 1986 if (osd_req->r_num_ops == 1) 1987 return 0; 1988 1989 /* 1990 * Update in-memory HEAD object map. 1991 */ 1992 rbd_assert(osd_req->r_num_ops == 2); 1993 osd_data = osd_req_op_data(osd_req, 1, cls, request_data); 1994 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES); 1995 1996 p = page_address(osd_data->pages[0]); 1997 objno = ceph_decode_64(&p); 1998 rbd_assert(objno == obj_req->ex.oe_objno); 1999 rbd_assert(ceph_decode_64(&p) == objno + 1); 2000 new_state = ceph_decode_8(&p); 2001 has_current_state = ceph_decode_8(&p); 2002 if (has_current_state) 2003 current_state = ceph_decode_8(&p); 2004 2005 spin_lock(&rbd_dev->object_map_lock); 2006 state = __rbd_object_map_get(rbd_dev, objno); 2007 if (!has_current_state || current_state == state || 2008 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN)) 2009 __rbd_object_map_set(rbd_dev, objno, new_state); 2010 spin_unlock(&rbd_dev->object_map_lock); 2011 2012 return 0; 2013 } 2014 2015 static void rbd_object_map_callback(struct ceph_osd_request *osd_req) 2016 { 2017 struct rbd_obj_request *obj_req = osd_req->r_priv; 2018 int result; 2019 2020 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req, 2021 osd_req->r_result, obj_req); 2022 2023 result = rbd_object_map_update_finish(obj_req, osd_req); 2024 rbd_obj_handle_request(obj_req, result); 2025 } 2026 2027 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state) 2028 { 2029 u8 state = rbd_object_map_get(rbd_dev, objno); 2030 2031 if (state == new_state || 2032 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) || 2033 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING)) 2034 return false; 2035 2036 return true; 2037 } 2038 2039 static int rbd_cls_object_map_update(struct ceph_osd_request *req, 2040 int which, u64 objno, u8 new_state, 2041 const u8 *current_state) 2042 { 2043 struct page **pages; 2044 void *p, *start; 2045 int ret; 2046 2047 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update"); 2048 if (ret) 2049 return ret; 2050 2051 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2052 if (IS_ERR(pages)) 2053 return PTR_ERR(pages); 2054 2055 p = start = page_address(pages[0]); 2056 ceph_encode_64(&p, objno); 2057 ceph_encode_64(&p, objno + 1); 2058 ceph_encode_8(&p, new_state); 2059 if (current_state) { 2060 ceph_encode_8(&p, 1); 2061 ceph_encode_8(&p, *current_state); 2062 } else { 2063 ceph_encode_8(&p, 0); 2064 } 2065 2066 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0, 2067 false, true); 2068 return 0; 2069 } 2070 2071 /* 2072 * Return: 2073 * 0 - object map update sent 2074 * 1 - object map update isn't needed 2075 * <0 - error 2076 */ 2077 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id, 2078 u8 new_state, const u8 *current_state) 2079 { 2080 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2081 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 2082 struct ceph_osd_request *req; 2083 int num_ops = 1; 2084 int which = 0; 2085 int ret; 2086 2087 if (snap_id == CEPH_NOSNAP) { 2088 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state)) 2089 return 1; 2090 2091 num_ops++; /* assert_locked */ 2092 } 2093 2094 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO); 2095 if (!req) 2096 return -ENOMEM; 2097 2098 list_add_tail(&req->r_private_item, &obj_req->osd_reqs); 2099 req->r_callback = rbd_object_map_callback; 2100 req->r_priv = obj_req; 2101 2102 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid); 2103 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc); 2104 req->r_flags = CEPH_OSD_FLAG_WRITE; 2105 ktime_get_real_ts64(&req->r_mtime); 2106 2107 if (snap_id == CEPH_NOSNAP) { 2108 /* 2109 * Protect against possible race conditions during lock 2110 * ownership transitions. 2111 */ 2112 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME, 2113 CEPH_CLS_LOCK_EXCLUSIVE, "", ""); 2114 if (ret) 2115 return ret; 2116 } 2117 2118 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno, 2119 new_state, current_state); 2120 if (ret) 2121 return ret; 2122 2123 ret = ceph_osdc_alloc_messages(req, GFP_NOIO); 2124 if (ret) 2125 return ret; 2126 2127 ceph_osdc_start_request(osdc, req, false); 2128 return 0; 2129 } 2130 2131 static void prune_extents(struct ceph_file_extent *img_extents, 2132 u32 *num_img_extents, u64 overlap) 2133 { 2134 u32 cnt = *num_img_extents; 2135 2136 /* drop extents completely beyond the overlap */ 2137 while (cnt && img_extents[cnt - 1].fe_off >= overlap) 2138 cnt--; 2139 2140 if (cnt) { 2141 struct ceph_file_extent *ex = &img_extents[cnt - 1]; 2142 2143 /* trim final overlapping extent */ 2144 if (ex->fe_off + ex->fe_len > overlap) 2145 ex->fe_len = overlap - ex->fe_off; 2146 } 2147 2148 *num_img_extents = cnt; 2149 } 2150 2151 /* 2152 * Determine the byte range(s) covered by either just the object extent 2153 * or the entire object in the parent image. 2154 */ 2155 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req, 2156 bool entire) 2157 { 2158 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2159 int ret; 2160 2161 if (!rbd_dev->parent_overlap) 2162 return 0; 2163 2164 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno, 2165 entire ? 0 : obj_req->ex.oe_off, 2166 entire ? rbd_dev->layout.object_size : 2167 obj_req->ex.oe_len, 2168 &obj_req->img_extents, 2169 &obj_req->num_img_extents); 2170 if (ret) 2171 return ret; 2172 2173 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 2174 rbd_dev->parent_overlap); 2175 return 0; 2176 } 2177 2178 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which) 2179 { 2180 struct rbd_obj_request *obj_req = osd_req->r_priv; 2181 2182 switch (obj_req->img_request->data_type) { 2183 case OBJ_REQUEST_BIO: 2184 osd_req_op_extent_osd_data_bio(osd_req, which, 2185 &obj_req->bio_pos, 2186 obj_req->ex.oe_len); 2187 break; 2188 case OBJ_REQUEST_BVECS: 2189 case OBJ_REQUEST_OWN_BVECS: 2190 rbd_assert(obj_req->bvec_pos.iter.bi_size == 2191 obj_req->ex.oe_len); 2192 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count); 2193 osd_req_op_extent_osd_data_bvec_pos(osd_req, which, 2194 &obj_req->bvec_pos); 2195 break; 2196 default: 2197 BUG(); 2198 } 2199 } 2200 2201 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which) 2202 { 2203 struct page **pages; 2204 2205 /* 2206 * The response data for a STAT call consists of: 2207 * le64 length; 2208 * struct { 2209 * le32 tv_sec; 2210 * le32 tv_nsec; 2211 * } mtime; 2212 */ 2213 pages = ceph_alloc_page_vector(1, GFP_NOIO); 2214 if (IS_ERR(pages)) 2215 return PTR_ERR(pages); 2216 2217 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0); 2218 osd_req_op_raw_data_in_pages(osd_req, which, pages, 2219 8 + sizeof(struct ceph_timespec), 2220 0, false, true); 2221 return 0; 2222 } 2223 2224 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which, 2225 u32 bytes) 2226 { 2227 struct rbd_obj_request *obj_req = osd_req->r_priv; 2228 int ret; 2229 2230 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup"); 2231 if (ret) 2232 return ret; 2233 2234 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs, 2235 obj_req->copyup_bvec_count, bytes); 2236 return 0; 2237 } 2238 2239 static int rbd_obj_init_read(struct rbd_obj_request *obj_req) 2240 { 2241 obj_req->read_state = RBD_OBJ_READ_START; 2242 return 0; 2243 } 2244 2245 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2246 int which) 2247 { 2248 struct rbd_obj_request *obj_req = osd_req->r_priv; 2249 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2250 u16 opcode; 2251 2252 if (!use_object_map(rbd_dev) || 2253 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) { 2254 osd_req_op_alloc_hint_init(osd_req, which++, 2255 rbd_dev->layout.object_size, 2256 rbd_dev->layout.object_size); 2257 } 2258 2259 if (rbd_obj_is_entire(obj_req)) 2260 opcode = CEPH_OSD_OP_WRITEFULL; 2261 else 2262 opcode = CEPH_OSD_OP_WRITE; 2263 2264 osd_req_op_extent_init(osd_req, which, opcode, 2265 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2266 rbd_osd_setup_data(osd_req, which); 2267 } 2268 2269 static int rbd_obj_init_write(struct rbd_obj_request *obj_req) 2270 { 2271 int ret; 2272 2273 /* reverse map the entire object onto the parent */ 2274 ret = rbd_obj_calc_img_extents(obj_req, true); 2275 if (ret) 2276 return ret; 2277 2278 if (rbd_obj_copyup_enabled(obj_req)) 2279 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 2280 2281 obj_req->write_state = RBD_OBJ_WRITE_START; 2282 return 0; 2283 } 2284 2285 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req) 2286 { 2287 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE : 2288 CEPH_OSD_OP_ZERO; 2289 } 2290 2291 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req, 2292 int which) 2293 { 2294 struct rbd_obj_request *obj_req = osd_req->r_priv; 2295 2296 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) { 2297 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2298 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0); 2299 } else { 2300 osd_req_op_extent_init(osd_req, which, 2301 truncate_or_zero_opcode(obj_req), 2302 obj_req->ex.oe_off, obj_req->ex.oe_len, 2303 0, 0); 2304 } 2305 } 2306 2307 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req) 2308 { 2309 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2310 u64 off, next_off; 2311 int ret; 2312 2313 /* 2314 * Align the range to alloc_size boundary and punt on discards 2315 * that are too small to free up any space. 2316 * 2317 * alloc_size == object_size && is_tail() is a special case for 2318 * filestore with filestore_punch_hole = false, needed to allow 2319 * truncate (in addition to delete). 2320 */ 2321 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size || 2322 !rbd_obj_is_tail(obj_req)) { 2323 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size); 2324 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len, 2325 rbd_dev->opts->alloc_size); 2326 if (off >= next_off) 2327 return 1; 2328 2329 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__, 2330 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len, 2331 off, next_off - off); 2332 obj_req->ex.oe_off = off; 2333 obj_req->ex.oe_len = next_off - off; 2334 } 2335 2336 /* reverse map the entire object onto the parent */ 2337 ret = rbd_obj_calc_img_extents(obj_req, true); 2338 if (ret) 2339 return ret; 2340 2341 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2342 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) 2343 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2344 2345 obj_req->write_state = RBD_OBJ_WRITE_START; 2346 return 0; 2347 } 2348 2349 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req, 2350 int which) 2351 { 2352 struct rbd_obj_request *obj_req = osd_req->r_priv; 2353 u16 opcode; 2354 2355 if (rbd_obj_is_entire(obj_req)) { 2356 if (obj_req->num_img_extents) { 2357 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2358 osd_req_op_init(osd_req, which++, 2359 CEPH_OSD_OP_CREATE, 0); 2360 opcode = CEPH_OSD_OP_TRUNCATE; 2361 } else { 2362 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION); 2363 osd_req_op_init(osd_req, which++, 2364 CEPH_OSD_OP_DELETE, 0); 2365 opcode = 0; 2366 } 2367 } else { 2368 opcode = truncate_or_zero_opcode(obj_req); 2369 } 2370 2371 if (opcode) 2372 osd_req_op_extent_init(osd_req, which, opcode, 2373 obj_req->ex.oe_off, obj_req->ex.oe_len, 2374 0, 0); 2375 } 2376 2377 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req) 2378 { 2379 int ret; 2380 2381 /* reverse map the entire object onto the parent */ 2382 ret = rbd_obj_calc_img_extents(obj_req, true); 2383 if (ret) 2384 return ret; 2385 2386 if (rbd_obj_copyup_enabled(obj_req)) 2387 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED; 2388 if (!obj_req->num_img_extents) { 2389 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT; 2390 if (rbd_obj_is_entire(obj_req)) 2391 obj_req->flags |= RBD_OBJ_FLAG_DELETION; 2392 } 2393 2394 obj_req->write_state = RBD_OBJ_WRITE_START; 2395 return 0; 2396 } 2397 2398 static int count_write_ops(struct rbd_obj_request *obj_req) 2399 { 2400 struct rbd_img_request *img_req = obj_req->img_request; 2401 2402 switch (img_req->op_type) { 2403 case OBJ_OP_WRITE: 2404 if (!use_object_map(img_req->rbd_dev) || 2405 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) 2406 return 2; /* setallochint + write/writefull */ 2407 2408 return 1; /* write/writefull */ 2409 case OBJ_OP_DISCARD: 2410 return 1; /* delete/truncate/zero */ 2411 case OBJ_OP_ZEROOUT: 2412 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents && 2413 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)) 2414 return 2; /* create + truncate */ 2415 2416 return 1; /* delete/truncate/zero */ 2417 default: 2418 BUG(); 2419 } 2420 } 2421 2422 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req, 2423 int which) 2424 { 2425 struct rbd_obj_request *obj_req = osd_req->r_priv; 2426 2427 switch (obj_req->img_request->op_type) { 2428 case OBJ_OP_WRITE: 2429 __rbd_osd_setup_write_ops(osd_req, which); 2430 break; 2431 case OBJ_OP_DISCARD: 2432 __rbd_osd_setup_discard_ops(osd_req, which); 2433 break; 2434 case OBJ_OP_ZEROOUT: 2435 __rbd_osd_setup_zeroout_ops(osd_req, which); 2436 break; 2437 default: 2438 BUG(); 2439 } 2440 } 2441 2442 /* 2443 * Prune the list of object requests (adjust offset and/or length, drop 2444 * redundant requests). Prepare object request state machines and image 2445 * request state machine for execution. 2446 */ 2447 static int __rbd_img_fill_request(struct rbd_img_request *img_req) 2448 { 2449 struct rbd_obj_request *obj_req, *next_obj_req; 2450 int ret; 2451 2452 for_each_obj_request_safe(img_req, obj_req, next_obj_req) { 2453 switch (img_req->op_type) { 2454 case OBJ_OP_READ: 2455 ret = rbd_obj_init_read(obj_req); 2456 break; 2457 case OBJ_OP_WRITE: 2458 ret = rbd_obj_init_write(obj_req); 2459 break; 2460 case OBJ_OP_DISCARD: 2461 ret = rbd_obj_init_discard(obj_req); 2462 break; 2463 case OBJ_OP_ZEROOUT: 2464 ret = rbd_obj_init_zeroout(obj_req); 2465 break; 2466 default: 2467 BUG(); 2468 } 2469 if (ret < 0) 2470 return ret; 2471 if (ret > 0) { 2472 rbd_img_obj_request_del(img_req, obj_req); 2473 continue; 2474 } 2475 } 2476 2477 img_req->state = RBD_IMG_START; 2478 return 0; 2479 } 2480 2481 union rbd_img_fill_iter { 2482 struct ceph_bio_iter bio_iter; 2483 struct ceph_bvec_iter bvec_iter; 2484 }; 2485 2486 struct rbd_img_fill_ctx { 2487 enum obj_request_type pos_type; 2488 union rbd_img_fill_iter *pos; 2489 union rbd_img_fill_iter iter; 2490 ceph_object_extent_fn_t set_pos_fn; 2491 ceph_object_extent_fn_t count_fn; 2492 ceph_object_extent_fn_t copy_fn; 2493 }; 2494 2495 static struct ceph_object_extent *alloc_object_extent(void *arg) 2496 { 2497 struct rbd_img_request *img_req = arg; 2498 struct rbd_obj_request *obj_req; 2499 2500 obj_req = rbd_obj_request_create(); 2501 if (!obj_req) 2502 return NULL; 2503 2504 rbd_img_obj_request_add(img_req, obj_req); 2505 return &obj_req->ex; 2506 } 2507 2508 /* 2509 * While su != os && sc == 1 is technically not fancy (it's the same 2510 * layout as su == os && sc == 1), we can't use the nocopy path for it 2511 * because ->set_pos_fn() should be called only once per object. 2512 * ceph_file_to_extents() invokes action_fn once per stripe unit, so 2513 * treat su != os && sc == 1 as fancy. 2514 */ 2515 static bool rbd_layout_is_fancy(struct ceph_file_layout *l) 2516 { 2517 return l->stripe_unit != l->object_size; 2518 } 2519 2520 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req, 2521 struct ceph_file_extent *img_extents, 2522 u32 num_img_extents, 2523 struct rbd_img_fill_ctx *fctx) 2524 { 2525 u32 i; 2526 int ret; 2527 2528 img_req->data_type = fctx->pos_type; 2529 2530 /* 2531 * Create object requests and set each object request's starting 2532 * position in the provided bio (list) or bio_vec array. 2533 */ 2534 fctx->iter = *fctx->pos; 2535 for (i = 0; i < num_img_extents; i++) { 2536 ret = ceph_file_to_extents(&img_req->rbd_dev->layout, 2537 img_extents[i].fe_off, 2538 img_extents[i].fe_len, 2539 &img_req->object_extents, 2540 alloc_object_extent, img_req, 2541 fctx->set_pos_fn, &fctx->iter); 2542 if (ret) 2543 return ret; 2544 } 2545 2546 return __rbd_img_fill_request(img_req); 2547 } 2548 2549 /* 2550 * Map a list of image extents to a list of object extents, create the 2551 * corresponding object requests (normally each to a different object, 2552 * but not always) and add them to @img_req. For each object request, 2553 * set up its data descriptor to point to the corresponding chunk(s) of 2554 * @fctx->pos data buffer. 2555 * 2556 * Because ceph_file_to_extents() will merge adjacent object extents 2557 * together, each object request's data descriptor may point to multiple 2558 * different chunks of @fctx->pos data buffer. 2559 * 2560 * @fctx->pos data buffer is assumed to be large enough. 2561 */ 2562 static int rbd_img_fill_request(struct rbd_img_request *img_req, 2563 struct ceph_file_extent *img_extents, 2564 u32 num_img_extents, 2565 struct rbd_img_fill_ctx *fctx) 2566 { 2567 struct rbd_device *rbd_dev = img_req->rbd_dev; 2568 struct rbd_obj_request *obj_req; 2569 u32 i; 2570 int ret; 2571 2572 if (fctx->pos_type == OBJ_REQUEST_NODATA || 2573 !rbd_layout_is_fancy(&rbd_dev->layout)) 2574 return rbd_img_fill_request_nocopy(img_req, img_extents, 2575 num_img_extents, fctx); 2576 2577 img_req->data_type = OBJ_REQUEST_OWN_BVECS; 2578 2579 /* 2580 * Create object requests and determine ->bvec_count for each object 2581 * request. Note that ->bvec_count sum over all object requests may 2582 * be greater than the number of bio_vecs in the provided bio (list) 2583 * or bio_vec array because when mapped, those bio_vecs can straddle 2584 * stripe unit boundaries. 2585 */ 2586 fctx->iter = *fctx->pos; 2587 for (i = 0; i < num_img_extents; i++) { 2588 ret = ceph_file_to_extents(&rbd_dev->layout, 2589 img_extents[i].fe_off, 2590 img_extents[i].fe_len, 2591 &img_req->object_extents, 2592 alloc_object_extent, img_req, 2593 fctx->count_fn, &fctx->iter); 2594 if (ret) 2595 return ret; 2596 } 2597 2598 for_each_obj_request(img_req, obj_req) { 2599 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count, 2600 sizeof(*obj_req->bvec_pos.bvecs), 2601 GFP_NOIO); 2602 if (!obj_req->bvec_pos.bvecs) 2603 return -ENOMEM; 2604 } 2605 2606 /* 2607 * Fill in each object request's private bio_vec array, splitting and 2608 * rearranging the provided bio_vecs in stripe unit chunks as needed. 2609 */ 2610 fctx->iter = *fctx->pos; 2611 for (i = 0; i < num_img_extents; i++) { 2612 ret = ceph_iterate_extents(&rbd_dev->layout, 2613 img_extents[i].fe_off, 2614 img_extents[i].fe_len, 2615 &img_req->object_extents, 2616 fctx->copy_fn, &fctx->iter); 2617 if (ret) 2618 return ret; 2619 } 2620 2621 return __rbd_img_fill_request(img_req); 2622 } 2623 2624 static int rbd_img_fill_nodata(struct rbd_img_request *img_req, 2625 u64 off, u64 len) 2626 { 2627 struct ceph_file_extent ex = { off, len }; 2628 union rbd_img_fill_iter dummy = {}; 2629 struct rbd_img_fill_ctx fctx = { 2630 .pos_type = OBJ_REQUEST_NODATA, 2631 .pos = &dummy, 2632 }; 2633 2634 return rbd_img_fill_request(img_req, &ex, 1, &fctx); 2635 } 2636 2637 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2638 { 2639 struct rbd_obj_request *obj_req = 2640 container_of(ex, struct rbd_obj_request, ex); 2641 struct ceph_bio_iter *it = arg; 2642 2643 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2644 obj_req->bio_pos = *it; 2645 ceph_bio_iter_advance(it, bytes); 2646 } 2647 2648 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2649 { 2650 struct rbd_obj_request *obj_req = 2651 container_of(ex, struct rbd_obj_request, ex); 2652 struct ceph_bio_iter *it = arg; 2653 2654 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2655 ceph_bio_iter_advance_step(it, bytes, ({ 2656 obj_req->bvec_count++; 2657 })); 2658 2659 } 2660 2661 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2662 { 2663 struct rbd_obj_request *obj_req = 2664 container_of(ex, struct rbd_obj_request, ex); 2665 struct ceph_bio_iter *it = arg; 2666 2667 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes); 2668 ceph_bio_iter_advance_step(it, bytes, ({ 2669 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2670 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2671 })); 2672 } 2673 2674 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2675 struct ceph_file_extent *img_extents, 2676 u32 num_img_extents, 2677 struct ceph_bio_iter *bio_pos) 2678 { 2679 struct rbd_img_fill_ctx fctx = { 2680 .pos_type = OBJ_REQUEST_BIO, 2681 .pos = (union rbd_img_fill_iter *)bio_pos, 2682 .set_pos_fn = set_bio_pos, 2683 .count_fn = count_bio_bvecs, 2684 .copy_fn = copy_bio_bvecs, 2685 }; 2686 2687 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2688 &fctx); 2689 } 2690 2691 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req, 2692 u64 off, u64 len, struct bio *bio) 2693 { 2694 struct ceph_file_extent ex = { off, len }; 2695 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter }; 2696 2697 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it); 2698 } 2699 2700 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg) 2701 { 2702 struct rbd_obj_request *obj_req = 2703 container_of(ex, struct rbd_obj_request, ex); 2704 struct ceph_bvec_iter *it = arg; 2705 2706 obj_req->bvec_pos = *it; 2707 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes); 2708 ceph_bvec_iter_advance(it, bytes); 2709 } 2710 2711 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2712 { 2713 struct rbd_obj_request *obj_req = 2714 container_of(ex, struct rbd_obj_request, ex); 2715 struct ceph_bvec_iter *it = arg; 2716 2717 ceph_bvec_iter_advance_step(it, bytes, ({ 2718 obj_req->bvec_count++; 2719 })); 2720 } 2721 2722 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg) 2723 { 2724 struct rbd_obj_request *obj_req = 2725 container_of(ex, struct rbd_obj_request, ex); 2726 struct ceph_bvec_iter *it = arg; 2727 2728 ceph_bvec_iter_advance_step(it, bytes, ({ 2729 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv; 2730 obj_req->bvec_pos.iter.bi_size += bv.bv_len; 2731 })); 2732 } 2733 2734 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2735 struct ceph_file_extent *img_extents, 2736 u32 num_img_extents, 2737 struct ceph_bvec_iter *bvec_pos) 2738 { 2739 struct rbd_img_fill_ctx fctx = { 2740 .pos_type = OBJ_REQUEST_BVECS, 2741 .pos = (union rbd_img_fill_iter *)bvec_pos, 2742 .set_pos_fn = set_bvec_pos, 2743 .count_fn = count_bvecs, 2744 .copy_fn = copy_bvecs, 2745 }; 2746 2747 return rbd_img_fill_request(img_req, img_extents, num_img_extents, 2748 &fctx); 2749 } 2750 2751 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req, 2752 struct ceph_file_extent *img_extents, 2753 u32 num_img_extents, 2754 struct bio_vec *bvecs) 2755 { 2756 struct ceph_bvec_iter it = { 2757 .bvecs = bvecs, 2758 .iter = { .bi_size = ceph_file_extents_bytes(img_extents, 2759 num_img_extents) }, 2760 }; 2761 2762 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents, 2763 &it); 2764 } 2765 2766 static void rbd_img_handle_request_work(struct work_struct *work) 2767 { 2768 struct rbd_img_request *img_req = 2769 container_of(work, struct rbd_img_request, work); 2770 2771 rbd_img_handle_request(img_req, img_req->work_result); 2772 } 2773 2774 static void rbd_img_schedule(struct rbd_img_request *img_req, int result) 2775 { 2776 INIT_WORK(&img_req->work, rbd_img_handle_request_work); 2777 img_req->work_result = result; 2778 queue_work(rbd_wq, &img_req->work); 2779 } 2780 2781 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req) 2782 { 2783 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2784 2785 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) { 2786 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2787 return true; 2788 } 2789 2790 dout("%s %p objno %llu assuming dne\n", __func__, obj_req, 2791 obj_req->ex.oe_objno); 2792 return false; 2793 } 2794 2795 static int rbd_obj_read_object(struct rbd_obj_request *obj_req) 2796 { 2797 struct ceph_osd_request *osd_req; 2798 int ret; 2799 2800 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1); 2801 if (IS_ERR(osd_req)) 2802 return PTR_ERR(osd_req); 2803 2804 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ, 2805 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0); 2806 rbd_osd_setup_data(osd_req, 0); 2807 rbd_osd_format_read(osd_req); 2808 2809 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 2810 if (ret) 2811 return ret; 2812 2813 rbd_osd_submit(osd_req); 2814 return 0; 2815 } 2816 2817 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req) 2818 { 2819 struct rbd_img_request *img_req = obj_req->img_request; 2820 struct rbd_device *parent = img_req->rbd_dev->parent; 2821 struct rbd_img_request *child_img_req; 2822 int ret; 2823 2824 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2825 if (!child_img_req) 2826 return -ENOMEM; 2827 2828 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ); 2829 __set_bit(IMG_REQ_CHILD, &child_img_req->flags); 2830 child_img_req->obj_request = obj_req; 2831 2832 down_read(&parent->header_rwsem); 2833 rbd_img_capture_header(child_img_req); 2834 up_read(&parent->header_rwsem); 2835 2836 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req, 2837 obj_req); 2838 2839 if (!rbd_img_is_write(img_req)) { 2840 switch (img_req->data_type) { 2841 case OBJ_REQUEST_BIO: 2842 ret = __rbd_img_fill_from_bio(child_img_req, 2843 obj_req->img_extents, 2844 obj_req->num_img_extents, 2845 &obj_req->bio_pos); 2846 break; 2847 case OBJ_REQUEST_BVECS: 2848 case OBJ_REQUEST_OWN_BVECS: 2849 ret = __rbd_img_fill_from_bvecs(child_img_req, 2850 obj_req->img_extents, 2851 obj_req->num_img_extents, 2852 &obj_req->bvec_pos); 2853 break; 2854 default: 2855 BUG(); 2856 } 2857 } else { 2858 ret = rbd_img_fill_from_bvecs(child_img_req, 2859 obj_req->img_extents, 2860 obj_req->num_img_extents, 2861 obj_req->copyup_bvecs); 2862 } 2863 if (ret) { 2864 rbd_img_request_destroy(child_img_req); 2865 return ret; 2866 } 2867 2868 /* avoid parent chain recursion */ 2869 rbd_img_schedule(child_img_req, 0); 2870 return 0; 2871 } 2872 2873 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result) 2874 { 2875 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2876 int ret; 2877 2878 again: 2879 switch (obj_req->read_state) { 2880 case RBD_OBJ_READ_START: 2881 rbd_assert(!*result); 2882 2883 if (!rbd_obj_may_exist(obj_req)) { 2884 *result = -ENOENT; 2885 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2886 goto again; 2887 } 2888 2889 ret = rbd_obj_read_object(obj_req); 2890 if (ret) { 2891 *result = ret; 2892 return true; 2893 } 2894 obj_req->read_state = RBD_OBJ_READ_OBJECT; 2895 return false; 2896 case RBD_OBJ_READ_OBJECT: 2897 if (*result == -ENOENT && rbd_dev->parent_overlap) { 2898 /* reverse map this object extent onto the parent */ 2899 ret = rbd_obj_calc_img_extents(obj_req, false); 2900 if (ret) { 2901 *result = ret; 2902 return true; 2903 } 2904 if (obj_req->num_img_extents) { 2905 ret = rbd_obj_read_from_parent(obj_req); 2906 if (ret) { 2907 *result = ret; 2908 return true; 2909 } 2910 obj_req->read_state = RBD_OBJ_READ_PARENT; 2911 return false; 2912 } 2913 } 2914 2915 /* 2916 * -ENOENT means a hole in the image -- zero-fill the entire 2917 * length of the request. A short read also implies zero-fill 2918 * to the end of the request. 2919 */ 2920 if (*result == -ENOENT) { 2921 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len); 2922 *result = 0; 2923 } else if (*result >= 0) { 2924 if (*result < obj_req->ex.oe_len) 2925 rbd_obj_zero_range(obj_req, *result, 2926 obj_req->ex.oe_len - *result); 2927 else 2928 rbd_assert(*result == obj_req->ex.oe_len); 2929 *result = 0; 2930 } 2931 return true; 2932 case RBD_OBJ_READ_PARENT: 2933 /* 2934 * The parent image is read only up to the overlap -- zero-fill 2935 * from the overlap to the end of the request. 2936 */ 2937 if (!*result) { 2938 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req); 2939 2940 if (obj_overlap < obj_req->ex.oe_len) 2941 rbd_obj_zero_range(obj_req, obj_overlap, 2942 obj_req->ex.oe_len - obj_overlap); 2943 } 2944 return true; 2945 default: 2946 BUG(); 2947 } 2948 } 2949 2950 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req) 2951 { 2952 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2953 2954 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) 2955 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST; 2956 2957 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) && 2958 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) { 2959 dout("%s %p noop for nonexistent\n", __func__, obj_req); 2960 return true; 2961 } 2962 2963 return false; 2964 } 2965 2966 /* 2967 * Return: 2968 * 0 - object map update sent 2969 * 1 - object map update isn't needed 2970 * <0 - error 2971 */ 2972 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req) 2973 { 2974 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 2975 u8 new_state; 2976 2977 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 2978 return 1; 2979 2980 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 2981 new_state = OBJECT_PENDING; 2982 else 2983 new_state = OBJECT_EXISTS; 2984 2985 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL); 2986 } 2987 2988 static int rbd_obj_write_object(struct rbd_obj_request *obj_req) 2989 { 2990 struct ceph_osd_request *osd_req; 2991 int num_ops = count_write_ops(obj_req); 2992 int which = 0; 2993 int ret; 2994 2995 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) 2996 num_ops++; /* stat */ 2997 2998 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 2999 if (IS_ERR(osd_req)) 3000 return PTR_ERR(osd_req); 3001 3002 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3003 ret = rbd_osd_setup_stat(osd_req, which++); 3004 if (ret) 3005 return ret; 3006 } 3007 3008 rbd_osd_setup_write_ops(osd_req, which); 3009 rbd_osd_format_write(osd_req); 3010 3011 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3012 if (ret) 3013 return ret; 3014 3015 rbd_osd_submit(osd_req); 3016 return 0; 3017 } 3018 3019 /* 3020 * copyup_bvecs pages are never highmem pages 3021 */ 3022 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes) 3023 { 3024 struct ceph_bvec_iter it = { 3025 .bvecs = bvecs, 3026 .iter = { .bi_size = bytes }, 3027 }; 3028 3029 ceph_bvec_iter_advance_step(&it, bytes, ({ 3030 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0, 3031 bv.bv_len)) 3032 return false; 3033 })); 3034 return true; 3035 } 3036 3037 #define MODS_ONLY U32_MAX 3038 3039 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req, 3040 u32 bytes) 3041 { 3042 struct ceph_osd_request *osd_req; 3043 int ret; 3044 3045 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3046 rbd_assert(bytes > 0 && bytes != MODS_ONLY); 3047 3048 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1); 3049 if (IS_ERR(osd_req)) 3050 return PTR_ERR(osd_req); 3051 3052 ret = rbd_osd_setup_copyup(osd_req, 0, bytes); 3053 if (ret) 3054 return ret; 3055 3056 rbd_osd_format_write(osd_req); 3057 3058 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3059 if (ret) 3060 return ret; 3061 3062 rbd_osd_submit(osd_req); 3063 return 0; 3064 } 3065 3066 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req, 3067 u32 bytes) 3068 { 3069 struct ceph_osd_request *osd_req; 3070 int num_ops = count_write_ops(obj_req); 3071 int which = 0; 3072 int ret; 3073 3074 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes); 3075 3076 if (bytes != MODS_ONLY) 3077 num_ops++; /* copyup */ 3078 3079 osd_req = rbd_obj_add_osd_request(obj_req, num_ops); 3080 if (IS_ERR(osd_req)) 3081 return PTR_ERR(osd_req); 3082 3083 if (bytes != MODS_ONLY) { 3084 ret = rbd_osd_setup_copyup(osd_req, which++, bytes); 3085 if (ret) 3086 return ret; 3087 } 3088 3089 rbd_osd_setup_write_ops(osd_req, which); 3090 rbd_osd_format_write(osd_req); 3091 3092 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO); 3093 if (ret) 3094 return ret; 3095 3096 rbd_osd_submit(osd_req); 3097 return 0; 3098 } 3099 3100 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap) 3101 { 3102 u32 i; 3103 3104 rbd_assert(!obj_req->copyup_bvecs); 3105 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap); 3106 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count, 3107 sizeof(*obj_req->copyup_bvecs), 3108 GFP_NOIO); 3109 if (!obj_req->copyup_bvecs) 3110 return -ENOMEM; 3111 3112 for (i = 0; i < obj_req->copyup_bvec_count; i++) { 3113 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE); 3114 3115 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO); 3116 if (!obj_req->copyup_bvecs[i].bv_page) 3117 return -ENOMEM; 3118 3119 obj_req->copyup_bvecs[i].bv_offset = 0; 3120 obj_req->copyup_bvecs[i].bv_len = len; 3121 obj_overlap -= len; 3122 } 3123 3124 rbd_assert(!obj_overlap); 3125 return 0; 3126 } 3127 3128 /* 3129 * The target object doesn't exist. Read the data for the entire 3130 * target object up to the overlap point (if any) from the parent, 3131 * so we can use it for a copyup. 3132 */ 3133 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req) 3134 { 3135 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3136 int ret; 3137 3138 rbd_assert(obj_req->num_img_extents); 3139 prune_extents(obj_req->img_extents, &obj_req->num_img_extents, 3140 rbd_dev->parent_overlap); 3141 if (!obj_req->num_img_extents) { 3142 /* 3143 * The overlap has become 0 (most likely because the 3144 * image has been flattened). Re-submit the original write 3145 * request -- pass MODS_ONLY since the copyup isn't needed 3146 * anymore. 3147 */ 3148 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY); 3149 } 3150 3151 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req)); 3152 if (ret) 3153 return ret; 3154 3155 return rbd_obj_read_from_parent(obj_req); 3156 } 3157 3158 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req) 3159 { 3160 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3161 struct ceph_snap_context *snapc = obj_req->img_request->snapc; 3162 u8 new_state; 3163 u32 i; 3164 int ret; 3165 3166 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3167 3168 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3169 return; 3170 3171 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3172 return; 3173 3174 for (i = 0; i < snapc->num_snaps; i++) { 3175 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) && 3176 i + 1 < snapc->num_snaps) 3177 new_state = OBJECT_EXISTS_CLEAN; 3178 else 3179 new_state = OBJECT_EXISTS; 3180 3181 ret = rbd_object_map_update(obj_req, snapc->snaps[i], 3182 new_state, NULL); 3183 if (ret < 0) { 3184 obj_req->pending.result = ret; 3185 return; 3186 } 3187 3188 rbd_assert(!ret); 3189 obj_req->pending.num_pending++; 3190 } 3191 } 3192 3193 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req) 3194 { 3195 u32 bytes = rbd_obj_img_extents_bytes(obj_req); 3196 int ret; 3197 3198 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending); 3199 3200 /* 3201 * Only send non-zero copyup data to save some I/O and network 3202 * bandwidth -- zero copyup data is equivalent to the object not 3203 * existing. 3204 */ 3205 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS) 3206 bytes = 0; 3207 3208 if (obj_req->img_request->snapc->num_snaps && bytes > 0) { 3209 /* 3210 * Send a copyup request with an empty snapshot context to 3211 * deep-copyup the object through all existing snapshots. 3212 * A second request with the current snapshot context will be 3213 * sent for the actual modification. 3214 */ 3215 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes); 3216 if (ret) { 3217 obj_req->pending.result = ret; 3218 return; 3219 } 3220 3221 obj_req->pending.num_pending++; 3222 bytes = MODS_ONLY; 3223 } 3224 3225 ret = rbd_obj_copyup_current_snapc(obj_req, bytes); 3226 if (ret) { 3227 obj_req->pending.result = ret; 3228 return; 3229 } 3230 3231 obj_req->pending.num_pending++; 3232 } 3233 3234 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result) 3235 { 3236 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3237 int ret; 3238 3239 again: 3240 switch (obj_req->copyup_state) { 3241 case RBD_OBJ_COPYUP_START: 3242 rbd_assert(!*result); 3243 3244 ret = rbd_obj_copyup_read_parent(obj_req); 3245 if (ret) { 3246 *result = ret; 3247 return true; 3248 } 3249 if (obj_req->num_img_extents) 3250 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT; 3251 else 3252 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3253 return false; 3254 case RBD_OBJ_COPYUP_READ_PARENT: 3255 if (*result) 3256 return true; 3257 3258 if (is_zero_bvecs(obj_req->copyup_bvecs, 3259 rbd_obj_img_extents_bytes(obj_req))) { 3260 dout("%s %p detected zeros\n", __func__, obj_req); 3261 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS; 3262 } 3263 3264 rbd_obj_copyup_object_maps(obj_req); 3265 if (!obj_req->pending.num_pending) { 3266 *result = obj_req->pending.result; 3267 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS; 3268 goto again; 3269 } 3270 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS; 3271 return false; 3272 case __RBD_OBJ_COPYUP_OBJECT_MAPS: 3273 if (!pending_result_dec(&obj_req->pending, result)) 3274 return false; 3275 /* fall through */ 3276 case RBD_OBJ_COPYUP_OBJECT_MAPS: 3277 if (*result) { 3278 rbd_warn(rbd_dev, "snap object map update failed: %d", 3279 *result); 3280 return true; 3281 } 3282 3283 rbd_obj_copyup_write_object(obj_req); 3284 if (!obj_req->pending.num_pending) { 3285 *result = obj_req->pending.result; 3286 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT; 3287 goto again; 3288 } 3289 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT; 3290 return false; 3291 case __RBD_OBJ_COPYUP_WRITE_OBJECT: 3292 if (!pending_result_dec(&obj_req->pending, result)) 3293 return false; 3294 /* fall through */ 3295 case RBD_OBJ_COPYUP_WRITE_OBJECT: 3296 return true; 3297 default: 3298 BUG(); 3299 } 3300 } 3301 3302 /* 3303 * Return: 3304 * 0 - object map update sent 3305 * 1 - object map update isn't needed 3306 * <0 - error 3307 */ 3308 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req) 3309 { 3310 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3311 u8 current_state = OBJECT_PENDING; 3312 3313 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3314 return 1; 3315 3316 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION)) 3317 return 1; 3318 3319 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT, 3320 ¤t_state); 3321 } 3322 3323 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result) 3324 { 3325 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev; 3326 int ret; 3327 3328 again: 3329 switch (obj_req->write_state) { 3330 case RBD_OBJ_WRITE_START: 3331 rbd_assert(!*result); 3332 3333 if (rbd_obj_write_is_noop(obj_req)) 3334 return true; 3335 3336 ret = rbd_obj_write_pre_object_map(obj_req); 3337 if (ret < 0) { 3338 *result = ret; 3339 return true; 3340 } 3341 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP; 3342 if (ret > 0) 3343 goto again; 3344 return false; 3345 case RBD_OBJ_WRITE_PRE_OBJECT_MAP: 3346 if (*result) { 3347 rbd_warn(rbd_dev, "pre object map update failed: %d", 3348 *result); 3349 return true; 3350 } 3351 ret = rbd_obj_write_object(obj_req); 3352 if (ret) { 3353 *result = ret; 3354 return true; 3355 } 3356 obj_req->write_state = RBD_OBJ_WRITE_OBJECT; 3357 return false; 3358 case RBD_OBJ_WRITE_OBJECT: 3359 if (*result == -ENOENT) { 3360 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) { 3361 *result = 0; 3362 obj_req->copyup_state = RBD_OBJ_COPYUP_START; 3363 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP; 3364 goto again; 3365 } 3366 /* 3367 * On a non-existent object: 3368 * delete - -ENOENT, truncate/zero - 0 3369 */ 3370 if (obj_req->flags & RBD_OBJ_FLAG_DELETION) 3371 *result = 0; 3372 } 3373 if (*result) 3374 return true; 3375 3376 obj_req->write_state = RBD_OBJ_WRITE_COPYUP; 3377 goto again; 3378 case __RBD_OBJ_WRITE_COPYUP: 3379 if (!rbd_obj_advance_copyup(obj_req, result)) 3380 return false; 3381 /* fall through */ 3382 case RBD_OBJ_WRITE_COPYUP: 3383 if (*result) { 3384 rbd_warn(rbd_dev, "copyup failed: %d", *result); 3385 return true; 3386 } 3387 ret = rbd_obj_write_post_object_map(obj_req); 3388 if (ret < 0) { 3389 *result = ret; 3390 return true; 3391 } 3392 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP; 3393 if (ret > 0) 3394 goto again; 3395 return false; 3396 case RBD_OBJ_WRITE_POST_OBJECT_MAP: 3397 if (*result) 3398 rbd_warn(rbd_dev, "post object map update failed: %d", 3399 *result); 3400 return true; 3401 default: 3402 BUG(); 3403 } 3404 } 3405 3406 /* 3407 * Return true if @obj_req is completed. 3408 */ 3409 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req, 3410 int *result) 3411 { 3412 struct rbd_img_request *img_req = obj_req->img_request; 3413 struct rbd_device *rbd_dev = img_req->rbd_dev; 3414 bool done; 3415 3416 mutex_lock(&obj_req->state_mutex); 3417 if (!rbd_img_is_write(img_req)) 3418 done = rbd_obj_advance_read(obj_req, result); 3419 else 3420 done = rbd_obj_advance_write(obj_req, result); 3421 mutex_unlock(&obj_req->state_mutex); 3422 3423 if (done && *result) { 3424 rbd_assert(*result < 0); 3425 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d", 3426 obj_op_name(img_req->op_type), obj_req->ex.oe_objno, 3427 obj_req->ex.oe_off, obj_req->ex.oe_len, *result); 3428 } 3429 return done; 3430 } 3431 3432 /* 3433 * This is open-coded in rbd_img_handle_request() to avoid parent chain 3434 * recursion. 3435 */ 3436 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result) 3437 { 3438 if (__rbd_obj_handle_request(obj_req, &result)) 3439 rbd_img_handle_request(obj_req->img_request, result); 3440 } 3441 3442 static bool need_exclusive_lock(struct rbd_img_request *img_req) 3443 { 3444 struct rbd_device *rbd_dev = img_req->rbd_dev; 3445 3446 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) 3447 return false; 3448 3449 if (rbd_is_ro(rbd_dev)) 3450 return false; 3451 3452 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags)); 3453 if (rbd_dev->opts->lock_on_read || 3454 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) 3455 return true; 3456 3457 return rbd_img_is_write(img_req); 3458 } 3459 3460 static bool rbd_lock_add_request(struct rbd_img_request *img_req) 3461 { 3462 struct rbd_device *rbd_dev = img_req->rbd_dev; 3463 bool locked; 3464 3465 lockdep_assert_held(&rbd_dev->lock_rwsem); 3466 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED; 3467 spin_lock(&rbd_dev->lock_lists_lock); 3468 rbd_assert(list_empty(&img_req->lock_item)); 3469 if (!locked) 3470 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list); 3471 else 3472 list_add_tail(&img_req->lock_item, &rbd_dev->running_list); 3473 spin_unlock(&rbd_dev->lock_lists_lock); 3474 return locked; 3475 } 3476 3477 static void rbd_lock_del_request(struct rbd_img_request *img_req) 3478 { 3479 struct rbd_device *rbd_dev = img_req->rbd_dev; 3480 bool need_wakeup; 3481 3482 lockdep_assert_held(&rbd_dev->lock_rwsem); 3483 spin_lock(&rbd_dev->lock_lists_lock); 3484 rbd_assert(!list_empty(&img_req->lock_item)); 3485 list_del_init(&img_req->lock_item); 3486 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING && 3487 list_empty(&rbd_dev->running_list)); 3488 spin_unlock(&rbd_dev->lock_lists_lock); 3489 if (need_wakeup) 3490 complete(&rbd_dev->releasing_wait); 3491 } 3492 3493 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req) 3494 { 3495 struct rbd_device *rbd_dev = img_req->rbd_dev; 3496 3497 if (!need_exclusive_lock(img_req)) 3498 return 1; 3499 3500 if (rbd_lock_add_request(img_req)) 3501 return 1; 3502 3503 if (rbd_dev->opts->exclusive) { 3504 WARN_ON(1); /* lock got released? */ 3505 return -EROFS; 3506 } 3507 3508 /* 3509 * Note the use of mod_delayed_work() in rbd_acquire_lock() 3510 * and cancel_delayed_work() in wake_lock_waiters(). 3511 */ 3512 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev); 3513 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 3514 return 0; 3515 } 3516 3517 static void rbd_img_object_requests(struct rbd_img_request *img_req) 3518 { 3519 struct rbd_obj_request *obj_req; 3520 3521 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending); 3522 3523 for_each_obj_request(img_req, obj_req) { 3524 int result = 0; 3525 3526 if (__rbd_obj_handle_request(obj_req, &result)) { 3527 if (result) { 3528 img_req->pending.result = result; 3529 return; 3530 } 3531 } else { 3532 img_req->pending.num_pending++; 3533 } 3534 } 3535 } 3536 3537 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result) 3538 { 3539 struct rbd_device *rbd_dev = img_req->rbd_dev; 3540 int ret; 3541 3542 again: 3543 switch (img_req->state) { 3544 case RBD_IMG_START: 3545 rbd_assert(!*result); 3546 3547 ret = rbd_img_exclusive_lock(img_req); 3548 if (ret < 0) { 3549 *result = ret; 3550 return true; 3551 } 3552 img_req->state = RBD_IMG_EXCLUSIVE_LOCK; 3553 if (ret > 0) 3554 goto again; 3555 return false; 3556 case RBD_IMG_EXCLUSIVE_LOCK: 3557 if (*result) 3558 return true; 3559 3560 rbd_assert(!need_exclusive_lock(img_req) || 3561 __rbd_is_lock_owner(rbd_dev)); 3562 3563 rbd_img_object_requests(img_req); 3564 if (!img_req->pending.num_pending) { 3565 *result = img_req->pending.result; 3566 img_req->state = RBD_IMG_OBJECT_REQUESTS; 3567 goto again; 3568 } 3569 img_req->state = __RBD_IMG_OBJECT_REQUESTS; 3570 return false; 3571 case __RBD_IMG_OBJECT_REQUESTS: 3572 if (!pending_result_dec(&img_req->pending, result)) 3573 return false; 3574 /* fall through */ 3575 case RBD_IMG_OBJECT_REQUESTS: 3576 return true; 3577 default: 3578 BUG(); 3579 } 3580 } 3581 3582 /* 3583 * Return true if @img_req is completed. 3584 */ 3585 static bool __rbd_img_handle_request(struct rbd_img_request *img_req, 3586 int *result) 3587 { 3588 struct rbd_device *rbd_dev = img_req->rbd_dev; 3589 bool done; 3590 3591 if (need_exclusive_lock(img_req)) { 3592 down_read(&rbd_dev->lock_rwsem); 3593 mutex_lock(&img_req->state_mutex); 3594 done = rbd_img_advance(img_req, result); 3595 if (done) 3596 rbd_lock_del_request(img_req); 3597 mutex_unlock(&img_req->state_mutex); 3598 up_read(&rbd_dev->lock_rwsem); 3599 } else { 3600 mutex_lock(&img_req->state_mutex); 3601 done = rbd_img_advance(img_req, result); 3602 mutex_unlock(&img_req->state_mutex); 3603 } 3604 3605 if (done && *result) { 3606 rbd_assert(*result < 0); 3607 rbd_warn(rbd_dev, "%s%s result %d", 3608 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "", 3609 obj_op_name(img_req->op_type), *result); 3610 } 3611 return done; 3612 } 3613 3614 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result) 3615 { 3616 again: 3617 if (!__rbd_img_handle_request(img_req, &result)) 3618 return; 3619 3620 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) { 3621 struct rbd_obj_request *obj_req = img_req->obj_request; 3622 3623 rbd_img_request_destroy(img_req); 3624 if (__rbd_obj_handle_request(obj_req, &result)) { 3625 img_req = obj_req->img_request; 3626 goto again; 3627 } 3628 } else { 3629 struct request *rq = blk_mq_rq_from_pdu(img_req); 3630 3631 rbd_img_request_destroy(img_req); 3632 blk_mq_end_request(rq, errno_to_blk_status(result)); 3633 } 3634 } 3635 3636 static const struct rbd_client_id rbd_empty_cid; 3637 3638 static bool rbd_cid_equal(const struct rbd_client_id *lhs, 3639 const struct rbd_client_id *rhs) 3640 { 3641 return lhs->gid == rhs->gid && lhs->handle == rhs->handle; 3642 } 3643 3644 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev) 3645 { 3646 struct rbd_client_id cid; 3647 3648 mutex_lock(&rbd_dev->watch_mutex); 3649 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client); 3650 cid.handle = rbd_dev->watch_cookie; 3651 mutex_unlock(&rbd_dev->watch_mutex); 3652 return cid; 3653 } 3654 3655 /* 3656 * lock_rwsem must be held for write 3657 */ 3658 static void rbd_set_owner_cid(struct rbd_device *rbd_dev, 3659 const struct rbd_client_id *cid) 3660 { 3661 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev, 3662 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle, 3663 cid->gid, cid->handle); 3664 rbd_dev->owner_cid = *cid; /* struct */ 3665 } 3666 3667 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf) 3668 { 3669 mutex_lock(&rbd_dev->watch_mutex); 3670 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie); 3671 mutex_unlock(&rbd_dev->watch_mutex); 3672 } 3673 3674 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie) 3675 { 3676 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3677 3678 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED; 3679 strcpy(rbd_dev->lock_cookie, cookie); 3680 rbd_set_owner_cid(rbd_dev, &cid); 3681 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work); 3682 } 3683 3684 /* 3685 * lock_rwsem must be held for write 3686 */ 3687 static int rbd_lock(struct rbd_device *rbd_dev) 3688 { 3689 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3690 char cookie[32]; 3691 int ret; 3692 3693 WARN_ON(__rbd_is_lock_owner(rbd_dev) || 3694 rbd_dev->lock_cookie[0] != '\0'); 3695 3696 format_lock_cookie(rbd_dev, cookie); 3697 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3698 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie, 3699 RBD_LOCK_TAG, "", 0); 3700 if (ret) 3701 return ret; 3702 3703 __rbd_lock(rbd_dev, cookie); 3704 return 0; 3705 } 3706 3707 /* 3708 * lock_rwsem must be held for write 3709 */ 3710 static void rbd_unlock(struct rbd_device *rbd_dev) 3711 { 3712 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3713 int ret; 3714 3715 WARN_ON(!__rbd_is_lock_owner(rbd_dev) || 3716 rbd_dev->lock_cookie[0] == '\0'); 3717 3718 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 3719 RBD_LOCK_NAME, rbd_dev->lock_cookie); 3720 if (ret && ret != -ENOENT) 3721 rbd_warn(rbd_dev, "failed to unlock header: %d", ret); 3722 3723 /* treat errors as the image is unlocked */ 3724 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 3725 rbd_dev->lock_cookie[0] = '\0'; 3726 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 3727 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work); 3728 } 3729 3730 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev, 3731 enum rbd_notify_op notify_op, 3732 struct page ***preply_pages, 3733 size_t *preply_len) 3734 { 3735 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3736 struct rbd_client_id cid = rbd_get_cid(rbd_dev); 3737 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN]; 3738 int buf_size = sizeof(buf); 3739 void *p = buf; 3740 3741 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op); 3742 3743 /* encode *LockPayload NotifyMessage (op + ClientId) */ 3744 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN); 3745 ceph_encode_32(&p, notify_op); 3746 ceph_encode_64(&p, cid.gid); 3747 ceph_encode_64(&p, cid.handle); 3748 3749 return ceph_osdc_notify(osdc, &rbd_dev->header_oid, 3750 &rbd_dev->header_oloc, buf, buf_size, 3751 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len); 3752 } 3753 3754 static void rbd_notify_op_lock(struct rbd_device *rbd_dev, 3755 enum rbd_notify_op notify_op) 3756 { 3757 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL); 3758 } 3759 3760 static void rbd_notify_acquired_lock(struct work_struct *work) 3761 { 3762 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3763 acquired_lock_work); 3764 3765 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK); 3766 } 3767 3768 static void rbd_notify_released_lock(struct work_struct *work) 3769 { 3770 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 3771 released_lock_work); 3772 3773 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK); 3774 } 3775 3776 static int rbd_request_lock(struct rbd_device *rbd_dev) 3777 { 3778 struct page **reply_pages; 3779 size_t reply_len; 3780 bool lock_owner_responded = false; 3781 int ret; 3782 3783 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3784 3785 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK, 3786 &reply_pages, &reply_len); 3787 if (ret && ret != -ETIMEDOUT) { 3788 rbd_warn(rbd_dev, "failed to request lock: %d", ret); 3789 goto out; 3790 } 3791 3792 if (reply_len > 0 && reply_len <= PAGE_SIZE) { 3793 void *p = page_address(reply_pages[0]); 3794 void *const end = p + reply_len; 3795 u32 n; 3796 3797 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */ 3798 while (n--) { 3799 u8 struct_v; 3800 u32 len; 3801 3802 ceph_decode_need(&p, end, 8 + 8, e_inval); 3803 p += 8 + 8; /* skip gid and cookie */ 3804 3805 ceph_decode_32_safe(&p, end, len, e_inval); 3806 if (!len) 3807 continue; 3808 3809 if (lock_owner_responded) { 3810 rbd_warn(rbd_dev, 3811 "duplicate lock owners detected"); 3812 ret = -EIO; 3813 goto out; 3814 } 3815 3816 lock_owner_responded = true; 3817 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage", 3818 &struct_v, &len); 3819 if (ret) { 3820 rbd_warn(rbd_dev, 3821 "failed to decode ResponseMessage: %d", 3822 ret); 3823 goto e_inval; 3824 } 3825 3826 ret = ceph_decode_32(&p); 3827 } 3828 } 3829 3830 if (!lock_owner_responded) { 3831 rbd_warn(rbd_dev, "no lock owners detected"); 3832 ret = -ETIMEDOUT; 3833 } 3834 3835 out: 3836 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len)); 3837 return ret; 3838 3839 e_inval: 3840 ret = -EINVAL; 3841 goto out; 3842 } 3843 3844 /* 3845 * Either image request state machine(s) or rbd_add_acquire_lock() 3846 * (i.e. "rbd map"). 3847 */ 3848 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result) 3849 { 3850 struct rbd_img_request *img_req; 3851 3852 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 3853 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 3854 3855 cancel_delayed_work(&rbd_dev->lock_dwork); 3856 if (!completion_done(&rbd_dev->acquire_wait)) { 3857 rbd_assert(list_empty(&rbd_dev->acquiring_list) && 3858 list_empty(&rbd_dev->running_list)); 3859 rbd_dev->acquire_err = result; 3860 complete_all(&rbd_dev->acquire_wait); 3861 return; 3862 } 3863 3864 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) { 3865 mutex_lock(&img_req->state_mutex); 3866 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK); 3867 rbd_img_schedule(img_req, result); 3868 mutex_unlock(&img_req->state_mutex); 3869 } 3870 3871 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list); 3872 } 3873 3874 static int get_lock_owner_info(struct rbd_device *rbd_dev, 3875 struct ceph_locker **lockers, u32 *num_lockers) 3876 { 3877 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3878 u8 lock_type; 3879 char *lock_tag; 3880 int ret; 3881 3882 dout("%s rbd_dev %p\n", __func__, rbd_dev); 3883 3884 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid, 3885 &rbd_dev->header_oloc, RBD_LOCK_NAME, 3886 &lock_type, &lock_tag, lockers, num_lockers); 3887 if (ret) 3888 return ret; 3889 3890 if (*num_lockers == 0) { 3891 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev); 3892 goto out; 3893 } 3894 3895 if (strcmp(lock_tag, RBD_LOCK_TAG)) { 3896 rbd_warn(rbd_dev, "locked by external mechanism, tag %s", 3897 lock_tag); 3898 ret = -EBUSY; 3899 goto out; 3900 } 3901 3902 if (lock_type == CEPH_CLS_LOCK_SHARED) { 3903 rbd_warn(rbd_dev, "shared lock type detected"); 3904 ret = -EBUSY; 3905 goto out; 3906 } 3907 3908 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX, 3909 strlen(RBD_LOCK_COOKIE_PREFIX))) { 3910 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s", 3911 (*lockers)[0].id.cookie); 3912 ret = -EBUSY; 3913 goto out; 3914 } 3915 3916 out: 3917 kfree(lock_tag); 3918 return ret; 3919 } 3920 3921 static int find_watcher(struct rbd_device *rbd_dev, 3922 const struct ceph_locker *locker) 3923 { 3924 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3925 struct ceph_watch_item *watchers; 3926 u32 num_watchers; 3927 u64 cookie; 3928 int i; 3929 int ret; 3930 3931 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid, 3932 &rbd_dev->header_oloc, &watchers, 3933 &num_watchers); 3934 if (ret) 3935 return ret; 3936 3937 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie); 3938 for (i = 0; i < num_watchers; i++) { 3939 if (!memcmp(&watchers[i].addr, &locker->info.addr, 3940 sizeof(locker->info.addr)) && 3941 watchers[i].cookie == cookie) { 3942 struct rbd_client_id cid = { 3943 .gid = le64_to_cpu(watchers[i].name.num), 3944 .handle = cookie, 3945 }; 3946 3947 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__, 3948 rbd_dev, cid.gid, cid.handle); 3949 rbd_set_owner_cid(rbd_dev, &cid); 3950 ret = 1; 3951 goto out; 3952 } 3953 } 3954 3955 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev); 3956 ret = 0; 3957 out: 3958 kfree(watchers); 3959 return ret; 3960 } 3961 3962 /* 3963 * lock_rwsem must be held for write 3964 */ 3965 static int rbd_try_lock(struct rbd_device *rbd_dev) 3966 { 3967 struct ceph_client *client = rbd_dev->rbd_client->client; 3968 struct ceph_locker *lockers; 3969 u32 num_lockers; 3970 int ret; 3971 3972 for (;;) { 3973 ret = rbd_lock(rbd_dev); 3974 if (ret != -EBUSY) 3975 return ret; 3976 3977 /* determine if the current lock holder is still alive */ 3978 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers); 3979 if (ret) 3980 return ret; 3981 3982 if (num_lockers == 0) 3983 goto again; 3984 3985 ret = find_watcher(rbd_dev, lockers); 3986 if (ret) 3987 goto out; /* request lock or error */ 3988 3989 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu", 3990 ENTITY_NAME(lockers[0].id.name)); 3991 3992 ret = ceph_monc_blacklist_add(&client->monc, 3993 &lockers[0].info.addr); 3994 if (ret) { 3995 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d", 3996 ENTITY_NAME(lockers[0].id.name), ret); 3997 goto out; 3998 } 3999 4000 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid, 4001 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4002 lockers[0].id.cookie, 4003 &lockers[0].id.name); 4004 if (ret && ret != -ENOENT) 4005 goto out; 4006 4007 again: 4008 ceph_free_lockers(lockers, num_lockers); 4009 } 4010 4011 out: 4012 ceph_free_lockers(lockers, num_lockers); 4013 return ret; 4014 } 4015 4016 static int rbd_post_acquire_action(struct rbd_device *rbd_dev) 4017 { 4018 int ret; 4019 4020 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) { 4021 ret = rbd_object_map_open(rbd_dev); 4022 if (ret) 4023 return ret; 4024 } 4025 4026 return 0; 4027 } 4028 4029 /* 4030 * Return: 4031 * 0 - lock acquired 4032 * 1 - caller should call rbd_request_lock() 4033 * <0 - error 4034 */ 4035 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev) 4036 { 4037 int ret; 4038 4039 down_read(&rbd_dev->lock_rwsem); 4040 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev, 4041 rbd_dev->lock_state); 4042 if (__rbd_is_lock_owner(rbd_dev)) { 4043 up_read(&rbd_dev->lock_rwsem); 4044 return 0; 4045 } 4046 4047 up_read(&rbd_dev->lock_rwsem); 4048 down_write(&rbd_dev->lock_rwsem); 4049 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev, 4050 rbd_dev->lock_state); 4051 if (__rbd_is_lock_owner(rbd_dev)) { 4052 up_write(&rbd_dev->lock_rwsem); 4053 return 0; 4054 } 4055 4056 ret = rbd_try_lock(rbd_dev); 4057 if (ret < 0) { 4058 rbd_warn(rbd_dev, "failed to lock header: %d", ret); 4059 if (ret == -EBLACKLISTED) 4060 goto out; 4061 4062 ret = 1; /* request lock anyway */ 4063 } 4064 if (ret > 0) { 4065 up_write(&rbd_dev->lock_rwsem); 4066 return ret; 4067 } 4068 4069 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED); 4070 rbd_assert(list_empty(&rbd_dev->running_list)); 4071 4072 ret = rbd_post_acquire_action(rbd_dev); 4073 if (ret) { 4074 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret); 4075 /* 4076 * Can't stay in RBD_LOCK_STATE_LOCKED because 4077 * rbd_lock_add_request() would let the request through, 4078 * assuming that e.g. object map is locked and loaded. 4079 */ 4080 rbd_unlock(rbd_dev); 4081 } 4082 4083 out: 4084 wake_lock_waiters(rbd_dev, ret); 4085 up_write(&rbd_dev->lock_rwsem); 4086 return ret; 4087 } 4088 4089 static void rbd_acquire_lock(struct work_struct *work) 4090 { 4091 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4092 struct rbd_device, lock_dwork); 4093 int ret; 4094 4095 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4096 again: 4097 ret = rbd_try_acquire_lock(rbd_dev); 4098 if (ret <= 0) { 4099 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret); 4100 return; 4101 } 4102 4103 ret = rbd_request_lock(rbd_dev); 4104 if (ret == -ETIMEDOUT) { 4105 goto again; /* treat this as a dead client */ 4106 } else if (ret == -EROFS) { 4107 rbd_warn(rbd_dev, "peer will not release lock"); 4108 down_write(&rbd_dev->lock_rwsem); 4109 wake_lock_waiters(rbd_dev, ret); 4110 up_write(&rbd_dev->lock_rwsem); 4111 } else if (ret < 0) { 4112 rbd_warn(rbd_dev, "error requesting lock: %d", ret); 4113 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4114 RBD_RETRY_DELAY); 4115 } else { 4116 /* 4117 * lock owner acked, but resend if we don't see them 4118 * release the lock 4119 */ 4120 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__, 4121 rbd_dev); 4122 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 4123 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC)); 4124 } 4125 } 4126 4127 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev) 4128 { 4129 bool need_wait; 4130 4131 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4132 lockdep_assert_held_write(&rbd_dev->lock_rwsem); 4133 4134 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED) 4135 return false; 4136 4137 /* 4138 * Ensure that all in-flight IO is flushed. 4139 */ 4140 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING; 4141 rbd_assert(!completion_done(&rbd_dev->releasing_wait)); 4142 need_wait = !list_empty(&rbd_dev->running_list); 4143 downgrade_write(&rbd_dev->lock_rwsem); 4144 if (need_wait) 4145 wait_for_completion(&rbd_dev->releasing_wait); 4146 up_read(&rbd_dev->lock_rwsem); 4147 4148 down_write(&rbd_dev->lock_rwsem); 4149 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING) 4150 return false; 4151 4152 rbd_assert(list_empty(&rbd_dev->running_list)); 4153 return true; 4154 } 4155 4156 static void rbd_pre_release_action(struct rbd_device *rbd_dev) 4157 { 4158 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) 4159 rbd_object_map_close(rbd_dev); 4160 } 4161 4162 static void __rbd_release_lock(struct rbd_device *rbd_dev) 4163 { 4164 rbd_assert(list_empty(&rbd_dev->running_list)); 4165 4166 rbd_pre_release_action(rbd_dev); 4167 rbd_unlock(rbd_dev); 4168 } 4169 4170 /* 4171 * lock_rwsem must be held for write 4172 */ 4173 static void rbd_release_lock(struct rbd_device *rbd_dev) 4174 { 4175 if (!rbd_quiesce_lock(rbd_dev)) 4176 return; 4177 4178 __rbd_release_lock(rbd_dev); 4179 4180 /* 4181 * Give others a chance to grab the lock - we would re-acquire 4182 * almost immediately if we got new IO while draining the running 4183 * list otherwise. We need to ack our own notifications, so this 4184 * lock_dwork will be requeued from rbd_handle_released_lock() by 4185 * way of maybe_kick_acquire(). 4186 */ 4187 cancel_delayed_work(&rbd_dev->lock_dwork); 4188 } 4189 4190 static void rbd_release_lock_work(struct work_struct *work) 4191 { 4192 struct rbd_device *rbd_dev = container_of(work, struct rbd_device, 4193 unlock_work); 4194 4195 down_write(&rbd_dev->lock_rwsem); 4196 rbd_release_lock(rbd_dev); 4197 up_write(&rbd_dev->lock_rwsem); 4198 } 4199 4200 static void maybe_kick_acquire(struct rbd_device *rbd_dev) 4201 { 4202 bool have_requests; 4203 4204 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4205 if (__rbd_is_lock_owner(rbd_dev)) 4206 return; 4207 4208 spin_lock(&rbd_dev->lock_lists_lock); 4209 have_requests = !list_empty(&rbd_dev->acquiring_list); 4210 spin_unlock(&rbd_dev->lock_lists_lock); 4211 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) { 4212 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev); 4213 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4214 } 4215 } 4216 4217 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v, 4218 void **p) 4219 { 4220 struct rbd_client_id cid = { 0 }; 4221 4222 if (struct_v >= 2) { 4223 cid.gid = ceph_decode_64(p); 4224 cid.handle = ceph_decode_64(p); 4225 } 4226 4227 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4228 cid.handle); 4229 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4230 down_write(&rbd_dev->lock_rwsem); 4231 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4232 /* 4233 * we already know that the remote client is 4234 * the owner 4235 */ 4236 up_write(&rbd_dev->lock_rwsem); 4237 return; 4238 } 4239 4240 rbd_set_owner_cid(rbd_dev, &cid); 4241 downgrade_write(&rbd_dev->lock_rwsem); 4242 } else { 4243 down_read(&rbd_dev->lock_rwsem); 4244 } 4245 4246 maybe_kick_acquire(rbd_dev); 4247 up_read(&rbd_dev->lock_rwsem); 4248 } 4249 4250 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v, 4251 void **p) 4252 { 4253 struct rbd_client_id cid = { 0 }; 4254 4255 if (struct_v >= 2) { 4256 cid.gid = ceph_decode_64(p); 4257 cid.handle = ceph_decode_64(p); 4258 } 4259 4260 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4261 cid.handle); 4262 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) { 4263 down_write(&rbd_dev->lock_rwsem); 4264 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) { 4265 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n", 4266 __func__, rbd_dev, cid.gid, cid.handle, 4267 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle); 4268 up_write(&rbd_dev->lock_rwsem); 4269 return; 4270 } 4271 4272 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4273 downgrade_write(&rbd_dev->lock_rwsem); 4274 } else { 4275 down_read(&rbd_dev->lock_rwsem); 4276 } 4277 4278 maybe_kick_acquire(rbd_dev); 4279 up_read(&rbd_dev->lock_rwsem); 4280 } 4281 4282 /* 4283 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no 4284 * ResponseMessage is needed. 4285 */ 4286 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v, 4287 void **p) 4288 { 4289 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev); 4290 struct rbd_client_id cid = { 0 }; 4291 int result = 1; 4292 4293 if (struct_v >= 2) { 4294 cid.gid = ceph_decode_64(p); 4295 cid.handle = ceph_decode_64(p); 4296 } 4297 4298 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid, 4299 cid.handle); 4300 if (rbd_cid_equal(&cid, &my_cid)) 4301 return result; 4302 4303 down_read(&rbd_dev->lock_rwsem); 4304 if (__rbd_is_lock_owner(rbd_dev)) { 4305 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED && 4306 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) 4307 goto out_unlock; 4308 4309 /* 4310 * encode ResponseMessage(0) so the peer can detect 4311 * a missing owner 4312 */ 4313 result = 0; 4314 4315 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) { 4316 if (!rbd_dev->opts->exclusive) { 4317 dout("%s rbd_dev %p queueing unlock_work\n", 4318 __func__, rbd_dev); 4319 queue_work(rbd_dev->task_wq, 4320 &rbd_dev->unlock_work); 4321 } else { 4322 /* refuse to release the lock */ 4323 result = -EROFS; 4324 } 4325 } 4326 } 4327 4328 out_unlock: 4329 up_read(&rbd_dev->lock_rwsem); 4330 return result; 4331 } 4332 4333 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev, 4334 u64 notify_id, u64 cookie, s32 *result) 4335 { 4336 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4337 char buf[4 + CEPH_ENCODING_START_BLK_LEN]; 4338 int buf_size = sizeof(buf); 4339 int ret; 4340 4341 if (result) { 4342 void *p = buf; 4343 4344 /* encode ResponseMessage */ 4345 ceph_start_encoding(&p, 1, 1, 4346 buf_size - CEPH_ENCODING_START_BLK_LEN); 4347 ceph_encode_32(&p, *result); 4348 } else { 4349 buf_size = 0; 4350 } 4351 4352 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid, 4353 &rbd_dev->header_oloc, notify_id, cookie, 4354 buf, buf_size); 4355 if (ret) 4356 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret); 4357 } 4358 4359 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id, 4360 u64 cookie) 4361 { 4362 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4363 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL); 4364 } 4365 4366 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev, 4367 u64 notify_id, u64 cookie, s32 result) 4368 { 4369 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result); 4370 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result); 4371 } 4372 4373 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie, 4374 u64 notifier_id, void *data, size_t data_len) 4375 { 4376 struct rbd_device *rbd_dev = arg; 4377 void *p = data; 4378 void *const end = p + data_len; 4379 u8 struct_v = 0; 4380 u32 len; 4381 u32 notify_op; 4382 int ret; 4383 4384 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n", 4385 __func__, rbd_dev, cookie, notify_id, data_len); 4386 if (data_len) { 4387 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage", 4388 &struct_v, &len); 4389 if (ret) { 4390 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d", 4391 ret); 4392 return; 4393 } 4394 4395 notify_op = ceph_decode_32(&p); 4396 } else { 4397 /* legacy notification for header updates */ 4398 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE; 4399 len = 0; 4400 } 4401 4402 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op); 4403 switch (notify_op) { 4404 case RBD_NOTIFY_OP_ACQUIRED_LOCK: 4405 rbd_handle_acquired_lock(rbd_dev, struct_v, &p); 4406 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4407 break; 4408 case RBD_NOTIFY_OP_RELEASED_LOCK: 4409 rbd_handle_released_lock(rbd_dev, struct_v, &p); 4410 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4411 break; 4412 case RBD_NOTIFY_OP_REQUEST_LOCK: 4413 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p); 4414 if (ret <= 0) 4415 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4416 cookie, ret); 4417 else 4418 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4419 break; 4420 case RBD_NOTIFY_OP_HEADER_UPDATE: 4421 ret = rbd_dev_refresh(rbd_dev); 4422 if (ret) 4423 rbd_warn(rbd_dev, "refresh failed: %d", ret); 4424 4425 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4426 break; 4427 default: 4428 if (rbd_is_lock_owner(rbd_dev)) 4429 rbd_acknowledge_notify_result(rbd_dev, notify_id, 4430 cookie, -EOPNOTSUPP); 4431 else 4432 rbd_acknowledge_notify(rbd_dev, notify_id, cookie); 4433 break; 4434 } 4435 } 4436 4437 static void __rbd_unregister_watch(struct rbd_device *rbd_dev); 4438 4439 static void rbd_watch_errcb(void *arg, u64 cookie, int err) 4440 { 4441 struct rbd_device *rbd_dev = arg; 4442 4443 rbd_warn(rbd_dev, "encountered watch error: %d", err); 4444 4445 down_write(&rbd_dev->lock_rwsem); 4446 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid); 4447 up_write(&rbd_dev->lock_rwsem); 4448 4449 mutex_lock(&rbd_dev->watch_mutex); 4450 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) { 4451 __rbd_unregister_watch(rbd_dev); 4452 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR; 4453 4454 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0); 4455 } 4456 mutex_unlock(&rbd_dev->watch_mutex); 4457 } 4458 4459 /* 4460 * watch_mutex must be locked 4461 */ 4462 static int __rbd_register_watch(struct rbd_device *rbd_dev) 4463 { 4464 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4465 struct ceph_osd_linger_request *handle; 4466 4467 rbd_assert(!rbd_dev->watch_handle); 4468 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4469 4470 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid, 4471 &rbd_dev->header_oloc, rbd_watch_cb, 4472 rbd_watch_errcb, rbd_dev); 4473 if (IS_ERR(handle)) 4474 return PTR_ERR(handle); 4475 4476 rbd_dev->watch_handle = handle; 4477 return 0; 4478 } 4479 4480 /* 4481 * watch_mutex must be locked 4482 */ 4483 static void __rbd_unregister_watch(struct rbd_device *rbd_dev) 4484 { 4485 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4486 int ret; 4487 4488 rbd_assert(rbd_dev->watch_handle); 4489 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4490 4491 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle); 4492 if (ret) 4493 rbd_warn(rbd_dev, "failed to unwatch: %d", ret); 4494 4495 rbd_dev->watch_handle = NULL; 4496 } 4497 4498 static int rbd_register_watch(struct rbd_device *rbd_dev) 4499 { 4500 int ret; 4501 4502 mutex_lock(&rbd_dev->watch_mutex); 4503 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED); 4504 ret = __rbd_register_watch(rbd_dev); 4505 if (ret) 4506 goto out; 4507 4508 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4509 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4510 4511 out: 4512 mutex_unlock(&rbd_dev->watch_mutex); 4513 return ret; 4514 } 4515 4516 static void cancel_tasks_sync(struct rbd_device *rbd_dev) 4517 { 4518 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4519 4520 cancel_work_sync(&rbd_dev->acquired_lock_work); 4521 cancel_work_sync(&rbd_dev->released_lock_work); 4522 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 4523 cancel_work_sync(&rbd_dev->unlock_work); 4524 } 4525 4526 /* 4527 * header_rwsem must not be held to avoid a deadlock with 4528 * rbd_dev_refresh() when flushing notifies. 4529 */ 4530 static void rbd_unregister_watch(struct rbd_device *rbd_dev) 4531 { 4532 cancel_tasks_sync(rbd_dev); 4533 4534 mutex_lock(&rbd_dev->watch_mutex); 4535 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) 4536 __rbd_unregister_watch(rbd_dev); 4537 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 4538 mutex_unlock(&rbd_dev->watch_mutex); 4539 4540 cancel_delayed_work_sync(&rbd_dev->watch_dwork); 4541 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 4542 } 4543 4544 /* 4545 * lock_rwsem must be held for write 4546 */ 4547 static void rbd_reacquire_lock(struct rbd_device *rbd_dev) 4548 { 4549 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4550 char cookie[32]; 4551 int ret; 4552 4553 if (!rbd_quiesce_lock(rbd_dev)) 4554 return; 4555 4556 format_lock_cookie(rbd_dev, cookie); 4557 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid, 4558 &rbd_dev->header_oloc, RBD_LOCK_NAME, 4559 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie, 4560 RBD_LOCK_TAG, cookie); 4561 if (ret) { 4562 if (ret != -EOPNOTSUPP) 4563 rbd_warn(rbd_dev, "failed to update lock cookie: %d", 4564 ret); 4565 4566 /* 4567 * Lock cookie cannot be updated on older OSDs, so do 4568 * a manual release and queue an acquire. 4569 */ 4570 __rbd_release_lock(rbd_dev); 4571 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 4572 } else { 4573 __rbd_lock(rbd_dev, cookie); 4574 wake_lock_waiters(rbd_dev, 0); 4575 } 4576 } 4577 4578 static void rbd_reregister_watch(struct work_struct *work) 4579 { 4580 struct rbd_device *rbd_dev = container_of(to_delayed_work(work), 4581 struct rbd_device, watch_dwork); 4582 int ret; 4583 4584 dout("%s rbd_dev %p\n", __func__, rbd_dev); 4585 4586 mutex_lock(&rbd_dev->watch_mutex); 4587 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) { 4588 mutex_unlock(&rbd_dev->watch_mutex); 4589 return; 4590 } 4591 4592 ret = __rbd_register_watch(rbd_dev); 4593 if (ret) { 4594 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret); 4595 if (ret != -EBLACKLISTED && ret != -ENOENT) { 4596 queue_delayed_work(rbd_dev->task_wq, 4597 &rbd_dev->watch_dwork, 4598 RBD_RETRY_DELAY); 4599 mutex_unlock(&rbd_dev->watch_mutex); 4600 return; 4601 } 4602 4603 mutex_unlock(&rbd_dev->watch_mutex); 4604 down_write(&rbd_dev->lock_rwsem); 4605 wake_lock_waiters(rbd_dev, ret); 4606 up_write(&rbd_dev->lock_rwsem); 4607 return; 4608 } 4609 4610 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED; 4611 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id; 4612 mutex_unlock(&rbd_dev->watch_mutex); 4613 4614 down_write(&rbd_dev->lock_rwsem); 4615 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) 4616 rbd_reacquire_lock(rbd_dev); 4617 up_write(&rbd_dev->lock_rwsem); 4618 4619 ret = rbd_dev_refresh(rbd_dev); 4620 if (ret) 4621 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret); 4622 } 4623 4624 /* 4625 * Synchronous osd object method call. Returns the number of bytes 4626 * returned in the outbound buffer, or a negative error code. 4627 */ 4628 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 4629 struct ceph_object_id *oid, 4630 struct ceph_object_locator *oloc, 4631 const char *method_name, 4632 const void *outbound, 4633 size_t outbound_size, 4634 void *inbound, 4635 size_t inbound_size) 4636 { 4637 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4638 struct page *req_page = NULL; 4639 struct page *reply_page; 4640 int ret; 4641 4642 /* 4643 * Method calls are ultimately read operations. The result 4644 * should placed into the inbound buffer provided. They 4645 * also supply outbound data--parameters for the object 4646 * method. Currently if this is present it will be a 4647 * snapshot id. 4648 */ 4649 if (outbound) { 4650 if (outbound_size > PAGE_SIZE) 4651 return -E2BIG; 4652 4653 req_page = alloc_page(GFP_KERNEL); 4654 if (!req_page) 4655 return -ENOMEM; 4656 4657 memcpy(page_address(req_page), outbound, outbound_size); 4658 } 4659 4660 reply_page = alloc_page(GFP_KERNEL); 4661 if (!reply_page) { 4662 if (req_page) 4663 __free_page(req_page); 4664 return -ENOMEM; 4665 } 4666 4667 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name, 4668 CEPH_OSD_FLAG_READ, req_page, outbound_size, 4669 &reply_page, &inbound_size); 4670 if (!ret) { 4671 memcpy(inbound, page_address(reply_page), inbound_size); 4672 ret = inbound_size; 4673 } 4674 4675 if (req_page) 4676 __free_page(req_page); 4677 __free_page(reply_page); 4678 return ret; 4679 } 4680 4681 static void rbd_queue_workfn(struct work_struct *work) 4682 { 4683 struct rbd_img_request *img_request = 4684 container_of(work, struct rbd_img_request, work); 4685 struct rbd_device *rbd_dev = img_request->rbd_dev; 4686 enum obj_operation_type op_type = img_request->op_type; 4687 struct request *rq = blk_mq_rq_from_pdu(img_request); 4688 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 4689 u64 length = blk_rq_bytes(rq); 4690 u64 mapping_size; 4691 int result; 4692 4693 /* Ignore/skip any zero-length requests */ 4694 if (!length) { 4695 dout("%s: zero-length request\n", __func__); 4696 result = 0; 4697 goto err_img_request; 4698 } 4699 4700 blk_mq_start_request(rq); 4701 4702 down_read(&rbd_dev->header_rwsem); 4703 mapping_size = rbd_dev->mapping.size; 4704 rbd_img_capture_header(img_request); 4705 up_read(&rbd_dev->header_rwsem); 4706 4707 if (offset + length > mapping_size) { 4708 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 4709 length, mapping_size); 4710 result = -EIO; 4711 goto err_img_request; 4712 } 4713 4714 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev, 4715 img_request, obj_op_name(op_type), offset, length); 4716 4717 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT) 4718 result = rbd_img_fill_nodata(img_request, offset, length); 4719 else 4720 result = rbd_img_fill_from_bio(img_request, offset, length, 4721 rq->bio); 4722 if (result) 4723 goto err_img_request; 4724 4725 rbd_img_handle_request(img_request, 0); 4726 return; 4727 4728 err_img_request: 4729 rbd_img_request_destroy(img_request); 4730 if (result) 4731 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 4732 obj_op_name(op_type), length, offset, result); 4733 blk_mq_end_request(rq, errno_to_blk_status(result)); 4734 } 4735 4736 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 4737 const struct blk_mq_queue_data *bd) 4738 { 4739 struct rbd_device *rbd_dev = hctx->queue->queuedata; 4740 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq); 4741 enum obj_operation_type op_type; 4742 4743 switch (req_op(bd->rq)) { 4744 case REQ_OP_DISCARD: 4745 op_type = OBJ_OP_DISCARD; 4746 break; 4747 case REQ_OP_WRITE_ZEROES: 4748 op_type = OBJ_OP_ZEROOUT; 4749 break; 4750 case REQ_OP_WRITE: 4751 op_type = OBJ_OP_WRITE; 4752 break; 4753 case REQ_OP_READ: 4754 op_type = OBJ_OP_READ; 4755 break; 4756 default: 4757 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq)); 4758 return BLK_STS_IOERR; 4759 } 4760 4761 rbd_img_request_init(img_req, rbd_dev, op_type); 4762 4763 if (rbd_img_is_write(img_req)) { 4764 if (rbd_is_ro(rbd_dev)) { 4765 rbd_warn(rbd_dev, "%s on read-only mapping", 4766 obj_op_name(img_req->op_type)); 4767 return BLK_STS_IOERR; 4768 } 4769 rbd_assert(!rbd_is_snap(rbd_dev)); 4770 } 4771 4772 INIT_WORK(&img_req->work, rbd_queue_workfn); 4773 queue_work(rbd_wq, &img_req->work); 4774 return BLK_STS_OK; 4775 } 4776 4777 static void rbd_free_disk(struct rbd_device *rbd_dev) 4778 { 4779 blk_cleanup_queue(rbd_dev->disk->queue); 4780 blk_mq_free_tag_set(&rbd_dev->tag_set); 4781 put_disk(rbd_dev->disk); 4782 rbd_dev->disk = NULL; 4783 } 4784 4785 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 4786 struct ceph_object_id *oid, 4787 struct ceph_object_locator *oloc, 4788 void *buf, int buf_len) 4789 4790 { 4791 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4792 struct ceph_osd_request *req; 4793 struct page **pages; 4794 int num_pages = calc_pages_for(0, buf_len); 4795 int ret; 4796 4797 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL); 4798 if (!req) 4799 return -ENOMEM; 4800 4801 ceph_oid_copy(&req->r_base_oid, oid); 4802 ceph_oloc_copy(&req->r_base_oloc, oloc); 4803 req->r_flags = CEPH_OSD_FLAG_READ; 4804 4805 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL); 4806 if (IS_ERR(pages)) { 4807 ret = PTR_ERR(pages); 4808 goto out_req; 4809 } 4810 4811 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0); 4812 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false, 4813 true); 4814 4815 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL); 4816 if (ret) 4817 goto out_req; 4818 4819 ceph_osdc_start_request(osdc, req, false); 4820 ret = ceph_osdc_wait_request(osdc, req); 4821 if (ret >= 0) 4822 ceph_copy_from_page_vector(pages, buf, 0, ret); 4823 4824 out_req: 4825 ceph_osdc_put_request(req); 4826 return ret; 4827 } 4828 4829 /* 4830 * Read the complete header for the given rbd device. On successful 4831 * return, the rbd_dev->header field will contain up-to-date 4832 * information about the image. 4833 */ 4834 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 4835 { 4836 struct rbd_image_header_ondisk *ondisk = NULL; 4837 u32 snap_count = 0; 4838 u64 names_size = 0; 4839 u32 want_count; 4840 int ret; 4841 4842 /* 4843 * The complete header will include an array of its 64-bit 4844 * snapshot ids, followed by the names of those snapshots as 4845 * a contiguous block of NUL-terminated strings. Note that 4846 * the number of snapshots could change by the time we read 4847 * it in, in which case we re-read it. 4848 */ 4849 do { 4850 size_t size; 4851 4852 kfree(ondisk); 4853 4854 size = sizeof (*ondisk); 4855 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 4856 size += names_size; 4857 ondisk = kmalloc(size, GFP_KERNEL); 4858 if (!ondisk) 4859 return -ENOMEM; 4860 4861 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid, 4862 &rbd_dev->header_oloc, ondisk, size); 4863 if (ret < 0) 4864 goto out; 4865 if ((size_t)ret < size) { 4866 ret = -ENXIO; 4867 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 4868 size, ret); 4869 goto out; 4870 } 4871 if (!rbd_dev_ondisk_valid(ondisk)) { 4872 ret = -ENXIO; 4873 rbd_warn(rbd_dev, "invalid header"); 4874 goto out; 4875 } 4876 4877 names_size = le64_to_cpu(ondisk->snap_names_len); 4878 want_count = snap_count; 4879 snap_count = le32_to_cpu(ondisk->snap_count); 4880 } while (snap_count != want_count); 4881 4882 ret = rbd_header_from_disk(rbd_dev, ondisk); 4883 out: 4884 kfree(ondisk); 4885 4886 return ret; 4887 } 4888 4889 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 4890 { 4891 sector_t size; 4892 4893 /* 4894 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't 4895 * try to update its size. If REMOVING is set, updating size 4896 * is just useless work since the device can't be opened. 4897 */ 4898 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) && 4899 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) { 4900 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 4901 dout("setting size to %llu sectors", (unsigned long long)size); 4902 set_capacity(rbd_dev->disk, size); 4903 revalidate_disk(rbd_dev->disk); 4904 } 4905 } 4906 4907 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 4908 { 4909 u64 mapping_size; 4910 int ret; 4911 4912 down_write(&rbd_dev->header_rwsem); 4913 mapping_size = rbd_dev->mapping.size; 4914 4915 ret = rbd_dev_header_info(rbd_dev); 4916 if (ret) 4917 goto out; 4918 4919 /* 4920 * If there is a parent, see if it has disappeared due to the 4921 * mapped image getting flattened. 4922 */ 4923 if (rbd_dev->parent) { 4924 ret = rbd_dev_v2_parent_info(rbd_dev); 4925 if (ret) 4926 goto out; 4927 } 4928 4929 rbd_assert(!rbd_is_snap(rbd_dev)); 4930 rbd_dev->mapping.size = rbd_dev->header.image_size; 4931 4932 out: 4933 up_write(&rbd_dev->header_rwsem); 4934 if (!ret && mapping_size != rbd_dev->mapping.size) 4935 rbd_dev_update_size(rbd_dev); 4936 4937 return ret; 4938 } 4939 4940 static const struct blk_mq_ops rbd_mq_ops = { 4941 .queue_rq = rbd_queue_rq, 4942 }; 4943 4944 static int rbd_init_disk(struct rbd_device *rbd_dev) 4945 { 4946 struct gendisk *disk; 4947 struct request_queue *q; 4948 unsigned int objset_bytes = 4949 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count; 4950 int err; 4951 4952 /* create gendisk info */ 4953 disk = alloc_disk(single_major ? 4954 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 4955 RBD_MINORS_PER_MAJOR); 4956 if (!disk) 4957 return -ENOMEM; 4958 4959 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 4960 rbd_dev->dev_id); 4961 disk->major = rbd_dev->major; 4962 disk->first_minor = rbd_dev->minor; 4963 if (single_major) 4964 disk->flags |= GENHD_FL_EXT_DEVT; 4965 disk->fops = &rbd_bd_ops; 4966 disk->private_data = rbd_dev; 4967 4968 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 4969 rbd_dev->tag_set.ops = &rbd_mq_ops; 4970 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 4971 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 4972 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 4973 rbd_dev->tag_set.nr_hw_queues = num_present_cpus(); 4974 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request); 4975 4976 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 4977 if (err) 4978 goto out_disk; 4979 4980 q = blk_mq_init_queue(&rbd_dev->tag_set); 4981 if (IS_ERR(q)) { 4982 err = PTR_ERR(q); 4983 goto out_tag_set; 4984 } 4985 4986 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 4987 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 4988 4989 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT); 4990 q->limits.max_sectors = queue_max_hw_sectors(q); 4991 blk_queue_max_segments(q, USHRT_MAX); 4992 blk_queue_max_segment_size(q, UINT_MAX); 4993 blk_queue_io_min(q, rbd_dev->opts->alloc_size); 4994 blk_queue_io_opt(q, rbd_dev->opts->alloc_size); 4995 4996 if (rbd_dev->opts->trim) { 4997 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 4998 q->limits.discard_granularity = rbd_dev->opts->alloc_size; 4999 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT); 5000 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT); 5001 } 5002 5003 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC)) 5004 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 5005 5006 /* 5007 * disk_release() expects a queue ref from add_disk() and will 5008 * put it. Hold an extra ref until add_disk() is called. 5009 */ 5010 WARN_ON(!blk_get_queue(q)); 5011 disk->queue = q; 5012 q->queuedata = rbd_dev; 5013 5014 rbd_dev->disk = disk; 5015 5016 return 0; 5017 out_tag_set: 5018 blk_mq_free_tag_set(&rbd_dev->tag_set); 5019 out_disk: 5020 put_disk(disk); 5021 return err; 5022 } 5023 5024 /* 5025 sysfs 5026 */ 5027 5028 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 5029 { 5030 return container_of(dev, struct rbd_device, dev); 5031 } 5032 5033 static ssize_t rbd_size_show(struct device *dev, 5034 struct device_attribute *attr, char *buf) 5035 { 5036 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5037 5038 return sprintf(buf, "%llu\n", 5039 (unsigned long long)rbd_dev->mapping.size); 5040 } 5041 5042 static ssize_t rbd_features_show(struct device *dev, 5043 struct device_attribute *attr, char *buf) 5044 { 5045 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5046 5047 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features); 5048 } 5049 5050 static ssize_t rbd_major_show(struct device *dev, 5051 struct device_attribute *attr, char *buf) 5052 { 5053 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5054 5055 if (rbd_dev->major) 5056 return sprintf(buf, "%d\n", rbd_dev->major); 5057 5058 return sprintf(buf, "(none)\n"); 5059 } 5060 5061 static ssize_t rbd_minor_show(struct device *dev, 5062 struct device_attribute *attr, char *buf) 5063 { 5064 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5065 5066 return sprintf(buf, "%d\n", rbd_dev->minor); 5067 } 5068 5069 static ssize_t rbd_client_addr_show(struct device *dev, 5070 struct device_attribute *attr, char *buf) 5071 { 5072 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5073 struct ceph_entity_addr *client_addr = 5074 ceph_client_addr(rbd_dev->rbd_client->client); 5075 5076 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr, 5077 le32_to_cpu(client_addr->nonce)); 5078 } 5079 5080 static ssize_t rbd_client_id_show(struct device *dev, 5081 struct device_attribute *attr, char *buf) 5082 { 5083 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5084 5085 return sprintf(buf, "client%lld\n", 5086 ceph_client_gid(rbd_dev->rbd_client->client)); 5087 } 5088 5089 static ssize_t rbd_cluster_fsid_show(struct device *dev, 5090 struct device_attribute *attr, char *buf) 5091 { 5092 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5093 5094 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid); 5095 } 5096 5097 static ssize_t rbd_config_info_show(struct device *dev, 5098 struct device_attribute *attr, char *buf) 5099 { 5100 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5101 5102 return sprintf(buf, "%s\n", rbd_dev->config_info); 5103 } 5104 5105 static ssize_t rbd_pool_show(struct device *dev, 5106 struct device_attribute *attr, char *buf) 5107 { 5108 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5109 5110 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 5111 } 5112 5113 static ssize_t rbd_pool_id_show(struct device *dev, 5114 struct device_attribute *attr, char *buf) 5115 { 5116 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5117 5118 return sprintf(buf, "%llu\n", 5119 (unsigned long long) rbd_dev->spec->pool_id); 5120 } 5121 5122 static ssize_t rbd_pool_ns_show(struct device *dev, 5123 struct device_attribute *attr, char *buf) 5124 { 5125 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5126 5127 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: ""); 5128 } 5129 5130 static ssize_t rbd_name_show(struct device *dev, 5131 struct device_attribute *attr, char *buf) 5132 { 5133 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5134 5135 if (rbd_dev->spec->image_name) 5136 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 5137 5138 return sprintf(buf, "(unknown)\n"); 5139 } 5140 5141 static ssize_t rbd_image_id_show(struct device *dev, 5142 struct device_attribute *attr, char *buf) 5143 { 5144 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5145 5146 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 5147 } 5148 5149 /* 5150 * Shows the name of the currently-mapped snapshot (or 5151 * RBD_SNAP_HEAD_NAME for the base image). 5152 */ 5153 static ssize_t rbd_snap_show(struct device *dev, 5154 struct device_attribute *attr, 5155 char *buf) 5156 { 5157 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5158 5159 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 5160 } 5161 5162 static ssize_t rbd_snap_id_show(struct device *dev, 5163 struct device_attribute *attr, char *buf) 5164 { 5165 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5166 5167 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id); 5168 } 5169 5170 /* 5171 * For a v2 image, shows the chain of parent images, separated by empty 5172 * lines. For v1 images or if there is no parent, shows "(no parent 5173 * image)". 5174 */ 5175 static ssize_t rbd_parent_show(struct device *dev, 5176 struct device_attribute *attr, 5177 char *buf) 5178 { 5179 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5180 ssize_t count = 0; 5181 5182 if (!rbd_dev->parent) 5183 return sprintf(buf, "(no parent image)\n"); 5184 5185 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 5186 struct rbd_spec *spec = rbd_dev->parent_spec; 5187 5188 count += sprintf(&buf[count], "%s" 5189 "pool_id %llu\npool_name %s\n" 5190 "pool_ns %s\n" 5191 "image_id %s\nimage_name %s\n" 5192 "snap_id %llu\nsnap_name %s\n" 5193 "overlap %llu\n", 5194 !count ? "" : "\n", /* first? */ 5195 spec->pool_id, spec->pool_name, 5196 spec->pool_ns ?: "", 5197 spec->image_id, spec->image_name ?: "(unknown)", 5198 spec->snap_id, spec->snap_name, 5199 rbd_dev->parent_overlap); 5200 } 5201 5202 return count; 5203 } 5204 5205 static ssize_t rbd_image_refresh(struct device *dev, 5206 struct device_attribute *attr, 5207 const char *buf, 5208 size_t size) 5209 { 5210 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5211 int ret; 5212 5213 ret = rbd_dev_refresh(rbd_dev); 5214 if (ret) 5215 return ret; 5216 5217 return size; 5218 } 5219 5220 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL); 5221 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL); 5222 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL); 5223 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL); 5224 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL); 5225 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL); 5226 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL); 5227 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL); 5228 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL); 5229 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL); 5230 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL); 5231 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL); 5232 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL); 5233 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh); 5234 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL); 5235 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL); 5236 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL); 5237 5238 static struct attribute *rbd_attrs[] = { 5239 &dev_attr_size.attr, 5240 &dev_attr_features.attr, 5241 &dev_attr_major.attr, 5242 &dev_attr_minor.attr, 5243 &dev_attr_client_addr.attr, 5244 &dev_attr_client_id.attr, 5245 &dev_attr_cluster_fsid.attr, 5246 &dev_attr_config_info.attr, 5247 &dev_attr_pool.attr, 5248 &dev_attr_pool_id.attr, 5249 &dev_attr_pool_ns.attr, 5250 &dev_attr_name.attr, 5251 &dev_attr_image_id.attr, 5252 &dev_attr_current_snap.attr, 5253 &dev_attr_snap_id.attr, 5254 &dev_attr_parent.attr, 5255 &dev_attr_refresh.attr, 5256 NULL 5257 }; 5258 5259 static struct attribute_group rbd_attr_group = { 5260 .attrs = rbd_attrs, 5261 }; 5262 5263 static const struct attribute_group *rbd_attr_groups[] = { 5264 &rbd_attr_group, 5265 NULL 5266 }; 5267 5268 static void rbd_dev_release(struct device *dev); 5269 5270 static const struct device_type rbd_device_type = { 5271 .name = "rbd", 5272 .groups = rbd_attr_groups, 5273 .release = rbd_dev_release, 5274 }; 5275 5276 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 5277 { 5278 kref_get(&spec->kref); 5279 5280 return spec; 5281 } 5282 5283 static void rbd_spec_free(struct kref *kref); 5284 static void rbd_spec_put(struct rbd_spec *spec) 5285 { 5286 if (spec) 5287 kref_put(&spec->kref, rbd_spec_free); 5288 } 5289 5290 static struct rbd_spec *rbd_spec_alloc(void) 5291 { 5292 struct rbd_spec *spec; 5293 5294 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 5295 if (!spec) 5296 return NULL; 5297 5298 spec->pool_id = CEPH_NOPOOL; 5299 spec->snap_id = CEPH_NOSNAP; 5300 kref_init(&spec->kref); 5301 5302 return spec; 5303 } 5304 5305 static void rbd_spec_free(struct kref *kref) 5306 { 5307 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 5308 5309 kfree(spec->pool_name); 5310 kfree(spec->pool_ns); 5311 kfree(spec->image_id); 5312 kfree(spec->image_name); 5313 kfree(spec->snap_name); 5314 kfree(spec); 5315 } 5316 5317 static void rbd_dev_free(struct rbd_device *rbd_dev) 5318 { 5319 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED); 5320 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED); 5321 5322 ceph_oid_destroy(&rbd_dev->header_oid); 5323 ceph_oloc_destroy(&rbd_dev->header_oloc); 5324 kfree(rbd_dev->config_info); 5325 5326 rbd_put_client(rbd_dev->rbd_client); 5327 rbd_spec_put(rbd_dev->spec); 5328 kfree(rbd_dev->opts); 5329 kfree(rbd_dev); 5330 } 5331 5332 static void rbd_dev_release(struct device *dev) 5333 { 5334 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5335 bool need_put = !!rbd_dev->opts; 5336 5337 if (need_put) { 5338 destroy_workqueue(rbd_dev->task_wq); 5339 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5340 } 5341 5342 rbd_dev_free(rbd_dev); 5343 5344 /* 5345 * This is racy, but way better than putting module outside of 5346 * the release callback. The race window is pretty small, so 5347 * doing something similar to dm (dm-builtin.c) is overkill. 5348 */ 5349 if (need_put) 5350 module_put(THIS_MODULE); 5351 } 5352 5353 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc, 5354 struct rbd_spec *spec) 5355 { 5356 struct rbd_device *rbd_dev; 5357 5358 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL); 5359 if (!rbd_dev) 5360 return NULL; 5361 5362 spin_lock_init(&rbd_dev->lock); 5363 INIT_LIST_HEAD(&rbd_dev->node); 5364 init_rwsem(&rbd_dev->header_rwsem); 5365 5366 rbd_dev->header.data_pool_id = CEPH_NOPOOL; 5367 ceph_oid_init(&rbd_dev->header_oid); 5368 rbd_dev->header_oloc.pool = spec->pool_id; 5369 if (spec->pool_ns) { 5370 WARN_ON(!*spec->pool_ns); 5371 rbd_dev->header_oloc.pool_ns = 5372 ceph_find_or_create_string(spec->pool_ns, 5373 strlen(spec->pool_ns)); 5374 } 5375 5376 mutex_init(&rbd_dev->watch_mutex); 5377 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED; 5378 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch); 5379 5380 init_rwsem(&rbd_dev->lock_rwsem); 5381 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED; 5382 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock); 5383 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock); 5384 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock); 5385 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work); 5386 spin_lock_init(&rbd_dev->lock_lists_lock); 5387 INIT_LIST_HEAD(&rbd_dev->acquiring_list); 5388 INIT_LIST_HEAD(&rbd_dev->running_list); 5389 init_completion(&rbd_dev->acquire_wait); 5390 init_completion(&rbd_dev->releasing_wait); 5391 5392 spin_lock_init(&rbd_dev->object_map_lock); 5393 5394 rbd_dev->dev.bus = &rbd_bus_type; 5395 rbd_dev->dev.type = &rbd_device_type; 5396 rbd_dev->dev.parent = &rbd_root_dev; 5397 device_initialize(&rbd_dev->dev); 5398 5399 rbd_dev->rbd_client = rbdc; 5400 rbd_dev->spec = spec; 5401 5402 return rbd_dev; 5403 } 5404 5405 /* 5406 * Create a mapping rbd_dev. 5407 */ 5408 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 5409 struct rbd_spec *spec, 5410 struct rbd_options *opts) 5411 { 5412 struct rbd_device *rbd_dev; 5413 5414 rbd_dev = __rbd_dev_create(rbdc, spec); 5415 if (!rbd_dev) 5416 return NULL; 5417 5418 rbd_dev->opts = opts; 5419 5420 /* get an id and fill in device name */ 5421 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0, 5422 minor_to_rbd_dev_id(1 << MINORBITS), 5423 GFP_KERNEL); 5424 if (rbd_dev->dev_id < 0) 5425 goto fail_rbd_dev; 5426 5427 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id); 5428 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM, 5429 rbd_dev->name); 5430 if (!rbd_dev->task_wq) 5431 goto fail_dev_id; 5432 5433 /* we have a ref from do_rbd_add() */ 5434 __module_get(THIS_MODULE); 5435 5436 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id); 5437 return rbd_dev; 5438 5439 fail_dev_id: 5440 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 5441 fail_rbd_dev: 5442 rbd_dev_free(rbd_dev); 5443 return NULL; 5444 } 5445 5446 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 5447 { 5448 if (rbd_dev) 5449 put_device(&rbd_dev->dev); 5450 } 5451 5452 /* 5453 * Get the size and object order for an image snapshot, or if 5454 * snap_id is CEPH_NOSNAP, gets this information for the base 5455 * image. 5456 */ 5457 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 5458 u8 *order, u64 *snap_size) 5459 { 5460 __le64 snapid = cpu_to_le64(snap_id); 5461 int ret; 5462 struct { 5463 u8 order; 5464 __le64 size; 5465 } __attribute__ ((packed)) size_buf = { 0 }; 5466 5467 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5468 &rbd_dev->header_oloc, "get_size", 5469 &snapid, sizeof(snapid), 5470 &size_buf, sizeof(size_buf)); 5471 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5472 if (ret < 0) 5473 return ret; 5474 if (ret < sizeof (size_buf)) 5475 return -ERANGE; 5476 5477 if (order) { 5478 *order = size_buf.order; 5479 dout(" order %u", (unsigned int)*order); 5480 } 5481 *snap_size = le64_to_cpu(size_buf.size); 5482 5483 dout(" snap_id 0x%016llx snap_size = %llu\n", 5484 (unsigned long long)snap_id, 5485 (unsigned long long)*snap_size); 5486 5487 return 0; 5488 } 5489 5490 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 5491 { 5492 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 5493 &rbd_dev->header.obj_order, 5494 &rbd_dev->header.image_size); 5495 } 5496 5497 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 5498 { 5499 size_t size; 5500 void *reply_buf; 5501 int ret; 5502 void *p; 5503 5504 /* Response will be an encoded string, which includes a length */ 5505 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX; 5506 reply_buf = kzalloc(size, GFP_KERNEL); 5507 if (!reply_buf) 5508 return -ENOMEM; 5509 5510 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5511 &rbd_dev->header_oloc, "get_object_prefix", 5512 NULL, 0, reply_buf, size); 5513 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5514 if (ret < 0) 5515 goto out; 5516 5517 p = reply_buf; 5518 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 5519 p + ret, NULL, GFP_NOIO); 5520 ret = 0; 5521 5522 if (IS_ERR(rbd_dev->header.object_prefix)) { 5523 ret = PTR_ERR(rbd_dev->header.object_prefix); 5524 rbd_dev->header.object_prefix = NULL; 5525 } else { 5526 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 5527 } 5528 out: 5529 kfree(reply_buf); 5530 5531 return ret; 5532 } 5533 5534 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 5535 bool read_only, u64 *snap_features) 5536 { 5537 struct { 5538 __le64 snap_id; 5539 u8 read_only; 5540 } features_in; 5541 struct { 5542 __le64 features; 5543 __le64 incompat; 5544 } __attribute__ ((packed)) features_buf = { 0 }; 5545 u64 unsup; 5546 int ret; 5547 5548 features_in.snap_id = cpu_to_le64(snap_id); 5549 features_in.read_only = read_only; 5550 5551 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5552 &rbd_dev->header_oloc, "get_features", 5553 &features_in, sizeof(features_in), 5554 &features_buf, sizeof(features_buf)); 5555 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5556 if (ret < 0) 5557 return ret; 5558 if (ret < sizeof (features_buf)) 5559 return -ERANGE; 5560 5561 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED; 5562 if (unsup) { 5563 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx", 5564 unsup); 5565 return -ENXIO; 5566 } 5567 5568 *snap_features = le64_to_cpu(features_buf.features); 5569 5570 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 5571 (unsigned long long)snap_id, 5572 (unsigned long long)*snap_features, 5573 (unsigned long long)le64_to_cpu(features_buf.incompat)); 5574 5575 return 0; 5576 } 5577 5578 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 5579 { 5580 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 5581 rbd_is_ro(rbd_dev), 5582 &rbd_dev->header.features); 5583 } 5584 5585 /* 5586 * These are generic image flags, but since they are used only for 5587 * object map, store them in rbd_dev->object_map_flags. 5588 * 5589 * For the same reason, this function is called only on object map 5590 * (re)load and not on header refresh. 5591 */ 5592 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev) 5593 { 5594 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 5595 __le64 flags; 5596 int ret; 5597 5598 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5599 &rbd_dev->header_oloc, "get_flags", 5600 &snapid, sizeof(snapid), 5601 &flags, sizeof(flags)); 5602 if (ret < 0) 5603 return ret; 5604 if (ret < sizeof(flags)) 5605 return -EBADMSG; 5606 5607 rbd_dev->object_map_flags = le64_to_cpu(flags); 5608 return 0; 5609 } 5610 5611 struct parent_image_info { 5612 u64 pool_id; 5613 const char *pool_ns; 5614 const char *image_id; 5615 u64 snap_id; 5616 5617 bool has_overlap; 5618 u64 overlap; 5619 }; 5620 5621 /* 5622 * The caller is responsible for @pii. 5623 */ 5624 static int decode_parent_image_spec(void **p, void *end, 5625 struct parent_image_info *pii) 5626 { 5627 u8 struct_v; 5628 u32 struct_len; 5629 int ret; 5630 5631 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec", 5632 &struct_v, &struct_len); 5633 if (ret) 5634 return ret; 5635 5636 ceph_decode_64_safe(p, end, pii->pool_id, e_inval); 5637 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5638 if (IS_ERR(pii->pool_ns)) { 5639 ret = PTR_ERR(pii->pool_ns); 5640 pii->pool_ns = NULL; 5641 return ret; 5642 } 5643 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL); 5644 if (IS_ERR(pii->image_id)) { 5645 ret = PTR_ERR(pii->image_id); 5646 pii->image_id = NULL; 5647 return ret; 5648 } 5649 ceph_decode_64_safe(p, end, pii->snap_id, e_inval); 5650 return 0; 5651 5652 e_inval: 5653 return -EINVAL; 5654 } 5655 5656 static int __get_parent_info(struct rbd_device *rbd_dev, 5657 struct page *req_page, 5658 struct page *reply_page, 5659 struct parent_image_info *pii) 5660 { 5661 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5662 size_t reply_len = PAGE_SIZE; 5663 void *p, *end; 5664 int ret; 5665 5666 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5667 "rbd", "parent_get", CEPH_OSD_FLAG_READ, 5668 req_page, sizeof(u64), &reply_page, &reply_len); 5669 if (ret) 5670 return ret == -EOPNOTSUPP ? 1 : ret; 5671 5672 p = page_address(reply_page); 5673 end = p + reply_len; 5674 ret = decode_parent_image_spec(&p, end, pii); 5675 if (ret) 5676 return ret; 5677 5678 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5679 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ, 5680 req_page, sizeof(u64), &reply_page, &reply_len); 5681 if (ret) 5682 return ret; 5683 5684 p = page_address(reply_page); 5685 end = p + reply_len; 5686 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval); 5687 if (pii->has_overlap) 5688 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5689 5690 return 0; 5691 5692 e_inval: 5693 return -EINVAL; 5694 } 5695 5696 /* 5697 * The caller is responsible for @pii. 5698 */ 5699 static int __get_parent_info_legacy(struct rbd_device *rbd_dev, 5700 struct page *req_page, 5701 struct page *reply_page, 5702 struct parent_image_info *pii) 5703 { 5704 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 5705 size_t reply_len = PAGE_SIZE; 5706 void *p, *end; 5707 int ret; 5708 5709 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc, 5710 "rbd", "get_parent", CEPH_OSD_FLAG_READ, 5711 req_page, sizeof(u64), &reply_page, &reply_len); 5712 if (ret) 5713 return ret; 5714 5715 p = page_address(reply_page); 5716 end = p + reply_len; 5717 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval); 5718 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 5719 if (IS_ERR(pii->image_id)) { 5720 ret = PTR_ERR(pii->image_id); 5721 pii->image_id = NULL; 5722 return ret; 5723 } 5724 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval); 5725 pii->has_overlap = true; 5726 ceph_decode_64_safe(&p, end, pii->overlap, e_inval); 5727 5728 return 0; 5729 5730 e_inval: 5731 return -EINVAL; 5732 } 5733 5734 static int get_parent_info(struct rbd_device *rbd_dev, 5735 struct parent_image_info *pii) 5736 { 5737 struct page *req_page, *reply_page; 5738 void *p; 5739 int ret; 5740 5741 req_page = alloc_page(GFP_KERNEL); 5742 if (!req_page) 5743 return -ENOMEM; 5744 5745 reply_page = alloc_page(GFP_KERNEL); 5746 if (!reply_page) { 5747 __free_page(req_page); 5748 return -ENOMEM; 5749 } 5750 5751 p = page_address(req_page); 5752 ceph_encode_64(&p, rbd_dev->spec->snap_id); 5753 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii); 5754 if (ret > 0) 5755 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page, 5756 pii); 5757 5758 __free_page(req_page); 5759 __free_page(reply_page); 5760 return ret; 5761 } 5762 5763 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 5764 { 5765 struct rbd_spec *parent_spec; 5766 struct parent_image_info pii = { 0 }; 5767 int ret; 5768 5769 parent_spec = rbd_spec_alloc(); 5770 if (!parent_spec) 5771 return -ENOMEM; 5772 5773 ret = get_parent_info(rbd_dev, &pii); 5774 if (ret) 5775 goto out_err; 5776 5777 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n", 5778 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id, 5779 pii.has_overlap, pii.overlap); 5780 5781 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) { 5782 /* 5783 * Either the parent never existed, or we have 5784 * record of it but the image got flattened so it no 5785 * longer has a parent. When the parent of a 5786 * layered image disappears we immediately set the 5787 * overlap to 0. The effect of this is that all new 5788 * requests will be treated as if the image had no 5789 * parent. 5790 * 5791 * If !pii.has_overlap, the parent image spec is not 5792 * applicable. It's there to avoid duplication in each 5793 * snapshot record. 5794 */ 5795 if (rbd_dev->parent_overlap) { 5796 rbd_dev->parent_overlap = 0; 5797 rbd_dev_parent_put(rbd_dev); 5798 pr_info("%s: clone image has been flattened\n", 5799 rbd_dev->disk->disk_name); 5800 } 5801 5802 goto out; /* No parent? No problem. */ 5803 } 5804 5805 /* The ceph file layout needs to fit pool id in 32 bits */ 5806 5807 ret = -EIO; 5808 if (pii.pool_id > (u64)U32_MAX) { 5809 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 5810 (unsigned long long)pii.pool_id, U32_MAX); 5811 goto out_err; 5812 } 5813 5814 /* 5815 * The parent won't change (except when the clone is 5816 * flattened, already handled that). So we only need to 5817 * record the parent spec we have not already done so. 5818 */ 5819 if (!rbd_dev->parent_spec) { 5820 parent_spec->pool_id = pii.pool_id; 5821 if (pii.pool_ns && *pii.pool_ns) { 5822 parent_spec->pool_ns = pii.pool_ns; 5823 pii.pool_ns = NULL; 5824 } 5825 parent_spec->image_id = pii.image_id; 5826 pii.image_id = NULL; 5827 parent_spec->snap_id = pii.snap_id; 5828 5829 rbd_dev->parent_spec = parent_spec; 5830 parent_spec = NULL; /* rbd_dev now owns this */ 5831 } 5832 5833 /* 5834 * We always update the parent overlap. If it's zero we issue 5835 * a warning, as we will proceed as if there was no parent. 5836 */ 5837 if (!pii.overlap) { 5838 if (parent_spec) { 5839 /* refresh, careful to warn just once */ 5840 if (rbd_dev->parent_overlap) 5841 rbd_warn(rbd_dev, 5842 "clone now standalone (overlap became 0)"); 5843 } else { 5844 /* initial probe */ 5845 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 5846 } 5847 } 5848 rbd_dev->parent_overlap = pii.overlap; 5849 5850 out: 5851 ret = 0; 5852 out_err: 5853 kfree(pii.pool_ns); 5854 kfree(pii.image_id); 5855 rbd_spec_put(parent_spec); 5856 return ret; 5857 } 5858 5859 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 5860 { 5861 struct { 5862 __le64 stripe_unit; 5863 __le64 stripe_count; 5864 } __attribute__ ((packed)) striping_info_buf = { 0 }; 5865 size_t size = sizeof (striping_info_buf); 5866 void *p; 5867 int ret; 5868 5869 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5870 &rbd_dev->header_oloc, "get_stripe_unit_count", 5871 NULL, 0, &striping_info_buf, size); 5872 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5873 if (ret < 0) 5874 return ret; 5875 if (ret < size) 5876 return -ERANGE; 5877 5878 p = &striping_info_buf; 5879 rbd_dev->header.stripe_unit = ceph_decode_64(&p); 5880 rbd_dev->header.stripe_count = ceph_decode_64(&p); 5881 return 0; 5882 } 5883 5884 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev) 5885 { 5886 __le64 data_pool_id; 5887 int ret; 5888 5889 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 5890 &rbd_dev->header_oloc, "get_data_pool", 5891 NULL, 0, &data_pool_id, sizeof(data_pool_id)); 5892 if (ret < 0) 5893 return ret; 5894 if (ret < sizeof(data_pool_id)) 5895 return -EBADMSG; 5896 5897 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id); 5898 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL); 5899 return 0; 5900 } 5901 5902 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 5903 { 5904 CEPH_DEFINE_OID_ONSTACK(oid); 5905 size_t image_id_size; 5906 char *image_id; 5907 void *p; 5908 void *end; 5909 size_t size; 5910 void *reply_buf = NULL; 5911 size_t len = 0; 5912 char *image_name = NULL; 5913 int ret; 5914 5915 rbd_assert(!rbd_dev->spec->image_name); 5916 5917 len = strlen(rbd_dev->spec->image_id); 5918 image_id_size = sizeof (__le32) + len; 5919 image_id = kmalloc(image_id_size, GFP_KERNEL); 5920 if (!image_id) 5921 return NULL; 5922 5923 p = image_id; 5924 end = image_id + image_id_size; 5925 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 5926 5927 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 5928 reply_buf = kmalloc(size, GFP_KERNEL); 5929 if (!reply_buf) 5930 goto out; 5931 5932 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY); 5933 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 5934 "dir_get_name", image_id, image_id_size, 5935 reply_buf, size); 5936 if (ret < 0) 5937 goto out; 5938 p = reply_buf; 5939 end = reply_buf + ret; 5940 5941 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 5942 if (IS_ERR(image_name)) 5943 image_name = NULL; 5944 else 5945 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 5946 out: 5947 kfree(reply_buf); 5948 kfree(image_id); 5949 5950 return image_name; 5951 } 5952 5953 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5954 { 5955 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5956 const char *snap_name; 5957 u32 which = 0; 5958 5959 /* Skip over names until we find the one we are looking for */ 5960 5961 snap_name = rbd_dev->header.snap_names; 5962 while (which < snapc->num_snaps) { 5963 if (!strcmp(name, snap_name)) 5964 return snapc->snaps[which]; 5965 snap_name += strlen(snap_name) + 1; 5966 which++; 5967 } 5968 return CEPH_NOSNAP; 5969 } 5970 5971 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 5972 { 5973 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 5974 u32 which; 5975 bool found = false; 5976 u64 snap_id; 5977 5978 for (which = 0; !found && which < snapc->num_snaps; which++) { 5979 const char *snap_name; 5980 5981 snap_id = snapc->snaps[which]; 5982 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 5983 if (IS_ERR(snap_name)) { 5984 /* ignore no-longer existing snapshots */ 5985 if (PTR_ERR(snap_name) == -ENOENT) 5986 continue; 5987 else 5988 break; 5989 } 5990 found = !strcmp(name, snap_name); 5991 kfree(snap_name); 5992 } 5993 return found ? snap_id : CEPH_NOSNAP; 5994 } 5995 5996 /* 5997 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 5998 * no snapshot by that name is found, or if an error occurs. 5999 */ 6000 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 6001 { 6002 if (rbd_dev->image_format == 1) 6003 return rbd_v1_snap_id_by_name(rbd_dev, name); 6004 6005 return rbd_v2_snap_id_by_name(rbd_dev, name); 6006 } 6007 6008 /* 6009 * An image being mapped will have everything but the snap id. 6010 */ 6011 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 6012 { 6013 struct rbd_spec *spec = rbd_dev->spec; 6014 6015 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 6016 rbd_assert(spec->image_id && spec->image_name); 6017 rbd_assert(spec->snap_name); 6018 6019 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 6020 u64 snap_id; 6021 6022 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 6023 if (snap_id == CEPH_NOSNAP) 6024 return -ENOENT; 6025 6026 spec->snap_id = snap_id; 6027 } else { 6028 spec->snap_id = CEPH_NOSNAP; 6029 } 6030 6031 return 0; 6032 } 6033 6034 /* 6035 * A parent image will have all ids but none of the names. 6036 * 6037 * All names in an rbd spec are dynamically allocated. It's OK if we 6038 * can't figure out the name for an image id. 6039 */ 6040 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 6041 { 6042 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 6043 struct rbd_spec *spec = rbd_dev->spec; 6044 const char *pool_name; 6045 const char *image_name; 6046 const char *snap_name; 6047 int ret; 6048 6049 rbd_assert(spec->pool_id != CEPH_NOPOOL); 6050 rbd_assert(spec->image_id); 6051 rbd_assert(spec->snap_id != CEPH_NOSNAP); 6052 6053 /* Get the pool name; we have to make our own copy of this */ 6054 6055 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 6056 if (!pool_name) { 6057 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 6058 return -EIO; 6059 } 6060 pool_name = kstrdup(pool_name, GFP_KERNEL); 6061 if (!pool_name) 6062 return -ENOMEM; 6063 6064 /* Fetch the image name; tolerate failure here */ 6065 6066 image_name = rbd_dev_image_name(rbd_dev); 6067 if (!image_name) 6068 rbd_warn(rbd_dev, "unable to get image name"); 6069 6070 /* Fetch the snapshot name */ 6071 6072 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 6073 if (IS_ERR(snap_name)) { 6074 ret = PTR_ERR(snap_name); 6075 goto out_err; 6076 } 6077 6078 spec->pool_name = pool_name; 6079 spec->image_name = image_name; 6080 spec->snap_name = snap_name; 6081 6082 return 0; 6083 6084 out_err: 6085 kfree(image_name); 6086 kfree(pool_name); 6087 return ret; 6088 } 6089 6090 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 6091 { 6092 size_t size; 6093 int ret; 6094 void *reply_buf; 6095 void *p; 6096 void *end; 6097 u64 seq; 6098 u32 snap_count; 6099 struct ceph_snap_context *snapc; 6100 u32 i; 6101 6102 /* 6103 * We'll need room for the seq value (maximum snapshot id), 6104 * snapshot count, and array of that many snapshot ids. 6105 * For now we have a fixed upper limit on the number we're 6106 * prepared to receive. 6107 */ 6108 size = sizeof (__le64) + sizeof (__le32) + 6109 RBD_MAX_SNAP_COUNT * sizeof (__le64); 6110 reply_buf = kzalloc(size, GFP_KERNEL); 6111 if (!reply_buf) 6112 return -ENOMEM; 6113 6114 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6115 &rbd_dev->header_oloc, "get_snapcontext", 6116 NULL, 0, reply_buf, size); 6117 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6118 if (ret < 0) 6119 goto out; 6120 6121 p = reply_buf; 6122 end = reply_buf + ret; 6123 ret = -ERANGE; 6124 ceph_decode_64_safe(&p, end, seq, out); 6125 ceph_decode_32_safe(&p, end, snap_count, out); 6126 6127 /* 6128 * Make sure the reported number of snapshot ids wouldn't go 6129 * beyond the end of our buffer. But before checking that, 6130 * make sure the computed size of the snapshot context we 6131 * allocate is representable in a size_t. 6132 */ 6133 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 6134 / sizeof (u64)) { 6135 ret = -EINVAL; 6136 goto out; 6137 } 6138 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 6139 goto out; 6140 ret = 0; 6141 6142 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 6143 if (!snapc) { 6144 ret = -ENOMEM; 6145 goto out; 6146 } 6147 snapc->seq = seq; 6148 for (i = 0; i < snap_count; i++) 6149 snapc->snaps[i] = ceph_decode_64(&p); 6150 6151 ceph_put_snap_context(rbd_dev->header.snapc); 6152 rbd_dev->header.snapc = snapc; 6153 6154 dout(" snap context seq = %llu, snap_count = %u\n", 6155 (unsigned long long)seq, (unsigned int)snap_count); 6156 out: 6157 kfree(reply_buf); 6158 6159 return ret; 6160 } 6161 6162 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 6163 u64 snap_id) 6164 { 6165 size_t size; 6166 void *reply_buf; 6167 __le64 snapid; 6168 int ret; 6169 void *p; 6170 void *end; 6171 char *snap_name; 6172 6173 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 6174 reply_buf = kmalloc(size, GFP_KERNEL); 6175 if (!reply_buf) 6176 return ERR_PTR(-ENOMEM); 6177 6178 snapid = cpu_to_le64(snap_id); 6179 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid, 6180 &rbd_dev->header_oloc, "get_snapshot_name", 6181 &snapid, sizeof(snapid), reply_buf, size); 6182 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6183 if (ret < 0) { 6184 snap_name = ERR_PTR(ret); 6185 goto out; 6186 } 6187 6188 p = reply_buf; 6189 end = reply_buf + ret; 6190 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 6191 if (IS_ERR(snap_name)) 6192 goto out; 6193 6194 dout(" snap_id 0x%016llx snap_name = %s\n", 6195 (unsigned long long)snap_id, snap_name); 6196 out: 6197 kfree(reply_buf); 6198 6199 return snap_name; 6200 } 6201 6202 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 6203 { 6204 bool first_time = rbd_dev->header.object_prefix == NULL; 6205 int ret; 6206 6207 ret = rbd_dev_v2_image_size(rbd_dev); 6208 if (ret) 6209 return ret; 6210 6211 if (first_time) { 6212 ret = rbd_dev_v2_header_onetime(rbd_dev); 6213 if (ret) 6214 return ret; 6215 } 6216 6217 ret = rbd_dev_v2_snap_context(rbd_dev); 6218 if (ret && first_time) { 6219 kfree(rbd_dev->header.object_prefix); 6220 rbd_dev->header.object_prefix = NULL; 6221 } 6222 6223 return ret; 6224 } 6225 6226 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 6227 { 6228 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6229 6230 if (rbd_dev->image_format == 1) 6231 return rbd_dev_v1_header_info(rbd_dev); 6232 6233 return rbd_dev_v2_header_info(rbd_dev); 6234 } 6235 6236 /* 6237 * Skips over white space at *buf, and updates *buf to point to the 6238 * first found non-space character (if any). Returns the length of 6239 * the token (string of non-white space characters) found. Note 6240 * that *buf must be terminated with '\0'. 6241 */ 6242 static inline size_t next_token(const char **buf) 6243 { 6244 /* 6245 * These are the characters that produce nonzero for 6246 * isspace() in the "C" and "POSIX" locales. 6247 */ 6248 const char *spaces = " \f\n\r\t\v"; 6249 6250 *buf += strspn(*buf, spaces); /* Find start of token */ 6251 6252 return strcspn(*buf, spaces); /* Return token length */ 6253 } 6254 6255 /* 6256 * Finds the next token in *buf, dynamically allocates a buffer big 6257 * enough to hold a copy of it, and copies the token into the new 6258 * buffer. The copy is guaranteed to be terminated with '\0'. Note 6259 * that a duplicate buffer is created even for a zero-length token. 6260 * 6261 * Returns a pointer to the newly-allocated duplicate, or a null 6262 * pointer if memory for the duplicate was not available. If 6263 * the lenp argument is a non-null pointer, the length of the token 6264 * (not including the '\0') is returned in *lenp. 6265 * 6266 * If successful, the *buf pointer will be updated to point beyond 6267 * the end of the found token. 6268 * 6269 * Note: uses GFP_KERNEL for allocation. 6270 */ 6271 static inline char *dup_token(const char **buf, size_t *lenp) 6272 { 6273 char *dup; 6274 size_t len; 6275 6276 len = next_token(buf); 6277 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 6278 if (!dup) 6279 return NULL; 6280 *(dup + len) = '\0'; 6281 *buf += len; 6282 6283 if (lenp) 6284 *lenp = len; 6285 6286 return dup; 6287 } 6288 6289 static int rbd_parse_param(struct fs_parameter *param, 6290 struct rbd_parse_opts_ctx *pctx) 6291 { 6292 struct rbd_options *opt = pctx->opts; 6293 struct fs_parse_result result; 6294 struct p_log log = {.prefix = "rbd"}; 6295 int token, ret; 6296 6297 ret = ceph_parse_param(param, pctx->copts, NULL); 6298 if (ret != -ENOPARAM) 6299 return ret; 6300 6301 token = __fs_parse(&log, rbd_parameters, param, &result); 6302 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token); 6303 if (token < 0) { 6304 if (token == -ENOPARAM) 6305 return inval_plog(&log, "Unknown parameter '%s'", 6306 param->key); 6307 return token; 6308 } 6309 6310 switch (token) { 6311 case Opt_queue_depth: 6312 if (result.uint_32 < 1) 6313 goto out_of_range; 6314 opt->queue_depth = result.uint_32; 6315 break; 6316 case Opt_alloc_size: 6317 if (result.uint_32 < SECTOR_SIZE) 6318 goto out_of_range; 6319 if (!is_power_of_2(result.uint_32)) 6320 return inval_plog(&log, "alloc_size must be a power of 2"); 6321 opt->alloc_size = result.uint_32; 6322 break; 6323 case Opt_lock_timeout: 6324 /* 0 is "wait forever" (i.e. infinite timeout) */ 6325 if (result.uint_32 > INT_MAX / 1000) 6326 goto out_of_range; 6327 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000); 6328 break; 6329 case Opt_pool_ns: 6330 kfree(pctx->spec->pool_ns); 6331 pctx->spec->pool_ns = param->string; 6332 param->string = NULL; 6333 break; 6334 case Opt_read_only: 6335 opt->read_only = true; 6336 break; 6337 case Opt_read_write: 6338 opt->read_only = false; 6339 break; 6340 case Opt_lock_on_read: 6341 opt->lock_on_read = true; 6342 break; 6343 case Opt_exclusive: 6344 opt->exclusive = true; 6345 break; 6346 case Opt_notrim: 6347 opt->trim = false; 6348 break; 6349 default: 6350 BUG(); 6351 } 6352 6353 return 0; 6354 6355 out_of_range: 6356 return inval_plog(&log, "%s out of range", param->key); 6357 } 6358 6359 /* 6360 * This duplicates most of generic_parse_monolithic(), untying it from 6361 * fs_context and skipping standard superblock and security options. 6362 */ 6363 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx) 6364 { 6365 char *key; 6366 int ret = 0; 6367 6368 dout("%s '%s'\n", __func__, options); 6369 while ((key = strsep(&options, ",")) != NULL) { 6370 if (*key) { 6371 struct fs_parameter param = { 6372 .key = key, 6373 .type = fs_value_is_flag, 6374 }; 6375 char *value = strchr(key, '='); 6376 size_t v_len = 0; 6377 6378 if (value) { 6379 if (value == key) 6380 continue; 6381 *value++ = 0; 6382 v_len = strlen(value); 6383 param.string = kmemdup_nul(value, v_len, 6384 GFP_KERNEL); 6385 if (!param.string) 6386 return -ENOMEM; 6387 param.type = fs_value_is_string; 6388 } 6389 param.size = v_len; 6390 6391 ret = rbd_parse_param(¶m, pctx); 6392 kfree(param.string); 6393 if (ret) 6394 break; 6395 } 6396 } 6397 6398 return ret; 6399 } 6400 6401 /* 6402 * Parse the options provided for an "rbd add" (i.e., rbd image 6403 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 6404 * and the data written is passed here via a NUL-terminated buffer. 6405 * Returns 0 if successful or an error code otherwise. 6406 * 6407 * The information extracted from these options is recorded in 6408 * the other parameters which return dynamically-allocated 6409 * structures: 6410 * ceph_opts 6411 * The address of a pointer that will refer to a ceph options 6412 * structure. Caller must release the returned pointer using 6413 * ceph_destroy_options() when it is no longer needed. 6414 * rbd_opts 6415 * Address of an rbd options pointer. Fully initialized by 6416 * this function; caller must release with kfree(). 6417 * spec 6418 * Address of an rbd image specification pointer. Fully 6419 * initialized by this function based on parsed options. 6420 * Caller must release with rbd_spec_put(). 6421 * 6422 * The options passed take this form: 6423 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 6424 * where: 6425 * <mon_addrs> 6426 * A comma-separated list of one or more monitor addresses. 6427 * A monitor address is an ip address, optionally followed 6428 * by a port number (separated by a colon). 6429 * I.e.: ip1[:port1][,ip2[:port2]...] 6430 * <options> 6431 * A comma-separated list of ceph and/or rbd options. 6432 * <pool_name> 6433 * The name of the rados pool containing the rbd image. 6434 * <image_name> 6435 * The name of the image in that pool to map. 6436 * <snap_id> 6437 * An optional snapshot id. If provided, the mapping will 6438 * present data from the image at the time that snapshot was 6439 * created. The image head is used if no snapshot id is 6440 * provided. Snapshot mappings are always read-only. 6441 */ 6442 static int rbd_add_parse_args(const char *buf, 6443 struct ceph_options **ceph_opts, 6444 struct rbd_options **opts, 6445 struct rbd_spec **rbd_spec) 6446 { 6447 size_t len; 6448 char *options; 6449 const char *mon_addrs; 6450 char *snap_name; 6451 size_t mon_addrs_size; 6452 struct rbd_parse_opts_ctx pctx = { 0 }; 6453 int ret; 6454 6455 /* The first four tokens are required */ 6456 6457 len = next_token(&buf); 6458 if (!len) { 6459 rbd_warn(NULL, "no monitor address(es) provided"); 6460 return -EINVAL; 6461 } 6462 mon_addrs = buf; 6463 mon_addrs_size = len; 6464 buf += len; 6465 6466 ret = -EINVAL; 6467 options = dup_token(&buf, NULL); 6468 if (!options) 6469 return -ENOMEM; 6470 if (!*options) { 6471 rbd_warn(NULL, "no options provided"); 6472 goto out_err; 6473 } 6474 6475 pctx.spec = rbd_spec_alloc(); 6476 if (!pctx.spec) 6477 goto out_mem; 6478 6479 pctx.spec->pool_name = dup_token(&buf, NULL); 6480 if (!pctx.spec->pool_name) 6481 goto out_mem; 6482 if (!*pctx.spec->pool_name) { 6483 rbd_warn(NULL, "no pool name provided"); 6484 goto out_err; 6485 } 6486 6487 pctx.spec->image_name = dup_token(&buf, NULL); 6488 if (!pctx.spec->image_name) 6489 goto out_mem; 6490 if (!*pctx.spec->image_name) { 6491 rbd_warn(NULL, "no image name provided"); 6492 goto out_err; 6493 } 6494 6495 /* 6496 * Snapshot name is optional; default is to use "-" 6497 * (indicating the head/no snapshot). 6498 */ 6499 len = next_token(&buf); 6500 if (!len) { 6501 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 6502 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 6503 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 6504 ret = -ENAMETOOLONG; 6505 goto out_err; 6506 } 6507 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 6508 if (!snap_name) 6509 goto out_mem; 6510 *(snap_name + len) = '\0'; 6511 pctx.spec->snap_name = snap_name; 6512 6513 pctx.copts = ceph_alloc_options(); 6514 if (!pctx.copts) 6515 goto out_mem; 6516 6517 /* Initialize all rbd options to the defaults */ 6518 6519 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL); 6520 if (!pctx.opts) 6521 goto out_mem; 6522 6523 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT; 6524 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 6525 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT; 6526 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT; 6527 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT; 6528 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT; 6529 pctx.opts->trim = RBD_TRIM_DEFAULT; 6530 6531 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL); 6532 if (ret) 6533 goto out_err; 6534 6535 ret = rbd_parse_options(options, &pctx); 6536 if (ret) 6537 goto out_err; 6538 6539 *ceph_opts = pctx.copts; 6540 *opts = pctx.opts; 6541 *rbd_spec = pctx.spec; 6542 kfree(options); 6543 return 0; 6544 6545 out_mem: 6546 ret = -ENOMEM; 6547 out_err: 6548 kfree(pctx.opts); 6549 ceph_destroy_options(pctx.copts); 6550 rbd_spec_put(pctx.spec); 6551 kfree(options); 6552 return ret; 6553 } 6554 6555 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev) 6556 { 6557 down_write(&rbd_dev->lock_rwsem); 6558 if (__rbd_is_lock_owner(rbd_dev)) 6559 __rbd_release_lock(rbd_dev); 6560 up_write(&rbd_dev->lock_rwsem); 6561 } 6562 6563 /* 6564 * If the wait is interrupted, an error is returned even if the lock 6565 * was successfully acquired. rbd_dev_image_unlock() will release it 6566 * if needed. 6567 */ 6568 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev) 6569 { 6570 long ret; 6571 6572 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) { 6573 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read) 6574 return 0; 6575 6576 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled"); 6577 return -EINVAL; 6578 } 6579 6580 if (rbd_is_ro(rbd_dev)) 6581 return 0; 6582 6583 rbd_assert(!rbd_is_lock_owner(rbd_dev)); 6584 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0); 6585 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait, 6586 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout)); 6587 if (ret > 0) { 6588 ret = rbd_dev->acquire_err; 6589 } else { 6590 cancel_delayed_work_sync(&rbd_dev->lock_dwork); 6591 if (!ret) 6592 ret = -ETIMEDOUT; 6593 } 6594 6595 if (ret) { 6596 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret); 6597 return ret; 6598 } 6599 6600 /* 6601 * The lock may have been released by now, unless automatic lock 6602 * transitions are disabled. 6603 */ 6604 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev)); 6605 return 0; 6606 } 6607 6608 /* 6609 * An rbd format 2 image has a unique identifier, distinct from the 6610 * name given to it by the user. Internally, that identifier is 6611 * what's used to specify the names of objects related to the image. 6612 * 6613 * A special "rbd id" object is used to map an rbd image name to its 6614 * id. If that object doesn't exist, then there is no v2 rbd image 6615 * with the supplied name. 6616 * 6617 * This function will record the given rbd_dev's image_id field if 6618 * it can be determined, and in that case will return 0. If any 6619 * errors occur a negative errno will be returned and the rbd_dev's 6620 * image_id field will be unchanged (and should be NULL). 6621 */ 6622 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 6623 { 6624 int ret; 6625 size_t size; 6626 CEPH_DEFINE_OID_ONSTACK(oid); 6627 void *response; 6628 char *image_id; 6629 6630 /* 6631 * When probing a parent image, the image id is already 6632 * known (and the image name likely is not). There's no 6633 * need to fetch the image id again in this case. We 6634 * do still need to set the image format though. 6635 */ 6636 if (rbd_dev->spec->image_id) { 6637 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 6638 6639 return 0; 6640 } 6641 6642 /* 6643 * First, see if the format 2 image id file exists, and if 6644 * so, get the image's persistent id from it. 6645 */ 6646 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX, 6647 rbd_dev->spec->image_name); 6648 if (ret) 6649 return ret; 6650 6651 dout("rbd id object name is %s\n", oid.name); 6652 6653 /* Response will be an encoded string, which includes a length */ 6654 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 6655 response = kzalloc(size, GFP_NOIO); 6656 if (!response) { 6657 ret = -ENOMEM; 6658 goto out; 6659 } 6660 6661 /* If it doesn't exist we'll assume it's a format 1 image */ 6662 6663 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc, 6664 "get_id", NULL, 0, 6665 response, size); 6666 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 6667 if (ret == -ENOENT) { 6668 image_id = kstrdup("", GFP_KERNEL); 6669 ret = image_id ? 0 : -ENOMEM; 6670 if (!ret) 6671 rbd_dev->image_format = 1; 6672 } else if (ret >= 0) { 6673 void *p = response; 6674 6675 image_id = ceph_extract_encoded_string(&p, p + ret, 6676 NULL, GFP_NOIO); 6677 ret = PTR_ERR_OR_ZERO(image_id); 6678 if (!ret) 6679 rbd_dev->image_format = 2; 6680 } 6681 6682 if (!ret) { 6683 rbd_dev->spec->image_id = image_id; 6684 dout("image_id is %s\n", image_id); 6685 } 6686 out: 6687 kfree(response); 6688 ceph_oid_destroy(&oid); 6689 return ret; 6690 } 6691 6692 /* 6693 * Undo whatever state changes are made by v1 or v2 header info 6694 * call. 6695 */ 6696 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 6697 { 6698 struct rbd_image_header *header; 6699 6700 rbd_dev_parent_put(rbd_dev); 6701 rbd_object_map_free(rbd_dev); 6702 rbd_dev_mapping_clear(rbd_dev); 6703 6704 /* Free dynamic fields from the header, then zero it out */ 6705 6706 header = &rbd_dev->header; 6707 ceph_put_snap_context(header->snapc); 6708 kfree(header->snap_sizes); 6709 kfree(header->snap_names); 6710 kfree(header->object_prefix); 6711 memset(header, 0, sizeof (*header)); 6712 } 6713 6714 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 6715 { 6716 int ret; 6717 6718 ret = rbd_dev_v2_object_prefix(rbd_dev); 6719 if (ret) 6720 goto out_err; 6721 6722 /* 6723 * Get the and check features for the image. Currently the 6724 * features are assumed to never change. 6725 */ 6726 ret = rbd_dev_v2_features(rbd_dev); 6727 if (ret) 6728 goto out_err; 6729 6730 /* If the image supports fancy striping, get its parameters */ 6731 6732 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 6733 ret = rbd_dev_v2_striping_info(rbd_dev); 6734 if (ret < 0) 6735 goto out_err; 6736 } 6737 6738 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) { 6739 ret = rbd_dev_v2_data_pool(rbd_dev); 6740 if (ret) 6741 goto out_err; 6742 } 6743 6744 rbd_init_layout(rbd_dev); 6745 return 0; 6746 6747 out_err: 6748 rbd_dev->header.features = 0; 6749 kfree(rbd_dev->header.object_prefix); 6750 rbd_dev->header.object_prefix = NULL; 6751 return ret; 6752 } 6753 6754 /* 6755 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() -> 6756 * rbd_dev_image_probe() recursion depth, which means it's also the 6757 * length of the already discovered part of the parent chain. 6758 */ 6759 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth) 6760 { 6761 struct rbd_device *parent = NULL; 6762 int ret; 6763 6764 if (!rbd_dev->parent_spec) 6765 return 0; 6766 6767 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) { 6768 pr_info("parent chain is too long (%d)\n", depth); 6769 ret = -EINVAL; 6770 goto out_err; 6771 } 6772 6773 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec); 6774 if (!parent) { 6775 ret = -ENOMEM; 6776 goto out_err; 6777 } 6778 6779 /* 6780 * Images related by parent/child relationships always share 6781 * rbd_client and spec/parent_spec, so bump their refcounts. 6782 */ 6783 __rbd_get_client(rbd_dev->rbd_client); 6784 rbd_spec_get(rbd_dev->parent_spec); 6785 6786 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags); 6787 6788 ret = rbd_dev_image_probe(parent, depth); 6789 if (ret < 0) 6790 goto out_err; 6791 6792 rbd_dev->parent = parent; 6793 atomic_set(&rbd_dev->parent_ref, 1); 6794 return 0; 6795 6796 out_err: 6797 rbd_dev_unparent(rbd_dev); 6798 rbd_dev_destroy(parent); 6799 return ret; 6800 } 6801 6802 static void rbd_dev_device_release(struct rbd_device *rbd_dev) 6803 { 6804 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6805 rbd_free_disk(rbd_dev); 6806 if (!single_major) 6807 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6808 } 6809 6810 /* 6811 * rbd_dev->header_rwsem must be locked for write and will be unlocked 6812 * upon return. 6813 */ 6814 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 6815 { 6816 int ret; 6817 6818 /* Record our major and minor device numbers. */ 6819 6820 if (!single_major) { 6821 ret = register_blkdev(0, rbd_dev->name); 6822 if (ret < 0) 6823 goto err_out_unlock; 6824 6825 rbd_dev->major = ret; 6826 rbd_dev->minor = 0; 6827 } else { 6828 rbd_dev->major = rbd_major; 6829 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 6830 } 6831 6832 /* Set up the blkdev mapping. */ 6833 6834 ret = rbd_init_disk(rbd_dev); 6835 if (ret) 6836 goto err_out_blkdev; 6837 6838 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 6839 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev)); 6840 6841 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id); 6842 if (ret) 6843 goto err_out_disk; 6844 6845 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 6846 up_write(&rbd_dev->header_rwsem); 6847 return 0; 6848 6849 err_out_disk: 6850 rbd_free_disk(rbd_dev); 6851 err_out_blkdev: 6852 if (!single_major) 6853 unregister_blkdev(rbd_dev->major, rbd_dev->name); 6854 err_out_unlock: 6855 up_write(&rbd_dev->header_rwsem); 6856 return ret; 6857 } 6858 6859 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 6860 { 6861 struct rbd_spec *spec = rbd_dev->spec; 6862 int ret; 6863 6864 /* Record the header object name for this rbd image. */ 6865 6866 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 6867 if (rbd_dev->image_format == 1) 6868 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6869 spec->image_name, RBD_SUFFIX); 6870 else 6871 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s", 6872 RBD_HEADER_PREFIX, spec->image_id); 6873 6874 return ret; 6875 } 6876 6877 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap) 6878 { 6879 if (!is_snap) { 6880 pr_info("image %s/%s%s%s does not exist\n", 6881 rbd_dev->spec->pool_name, 6882 rbd_dev->spec->pool_ns ?: "", 6883 rbd_dev->spec->pool_ns ? "/" : "", 6884 rbd_dev->spec->image_name); 6885 } else { 6886 pr_info("snap %s/%s%s%s@%s does not exist\n", 6887 rbd_dev->spec->pool_name, 6888 rbd_dev->spec->pool_ns ?: "", 6889 rbd_dev->spec->pool_ns ? "/" : "", 6890 rbd_dev->spec->image_name, 6891 rbd_dev->spec->snap_name); 6892 } 6893 } 6894 6895 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 6896 { 6897 if (!rbd_is_ro(rbd_dev)) 6898 rbd_unregister_watch(rbd_dev); 6899 6900 rbd_dev_unprobe(rbd_dev); 6901 rbd_dev->image_format = 0; 6902 kfree(rbd_dev->spec->image_id); 6903 rbd_dev->spec->image_id = NULL; 6904 } 6905 6906 /* 6907 * Probe for the existence of the header object for the given rbd 6908 * device. If this image is the one being mapped (i.e., not a 6909 * parent), initiate a watch on its header object before using that 6910 * object to get detailed information about the rbd image. 6911 * 6912 * On success, returns with header_rwsem held for write if called 6913 * with @depth == 0. 6914 */ 6915 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth) 6916 { 6917 bool need_watch = !rbd_is_ro(rbd_dev); 6918 int ret; 6919 6920 /* 6921 * Get the id from the image id object. Unless there's an 6922 * error, rbd_dev->spec->image_id will be filled in with 6923 * a dynamically-allocated string, and rbd_dev->image_format 6924 * will be set to either 1 or 2. 6925 */ 6926 ret = rbd_dev_image_id(rbd_dev); 6927 if (ret) 6928 return ret; 6929 6930 ret = rbd_dev_header_name(rbd_dev); 6931 if (ret) 6932 goto err_out_format; 6933 6934 if (need_watch) { 6935 ret = rbd_register_watch(rbd_dev); 6936 if (ret) { 6937 if (ret == -ENOENT) 6938 rbd_print_dne(rbd_dev, false); 6939 goto err_out_format; 6940 } 6941 } 6942 6943 if (!depth) 6944 down_write(&rbd_dev->header_rwsem); 6945 6946 ret = rbd_dev_header_info(rbd_dev); 6947 if (ret) { 6948 if (ret == -ENOENT && !need_watch) 6949 rbd_print_dne(rbd_dev, false); 6950 goto err_out_probe; 6951 } 6952 6953 /* 6954 * If this image is the one being mapped, we have pool name and 6955 * id, image name and id, and snap name - need to fill snap id. 6956 * Otherwise this is a parent image, identified by pool, image 6957 * and snap ids - need to fill in names for those ids. 6958 */ 6959 if (!depth) 6960 ret = rbd_spec_fill_snap_id(rbd_dev); 6961 else 6962 ret = rbd_spec_fill_names(rbd_dev); 6963 if (ret) { 6964 if (ret == -ENOENT) 6965 rbd_print_dne(rbd_dev, true); 6966 goto err_out_probe; 6967 } 6968 6969 ret = rbd_dev_mapping_set(rbd_dev); 6970 if (ret) 6971 goto err_out_probe; 6972 6973 if (rbd_is_snap(rbd_dev) && 6974 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) { 6975 ret = rbd_object_map_load(rbd_dev); 6976 if (ret) 6977 goto err_out_probe; 6978 } 6979 6980 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 6981 ret = rbd_dev_v2_parent_info(rbd_dev); 6982 if (ret) 6983 goto err_out_probe; 6984 } 6985 6986 ret = rbd_dev_probe_parent(rbd_dev, depth); 6987 if (ret) 6988 goto err_out_probe; 6989 6990 dout("discovered format %u image, header name is %s\n", 6991 rbd_dev->image_format, rbd_dev->header_oid.name); 6992 return 0; 6993 6994 err_out_probe: 6995 if (!depth) 6996 up_write(&rbd_dev->header_rwsem); 6997 if (need_watch) 6998 rbd_unregister_watch(rbd_dev); 6999 rbd_dev_unprobe(rbd_dev); 7000 err_out_format: 7001 rbd_dev->image_format = 0; 7002 kfree(rbd_dev->spec->image_id); 7003 rbd_dev->spec->image_id = NULL; 7004 return ret; 7005 } 7006 7007 static ssize_t do_rbd_add(struct bus_type *bus, 7008 const char *buf, 7009 size_t count) 7010 { 7011 struct rbd_device *rbd_dev = NULL; 7012 struct ceph_options *ceph_opts = NULL; 7013 struct rbd_options *rbd_opts = NULL; 7014 struct rbd_spec *spec = NULL; 7015 struct rbd_client *rbdc; 7016 int rc; 7017 7018 if (!try_module_get(THIS_MODULE)) 7019 return -ENODEV; 7020 7021 /* parse add command */ 7022 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 7023 if (rc < 0) 7024 goto out; 7025 7026 rbdc = rbd_get_client(ceph_opts); 7027 if (IS_ERR(rbdc)) { 7028 rc = PTR_ERR(rbdc); 7029 goto err_out_args; 7030 } 7031 7032 /* pick the pool */ 7033 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name); 7034 if (rc < 0) { 7035 if (rc == -ENOENT) 7036 pr_info("pool %s does not exist\n", spec->pool_name); 7037 goto err_out_client; 7038 } 7039 spec->pool_id = (u64)rc; 7040 7041 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 7042 if (!rbd_dev) { 7043 rc = -ENOMEM; 7044 goto err_out_client; 7045 } 7046 rbdc = NULL; /* rbd_dev now owns this */ 7047 spec = NULL; /* rbd_dev now owns this */ 7048 rbd_opts = NULL; /* rbd_dev now owns this */ 7049 7050 /* if we are mapping a snapshot it will be a read-only mapping */ 7051 if (rbd_dev->opts->read_only || 7052 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME)) 7053 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags); 7054 7055 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL); 7056 if (!rbd_dev->config_info) { 7057 rc = -ENOMEM; 7058 goto err_out_rbd_dev; 7059 } 7060 7061 rc = rbd_dev_image_probe(rbd_dev, 0); 7062 if (rc < 0) 7063 goto err_out_rbd_dev; 7064 7065 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) { 7066 rbd_warn(rbd_dev, "alloc_size adjusted to %u", 7067 rbd_dev->layout.object_size); 7068 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size; 7069 } 7070 7071 rc = rbd_dev_device_setup(rbd_dev); 7072 if (rc) 7073 goto err_out_image_probe; 7074 7075 rc = rbd_add_acquire_lock(rbd_dev); 7076 if (rc) 7077 goto err_out_image_lock; 7078 7079 /* Everything's ready. Announce the disk to the world. */ 7080 7081 rc = device_add(&rbd_dev->dev); 7082 if (rc) 7083 goto err_out_image_lock; 7084 7085 device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL); 7086 /* see rbd_init_disk() */ 7087 blk_put_queue(rbd_dev->disk->queue); 7088 7089 spin_lock(&rbd_dev_list_lock); 7090 list_add_tail(&rbd_dev->node, &rbd_dev_list); 7091 spin_unlock(&rbd_dev_list_lock); 7092 7093 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name, 7094 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT, 7095 rbd_dev->header.features); 7096 rc = count; 7097 out: 7098 module_put(THIS_MODULE); 7099 return rc; 7100 7101 err_out_image_lock: 7102 rbd_dev_image_unlock(rbd_dev); 7103 rbd_dev_device_release(rbd_dev); 7104 err_out_image_probe: 7105 rbd_dev_image_release(rbd_dev); 7106 err_out_rbd_dev: 7107 rbd_dev_destroy(rbd_dev); 7108 err_out_client: 7109 rbd_put_client(rbdc); 7110 err_out_args: 7111 rbd_spec_put(spec); 7112 kfree(rbd_opts); 7113 goto out; 7114 } 7115 7116 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count) 7117 { 7118 if (single_major) 7119 return -EINVAL; 7120 7121 return do_rbd_add(bus, buf, count); 7122 } 7123 7124 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf, 7125 size_t count) 7126 { 7127 return do_rbd_add(bus, buf, count); 7128 } 7129 7130 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 7131 { 7132 while (rbd_dev->parent) { 7133 struct rbd_device *first = rbd_dev; 7134 struct rbd_device *second = first->parent; 7135 struct rbd_device *third; 7136 7137 /* 7138 * Follow to the parent with no grandparent and 7139 * remove it. 7140 */ 7141 while (second && (third = second->parent)) { 7142 first = second; 7143 second = third; 7144 } 7145 rbd_assert(second); 7146 rbd_dev_image_release(second); 7147 rbd_dev_destroy(second); 7148 first->parent = NULL; 7149 first->parent_overlap = 0; 7150 7151 rbd_assert(first->parent_spec); 7152 rbd_spec_put(first->parent_spec); 7153 first->parent_spec = NULL; 7154 } 7155 } 7156 7157 static ssize_t do_rbd_remove(struct bus_type *bus, 7158 const char *buf, 7159 size_t count) 7160 { 7161 struct rbd_device *rbd_dev = NULL; 7162 struct list_head *tmp; 7163 int dev_id; 7164 char opt_buf[6]; 7165 bool force = false; 7166 int ret; 7167 7168 dev_id = -1; 7169 opt_buf[0] = '\0'; 7170 sscanf(buf, "%d %5s", &dev_id, opt_buf); 7171 if (dev_id < 0) { 7172 pr_err("dev_id out of range\n"); 7173 return -EINVAL; 7174 } 7175 if (opt_buf[0] != '\0') { 7176 if (!strcmp(opt_buf, "force")) { 7177 force = true; 7178 } else { 7179 pr_err("bad remove option at '%s'\n", opt_buf); 7180 return -EINVAL; 7181 } 7182 } 7183 7184 ret = -ENOENT; 7185 spin_lock(&rbd_dev_list_lock); 7186 list_for_each(tmp, &rbd_dev_list) { 7187 rbd_dev = list_entry(tmp, struct rbd_device, node); 7188 if (rbd_dev->dev_id == dev_id) { 7189 ret = 0; 7190 break; 7191 } 7192 } 7193 if (!ret) { 7194 spin_lock_irq(&rbd_dev->lock); 7195 if (rbd_dev->open_count && !force) 7196 ret = -EBUSY; 7197 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING, 7198 &rbd_dev->flags)) 7199 ret = -EINPROGRESS; 7200 spin_unlock_irq(&rbd_dev->lock); 7201 } 7202 spin_unlock(&rbd_dev_list_lock); 7203 if (ret) 7204 return ret; 7205 7206 if (force) { 7207 /* 7208 * Prevent new IO from being queued and wait for existing 7209 * IO to complete/fail. 7210 */ 7211 blk_mq_freeze_queue(rbd_dev->disk->queue); 7212 blk_set_queue_dying(rbd_dev->disk->queue); 7213 } 7214 7215 del_gendisk(rbd_dev->disk); 7216 spin_lock(&rbd_dev_list_lock); 7217 list_del_init(&rbd_dev->node); 7218 spin_unlock(&rbd_dev_list_lock); 7219 device_del(&rbd_dev->dev); 7220 7221 rbd_dev_image_unlock(rbd_dev); 7222 rbd_dev_device_release(rbd_dev); 7223 rbd_dev_image_release(rbd_dev); 7224 rbd_dev_destroy(rbd_dev); 7225 return count; 7226 } 7227 7228 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count) 7229 { 7230 if (single_major) 7231 return -EINVAL; 7232 7233 return do_rbd_remove(bus, buf, count); 7234 } 7235 7236 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf, 7237 size_t count) 7238 { 7239 return do_rbd_remove(bus, buf, count); 7240 } 7241 7242 /* 7243 * create control files in sysfs 7244 * /sys/bus/rbd/... 7245 */ 7246 static int __init rbd_sysfs_init(void) 7247 { 7248 int ret; 7249 7250 ret = device_register(&rbd_root_dev); 7251 if (ret < 0) 7252 return ret; 7253 7254 ret = bus_register(&rbd_bus_type); 7255 if (ret < 0) 7256 device_unregister(&rbd_root_dev); 7257 7258 return ret; 7259 } 7260 7261 static void __exit rbd_sysfs_cleanup(void) 7262 { 7263 bus_unregister(&rbd_bus_type); 7264 device_unregister(&rbd_root_dev); 7265 } 7266 7267 static int __init rbd_slab_init(void) 7268 { 7269 rbd_assert(!rbd_img_request_cache); 7270 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0); 7271 if (!rbd_img_request_cache) 7272 return -ENOMEM; 7273 7274 rbd_assert(!rbd_obj_request_cache); 7275 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0); 7276 if (!rbd_obj_request_cache) 7277 goto out_err; 7278 7279 return 0; 7280 7281 out_err: 7282 kmem_cache_destroy(rbd_img_request_cache); 7283 rbd_img_request_cache = NULL; 7284 return -ENOMEM; 7285 } 7286 7287 static void rbd_slab_exit(void) 7288 { 7289 rbd_assert(rbd_obj_request_cache); 7290 kmem_cache_destroy(rbd_obj_request_cache); 7291 rbd_obj_request_cache = NULL; 7292 7293 rbd_assert(rbd_img_request_cache); 7294 kmem_cache_destroy(rbd_img_request_cache); 7295 rbd_img_request_cache = NULL; 7296 } 7297 7298 static int __init rbd_init(void) 7299 { 7300 int rc; 7301 7302 if (!libceph_compatible(NULL)) { 7303 rbd_warn(NULL, "libceph incompatibility (quitting)"); 7304 return -EINVAL; 7305 } 7306 7307 rc = rbd_slab_init(); 7308 if (rc) 7309 return rc; 7310 7311 /* 7312 * The number of active work items is limited by the number of 7313 * rbd devices * queue depth, so leave @max_active at default. 7314 */ 7315 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 7316 if (!rbd_wq) { 7317 rc = -ENOMEM; 7318 goto err_out_slab; 7319 } 7320 7321 if (single_major) { 7322 rbd_major = register_blkdev(0, RBD_DRV_NAME); 7323 if (rbd_major < 0) { 7324 rc = rbd_major; 7325 goto err_out_wq; 7326 } 7327 } 7328 7329 rc = rbd_sysfs_init(); 7330 if (rc) 7331 goto err_out_blkdev; 7332 7333 if (single_major) 7334 pr_info("loaded (major %d)\n", rbd_major); 7335 else 7336 pr_info("loaded\n"); 7337 7338 return 0; 7339 7340 err_out_blkdev: 7341 if (single_major) 7342 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7343 err_out_wq: 7344 destroy_workqueue(rbd_wq); 7345 err_out_slab: 7346 rbd_slab_exit(); 7347 return rc; 7348 } 7349 7350 static void __exit rbd_exit(void) 7351 { 7352 ida_destroy(&rbd_dev_id_ida); 7353 rbd_sysfs_cleanup(); 7354 if (single_major) 7355 unregister_blkdev(rbd_major, RBD_DRV_NAME); 7356 destroy_workqueue(rbd_wq); 7357 rbd_slab_exit(); 7358 } 7359 7360 module_init(rbd_init); 7361 module_exit(rbd_exit); 7362 7363 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 7364 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 7365 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 7366 /* following authorship retained from original osdblk.c */ 7367 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 7368 7369 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 7370 MODULE_LICENSE("GPL"); 7371