xref: /linux/drivers/block/rbd.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
119 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
120 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
121 
122 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
123 				 RBD_FEATURE_STRIPINGV2 |	\
124 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
125 				 RBD_FEATURE_DEEP_FLATTEN |	\
126 				 RBD_FEATURE_DATA_POOL |	\
127 				 RBD_FEATURE_OPERATIONS)
128 
129 /* Features supported by this (client software) implementation. */
130 
131 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
132 
133 /*
134  * An RBD device name will be "rbd#", where the "rbd" comes from
135  * RBD_DRV_NAME above, and # is a unique integer identifier.
136  */
137 #define DEV_NAME_LEN		32
138 
139 /*
140  * block device image metadata (in-memory version)
141  */
142 struct rbd_image_header {
143 	/* These six fields never change for a given rbd image */
144 	char *object_prefix;
145 	__u8 obj_order;
146 	u64 stripe_unit;
147 	u64 stripe_count;
148 	s64 data_pool_id;
149 	u64 features;		/* Might be changeable someday? */
150 
151 	/* The remaining fields need to be updated occasionally */
152 	u64 image_size;
153 	struct ceph_snap_context *snapc;
154 	char *snap_names;	/* format 1 only */
155 	u64 *snap_sizes;	/* format 1 only */
156 };
157 
158 /*
159  * An rbd image specification.
160  *
161  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
162  * identify an image.  Each rbd_dev structure includes a pointer to
163  * an rbd_spec structure that encapsulates this identity.
164  *
165  * Each of the id's in an rbd_spec has an associated name.  For a
166  * user-mapped image, the names are supplied and the id's associated
167  * with them are looked up.  For a layered image, a parent image is
168  * defined by the tuple, and the names are looked up.
169  *
170  * An rbd_dev structure contains a parent_spec pointer which is
171  * non-null if the image it represents is a child in a layered
172  * image.  This pointer will refer to the rbd_spec structure used
173  * by the parent rbd_dev for its own identity (i.e., the structure
174  * is shared between the parent and child).
175  *
176  * Since these structures are populated once, during the discovery
177  * phase of image construction, they are effectively immutable so
178  * we make no effort to synchronize access to them.
179  *
180  * Note that code herein does not assume the image name is known (it
181  * could be a null pointer).
182  */
183 struct rbd_spec {
184 	u64		pool_id;
185 	const char	*pool_name;
186 	const char	*pool_ns;	/* NULL if default, never "" */
187 
188 	const char	*image_id;
189 	const char	*image_name;
190 
191 	u64		snap_id;
192 	const char	*snap_name;
193 
194 	struct kref	kref;
195 };
196 
197 /*
198  * an instance of the client.  multiple devices may share an rbd client.
199  */
200 struct rbd_client {
201 	struct ceph_client	*client;
202 	struct kref		kref;
203 	struct list_head	node;
204 };
205 
206 struct rbd_img_request;
207 
208 enum obj_request_type {
209 	OBJ_REQUEST_NODATA = 1,
210 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
211 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
212 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
213 };
214 
215 enum obj_operation_type {
216 	OBJ_OP_READ = 1,
217 	OBJ_OP_WRITE,
218 	OBJ_OP_DISCARD,
219 	OBJ_OP_ZEROOUT,
220 };
221 
222 /*
223  * Writes go through the following state machine to deal with
224  * layering:
225  *
226  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
227  *            .                 |                                    .
228  *            .                 v                                    .
229  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
230  *            .                 |                    .               .
231  *            .                 v                    v (deep-copyup  .
232  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
233  * flattened) v                 |                    .               .
234  *            .                 v                    .               .
235  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
236  *                              |                        not needed) v
237  *                              v                                    .
238  *                            done . . . . . . . . . . . . . . . . . .
239  *                              ^
240  *                              |
241  *                     RBD_OBJ_WRITE_FLAT
242  *
243  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
244  * assert_exists guard is needed or not (in some cases it's not needed
245  * even if there is a parent).
246  */
247 enum rbd_obj_write_state {
248 	RBD_OBJ_WRITE_FLAT = 1,
249 	RBD_OBJ_WRITE_GUARD,
250 	RBD_OBJ_WRITE_READ_FROM_PARENT,
251 	RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC,
252 	RBD_OBJ_WRITE_COPYUP_OPS,
253 };
254 
255 struct rbd_obj_request {
256 	struct ceph_object_extent ex;
257 	union {
258 		bool			tried_parent;	/* for reads */
259 		enum rbd_obj_write_state write_state;	/* for writes */
260 	};
261 
262 	struct rbd_img_request	*img_request;
263 	struct ceph_file_extent	*img_extents;
264 	u32			num_img_extents;
265 
266 	union {
267 		struct ceph_bio_iter	bio_pos;
268 		struct {
269 			struct ceph_bvec_iter	bvec_pos;
270 			u32			bvec_count;
271 			u32			bvec_idx;
272 		};
273 	};
274 	struct bio_vec		*copyup_bvecs;
275 	u32			copyup_bvec_count;
276 
277 	struct ceph_osd_request	*osd_req;
278 
279 	u64			xferred;	/* bytes transferred */
280 	int			result;
281 
282 	struct kref		kref;
283 };
284 
285 enum img_req_flags {
286 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
287 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
288 };
289 
290 struct rbd_img_request {
291 	struct rbd_device	*rbd_dev;
292 	enum obj_operation_type	op_type;
293 	enum obj_request_type	data_type;
294 	unsigned long		flags;
295 	union {
296 		u64			snap_id;	/* for reads */
297 		struct ceph_snap_context *snapc;	/* for writes */
298 	};
299 	union {
300 		struct request		*rq;		/* block request */
301 		struct rbd_obj_request	*obj_request;	/* obj req initiator */
302 	};
303 	spinlock_t		completion_lock;
304 	u64			xferred;/* aggregate bytes transferred */
305 	int			result;	/* first nonzero obj_request result */
306 
307 	struct list_head	object_extents;	/* obj_req.ex structs */
308 	u32			pending_count;
309 
310 	struct kref		kref;
311 };
312 
313 #define for_each_obj_request(ireq, oreq) \
314 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
315 #define for_each_obj_request_safe(ireq, oreq, n) \
316 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
317 
318 enum rbd_watch_state {
319 	RBD_WATCH_STATE_UNREGISTERED,
320 	RBD_WATCH_STATE_REGISTERED,
321 	RBD_WATCH_STATE_ERROR,
322 };
323 
324 enum rbd_lock_state {
325 	RBD_LOCK_STATE_UNLOCKED,
326 	RBD_LOCK_STATE_LOCKED,
327 	RBD_LOCK_STATE_RELEASING,
328 };
329 
330 /* WatchNotify::ClientId */
331 struct rbd_client_id {
332 	u64 gid;
333 	u64 handle;
334 };
335 
336 struct rbd_mapping {
337 	u64                     size;
338 	u64                     features;
339 };
340 
341 /*
342  * a single device
343  */
344 struct rbd_device {
345 	int			dev_id;		/* blkdev unique id */
346 
347 	int			major;		/* blkdev assigned major */
348 	int			minor;
349 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
350 
351 	u32			image_format;	/* Either 1 or 2 */
352 	struct rbd_client	*rbd_client;
353 
354 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
355 
356 	spinlock_t		lock;		/* queue, flags, open_count */
357 
358 	struct rbd_image_header	header;
359 	unsigned long		flags;		/* possibly lock protected */
360 	struct rbd_spec		*spec;
361 	struct rbd_options	*opts;
362 	char			*config_info;	/* add{,_single_major} string */
363 
364 	struct ceph_object_id	header_oid;
365 	struct ceph_object_locator header_oloc;
366 
367 	struct ceph_file_layout	layout;		/* used for all rbd requests */
368 
369 	struct mutex		watch_mutex;
370 	enum rbd_watch_state	watch_state;
371 	struct ceph_osd_linger_request *watch_handle;
372 	u64			watch_cookie;
373 	struct delayed_work	watch_dwork;
374 
375 	struct rw_semaphore	lock_rwsem;
376 	enum rbd_lock_state	lock_state;
377 	char			lock_cookie[32];
378 	struct rbd_client_id	owner_cid;
379 	struct work_struct	acquired_lock_work;
380 	struct work_struct	released_lock_work;
381 	struct delayed_work	lock_dwork;
382 	struct work_struct	unlock_work;
383 	wait_queue_head_t	lock_waitq;
384 
385 	struct workqueue_struct	*task_wq;
386 
387 	struct rbd_spec		*parent_spec;
388 	u64			parent_overlap;
389 	atomic_t		parent_ref;
390 	struct rbd_device	*parent;
391 
392 	/* Block layer tags. */
393 	struct blk_mq_tag_set	tag_set;
394 
395 	/* protects updating the header */
396 	struct rw_semaphore     header_rwsem;
397 
398 	struct rbd_mapping	mapping;
399 
400 	struct list_head	node;
401 
402 	/* sysfs related */
403 	struct device		dev;
404 	unsigned long		open_count;	/* protected by lock */
405 };
406 
407 /*
408  * Flag bits for rbd_dev->flags:
409  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
410  *   by rbd_dev->lock
411  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
412  */
413 enum rbd_dev_flags {
414 	RBD_DEV_FLAG_EXISTS,	/* mapped snapshot has not been deleted */
415 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
416 	RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
417 };
418 
419 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
420 
421 static LIST_HEAD(rbd_dev_list);    /* devices */
422 static DEFINE_SPINLOCK(rbd_dev_list_lock);
423 
424 static LIST_HEAD(rbd_client_list);		/* clients */
425 static DEFINE_SPINLOCK(rbd_client_list_lock);
426 
427 /* Slab caches for frequently-allocated structures */
428 
429 static struct kmem_cache	*rbd_img_request_cache;
430 static struct kmem_cache	*rbd_obj_request_cache;
431 
432 static int rbd_major;
433 static DEFINE_IDA(rbd_dev_id_ida);
434 
435 static struct workqueue_struct *rbd_wq;
436 
437 static struct ceph_snap_context rbd_empty_snapc = {
438 	.nref = REFCOUNT_INIT(1),
439 };
440 
441 /*
442  * single-major requires >= 0.75 version of userspace rbd utility.
443  */
444 static bool single_major = true;
445 module_param(single_major, bool, 0444);
446 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
447 
448 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
449 static ssize_t remove_store(struct bus_type *bus, const char *buf,
450 			    size_t count);
451 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
452 				      size_t count);
453 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
454 					 size_t count);
455 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
456 
457 static int rbd_dev_id_to_minor(int dev_id)
458 {
459 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
460 }
461 
462 static int minor_to_rbd_dev_id(int minor)
463 {
464 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
465 }
466 
467 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
468 {
469 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
470 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
471 }
472 
473 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
474 {
475 	bool is_lock_owner;
476 
477 	down_read(&rbd_dev->lock_rwsem);
478 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
479 	up_read(&rbd_dev->lock_rwsem);
480 	return is_lock_owner;
481 }
482 
483 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
484 {
485 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
486 }
487 
488 static BUS_ATTR_WO(add);
489 static BUS_ATTR_WO(remove);
490 static BUS_ATTR_WO(add_single_major);
491 static BUS_ATTR_WO(remove_single_major);
492 static BUS_ATTR_RO(supported_features);
493 
494 static struct attribute *rbd_bus_attrs[] = {
495 	&bus_attr_add.attr,
496 	&bus_attr_remove.attr,
497 	&bus_attr_add_single_major.attr,
498 	&bus_attr_remove_single_major.attr,
499 	&bus_attr_supported_features.attr,
500 	NULL,
501 };
502 
503 static umode_t rbd_bus_is_visible(struct kobject *kobj,
504 				  struct attribute *attr, int index)
505 {
506 	if (!single_major &&
507 	    (attr == &bus_attr_add_single_major.attr ||
508 	     attr == &bus_attr_remove_single_major.attr))
509 		return 0;
510 
511 	return attr->mode;
512 }
513 
514 static const struct attribute_group rbd_bus_group = {
515 	.attrs = rbd_bus_attrs,
516 	.is_visible = rbd_bus_is_visible,
517 };
518 __ATTRIBUTE_GROUPS(rbd_bus);
519 
520 static struct bus_type rbd_bus_type = {
521 	.name		= "rbd",
522 	.bus_groups	= rbd_bus_groups,
523 };
524 
525 static void rbd_root_dev_release(struct device *dev)
526 {
527 }
528 
529 static struct device rbd_root_dev = {
530 	.init_name =    "rbd",
531 	.release =      rbd_root_dev_release,
532 };
533 
534 static __printf(2, 3)
535 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
536 {
537 	struct va_format vaf;
538 	va_list args;
539 
540 	va_start(args, fmt);
541 	vaf.fmt = fmt;
542 	vaf.va = &args;
543 
544 	if (!rbd_dev)
545 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
546 	else if (rbd_dev->disk)
547 		printk(KERN_WARNING "%s: %s: %pV\n",
548 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
549 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
550 		printk(KERN_WARNING "%s: image %s: %pV\n",
551 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
552 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
553 		printk(KERN_WARNING "%s: id %s: %pV\n",
554 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
555 	else	/* punt */
556 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
557 			RBD_DRV_NAME, rbd_dev, &vaf);
558 	va_end(args);
559 }
560 
561 #ifdef RBD_DEBUG
562 #define rbd_assert(expr)						\
563 		if (unlikely(!(expr))) {				\
564 			printk(KERN_ERR "\nAssertion failure in %s() "	\
565 						"at line %d:\n\n"	\
566 					"\trbd_assert(%s);\n\n",	\
567 					__func__, __LINE__, #expr);	\
568 			BUG();						\
569 		}
570 #else /* !RBD_DEBUG */
571 #  define rbd_assert(expr)	((void) 0)
572 #endif /* !RBD_DEBUG */
573 
574 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
575 
576 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
577 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
578 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
579 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
580 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
581 					u64 snap_id);
582 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
583 				u8 *order, u64 *snap_size);
584 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
585 		u64 *snap_features);
586 
587 static int rbd_open(struct block_device *bdev, fmode_t mode)
588 {
589 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
590 	bool removing = false;
591 
592 	spin_lock_irq(&rbd_dev->lock);
593 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
594 		removing = true;
595 	else
596 		rbd_dev->open_count++;
597 	spin_unlock_irq(&rbd_dev->lock);
598 	if (removing)
599 		return -ENOENT;
600 
601 	(void) get_device(&rbd_dev->dev);
602 
603 	return 0;
604 }
605 
606 static void rbd_release(struct gendisk *disk, fmode_t mode)
607 {
608 	struct rbd_device *rbd_dev = disk->private_data;
609 	unsigned long open_count_before;
610 
611 	spin_lock_irq(&rbd_dev->lock);
612 	open_count_before = rbd_dev->open_count--;
613 	spin_unlock_irq(&rbd_dev->lock);
614 	rbd_assert(open_count_before > 0);
615 
616 	put_device(&rbd_dev->dev);
617 }
618 
619 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
620 {
621 	int ro;
622 
623 	if (get_user(ro, (int __user *)arg))
624 		return -EFAULT;
625 
626 	/* Snapshots can't be marked read-write */
627 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
628 		return -EROFS;
629 
630 	/* Let blkdev_roset() handle it */
631 	return -ENOTTY;
632 }
633 
634 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
635 			unsigned int cmd, unsigned long arg)
636 {
637 	struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
638 	int ret;
639 
640 	switch (cmd) {
641 	case BLKROSET:
642 		ret = rbd_ioctl_set_ro(rbd_dev, arg);
643 		break;
644 	default:
645 		ret = -ENOTTY;
646 	}
647 
648 	return ret;
649 }
650 
651 #ifdef CONFIG_COMPAT
652 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
653 				unsigned int cmd, unsigned long arg)
654 {
655 	return rbd_ioctl(bdev, mode, cmd, arg);
656 }
657 #endif /* CONFIG_COMPAT */
658 
659 static const struct block_device_operations rbd_bd_ops = {
660 	.owner			= THIS_MODULE,
661 	.open			= rbd_open,
662 	.release		= rbd_release,
663 	.ioctl			= rbd_ioctl,
664 #ifdef CONFIG_COMPAT
665 	.compat_ioctl		= rbd_compat_ioctl,
666 #endif
667 };
668 
669 /*
670  * Initialize an rbd client instance.  Success or not, this function
671  * consumes ceph_opts.  Caller holds client_mutex.
672  */
673 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
674 {
675 	struct rbd_client *rbdc;
676 	int ret = -ENOMEM;
677 
678 	dout("%s:\n", __func__);
679 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
680 	if (!rbdc)
681 		goto out_opt;
682 
683 	kref_init(&rbdc->kref);
684 	INIT_LIST_HEAD(&rbdc->node);
685 
686 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
687 	if (IS_ERR(rbdc->client))
688 		goto out_rbdc;
689 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
690 
691 	ret = ceph_open_session(rbdc->client);
692 	if (ret < 0)
693 		goto out_client;
694 
695 	spin_lock(&rbd_client_list_lock);
696 	list_add_tail(&rbdc->node, &rbd_client_list);
697 	spin_unlock(&rbd_client_list_lock);
698 
699 	dout("%s: rbdc %p\n", __func__, rbdc);
700 
701 	return rbdc;
702 out_client:
703 	ceph_destroy_client(rbdc->client);
704 out_rbdc:
705 	kfree(rbdc);
706 out_opt:
707 	if (ceph_opts)
708 		ceph_destroy_options(ceph_opts);
709 	dout("%s: error %d\n", __func__, ret);
710 
711 	return ERR_PTR(ret);
712 }
713 
714 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
715 {
716 	kref_get(&rbdc->kref);
717 
718 	return rbdc;
719 }
720 
721 /*
722  * Find a ceph client with specific addr and configuration.  If
723  * found, bump its reference count.
724  */
725 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
726 {
727 	struct rbd_client *client_node;
728 	bool found = false;
729 
730 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
731 		return NULL;
732 
733 	spin_lock(&rbd_client_list_lock);
734 	list_for_each_entry(client_node, &rbd_client_list, node) {
735 		if (!ceph_compare_options(ceph_opts, client_node->client)) {
736 			__rbd_get_client(client_node);
737 
738 			found = true;
739 			break;
740 		}
741 	}
742 	spin_unlock(&rbd_client_list_lock);
743 
744 	return found ? client_node : NULL;
745 }
746 
747 /*
748  * (Per device) rbd map options
749  */
750 enum {
751 	Opt_queue_depth,
752 	Opt_alloc_size,
753 	Opt_lock_timeout,
754 	Opt_last_int,
755 	/* int args above */
756 	Opt_pool_ns,
757 	Opt_last_string,
758 	/* string args above */
759 	Opt_read_only,
760 	Opt_read_write,
761 	Opt_lock_on_read,
762 	Opt_exclusive,
763 	Opt_notrim,
764 	Opt_err
765 };
766 
767 static match_table_t rbd_opts_tokens = {
768 	{Opt_queue_depth, "queue_depth=%d"},
769 	{Opt_alloc_size, "alloc_size=%d"},
770 	{Opt_lock_timeout, "lock_timeout=%d"},
771 	/* int args above */
772 	{Opt_pool_ns, "_pool_ns=%s"},
773 	/* string args above */
774 	{Opt_read_only, "read_only"},
775 	{Opt_read_only, "ro"},		/* Alternate spelling */
776 	{Opt_read_write, "read_write"},
777 	{Opt_read_write, "rw"},		/* Alternate spelling */
778 	{Opt_lock_on_read, "lock_on_read"},
779 	{Opt_exclusive, "exclusive"},
780 	{Opt_notrim, "notrim"},
781 	{Opt_err, NULL}
782 };
783 
784 struct rbd_options {
785 	int	queue_depth;
786 	int	alloc_size;
787 	unsigned long	lock_timeout;
788 	bool	read_only;
789 	bool	lock_on_read;
790 	bool	exclusive;
791 	bool	trim;
792 };
793 
794 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_MAX_RQ
795 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
796 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
797 #define RBD_READ_ONLY_DEFAULT	false
798 #define RBD_LOCK_ON_READ_DEFAULT false
799 #define RBD_EXCLUSIVE_DEFAULT	false
800 #define RBD_TRIM_DEFAULT	true
801 
802 struct parse_rbd_opts_ctx {
803 	struct rbd_spec		*spec;
804 	struct rbd_options	*opts;
805 };
806 
807 static int parse_rbd_opts_token(char *c, void *private)
808 {
809 	struct parse_rbd_opts_ctx *pctx = private;
810 	substring_t argstr[MAX_OPT_ARGS];
811 	int token, intval, ret;
812 
813 	token = match_token(c, rbd_opts_tokens, argstr);
814 	if (token < Opt_last_int) {
815 		ret = match_int(&argstr[0], &intval);
816 		if (ret < 0) {
817 			pr_err("bad option arg (not int) at '%s'\n", c);
818 			return ret;
819 		}
820 		dout("got int token %d val %d\n", token, intval);
821 	} else if (token > Opt_last_int && token < Opt_last_string) {
822 		dout("got string token %d val %s\n", token, argstr[0].from);
823 	} else {
824 		dout("got token %d\n", token);
825 	}
826 
827 	switch (token) {
828 	case Opt_queue_depth:
829 		if (intval < 1) {
830 			pr_err("queue_depth out of range\n");
831 			return -EINVAL;
832 		}
833 		pctx->opts->queue_depth = intval;
834 		break;
835 	case Opt_alloc_size:
836 		if (intval < SECTOR_SIZE) {
837 			pr_err("alloc_size out of range\n");
838 			return -EINVAL;
839 		}
840 		if (!is_power_of_2(intval)) {
841 			pr_err("alloc_size must be a power of 2\n");
842 			return -EINVAL;
843 		}
844 		pctx->opts->alloc_size = intval;
845 		break;
846 	case Opt_lock_timeout:
847 		/* 0 is "wait forever" (i.e. infinite timeout) */
848 		if (intval < 0 || intval > INT_MAX / 1000) {
849 			pr_err("lock_timeout out of range\n");
850 			return -EINVAL;
851 		}
852 		pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000);
853 		break;
854 	case Opt_pool_ns:
855 		kfree(pctx->spec->pool_ns);
856 		pctx->spec->pool_ns = match_strdup(argstr);
857 		if (!pctx->spec->pool_ns)
858 			return -ENOMEM;
859 		break;
860 	case Opt_read_only:
861 		pctx->opts->read_only = true;
862 		break;
863 	case Opt_read_write:
864 		pctx->opts->read_only = false;
865 		break;
866 	case Opt_lock_on_read:
867 		pctx->opts->lock_on_read = true;
868 		break;
869 	case Opt_exclusive:
870 		pctx->opts->exclusive = true;
871 		break;
872 	case Opt_notrim:
873 		pctx->opts->trim = false;
874 		break;
875 	default:
876 		/* libceph prints "bad option" msg */
877 		return -EINVAL;
878 	}
879 
880 	return 0;
881 }
882 
883 static char* obj_op_name(enum obj_operation_type op_type)
884 {
885 	switch (op_type) {
886 	case OBJ_OP_READ:
887 		return "read";
888 	case OBJ_OP_WRITE:
889 		return "write";
890 	case OBJ_OP_DISCARD:
891 		return "discard";
892 	case OBJ_OP_ZEROOUT:
893 		return "zeroout";
894 	default:
895 		return "???";
896 	}
897 }
898 
899 /*
900  * Destroy ceph client
901  *
902  * Caller must hold rbd_client_list_lock.
903  */
904 static void rbd_client_release(struct kref *kref)
905 {
906 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
907 
908 	dout("%s: rbdc %p\n", __func__, rbdc);
909 	spin_lock(&rbd_client_list_lock);
910 	list_del(&rbdc->node);
911 	spin_unlock(&rbd_client_list_lock);
912 
913 	ceph_destroy_client(rbdc->client);
914 	kfree(rbdc);
915 }
916 
917 /*
918  * Drop reference to ceph client node. If it's not referenced anymore, release
919  * it.
920  */
921 static void rbd_put_client(struct rbd_client *rbdc)
922 {
923 	if (rbdc)
924 		kref_put(&rbdc->kref, rbd_client_release);
925 }
926 
927 /*
928  * Get a ceph client with specific addr and configuration, if one does
929  * not exist create it.  Either way, ceph_opts is consumed by this
930  * function.
931  */
932 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
933 {
934 	struct rbd_client *rbdc;
935 	int ret;
936 
937 	mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
938 	rbdc = rbd_client_find(ceph_opts);
939 	if (rbdc) {
940 		ceph_destroy_options(ceph_opts);
941 
942 		/*
943 		 * Using an existing client.  Make sure ->pg_pools is up to
944 		 * date before we look up the pool id in do_rbd_add().
945 		 */
946 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
947 					rbdc->client->options->mount_timeout);
948 		if (ret) {
949 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
950 			rbd_put_client(rbdc);
951 			rbdc = ERR_PTR(ret);
952 		}
953 	} else {
954 		rbdc = rbd_client_create(ceph_opts);
955 	}
956 	mutex_unlock(&client_mutex);
957 
958 	return rbdc;
959 }
960 
961 static bool rbd_image_format_valid(u32 image_format)
962 {
963 	return image_format == 1 || image_format == 2;
964 }
965 
966 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
967 {
968 	size_t size;
969 	u32 snap_count;
970 
971 	/* The header has to start with the magic rbd header text */
972 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
973 		return false;
974 
975 	/* The bio layer requires at least sector-sized I/O */
976 
977 	if (ondisk->options.order < SECTOR_SHIFT)
978 		return false;
979 
980 	/* If we use u64 in a few spots we may be able to loosen this */
981 
982 	if (ondisk->options.order > 8 * sizeof (int) - 1)
983 		return false;
984 
985 	/*
986 	 * The size of a snapshot header has to fit in a size_t, and
987 	 * that limits the number of snapshots.
988 	 */
989 	snap_count = le32_to_cpu(ondisk->snap_count);
990 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
991 	if (snap_count > size / sizeof (__le64))
992 		return false;
993 
994 	/*
995 	 * Not only that, but the size of the entire the snapshot
996 	 * header must also be representable in a size_t.
997 	 */
998 	size -= snap_count * sizeof (__le64);
999 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1000 		return false;
1001 
1002 	return true;
1003 }
1004 
1005 /*
1006  * returns the size of an object in the image
1007  */
1008 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1009 {
1010 	return 1U << header->obj_order;
1011 }
1012 
1013 static void rbd_init_layout(struct rbd_device *rbd_dev)
1014 {
1015 	if (rbd_dev->header.stripe_unit == 0 ||
1016 	    rbd_dev->header.stripe_count == 0) {
1017 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1018 		rbd_dev->header.stripe_count = 1;
1019 	}
1020 
1021 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1022 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1023 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1024 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1025 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1026 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1027 }
1028 
1029 /*
1030  * Fill an rbd image header with information from the given format 1
1031  * on-disk header.
1032  */
1033 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1034 				 struct rbd_image_header_ondisk *ondisk)
1035 {
1036 	struct rbd_image_header *header = &rbd_dev->header;
1037 	bool first_time = header->object_prefix == NULL;
1038 	struct ceph_snap_context *snapc;
1039 	char *object_prefix = NULL;
1040 	char *snap_names = NULL;
1041 	u64 *snap_sizes = NULL;
1042 	u32 snap_count;
1043 	int ret = -ENOMEM;
1044 	u32 i;
1045 
1046 	/* Allocate this now to avoid having to handle failure below */
1047 
1048 	if (first_time) {
1049 		object_prefix = kstrndup(ondisk->object_prefix,
1050 					 sizeof(ondisk->object_prefix),
1051 					 GFP_KERNEL);
1052 		if (!object_prefix)
1053 			return -ENOMEM;
1054 	}
1055 
1056 	/* Allocate the snapshot context and fill it in */
1057 
1058 	snap_count = le32_to_cpu(ondisk->snap_count);
1059 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1060 	if (!snapc)
1061 		goto out_err;
1062 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1063 	if (snap_count) {
1064 		struct rbd_image_snap_ondisk *snaps;
1065 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1066 
1067 		/* We'll keep a copy of the snapshot names... */
1068 
1069 		if (snap_names_len > (u64)SIZE_MAX)
1070 			goto out_2big;
1071 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1072 		if (!snap_names)
1073 			goto out_err;
1074 
1075 		/* ...as well as the array of their sizes. */
1076 		snap_sizes = kmalloc_array(snap_count,
1077 					   sizeof(*header->snap_sizes),
1078 					   GFP_KERNEL);
1079 		if (!snap_sizes)
1080 			goto out_err;
1081 
1082 		/*
1083 		 * Copy the names, and fill in each snapshot's id
1084 		 * and size.
1085 		 *
1086 		 * Note that rbd_dev_v1_header_info() guarantees the
1087 		 * ondisk buffer we're working with has
1088 		 * snap_names_len bytes beyond the end of the
1089 		 * snapshot id array, this memcpy() is safe.
1090 		 */
1091 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1092 		snaps = ondisk->snaps;
1093 		for (i = 0; i < snap_count; i++) {
1094 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1095 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1096 		}
1097 	}
1098 
1099 	/* We won't fail any more, fill in the header */
1100 
1101 	if (first_time) {
1102 		header->object_prefix = object_prefix;
1103 		header->obj_order = ondisk->options.order;
1104 		rbd_init_layout(rbd_dev);
1105 	} else {
1106 		ceph_put_snap_context(header->snapc);
1107 		kfree(header->snap_names);
1108 		kfree(header->snap_sizes);
1109 	}
1110 
1111 	/* The remaining fields always get updated (when we refresh) */
1112 
1113 	header->image_size = le64_to_cpu(ondisk->image_size);
1114 	header->snapc = snapc;
1115 	header->snap_names = snap_names;
1116 	header->snap_sizes = snap_sizes;
1117 
1118 	return 0;
1119 out_2big:
1120 	ret = -EIO;
1121 out_err:
1122 	kfree(snap_sizes);
1123 	kfree(snap_names);
1124 	ceph_put_snap_context(snapc);
1125 	kfree(object_prefix);
1126 
1127 	return ret;
1128 }
1129 
1130 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1131 {
1132 	const char *snap_name;
1133 
1134 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1135 
1136 	/* Skip over names until we find the one we are looking for */
1137 
1138 	snap_name = rbd_dev->header.snap_names;
1139 	while (which--)
1140 		snap_name += strlen(snap_name) + 1;
1141 
1142 	return kstrdup(snap_name, GFP_KERNEL);
1143 }
1144 
1145 /*
1146  * Snapshot id comparison function for use with qsort()/bsearch().
1147  * Note that result is for snapshots in *descending* order.
1148  */
1149 static int snapid_compare_reverse(const void *s1, const void *s2)
1150 {
1151 	u64 snap_id1 = *(u64 *)s1;
1152 	u64 snap_id2 = *(u64 *)s2;
1153 
1154 	if (snap_id1 < snap_id2)
1155 		return 1;
1156 	return snap_id1 == snap_id2 ? 0 : -1;
1157 }
1158 
1159 /*
1160  * Search a snapshot context to see if the given snapshot id is
1161  * present.
1162  *
1163  * Returns the position of the snapshot id in the array if it's found,
1164  * or BAD_SNAP_INDEX otherwise.
1165  *
1166  * Note: The snapshot array is in kept sorted (by the osd) in
1167  * reverse order, highest snapshot id first.
1168  */
1169 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1170 {
1171 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1172 	u64 *found;
1173 
1174 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1175 				sizeof (snap_id), snapid_compare_reverse);
1176 
1177 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1178 }
1179 
1180 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1181 					u64 snap_id)
1182 {
1183 	u32 which;
1184 	const char *snap_name;
1185 
1186 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1187 	if (which == BAD_SNAP_INDEX)
1188 		return ERR_PTR(-ENOENT);
1189 
1190 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1191 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1192 }
1193 
1194 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1195 {
1196 	if (snap_id == CEPH_NOSNAP)
1197 		return RBD_SNAP_HEAD_NAME;
1198 
1199 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1200 	if (rbd_dev->image_format == 1)
1201 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1202 
1203 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1204 }
1205 
1206 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1207 				u64 *snap_size)
1208 {
1209 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1210 	if (snap_id == CEPH_NOSNAP) {
1211 		*snap_size = rbd_dev->header.image_size;
1212 	} else if (rbd_dev->image_format == 1) {
1213 		u32 which;
1214 
1215 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1216 		if (which == BAD_SNAP_INDEX)
1217 			return -ENOENT;
1218 
1219 		*snap_size = rbd_dev->header.snap_sizes[which];
1220 	} else {
1221 		u64 size = 0;
1222 		int ret;
1223 
1224 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1225 		if (ret)
1226 			return ret;
1227 
1228 		*snap_size = size;
1229 	}
1230 	return 0;
1231 }
1232 
1233 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1234 			u64 *snap_features)
1235 {
1236 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1237 	if (snap_id == CEPH_NOSNAP) {
1238 		*snap_features = rbd_dev->header.features;
1239 	} else if (rbd_dev->image_format == 1) {
1240 		*snap_features = 0;	/* No features for format 1 */
1241 	} else {
1242 		u64 features = 0;
1243 		int ret;
1244 
1245 		ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1246 		if (ret)
1247 			return ret;
1248 
1249 		*snap_features = features;
1250 	}
1251 	return 0;
1252 }
1253 
1254 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1255 {
1256 	u64 snap_id = rbd_dev->spec->snap_id;
1257 	u64 size = 0;
1258 	u64 features = 0;
1259 	int ret;
1260 
1261 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1262 	if (ret)
1263 		return ret;
1264 	ret = rbd_snap_features(rbd_dev, snap_id, &features);
1265 	if (ret)
1266 		return ret;
1267 
1268 	rbd_dev->mapping.size = size;
1269 	rbd_dev->mapping.features = features;
1270 
1271 	return 0;
1272 }
1273 
1274 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1275 {
1276 	rbd_dev->mapping.size = 0;
1277 	rbd_dev->mapping.features = 0;
1278 }
1279 
1280 static void zero_bvec(struct bio_vec *bv)
1281 {
1282 	void *buf;
1283 	unsigned long flags;
1284 
1285 	buf = bvec_kmap_irq(bv, &flags);
1286 	memset(buf, 0, bv->bv_len);
1287 	flush_dcache_page(bv->bv_page);
1288 	bvec_kunmap_irq(buf, &flags);
1289 }
1290 
1291 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1292 {
1293 	struct ceph_bio_iter it = *bio_pos;
1294 
1295 	ceph_bio_iter_advance(&it, off);
1296 	ceph_bio_iter_advance_step(&it, bytes, ({
1297 		zero_bvec(&bv);
1298 	}));
1299 }
1300 
1301 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1302 {
1303 	struct ceph_bvec_iter it = *bvec_pos;
1304 
1305 	ceph_bvec_iter_advance(&it, off);
1306 	ceph_bvec_iter_advance_step(&it, bytes, ({
1307 		zero_bvec(&bv);
1308 	}));
1309 }
1310 
1311 /*
1312  * Zero a range in @obj_req data buffer defined by a bio (list) or
1313  * (private) bio_vec array.
1314  *
1315  * @off is relative to the start of the data buffer.
1316  */
1317 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1318 			       u32 bytes)
1319 {
1320 	switch (obj_req->img_request->data_type) {
1321 	case OBJ_REQUEST_BIO:
1322 		zero_bios(&obj_req->bio_pos, off, bytes);
1323 		break;
1324 	case OBJ_REQUEST_BVECS:
1325 	case OBJ_REQUEST_OWN_BVECS:
1326 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1327 		break;
1328 	default:
1329 		rbd_assert(0);
1330 	}
1331 }
1332 
1333 static void rbd_obj_request_destroy(struct kref *kref);
1334 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1335 {
1336 	rbd_assert(obj_request != NULL);
1337 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1338 		kref_read(&obj_request->kref));
1339 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1340 }
1341 
1342 static void rbd_img_request_get(struct rbd_img_request *img_request)
1343 {
1344 	dout("%s: img %p (was %d)\n", __func__, img_request,
1345 	     kref_read(&img_request->kref));
1346 	kref_get(&img_request->kref);
1347 }
1348 
1349 static void rbd_img_request_destroy(struct kref *kref);
1350 static void rbd_img_request_put(struct rbd_img_request *img_request)
1351 {
1352 	rbd_assert(img_request != NULL);
1353 	dout("%s: img %p (was %d)\n", __func__, img_request,
1354 		kref_read(&img_request->kref));
1355 	kref_put(&img_request->kref, rbd_img_request_destroy);
1356 }
1357 
1358 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1359 					struct rbd_obj_request *obj_request)
1360 {
1361 	rbd_assert(obj_request->img_request == NULL);
1362 
1363 	/* Image request now owns object's original reference */
1364 	obj_request->img_request = img_request;
1365 	img_request->pending_count++;
1366 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1367 }
1368 
1369 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1370 					struct rbd_obj_request *obj_request)
1371 {
1372 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1373 	list_del(&obj_request->ex.oe_item);
1374 	rbd_assert(obj_request->img_request == img_request);
1375 	rbd_obj_request_put(obj_request);
1376 }
1377 
1378 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1379 {
1380 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1381 
1382 	dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1383 	     obj_request, obj_request->ex.oe_objno, obj_request->ex.oe_off,
1384 	     obj_request->ex.oe_len, osd_req);
1385 	ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1386 }
1387 
1388 /*
1389  * The default/initial value for all image request flags is 0.  Each
1390  * is conditionally set to 1 at image request initialization time
1391  * and currently never change thereafter.
1392  */
1393 static void img_request_layered_set(struct rbd_img_request *img_request)
1394 {
1395 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1396 	smp_mb();
1397 }
1398 
1399 static void img_request_layered_clear(struct rbd_img_request *img_request)
1400 {
1401 	clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1402 	smp_mb();
1403 }
1404 
1405 static bool img_request_layered_test(struct rbd_img_request *img_request)
1406 {
1407 	smp_mb();
1408 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1409 }
1410 
1411 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1412 {
1413 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1414 
1415 	return !obj_req->ex.oe_off &&
1416 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1417 }
1418 
1419 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1420 {
1421 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1422 
1423 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1424 					rbd_dev->layout.object_size;
1425 }
1426 
1427 /*
1428  * Must be called after rbd_obj_calc_img_extents().
1429  */
1430 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1431 {
1432 	if (!obj_req->num_img_extents ||
1433 	    (rbd_obj_is_entire(obj_req) &&
1434 	     !obj_req->img_request->snapc->num_snaps))
1435 		return false;
1436 
1437 	return true;
1438 }
1439 
1440 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1441 {
1442 	return ceph_file_extents_bytes(obj_req->img_extents,
1443 				       obj_req->num_img_extents);
1444 }
1445 
1446 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1447 {
1448 	switch (img_req->op_type) {
1449 	case OBJ_OP_READ:
1450 		return false;
1451 	case OBJ_OP_WRITE:
1452 	case OBJ_OP_DISCARD:
1453 	case OBJ_OP_ZEROOUT:
1454 		return true;
1455 	default:
1456 		BUG();
1457 	}
1458 }
1459 
1460 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req);
1461 
1462 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1463 {
1464 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1465 
1466 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1467 	     osd_req->r_result, obj_req);
1468 	rbd_assert(osd_req == obj_req->osd_req);
1469 
1470 	obj_req->result = osd_req->r_result < 0 ? osd_req->r_result : 0;
1471 	if (!obj_req->result && !rbd_img_is_write(obj_req->img_request))
1472 		obj_req->xferred = osd_req->r_result;
1473 	else
1474 		/*
1475 		 * Writes aren't allowed to return a data payload.  In some
1476 		 * guarded write cases (e.g. stat + zero on an empty object)
1477 		 * a stat response makes it through, but we don't care.
1478 		 */
1479 		obj_req->xferred = 0;
1480 
1481 	rbd_obj_handle_request(obj_req);
1482 }
1483 
1484 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1485 {
1486 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1487 
1488 	osd_req->r_flags = CEPH_OSD_FLAG_READ;
1489 	osd_req->r_snapid = obj_request->img_request->snap_id;
1490 }
1491 
1492 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1493 {
1494 	struct ceph_osd_request *osd_req = obj_request->osd_req;
1495 
1496 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1497 	ktime_get_real_ts64(&osd_req->r_mtime);
1498 	osd_req->r_data_offset = obj_request->ex.oe_off;
1499 }
1500 
1501 static struct ceph_osd_request *
1502 __rbd_osd_req_create(struct rbd_obj_request *obj_req,
1503 		     struct ceph_snap_context *snapc, unsigned int num_ops)
1504 {
1505 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1506 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1507 	struct ceph_osd_request *req;
1508 	const char *name_format = rbd_dev->image_format == 1 ?
1509 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1510 
1511 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1512 	if (!req)
1513 		return NULL;
1514 
1515 	req->r_callback = rbd_osd_req_callback;
1516 	req->r_priv = obj_req;
1517 
1518 	/*
1519 	 * Data objects may be stored in a separate pool, but always in
1520 	 * the same namespace in that pool as the header in its pool.
1521 	 */
1522 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1523 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1524 
1525 	if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1526 			rbd_dev->header.object_prefix, obj_req->ex.oe_objno))
1527 		goto err_req;
1528 
1529 	return req;
1530 
1531 err_req:
1532 	ceph_osdc_put_request(req);
1533 	return NULL;
1534 }
1535 
1536 static struct ceph_osd_request *
1537 rbd_osd_req_create(struct rbd_obj_request *obj_req, unsigned int num_ops)
1538 {
1539 	return __rbd_osd_req_create(obj_req, obj_req->img_request->snapc,
1540 				    num_ops);
1541 }
1542 
1543 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1544 {
1545 	ceph_osdc_put_request(osd_req);
1546 }
1547 
1548 static struct rbd_obj_request *rbd_obj_request_create(void)
1549 {
1550 	struct rbd_obj_request *obj_request;
1551 
1552 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1553 	if (!obj_request)
1554 		return NULL;
1555 
1556 	ceph_object_extent_init(&obj_request->ex);
1557 	kref_init(&obj_request->kref);
1558 
1559 	dout("%s %p\n", __func__, obj_request);
1560 	return obj_request;
1561 }
1562 
1563 static void rbd_obj_request_destroy(struct kref *kref)
1564 {
1565 	struct rbd_obj_request *obj_request;
1566 	u32 i;
1567 
1568 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1569 
1570 	dout("%s: obj %p\n", __func__, obj_request);
1571 
1572 	if (obj_request->osd_req)
1573 		rbd_osd_req_destroy(obj_request->osd_req);
1574 
1575 	switch (obj_request->img_request->data_type) {
1576 	case OBJ_REQUEST_NODATA:
1577 	case OBJ_REQUEST_BIO:
1578 	case OBJ_REQUEST_BVECS:
1579 		break;		/* Nothing to do */
1580 	case OBJ_REQUEST_OWN_BVECS:
1581 		kfree(obj_request->bvec_pos.bvecs);
1582 		break;
1583 	default:
1584 		rbd_assert(0);
1585 	}
1586 
1587 	kfree(obj_request->img_extents);
1588 	if (obj_request->copyup_bvecs) {
1589 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1590 			if (obj_request->copyup_bvecs[i].bv_page)
1591 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1592 		}
1593 		kfree(obj_request->copyup_bvecs);
1594 	}
1595 
1596 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1597 }
1598 
1599 /* It's OK to call this for a device with no parent */
1600 
1601 static void rbd_spec_put(struct rbd_spec *spec);
1602 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1603 {
1604 	rbd_dev_remove_parent(rbd_dev);
1605 	rbd_spec_put(rbd_dev->parent_spec);
1606 	rbd_dev->parent_spec = NULL;
1607 	rbd_dev->parent_overlap = 0;
1608 }
1609 
1610 /*
1611  * Parent image reference counting is used to determine when an
1612  * image's parent fields can be safely torn down--after there are no
1613  * more in-flight requests to the parent image.  When the last
1614  * reference is dropped, cleaning them up is safe.
1615  */
1616 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1617 {
1618 	int counter;
1619 
1620 	if (!rbd_dev->parent_spec)
1621 		return;
1622 
1623 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1624 	if (counter > 0)
1625 		return;
1626 
1627 	/* Last reference; clean up parent data structures */
1628 
1629 	if (!counter)
1630 		rbd_dev_unparent(rbd_dev);
1631 	else
1632 		rbd_warn(rbd_dev, "parent reference underflow");
1633 }
1634 
1635 /*
1636  * If an image has a non-zero parent overlap, get a reference to its
1637  * parent.
1638  *
1639  * Returns true if the rbd device has a parent with a non-zero
1640  * overlap and a reference for it was successfully taken, or
1641  * false otherwise.
1642  */
1643 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1644 {
1645 	int counter = 0;
1646 
1647 	if (!rbd_dev->parent_spec)
1648 		return false;
1649 
1650 	down_read(&rbd_dev->header_rwsem);
1651 	if (rbd_dev->parent_overlap)
1652 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1653 	up_read(&rbd_dev->header_rwsem);
1654 
1655 	if (counter < 0)
1656 		rbd_warn(rbd_dev, "parent reference overflow");
1657 
1658 	return counter > 0;
1659 }
1660 
1661 /*
1662  * Caller is responsible for filling in the list of object requests
1663  * that comprises the image request, and the Linux request pointer
1664  * (if there is one).
1665  */
1666 static struct rbd_img_request *rbd_img_request_create(
1667 					struct rbd_device *rbd_dev,
1668 					enum obj_operation_type op_type,
1669 					struct ceph_snap_context *snapc)
1670 {
1671 	struct rbd_img_request *img_request;
1672 
1673 	img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1674 	if (!img_request)
1675 		return NULL;
1676 
1677 	img_request->rbd_dev = rbd_dev;
1678 	img_request->op_type = op_type;
1679 	if (!rbd_img_is_write(img_request))
1680 		img_request->snap_id = rbd_dev->spec->snap_id;
1681 	else
1682 		img_request->snapc = snapc;
1683 
1684 	if (rbd_dev_parent_get(rbd_dev))
1685 		img_request_layered_set(img_request);
1686 
1687 	spin_lock_init(&img_request->completion_lock);
1688 	INIT_LIST_HEAD(&img_request->object_extents);
1689 	kref_init(&img_request->kref);
1690 
1691 	dout("%s: rbd_dev %p %s -> img %p\n", __func__, rbd_dev,
1692 	     obj_op_name(op_type), img_request);
1693 	return img_request;
1694 }
1695 
1696 static void rbd_img_request_destroy(struct kref *kref)
1697 {
1698 	struct rbd_img_request *img_request;
1699 	struct rbd_obj_request *obj_request;
1700 	struct rbd_obj_request *next_obj_request;
1701 
1702 	img_request = container_of(kref, struct rbd_img_request, kref);
1703 
1704 	dout("%s: img %p\n", __func__, img_request);
1705 
1706 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1707 		rbd_img_obj_request_del(img_request, obj_request);
1708 
1709 	if (img_request_layered_test(img_request)) {
1710 		img_request_layered_clear(img_request);
1711 		rbd_dev_parent_put(img_request->rbd_dev);
1712 	}
1713 
1714 	if (rbd_img_is_write(img_request))
1715 		ceph_put_snap_context(img_request->snapc);
1716 
1717 	kmem_cache_free(rbd_img_request_cache, img_request);
1718 }
1719 
1720 static void prune_extents(struct ceph_file_extent *img_extents,
1721 			  u32 *num_img_extents, u64 overlap)
1722 {
1723 	u32 cnt = *num_img_extents;
1724 
1725 	/* drop extents completely beyond the overlap */
1726 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
1727 		cnt--;
1728 
1729 	if (cnt) {
1730 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
1731 
1732 		/* trim final overlapping extent */
1733 		if (ex->fe_off + ex->fe_len > overlap)
1734 			ex->fe_len = overlap - ex->fe_off;
1735 	}
1736 
1737 	*num_img_extents = cnt;
1738 }
1739 
1740 /*
1741  * Determine the byte range(s) covered by either just the object extent
1742  * or the entire object in the parent image.
1743  */
1744 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
1745 				    bool entire)
1746 {
1747 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1748 	int ret;
1749 
1750 	if (!rbd_dev->parent_overlap)
1751 		return 0;
1752 
1753 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
1754 				  entire ? 0 : obj_req->ex.oe_off,
1755 				  entire ? rbd_dev->layout.object_size :
1756 							obj_req->ex.oe_len,
1757 				  &obj_req->img_extents,
1758 				  &obj_req->num_img_extents);
1759 	if (ret)
1760 		return ret;
1761 
1762 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
1763 		      rbd_dev->parent_overlap);
1764 	return 0;
1765 }
1766 
1767 static void rbd_osd_req_setup_data(struct rbd_obj_request *obj_req, u32 which)
1768 {
1769 	switch (obj_req->img_request->data_type) {
1770 	case OBJ_REQUEST_BIO:
1771 		osd_req_op_extent_osd_data_bio(obj_req->osd_req, which,
1772 					       &obj_req->bio_pos,
1773 					       obj_req->ex.oe_len);
1774 		break;
1775 	case OBJ_REQUEST_BVECS:
1776 	case OBJ_REQUEST_OWN_BVECS:
1777 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
1778 							obj_req->ex.oe_len);
1779 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
1780 		osd_req_op_extent_osd_data_bvec_pos(obj_req->osd_req, which,
1781 						    &obj_req->bvec_pos);
1782 		break;
1783 	default:
1784 		rbd_assert(0);
1785 	}
1786 }
1787 
1788 static int rbd_obj_setup_read(struct rbd_obj_request *obj_req)
1789 {
1790 	obj_req->osd_req = __rbd_osd_req_create(obj_req, NULL, 1);
1791 	if (!obj_req->osd_req)
1792 		return -ENOMEM;
1793 
1794 	osd_req_op_extent_init(obj_req->osd_req, 0, CEPH_OSD_OP_READ,
1795 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1796 	rbd_osd_req_setup_data(obj_req, 0);
1797 
1798 	rbd_osd_req_format_read(obj_req);
1799 	return 0;
1800 }
1801 
1802 static int __rbd_obj_setup_stat(struct rbd_obj_request *obj_req,
1803 				unsigned int which)
1804 {
1805 	struct page **pages;
1806 
1807 	/*
1808 	 * The response data for a STAT call consists of:
1809 	 *     le64 length;
1810 	 *     struct {
1811 	 *         le32 tv_sec;
1812 	 *         le32 tv_nsec;
1813 	 *     } mtime;
1814 	 */
1815 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
1816 	if (IS_ERR(pages))
1817 		return PTR_ERR(pages);
1818 
1819 	osd_req_op_init(obj_req->osd_req, which, CEPH_OSD_OP_STAT, 0);
1820 	osd_req_op_raw_data_in_pages(obj_req->osd_req, which, pages,
1821 				     8 + sizeof(struct ceph_timespec),
1822 				     0, false, true);
1823 	return 0;
1824 }
1825 
1826 static int count_write_ops(struct rbd_obj_request *obj_req)
1827 {
1828 	return 2; /* setallochint + write/writefull */
1829 }
1830 
1831 static void __rbd_obj_setup_write(struct rbd_obj_request *obj_req,
1832 				  unsigned int which)
1833 {
1834 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1835 	u16 opcode;
1836 
1837 	osd_req_op_alloc_hint_init(obj_req->osd_req, which++,
1838 				   rbd_dev->layout.object_size,
1839 				   rbd_dev->layout.object_size);
1840 
1841 	if (rbd_obj_is_entire(obj_req))
1842 		opcode = CEPH_OSD_OP_WRITEFULL;
1843 	else
1844 		opcode = CEPH_OSD_OP_WRITE;
1845 
1846 	osd_req_op_extent_init(obj_req->osd_req, which, opcode,
1847 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
1848 	rbd_osd_req_setup_data(obj_req, which++);
1849 
1850 	rbd_assert(which == obj_req->osd_req->r_num_ops);
1851 	rbd_osd_req_format_write(obj_req);
1852 }
1853 
1854 static int rbd_obj_setup_write(struct rbd_obj_request *obj_req)
1855 {
1856 	unsigned int num_osd_ops, which = 0;
1857 	bool need_guard;
1858 	int ret;
1859 
1860 	/* reverse map the entire object onto the parent */
1861 	ret = rbd_obj_calc_img_extents(obj_req, true);
1862 	if (ret)
1863 		return ret;
1864 
1865 	need_guard = rbd_obj_copyup_enabled(obj_req);
1866 	num_osd_ops = need_guard + count_write_ops(obj_req);
1867 
1868 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1869 	if (!obj_req->osd_req)
1870 		return -ENOMEM;
1871 
1872 	if (need_guard) {
1873 		ret = __rbd_obj_setup_stat(obj_req, which++);
1874 		if (ret)
1875 			return ret;
1876 
1877 		obj_req->write_state = RBD_OBJ_WRITE_GUARD;
1878 	} else {
1879 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1880 	}
1881 
1882 	__rbd_obj_setup_write(obj_req, which);
1883 	return 0;
1884 }
1885 
1886 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
1887 {
1888 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
1889 					  CEPH_OSD_OP_ZERO;
1890 }
1891 
1892 static int rbd_obj_setup_discard(struct rbd_obj_request *obj_req)
1893 {
1894 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1895 	u64 off = obj_req->ex.oe_off;
1896 	u64 next_off = obj_req->ex.oe_off + obj_req->ex.oe_len;
1897 	int ret;
1898 
1899 	/*
1900 	 * Align the range to alloc_size boundary and punt on discards
1901 	 * that are too small to free up any space.
1902 	 *
1903 	 * alloc_size == object_size && is_tail() is a special case for
1904 	 * filestore with filestore_punch_hole = false, needed to allow
1905 	 * truncate (in addition to delete).
1906 	 */
1907 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
1908 	    !rbd_obj_is_tail(obj_req)) {
1909 		off = round_up(off, rbd_dev->opts->alloc_size);
1910 		next_off = round_down(next_off, rbd_dev->opts->alloc_size);
1911 		if (off >= next_off)
1912 			return 1;
1913 	}
1914 
1915 	/* reverse map the entire object onto the parent */
1916 	ret = rbd_obj_calc_img_extents(obj_req, true);
1917 	if (ret)
1918 		return ret;
1919 
1920 	obj_req->osd_req = rbd_osd_req_create(obj_req, 1);
1921 	if (!obj_req->osd_req)
1922 		return -ENOMEM;
1923 
1924 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
1925 		osd_req_op_init(obj_req->osd_req, 0, CEPH_OSD_OP_DELETE, 0);
1926 	} else {
1927 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
1928 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
1929 		     off, next_off - off);
1930 		osd_req_op_extent_init(obj_req->osd_req, 0,
1931 				       truncate_or_zero_opcode(obj_req),
1932 				       off, next_off - off, 0, 0);
1933 	}
1934 
1935 	obj_req->write_state = RBD_OBJ_WRITE_FLAT;
1936 	rbd_osd_req_format_write(obj_req);
1937 	return 0;
1938 }
1939 
1940 static int count_zeroout_ops(struct rbd_obj_request *obj_req)
1941 {
1942 	int num_osd_ops;
1943 
1944 	if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
1945 	    !rbd_obj_copyup_enabled(obj_req))
1946 		num_osd_ops = 2; /* create + truncate */
1947 	else
1948 		num_osd_ops = 1; /* delete/truncate/zero */
1949 
1950 	return num_osd_ops;
1951 }
1952 
1953 static void __rbd_obj_setup_zeroout(struct rbd_obj_request *obj_req,
1954 				    unsigned int which)
1955 {
1956 	u16 opcode;
1957 
1958 	if (rbd_obj_is_entire(obj_req)) {
1959 		if (obj_req->num_img_extents) {
1960 			if (!rbd_obj_copyup_enabled(obj_req))
1961 				osd_req_op_init(obj_req->osd_req, which++,
1962 						CEPH_OSD_OP_CREATE, 0);
1963 			opcode = CEPH_OSD_OP_TRUNCATE;
1964 		} else {
1965 			osd_req_op_init(obj_req->osd_req, which++,
1966 					CEPH_OSD_OP_DELETE, 0);
1967 			opcode = 0;
1968 		}
1969 	} else {
1970 		opcode = truncate_or_zero_opcode(obj_req);
1971 	}
1972 
1973 	if (opcode)
1974 		osd_req_op_extent_init(obj_req->osd_req, which++, opcode,
1975 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
1976 				       0, 0);
1977 
1978 	rbd_assert(which == obj_req->osd_req->r_num_ops);
1979 	rbd_osd_req_format_write(obj_req);
1980 }
1981 
1982 static int rbd_obj_setup_zeroout(struct rbd_obj_request *obj_req)
1983 {
1984 	unsigned int num_osd_ops, which = 0;
1985 	bool need_guard;
1986 	int ret;
1987 
1988 	/* reverse map the entire object onto the parent */
1989 	ret = rbd_obj_calc_img_extents(obj_req, true);
1990 	if (ret)
1991 		return ret;
1992 
1993 	need_guard = rbd_obj_copyup_enabled(obj_req);
1994 	num_osd_ops = need_guard + count_zeroout_ops(obj_req);
1995 
1996 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
1997 	if (!obj_req->osd_req)
1998 		return -ENOMEM;
1999 
2000 	if (need_guard) {
2001 		ret = __rbd_obj_setup_stat(obj_req, which++);
2002 		if (ret)
2003 			return ret;
2004 
2005 		obj_req->write_state = RBD_OBJ_WRITE_GUARD;
2006 	} else {
2007 		obj_req->write_state = RBD_OBJ_WRITE_FLAT;
2008 	}
2009 
2010 	__rbd_obj_setup_zeroout(obj_req, which);
2011 	return 0;
2012 }
2013 
2014 /*
2015  * For each object request in @img_req, allocate an OSD request, add
2016  * individual OSD ops and prepare them for submission.  The number of
2017  * OSD ops depends on op_type and the overlap point (if any).
2018  */
2019 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2020 {
2021 	struct rbd_obj_request *obj_req, *next_obj_req;
2022 	int ret;
2023 
2024 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2025 		switch (img_req->op_type) {
2026 		case OBJ_OP_READ:
2027 			ret = rbd_obj_setup_read(obj_req);
2028 			break;
2029 		case OBJ_OP_WRITE:
2030 			ret = rbd_obj_setup_write(obj_req);
2031 			break;
2032 		case OBJ_OP_DISCARD:
2033 			ret = rbd_obj_setup_discard(obj_req);
2034 			break;
2035 		case OBJ_OP_ZEROOUT:
2036 			ret = rbd_obj_setup_zeroout(obj_req);
2037 			break;
2038 		default:
2039 			rbd_assert(0);
2040 		}
2041 		if (ret < 0)
2042 			return ret;
2043 		if (ret > 0) {
2044 			img_req->xferred += obj_req->ex.oe_len;
2045 			img_req->pending_count--;
2046 			rbd_img_obj_request_del(img_req, obj_req);
2047 			continue;
2048 		}
2049 
2050 		ret = ceph_osdc_alloc_messages(obj_req->osd_req, GFP_NOIO);
2051 		if (ret)
2052 			return ret;
2053 	}
2054 
2055 	return 0;
2056 }
2057 
2058 union rbd_img_fill_iter {
2059 	struct ceph_bio_iter	bio_iter;
2060 	struct ceph_bvec_iter	bvec_iter;
2061 };
2062 
2063 struct rbd_img_fill_ctx {
2064 	enum obj_request_type	pos_type;
2065 	union rbd_img_fill_iter	*pos;
2066 	union rbd_img_fill_iter	iter;
2067 	ceph_object_extent_fn_t	set_pos_fn;
2068 	ceph_object_extent_fn_t	count_fn;
2069 	ceph_object_extent_fn_t	copy_fn;
2070 };
2071 
2072 static struct ceph_object_extent *alloc_object_extent(void *arg)
2073 {
2074 	struct rbd_img_request *img_req = arg;
2075 	struct rbd_obj_request *obj_req;
2076 
2077 	obj_req = rbd_obj_request_create();
2078 	if (!obj_req)
2079 		return NULL;
2080 
2081 	rbd_img_obj_request_add(img_req, obj_req);
2082 	return &obj_req->ex;
2083 }
2084 
2085 /*
2086  * While su != os && sc == 1 is technically not fancy (it's the same
2087  * layout as su == os && sc == 1), we can't use the nocopy path for it
2088  * because ->set_pos_fn() should be called only once per object.
2089  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2090  * treat su != os && sc == 1 as fancy.
2091  */
2092 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2093 {
2094 	return l->stripe_unit != l->object_size;
2095 }
2096 
2097 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2098 				       struct ceph_file_extent *img_extents,
2099 				       u32 num_img_extents,
2100 				       struct rbd_img_fill_ctx *fctx)
2101 {
2102 	u32 i;
2103 	int ret;
2104 
2105 	img_req->data_type = fctx->pos_type;
2106 
2107 	/*
2108 	 * Create object requests and set each object request's starting
2109 	 * position in the provided bio (list) or bio_vec array.
2110 	 */
2111 	fctx->iter = *fctx->pos;
2112 	for (i = 0; i < num_img_extents; i++) {
2113 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2114 					   img_extents[i].fe_off,
2115 					   img_extents[i].fe_len,
2116 					   &img_req->object_extents,
2117 					   alloc_object_extent, img_req,
2118 					   fctx->set_pos_fn, &fctx->iter);
2119 		if (ret)
2120 			return ret;
2121 	}
2122 
2123 	return __rbd_img_fill_request(img_req);
2124 }
2125 
2126 /*
2127  * Map a list of image extents to a list of object extents, create the
2128  * corresponding object requests (normally each to a different object,
2129  * but not always) and add them to @img_req.  For each object request,
2130  * set up its data descriptor to point to the corresponding chunk(s) of
2131  * @fctx->pos data buffer.
2132  *
2133  * Because ceph_file_to_extents() will merge adjacent object extents
2134  * together, each object request's data descriptor may point to multiple
2135  * different chunks of @fctx->pos data buffer.
2136  *
2137  * @fctx->pos data buffer is assumed to be large enough.
2138  */
2139 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2140 				struct ceph_file_extent *img_extents,
2141 				u32 num_img_extents,
2142 				struct rbd_img_fill_ctx *fctx)
2143 {
2144 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2145 	struct rbd_obj_request *obj_req;
2146 	u32 i;
2147 	int ret;
2148 
2149 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2150 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2151 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2152 						   num_img_extents, fctx);
2153 
2154 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2155 
2156 	/*
2157 	 * Create object requests and determine ->bvec_count for each object
2158 	 * request.  Note that ->bvec_count sum over all object requests may
2159 	 * be greater than the number of bio_vecs in the provided bio (list)
2160 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2161 	 * stripe unit boundaries.
2162 	 */
2163 	fctx->iter = *fctx->pos;
2164 	for (i = 0; i < num_img_extents; i++) {
2165 		ret = ceph_file_to_extents(&rbd_dev->layout,
2166 					   img_extents[i].fe_off,
2167 					   img_extents[i].fe_len,
2168 					   &img_req->object_extents,
2169 					   alloc_object_extent, img_req,
2170 					   fctx->count_fn, &fctx->iter);
2171 		if (ret)
2172 			return ret;
2173 	}
2174 
2175 	for_each_obj_request(img_req, obj_req) {
2176 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2177 					      sizeof(*obj_req->bvec_pos.bvecs),
2178 					      GFP_NOIO);
2179 		if (!obj_req->bvec_pos.bvecs)
2180 			return -ENOMEM;
2181 	}
2182 
2183 	/*
2184 	 * Fill in each object request's private bio_vec array, splitting and
2185 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2186 	 */
2187 	fctx->iter = *fctx->pos;
2188 	for (i = 0; i < num_img_extents; i++) {
2189 		ret = ceph_iterate_extents(&rbd_dev->layout,
2190 					   img_extents[i].fe_off,
2191 					   img_extents[i].fe_len,
2192 					   &img_req->object_extents,
2193 					   fctx->copy_fn, &fctx->iter);
2194 		if (ret)
2195 			return ret;
2196 	}
2197 
2198 	return __rbd_img_fill_request(img_req);
2199 }
2200 
2201 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2202 			       u64 off, u64 len)
2203 {
2204 	struct ceph_file_extent ex = { off, len };
2205 	union rbd_img_fill_iter dummy;
2206 	struct rbd_img_fill_ctx fctx = {
2207 		.pos_type = OBJ_REQUEST_NODATA,
2208 		.pos = &dummy,
2209 	};
2210 
2211 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2212 }
2213 
2214 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2215 {
2216 	struct rbd_obj_request *obj_req =
2217 	    container_of(ex, struct rbd_obj_request, ex);
2218 	struct ceph_bio_iter *it = arg;
2219 
2220 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2221 	obj_req->bio_pos = *it;
2222 	ceph_bio_iter_advance(it, bytes);
2223 }
2224 
2225 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2226 {
2227 	struct rbd_obj_request *obj_req =
2228 	    container_of(ex, struct rbd_obj_request, ex);
2229 	struct ceph_bio_iter *it = arg;
2230 
2231 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2232 	ceph_bio_iter_advance_step(it, bytes, ({
2233 		obj_req->bvec_count++;
2234 	}));
2235 
2236 }
2237 
2238 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2239 {
2240 	struct rbd_obj_request *obj_req =
2241 	    container_of(ex, struct rbd_obj_request, ex);
2242 	struct ceph_bio_iter *it = arg;
2243 
2244 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2245 	ceph_bio_iter_advance_step(it, bytes, ({
2246 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2247 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2248 	}));
2249 }
2250 
2251 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2252 				   struct ceph_file_extent *img_extents,
2253 				   u32 num_img_extents,
2254 				   struct ceph_bio_iter *bio_pos)
2255 {
2256 	struct rbd_img_fill_ctx fctx = {
2257 		.pos_type = OBJ_REQUEST_BIO,
2258 		.pos = (union rbd_img_fill_iter *)bio_pos,
2259 		.set_pos_fn = set_bio_pos,
2260 		.count_fn = count_bio_bvecs,
2261 		.copy_fn = copy_bio_bvecs,
2262 	};
2263 
2264 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2265 				    &fctx);
2266 }
2267 
2268 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2269 				 u64 off, u64 len, struct bio *bio)
2270 {
2271 	struct ceph_file_extent ex = { off, len };
2272 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2273 
2274 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2275 }
2276 
2277 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2278 {
2279 	struct rbd_obj_request *obj_req =
2280 	    container_of(ex, struct rbd_obj_request, ex);
2281 	struct ceph_bvec_iter *it = arg;
2282 
2283 	obj_req->bvec_pos = *it;
2284 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2285 	ceph_bvec_iter_advance(it, bytes);
2286 }
2287 
2288 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2289 {
2290 	struct rbd_obj_request *obj_req =
2291 	    container_of(ex, struct rbd_obj_request, ex);
2292 	struct ceph_bvec_iter *it = arg;
2293 
2294 	ceph_bvec_iter_advance_step(it, bytes, ({
2295 		obj_req->bvec_count++;
2296 	}));
2297 }
2298 
2299 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2300 {
2301 	struct rbd_obj_request *obj_req =
2302 	    container_of(ex, struct rbd_obj_request, ex);
2303 	struct ceph_bvec_iter *it = arg;
2304 
2305 	ceph_bvec_iter_advance_step(it, bytes, ({
2306 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2307 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2308 	}));
2309 }
2310 
2311 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2312 				     struct ceph_file_extent *img_extents,
2313 				     u32 num_img_extents,
2314 				     struct ceph_bvec_iter *bvec_pos)
2315 {
2316 	struct rbd_img_fill_ctx fctx = {
2317 		.pos_type = OBJ_REQUEST_BVECS,
2318 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2319 		.set_pos_fn = set_bvec_pos,
2320 		.count_fn = count_bvecs,
2321 		.copy_fn = copy_bvecs,
2322 	};
2323 
2324 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2325 				    &fctx);
2326 }
2327 
2328 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2329 				   struct ceph_file_extent *img_extents,
2330 				   u32 num_img_extents,
2331 				   struct bio_vec *bvecs)
2332 {
2333 	struct ceph_bvec_iter it = {
2334 		.bvecs = bvecs,
2335 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2336 							     num_img_extents) },
2337 	};
2338 
2339 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2340 					 &it);
2341 }
2342 
2343 static void rbd_img_request_submit(struct rbd_img_request *img_request)
2344 {
2345 	struct rbd_obj_request *obj_request;
2346 
2347 	dout("%s: img %p\n", __func__, img_request);
2348 
2349 	rbd_img_request_get(img_request);
2350 	for_each_obj_request(img_request, obj_request)
2351 		rbd_obj_request_submit(obj_request);
2352 
2353 	rbd_img_request_put(img_request);
2354 }
2355 
2356 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2357 {
2358 	struct rbd_img_request *img_req = obj_req->img_request;
2359 	struct rbd_img_request *child_img_req;
2360 	int ret;
2361 
2362 	child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2363 					       OBJ_OP_READ, NULL);
2364 	if (!child_img_req)
2365 		return -ENOMEM;
2366 
2367 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2368 	child_img_req->obj_request = obj_req;
2369 
2370 	if (!rbd_img_is_write(img_req)) {
2371 		switch (img_req->data_type) {
2372 		case OBJ_REQUEST_BIO:
2373 			ret = __rbd_img_fill_from_bio(child_img_req,
2374 						      obj_req->img_extents,
2375 						      obj_req->num_img_extents,
2376 						      &obj_req->bio_pos);
2377 			break;
2378 		case OBJ_REQUEST_BVECS:
2379 		case OBJ_REQUEST_OWN_BVECS:
2380 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2381 						      obj_req->img_extents,
2382 						      obj_req->num_img_extents,
2383 						      &obj_req->bvec_pos);
2384 			break;
2385 		default:
2386 			rbd_assert(0);
2387 		}
2388 	} else {
2389 		ret = rbd_img_fill_from_bvecs(child_img_req,
2390 					      obj_req->img_extents,
2391 					      obj_req->num_img_extents,
2392 					      obj_req->copyup_bvecs);
2393 	}
2394 	if (ret) {
2395 		rbd_img_request_put(child_img_req);
2396 		return ret;
2397 	}
2398 
2399 	rbd_img_request_submit(child_img_req);
2400 	return 0;
2401 }
2402 
2403 static bool rbd_obj_handle_read(struct rbd_obj_request *obj_req)
2404 {
2405 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2406 	int ret;
2407 
2408 	if (obj_req->result == -ENOENT &&
2409 	    rbd_dev->parent_overlap && !obj_req->tried_parent) {
2410 		/* reverse map this object extent onto the parent */
2411 		ret = rbd_obj_calc_img_extents(obj_req, false);
2412 		if (ret) {
2413 			obj_req->result = ret;
2414 			return true;
2415 		}
2416 
2417 		if (obj_req->num_img_extents) {
2418 			obj_req->tried_parent = true;
2419 			ret = rbd_obj_read_from_parent(obj_req);
2420 			if (ret) {
2421 				obj_req->result = ret;
2422 				return true;
2423 			}
2424 			return false;
2425 		}
2426 	}
2427 
2428 	/*
2429 	 * -ENOENT means a hole in the image -- zero-fill the entire
2430 	 * length of the request.  A short read also implies zero-fill
2431 	 * to the end of the request.  In both cases we update xferred
2432 	 * count to indicate the whole request was satisfied.
2433 	 */
2434 	if (obj_req->result == -ENOENT ||
2435 	    (!obj_req->result && obj_req->xferred < obj_req->ex.oe_len)) {
2436 		rbd_assert(!obj_req->xferred || !obj_req->result);
2437 		rbd_obj_zero_range(obj_req, obj_req->xferred,
2438 				   obj_req->ex.oe_len - obj_req->xferred);
2439 		obj_req->result = 0;
2440 		obj_req->xferred = obj_req->ex.oe_len;
2441 	}
2442 
2443 	return true;
2444 }
2445 
2446 /*
2447  * copyup_bvecs pages are never highmem pages
2448  */
2449 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2450 {
2451 	struct ceph_bvec_iter it = {
2452 		.bvecs = bvecs,
2453 		.iter = { .bi_size = bytes },
2454 	};
2455 
2456 	ceph_bvec_iter_advance_step(&it, bytes, ({
2457 		if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
2458 			       bv.bv_len))
2459 			return false;
2460 	}));
2461 	return true;
2462 }
2463 
2464 #define MODS_ONLY	U32_MAX
2465 
2466 static int rbd_obj_issue_copyup_empty_snapc(struct rbd_obj_request *obj_req,
2467 					    u32 bytes)
2468 {
2469 	int ret;
2470 
2471 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2472 	rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT);
2473 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
2474 	rbd_osd_req_destroy(obj_req->osd_req);
2475 
2476 	obj_req->osd_req = __rbd_osd_req_create(obj_req, &rbd_empty_snapc, 1);
2477 	if (!obj_req->osd_req)
2478 		return -ENOMEM;
2479 
2480 	ret = osd_req_op_cls_init(obj_req->osd_req, 0, "rbd", "copyup");
2481 	if (ret)
2482 		return ret;
2483 
2484 	osd_req_op_cls_request_data_bvecs(obj_req->osd_req, 0,
2485 					  obj_req->copyup_bvecs,
2486 					  obj_req->copyup_bvec_count,
2487 					  bytes);
2488 	rbd_osd_req_format_write(obj_req);
2489 
2490 	ret = ceph_osdc_alloc_messages(obj_req->osd_req, GFP_NOIO);
2491 	if (ret)
2492 		return ret;
2493 
2494 	rbd_obj_request_submit(obj_req);
2495 	return 0;
2496 }
2497 
2498 static int rbd_obj_issue_copyup_ops(struct rbd_obj_request *obj_req, u32 bytes)
2499 {
2500 	struct rbd_img_request *img_req = obj_req->img_request;
2501 	unsigned int num_osd_ops = (bytes != MODS_ONLY);
2502 	unsigned int which = 0;
2503 	int ret;
2504 
2505 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
2506 	rbd_assert(obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_STAT ||
2507 		   obj_req->osd_req->r_ops[0].op == CEPH_OSD_OP_CALL);
2508 	rbd_osd_req_destroy(obj_req->osd_req);
2509 
2510 	switch (img_req->op_type) {
2511 	case OBJ_OP_WRITE:
2512 		num_osd_ops += count_write_ops(obj_req);
2513 		break;
2514 	case OBJ_OP_ZEROOUT:
2515 		num_osd_ops += count_zeroout_ops(obj_req);
2516 		break;
2517 	default:
2518 		rbd_assert(0);
2519 	}
2520 
2521 	obj_req->osd_req = rbd_osd_req_create(obj_req, num_osd_ops);
2522 	if (!obj_req->osd_req)
2523 		return -ENOMEM;
2524 
2525 	if (bytes != MODS_ONLY) {
2526 		ret = osd_req_op_cls_init(obj_req->osd_req, which, "rbd",
2527 					  "copyup");
2528 		if (ret)
2529 			return ret;
2530 
2531 		osd_req_op_cls_request_data_bvecs(obj_req->osd_req, which++,
2532 						  obj_req->copyup_bvecs,
2533 						  obj_req->copyup_bvec_count,
2534 						  bytes);
2535 	}
2536 
2537 	switch (img_req->op_type) {
2538 	case OBJ_OP_WRITE:
2539 		__rbd_obj_setup_write(obj_req, which);
2540 		break;
2541 	case OBJ_OP_ZEROOUT:
2542 		__rbd_obj_setup_zeroout(obj_req, which);
2543 		break;
2544 	default:
2545 		rbd_assert(0);
2546 	}
2547 
2548 	ret = ceph_osdc_alloc_messages(obj_req->osd_req, GFP_NOIO);
2549 	if (ret)
2550 		return ret;
2551 
2552 	rbd_obj_request_submit(obj_req);
2553 	return 0;
2554 }
2555 
2556 static int rbd_obj_issue_copyup(struct rbd_obj_request *obj_req, u32 bytes)
2557 {
2558 	/*
2559 	 * Only send non-zero copyup data to save some I/O and network
2560 	 * bandwidth -- zero copyup data is equivalent to the object not
2561 	 * existing.
2562 	 */
2563 	if (is_zero_bvecs(obj_req->copyup_bvecs, bytes)) {
2564 		dout("%s obj_req %p detected zeroes\n", __func__, obj_req);
2565 		bytes = 0;
2566 	}
2567 
2568 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
2569 		/*
2570 		 * Send a copyup request with an empty snapshot context to
2571 		 * deep-copyup the object through all existing snapshots.
2572 		 * A second request with the current snapshot context will be
2573 		 * sent for the actual modification.
2574 		 */
2575 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC;
2576 		return rbd_obj_issue_copyup_empty_snapc(obj_req, bytes);
2577 	}
2578 
2579 	obj_req->write_state = RBD_OBJ_WRITE_COPYUP_OPS;
2580 	return rbd_obj_issue_copyup_ops(obj_req, bytes);
2581 }
2582 
2583 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
2584 {
2585 	u32 i;
2586 
2587 	rbd_assert(!obj_req->copyup_bvecs);
2588 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
2589 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
2590 					sizeof(*obj_req->copyup_bvecs),
2591 					GFP_NOIO);
2592 	if (!obj_req->copyup_bvecs)
2593 		return -ENOMEM;
2594 
2595 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
2596 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
2597 
2598 		obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
2599 		if (!obj_req->copyup_bvecs[i].bv_page)
2600 			return -ENOMEM;
2601 
2602 		obj_req->copyup_bvecs[i].bv_offset = 0;
2603 		obj_req->copyup_bvecs[i].bv_len = len;
2604 		obj_overlap -= len;
2605 	}
2606 
2607 	rbd_assert(!obj_overlap);
2608 	return 0;
2609 }
2610 
2611 static int rbd_obj_handle_write_guard(struct rbd_obj_request *obj_req)
2612 {
2613 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2614 	int ret;
2615 
2616 	rbd_assert(obj_req->num_img_extents);
2617 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2618 		      rbd_dev->parent_overlap);
2619 	if (!obj_req->num_img_extents) {
2620 		/*
2621 		 * The overlap has become 0 (most likely because the
2622 		 * image has been flattened).  Re-submit the original write
2623 		 * request -- pass MODS_ONLY since the copyup isn't needed
2624 		 * anymore.
2625 		 */
2626 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP_OPS;
2627 		return rbd_obj_issue_copyup_ops(obj_req, MODS_ONLY);
2628 	}
2629 
2630 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
2631 	if (ret)
2632 		return ret;
2633 
2634 	obj_req->write_state = RBD_OBJ_WRITE_READ_FROM_PARENT;
2635 	return rbd_obj_read_from_parent(obj_req);
2636 }
2637 
2638 static bool rbd_obj_handle_write(struct rbd_obj_request *obj_req)
2639 {
2640 	int ret;
2641 
2642 	switch (obj_req->write_state) {
2643 	case RBD_OBJ_WRITE_GUARD:
2644 		rbd_assert(!obj_req->xferred);
2645 		if (obj_req->result == -ENOENT) {
2646 			/*
2647 			 * The target object doesn't exist.  Read the data for
2648 			 * the entire target object up to the overlap point (if
2649 			 * any) from the parent, so we can use it for a copyup.
2650 			 */
2651 			ret = rbd_obj_handle_write_guard(obj_req);
2652 			if (ret) {
2653 				obj_req->result = ret;
2654 				return true;
2655 			}
2656 			return false;
2657 		}
2658 		/* fall through */
2659 	case RBD_OBJ_WRITE_FLAT:
2660 	case RBD_OBJ_WRITE_COPYUP_OPS:
2661 		if (!obj_req->result)
2662 			/*
2663 			 * There is no such thing as a successful short
2664 			 * write -- indicate the whole request was satisfied.
2665 			 */
2666 			obj_req->xferred = obj_req->ex.oe_len;
2667 		return true;
2668 	case RBD_OBJ_WRITE_READ_FROM_PARENT:
2669 		if (obj_req->result)
2670 			return true;
2671 
2672 		rbd_assert(obj_req->xferred);
2673 		ret = rbd_obj_issue_copyup(obj_req, obj_req->xferred);
2674 		if (ret) {
2675 			obj_req->result = ret;
2676 			obj_req->xferred = 0;
2677 			return true;
2678 		}
2679 		return false;
2680 	case RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC:
2681 		if (obj_req->result)
2682 			return true;
2683 
2684 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP_OPS;
2685 		ret = rbd_obj_issue_copyup_ops(obj_req, MODS_ONLY);
2686 		if (ret) {
2687 			obj_req->result = ret;
2688 			return true;
2689 		}
2690 		return false;
2691 	default:
2692 		BUG();
2693 	}
2694 }
2695 
2696 /*
2697  * Returns true if @obj_req is completed, or false otherwise.
2698  */
2699 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2700 {
2701 	switch (obj_req->img_request->op_type) {
2702 	case OBJ_OP_READ:
2703 		return rbd_obj_handle_read(obj_req);
2704 	case OBJ_OP_WRITE:
2705 		return rbd_obj_handle_write(obj_req);
2706 	case OBJ_OP_DISCARD:
2707 	case OBJ_OP_ZEROOUT:
2708 		if (rbd_obj_handle_write(obj_req)) {
2709 			/*
2710 			 * Hide -ENOENT from delete/truncate/zero -- discarding
2711 			 * a non-existent object is not a problem.
2712 			 */
2713 			if (obj_req->result == -ENOENT) {
2714 				obj_req->result = 0;
2715 				obj_req->xferred = obj_req->ex.oe_len;
2716 			}
2717 			return true;
2718 		}
2719 		return false;
2720 	default:
2721 		BUG();
2722 	}
2723 }
2724 
2725 static void rbd_obj_end_request(struct rbd_obj_request *obj_req)
2726 {
2727 	struct rbd_img_request *img_req = obj_req->img_request;
2728 
2729 	rbd_assert((!obj_req->result &&
2730 		    obj_req->xferred == obj_req->ex.oe_len) ||
2731 		   (obj_req->result < 0 && !obj_req->xferred));
2732 	if (!obj_req->result) {
2733 		img_req->xferred += obj_req->xferred;
2734 		return;
2735 	}
2736 
2737 	rbd_warn(img_req->rbd_dev,
2738 		 "%s at objno %llu %llu~%llu result %d xferred %llu",
2739 		 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
2740 		 obj_req->ex.oe_off, obj_req->ex.oe_len, obj_req->result,
2741 		 obj_req->xferred);
2742 	if (!img_req->result) {
2743 		img_req->result = obj_req->result;
2744 		img_req->xferred = 0;
2745 	}
2746 }
2747 
2748 static void rbd_img_end_child_request(struct rbd_img_request *img_req)
2749 {
2750 	struct rbd_obj_request *obj_req = img_req->obj_request;
2751 
2752 	rbd_assert(test_bit(IMG_REQ_CHILD, &img_req->flags));
2753 	rbd_assert((!img_req->result &&
2754 		    img_req->xferred == rbd_obj_img_extents_bytes(obj_req)) ||
2755 		   (img_req->result < 0 && !img_req->xferred));
2756 
2757 	obj_req->result = img_req->result;
2758 	obj_req->xferred = img_req->xferred;
2759 	rbd_img_request_put(img_req);
2760 }
2761 
2762 static void rbd_img_end_request(struct rbd_img_request *img_req)
2763 {
2764 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
2765 	rbd_assert((!img_req->result &&
2766 		    img_req->xferred == blk_rq_bytes(img_req->rq)) ||
2767 		   (img_req->result < 0 && !img_req->xferred));
2768 
2769 	blk_mq_end_request(img_req->rq,
2770 			   errno_to_blk_status(img_req->result));
2771 	rbd_img_request_put(img_req);
2772 }
2773 
2774 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req)
2775 {
2776 	struct rbd_img_request *img_req;
2777 
2778 again:
2779 	if (!__rbd_obj_handle_request(obj_req))
2780 		return;
2781 
2782 	img_req = obj_req->img_request;
2783 	spin_lock(&img_req->completion_lock);
2784 	rbd_obj_end_request(obj_req);
2785 	rbd_assert(img_req->pending_count);
2786 	if (--img_req->pending_count) {
2787 		spin_unlock(&img_req->completion_lock);
2788 		return;
2789 	}
2790 
2791 	spin_unlock(&img_req->completion_lock);
2792 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
2793 		obj_req = img_req->obj_request;
2794 		rbd_img_end_child_request(img_req);
2795 		goto again;
2796 	}
2797 	rbd_img_end_request(img_req);
2798 }
2799 
2800 static const struct rbd_client_id rbd_empty_cid;
2801 
2802 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
2803 			  const struct rbd_client_id *rhs)
2804 {
2805 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
2806 }
2807 
2808 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
2809 {
2810 	struct rbd_client_id cid;
2811 
2812 	mutex_lock(&rbd_dev->watch_mutex);
2813 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
2814 	cid.handle = rbd_dev->watch_cookie;
2815 	mutex_unlock(&rbd_dev->watch_mutex);
2816 	return cid;
2817 }
2818 
2819 /*
2820  * lock_rwsem must be held for write
2821  */
2822 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
2823 			      const struct rbd_client_id *cid)
2824 {
2825 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
2826 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
2827 	     cid->gid, cid->handle);
2828 	rbd_dev->owner_cid = *cid; /* struct */
2829 }
2830 
2831 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
2832 {
2833 	mutex_lock(&rbd_dev->watch_mutex);
2834 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
2835 	mutex_unlock(&rbd_dev->watch_mutex);
2836 }
2837 
2838 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
2839 {
2840 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2841 
2842 	strcpy(rbd_dev->lock_cookie, cookie);
2843 	rbd_set_owner_cid(rbd_dev, &cid);
2844 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
2845 }
2846 
2847 /*
2848  * lock_rwsem must be held for write
2849  */
2850 static int rbd_lock(struct rbd_device *rbd_dev)
2851 {
2852 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2853 	char cookie[32];
2854 	int ret;
2855 
2856 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
2857 		rbd_dev->lock_cookie[0] != '\0');
2858 
2859 	format_lock_cookie(rbd_dev, cookie);
2860 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2861 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
2862 			    RBD_LOCK_TAG, "", 0);
2863 	if (ret)
2864 		return ret;
2865 
2866 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
2867 	__rbd_lock(rbd_dev, cookie);
2868 	return 0;
2869 }
2870 
2871 /*
2872  * lock_rwsem must be held for write
2873  */
2874 static void rbd_unlock(struct rbd_device *rbd_dev)
2875 {
2876 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2877 	int ret;
2878 
2879 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
2880 		rbd_dev->lock_cookie[0] == '\0');
2881 
2882 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
2883 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
2884 	if (ret && ret != -ENOENT)
2885 		rbd_warn(rbd_dev, "failed to unlock: %d", ret);
2886 
2887 	/* treat errors as the image is unlocked */
2888 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
2889 	rbd_dev->lock_cookie[0] = '\0';
2890 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
2891 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
2892 }
2893 
2894 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
2895 				enum rbd_notify_op notify_op,
2896 				struct page ***preply_pages,
2897 				size_t *preply_len)
2898 {
2899 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2900 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
2901 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
2902 	int buf_size = sizeof(buf);
2903 	void *p = buf;
2904 
2905 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
2906 
2907 	/* encode *LockPayload NotifyMessage (op + ClientId) */
2908 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
2909 	ceph_encode_32(&p, notify_op);
2910 	ceph_encode_64(&p, cid.gid);
2911 	ceph_encode_64(&p, cid.handle);
2912 
2913 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
2914 				&rbd_dev->header_oloc, buf, buf_size,
2915 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
2916 }
2917 
2918 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
2919 			       enum rbd_notify_op notify_op)
2920 {
2921 	struct page **reply_pages;
2922 	size_t reply_len;
2923 
2924 	__rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
2925 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
2926 }
2927 
2928 static void rbd_notify_acquired_lock(struct work_struct *work)
2929 {
2930 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2931 						  acquired_lock_work);
2932 
2933 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
2934 }
2935 
2936 static void rbd_notify_released_lock(struct work_struct *work)
2937 {
2938 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
2939 						  released_lock_work);
2940 
2941 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
2942 }
2943 
2944 static int rbd_request_lock(struct rbd_device *rbd_dev)
2945 {
2946 	struct page **reply_pages;
2947 	size_t reply_len;
2948 	bool lock_owner_responded = false;
2949 	int ret;
2950 
2951 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
2952 
2953 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
2954 				   &reply_pages, &reply_len);
2955 	if (ret && ret != -ETIMEDOUT) {
2956 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
2957 		goto out;
2958 	}
2959 
2960 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
2961 		void *p = page_address(reply_pages[0]);
2962 		void *const end = p + reply_len;
2963 		u32 n;
2964 
2965 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
2966 		while (n--) {
2967 			u8 struct_v;
2968 			u32 len;
2969 
2970 			ceph_decode_need(&p, end, 8 + 8, e_inval);
2971 			p += 8 + 8; /* skip gid and cookie */
2972 
2973 			ceph_decode_32_safe(&p, end, len, e_inval);
2974 			if (!len)
2975 				continue;
2976 
2977 			if (lock_owner_responded) {
2978 				rbd_warn(rbd_dev,
2979 					 "duplicate lock owners detected");
2980 				ret = -EIO;
2981 				goto out;
2982 			}
2983 
2984 			lock_owner_responded = true;
2985 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
2986 						  &struct_v, &len);
2987 			if (ret) {
2988 				rbd_warn(rbd_dev,
2989 					 "failed to decode ResponseMessage: %d",
2990 					 ret);
2991 				goto e_inval;
2992 			}
2993 
2994 			ret = ceph_decode_32(&p);
2995 		}
2996 	}
2997 
2998 	if (!lock_owner_responded) {
2999 		rbd_warn(rbd_dev, "no lock owners detected");
3000 		ret = -ETIMEDOUT;
3001 	}
3002 
3003 out:
3004 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3005 	return ret;
3006 
3007 e_inval:
3008 	ret = -EINVAL;
3009 	goto out;
3010 }
3011 
3012 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3013 {
3014 	dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3015 
3016 	cancel_delayed_work(&rbd_dev->lock_dwork);
3017 	if (wake_all)
3018 		wake_up_all(&rbd_dev->lock_waitq);
3019 	else
3020 		wake_up(&rbd_dev->lock_waitq);
3021 }
3022 
3023 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3024 			       struct ceph_locker **lockers, u32 *num_lockers)
3025 {
3026 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3027 	u8 lock_type;
3028 	char *lock_tag;
3029 	int ret;
3030 
3031 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3032 
3033 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3034 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3035 				 &lock_type, &lock_tag, lockers, num_lockers);
3036 	if (ret)
3037 		return ret;
3038 
3039 	if (*num_lockers == 0) {
3040 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3041 		goto out;
3042 	}
3043 
3044 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3045 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3046 			 lock_tag);
3047 		ret = -EBUSY;
3048 		goto out;
3049 	}
3050 
3051 	if (lock_type == CEPH_CLS_LOCK_SHARED) {
3052 		rbd_warn(rbd_dev, "shared lock type detected");
3053 		ret = -EBUSY;
3054 		goto out;
3055 	}
3056 
3057 	if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3058 		    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3059 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3060 			 (*lockers)[0].id.cookie);
3061 		ret = -EBUSY;
3062 		goto out;
3063 	}
3064 
3065 out:
3066 	kfree(lock_tag);
3067 	return ret;
3068 }
3069 
3070 static int find_watcher(struct rbd_device *rbd_dev,
3071 			const struct ceph_locker *locker)
3072 {
3073 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3074 	struct ceph_watch_item *watchers;
3075 	u32 num_watchers;
3076 	u64 cookie;
3077 	int i;
3078 	int ret;
3079 
3080 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3081 				      &rbd_dev->header_oloc, &watchers,
3082 				      &num_watchers);
3083 	if (ret)
3084 		return ret;
3085 
3086 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3087 	for (i = 0; i < num_watchers; i++) {
3088 		if (!memcmp(&watchers[i].addr, &locker->info.addr,
3089 			    sizeof(locker->info.addr)) &&
3090 		    watchers[i].cookie == cookie) {
3091 			struct rbd_client_id cid = {
3092 				.gid = le64_to_cpu(watchers[i].name.num),
3093 				.handle = cookie,
3094 			};
3095 
3096 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3097 			     rbd_dev, cid.gid, cid.handle);
3098 			rbd_set_owner_cid(rbd_dev, &cid);
3099 			ret = 1;
3100 			goto out;
3101 		}
3102 	}
3103 
3104 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3105 	ret = 0;
3106 out:
3107 	kfree(watchers);
3108 	return ret;
3109 }
3110 
3111 /*
3112  * lock_rwsem must be held for write
3113  */
3114 static int rbd_try_lock(struct rbd_device *rbd_dev)
3115 {
3116 	struct ceph_client *client = rbd_dev->rbd_client->client;
3117 	struct ceph_locker *lockers;
3118 	u32 num_lockers;
3119 	int ret;
3120 
3121 	for (;;) {
3122 		ret = rbd_lock(rbd_dev);
3123 		if (ret != -EBUSY)
3124 			return ret;
3125 
3126 		/* determine if the current lock holder is still alive */
3127 		ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3128 		if (ret)
3129 			return ret;
3130 
3131 		if (num_lockers == 0)
3132 			goto again;
3133 
3134 		ret = find_watcher(rbd_dev, lockers);
3135 		if (ret) {
3136 			if (ret > 0)
3137 				ret = 0; /* have to request lock */
3138 			goto out;
3139 		}
3140 
3141 		rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3142 			 ENTITY_NAME(lockers[0].id.name));
3143 
3144 		ret = ceph_monc_blacklist_add(&client->monc,
3145 					      &lockers[0].info.addr);
3146 		if (ret) {
3147 			rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3148 				 ENTITY_NAME(lockers[0].id.name), ret);
3149 			goto out;
3150 		}
3151 
3152 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3153 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3154 					  lockers[0].id.cookie,
3155 					  &lockers[0].id.name);
3156 		if (ret && ret != -ENOENT)
3157 			goto out;
3158 
3159 again:
3160 		ceph_free_lockers(lockers, num_lockers);
3161 	}
3162 
3163 out:
3164 	ceph_free_lockers(lockers, num_lockers);
3165 	return ret;
3166 }
3167 
3168 /*
3169  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3170  */
3171 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3172 						int *pret)
3173 {
3174 	enum rbd_lock_state lock_state;
3175 
3176 	down_read(&rbd_dev->lock_rwsem);
3177 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3178 	     rbd_dev->lock_state);
3179 	if (__rbd_is_lock_owner(rbd_dev)) {
3180 		lock_state = rbd_dev->lock_state;
3181 		up_read(&rbd_dev->lock_rwsem);
3182 		return lock_state;
3183 	}
3184 
3185 	up_read(&rbd_dev->lock_rwsem);
3186 	down_write(&rbd_dev->lock_rwsem);
3187 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3188 	     rbd_dev->lock_state);
3189 	if (!__rbd_is_lock_owner(rbd_dev)) {
3190 		*pret = rbd_try_lock(rbd_dev);
3191 		if (*pret)
3192 			rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3193 	}
3194 
3195 	lock_state = rbd_dev->lock_state;
3196 	up_write(&rbd_dev->lock_rwsem);
3197 	return lock_state;
3198 }
3199 
3200 static void rbd_acquire_lock(struct work_struct *work)
3201 {
3202 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3203 					    struct rbd_device, lock_dwork);
3204 	enum rbd_lock_state lock_state;
3205 	int ret = 0;
3206 
3207 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3208 again:
3209 	lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3210 	if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3211 		if (lock_state == RBD_LOCK_STATE_LOCKED)
3212 			wake_requests(rbd_dev, true);
3213 		dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3214 		     rbd_dev, lock_state, ret);
3215 		return;
3216 	}
3217 
3218 	ret = rbd_request_lock(rbd_dev);
3219 	if (ret == -ETIMEDOUT) {
3220 		goto again; /* treat this as a dead client */
3221 	} else if (ret == -EROFS) {
3222 		rbd_warn(rbd_dev, "peer will not release lock");
3223 		/*
3224 		 * If this is rbd_add_acquire_lock(), we want to fail
3225 		 * immediately -- reuse BLACKLISTED flag.  Otherwise we
3226 		 * want to block.
3227 		 */
3228 		if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3229 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3230 			/* wake "rbd map --exclusive" process */
3231 			wake_requests(rbd_dev, false);
3232 		}
3233 	} else if (ret < 0) {
3234 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3235 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3236 				 RBD_RETRY_DELAY);
3237 	} else {
3238 		/*
3239 		 * lock owner acked, but resend if we don't see them
3240 		 * release the lock
3241 		 */
3242 		dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3243 		     rbd_dev);
3244 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3245 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3246 	}
3247 }
3248 
3249 /*
3250  * lock_rwsem must be held for write
3251  */
3252 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3253 {
3254 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3255 	     rbd_dev->lock_state);
3256 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3257 		return false;
3258 
3259 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3260 	downgrade_write(&rbd_dev->lock_rwsem);
3261 	/*
3262 	 * Ensure that all in-flight IO is flushed.
3263 	 *
3264 	 * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3265 	 * may be shared with other devices.
3266 	 */
3267 	ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3268 	up_read(&rbd_dev->lock_rwsem);
3269 
3270 	down_write(&rbd_dev->lock_rwsem);
3271 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3272 	     rbd_dev->lock_state);
3273 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3274 		return false;
3275 
3276 	rbd_unlock(rbd_dev);
3277 	/*
3278 	 * Give others a chance to grab the lock - we would re-acquire
3279 	 * almost immediately if we got new IO during ceph_osdc_sync()
3280 	 * otherwise.  We need to ack our own notifications, so this
3281 	 * lock_dwork will be requeued from rbd_wait_state_locked()
3282 	 * after wake_requests() in rbd_handle_released_lock().
3283 	 */
3284 	cancel_delayed_work(&rbd_dev->lock_dwork);
3285 	return true;
3286 }
3287 
3288 static void rbd_release_lock_work(struct work_struct *work)
3289 {
3290 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3291 						  unlock_work);
3292 
3293 	down_write(&rbd_dev->lock_rwsem);
3294 	rbd_release_lock(rbd_dev);
3295 	up_write(&rbd_dev->lock_rwsem);
3296 }
3297 
3298 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3299 				     void **p)
3300 {
3301 	struct rbd_client_id cid = { 0 };
3302 
3303 	if (struct_v >= 2) {
3304 		cid.gid = ceph_decode_64(p);
3305 		cid.handle = ceph_decode_64(p);
3306 	}
3307 
3308 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3309 	     cid.handle);
3310 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3311 		down_write(&rbd_dev->lock_rwsem);
3312 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3313 			/*
3314 			 * we already know that the remote client is
3315 			 * the owner
3316 			 */
3317 			up_write(&rbd_dev->lock_rwsem);
3318 			return;
3319 		}
3320 
3321 		rbd_set_owner_cid(rbd_dev, &cid);
3322 		downgrade_write(&rbd_dev->lock_rwsem);
3323 	} else {
3324 		down_read(&rbd_dev->lock_rwsem);
3325 	}
3326 
3327 	if (!__rbd_is_lock_owner(rbd_dev))
3328 		wake_requests(rbd_dev, false);
3329 	up_read(&rbd_dev->lock_rwsem);
3330 }
3331 
3332 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3333 				     void **p)
3334 {
3335 	struct rbd_client_id cid = { 0 };
3336 
3337 	if (struct_v >= 2) {
3338 		cid.gid = ceph_decode_64(p);
3339 		cid.handle = ceph_decode_64(p);
3340 	}
3341 
3342 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3343 	     cid.handle);
3344 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3345 		down_write(&rbd_dev->lock_rwsem);
3346 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3347 			dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3348 			     __func__, rbd_dev, cid.gid, cid.handle,
3349 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3350 			up_write(&rbd_dev->lock_rwsem);
3351 			return;
3352 		}
3353 
3354 		rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3355 		downgrade_write(&rbd_dev->lock_rwsem);
3356 	} else {
3357 		down_read(&rbd_dev->lock_rwsem);
3358 	}
3359 
3360 	if (!__rbd_is_lock_owner(rbd_dev))
3361 		wake_requests(rbd_dev, false);
3362 	up_read(&rbd_dev->lock_rwsem);
3363 }
3364 
3365 /*
3366  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3367  * ResponseMessage is needed.
3368  */
3369 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3370 				   void **p)
3371 {
3372 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3373 	struct rbd_client_id cid = { 0 };
3374 	int result = 1;
3375 
3376 	if (struct_v >= 2) {
3377 		cid.gid = ceph_decode_64(p);
3378 		cid.handle = ceph_decode_64(p);
3379 	}
3380 
3381 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3382 	     cid.handle);
3383 	if (rbd_cid_equal(&cid, &my_cid))
3384 		return result;
3385 
3386 	down_read(&rbd_dev->lock_rwsem);
3387 	if (__rbd_is_lock_owner(rbd_dev)) {
3388 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3389 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3390 			goto out_unlock;
3391 
3392 		/*
3393 		 * encode ResponseMessage(0) so the peer can detect
3394 		 * a missing owner
3395 		 */
3396 		result = 0;
3397 
3398 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3399 			if (!rbd_dev->opts->exclusive) {
3400 				dout("%s rbd_dev %p queueing unlock_work\n",
3401 				     __func__, rbd_dev);
3402 				queue_work(rbd_dev->task_wq,
3403 					   &rbd_dev->unlock_work);
3404 			} else {
3405 				/* refuse to release the lock */
3406 				result = -EROFS;
3407 			}
3408 		}
3409 	}
3410 
3411 out_unlock:
3412 	up_read(&rbd_dev->lock_rwsem);
3413 	return result;
3414 }
3415 
3416 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3417 				     u64 notify_id, u64 cookie, s32 *result)
3418 {
3419 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3420 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
3421 	int buf_size = sizeof(buf);
3422 	int ret;
3423 
3424 	if (result) {
3425 		void *p = buf;
3426 
3427 		/* encode ResponseMessage */
3428 		ceph_start_encoding(&p, 1, 1,
3429 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
3430 		ceph_encode_32(&p, *result);
3431 	} else {
3432 		buf_size = 0;
3433 	}
3434 
3435 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3436 				   &rbd_dev->header_oloc, notify_id, cookie,
3437 				   buf, buf_size);
3438 	if (ret)
3439 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3440 }
3441 
3442 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3443 				   u64 cookie)
3444 {
3445 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3446 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3447 }
3448 
3449 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3450 					  u64 notify_id, u64 cookie, s32 result)
3451 {
3452 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3453 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3454 }
3455 
3456 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3457 			 u64 notifier_id, void *data, size_t data_len)
3458 {
3459 	struct rbd_device *rbd_dev = arg;
3460 	void *p = data;
3461 	void *const end = p + data_len;
3462 	u8 struct_v = 0;
3463 	u32 len;
3464 	u32 notify_op;
3465 	int ret;
3466 
3467 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3468 	     __func__, rbd_dev, cookie, notify_id, data_len);
3469 	if (data_len) {
3470 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3471 					  &struct_v, &len);
3472 		if (ret) {
3473 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3474 				 ret);
3475 			return;
3476 		}
3477 
3478 		notify_op = ceph_decode_32(&p);
3479 	} else {
3480 		/* legacy notification for header updates */
3481 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3482 		len = 0;
3483 	}
3484 
3485 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3486 	switch (notify_op) {
3487 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3488 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3489 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3490 		break;
3491 	case RBD_NOTIFY_OP_RELEASED_LOCK:
3492 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
3493 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3494 		break;
3495 	case RBD_NOTIFY_OP_REQUEST_LOCK:
3496 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3497 		if (ret <= 0)
3498 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3499 						      cookie, ret);
3500 		else
3501 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3502 		break;
3503 	case RBD_NOTIFY_OP_HEADER_UPDATE:
3504 		ret = rbd_dev_refresh(rbd_dev);
3505 		if (ret)
3506 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
3507 
3508 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3509 		break;
3510 	default:
3511 		if (rbd_is_lock_owner(rbd_dev))
3512 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
3513 						      cookie, -EOPNOTSUPP);
3514 		else
3515 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3516 		break;
3517 	}
3518 }
3519 
3520 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3521 
3522 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3523 {
3524 	struct rbd_device *rbd_dev = arg;
3525 
3526 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
3527 
3528 	down_write(&rbd_dev->lock_rwsem);
3529 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3530 	up_write(&rbd_dev->lock_rwsem);
3531 
3532 	mutex_lock(&rbd_dev->watch_mutex);
3533 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3534 		__rbd_unregister_watch(rbd_dev);
3535 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3536 
3537 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3538 	}
3539 	mutex_unlock(&rbd_dev->watch_mutex);
3540 }
3541 
3542 /*
3543  * watch_mutex must be locked
3544  */
3545 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3546 {
3547 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3548 	struct ceph_osd_linger_request *handle;
3549 
3550 	rbd_assert(!rbd_dev->watch_handle);
3551 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3552 
3553 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3554 				 &rbd_dev->header_oloc, rbd_watch_cb,
3555 				 rbd_watch_errcb, rbd_dev);
3556 	if (IS_ERR(handle))
3557 		return PTR_ERR(handle);
3558 
3559 	rbd_dev->watch_handle = handle;
3560 	return 0;
3561 }
3562 
3563 /*
3564  * watch_mutex must be locked
3565  */
3566 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3567 {
3568 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3569 	int ret;
3570 
3571 	rbd_assert(rbd_dev->watch_handle);
3572 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3573 
3574 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3575 	if (ret)
3576 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3577 
3578 	rbd_dev->watch_handle = NULL;
3579 }
3580 
3581 static int rbd_register_watch(struct rbd_device *rbd_dev)
3582 {
3583 	int ret;
3584 
3585 	mutex_lock(&rbd_dev->watch_mutex);
3586 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3587 	ret = __rbd_register_watch(rbd_dev);
3588 	if (ret)
3589 		goto out;
3590 
3591 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3592 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3593 
3594 out:
3595 	mutex_unlock(&rbd_dev->watch_mutex);
3596 	return ret;
3597 }
3598 
3599 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3600 {
3601 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3602 
3603 	cancel_work_sync(&rbd_dev->acquired_lock_work);
3604 	cancel_work_sync(&rbd_dev->released_lock_work);
3605 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3606 	cancel_work_sync(&rbd_dev->unlock_work);
3607 }
3608 
3609 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3610 {
3611 	WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3612 	cancel_tasks_sync(rbd_dev);
3613 
3614 	mutex_lock(&rbd_dev->watch_mutex);
3615 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3616 		__rbd_unregister_watch(rbd_dev);
3617 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3618 	mutex_unlock(&rbd_dev->watch_mutex);
3619 
3620 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3621 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3622 }
3623 
3624 /*
3625  * lock_rwsem must be held for write
3626  */
3627 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3628 {
3629 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3630 	char cookie[32];
3631 	int ret;
3632 
3633 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3634 
3635 	format_lock_cookie(rbd_dev, cookie);
3636 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3637 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3638 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3639 				  RBD_LOCK_TAG, cookie);
3640 	if (ret) {
3641 		if (ret != -EOPNOTSUPP)
3642 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3643 				 ret);
3644 
3645 		/*
3646 		 * Lock cookie cannot be updated on older OSDs, so do
3647 		 * a manual release and queue an acquire.
3648 		 */
3649 		if (rbd_release_lock(rbd_dev))
3650 			queue_delayed_work(rbd_dev->task_wq,
3651 					   &rbd_dev->lock_dwork, 0);
3652 	} else {
3653 		__rbd_lock(rbd_dev, cookie);
3654 	}
3655 }
3656 
3657 static void rbd_reregister_watch(struct work_struct *work)
3658 {
3659 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3660 					    struct rbd_device, watch_dwork);
3661 	int ret;
3662 
3663 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3664 
3665 	mutex_lock(&rbd_dev->watch_mutex);
3666 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3667 		mutex_unlock(&rbd_dev->watch_mutex);
3668 		return;
3669 	}
3670 
3671 	ret = __rbd_register_watch(rbd_dev);
3672 	if (ret) {
3673 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3674 		if (ret == -EBLACKLISTED || ret == -ENOENT) {
3675 			set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3676 			wake_requests(rbd_dev, true);
3677 		} else {
3678 			queue_delayed_work(rbd_dev->task_wq,
3679 					   &rbd_dev->watch_dwork,
3680 					   RBD_RETRY_DELAY);
3681 		}
3682 		mutex_unlock(&rbd_dev->watch_mutex);
3683 		return;
3684 	}
3685 
3686 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3687 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3688 	mutex_unlock(&rbd_dev->watch_mutex);
3689 
3690 	down_write(&rbd_dev->lock_rwsem);
3691 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3692 		rbd_reacquire_lock(rbd_dev);
3693 	up_write(&rbd_dev->lock_rwsem);
3694 
3695 	ret = rbd_dev_refresh(rbd_dev);
3696 	if (ret)
3697 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
3698 }
3699 
3700 /*
3701  * Synchronous osd object method call.  Returns the number of bytes
3702  * returned in the outbound buffer, or a negative error code.
3703  */
3704 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3705 			     struct ceph_object_id *oid,
3706 			     struct ceph_object_locator *oloc,
3707 			     const char *method_name,
3708 			     const void *outbound,
3709 			     size_t outbound_size,
3710 			     void *inbound,
3711 			     size_t inbound_size)
3712 {
3713 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3714 	struct page *req_page = NULL;
3715 	struct page *reply_page;
3716 	int ret;
3717 
3718 	/*
3719 	 * Method calls are ultimately read operations.  The result
3720 	 * should placed into the inbound buffer provided.  They
3721 	 * also supply outbound data--parameters for the object
3722 	 * method.  Currently if this is present it will be a
3723 	 * snapshot id.
3724 	 */
3725 	if (outbound) {
3726 		if (outbound_size > PAGE_SIZE)
3727 			return -E2BIG;
3728 
3729 		req_page = alloc_page(GFP_KERNEL);
3730 		if (!req_page)
3731 			return -ENOMEM;
3732 
3733 		memcpy(page_address(req_page), outbound, outbound_size);
3734 	}
3735 
3736 	reply_page = alloc_page(GFP_KERNEL);
3737 	if (!reply_page) {
3738 		if (req_page)
3739 			__free_page(req_page);
3740 		return -ENOMEM;
3741 	}
3742 
3743 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3744 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
3745 			     reply_page, &inbound_size);
3746 	if (!ret) {
3747 		memcpy(inbound, page_address(reply_page), inbound_size);
3748 		ret = inbound_size;
3749 	}
3750 
3751 	if (req_page)
3752 		__free_page(req_page);
3753 	__free_page(reply_page);
3754 	return ret;
3755 }
3756 
3757 /*
3758  * lock_rwsem must be held for read
3759  */
3760 static int rbd_wait_state_locked(struct rbd_device *rbd_dev, bool may_acquire)
3761 {
3762 	DEFINE_WAIT(wait);
3763 	unsigned long timeout;
3764 	int ret = 0;
3765 
3766 	if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
3767 		return -EBLACKLISTED;
3768 
3769 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3770 		return 0;
3771 
3772 	if (!may_acquire) {
3773 		rbd_warn(rbd_dev, "exclusive lock required");
3774 		return -EROFS;
3775 	}
3776 
3777 	do {
3778 		/*
3779 		 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3780 		 * and cancel_delayed_work() in wake_requests().
3781 		 */
3782 		dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3783 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3784 		prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
3785 					  TASK_UNINTERRUPTIBLE);
3786 		up_read(&rbd_dev->lock_rwsem);
3787 		timeout = schedule_timeout(ceph_timeout_jiffies(
3788 						rbd_dev->opts->lock_timeout));
3789 		down_read(&rbd_dev->lock_rwsem);
3790 		if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
3791 			ret = -EBLACKLISTED;
3792 			break;
3793 		}
3794 		if (!timeout) {
3795 			rbd_warn(rbd_dev, "timed out waiting for lock");
3796 			ret = -ETIMEDOUT;
3797 			break;
3798 		}
3799 	} while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3800 
3801 	finish_wait(&rbd_dev->lock_waitq, &wait);
3802 	return ret;
3803 }
3804 
3805 static void rbd_queue_workfn(struct work_struct *work)
3806 {
3807 	struct request *rq = blk_mq_rq_from_pdu(work);
3808 	struct rbd_device *rbd_dev = rq->q->queuedata;
3809 	struct rbd_img_request *img_request;
3810 	struct ceph_snap_context *snapc = NULL;
3811 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3812 	u64 length = blk_rq_bytes(rq);
3813 	enum obj_operation_type op_type;
3814 	u64 mapping_size;
3815 	bool must_be_locked;
3816 	int result;
3817 
3818 	switch (req_op(rq)) {
3819 	case REQ_OP_DISCARD:
3820 		op_type = OBJ_OP_DISCARD;
3821 		break;
3822 	case REQ_OP_WRITE_ZEROES:
3823 		op_type = OBJ_OP_ZEROOUT;
3824 		break;
3825 	case REQ_OP_WRITE:
3826 		op_type = OBJ_OP_WRITE;
3827 		break;
3828 	case REQ_OP_READ:
3829 		op_type = OBJ_OP_READ;
3830 		break;
3831 	default:
3832 		dout("%s: non-fs request type %d\n", __func__, req_op(rq));
3833 		result = -EIO;
3834 		goto err;
3835 	}
3836 
3837 	/* Ignore/skip any zero-length requests */
3838 
3839 	if (!length) {
3840 		dout("%s: zero-length request\n", __func__);
3841 		result = 0;
3842 		goto err_rq;
3843 	}
3844 
3845 	rbd_assert(op_type == OBJ_OP_READ ||
3846 		   rbd_dev->spec->snap_id == CEPH_NOSNAP);
3847 
3848 	/*
3849 	 * Quit early if the mapped snapshot no longer exists.  It's
3850 	 * still possible the snapshot will have disappeared by the
3851 	 * time our request arrives at the osd, but there's no sense in
3852 	 * sending it if we already know.
3853 	 */
3854 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3855 		dout("request for non-existent snapshot");
3856 		rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3857 		result = -ENXIO;
3858 		goto err_rq;
3859 	}
3860 
3861 	if (offset && length > U64_MAX - offset + 1) {
3862 		rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3863 			 length);
3864 		result = -EINVAL;
3865 		goto err_rq;	/* Shouldn't happen */
3866 	}
3867 
3868 	blk_mq_start_request(rq);
3869 
3870 	down_read(&rbd_dev->header_rwsem);
3871 	mapping_size = rbd_dev->mapping.size;
3872 	if (op_type != OBJ_OP_READ) {
3873 		snapc = rbd_dev->header.snapc;
3874 		ceph_get_snap_context(snapc);
3875 	}
3876 	up_read(&rbd_dev->header_rwsem);
3877 
3878 	if (offset + length > mapping_size) {
3879 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3880 			 length, mapping_size);
3881 		result = -EIO;
3882 		goto err_rq;
3883 	}
3884 
3885 	must_be_locked =
3886 	    (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
3887 	    (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
3888 	if (must_be_locked) {
3889 		down_read(&rbd_dev->lock_rwsem);
3890 		result = rbd_wait_state_locked(rbd_dev,
3891 					       !rbd_dev->opts->exclusive);
3892 		if (result)
3893 			goto err_unlock;
3894 	}
3895 
3896 	img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
3897 	if (!img_request) {
3898 		result = -ENOMEM;
3899 		goto err_unlock;
3900 	}
3901 	img_request->rq = rq;
3902 	snapc = NULL; /* img_request consumes a ref */
3903 
3904 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
3905 		result = rbd_img_fill_nodata(img_request, offset, length);
3906 	else
3907 		result = rbd_img_fill_from_bio(img_request, offset, length,
3908 					       rq->bio);
3909 	if (result || !img_request->pending_count)
3910 		goto err_img_request;
3911 
3912 	rbd_img_request_submit(img_request);
3913 	if (must_be_locked)
3914 		up_read(&rbd_dev->lock_rwsem);
3915 	return;
3916 
3917 err_img_request:
3918 	rbd_img_request_put(img_request);
3919 err_unlock:
3920 	if (must_be_locked)
3921 		up_read(&rbd_dev->lock_rwsem);
3922 err_rq:
3923 	if (result)
3924 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3925 			 obj_op_name(op_type), length, offset, result);
3926 	ceph_put_snap_context(snapc);
3927 err:
3928 	blk_mq_end_request(rq, errno_to_blk_status(result));
3929 }
3930 
3931 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3932 		const struct blk_mq_queue_data *bd)
3933 {
3934 	struct request *rq = bd->rq;
3935 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
3936 
3937 	queue_work(rbd_wq, work);
3938 	return BLK_STS_OK;
3939 }
3940 
3941 static void rbd_free_disk(struct rbd_device *rbd_dev)
3942 {
3943 	blk_cleanup_queue(rbd_dev->disk->queue);
3944 	blk_mq_free_tag_set(&rbd_dev->tag_set);
3945 	put_disk(rbd_dev->disk);
3946 	rbd_dev->disk = NULL;
3947 }
3948 
3949 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3950 			     struct ceph_object_id *oid,
3951 			     struct ceph_object_locator *oloc,
3952 			     void *buf, int buf_len)
3953 
3954 {
3955 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3956 	struct ceph_osd_request *req;
3957 	struct page **pages;
3958 	int num_pages = calc_pages_for(0, buf_len);
3959 	int ret;
3960 
3961 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
3962 	if (!req)
3963 		return -ENOMEM;
3964 
3965 	ceph_oid_copy(&req->r_base_oid, oid);
3966 	ceph_oloc_copy(&req->r_base_oloc, oloc);
3967 	req->r_flags = CEPH_OSD_FLAG_READ;
3968 
3969 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
3970 	if (IS_ERR(pages)) {
3971 		ret = PTR_ERR(pages);
3972 		goto out_req;
3973 	}
3974 
3975 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
3976 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
3977 					 true);
3978 
3979 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
3980 	if (ret)
3981 		goto out_req;
3982 
3983 	ceph_osdc_start_request(osdc, req, false);
3984 	ret = ceph_osdc_wait_request(osdc, req);
3985 	if (ret >= 0)
3986 		ceph_copy_from_page_vector(pages, buf, 0, ret);
3987 
3988 out_req:
3989 	ceph_osdc_put_request(req);
3990 	return ret;
3991 }
3992 
3993 /*
3994  * Read the complete header for the given rbd device.  On successful
3995  * return, the rbd_dev->header field will contain up-to-date
3996  * information about the image.
3997  */
3998 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3999 {
4000 	struct rbd_image_header_ondisk *ondisk = NULL;
4001 	u32 snap_count = 0;
4002 	u64 names_size = 0;
4003 	u32 want_count;
4004 	int ret;
4005 
4006 	/*
4007 	 * The complete header will include an array of its 64-bit
4008 	 * snapshot ids, followed by the names of those snapshots as
4009 	 * a contiguous block of NUL-terminated strings.  Note that
4010 	 * the number of snapshots could change by the time we read
4011 	 * it in, in which case we re-read it.
4012 	 */
4013 	do {
4014 		size_t size;
4015 
4016 		kfree(ondisk);
4017 
4018 		size = sizeof (*ondisk);
4019 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4020 		size += names_size;
4021 		ondisk = kmalloc(size, GFP_KERNEL);
4022 		if (!ondisk)
4023 			return -ENOMEM;
4024 
4025 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4026 					&rbd_dev->header_oloc, ondisk, size);
4027 		if (ret < 0)
4028 			goto out;
4029 		if ((size_t)ret < size) {
4030 			ret = -ENXIO;
4031 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4032 				size, ret);
4033 			goto out;
4034 		}
4035 		if (!rbd_dev_ondisk_valid(ondisk)) {
4036 			ret = -ENXIO;
4037 			rbd_warn(rbd_dev, "invalid header");
4038 			goto out;
4039 		}
4040 
4041 		names_size = le64_to_cpu(ondisk->snap_names_len);
4042 		want_count = snap_count;
4043 		snap_count = le32_to_cpu(ondisk->snap_count);
4044 	} while (snap_count != want_count);
4045 
4046 	ret = rbd_header_from_disk(rbd_dev, ondisk);
4047 out:
4048 	kfree(ondisk);
4049 
4050 	return ret;
4051 }
4052 
4053 /*
4054  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4055  * has disappeared from the (just updated) snapshot context.
4056  */
4057 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4058 {
4059 	u64 snap_id;
4060 
4061 	if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4062 		return;
4063 
4064 	snap_id = rbd_dev->spec->snap_id;
4065 	if (snap_id == CEPH_NOSNAP)
4066 		return;
4067 
4068 	if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4069 		clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4070 }
4071 
4072 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4073 {
4074 	sector_t size;
4075 
4076 	/*
4077 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4078 	 * try to update its size.  If REMOVING is set, updating size
4079 	 * is just useless work since the device can't be opened.
4080 	 */
4081 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4082 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4083 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4084 		dout("setting size to %llu sectors", (unsigned long long)size);
4085 		set_capacity(rbd_dev->disk, size);
4086 		revalidate_disk(rbd_dev->disk);
4087 	}
4088 }
4089 
4090 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4091 {
4092 	u64 mapping_size;
4093 	int ret;
4094 
4095 	down_write(&rbd_dev->header_rwsem);
4096 	mapping_size = rbd_dev->mapping.size;
4097 
4098 	ret = rbd_dev_header_info(rbd_dev);
4099 	if (ret)
4100 		goto out;
4101 
4102 	/*
4103 	 * If there is a parent, see if it has disappeared due to the
4104 	 * mapped image getting flattened.
4105 	 */
4106 	if (rbd_dev->parent) {
4107 		ret = rbd_dev_v2_parent_info(rbd_dev);
4108 		if (ret)
4109 			goto out;
4110 	}
4111 
4112 	if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4113 		rbd_dev->mapping.size = rbd_dev->header.image_size;
4114 	} else {
4115 		/* validate mapped snapshot's EXISTS flag */
4116 		rbd_exists_validate(rbd_dev);
4117 	}
4118 
4119 out:
4120 	up_write(&rbd_dev->header_rwsem);
4121 	if (!ret && mapping_size != rbd_dev->mapping.size)
4122 		rbd_dev_update_size(rbd_dev);
4123 
4124 	return ret;
4125 }
4126 
4127 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
4128 		unsigned int hctx_idx, unsigned int numa_node)
4129 {
4130 	struct work_struct *work = blk_mq_rq_to_pdu(rq);
4131 
4132 	INIT_WORK(work, rbd_queue_workfn);
4133 	return 0;
4134 }
4135 
4136 static const struct blk_mq_ops rbd_mq_ops = {
4137 	.queue_rq	= rbd_queue_rq,
4138 	.init_request	= rbd_init_request,
4139 };
4140 
4141 static int rbd_init_disk(struct rbd_device *rbd_dev)
4142 {
4143 	struct gendisk *disk;
4144 	struct request_queue *q;
4145 	unsigned int objset_bytes =
4146 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4147 	int err;
4148 
4149 	/* create gendisk info */
4150 	disk = alloc_disk(single_major ?
4151 			  (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4152 			  RBD_MINORS_PER_MAJOR);
4153 	if (!disk)
4154 		return -ENOMEM;
4155 
4156 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4157 		 rbd_dev->dev_id);
4158 	disk->major = rbd_dev->major;
4159 	disk->first_minor = rbd_dev->minor;
4160 	if (single_major)
4161 		disk->flags |= GENHD_FL_EXT_DEVT;
4162 	disk->fops = &rbd_bd_ops;
4163 	disk->private_data = rbd_dev;
4164 
4165 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4166 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4167 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4168 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4169 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4170 	rbd_dev->tag_set.nr_hw_queues = 1;
4171 	rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4172 
4173 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4174 	if (err)
4175 		goto out_disk;
4176 
4177 	q = blk_mq_init_queue(&rbd_dev->tag_set);
4178 	if (IS_ERR(q)) {
4179 		err = PTR_ERR(q);
4180 		goto out_tag_set;
4181 	}
4182 
4183 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4184 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4185 
4186 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4187 	q->limits.max_sectors = queue_max_hw_sectors(q);
4188 	blk_queue_max_segments(q, USHRT_MAX);
4189 	blk_queue_max_segment_size(q, UINT_MAX);
4190 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4191 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4192 
4193 	if (rbd_dev->opts->trim) {
4194 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
4195 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4196 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4197 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4198 	}
4199 
4200 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4201 		q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4202 
4203 	/*
4204 	 * disk_release() expects a queue ref from add_disk() and will
4205 	 * put it.  Hold an extra ref until add_disk() is called.
4206 	 */
4207 	WARN_ON(!blk_get_queue(q));
4208 	disk->queue = q;
4209 	q->queuedata = rbd_dev;
4210 
4211 	rbd_dev->disk = disk;
4212 
4213 	return 0;
4214 out_tag_set:
4215 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4216 out_disk:
4217 	put_disk(disk);
4218 	return err;
4219 }
4220 
4221 /*
4222   sysfs
4223 */
4224 
4225 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4226 {
4227 	return container_of(dev, struct rbd_device, dev);
4228 }
4229 
4230 static ssize_t rbd_size_show(struct device *dev,
4231 			     struct device_attribute *attr, char *buf)
4232 {
4233 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4234 
4235 	return sprintf(buf, "%llu\n",
4236 		(unsigned long long)rbd_dev->mapping.size);
4237 }
4238 
4239 /*
4240  * Note this shows the features for whatever's mapped, which is not
4241  * necessarily the base image.
4242  */
4243 static ssize_t rbd_features_show(struct device *dev,
4244 			     struct device_attribute *attr, char *buf)
4245 {
4246 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4247 
4248 	return sprintf(buf, "0x%016llx\n",
4249 			(unsigned long long)rbd_dev->mapping.features);
4250 }
4251 
4252 static ssize_t rbd_major_show(struct device *dev,
4253 			      struct device_attribute *attr, char *buf)
4254 {
4255 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4256 
4257 	if (rbd_dev->major)
4258 		return sprintf(buf, "%d\n", rbd_dev->major);
4259 
4260 	return sprintf(buf, "(none)\n");
4261 }
4262 
4263 static ssize_t rbd_minor_show(struct device *dev,
4264 			      struct device_attribute *attr, char *buf)
4265 {
4266 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4267 
4268 	return sprintf(buf, "%d\n", rbd_dev->minor);
4269 }
4270 
4271 static ssize_t rbd_client_addr_show(struct device *dev,
4272 				    struct device_attribute *attr, char *buf)
4273 {
4274 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4275 	struct ceph_entity_addr *client_addr =
4276 	    ceph_client_addr(rbd_dev->rbd_client->client);
4277 
4278 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4279 		       le32_to_cpu(client_addr->nonce));
4280 }
4281 
4282 static ssize_t rbd_client_id_show(struct device *dev,
4283 				  struct device_attribute *attr, char *buf)
4284 {
4285 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4286 
4287 	return sprintf(buf, "client%lld\n",
4288 		       ceph_client_gid(rbd_dev->rbd_client->client));
4289 }
4290 
4291 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4292 				     struct device_attribute *attr, char *buf)
4293 {
4294 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4295 
4296 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4297 }
4298 
4299 static ssize_t rbd_config_info_show(struct device *dev,
4300 				    struct device_attribute *attr, char *buf)
4301 {
4302 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4303 
4304 	return sprintf(buf, "%s\n", rbd_dev->config_info);
4305 }
4306 
4307 static ssize_t rbd_pool_show(struct device *dev,
4308 			     struct device_attribute *attr, char *buf)
4309 {
4310 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4311 
4312 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4313 }
4314 
4315 static ssize_t rbd_pool_id_show(struct device *dev,
4316 			     struct device_attribute *attr, char *buf)
4317 {
4318 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4319 
4320 	return sprintf(buf, "%llu\n",
4321 			(unsigned long long) rbd_dev->spec->pool_id);
4322 }
4323 
4324 static ssize_t rbd_pool_ns_show(struct device *dev,
4325 				struct device_attribute *attr, char *buf)
4326 {
4327 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4328 
4329 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
4330 }
4331 
4332 static ssize_t rbd_name_show(struct device *dev,
4333 			     struct device_attribute *attr, char *buf)
4334 {
4335 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4336 
4337 	if (rbd_dev->spec->image_name)
4338 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4339 
4340 	return sprintf(buf, "(unknown)\n");
4341 }
4342 
4343 static ssize_t rbd_image_id_show(struct device *dev,
4344 			     struct device_attribute *attr, char *buf)
4345 {
4346 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4347 
4348 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4349 }
4350 
4351 /*
4352  * Shows the name of the currently-mapped snapshot (or
4353  * RBD_SNAP_HEAD_NAME for the base image).
4354  */
4355 static ssize_t rbd_snap_show(struct device *dev,
4356 			     struct device_attribute *attr,
4357 			     char *buf)
4358 {
4359 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4360 
4361 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4362 }
4363 
4364 static ssize_t rbd_snap_id_show(struct device *dev,
4365 				struct device_attribute *attr, char *buf)
4366 {
4367 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4368 
4369 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4370 }
4371 
4372 /*
4373  * For a v2 image, shows the chain of parent images, separated by empty
4374  * lines.  For v1 images or if there is no parent, shows "(no parent
4375  * image)".
4376  */
4377 static ssize_t rbd_parent_show(struct device *dev,
4378 			       struct device_attribute *attr,
4379 			       char *buf)
4380 {
4381 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4382 	ssize_t count = 0;
4383 
4384 	if (!rbd_dev->parent)
4385 		return sprintf(buf, "(no parent image)\n");
4386 
4387 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4388 		struct rbd_spec *spec = rbd_dev->parent_spec;
4389 
4390 		count += sprintf(&buf[count], "%s"
4391 			    "pool_id %llu\npool_name %s\n"
4392 			    "pool_ns %s\n"
4393 			    "image_id %s\nimage_name %s\n"
4394 			    "snap_id %llu\nsnap_name %s\n"
4395 			    "overlap %llu\n",
4396 			    !count ? "" : "\n", /* first? */
4397 			    spec->pool_id, spec->pool_name,
4398 			    spec->pool_ns ?: "",
4399 			    spec->image_id, spec->image_name ?: "(unknown)",
4400 			    spec->snap_id, spec->snap_name,
4401 			    rbd_dev->parent_overlap);
4402 	}
4403 
4404 	return count;
4405 }
4406 
4407 static ssize_t rbd_image_refresh(struct device *dev,
4408 				 struct device_attribute *attr,
4409 				 const char *buf,
4410 				 size_t size)
4411 {
4412 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4413 	int ret;
4414 
4415 	ret = rbd_dev_refresh(rbd_dev);
4416 	if (ret)
4417 		return ret;
4418 
4419 	return size;
4420 }
4421 
4422 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
4423 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
4424 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
4425 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
4426 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
4427 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
4428 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
4429 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
4430 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
4431 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
4432 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
4433 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
4434 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
4435 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
4436 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
4437 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
4438 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
4439 
4440 static struct attribute *rbd_attrs[] = {
4441 	&dev_attr_size.attr,
4442 	&dev_attr_features.attr,
4443 	&dev_attr_major.attr,
4444 	&dev_attr_minor.attr,
4445 	&dev_attr_client_addr.attr,
4446 	&dev_attr_client_id.attr,
4447 	&dev_attr_cluster_fsid.attr,
4448 	&dev_attr_config_info.attr,
4449 	&dev_attr_pool.attr,
4450 	&dev_attr_pool_id.attr,
4451 	&dev_attr_pool_ns.attr,
4452 	&dev_attr_name.attr,
4453 	&dev_attr_image_id.attr,
4454 	&dev_attr_current_snap.attr,
4455 	&dev_attr_snap_id.attr,
4456 	&dev_attr_parent.attr,
4457 	&dev_attr_refresh.attr,
4458 	NULL
4459 };
4460 
4461 static struct attribute_group rbd_attr_group = {
4462 	.attrs = rbd_attrs,
4463 };
4464 
4465 static const struct attribute_group *rbd_attr_groups[] = {
4466 	&rbd_attr_group,
4467 	NULL
4468 };
4469 
4470 static void rbd_dev_release(struct device *dev);
4471 
4472 static const struct device_type rbd_device_type = {
4473 	.name		= "rbd",
4474 	.groups		= rbd_attr_groups,
4475 	.release	= rbd_dev_release,
4476 };
4477 
4478 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4479 {
4480 	kref_get(&spec->kref);
4481 
4482 	return spec;
4483 }
4484 
4485 static void rbd_spec_free(struct kref *kref);
4486 static void rbd_spec_put(struct rbd_spec *spec)
4487 {
4488 	if (spec)
4489 		kref_put(&spec->kref, rbd_spec_free);
4490 }
4491 
4492 static struct rbd_spec *rbd_spec_alloc(void)
4493 {
4494 	struct rbd_spec *spec;
4495 
4496 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4497 	if (!spec)
4498 		return NULL;
4499 
4500 	spec->pool_id = CEPH_NOPOOL;
4501 	spec->snap_id = CEPH_NOSNAP;
4502 	kref_init(&spec->kref);
4503 
4504 	return spec;
4505 }
4506 
4507 static void rbd_spec_free(struct kref *kref)
4508 {
4509 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4510 
4511 	kfree(spec->pool_name);
4512 	kfree(spec->pool_ns);
4513 	kfree(spec->image_id);
4514 	kfree(spec->image_name);
4515 	kfree(spec->snap_name);
4516 	kfree(spec);
4517 }
4518 
4519 static void rbd_dev_free(struct rbd_device *rbd_dev)
4520 {
4521 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4522 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4523 
4524 	ceph_oid_destroy(&rbd_dev->header_oid);
4525 	ceph_oloc_destroy(&rbd_dev->header_oloc);
4526 	kfree(rbd_dev->config_info);
4527 
4528 	rbd_put_client(rbd_dev->rbd_client);
4529 	rbd_spec_put(rbd_dev->spec);
4530 	kfree(rbd_dev->opts);
4531 	kfree(rbd_dev);
4532 }
4533 
4534 static void rbd_dev_release(struct device *dev)
4535 {
4536 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4537 	bool need_put = !!rbd_dev->opts;
4538 
4539 	if (need_put) {
4540 		destroy_workqueue(rbd_dev->task_wq);
4541 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4542 	}
4543 
4544 	rbd_dev_free(rbd_dev);
4545 
4546 	/*
4547 	 * This is racy, but way better than putting module outside of
4548 	 * the release callback.  The race window is pretty small, so
4549 	 * doing something similar to dm (dm-builtin.c) is overkill.
4550 	 */
4551 	if (need_put)
4552 		module_put(THIS_MODULE);
4553 }
4554 
4555 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4556 					   struct rbd_spec *spec)
4557 {
4558 	struct rbd_device *rbd_dev;
4559 
4560 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4561 	if (!rbd_dev)
4562 		return NULL;
4563 
4564 	spin_lock_init(&rbd_dev->lock);
4565 	INIT_LIST_HEAD(&rbd_dev->node);
4566 	init_rwsem(&rbd_dev->header_rwsem);
4567 
4568 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4569 	ceph_oid_init(&rbd_dev->header_oid);
4570 	rbd_dev->header_oloc.pool = spec->pool_id;
4571 	if (spec->pool_ns) {
4572 		WARN_ON(!*spec->pool_ns);
4573 		rbd_dev->header_oloc.pool_ns =
4574 		    ceph_find_or_create_string(spec->pool_ns,
4575 					       strlen(spec->pool_ns));
4576 	}
4577 
4578 	mutex_init(&rbd_dev->watch_mutex);
4579 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4580 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4581 
4582 	init_rwsem(&rbd_dev->lock_rwsem);
4583 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4584 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4585 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4586 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4587 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4588 	init_waitqueue_head(&rbd_dev->lock_waitq);
4589 
4590 	rbd_dev->dev.bus = &rbd_bus_type;
4591 	rbd_dev->dev.type = &rbd_device_type;
4592 	rbd_dev->dev.parent = &rbd_root_dev;
4593 	device_initialize(&rbd_dev->dev);
4594 
4595 	rbd_dev->rbd_client = rbdc;
4596 	rbd_dev->spec = spec;
4597 
4598 	return rbd_dev;
4599 }
4600 
4601 /*
4602  * Create a mapping rbd_dev.
4603  */
4604 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4605 					 struct rbd_spec *spec,
4606 					 struct rbd_options *opts)
4607 {
4608 	struct rbd_device *rbd_dev;
4609 
4610 	rbd_dev = __rbd_dev_create(rbdc, spec);
4611 	if (!rbd_dev)
4612 		return NULL;
4613 
4614 	rbd_dev->opts = opts;
4615 
4616 	/* get an id and fill in device name */
4617 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4618 					 minor_to_rbd_dev_id(1 << MINORBITS),
4619 					 GFP_KERNEL);
4620 	if (rbd_dev->dev_id < 0)
4621 		goto fail_rbd_dev;
4622 
4623 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4624 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4625 						   rbd_dev->name);
4626 	if (!rbd_dev->task_wq)
4627 		goto fail_dev_id;
4628 
4629 	/* we have a ref from do_rbd_add() */
4630 	__module_get(THIS_MODULE);
4631 
4632 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4633 	return rbd_dev;
4634 
4635 fail_dev_id:
4636 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4637 fail_rbd_dev:
4638 	rbd_dev_free(rbd_dev);
4639 	return NULL;
4640 }
4641 
4642 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4643 {
4644 	if (rbd_dev)
4645 		put_device(&rbd_dev->dev);
4646 }
4647 
4648 /*
4649  * Get the size and object order for an image snapshot, or if
4650  * snap_id is CEPH_NOSNAP, gets this information for the base
4651  * image.
4652  */
4653 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4654 				u8 *order, u64 *snap_size)
4655 {
4656 	__le64 snapid = cpu_to_le64(snap_id);
4657 	int ret;
4658 	struct {
4659 		u8 order;
4660 		__le64 size;
4661 	} __attribute__ ((packed)) size_buf = { 0 };
4662 
4663 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4664 				  &rbd_dev->header_oloc, "get_size",
4665 				  &snapid, sizeof(snapid),
4666 				  &size_buf, sizeof(size_buf));
4667 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4668 	if (ret < 0)
4669 		return ret;
4670 	if (ret < sizeof (size_buf))
4671 		return -ERANGE;
4672 
4673 	if (order) {
4674 		*order = size_buf.order;
4675 		dout("  order %u", (unsigned int)*order);
4676 	}
4677 	*snap_size = le64_to_cpu(size_buf.size);
4678 
4679 	dout("  snap_id 0x%016llx snap_size = %llu\n",
4680 		(unsigned long long)snap_id,
4681 		(unsigned long long)*snap_size);
4682 
4683 	return 0;
4684 }
4685 
4686 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4687 {
4688 	return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4689 					&rbd_dev->header.obj_order,
4690 					&rbd_dev->header.image_size);
4691 }
4692 
4693 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4694 {
4695 	void *reply_buf;
4696 	int ret;
4697 	void *p;
4698 
4699 	reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4700 	if (!reply_buf)
4701 		return -ENOMEM;
4702 
4703 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4704 				  &rbd_dev->header_oloc, "get_object_prefix",
4705 				  NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4706 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4707 	if (ret < 0)
4708 		goto out;
4709 
4710 	p = reply_buf;
4711 	rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4712 						p + ret, NULL, GFP_NOIO);
4713 	ret = 0;
4714 
4715 	if (IS_ERR(rbd_dev->header.object_prefix)) {
4716 		ret = PTR_ERR(rbd_dev->header.object_prefix);
4717 		rbd_dev->header.object_prefix = NULL;
4718 	} else {
4719 		dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4720 	}
4721 out:
4722 	kfree(reply_buf);
4723 
4724 	return ret;
4725 }
4726 
4727 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4728 		u64 *snap_features)
4729 {
4730 	__le64 snapid = cpu_to_le64(snap_id);
4731 	struct {
4732 		__le64 features;
4733 		__le64 incompat;
4734 	} __attribute__ ((packed)) features_buf = { 0 };
4735 	u64 unsup;
4736 	int ret;
4737 
4738 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4739 				  &rbd_dev->header_oloc, "get_features",
4740 				  &snapid, sizeof(snapid),
4741 				  &features_buf, sizeof(features_buf));
4742 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4743 	if (ret < 0)
4744 		return ret;
4745 	if (ret < sizeof (features_buf))
4746 		return -ERANGE;
4747 
4748 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4749 	if (unsup) {
4750 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4751 			 unsup);
4752 		return -ENXIO;
4753 	}
4754 
4755 	*snap_features = le64_to_cpu(features_buf.features);
4756 
4757 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4758 		(unsigned long long)snap_id,
4759 		(unsigned long long)*snap_features,
4760 		(unsigned long long)le64_to_cpu(features_buf.incompat));
4761 
4762 	return 0;
4763 }
4764 
4765 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4766 {
4767 	return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4768 						&rbd_dev->header.features);
4769 }
4770 
4771 struct parent_image_info {
4772 	u64		pool_id;
4773 	const char	*pool_ns;
4774 	const char	*image_id;
4775 	u64		snap_id;
4776 
4777 	bool		has_overlap;
4778 	u64		overlap;
4779 };
4780 
4781 /*
4782  * The caller is responsible for @pii.
4783  */
4784 static int decode_parent_image_spec(void **p, void *end,
4785 				    struct parent_image_info *pii)
4786 {
4787 	u8 struct_v;
4788 	u32 struct_len;
4789 	int ret;
4790 
4791 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
4792 				  &struct_v, &struct_len);
4793 	if (ret)
4794 		return ret;
4795 
4796 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
4797 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4798 	if (IS_ERR(pii->pool_ns)) {
4799 		ret = PTR_ERR(pii->pool_ns);
4800 		pii->pool_ns = NULL;
4801 		return ret;
4802 	}
4803 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
4804 	if (IS_ERR(pii->image_id)) {
4805 		ret = PTR_ERR(pii->image_id);
4806 		pii->image_id = NULL;
4807 		return ret;
4808 	}
4809 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
4810 	return 0;
4811 
4812 e_inval:
4813 	return -EINVAL;
4814 }
4815 
4816 static int __get_parent_info(struct rbd_device *rbd_dev,
4817 			     struct page *req_page,
4818 			     struct page *reply_page,
4819 			     struct parent_image_info *pii)
4820 {
4821 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4822 	size_t reply_len = PAGE_SIZE;
4823 	void *p, *end;
4824 	int ret;
4825 
4826 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4827 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
4828 			     req_page, sizeof(u64), reply_page, &reply_len);
4829 	if (ret)
4830 		return ret == -EOPNOTSUPP ? 1 : ret;
4831 
4832 	p = page_address(reply_page);
4833 	end = p + reply_len;
4834 	ret = decode_parent_image_spec(&p, end, pii);
4835 	if (ret)
4836 		return ret;
4837 
4838 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4839 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
4840 			     req_page, sizeof(u64), reply_page, &reply_len);
4841 	if (ret)
4842 		return ret;
4843 
4844 	p = page_address(reply_page);
4845 	end = p + reply_len;
4846 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
4847 	if (pii->has_overlap)
4848 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4849 
4850 	return 0;
4851 
4852 e_inval:
4853 	return -EINVAL;
4854 }
4855 
4856 /*
4857  * The caller is responsible for @pii.
4858  */
4859 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
4860 				    struct page *req_page,
4861 				    struct page *reply_page,
4862 				    struct parent_image_info *pii)
4863 {
4864 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4865 	size_t reply_len = PAGE_SIZE;
4866 	void *p, *end;
4867 	int ret;
4868 
4869 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
4870 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
4871 			     req_page, sizeof(u64), reply_page, &reply_len);
4872 	if (ret)
4873 		return ret;
4874 
4875 	p = page_address(reply_page);
4876 	end = p + reply_len;
4877 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
4878 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4879 	if (IS_ERR(pii->image_id)) {
4880 		ret = PTR_ERR(pii->image_id);
4881 		pii->image_id = NULL;
4882 		return ret;
4883 	}
4884 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
4885 	pii->has_overlap = true;
4886 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
4887 
4888 	return 0;
4889 
4890 e_inval:
4891 	return -EINVAL;
4892 }
4893 
4894 static int get_parent_info(struct rbd_device *rbd_dev,
4895 			   struct parent_image_info *pii)
4896 {
4897 	struct page *req_page, *reply_page;
4898 	void *p;
4899 	int ret;
4900 
4901 	req_page = alloc_page(GFP_KERNEL);
4902 	if (!req_page)
4903 		return -ENOMEM;
4904 
4905 	reply_page = alloc_page(GFP_KERNEL);
4906 	if (!reply_page) {
4907 		__free_page(req_page);
4908 		return -ENOMEM;
4909 	}
4910 
4911 	p = page_address(req_page);
4912 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
4913 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
4914 	if (ret > 0)
4915 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
4916 					       pii);
4917 
4918 	__free_page(req_page);
4919 	__free_page(reply_page);
4920 	return ret;
4921 }
4922 
4923 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4924 {
4925 	struct rbd_spec *parent_spec;
4926 	struct parent_image_info pii = { 0 };
4927 	int ret;
4928 
4929 	parent_spec = rbd_spec_alloc();
4930 	if (!parent_spec)
4931 		return -ENOMEM;
4932 
4933 	ret = get_parent_info(rbd_dev, &pii);
4934 	if (ret)
4935 		goto out_err;
4936 
4937 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
4938 	     __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
4939 	     pii.has_overlap, pii.overlap);
4940 
4941 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
4942 		/*
4943 		 * Either the parent never existed, or we have
4944 		 * record of it but the image got flattened so it no
4945 		 * longer has a parent.  When the parent of a
4946 		 * layered image disappears we immediately set the
4947 		 * overlap to 0.  The effect of this is that all new
4948 		 * requests will be treated as if the image had no
4949 		 * parent.
4950 		 *
4951 		 * If !pii.has_overlap, the parent image spec is not
4952 		 * applicable.  It's there to avoid duplication in each
4953 		 * snapshot record.
4954 		 */
4955 		if (rbd_dev->parent_overlap) {
4956 			rbd_dev->parent_overlap = 0;
4957 			rbd_dev_parent_put(rbd_dev);
4958 			pr_info("%s: clone image has been flattened\n",
4959 				rbd_dev->disk->disk_name);
4960 		}
4961 
4962 		goto out;	/* No parent?  No problem. */
4963 	}
4964 
4965 	/* The ceph file layout needs to fit pool id in 32 bits */
4966 
4967 	ret = -EIO;
4968 	if (pii.pool_id > (u64)U32_MAX) {
4969 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4970 			(unsigned long long)pii.pool_id, U32_MAX);
4971 		goto out_err;
4972 	}
4973 
4974 	/*
4975 	 * The parent won't change (except when the clone is
4976 	 * flattened, already handled that).  So we only need to
4977 	 * record the parent spec we have not already done so.
4978 	 */
4979 	if (!rbd_dev->parent_spec) {
4980 		parent_spec->pool_id = pii.pool_id;
4981 		if (pii.pool_ns && *pii.pool_ns) {
4982 			parent_spec->pool_ns = pii.pool_ns;
4983 			pii.pool_ns = NULL;
4984 		}
4985 		parent_spec->image_id = pii.image_id;
4986 		pii.image_id = NULL;
4987 		parent_spec->snap_id = pii.snap_id;
4988 
4989 		rbd_dev->parent_spec = parent_spec;
4990 		parent_spec = NULL;	/* rbd_dev now owns this */
4991 	}
4992 
4993 	/*
4994 	 * We always update the parent overlap.  If it's zero we issue
4995 	 * a warning, as we will proceed as if there was no parent.
4996 	 */
4997 	if (!pii.overlap) {
4998 		if (parent_spec) {
4999 			/* refresh, careful to warn just once */
5000 			if (rbd_dev->parent_overlap)
5001 				rbd_warn(rbd_dev,
5002 				    "clone now standalone (overlap became 0)");
5003 		} else {
5004 			/* initial probe */
5005 			rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5006 		}
5007 	}
5008 	rbd_dev->parent_overlap = pii.overlap;
5009 
5010 out:
5011 	ret = 0;
5012 out_err:
5013 	kfree(pii.pool_ns);
5014 	kfree(pii.image_id);
5015 	rbd_spec_put(parent_spec);
5016 	return ret;
5017 }
5018 
5019 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5020 {
5021 	struct {
5022 		__le64 stripe_unit;
5023 		__le64 stripe_count;
5024 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5025 	size_t size = sizeof (striping_info_buf);
5026 	void *p;
5027 	int ret;
5028 
5029 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5030 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5031 				NULL, 0, &striping_info_buf, size);
5032 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5033 	if (ret < 0)
5034 		return ret;
5035 	if (ret < size)
5036 		return -ERANGE;
5037 
5038 	p = &striping_info_buf;
5039 	rbd_dev->header.stripe_unit = ceph_decode_64(&p);
5040 	rbd_dev->header.stripe_count = ceph_decode_64(&p);
5041 	return 0;
5042 }
5043 
5044 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5045 {
5046 	__le64 data_pool_id;
5047 	int ret;
5048 
5049 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5050 				  &rbd_dev->header_oloc, "get_data_pool",
5051 				  NULL, 0, &data_pool_id, sizeof(data_pool_id));
5052 	if (ret < 0)
5053 		return ret;
5054 	if (ret < sizeof(data_pool_id))
5055 		return -EBADMSG;
5056 
5057 	rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5058 	WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5059 	return 0;
5060 }
5061 
5062 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5063 {
5064 	CEPH_DEFINE_OID_ONSTACK(oid);
5065 	size_t image_id_size;
5066 	char *image_id;
5067 	void *p;
5068 	void *end;
5069 	size_t size;
5070 	void *reply_buf = NULL;
5071 	size_t len = 0;
5072 	char *image_name = NULL;
5073 	int ret;
5074 
5075 	rbd_assert(!rbd_dev->spec->image_name);
5076 
5077 	len = strlen(rbd_dev->spec->image_id);
5078 	image_id_size = sizeof (__le32) + len;
5079 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5080 	if (!image_id)
5081 		return NULL;
5082 
5083 	p = image_id;
5084 	end = image_id + image_id_size;
5085 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5086 
5087 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5088 	reply_buf = kmalloc(size, GFP_KERNEL);
5089 	if (!reply_buf)
5090 		goto out;
5091 
5092 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5093 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5094 				  "dir_get_name", image_id, image_id_size,
5095 				  reply_buf, size);
5096 	if (ret < 0)
5097 		goto out;
5098 	p = reply_buf;
5099 	end = reply_buf + ret;
5100 
5101 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5102 	if (IS_ERR(image_name))
5103 		image_name = NULL;
5104 	else
5105 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5106 out:
5107 	kfree(reply_buf);
5108 	kfree(image_id);
5109 
5110 	return image_name;
5111 }
5112 
5113 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5114 {
5115 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5116 	const char *snap_name;
5117 	u32 which = 0;
5118 
5119 	/* Skip over names until we find the one we are looking for */
5120 
5121 	snap_name = rbd_dev->header.snap_names;
5122 	while (which < snapc->num_snaps) {
5123 		if (!strcmp(name, snap_name))
5124 			return snapc->snaps[which];
5125 		snap_name += strlen(snap_name) + 1;
5126 		which++;
5127 	}
5128 	return CEPH_NOSNAP;
5129 }
5130 
5131 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5132 {
5133 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5134 	u32 which;
5135 	bool found = false;
5136 	u64 snap_id;
5137 
5138 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5139 		const char *snap_name;
5140 
5141 		snap_id = snapc->snaps[which];
5142 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5143 		if (IS_ERR(snap_name)) {
5144 			/* ignore no-longer existing snapshots */
5145 			if (PTR_ERR(snap_name) == -ENOENT)
5146 				continue;
5147 			else
5148 				break;
5149 		}
5150 		found = !strcmp(name, snap_name);
5151 		kfree(snap_name);
5152 	}
5153 	return found ? snap_id : CEPH_NOSNAP;
5154 }
5155 
5156 /*
5157  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5158  * no snapshot by that name is found, or if an error occurs.
5159  */
5160 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5161 {
5162 	if (rbd_dev->image_format == 1)
5163 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5164 
5165 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5166 }
5167 
5168 /*
5169  * An image being mapped will have everything but the snap id.
5170  */
5171 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5172 {
5173 	struct rbd_spec *spec = rbd_dev->spec;
5174 
5175 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5176 	rbd_assert(spec->image_id && spec->image_name);
5177 	rbd_assert(spec->snap_name);
5178 
5179 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5180 		u64 snap_id;
5181 
5182 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5183 		if (snap_id == CEPH_NOSNAP)
5184 			return -ENOENT;
5185 
5186 		spec->snap_id = snap_id;
5187 	} else {
5188 		spec->snap_id = CEPH_NOSNAP;
5189 	}
5190 
5191 	return 0;
5192 }
5193 
5194 /*
5195  * A parent image will have all ids but none of the names.
5196  *
5197  * All names in an rbd spec are dynamically allocated.  It's OK if we
5198  * can't figure out the name for an image id.
5199  */
5200 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5201 {
5202 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5203 	struct rbd_spec *spec = rbd_dev->spec;
5204 	const char *pool_name;
5205 	const char *image_name;
5206 	const char *snap_name;
5207 	int ret;
5208 
5209 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
5210 	rbd_assert(spec->image_id);
5211 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
5212 
5213 	/* Get the pool name; we have to make our own copy of this */
5214 
5215 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5216 	if (!pool_name) {
5217 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5218 		return -EIO;
5219 	}
5220 	pool_name = kstrdup(pool_name, GFP_KERNEL);
5221 	if (!pool_name)
5222 		return -ENOMEM;
5223 
5224 	/* Fetch the image name; tolerate failure here */
5225 
5226 	image_name = rbd_dev_image_name(rbd_dev);
5227 	if (!image_name)
5228 		rbd_warn(rbd_dev, "unable to get image name");
5229 
5230 	/* Fetch the snapshot name */
5231 
5232 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5233 	if (IS_ERR(snap_name)) {
5234 		ret = PTR_ERR(snap_name);
5235 		goto out_err;
5236 	}
5237 
5238 	spec->pool_name = pool_name;
5239 	spec->image_name = image_name;
5240 	spec->snap_name = snap_name;
5241 
5242 	return 0;
5243 
5244 out_err:
5245 	kfree(image_name);
5246 	kfree(pool_name);
5247 	return ret;
5248 }
5249 
5250 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5251 {
5252 	size_t size;
5253 	int ret;
5254 	void *reply_buf;
5255 	void *p;
5256 	void *end;
5257 	u64 seq;
5258 	u32 snap_count;
5259 	struct ceph_snap_context *snapc;
5260 	u32 i;
5261 
5262 	/*
5263 	 * We'll need room for the seq value (maximum snapshot id),
5264 	 * snapshot count, and array of that many snapshot ids.
5265 	 * For now we have a fixed upper limit on the number we're
5266 	 * prepared to receive.
5267 	 */
5268 	size = sizeof (__le64) + sizeof (__le32) +
5269 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
5270 	reply_buf = kzalloc(size, GFP_KERNEL);
5271 	if (!reply_buf)
5272 		return -ENOMEM;
5273 
5274 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5275 				  &rbd_dev->header_oloc, "get_snapcontext",
5276 				  NULL, 0, reply_buf, size);
5277 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5278 	if (ret < 0)
5279 		goto out;
5280 
5281 	p = reply_buf;
5282 	end = reply_buf + ret;
5283 	ret = -ERANGE;
5284 	ceph_decode_64_safe(&p, end, seq, out);
5285 	ceph_decode_32_safe(&p, end, snap_count, out);
5286 
5287 	/*
5288 	 * Make sure the reported number of snapshot ids wouldn't go
5289 	 * beyond the end of our buffer.  But before checking that,
5290 	 * make sure the computed size of the snapshot context we
5291 	 * allocate is representable in a size_t.
5292 	 */
5293 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5294 				 / sizeof (u64)) {
5295 		ret = -EINVAL;
5296 		goto out;
5297 	}
5298 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5299 		goto out;
5300 	ret = 0;
5301 
5302 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5303 	if (!snapc) {
5304 		ret = -ENOMEM;
5305 		goto out;
5306 	}
5307 	snapc->seq = seq;
5308 	for (i = 0; i < snap_count; i++)
5309 		snapc->snaps[i] = ceph_decode_64(&p);
5310 
5311 	ceph_put_snap_context(rbd_dev->header.snapc);
5312 	rbd_dev->header.snapc = snapc;
5313 
5314 	dout("  snap context seq = %llu, snap_count = %u\n",
5315 		(unsigned long long)seq, (unsigned int)snap_count);
5316 out:
5317 	kfree(reply_buf);
5318 
5319 	return ret;
5320 }
5321 
5322 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5323 					u64 snap_id)
5324 {
5325 	size_t size;
5326 	void *reply_buf;
5327 	__le64 snapid;
5328 	int ret;
5329 	void *p;
5330 	void *end;
5331 	char *snap_name;
5332 
5333 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5334 	reply_buf = kmalloc(size, GFP_KERNEL);
5335 	if (!reply_buf)
5336 		return ERR_PTR(-ENOMEM);
5337 
5338 	snapid = cpu_to_le64(snap_id);
5339 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5340 				  &rbd_dev->header_oloc, "get_snapshot_name",
5341 				  &snapid, sizeof(snapid), reply_buf, size);
5342 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5343 	if (ret < 0) {
5344 		snap_name = ERR_PTR(ret);
5345 		goto out;
5346 	}
5347 
5348 	p = reply_buf;
5349 	end = reply_buf + ret;
5350 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5351 	if (IS_ERR(snap_name))
5352 		goto out;
5353 
5354 	dout("  snap_id 0x%016llx snap_name = %s\n",
5355 		(unsigned long long)snap_id, snap_name);
5356 out:
5357 	kfree(reply_buf);
5358 
5359 	return snap_name;
5360 }
5361 
5362 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5363 {
5364 	bool first_time = rbd_dev->header.object_prefix == NULL;
5365 	int ret;
5366 
5367 	ret = rbd_dev_v2_image_size(rbd_dev);
5368 	if (ret)
5369 		return ret;
5370 
5371 	if (first_time) {
5372 		ret = rbd_dev_v2_header_onetime(rbd_dev);
5373 		if (ret)
5374 			return ret;
5375 	}
5376 
5377 	ret = rbd_dev_v2_snap_context(rbd_dev);
5378 	if (ret && first_time) {
5379 		kfree(rbd_dev->header.object_prefix);
5380 		rbd_dev->header.object_prefix = NULL;
5381 	}
5382 
5383 	return ret;
5384 }
5385 
5386 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5387 {
5388 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5389 
5390 	if (rbd_dev->image_format == 1)
5391 		return rbd_dev_v1_header_info(rbd_dev);
5392 
5393 	return rbd_dev_v2_header_info(rbd_dev);
5394 }
5395 
5396 /*
5397  * Skips over white space at *buf, and updates *buf to point to the
5398  * first found non-space character (if any). Returns the length of
5399  * the token (string of non-white space characters) found.  Note
5400  * that *buf must be terminated with '\0'.
5401  */
5402 static inline size_t next_token(const char **buf)
5403 {
5404         /*
5405         * These are the characters that produce nonzero for
5406         * isspace() in the "C" and "POSIX" locales.
5407         */
5408         const char *spaces = " \f\n\r\t\v";
5409 
5410         *buf += strspn(*buf, spaces);	/* Find start of token */
5411 
5412 	return strcspn(*buf, spaces);   /* Return token length */
5413 }
5414 
5415 /*
5416  * Finds the next token in *buf, dynamically allocates a buffer big
5417  * enough to hold a copy of it, and copies the token into the new
5418  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5419  * that a duplicate buffer is created even for a zero-length token.
5420  *
5421  * Returns a pointer to the newly-allocated duplicate, or a null
5422  * pointer if memory for the duplicate was not available.  If
5423  * the lenp argument is a non-null pointer, the length of the token
5424  * (not including the '\0') is returned in *lenp.
5425  *
5426  * If successful, the *buf pointer will be updated to point beyond
5427  * the end of the found token.
5428  *
5429  * Note: uses GFP_KERNEL for allocation.
5430  */
5431 static inline char *dup_token(const char **buf, size_t *lenp)
5432 {
5433 	char *dup;
5434 	size_t len;
5435 
5436 	len = next_token(buf);
5437 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5438 	if (!dup)
5439 		return NULL;
5440 	*(dup + len) = '\0';
5441 	*buf += len;
5442 
5443 	if (lenp)
5444 		*lenp = len;
5445 
5446 	return dup;
5447 }
5448 
5449 /*
5450  * Parse the options provided for an "rbd add" (i.e., rbd image
5451  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5452  * and the data written is passed here via a NUL-terminated buffer.
5453  * Returns 0 if successful or an error code otherwise.
5454  *
5455  * The information extracted from these options is recorded in
5456  * the other parameters which return dynamically-allocated
5457  * structures:
5458  *  ceph_opts
5459  *      The address of a pointer that will refer to a ceph options
5460  *      structure.  Caller must release the returned pointer using
5461  *      ceph_destroy_options() when it is no longer needed.
5462  *  rbd_opts
5463  *	Address of an rbd options pointer.  Fully initialized by
5464  *	this function; caller must release with kfree().
5465  *  spec
5466  *	Address of an rbd image specification pointer.  Fully
5467  *	initialized by this function based on parsed options.
5468  *	Caller must release with rbd_spec_put().
5469  *
5470  * The options passed take this form:
5471  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5472  * where:
5473  *  <mon_addrs>
5474  *      A comma-separated list of one or more monitor addresses.
5475  *      A monitor address is an ip address, optionally followed
5476  *      by a port number (separated by a colon).
5477  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5478  *  <options>
5479  *      A comma-separated list of ceph and/or rbd options.
5480  *  <pool_name>
5481  *      The name of the rados pool containing the rbd image.
5482  *  <image_name>
5483  *      The name of the image in that pool to map.
5484  *  <snap_id>
5485  *      An optional snapshot id.  If provided, the mapping will
5486  *      present data from the image at the time that snapshot was
5487  *      created.  The image head is used if no snapshot id is
5488  *      provided.  Snapshot mappings are always read-only.
5489  */
5490 static int rbd_add_parse_args(const char *buf,
5491 				struct ceph_options **ceph_opts,
5492 				struct rbd_options **opts,
5493 				struct rbd_spec **rbd_spec)
5494 {
5495 	size_t len;
5496 	char *options;
5497 	const char *mon_addrs;
5498 	char *snap_name;
5499 	size_t mon_addrs_size;
5500 	struct parse_rbd_opts_ctx pctx = { 0 };
5501 	struct ceph_options *copts;
5502 	int ret;
5503 
5504 	/* The first four tokens are required */
5505 
5506 	len = next_token(&buf);
5507 	if (!len) {
5508 		rbd_warn(NULL, "no monitor address(es) provided");
5509 		return -EINVAL;
5510 	}
5511 	mon_addrs = buf;
5512 	mon_addrs_size = len + 1;
5513 	buf += len;
5514 
5515 	ret = -EINVAL;
5516 	options = dup_token(&buf, NULL);
5517 	if (!options)
5518 		return -ENOMEM;
5519 	if (!*options) {
5520 		rbd_warn(NULL, "no options provided");
5521 		goto out_err;
5522 	}
5523 
5524 	pctx.spec = rbd_spec_alloc();
5525 	if (!pctx.spec)
5526 		goto out_mem;
5527 
5528 	pctx.spec->pool_name = dup_token(&buf, NULL);
5529 	if (!pctx.spec->pool_name)
5530 		goto out_mem;
5531 	if (!*pctx.spec->pool_name) {
5532 		rbd_warn(NULL, "no pool name provided");
5533 		goto out_err;
5534 	}
5535 
5536 	pctx.spec->image_name = dup_token(&buf, NULL);
5537 	if (!pctx.spec->image_name)
5538 		goto out_mem;
5539 	if (!*pctx.spec->image_name) {
5540 		rbd_warn(NULL, "no image name provided");
5541 		goto out_err;
5542 	}
5543 
5544 	/*
5545 	 * Snapshot name is optional; default is to use "-"
5546 	 * (indicating the head/no snapshot).
5547 	 */
5548 	len = next_token(&buf);
5549 	if (!len) {
5550 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5551 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5552 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
5553 		ret = -ENAMETOOLONG;
5554 		goto out_err;
5555 	}
5556 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5557 	if (!snap_name)
5558 		goto out_mem;
5559 	*(snap_name + len) = '\0';
5560 	pctx.spec->snap_name = snap_name;
5561 
5562 	/* Initialize all rbd options to the defaults */
5563 
5564 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
5565 	if (!pctx.opts)
5566 		goto out_mem;
5567 
5568 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
5569 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5570 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
5571 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
5572 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5573 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5574 	pctx.opts->trim = RBD_TRIM_DEFAULT;
5575 
5576 	copts = ceph_parse_options(options, mon_addrs,
5577 				   mon_addrs + mon_addrs_size - 1,
5578 				   parse_rbd_opts_token, &pctx);
5579 	if (IS_ERR(copts)) {
5580 		ret = PTR_ERR(copts);
5581 		goto out_err;
5582 	}
5583 	kfree(options);
5584 
5585 	*ceph_opts = copts;
5586 	*opts = pctx.opts;
5587 	*rbd_spec = pctx.spec;
5588 
5589 	return 0;
5590 out_mem:
5591 	ret = -ENOMEM;
5592 out_err:
5593 	kfree(pctx.opts);
5594 	rbd_spec_put(pctx.spec);
5595 	kfree(options);
5596 
5597 	return ret;
5598 }
5599 
5600 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5601 {
5602 	down_write(&rbd_dev->lock_rwsem);
5603 	if (__rbd_is_lock_owner(rbd_dev))
5604 		rbd_unlock(rbd_dev);
5605 	up_write(&rbd_dev->lock_rwsem);
5606 }
5607 
5608 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5609 {
5610 	int ret;
5611 
5612 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5613 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5614 		return -EINVAL;
5615 	}
5616 
5617 	/* FIXME: "rbd map --exclusive" should be in interruptible */
5618 	down_read(&rbd_dev->lock_rwsem);
5619 	ret = rbd_wait_state_locked(rbd_dev, true);
5620 	up_read(&rbd_dev->lock_rwsem);
5621 	if (ret) {
5622 		rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5623 		return -EROFS;
5624 	}
5625 
5626 	return 0;
5627 }
5628 
5629 /*
5630  * An rbd format 2 image has a unique identifier, distinct from the
5631  * name given to it by the user.  Internally, that identifier is
5632  * what's used to specify the names of objects related to the image.
5633  *
5634  * A special "rbd id" object is used to map an rbd image name to its
5635  * id.  If that object doesn't exist, then there is no v2 rbd image
5636  * with the supplied name.
5637  *
5638  * This function will record the given rbd_dev's image_id field if
5639  * it can be determined, and in that case will return 0.  If any
5640  * errors occur a negative errno will be returned and the rbd_dev's
5641  * image_id field will be unchanged (and should be NULL).
5642  */
5643 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5644 {
5645 	int ret;
5646 	size_t size;
5647 	CEPH_DEFINE_OID_ONSTACK(oid);
5648 	void *response;
5649 	char *image_id;
5650 
5651 	/*
5652 	 * When probing a parent image, the image id is already
5653 	 * known (and the image name likely is not).  There's no
5654 	 * need to fetch the image id again in this case.  We
5655 	 * do still need to set the image format though.
5656 	 */
5657 	if (rbd_dev->spec->image_id) {
5658 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5659 
5660 		return 0;
5661 	}
5662 
5663 	/*
5664 	 * First, see if the format 2 image id file exists, and if
5665 	 * so, get the image's persistent id from it.
5666 	 */
5667 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5668 			       rbd_dev->spec->image_name);
5669 	if (ret)
5670 		return ret;
5671 
5672 	dout("rbd id object name is %s\n", oid.name);
5673 
5674 	/* Response will be an encoded string, which includes a length */
5675 
5676 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5677 	response = kzalloc(size, GFP_NOIO);
5678 	if (!response) {
5679 		ret = -ENOMEM;
5680 		goto out;
5681 	}
5682 
5683 	/* If it doesn't exist we'll assume it's a format 1 image */
5684 
5685 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5686 				  "get_id", NULL, 0,
5687 				  response, RBD_IMAGE_ID_LEN_MAX);
5688 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5689 	if (ret == -ENOENT) {
5690 		image_id = kstrdup("", GFP_KERNEL);
5691 		ret = image_id ? 0 : -ENOMEM;
5692 		if (!ret)
5693 			rbd_dev->image_format = 1;
5694 	} else if (ret >= 0) {
5695 		void *p = response;
5696 
5697 		image_id = ceph_extract_encoded_string(&p, p + ret,
5698 						NULL, GFP_NOIO);
5699 		ret = PTR_ERR_OR_ZERO(image_id);
5700 		if (!ret)
5701 			rbd_dev->image_format = 2;
5702 	}
5703 
5704 	if (!ret) {
5705 		rbd_dev->spec->image_id = image_id;
5706 		dout("image_id is %s\n", image_id);
5707 	}
5708 out:
5709 	kfree(response);
5710 	ceph_oid_destroy(&oid);
5711 	return ret;
5712 }
5713 
5714 /*
5715  * Undo whatever state changes are made by v1 or v2 header info
5716  * call.
5717  */
5718 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5719 {
5720 	struct rbd_image_header	*header;
5721 
5722 	rbd_dev_parent_put(rbd_dev);
5723 
5724 	/* Free dynamic fields from the header, then zero it out */
5725 
5726 	header = &rbd_dev->header;
5727 	ceph_put_snap_context(header->snapc);
5728 	kfree(header->snap_sizes);
5729 	kfree(header->snap_names);
5730 	kfree(header->object_prefix);
5731 	memset(header, 0, sizeof (*header));
5732 }
5733 
5734 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5735 {
5736 	int ret;
5737 
5738 	ret = rbd_dev_v2_object_prefix(rbd_dev);
5739 	if (ret)
5740 		goto out_err;
5741 
5742 	/*
5743 	 * Get the and check features for the image.  Currently the
5744 	 * features are assumed to never change.
5745 	 */
5746 	ret = rbd_dev_v2_features(rbd_dev);
5747 	if (ret)
5748 		goto out_err;
5749 
5750 	/* If the image supports fancy striping, get its parameters */
5751 
5752 	if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5753 		ret = rbd_dev_v2_striping_info(rbd_dev);
5754 		if (ret < 0)
5755 			goto out_err;
5756 	}
5757 
5758 	if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5759 		ret = rbd_dev_v2_data_pool(rbd_dev);
5760 		if (ret)
5761 			goto out_err;
5762 	}
5763 
5764 	rbd_init_layout(rbd_dev);
5765 	return 0;
5766 
5767 out_err:
5768 	rbd_dev->header.features = 0;
5769 	kfree(rbd_dev->header.object_prefix);
5770 	rbd_dev->header.object_prefix = NULL;
5771 	return ret;
5772 }
5773 
5774 /*
5775  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5776  * rbd_dev_image_probe() recursion depth, which means it's also the
5777  * length of the already discovered part of the parent chain.
5778  */
5779 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5780 {
5781 	struct rbd_device *parent = NULL;
5782 	int ret;
5783 
5784 	if (!rbd_dev->parent_spec)
5785 		return 0;
5786 
5787 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5788 		pr_info("parent chain is too long (%d)\n", depth);
5789 		ret = -EINVAL;
5790 		goto out_err;
5791 	}
5792 
5793 	parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5794 	if (!parent) {
5795 		ret = -ENOMEM;
5796 		goto out_err;
5797 	}
5798 
5799 	/*
5800 	 * Images related by parent/child relationships always share
5801 	 * rbd_client and spec/parent_spec, so bump their refcounts.
5802 	 */
5803 	__rbd_get_client(rbd_dev->rbd_client);
5804 	rbd_spec_get(rbd_dev->parent_spec);
5805 
5806 	ret = rbd_dev_image_probe(parent, depth);
5807 	if (ret < 0)
5808 		goto out_err;
5809 
5810 	rbd_dev->parent = parent;
5811 	atomic_set(&rbd_dev->parent_ref, 1);
5812 	return 0;
5813 
5814 out_err:
5815 	rbd_dev_unparent(rbd_dev);
5816 	rbd_dev_destroy(parent);
5817 	return ret;
5818 }
5819 
5820 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5821 {
5822 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5823 	rbd_dev_mapping_clear(rbd_dev);
5824 	rbd_free_disk(rbd_dev);
5825 	if (!single_major)
5826 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5827 }
5828 
5829 /*
5830  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5831  * upon return.
5832  */
5833 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5834 {
5835 	int ret;
5836 
5837 	/* Record our major and minor device numbers. */
5838 
5839 	if (!single_major) {
5840 		ret = register_blkdev(0, rbd_dev->name);
5841 		if (ret < 0)
5842 			goto err_out_unlock;
5843 
5844 		rbd_dev->major = ret;
5845 		rbd_dev->minor = 0;
5846 	} else {
5847 		rbd_dev->major = rbd_major;
5848 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5849 	}
5850 
5851 	/* Set up the blkdev mapping. */
5852 
5853 	ret = rbd_init_disk(rbd_dev);
5854 	if (ret)
5855 		goto err_out_blkdev;
5856 
5857 	ret = rbd_dev_mapping_set(rbd_dev);
5858 	if (ret)
5859 		goto err_out_disk;
5860 
5861 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5862 	set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
5863 
5864 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5865 	if (ret)
5866 		goto err_out_mapping;
5867 
5868 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5869 	up_write(&rbd_dev->header_rwsem);
5870 	return 0;
5871 
5872 err_out_mapping:
5873 	rbd_dev_mapping_clear(rbd_dev);
5874 err_out_disk:
5875 	rbd_free_disk(rbd_dev);
5876 err_out_blkdev:
5877 	if (!single_major)
5878 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
5879 err_out_unlock:
5880 	up_write(&rbd_dev->header_rwsem);
5881 	return ret;
5882 }
5883 
5884 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5885 {
5886 	struct rbd_spec *spec = rbd_dev->spec;
5887 	int ret;
5888 
5889 	/* Record the header object name for this rbd image. */
5890 
5891 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5892 	if (rbd_dev->image_format == 1)
5893 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5894 				       spec->image_name, RBD_SUFFIX);
5895 	else
5896 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
5897 				       RBD_HEADER_PREFIX, spec->image_id);
5898 
5899 	return ret;
5900 }
5901 
5902 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5903 {
5904 	rbd_dev_unprobe(rbd_dev);
5905 	if (rbd_dev->opts)
5906 		rbd_unregister_watch(rbd_dev);
5907 	rbd_dev->image_format = 0;
5908 	kfree(rbd_dev->spec->image_id);
5909 	rbd_dev->spec->image_id = NULL;
5910 }
5911 
5912 /*
5913  * Probe for the existence of the header object for the given rbd
5914  * device.  If this image is the one being mapped (i.e., not a
5915  * parent), initiate a watch on its header object before using that
5916  * object to get detailed information about the rbd image.
5917  */
5918 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5919 {
5920 	int ret;
5921 
5922 	/*
5923 	 * Get the id from the image id object.  Unless there's an
5924 	 * error, rbd_dev->spec->image_id will be filled in with
5925 	 * a dynamically-allocated string, and rbd_dev->image_format
5926 	 * will be set to either 1 or 2.
5927 	 */
5928 	ret = rbd_dev_image_id(rbd_dev);
5929 	if (ret)
5930 		return ret;
5931 
5932 	ret = rbd_dev_header_name(rbd_dev);
5933 	if (ret)
5934 		goto err_out_format;
5935 
5936 	if (!depth) {
5937 		ret = rbd_register_watch(rbd_dev);
5938 		if (ret) {
5939 			if (ret == -ENOENT)
5940 				pr_info("image %s/%s%s%s does not exist\n",
5941 					rbd_dev->spec->pool_name,
5942 					rbd_dev->spec->pool_ns ?: "",
5943 					rbd_dev->spec->pool_ns ? "/" : "",
5944 					rbd_dev->spec->image_name);
5945 			goto err_out_format;
5946 		}
5947 	}
5948 
5949 	ret = rbd_dev_header_info(rbd_dev);
5950 	if (ret)
5951 		goto err_out_watch;
5952 
5953 	/*
5954 	 * If this image is the one being mapped, we have pool name and
5955 	 * id, image name and id, and snap name - need to fill snap id.
5956 	 * Otherwise this is a parent image, identified by pool, image
5957 	 * and snap ids - need to fill in names for those ids.
5958 	 */
5959 	if (!depth)
5960 		ret = rbd_spec_fill_snap_id(rbd_dev);
5961 	else
5962 		ret = rbd_spec_fill_names(rbd_dev);
5963 	if (ret) {
5964 		if (ret == -ENOENT)
5965 			pr_info("snap %s/%s%s%s@%s does not exist\n",
5966 				rbd_dev->spec->pool_name,
5967 				rbd_dev->spec->pool_ns ?: "",
5968 				rbd_dev->spec->pool_ns ? "/" : "",
5969 				rbd_dev->spec->image_name,
5970 				rbd_dev->spec->snap_name);
5971 		goto err_out_probe;
5972 	}
5973 
5974 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5975 		ret = rbd_dev_v2_parent_info(rbd_dev);
5976 		if (ret)
5977 			goto err_out_probe;
5978 	}
5979 
5980 	ret = rbd_dev_probe_parent(rbd_dev, depth);
5981 	if (ret)
5982 		goto err_out_probe;
5983 
5984 	dout("discovered format %u image, header name is %s\n",
5985 		rbd_dev->image_format, rbd_dev->header_oid.name);
5986 	return 0;
5987 
5988 err_out_probe:
5989 	rbd_dev_unprobe(rbd_dev);
5990 err_out_watch:
5991 	if (!depth)
5992 		rbd_unregister_watch(rbd_dev);
5993 err_out_format:
5994 	rbd_dev->image_format = 0;
5995 	kfree(rbd_dev->spec->image_id);
5996 	rbd_dev->spec->image_id = NULL;
5997 	return ret;
5998 }
5999 
6000 static ssize_t do_rbd_add(struct bus_type *bus,
6001 			  const char *buf,
6002 			  size_t count)
6003 {
6004 	struct rbd_device *rbd_dev = NULL;
6005 	struct ceph_options *ceph_opts = NULL;
6006 	struct rbd_options *rbd_opts = NULL;
6007 	struct rbd_spec *spec = NULL;
6008 	struct rbd_client *rbdc;
6009 	int rc;
6010 
6011 	if (!try_module_get(THIS_MODULE))
6012 		return -ENODEV;
6013 
6014 	/* parse add command */
6015 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6016 	if (rc < 0)
6017 		goto out;
6018 
6019 	rbdc = rbd_get_client(ceph_opts);
6020 	if (IS_ERR(rbdc)) {
6021 		rc = PTR_ERR(rbdc);
6022 		goto err_out_args;
6023 	}
6024 
6025 	/* pick the pool */
6026 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
6027 	if (rc < 0) {
6028 		if (rc == -ENOENT)
6029 			pr_info("pool %s does not exist\n", spec->pool_name);
6030 		goto err_out_client;
6031 	}
6032 	spec->pool_id = (u64)rc;
6033 
6034 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6035 	if (!rbd_dev) {
6036 		rc = -ENOMEM;
6037 		goto err_out_client;
6038 	}
6039 	rbdc = NULL;		/* rbd_dev now owns this */
6040 	spec = NULL;		/* rbd_dev now owns this */
6041 	rbd_opts = NULL;	/* rbd_dev now owns this */
6042 
6043 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6044 	if (!rbd_dev->config_info) {
6045 		rc = -ENOMEM;
6046 		goto err_out_rbd_dev;
6047 	}
6048 
6049 	down_write(&rbd_dev->header_rwsem);
6050 	rc = rbd_dev_image_probe(rbd_dev, 0);
6051 	if (rc < 0) {
6052 		up_write(&rbd_dev->header_rwsem);
6053 		goto err_out_rbd_dev;
6054 	}
6055 
6056 	/* If we are mapping a snapshot it must be marked read-only */
6057 	if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6058 		rbd_dev->opts->read_only = true;
6059 
6060 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
6061 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
6062 			 rbd_dev->layout.object_size);
6063 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
6064 	}
6065 
6066 	rc = rbd_dev_device_setup(rbd_dev);
6067 	if (rc)
6068 		goto err_out_image_probe;
6069 
6070 	if (rbd_dev->opts->exclusive) {
6071 		rc = rbd_add_acquire_lock(rbd_dev);
6072 		if (rc)
6073 			goto err_out_device_setup;
6074 	}
6075 
6076 	/* Everything's ready.  Announce the disk to the world. */
6077 
6078 	rc = device_add(&rbd_dev->dev);
6079 	if (rc)
6080 		goto err_out_image_lock;
6081 
6082 	add_disk(rbd_dev->disk);
6083 	/* see rbd_init_disk() */
6084 	blk_put_queue(rbd_dev->disk->queue);
6085 
6086 	spin_lock(&rbd_dev_list_lock);
6087 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
6088 	spin_unlock(&rbd_dev_list_lock);
6089 
6090 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6091 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6092 		rbd_dev->header.features);
6093 	rc = count;
6094 out:
6095 	module_put(THIS_MODULE);
6096 	return rc;
6097 
6098 err_out_image_lock:
6099 	rbd_dev_image_unlock(rbd_dev);
6100 err_out_device_setup:
6101 	rbd_dev_device_release(rbd_dev);
6102 err_out_image_probe:
6103 	rbd_dev_image_release(rbd_dev);
6104 err_out_rbd_dev:
6105 	rbd_dev_destroy(rbd_dev);
6106 err_out_client:
6107 	rbd_put_client(rbdc);
6108 err_out_args:
6109 	rbd_spec_put(spec);
6110 	kfree(rbd_opts);
6111 	goto out;
6112 }
6113 
6114 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
6115 {
6116 	if (single_major)
6117 		return -EINVAL;
6118 
6119 	return do_rbd_add(bus, buf, count);
6120 }
6121 
6122 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
6123 				      size_t count)
6124 {
6125 	return do_rbd_add(bus, buf, count);
6126 }
6127 
6128 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6129 {
6130 	while (rbd_dev->parent) {
6131 		struct rbd_device *first = rbd_dev;
6132 		struct rbd_device *second = first->parent;
6133 		struct rbd_device *third;
6134 
6135 		/*
6136 		 * Follow to the parent with no grandparent and
6137 		 * remove it.
6138 		 */
6139 		while (second && (third = second->parent)) {
6140 			first = second;
6141 			second = third;
6142 		}
6143 		rbd_assert(second);
6144 		rbd_dev_image_release(second);
6145 		rbd_dev_destroy(second);
6146 		first->parent = NULL;
6147 		first->parent_overlap = 0;
6148 
6149 		rbd_assert(first->parent_spec);
6150 		rbd_spec_put(first->parent_spec);
6151 		first->parent_spec = NULL;
6152 	}
6153 }
6154 
6155 static ssize_t do_rbd_remove(struct bus_type *bus,
6156 			     const char *buf,
6157 			     size_t count)
6158 {
6159 	struct rbd_device *rbd_dev = NULL;
6160 	struct list_head *tmp;
6161 	int dev_id;
6162 	char opt_buf[6];
6163 	bool force = false;
6164 	int ret;
6165 
6166 	dev_id = -1;
6167 	opt_buf[0] = '\0';
6168 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
6169 	if (dev_id < 0) {
6170 		pr_err("dev_id out of range\n");
6171 		return -EINVAL;
6172 	}
6173 	if (opt_buf[0] != '\0') {
6174 		if (!strcmp(opt_buf, "force")) {
6175 			force = true;
6176 		} else {
6177 			pr_err("bad remove option at '%s'\n", opt_buf);
6178 			return -EINVAL;
6179 		}
6180 	}
6181 
6182 	ret = -ENOENT;
6183 	spin_lock(&rbd_dev_list_lock);
6184 	list_for_each(tmp, &rbd_dev_list) {
6185 		rbd_dev = list_entry(tmp, struct rbd_device, node);
6186 		if (rbd_dev->dev_id == dev_id) {
6187 			ret = 0;
6188 			break;
6189 		}
6190 	}
6191 	if (!ret) {
6192 		spin_lock_irq(&rbd_dev->lock);
6193 		if (rbd_dev->open_count && !force)
6194 			ret = -EBUSY;
6195 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6196 					  &rbd_dev->flags))
6197 			ret = -EINPROGRESS;
6198 		spin_unlock_irq(&rbd_dev->lock);
6199 	}
6200 	spin_unlock(&rbd_dev_list_lock);
6201 	if (ret)
6202 		return ret;
6203 
6204 	if (force) {
6205 		/*
6206 		 * Prevent new IO from being queued and wait for existing
6207 		 * IO to complete/fail.
6208 		 */
6209 		blk_mq_freeze_queue(rbd_dev->disk->queue);
6210 		blk_set_queue_dying(rbd_dev->disk->queue);
6211 	}
6212 
6213 	del_gendisk(rbd_dev->disk);
6214 	spin_lock(&rbd_dev_list_lock);
6215 	list_del_init(&rbd_dev->node);
6216 	spin_unlock(&rbd_dev_list_lock);
6217 	device_del(&rbd_dev->dev);
6218 
6219 	rbd_dev_image_unlock(rbd_dev);
6220 	rbd_dev_device_release(rbd_dev);
6221 	rbd_dev_image_release(rbd_dev);
6222 	rbd_dev_destroy(rbd_dev);
6223 	return count;
6224 }
6225 
6226 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
6227 {
6228 	if (single_major)
6229 		return -EINVAL;
6230 
6231 	return do_rbd_remove(bus, buf, count);
6232 }
6233 
6234 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
6235 					 size_t count)
6236 {
6237 	return do_rbd_remove(bus, buf, count);
6238 }
6239 
6240 /*
6241  * create control files in sysfs
6242  * /sys/bus/rbd/...
6243  */
6244 static int __init rbd_sysfs_init(void)
6245 {
6246 	int ret;
6247 
6248 	ret = device_register(&rbd_root_dev);
6249 	if (ret < 0)
6250 		return ret;
6251 
6252 	ret = bus_register(&rbd_bus_type);
6253 	if (ret < 0)
6254 		device_unregister(&rbd_root_dev);
6255 
6256 	return ret;
6257 }
6258 
6259 static void __exit rbd_sysfs_cleanup(void)
6260 {
6261 	bus_unregister(&rbd_bus_type);
6262 	device_unregister(&rbd_root_dev);
6263 }
6264 
6265 static int __init rbd_slab_init(void)
6266 {
6267 	rbd_assert(!rbd_img_request_cache);
6268 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6269 	if (!rbd_img_request_cache)
6270 		return -ENOMEM;
6271 
6272 	rbd_assert(!rbd_obj_request_cache);
6273 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6274 	if (!rbd_obj_request_cache)
6275 		goto out_err;
6276 
6277 	return 0;
6278 
6279 out_err:
6280 	kmem_cache_destroy(rbd_img_request_cache);
6281 	rbd_img_request_cache = NULL;
6282 	return -ENOMEM;
6283 }
6284 
6285 static void rbd_slab_exit(void)
6286 {
6287 	rbd_assert(rbd_obj_request_cache);
6288 	kmem_cache_destroy(rbd_obj_request_cache);
6289 	rbd_obj_request_cache = NULL;
6290 
6291 	rbd_assert(rbd_img_request_cache);
6292 	kmem_cache_destroy(rbd_img_request_cache);
6293 	rbd_img_request_cache = NULL;
6294 }
6295 
6296 static int __init rbd_init(void)
6297 {
6298 	int rc;
6299 
6300 	if (!libceph_compatible(NULL)) {
6301 		rbd_warn(NULL, "libceph incompatibility (quitting)");
6302 		return -EINVAL;
6303 	}
6304 
6305 	rc = rbd_slab_init();
6306 	if (rc)
6307 		return rc;
6308 
6309 	/*
6310 	 * The number of active work items is limited by the number of
6311 	 * rbd devices * queue depth, so leave @max_active at default.
6312 	 */
6313 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6314 	if (!rbd_wq) {
6315 		rc = -ENOMEM;
6316 		goto err_out_slab;
6317 	}
6318 
6319 	if (single_major) {
6320 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
6321 		if (rbd_major < 0) {
6322 			rc = rbd_major;
6323 			goto err_out_wq;
6324 		}
6325 	}
6326 
6327 	rc = rbd_sysfs_init();
6328 	if (rc)
6329 		goto err_out_blkdev;
6330 
6331 	if (single_major)
6332 		pr_info("loaded (major %d)\n", rbd_major);
6333 	else
6334 		pr_info("loaded\n");
6335 
6336 	return 0;
6337 
6338 err_out_blkdev:
6339 	if (single_major)
6340 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6341 err_out_wq:
6342 	destroy_workqueue(rbd_wq);
6343 err_out_slab:
6344 	rbd_slab_exit();
6345 	return rc;
6346 }
6347 
6348 static void __exit rbd_exit(void)
6349 {
6350 	ida_destroy(&rbd_dev_id_ida);
6351 	rbd_sysfs_cleanup();
6352 	if (single_major)
6353 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
6354 	destroy_workqueue(rbd_wq);
6355 	rbd_slab_exit();
6356 }
6357 
6358 module_init(rbd_init);
6359 module_exit(rbd_exit);
6360 
6361 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6362 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6363 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6364 /* following authorship retained from original osdblk.c */
6365 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6366 
6367 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6368 MODULE_LICENSE("GPL");
6369