xref: /linux/drivers/block/rbd.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4 
5 
6    based on drivers/block/osdblk.c:
7 
8    Copyright 2009 Red Hat, Inc.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 
23 
24 
25    For usage instructions, please refer to:
26 
27                  Documentation/ABI/testing/sysfs-bus-rbd
28 
29  */
30 
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39 
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49 
50 #include "rbd_types.h"
51 
52 #define RBD_DEBUG	/* Activate rbd_assert() calls */
53 
54 /*
55  * Increment the given counter and return its updated value.
56  * If the counter is already 0 it will not be incremented.
57  * If the counter is already at its maximum value returns
58  * -EINVAL without updating it.
59  */
60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 	unsigned int counter;
63 
64 	counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 	if (counter <= (unsigned int)INT_MAX)
66 		return (int)counter;
67 
68 	atomic_dec(v);
69 
70 	return -EINVAL;
71 }
72 
73 /* Decrement the counter.  Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 	int counter;
77 
78 	counter = atomic_dec_return(v);
79 	if (counter >= 0)
80 		return counter;
81 
82 	atomic_inc(v);
83 
84 	return -EINVAL;
85 }
86 
87 #define RBD_DRV_NAME "rbd"
88 
89 #define RBD_MINORS_PER_MAJOR		256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT	4
91 
92 #define RBD_MAX_PARENT_CHAIN_LEN	16
93 
94 #define RBD_SNAP_DEV_NAME_PREFIX	"snap_"
95 #define RBD_MAX_SNAP_NAME_LEN	\
96 			(NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97 
98 #define RBD_MAX_SNAP_COUNT	510	/* allows max snapc to fit in 4KB */
99 
100 #define RBD_SNAP_HEAD_NAME	"-"
101 
102 #define	BAD_SNAP_INDEX	U32_MAX		/* invalid index into snap array */
103 
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX	(PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX	64
107 
108 #define RBD_OBJ_PREFIX_LEN_MAX	64
109 
110 #define RBD_NOTIFY_TIMEOUT	5	/* seconds */
111 #define RBD_RETRY_DELAY		msecs_to_jiffies(1000)
112 
113 /* Feature bits */
114 
115 #define RBD_FEATURE_LAYERING		(1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2		(1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK	(1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP		(1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF		(1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN	(1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL		(1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS		(1ULL<<8)
123 
124 #define RBD_FEATURES_ALL	(RBD_FEATURE_LAYERING |		\
125 				 RBD_FEATURE_STRIPINGV2 |	\
126 				 RBD_FEATURE_EXCLUSIVE_LOCK |	\
127 				 RBD_FEATURE_OBJECT_MAP |	\
128 				 RBD_FEATURE_FAST_DIFF |	\
129 				 RBD_FEATURE_DEEP_FLATTEN |	\
130 				 RBD_FEATURE_DATA_POOL |	\
131 				 RBD_FEATURE_OPERATIONS)
132 
133 /* Features supported by this (client software) implementation. */
134 
135 #define RBD_FEATURES_SUPPORTED	(RBD_FEATURES_ALL)
136 
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN		32
142 
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147 	/* These six fields never change for a given rbd image */
148 	char *object_prefix;
149 	__u8 obj_order;
150 	u64 stripe_unit;
151 	u64 stripe_count;
152 	s64 data_pool_id;
153 	u64 features;		/* Might be changeable someday? */
154 
155 	/* The remaining fields need to be updated occasionally */
156 	u64 image_size;
157 	struct ceph_snap_context *snapc;
158 	char *snap_names;	/* format 1 only */
159 	u64 *snap_sizes;	/* format 1 only */
160 };
161 
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188 	u64		pool_id;
189 	const char	*pool_name;
190 	const char	*pool_ns;	/* NULL if default, never "" */
191 
192 	const char	*image_id;
193 	const char	*image_name;
194 
195 	u64		snap_id;
196 	const char	*snap_name;
197 
198 	struct kref	kref;
199 };
200 
201 /*
202  * an instance of the client.  multiple devices may share an rbd client.
203  */
204 struct rbd_client {
205 	struct ceph_client	*client;
206 	struct kref		kref;
207 	struct list_head	node;
208 };
209 
210 struct pending_result {
211 	int			result;		/* first nonzero result */
212 	int			num_pending;
213 };
214 
215 struct rbd_img_request;
216 
217 enum obj_request_type {
218 	OBJ_REQUEST_NODATA = 1,
219 	OBJ_REQUEST_BIO,	/* pointer into provided bio (list) */
220 	OBJ_REQUEST_BVECS,	/* pointer into provided bio_vec array */
221 	OBJ_REQUEST_OWN_BVECS,	/* private bio_vec array, doesn't own pages */
222 };
223 
224 enum obj_operation_type {
225 	OBJ_OP_READ = 1,
226 	OBJ_OP_WRITE,
227 	OBJ_OP_DISCARD,
228 	OBJ_OP_ZEROOUT,
229 };
230 
231 #define RBD_OBJ_FLAG_DELETION			(1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED		(1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS		(1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST			(1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT	(1U << 4)
236 
237 enum rbd_obj_read_state {
238 	RBD_OBJ_READ_START = 1,
239 	RBD_OBJ_READ_OBJECT,
240 	RBD_OBJ_READ_PARENT,
241 };
242 
243 /*
244  * Writes go through the following state machine to deal with
245  * layering:
246  *
247  *            . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248  *            .                 |                                    .
249  *            .                 v                                    .
250  *            .    RBD_OBJ_WRITE_READ_FROM_PARENT. . .               .
251  *            .                 |                    .               .
252  *            .                 v                    v (deep-copyup  .
253  *    (image  .   RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC   .  not needed)  .
254  * flattened) v                 |                    .               .
255  *            .                 v                    .               .
256  *            . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . .      (copyup  .
257  *                              |                        not needed) v
258  *                              v                                    .
259  *                            done . . . . . . . . . . . . . . . . . .
260  *                              ^
261  *                              |
262  *                     RBD_OBJ_WRITE_FLAT
263  *
264  * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265  * assert_exists guard is needed or not (in some cases it's not needed
266  * even if there is a parent).
267  */
268 enum rbd_obj_write_state {
269 	RBD_OBJ_WRITE_START = 1,
270 	RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 	RBD_OBJ_WRITE_OBJECT,
272 	__RBD_OBJ_WRITE_COPYUP,
273 	RBD_OBJ_WRITE_COPYUP,
274 	RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276 
277 enum rbd_obj_copyup_state {
278 	RBD_OBJ_COPYUP_START = 1,
279 	RBD_OBJ_COPYUP_READ_PARENT,
280 	__RBD_OBJ_COPYUP_OBJECT_MAPS,
281 	RBD_OBJ_COPYUP_OBJECT_MAPS,
282 	__RBD_OBJ_COPYUP_WRITE_OBJECT,
283 	RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285 
286 struct rbd_obj_request {
287 	struct ceph_object_extent ex;
288 	unsigned int		flags;	/* RBD_OBJ_FLAG_* */
289 	union {
290 		enum rbd_obj_read_state	 read_state;	/* for reads */
291 		enum rbd_obj_write_state write_state;	/* for writes */
292 	};
293 
294 	struct rbd_img_request	*img_request;
295 	struct ceph_file_extent	*img_extents;
296 	u32			num_img_extents;
297 
298 	union {
299 		struct ceph_bio_iter	bio_pos;
300 		struct {
301 			struct ceph_bvec_iter	bvec_pos;
302 			u32			bvec_count;
303 			u32			bvec_idx;
304 		};
305 	};
306 
307 	enum rbd_obj_copyup_state copyup_state;
308 	struct bio_vec		*copyup_bvecs;
309 	u32			copyup_bvec_count;
310 
311 	struct list_head	osd_reqs;	/* w/ r_private_item */
312 
313 	struct mutex		state_mutex;
314 	struct pending_result	pending;
315 	struct kref		kref;
316 };
317 
318 enum img_req_flags {
319 	IMG_REQ_CHILD,		/* initiator: block = 0, child image = 1 */
320 	IMG_REQ_LAYERED,	/* ENOENT handling: normal = 0, layered = 1 */
321 };
322 
323 enum rbd_img_state {
324 	RBD_IMG_START = 1,
325 	RBD_IMG_EXCLUSIVE_LOCK,
326 	__RBD_IMG_OBJECT_REQUESTS,
327 	RBD_IMG_OBJECT_REQUESTS,
328 };
329 
330 struct rbd_img_request {
331 	struct rbd_device	*rbd_dev;
332 	enum obj_operation_type	op_type;
333 	enum obj_request_type	data_type;
334 	unsigned long		flags;
335 	enum rbd_img_state	state;
336 	union {
337 		u64			snap_id;	/* for reads */
338 		struct ceph_snap_context *snapc;	/* for writes */
339 	};
340 	struct rbd_obj_request	*obj_request;	/* obj req initiator */
341 
342 	struct list_head	lock_item;
343 	struct list_head	object_extents;	/* obj_req.ex structs */
344 
345 	struct mutex		state_mutex;
346 	struct pending_result	pending;
347 	struct work_struct	work;
348 	int			work_result;
349 };
350 
351 #define for_each_obj_request(ireq, oreq) \
352 	list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 	list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355 
356 enum rbd_watch_state {
357 	RBD_WATCH_STATE_UNREGISTERED,
358 	RBD_WATCH_STATE_REGISTERED,
359 	RBD_WATCH_STATE_ERROR,
360 };
361 
362 enum rbd_lock_state {
363 	RBD_LOCK_STATE_UNLOCKED,
364 	RBD_LOCK_STATE_LOCKED,
365 	RBD_LOCK_STATE_RELEASING,
366 };
367 
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 	u64 gid;
371 	u64 handle;
372 };
373 
374 struct rbd_mapping {
375 	u64                     size;
376 };
377 
378 /*
379  * a single device
380  */
381 struct rbd_device {
382 	int			dev_id;		/* blkdev unique id */
383 
384 	int			major;		/* blkdev assigned major */
385 	int			minor;
386 	struct gendisk		*disk;		/* blkdev's gendisk and rq */
387 
388 	u32			image_format;	/* Either 1 or 2 */
389 	struct rbd_client	*rbd_client;
390 
391 	char			name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392 
393 	spinlock_t		lock;		/* queue, flags, open_count */
394 
395 	struct rbd_image_header	header;
396 	unsigned long		flags;		/* possibly lock protected */
397 	struct rbd_spec		*spec;
398 	struct rbd_options	*opts;
399 	char			*config_info;	/* add{,_single_major} string */
400 
401 	struct ceph_object_id	header_oid;
402 	struct ceph_object_locator header_oloc;
403 
404 	struct ceph_file_layout	layout;		/* used for all rbd requests */
405 
406 	struct mutex		watch_mutex;
407 	enum rbd_watch_state	watch_state;
408 	struct ceph_osd_linger_request *watch_handle;
409 	u64			watch_cookie;
410 	struct delayed_work	watch_dwork;
411 
412 	struct rw_semaphore	lock_rwsem;
413 	enum rbd_lock_state	lock_state;
414 	char			lock_cookie[32];
415 	struct rbd_client_id	owner_cid;
416 	struct work_struct	acquired_lock_work;
417 	struct work_struct	released_lock_work;
418 	struct delayed_work	lock_dwork;
419 	struct work_struct	unlock_work;
420 	spinlock_t		lock_lists_lock;
421 	struct list_head	acquiring_list;
422 	struct list_head	running_list;
423 	struct completion	acquire_wait;
424 	int			acquire_err;
425 	struct completion	releasing_wait;
426 
427 	spinlock_t		object_map_lock;
428 	u8			*object_map;
429 	u64			object_map_size;	/* in objects */
430 	u64			object_map_flags;
431 
432 	struct workqueue_struct	*task_wq;
433 
434 	struct rbd_spec		*parent_spec;
435 	u64			parent_overlap;
436 	atomic_t		parent_ref;
437 	struct rbd_device	*parent;
438 
439 	/* Block layer tags. */
440 	struct blk_mq_tag_set	tag_set;
441 
442 	/* protects updating the header */
443 	struct rw_semaphore     header_rwsem;
444 
445 	struct rbd_mapping	mapping;
446 
447 	struct list_head	node;
448 
449 	/* sysfs related */
450 	struct device		dev;
451 	unsigned long		open_count;	/* protected by lock */
452 };
453 
454 /*
455  * Flag bits for rbd_dev->flags:
456  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457  *   by rbd_dev->lock
458  */
459 enum rbd_dev_flags {
460 	RBD_DEV_FLAG_EXISTS,	/* rbd_dev_device_setup() ran */
461 	RBD_DEV_FLAG_REMOVING,	/* this mapping is being removed */
462 	RBD_DEV_FLAG_READONLY,  /* -o ro or snapshot */
463 };
464 
465 static DEFINE_MUTEX(client_mutex);	/* Serialize client creation */
466 
467 static LIST_HEAD(rbd_dev_list);    /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469 
470 static LIST_HEAD(rbd_client_list);		/* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472 
473 /* Slab caches for frequently-allocated structures */
474 
475 static struct kmem_cache	*rbd_img_request_cache;
476 static struct kmem_cache	*rbd_obj_request_cache;
477 
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480 
481 static struct workqueue_struct *rbd_wq;
482 
483 static struct ceph_snap_context rbd_empty_snapc = {
484 	.nref = REFCOUNT_INIT(1),
485 };
486 
487 /*
488  * single-major requires >= 0.75 version of userspace rbd utility.
489  */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493 
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 			    size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 				      size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 					 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502 
503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 	return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507 
508 static int minor_to_rbd_dev_id(int minor)
509 {
510 	return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512 
513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 	return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517 
518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 	return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522 
523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 	lockdep_assert_held(&rbd_dev->lock_rwsem);
526 
527 	return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 	       rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530 
531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 	bool is_lock_owner;
534 
535 	down_read(&rbd_dev->lock_rwsem);
536 	is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 	up_read(&rbd_dev->lock_rwsem);
538 	return is_lock_owner;
539 }
540 
541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543 	return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545 
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551 
552 static struct attribute *rbd_bus_attrs[] = {
553 	&bus_attr_add.attr,
554 	&bus_attr_remove.attr,
555 	&bus_attr_add_single_major.attr,
556 	&bus_attr_remove_single_major.attr,
557 	&bus_attr_supported_features.attr,
558 	NULL,
559 };
560 
561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 				  struct attribute *attr, int index)
563 {
564 	if (!single_major &&
565 	    (attr == &bus_attr_add_single_major.attr ||
566 	     attr == &bus_attr_remove_single_major.attr))
567 		return 0;
568 
569 	return attr->mode;
570 }
571 
572 static const struct attribute_group rbd_bus_group = {
573 	.attrs = rbd_bus_attrs,
574 	.is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577 
578 static struct bus_type rbd_bus_type = {
579 	.name		= "rbd",
580 	.bus_groups	= rbd_bus_groups,
581 };
582 
583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586 
587 static struct device rbd_root_dev = {
588 	.init_name =    "rbd",
589 	.release =      rbd_root_dev_release,
590 };
591 
592 static __printf(2, 3)
593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 	struct va_format vaf;
596 	va_list args;
597 
598 	va_start(args, fmt);
599 	vaf.fmt = fmt;
600 	vaf.va = &args;
601 
602 	if (!rbd_dev)
603 		printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 	else if (rbd_dev->disk)
605 		printk(KERN_WARNING "%s: %s: %pV\n",
606 			RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 	else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 		printk(KERN_WARNING "%s: image %s: %pV\n",
609 			RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 	else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 		printk(KERN_WARNING "%s: id %s: %pV\n",
612 			RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 	else	/* punt */
614 		printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 			RBD_DRV_NAME, rbd_dev, &vaf);
616 	va_end(args);
617 }
618 
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr)						\
621 		if (unlikely(!(expr))) {				\
622 			printk(KERN_ERR "\nAssertion failure in %s() "	\
623 						"at line %d:\n\n"	\
624 					"\trbd_assert(%s);\n\n",	\
625 					__func__, __LINE__, #expr);	\
626 			BUG();						\
627 		}
628 #else /* !RBD_DEBUG */
629 #  define rbd_assert(expr)	((void) 0)
630 #endif /* !RBD_DEBUG */
631 
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633 
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636 				     struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638 					u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640 				u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642 
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645 
646 /*
647  * Return true if nothing else is pending.
648  */
649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651 	rbd_assert(pending->num_pending > 0);
652 
653 	if (*result && !pending->result)
654 		pending->result = *result;
655 	if (--pending->num_pending)
656 		return false;
657 
658 	*result = pending->result;
659 	return true;
660 }
661 
662 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663 {
664 	struct rbd_device *rbd_dev = disk->private_data;
665 	bool removing = false;
666 
667 	spin_lock_irq(&rbd_dev->lock);
668 	if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669 		removing = true;
670 	else
671 		rbd_dev->open_count++;
672 	spin_unlock_irq(&rbd_dev->lock);
673 	if (removing)
674 		return -ENOENT;
675 
676 	(void) get_device(&rbd_dev->dev);
677 
678 	return 0;
679 }
680 
681 static void rbd_release(struct gendisk *disk)
682 {
683 	struct rbd_device *rbd_dev = disk->private_data;
684 	unsigned long open_count_before;
685 
686 	spin_lock_irq(&rbd_dev->lock);
687 	open_count_before = rbd_dev->open_count--;
688 	spin_unlock_irq(&rbd_dev->lock);
689 	rbd_assert(open_count_before > 0);
690 
691 	put_device(&rbd_dev->dev);
692 }
693 
694 static const struct block_device_operations rbd_bd_ops = {
695 	.owner			= THIS_MODULE,
696 	.open			= rbd_open,
697 	.release		= rbd_release,
698 };
699 
700 /*
701  * Initialize an rbd client instance.  Success or not, this function
702  * consumes ceph_opts.  Caller holds client_mutex.
703  */
704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705 {
706 	struct rbd_client *rbdc;
707 	int ret = -ENOMEM;
708 
709 	dout("%s:\n", __func__);
710 	rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711 	if (!rbdc)
712 		goto out_opt;
713 
714 	kref_init(&rbdc->kref);
715 	INIT_LIST_HEAD(&rbdc->node);
716 
717 	rbdc->client = ceph_create_client(ceph_opts, rbdc);
718 	if (IS_ERR(rbdc->client))
719 		goto out_rbdc;
720 	ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721 
722 	ret = ceph_open_session(rbdc->client);
723 	if (ret < 0)
724 		goto out_client;
725 
726 	spin_lock(&rbd_client_list_lock);
727 	list_add_tail(&rbdc->node, &rbd_client_list);
728 	spin_unlock(&rbd_client_list_lock);
729 
730 	dout("%s: rbdc %p\n", __func__, rbdc);
731 
732 	return rbdc;
733 out_client:
734 	ceph_destroy_client(rbdc->client);
735 out_rbdc:
736 	kfree(rbdc);
737 out_opt:
738 	if (ceph_opts)
739 		ceph_destroy_options(ceph_opts);
740 	dout("%s: error %d\n", __func__, ret);
741 
742 	return ERR_PTR(ret);
743 }
744 
745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746 {
747 	kref_get(&rbdc->kref);
748 
749 	return rbdc;
750 }
751 
752 /*
753  * Find a ceph client with specific addr and configuration.  If
754  * found, bump its reference count.
755  */
756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757 {
758 	struct rbd_client *rbdc = NULL, *iter;
759 
760 	if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761 		return NULL;
762 
763 	spin_lock(&rbd_client_list_lock);
764 	list_for_each_entry(iter, &rbd_client_list, node) {
765 		if (!ceph_compare_options(ceph_opts, iter->client)) {
766 			__rbd_get_client(iter);
767 
768 			rbdc = iter;
769 			break;
770 		}
771 	}
772 	spin_unlock(&rbd_client_list_lock);
773 
774 	return rbdc;
775 }
776 
777 /*
778  * (Per device) rbd map options
779  */
780 enum {
781 	Opt_queue_depth,
782 	Opt_alloc_size,
783 	Opt_lock_timeout,
784 	/* int args above */
785 	Opt_pool_ns,
786 	Opt_compression_hint,
787 	/* string args above */
788 	Opt_read_only,
789 	Opt_read_write,
790 	Opt_lock_on_read,
791 	Opt_exclusive,
792 	Opt_notrim,
793 };
794 
795 enum {
796 	Opt_compression_hint_none,
797 	Opt_compression_hint_compressible,
798 	Opt_compression_hint_incompressible,
799 };
800 
801 static const struct constant_table rbd_param_compression_hint[] = {
802 	{"none",		Opt_compression_hint_none},
803 	{"compressible",	Opt_compression_hint_compressible},
804 	{"incompressible",	Opt_compression_hint_incompressible},
805 	{}
806 };
807 
808 static const struct fs_parameter_spec rbd_parameters[] = {
809 	fsparam_u32	("alloc_size",			Opt_alloc_size),
810 	fsparam_enum	("compression_hint",		Opt_compression_hint,
811 			 rbd_param_compression_hint),
812 	fsparam_flag	("exclusive",			Opt_exclusive),
813 	fsparam_flag	("lock_on_read",		Opt_lock_on_read),
814 	fsparam_u32	("lock_timeout",		Opt_lock_timeout),
815 	fsparam_flag	("notrim",			Opt_notrim),
816 	fsparam_string	("_pool_ns",			Opt_pool_ns),
817 	fsparam_u32	("queue_depth",			Opt_queue_depth),
818 	fsparam_flag	("read_only",			Opt_read_only),
819 	fsparam_flag	("read_write",			Opt_read_write),
820 	fsparam_flag	("ro",				Opt_read_only),
821 	fsparam_flag	("rw",				Opt_read_write),
822 	{}
823 };
824 
825 struct rbd_options {
826 	int	queue_depth;
827 	int	alloc_size;
828 	unsigned long	lock_timeout;
829 	bool	read_only;
830 	bool	lock_on_read;
831 	bool	exclusive;
832 	bool	trim;
833 
834 	u32 alloc_hint_flags;  /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835 };
836 
837 #define RBD_QUEUE_DEPTH_DEFAULT	BLKDEV_DEFAULT_RQ
838 #define RBD_ALLOC_SIZE_DEFAULT	(64 * 1024)
839 #define RBD_LOCK_TIMEOUT_DEFAULT 0  /* no timeout */
840 #define RBD_READ_ONLY_DEFAULT	false
841 #define RBD_LOCK_ON_READ_DEFAULT false
842 #define RBD_EXCLUSIVE_DEFAULT	false
843 #define RBD_TRIM_DEFAULT	true
844 
845 struct rbd_parse_opts_ctx {
846 	struct rbd_spec		*spec;
847 	struct ceph_options	*copts;
848 	struct rbd_options	*opts;
849 };
850 
851 static char* obj_op_name(enum obj_operation_type op_type)
852 {
853 	switch (op_type) {
854 	case OBJ_OP_READ:
855 		return "read";
856 	case OBJ_OP_WRITE:
857 		return "write";
858 	case OBJ_OP_DISCARD:
859 		return "discard";
860 	case OBJ_OP_ZEROOUT:
861 		return "zeroout";
862 	default:
863 		return "???";
864 	}
865 }
866 
867 /*
868  * Destroy ceph client
869  *
870  * Caller must hold rbd_client_list_lock.
871  */
872 static void rbd_client_release(struct kref *kref)
873 {
874 	struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875 
876 	dout("%s: rbdc %p\n", __func__, rbdc);
877 	spin_lock(&rbd_client_list_lock);
878 	list_del(&rbdc->node);
879 	spin_unlock(&rbd_client_list_lock);
880 
881 	ceph_destroy_client(rbdc->client);
882 	kfree(rbdc);
883 }
884 
885 /*
886  * Drop reference to ceph client node. If it's not referenced anymore, release
887  * it.
888  */
889 static void rbd_put_client(struct rbd_client *rbdc)
890 {
891 	if (rbdc)
892 		kref_put(&rbdc->kref, rbd_client_release);
893 }
894 
895 /*
896  * Get a ceph client with specific addr and configuration, if one does
897  * not exist create it.  Either way, ceph_opts is consumed by this
898  * function.
899  */
900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901 {
902 	struct rbd_client *rbdc;
903 	int ret;
904 
905 	mutex_lock(&client_mutex);
906 	rbdc = rbd_client_find(ceph_opts);
907 	if (rbdc) {
908 		ceph_destroy_options(ceph_opts);
909 
910 		/*
911 		 * Using an existing client.  Make sure ->pg_pools is up to
912 		 * date before we look up the pool id in do_rbd_add().
913 		 */
914 		ret = ceph_wait_for_latest_osdmap(rbdc->client,
915 					rbdc->client->options->mount_timeout);
916 		if (ret) {
917 			rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
918 			rbd_put_client(rbdc);
919 			rbdc = ERR_PTR(ret);
920 		}
921 	} else {
922 		rbdc = rbd_client_create(ceph_opts);
923 	}
924 	mutex_unlock(&client_mutex);
925 
926 	return rbdc;
927 }
928 
929 static bool rbd_image_format_valid(u32 image_format)
930 {
931 	return image_format == 1 || image_format == 2;
932 }
933 
934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935 {
936 	size_t size;
937 	u32 snap_count;
938 
939 	/* The header has to start with the magic rbd header text */
940 	if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
941 		return false;
942 
943 	/* The bio layer requires at least sector-sized I/O */
944 
945 	if (ondisk->options.order < SECTOR_SHIFT)
946 		return false;
947 
948 	/* If we use u64 in a few spots we may be able to loosen this */
949 
950 	if (ondisk->options.order > 8 * sizeof (int) - 1)
951 		return false;
952 
953 	/*
954 	 * The size of a snapshot header has to fit in a size_t, and
955 	 * that limits the number of snapshots.
956 	 */
957 	snap_count = le32_to_cpu(ondisk->snap_count);
958 	size = SIZE_MAX - sizeof (struct ceph_snap_context);
959 	if (snap_count > size / sizeof (__le64))
960 		return false;
961 
962 	/*
963 	 * Not only that, but the size of the entire the snapshot
964 	 * header must also be representable in a size_t.
965 	 */
966 	size -= snap_count * sizeof (__le64);
967 	if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968 		return false;
969 
970 	return true;
971 }
972 
973 /*
974  * returns the size of an object in the image
975  */
976 static u32 rbd_obj_bytes(struct rbd_image_header *header)
977 {
978 	return 1U << header->obj_order;
979 }
980 
981 static void rbd_init_layout(struct rbd_device *rbd_dev)
982 {
983 	if (rbd_dev->header.stripe_unit == 0 ||
984 	    rbd_dev->header.stripe_count == 0) {
985 		rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
986 		rbd_dev->header.stripe_count = 1;
987 	}
988 
989 	rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990 	rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991 	rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
992 	rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993 			  rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994 	RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995 }
996 
997 static void rbd_image_header_cleanup(struct rbd_image_header *header)
998 {
999 	kfree(header->object_prefix);
1000 	ceph_put_snap_context(header->snapc);
1001 	kfree(header->snap_sizes);
1002 	kfree(header->snap_names);
1003 
1004 	memset(header, 0, sizeof(*header));
1005 }
1006 
1007 /*
1008  * Fill an rbd image header with information from the given format 1
1009  * on-disk header.
1010  */
1011 static int rbd_header_from_disk(struct rbd_image_header *header,
1012 				struct rbd_image_header_ondisk *ondisk,
1013 				bool first_time)
1014 {
1015 	struct ceph_snap_context *snapc;
1016 	char *object_prefix = NULL;
1017 	char *snap_names = NULL;
1018 	u64 *snap_sizes = NULL;
1019 	u32 snap_count;
1020 	int ret = -ENOMEM;
1021 	u32 i;
1022 
1023 	/* Allocate this now to avoid having to handle failure below */
1024 
1025 	if (first_time) {
1026 		object_prefix = kstrndup(ondisk->object_prefix,
1027 					 sizeof(ondisk->object_prefix),
1028 					 GFP_KERNEL);
1029 		if (!object_prefix)
1030 			return -ENOMEM;
1031 	}
1032 
1033 	/* Allocate the snapshot context and fill it in */
1034 
1035 	snap_count = le32_to_cpu(ondisk->snap_count);
1036 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037 	if (!snapc)
1038 		goto out_err;
1039 	snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040 	if (snap_count) {
1041 		struct rbd_image_snap_ondisk *snaps;
1042 		u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043 
1044 		/* We'll keep a copy of the snapshot names... */
1045 
1046 		if (snap_names_len > (u64)SIZE_MAX)
1047 			goto out_2big;
1048 		snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1049 		if (!snap_names)
1050 			goto out_err;
1051 
1052 		/* ...as well as the array of their sizes. */
1053 		snap_sizes = kmalloc_array(snap_count,
1054 					   sizeof(*header->snap_sizes),
1055 					   GFP_KERNEL);
1056 		if (!snap_sizes)
1057 			goto out_err;
1058 
1059 		/*
1060 		 * Copy the names, and fill in each snapshot's id
1061 		 * and size.
1062 		 *
1063 		 * Note that rbd_dev_v1_header_info() guarantees the
1064 		 * ondisk buffer we're working with has
1065 		 * snap_names_len bytes beyond the end of the
1066 		 * snapshot id array, this memcpy() is safe.
1067 		 */
1068 		memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069 		snaps = ondisk->snaps;
1070 		for (i = 0; i < snap_count; i++) {
1071 			snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072 			snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073 		}
1074 	}
1075 
1076 	/* We won't fail any more, fill in the header */
1077 
1078 	if (first_time) {
1079 		header->object_prefix = object_prefix;
1080 		header->obj_order = ondisk->options.order;
1081 	}
1082 
1083 	/* The remaining fields always get updated (when we refresh) */
1084 
1085 	header->image_size = le64_to_cpu(ondisk->image_size);
1086 	header->snapc = snapc;
1087 	header->snap_names = snap_names;
1088 	header->snap_sizes = snap_sizes;
1089 
1090 	return 0;
1091 out_2big:
1092 	ret = -EIO;
1093 out_err:
1094 	kfree(snap_sizes);
1095 	kfree(snap_names);
1096 	ceph_put_snap_context(snapc);
1097 	kfree(object_prefix);
1098 
1099 	return ret;
1100 }
1101 
1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103 {
1104 	const char *snap_name;
1105 
1106 	rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107 
1108 	/* Skip over names until we find the one we are looking for */
1109 
1110 	snap_name = rbd_dev->header.snap_names;
1111 	while (which--)
1112 		snap_name += strlen(snap_name) + 1;
1113 
1114 	return kstrdup(snap_name, GFP_KERNEL);
1115 }
1116 
1117 /*
1118  * Snapshot id comparison function for use with qsort()/bsearch().
1119  * Note that result is for snapshots in *descending* order.
1120  */
1121 static int snapid_compare_reverse(const void *s1, const void *s2)
1122 {
1123 	u64 snap_id1 = *(u64 *)s1;
1124 	u64 snap_id2 = *(u64 *)s2;
1125 
1126 	if (snap_id1 < snap_id2)
1127 		return 1;
1128 	return snap_id1 == snap_id2 ? 0 : -1;
1129 }
1130 
1131 /*
1132  * Search a snapshot context to see if the given snapshot id is
1133  * present.
1134  *
1135  * Returns the position of the snapshot id in the array if it's found,
1136  * or BAD_SNAP_INDEX otherwise.
1137  *
1138  * Note: The snapshot array is in kept sorted (by the osd) in
1139  * reverse order, highest snapshot id first.
1140  */
1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142 {
1143 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144 	u64 *found;
1145 
1146 	found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1147 				sizeof (snap_id), snapid_compare_reverse);
1148 
1149 	return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150 }
1151 
1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153 					u64 snap_id)
1154 {
1155 	u32 which;
1156 	const char *snap_name;
1157 
1158 	which = rbd_dev_snap_index(rbd_dev, snap_id);
1159 	if (which == BAD_SNAP_INDEX)
1160 		return ERR_PTR(-ENOENT);
1161 
1162 	snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163 	return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164 }
1165 
1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167 {
1168 	if (snap_id == CEPH_NOSNAP)
1169 		return RBD_SNAP_HEAD_NAME;
1170 
1171 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172 	if (rbd_dev->image_format == 1)
1173 		return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174 
1175 	return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176 }
1177 
1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179 				u64 *snap_size)
1180 {
1181 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182 	if (snap_id == CEPH_NOSNAP) {
1183 		*snap_size = rbd_dev->header.image_size;
1184 	} else if (rbd_dev->image_format == 1) {
1185 		u32 which;
1186 
1187 		which = rbd_dev_snap_index(rbd_dev, snap_id);
1188 		if (which == BAD_SNAP_INDEX)
1189 			return -ENOENT;
1190 
1191 		*snap_size = rbd_dev->header.snap_sizes[which];
1192 	} else {
1193 		u64 size = 0;
1194 		int ret;
1195 
1196 		ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1197 		if (ret)
1198 			return ret;
1199 
1200 		*snap_size = size;
1201 	}
1202 	return 0;
1203 }
1204 
1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206 {
1207 	u64 snap_id = rbd_dev->spec->snap_id;
1208 	u64 size = 0;
1209 	int ret;
1210 
1211 	ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212 	if (ret)
1213 		return ret;
1214 
1215 	rbd_dev->mapping.size = size;
1216 	return 0;
1217 }
1218 
1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220 {
1221 	rbd_dev->mapping.size = 0;
1222 }
1223 
1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225 {
1226 	struct ceph_bio_iter it = *bio_pos;
1227 
1228 	ceph_bio_iter_advance(&it, off);
1229 	ceph_bio_iter_advance_step(&it, bytes, ({
1230 		memzero_bvec(&bv);
1231 	}));
1232 }
1233 
1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235 {
1236 	struct ceph_bvec_iter it = *bvec_pos;
1237 
1238 	ceph_bvec_iter_advance(&it, off);
1239 	ceph_bvec_iter_advance_step(&it, bytes, ({
1240 		memzero_bvec(&bv);
1241 	}));
1242 }
1243 
1244 /*
1245  * Zero a range in @obj_req data buffer defined by a bio (list) or
1246  * (private) bio_vec array.
1247  *
1248  * @off is relative to the start of the data buffer.
1249  */
1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251 			       u32 bytes)
1252 {
1253 	dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254 
1255 	switch (obj_req->img_request->data_type) {
1256 	case OBJ_REQUEST_BIO:
1257 		zero_bios(&obj_req->bio_pos, off, bytes);
1258 		break;
1259 	case OBJ_REQUEST_BVECS:
1260 	case OBJ_REQUEST_OWN_BVECS:
1261 		zero_bvecs(&obj_req->bvec_pos, off, bytes);
1262 		break;
1263 	default:
1264 		BUG();
1265 	}
1266 }
1267 
1268 static void rbd_obj_request_destroy(struct kref *kref);
1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270 {
1271 	rbd_assert(obj_request != NULL);
1272 	dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273 		kref_read(&obj_request->kref));
1274 	kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275 }
1276 
1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278 					struct rbd_obj_request *obj_request)
1279 {
1280 	rbd_assert(obj_request->img_request == NULL);
1281 
1282 	/* Image request now owns object's original reference */
1283 	obj_request->img_request = img_request;
1284 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285 }
1286 
1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288 					struct rbd_obj_request *obj_request)
1289 {
1290 	dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291 	list_del(&obj_request->ex.oe_item);
1292 	rbd_assert(obj_request->img_request == img_request);
1293 	rbd_obj_request_put(obj_request);
1294 }
1295 
1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297 {
1298 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1299 
1300 	dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301 	     __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302 	     obj_req->ex.oe_off, obj_req->ex.oe_len);
1303 	ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304 }
1305 
1306 /*
1307  * The default/initial value for all image request flags is 0.  Each
1308  * is conditionally set to 1 at image request initialization time
1309  * and currently never change thereafter.
1310  */
1311 static void img_request_layered_set(struct rbd_img_request *img_request)
1312 {
1313 	set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314 }
1315 
1316 static bool img_request_layered_test(struct rbd_img_request *img_request)
1317 {
1318 	return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319 }
1320 
1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322 {
1323 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324 
1325 	return !obj_req->ex.oe_off &&
1326 	       obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327 }
1328 
1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330 {
1331 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332 
1333 	return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334 					rbd_dev->layout.object_size;
1335 }
1336 
1337 /*
1338  * Must be called after rbd_obj_calc_img_extents().
1339  */
1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341 {
1342 	rbd_assert(obj_req->img_request->snapc);
1343 
1344 	if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345 		dout("%s %p objno %llu discard\n", __func__, obj_req,
1346 		     obj_req->ex.oe_objno);
1347 		return;
1348 	}
1349 
1350 	if (!obj_req->num_img_extents) {
1351 		dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352 		     obj_req->ex.oe_objno);
1353 		return;
1354 	}
1355 
1356 	if (rbd_obj_is_entire(obj_req) &&
1357 	    !obj_req->img_request->snapc->num_snaps) {
1358 		dout("%s %p objno %llu entire\n", __func__, obj_req,
1359 		     obj_req->ex.oe_objno);
1360 		return;
1361 	}
1362 
1363 	obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364 }
1365 
1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367 {
1368 	return ceph_file_extents_bytes(obj_req->img_extents,
1369 				       obj_req->num_img_extents);
1370 }
1371 
1372 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373 {
1374 	switch (img_req->op_type) {
1375 	case OBJ_OP_READ:
1376 		return false;
1377 	case OBJ_OP_WRITE:
1378 	case OBJ_OP_DISCARD:
1379 	case OBJ_OP_ZEROOUT:
1380 		return true;
1381 	default:
1382 		BUG();
1383 	}
1384 }
1385 
1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387 {
1388 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1389 	int result;
1390 
1391 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392 	     osd_req->r_result, obj_req);
1393 
1394 	/*
1395 	 * Writes aren't allowed to return a data payload.  In some
1396 	 * guarded write cases (e.g. stat + zero on an empty object)
1397 	 * a stat response makes it through, but we don't care.
1398 	 */
1399 	if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1400 		result = 0;
1401 	else
1402 		result = osd_req->r_result;
1403 
1404 	rbd_obj_handle_request(obj_req, result);
1405 }
1406 
1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408 {
1409 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1410 	struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411 	struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412 
1413 	osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414 	osd_req->r_snapid = obj_request->img_request->snap_id;
1415 }
1416 
1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418 {
1419 	struct rbd_obj_request *obj_request = osd_req->r_priv;
1420 
1421 	osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422 	ktime_get_real_ts64(&osd_req->r_mtime);
1423 	osd_req->r_data_offset = obj_request->ex.oe_off;
1424 }
1425 
1426 static struct ceph_osd_request *
1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428 			  struct ceph_snap_context *snapc, int num_ops)
1429 {
1430 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432 	struct ceph_osd_request *req;
1433 	const char *name_format = rbd_dev->image_format == 1 ?
1434 				      RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435 	int ret;
1436 
1437 	req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1438 	if (!req)
1439 		return ERR_PTR(-ENOMEM);
1440 
1441 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1442 	req->r_callback = rbd_osd_req_callback;
1443 	req->r_priv = obj_req;
1444 
1445 	/*
1446 	 * Data objects may be stored in a separate pool, but always in
1447 	 * the same namespace in that pool as the header in its pool.
1448 	 */
1449 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1450 	req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451 
1452 	ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1453 			       rbd_dev->header.object_prefix,
1454 			       obj_req->ex.oe_objno);
1455 	if (ret)
1456 		return ERR_PTR(ret);
1457 
1458 	return req;
1459 }
1460 
1461 static struct ceph_osd_request *
1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463 {
1464 	rbd_assert(obj_req->img_request->snapc);
1465 	return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1466 					 num_ops);
1467 }
1468 
1469 static struct rbd_obj_request *rbd_obj_request_create(void)
1470 {
1471 	struct rbd_obj_request *obj_request;
1472 
1473 	obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1474 	if (!obj_request)
1475 		return NULL;
1476 
1477 	ceph_object_extent_init(&obj_request->ex);
1478 	INIT_LIST_HEAD(&obj_request->osd_reqs);
1479 	mutex_init(&obj_request->state_mutex);
1480 	kref_init(&obj_request->kref);
1481 
1482 	dout("%s %p\n", __func__, obj_request);
1483 	return obj_request;
1484 }
1485 
1486 static void rbd_obj_request_destroy(struct kref *kref)
1487 {
1488 	struct rbd_obj_request *obj_request;
1489 	struct ceph_osd_request *osd_req;
1490 	u32 i;
1491 
1492 	obj_request = container_of(kref, struct rbd_obj_request, kref);
1493 
1494 	dout("%s: obj %p\n", __func__, obj_request);
1495 
1496 	while (!list_empty(&obj_request->osd_reqs)) {
1497 		osd_req = list_first_entry(&obj_request->osd_reqs,
1498 				    struct ceph_osd_request, r_private_item);
1499 		list_del_init(&osd_req->r_private_item);
1500 		ceph_osdc_put_request(osd_req);
1501 	}
1502 
1503 	switch (obj_request->img_request->data_type) {
1504 	case OBJ_REQUEST_NODATA:
1505 	case OBJ_REQUEST_BIO:
1506 	case OBJ_REQUEST_BVECS:
1507 		break;		/* Nothing to do */
1508 	case OBJ_REQUEST_OWN_BVECS:
1509 		kfree(obj_request->bvec_pos.bvecs);
1510 		break;
1511 	default:
1512 		BUG();
1513 	}
1514 
1515 	kfree(obj_request->img_extents);
1516 	if (obj_request->copyup_bvecs) {
1517 		for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518 			if (obj_request->copyup_bvecs[i].bv_page)
1519 				__free_page(obj_request->copyup_bvecs[i].bv_page);
1520 		}
1521 		kfree(obj_request->copyup_bvecs);
1522 	}
1523 
1524 	kmem_cache_free(rbd_obj_request_cache, obj_request);
1525 }
1526 
1527 /* It's OK to call this for a device with no parent */
1528 
1529 static void rbd_spec_put(struct rbd_spec *spec);
1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531 {
1532 	rbd_dev_remove_parent(rbd_dev);
1533 	rbd_spec_put(rbd_dev->parent_spec);
1534 	rbd_dev->parent_spec = NULL;
1535 	rbd_dev->parent_overlap = 0;
1536 }
1537 
1538 /*
1539  * Parent image reference counting is used to determine when an
1540  * image's parent fields can be safely torn down--after there are no
1541  * more in-flight requests to the parent image.  When the last
1542  * reference is dropped, cleaning them up is safe.
1543  */
1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545 {
1546 	int counter;
1547 
1548 	if (!rbd_dev->parent_spec)
1549 		return;
1550 
1551 	counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1552 	if (counter > 0)
1553 		return;
1554 
1555 	/* Last reference; clean up parent data structures */
1556 
1557 	if (!counter)
1558 		rbd_dev_unparent(rbd_dev);
1559 	else
1560 		rbd_warn(rbd_dev, "parent reference underflow");
1561 }
1562 
1563 /*
1564  * If an image has a non-zero parent overlap, get a reference to its
1565  * parent.
1566  *
1567  * Returns true if the rbd device has a parent with a non-zero
1568  * overlap and a reference for it was successfully taken, or
1569  * false otherwise.
1570  */
1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572 {
1573 	int counter = 0;
1574 
1575 	if (!rbd_dev->parent_spec)
1576 		return false;
1577 
1578 	if (rbd_dev->parent_overlap)
1579 		counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1580 
1581 	if (counter < 0)
1582 		rbd_warn(rbd_dev, "parent reference overflow");
1583 
1584 	return counter > 0;
1585 }
1586 
1587 static void rbd_img_request_init(struct rbd_img_request *img_request,
1588 				 struct rbd_device *rbd_dev,
1589 				 enum obj_operation_type op_type)
1590 {
1591 	memset(img_request, 0, sizeof(*img_request));
1592 
1593 	img_request->rbd_dev = rbd_dev;
1594 	img_request->op_type = op_type;
1595 
1596 	INIT_LIST_HEAD(&img_request->lock_item);
1597 	INIT_LIST_HEAD(&img_request->object_extents);
1598 	mutex_init(&img_request->state_mutex);
1599 }
1600 
1601 /*
1602  * Only snap_id is captured here, for reads.  For writes, snapshot
1603  * context is captured in rbd_img_object_requests() after exclusive
1604  * lock is ensured to be held.
1605  */
1606 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607 {
1608 	struct rbd_device *rbd_dev = img_req->rbd_dev;
1609 
1610 	lockdep_assert_held(&rbd_dev->header_rwsem);
1611 
1612 	if (!rbd_img_is_write(img_req))
1613 		img_req->snap_id = rbd_dev->spec->snap_id;
1614 
1615 	if (rbd_dev_parent_get(rbd_dev))
1616 		img_request_layered_set(img_req);
1617 }
1618 
1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620 {
1621 	struct rbd_obj_request *obj_request;
1622 	struct rbd_obj_request *next_obj_request;
1623 
1624 	dout("%s: img %p\n", __func__, img_request);
1625 
1626 	WARN_ON(!list_empty(&img_request->lock_item));
1627 	for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628 		rbd_img_obj_request_del(img_request, obj_request);
1629 
1630 	if (img_request_layered_test(img_request))
1631 		rbd_dev_parent_put(img_request->rbd_dev);
1632 
1633 	if (rbd_img_is_write(img_request))
1634 		ceph_put_snap_context(img_request->snapc);
1635 
1636 	if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637 		kmem_cache_free(rbd_img_request_cache, img_request);
1638 }
1639 
1640 #define BITS_PER_OBJ	2
1641 #define OBJS_PER_BYTE	(BITS_PER_BYTE / BITS_PER_OBJ)
1642 #define OBJ_MASK	((1 << BITS_PER_OBJ) - 1)
1643 
1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645 				   u64 *index, u8 *shift)
1646 {
1647 	u32 off;
1648 
1649 	rbd_assert(objno < rbd_dev->object_map_size);
1650 	*index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1651 	*shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652 }
1653 
1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655 {
1656 	u64 index;
1657 	u8 shift;
1658 
1659 	lockdep_assert_held(&rbd_dev->object_map_lock);
1660 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1661 	return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662 }
1663 
1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665 {
1666 	u64 index;
1667 	u8 shift;
1668 	u8 *p;
1669 
1670 	lockdep_assert_held(&rbd_dev->object_map_lock);
1671 	rbd_assert(!(val & ~OBJ_MASK));
1672 
1673 	__rbd_object_map_index(rbd_dev, objno, &index, &shift);
1674 	p = &rbd_dev->object_map[index];
1675 	*p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676 }
1677 
1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679 {
1680 	u8 state;
1681 
1682 	spin_lock(&rbd_dev->object_map_lock);
1683 	state = __rbd_object_map_get(rbd_dev, objno);
1684 	spin_unlock(&rbd_dev->object_map_lock);
1685 	return state;
1686 }
1687 
1688 static bool use_object_map(struct rbd_device *rbd_dev)
1689 {
1690 	/*
1691 	 * An image mapped read-only can't use the object map -- it isn't
1692 	 * loaded because the header lock isn't acquired.  Someone else can
1693 	 * write to the image and update the object map behind our back.
1694 	 *
1695 	 * A snapshot can't be written to, so using the object map is always
1696 	 * safe.
1697 	 */
1698 	if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699 		return false;
1700 
1701 	return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702 		!(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703 }
1704 
1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706 {
1707 	u8 state;
1708 
1709 	/* fall back to default logic if object map is disabled or invalid */
1710 	if (!use_object_map(rbd_dev))
1711 		return true;
1712 
1713 	state = rbd_object_map_get(rbd_dev, objno);
1714 	return state != OBJECT_NONEXISTENT;
1715 }
1716 
1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718 				struct ceph_object_id *oid)
1719 {
1720 	if (snap_id == CEPH_NOSNAP)
1721 		ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1722 				rbd_dev->spec->image_id);
1723 	else
1724 		ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725 				rbd_dev->spec->image_id, snap_id);
1726 }
1727 
1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729 {
1730 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731 	CEPH_DEFINE_OID_ONSTACK(oid);
1732 	u8 lock_type;
1733 	char *lock_tag;
1734 	struct ceph_locker *lockers;
1735 	u32 num_lockers;
1736 	bool broke_lock = false;
1737 	int ret;
1738 
1739 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1740 
1741 again:
1742 	ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743 			    CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1744 	if (ret != -EBUSY || broke_lock) {
1745 		if (ret == -EEXIST)
1746 			ret = 0; /* already locked by myself */
1747 		if (ret)
1748 			rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1749 		return ret;
1750 	}
1751 
1752 	ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1753 				 RBD_LOCK_NAME, &lock_type, &lock_tag,
1754 				 &lockers, &num_lockers);
1755 	if (ret) {
1756 		if (ret == -ENOENT)
1757 			goto again;
1758 
1759 		rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1760 		return ret;
1761 	}
1762 
1763 	kfree(lock_tag);
1764 	if (num_lockers == 0)
1765 		goto again;
1766 
1767 	rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1768 		 ENTITY_NAME(lockers[0].id.name));
1769 
1770 	ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1771 				  RBD_LOCK_NAME, lockers[0].id.cookie,
1772 				  &lockers[0].id.name);
1773 	ceph_free_lockers(lockers, num_lockers);
1774 	if (ret) {
1775 		if (ret == -ENOENT)
1776 			goto again;
1777 
1778 		rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1779 		return ret;
1780 	}
1781 
1782 	broke_lock = true;
1783 	goto again;
1784 }
1785 
1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787 {
1788 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789 	CEPH_DEFINE_OID_ONSTACK(oid);
1790 	int ret;
1791 
1792 	rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1793 
1794 	ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795 			      "");
1796 	if (ret && ret != -ENOENT)
1797 		rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1798 }
1799 
1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801 {
1802 	u8 struct_v;
1803 	u32 struct_len;
1804 	u32 header_len;
1805 	void *header_end;
1806 	int ret;
1807 
1808 	ceph_decode_32_safe(p, end, header_len, e_inval);
1809 	header_end = *p + header_len;
1810 
1811 	ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1812 				  &struct_len);
1813 	if (ret)
1814 		return ret;
1815 
1816 	ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817 
1818 	*p = header_end;
1819 	return 0;
1820 
1821 e_inval:
1822 	return -EINVAL;
1823 }
1824 
1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826 {
1827 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828 	CEPH_DEFINE_OID_ONSTACK(oid);
1829 	struct page **pages;
1830 	void *p, *end;
1831 	size_t reply_len;
1832 	u64 num_objects;
1833 	u64 object_map_bytes;
1834 	u64 object_map_size;
1835 	int num_pages;
1836 	int ret;
1837 
1838 	rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839 
1840 	num_objects = ceph_get_num_objects(&rbd_dev->layout,
1841 					   rbd_dev->mapping.size);
1842 	object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843 					    BITS_PER_BYTE);
1844 	num_pages = calc_pages_for(0, object_map_bytes) + 1;
1845 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846 	if (IS_ERR(pages))
1847 		return PTR_ERR(pages);
1848 
1849 	reply_len = num_pages * PAGE_SIZE;
1850 	rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1851 	ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1852 			     "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1853 			     NULL, 0, pages, &reply_len);
1854 	if (ret)
1855 		goto out;
1856 
1857 	p = page_address(pages[0]);
1858 	end = p + min(reply_len, (size_t)PAGE_SIZE);
1859 	ret = decode_object_map_header(&p, end, &object_map_size);
1860 	if (ret)
1861 		goto out;
1862 
1863 	if (object_map_size != num_objects) {
1864 		rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1865 			 object_map_size, num_objects);
1866 		ret = -EINVAL;
1867 		goto out;
1868 	}
1869 
1870 	if (offset_in_page(p) + object_map_bytes > reply_len) {
1871 		ret = -EINVAL;
1872 		goto out;
1873 	}
1874 
1875 	rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1876 	if (!rbd_dev->object_map) {
1877 		ret = -ENOMEM;
1878 		goto out;
1879 	}
1880 
1881 	rbd_dev->object_map_size = object_map_size;
1882 	ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1883 				   offset_in_page(p), object_map_bytes);
1884 
1885 out:
1886 	ceph_release_page_vector(pages, num_pages);
1887 	return ret;
1888 }
1889 
1890 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891 {
1892 	kvfree(rbd_dev->object_map);
1893 	rbd_dev->object_map = NULL;
1894 	rbd_dev->object_map_size = 0;
1895 }
1896 
1897 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898 {
1899 	int ret;
1900 
1901 	ret = __rbd_object_map_load(rbd_dev);
1902 	if (ret)
1903 		return ret;
1904 
1905 	ret = rbd_dev_v2_get_flags(rbd_dev);
1906 	if (ret) {
1907 		rbd_object_map_free(rbd_dev);
1908 		return ret;
1909 	}
1910 
1911 	if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912 		rbd_warn(rbd_dev, "object map is invalid");
1913 
1914 	return 0;
1915 }
1916 
1917 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918 {
1919 	int ret;
1920 
1921 	ret = rbd_object_map_lock(rbd_dev);
1922 	if (ret)
1923 		return ret;
1924 
1925 	ret = rbd_object_map_load(rbd_dev);
1926 	if (ret) {
1927 		rbd_object_map_unlock(rbd_dev);
1928 		return ret;
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935 {
1936 	rbd_object_map_free(rbd_dev);
1937 	rbd_object_map_unlock(rbd_dev);
1938 }
1939 
1940 /*
1941  * This function needs snap_id (or more precisely just something to
1942  * distinguish between HEAD and snapshot object maps), new_state and
1943  * current_state that were passed to rbd_object_map_update().
1944  *
1945  * To avoid allocating and stashing a context we piggyback on the OSD
1946  * request.  A HEAD update has two ops (assert_locked).  For new_state
1947  * and current_state we decode our own object_map_update op, encoded in
1948  * rbd_cls_object_map_update().
1949  */
1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951 					struct ceph_osd_request *osd_req)
1952 {
1953 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954 	struct ceph_osd_data *osd_data;
1955 	u64 objno;
1956 	u8 state, new_state, current_state;
1957 	bool has_current_state;
1958 	void *p;
1959 
1960 	if (osd_req->r_result)
1961 		return osd_req->r_result;
1962 
1963 	/*
1964 	 * Nothing to do for a snapshot object map.
1965 	 */
1966 	if (osd_req->r_num_ops == 1)
1967 		return 0;
1968 
1969 	/*
1970 	 * Update in-memory HEAD object map.
1971 	 */
1972 	rbd_assert(osd_req->r_num_ops == 2);
1973 	osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974 	rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975 
1976 	p = page_address(osd_data->pages[0]);
1977 	objno = ceph_decode_64(&p);
1978 	rbd_assert(objno == obj_req->ex.oe_objno);
1979 	rbd_assert(ceph_decode_64(&p) == objno + 1);
1980 	new_state = ceph_decode_8(&p);
1981 	has_current_state = ceph_decode_8(&p);
1982 	if (has_current_state)
1983 		current_state = ceph_decode_8(&p);
1984 
1985 	spin_lock(&rbd_dev->object_map_lock);
1986 	state = __rbd_object_map_get(rbd_dev, objno);
1987 	if (!has_current_state || current_state == state ||
1988 	    (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989 		__rbd_object_map_set(rbd_dev, objno, new_state);
1990 	spin_unlock(&rbd_dev->object_map_lock);
1991 
1992 	return 0;
1993 }
1994 
1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996 {
1997 	struct rbd_obj_request *obj_req = osd_req->r_priv;
1998 	int result;
1999 
2000 	dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001 	     osd_req->r_result, obj_req);
2002 
2003 	result = rbd_object_map_update_finish(obj_req, osd_req);
2004 	rbd_obj_handle_request(obj_req, result);
2005 }
2006 
2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008 {
2009 	u8 state = rbd_object_map_get(rbd_dev, objno);
2010 
2011 	if (state == new_state ||
2012 	    (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013 	    (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014 		return false;
2015 
2016 	return true;
2017 }
2018 
2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020 				     int which, u64 objno, u8 new_state,
2021 				     const u8 *current_state)
2022 {
2023 	struct page **pages;
2024 	void *p, *start;
2025 	int ret;
2026 
2027 	ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2028 	if (ret)
2029 		return ret;
2030 
2031 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2032 	if (IS_ERR(pages))
2033 		return PTR_ERR(pages);
2034 
2035 	p = start = page_address(pages[0]);
2036 	ceph_encode_64(&p, objno);
2037 	ceph_encode_64(&p, objno + 1);
2038 	ceph_encode_8(&p, new_state);
2039 	if (current_state) {
2040 		ceph_encode_8(&p, 1);
2041 		ceph_encode_8(&p, *current_state);
2042 	} else {
2043 		ceph_encode_8(&p, 0);
2044 	}
2045 
2046 	osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2047 					  false, true);
2048 	return 0;
2049 }
2050 
2051 /*
2052  * Return:
2053  *   0 - object map update sent
2054  *   1 - object map update isn't needed
2055  *  <0 - error
2056  */
2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058 				 u8 new_state, const u8 *current_state)
2059 {
2060 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062 	struct ceph_osd_request *req;
2063 	int num_ops = 1;
2064 	int which = 0;
2065 	int ret;
2066 
2067 	if (snap_id == CEPH_NOSNAP) {
2068 		if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2069 			return 1;
2070 
2071 		num_ops++; /* assert_locked */
2072 	}
2073 
2074 	req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2075 	if (!req)
2076 		return -ENOMEM;
2077 
2078 	list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2079 	req->r_callback = rbd_object_map_callback;
2080 	req->r_priv = obj_req;
2081 
2082 	rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2083 	ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2084 	req->r_flags = CEPH_OSD_FLAG_WRITE;
2085 	ktime_get_real_ts64(&req->r_mtime);
2086 
2087 	if (snap_id == CEPH_NOSNAP) {
2088 		/*
2089 		 * Protect against possible race conditions during lock
2090 		 * ownership transitions.
2091 		 */
2092 		ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2093 					     CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2094 		if (ret)
2095 			return ret;
2096 	}
2097 
2098 	ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2099 					new_state, current_state);
2100 	if (ret)
2101 		return ret;
2102 
2103 	ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104 	if (ret)
2105 		return ret;
2106 
2107 	ceph_osdc_start_request(osdc, req);
2108 	return 0;
2109 }
2110 
2111 static void prune_extents(struct ceph_file_extent *img_extents,
2112 			  u32 *num_img_extents, u64 overlap)
2113 {
2114 	u32 cnt = *num_img_extents;
2115 
2116 	/* drop extents completely beyond the overlap */
2117 	while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118 		cnt--;
2119 
2120 	if (cnt) {
2121 		struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122 
2123 		/* trim final overlapping extent */
2124 		if (ex->fe_off + ex->fe_len > overlap)
2125 			ex->fe_len = overlap - ex->fe_off;
2126 	}
2127 
2128 	*num_img_extents = cnt;
2129 }
2130 
2131 /*
2132  * Determine the byte range(s) covered by either just the object extent
2133  * or the entire object in the parent image.
2134  */
2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136 				    bool entire)
2137 {
2138 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139 	int ret;
2140 
2141 	if (!rbd_dev->parent_overlap)
2142 		return 0;
2143 
2144 	ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2145 				  entire ? 0 : obj_req->ex.oe_off,
2146 				  entire ? rbd_dev->layout.object_size :
2147 							obj_req->ex.oe_len,
2148 				  &obj_req->img_extents,
2149 				  &obj_req->num_img_extents);
2150 	if (ret)
2151 		return ret;
2152 
2153 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2154 		      rbd_dev->parent_overlap);
2155 	return 0;
2156 }
2157 
2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159 {
2160 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2161 
2162 	switch (obj_req->img_request->data_type) {
2163 	case OBJ_REQUEST_BIO:
2164 		osd_req_op_extent_osd_data_bio(osd_req, which,
2165 					       &obj_req->bio_pos,
2166 					       obj_req->ex.oe_len);
2167 		break;
2168 	case OBJ_REQUEST_BVECS:
2169 	case OBJ_REQUEST_OWN_BVECS:
2170 		rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171 							obj_req->ex.oe_len);
2172 		rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173 		osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174 						    &obj_req->bvec_pos);
2175 		break;
2176 	default:
2177 		BUG();
2178 	}
2179 }
2180 
2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182 {
2183 	struct page **pages;
2184 
2185 	/*
2186 	 * The response data for a STAT call consists of:
2187 	 *     le64 length;
2188 	 *     struct {
2189 	 *         le32 tv_sec;
2190 	 *         le32 tv_nsec;
2191 	 *     } mtime;
2192 	 */
2193 	pages = ceph_alloc_page_vector(1, GFP_NOIO);
2194 	if (IS_ERR(pages))
2195 		return PTR_ERR(pages);
2196 
2197 	osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2198 	osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199 				     8 + sizeof(struct ceph_timespec),
2200 				     0, false, true);
2201 	return 0;
2202 }
2203 
2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205 				u32 bytes)
2206 {
2207 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2208 	int ret;
2209 
2210 	ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2211 	if (ret)
2212 		return ret;
2213 
2214 	osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2215 					  obj_req->copyup_bvec_count, bytes);
2216 	return 0;
2217 }
2218 
2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220 {
2221 	obj_req->read_state = RBD_OBJ_READ_START;
2222 	return 0;
2223 }
2224 
2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226 				      int which)
2227 {
2228 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2229 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230 	u16 opcode;
2231 
2232 	if (!use_object_map(rbd_dev) ||
2233 	    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234 		osd_req_op_alloc_hint_init(osd_req, which++,
2235 					   rbd_dev->layout.object_size,
2236 					   rbd_dev->layout.object_size,
2237 					   rbd_dev->opts->alloc_hint_flags);
2238 	}
2239 
2240 	if (rbd_obj_is_entire(obj_req))
2241 		opcode = CEPH_OSD_OP_WRITEFULL;
2242 	else
2243 		opcode = CEPH_OSD_OP_WRITE;
2244 
2245 	osd_req_op_extent_init(osd_req, which, opcode,
2246 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2247 	rbd_osd_setup_data(osd_req, which);
2248 }
2249 
2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251 {
2252 	int ret;
2253 
2254 	/* reverse map the entire object onto the parent */
2255 	ret = rbd_obj_calc_img_extents(obj_req, true);
2256 	if (ret)
2257 		return ret;
2258 
2259 	obj_req->write_state = RBD_OBJ_WRITE_START;
2260 	return 0;
2261 }
2262 
2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264 {
2265 	return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266 					  CEPH_OSD_OP_ZERO;
2267 }
2268 
2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270 					int which)
2271 {
2272 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2273 
2274 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275 		rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276 		osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2277 	} else {
2278 		osd_req_op_extent_init(osd_req, which,
2279 				       truncate_or_zero_opcode(obj_req),
2280 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2281 				       0, 0);
2282 	}
2283 }
2284 
2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286 {
2287 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288 	u64 off, next_off;
2289 	int ret;
2290 
2291 	/*
2292 	 * Align the range to alloc_size boundary and punt on discards
2293 	 * that are too small to free up any space.
2294 	 *
2295 	 * alloc_size == object_size && is_tail() is a special case for
2296 	 * filestore with filestore_punch_hole = false, needed to allow
2297 	 * truncate (in addition to delete).
2298 	 */
2299 	if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300 	    !rbd_obj_is_tail(obj_req)) {
2301 		off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302 		next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303 				      rbd_dev->opts->alloc_size);
2304 		if (off >= next_off)
2305 			return 1;
2306 
2307 		dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308 		     obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309 		     off, next_off - off);
2310 		obj_req->ex.oe_off = off;
2311 		obj_req->ex.oe_len = next_off - off;
2312 	}
2313 
2314 	/* reverse map the entire object onto the parent */
2315 	ret = rbd_obj_calc_img_extents(obj_req, true);
2316 	if (ret)
2317 		return ret;
2318 
2319 	obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320 	if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321 		obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322 
2323 	obj_req->write_state = RBD_OBJ_WRITE_START;
2324 	return 0;
2325 }
2326 
2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328 					int which)
2329 {
2330 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2331 	u16 opcode;
2332 
2333 	if (rbd_obj_is_entire(obj_req)) {
2334 		if (obj_req->num_img_extents) {
2335 			if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336 				osd_req_op_init(osd_req, which++,
2337 						CEPH_OSD_OP_CREATE, 0);
2338 			opcode = CEPH_OSD_OP_TRUNCATE;
2339 		} else {
2340 			rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341 			osd_req_op_init(osd_req, which++,
2342 					CEPH_OSD_OP_DELETE, 0);
2343 			opcode = 0;
2344 		}
2345 	} else {
2346 		opcode = truncate_or_zero_opcode(obj_req);
2347 	}
2348 
2349 	if (opcode)
2350 		osd_req_op_extent_init(osd_req, which, opcode,
2351 				       obj_req->ex.oe_off, obj_req->ex.oe_len,
2352 				       0, 0);
2353 }
2354 
2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356 {
2357 	int ret;
2358 
2359 	/* reverse map the entire object onto the parent */
2360 	ret = rbd_obj_calc_img_extents(obj_req, true);
2361 	if (ret)
2362 		return ret;
2363 
2364 	if (!obj_req->num_img_extents) {
2365 		obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366 		if (rbd_obj_is_entire(obj_req))
2367 			obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368 	}
2369 
2370 	obj_req->write_state = RBD_OBJ_WRITE_START;
2371 	return 0;
2372 }
2373 
2374 static int count_write_ops(struct rbd_obj_request *obj_req)
2375 {
2376 	struct rbd_img_request *img_req = obj_req->img_request;
2377 
2378 	switch (img_req->op_type) {
2379 	case OBJ_OP_WRITE:
2380 		if (!use_object_map(img_req->rbd_dev) ||
2381 		    !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382 			return 2; /* setallochint + write/writefull */
2383 
2384 		return 1; /* write/writefull */
2385 	case OBJ_OP_DISCARD:
2386 		return 1; /* delete/truncate/zero */
2387 	case OBJ_OP_ZEROOUT:
2388 		if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389 		    !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390 			return 2; /* create + truncate */
2391 
2392 		return 1; /* delete/truncate/zero */
2393 	default:
2394 		BUG();
2395 	}
2396 }
2397 
2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399 				    int which)
2400 {
2401 	struct rbd_obj_request *obj_req = osd_req->r_priv;
2402 
2403 	switch (obj_req->img_request->op_type) {
2404 	case OBJ_OP_WRITE:
2405 		__rbd_osd_setup_write_ops(osd_req, which);
2406 		break;
2407 	case OBJ_OP_DISCARD:
2408 		__rbd_osd_setup_discard_ops(osd_req, which);
2409 		break;
2410 	case OBJ_OP_ZEROOUT:
2411 		__rbd_osd_setup_zeroout_ops(osd_req, which);
2412 		break;
2413 	default:
2414 		BUG();
2415 	}
2416 }
2417 
2418 /*
2419  * Prune the list of object requests (adjust offset and/or length, drop
2420  * redundant requests).  Prepare object request state machines and image
2421  * request state machine for execution.
2422  */
2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424 {
2425 	struct rbd_obj_request *obj_req, *next_obj_req;
2426 	int ret;
2427 
2428 	for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429 		switch (img_req->op_type) {
2430 		case OBJ_OP_READ:
2431 			ret = rbd_obj_init_read(obj_req);
2432 			break;
2433 		case OBJ_OP_WRITE:
2434 			ret = rbd_obj_init_write(obj_req);
2435 			break;
2436 		case OBJ_OP_DISCARD:
2437 			ret = rbd_obj_init_discard(obj_req);
2438 			break;
2439 		case OBJ_OP_ZEROOUT:
2440 			ret = rbd_obj_init_zeroout(obj_req);
2441 			break;
2442 		default:
2443 			BUG();
2444 		}
2445 		if (ret < 0)
2446 			return ret;
2447 		if (ret > 0) {
2448 			rbd_img_obj_request_del(img_req, obj_req);
2449 			continue;
2450 		}
2451 	}
2452 
2453 	img_req->state = RBD_IMG_START;
2454 	return 0;
2455 }
2456 
2457 union rbd_img_fill_iter {
2458 	struct ceph_bio_iter	bio_iter;
2459 	struct ceph_bvec_iter	bvec_iter;
2460 };
2461 
2462 struct rbd_img_fill_ctx {
2463 	enum obj_request_type	pos_type;
2464 	union rbd_img_fill_iter	*pos;
2465 	union rbd_img_fill_iter	iter;
2466 	ceph_object_extent_fn_t	set_pos_fn;
2467 	ceph_object_extent_fn_t	count_fn;
2468 	ceph_object_extent_fn_t	copy_fn;
2469 };
2470 
2471 static struct ceph_object_extent *alloc_object_extent(void *arg)
2472 {
2473 	struct rbd_img_request *img_req = arg;
2474 	struct rbd_obj_request *obj_req;
2475 
2476 	obj_req = rbd_obj_request_create();
2477 	if (!obj_req)
2478 		return NULL;
2479 
2480 	rbd_img_obj_request_add(img_req, obj_req);
2481 	return &obj_req->ex;
2482 }
2483 
2484 /*
2485  * While su != os && sc == 1 is technically not fancy (it's the same
2486  * layout as su == os && sc == 1), we can't use the nocopy path for it
2487  * because ->set_pos_fn() should be called only once per object.
2488  * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489  * treat su != os && sc == 1 as fancy.
2490  */
2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492 {
2493 	return l->stripe_unit != l->object_size;
2494 }
2495 
2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497 				       struct ceph_file_extent *img_extents,
2498 				       u32 num_img_extents,
2499 				       struct rbd_img_fill_ctx *fctx)
2500 {
2501 	u32 i;
2502 	int ret;
2503 
2504 	img_req->data_type = fctx->pos_type;
2505 
2506 	/*
2507 	 * Create object requests and set each object request's starting
2508 	 * position in the provided bio (list) or bio_vec array.
2509 	 */
2510 	fctx->iter = *fctx->pos;
2511 	for (i = 0; i < num_img_extents; i++) {
2512 		ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2513 					   img_extents[i].fe_off,
2514 					   img_extents[i].fe_len,
2515 					   &img_req->object_extents,
2516 					   alloc_object_extent, img_req,
2517 					   fctx->set_pos_fn, &fctx->iter);
2518 		if (ret)
2519 			return ret;
2520 	}
2521 
2522 	return __rbd_img_fill_request(img_req);
2523 }
2524 
2525 /*
2526  * Map a list of image extents to a list of object extents, create the
2527  * corresponding object requests (normally each to a different object,
2528  * but not always) and add them to @img_req.  For each object request,
2529  * set up its data descriptor to point to the corresponding chunk(s) of
2530  * @fctx->pos data buffer.
2531  *
2532  * Because ceph_file_to_extents() will merge adjacent object extents
2533  * together, each object request's data descriptor may point to multiple
2534  * different chunks of @fctx->pos data buffer.
2535  *
2536  * @fctx->pos data buffer is assumed to be large enough.
2537  */
2538 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539 				struct ceph_file_extent *img_extents,
2540 				u32 num_img_extents,
2541 				struct rbd_img_fill_ctx *fctx)
2542 {
2543 	struct rbd_device *rbd_dev = img_req->rbd_dev;
2544 	struct rbd_obj_request *obj_req;
2545 	u32 i;
2546 	int ret;
2547 
2548 	if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549 	    !rbd_layout_is_fancy(&rbd_dev->layout))
2550 		return rbd_img_fill_request_nocopy(img_req, img_extents,
2551 						   num_img_extents, fctx);
2552 
2553 	img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554 
2555 	/*
2556 	 * Create object requests and determine ->bvec_count for each object
2557 	 * request.  Note that ->bvec_count sum over all object requests may
2558 	 * be greater than the number of bio_vecs in the provided bio (list)
2559 	 * or bio_vec array because when mapped, those bio_vecs can straddle
2560 	 * stripe unit boundaries.
2561 	 */
2562 	fctx->iter = *fctx->pos;
2563 	for (i = 0; i < num_img_extents; i++) {
2564 		ret = ceph_file_to_extents(&rbd_dev->layout,
2565 					   img_extents[i].fe_off,
2566 					   img_extents[i].fe_len,
2567 					   &img_req->object_extents,
2568 					   alloc_object_extent, img_req,
2569 					   fctx->count_fn, &fctx->iter);
2570 		if (ret)
2571 			return ret;
2572 	}
2573 
2574 	for_each_obj_request(img_req, obj_req) {
2575 		obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2576 					      sizeof(*obj_req->bvec_pos.bvecs),
2577 					      GFP_NOIO);
2578 		if (!obj_req->bvec_pos.bvecs)
2579 			return -ENOMEM;
2580 	}
2581 
2582 	/*
2583 	 * Fill in each object request's private bio_vec array, splitting and
2584 	 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2585 	 */
2586 	fctx->iter = *fctx->pos;
2587 	for (i = 0; i < num_img_extents; i++) {
2588 		ret = ceph_iterate_extents(&rbd_dev->layout,
2589 					   img_extents[i].fe_off,
2590 					   img_extents[i].fe_len,
2591 					   &img_req->object_extents,
2592 					   fctx->copy_fn, &fctx->iter);
2593 		if (ret)
2594 			return ret;
2595 	}
2596 
2597 	return __rbd_img_fill_request(img_req);
2598 }
2599 
2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601 			       u64 off, u64 len)
2602 {
2603 	struct ceph_file_extent ex = { off, len };
2604 	union rbd_img_fill_iter dummy = {};
2605 	struct rbd_img_fill_ctx fctx = {
2606 		.pos_type = OBJ_REQUEST_NODATA,
2607 		.pos = &dummy,
2608 	};
2609 
2610 	return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2611 }
2612 
2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614 {
2615 	struct rbd_obj_request *obj_req =
2616 	    container_of(ex, struct rbd_obj_request, ex);
2617 	struct ceph_bio_iter *it = arg;
2618 
2619 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620 	obj_req->bio_pos = *it;
2621 	ceph_bio_iter_advance(it, bytes);
2622 }
2623 
2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625 {
2626 	struct rbd_obj_request *obj_req =
2627 	    container_of(ex, struct rbd_obj_request, ex);
2628 	struct ceph_bio_iter *it = arg;
2629 
2630 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631 	ceph_bio_iter_advance_step(it, bytes, ({
2632 		obj_req->bvec_count++;
2633 	}));
2634 
2635 }
2636 
2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638 {
2639 	struct rbd_obj_request *obj_req =
2640 	    container_of(ex, struct rbd_obj_request, ex);
2641 	struct ceph_bio_iter *it = arg;
2642 
2643 	dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644 	ceph_bio_iter_advance_step(it, bytes, ({
2645 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647 	}));
2648 }
2649 
2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651 				   struct ceph_file_extent *img_extents,
2652 				   u32 num_img_extents,
2653 				   struct ceph_bio_iter *bio_pos)
2654 {
2655 	struct rbd_img_fill_ctx fctx = {
2656 		.pos_type = OBJ_REQUEST_BIO,
2657 		.pos = (union rbd_img_fill_iter *)bio_pos,
2658 		.set_pos_fn = set_bio_pos,
2659 		.count_fn = count_bio_bvecs,
2660 		.copy_fn = copy_bio_bvecs,
2661 	};
2662 
2663 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664 				    &fctx);
2665 }
2666 
2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668 				 u64 off, u64 len, struct bio *bio)
2669 {
2670 	struct ceph_file_extent ex = { off, len };
2671 	struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672 
2673 	return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2674 }
2675 
2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677 {
2678 	struct rbd_obj_request *obj_req =
2679 	    container_of(ex, struct rbd_obj_request, ex);
2680 	struct ceph_bvec_iter *it = arg;
2681 
2682 	obj_req->bvec_pos = *it;
2683 	ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684 	ceph_bvec_iter_advance(it, bytes);
2685 }
2686 
2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688 {
2689 	struct rbd_obj_request *obj_req =
2690 	    container_of(ex, struct rbd_obj_request, ex);
2691 	struct ceph_bvec_iter *it = arg;
2692 
2693 	ceph_bvec_iter_advance_step(it, bytes, ({
2694 		obj_req->bvec_count++;
2695 	}));
2696 }
2697 
2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699 {
2700 	struct rbd_obj_request *obj_req =
2701 	    container_of(ex, struct rbd_obj_request, ex);
2702 	struct ceph_bvec_iter *it = arg;
2703 
2704 	ceph_bvec_iter_advance_step(it, bytes, ({
2705 		obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706 		obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707 	}));
2708 }
2709 
2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711 				     struct ceph_file_extent *img_extents,
2712 				     u32 num_img_extents,
2713 				     struct ceph_bvec_iter *bvec_pos)
2714 {
2715 	struct rbd_img_fill_ctx fctx = {
2716 		.pos_type = OBJ_REQUEST_BVECS,
2717 		.pos = (union rbd_img_fill_iter *)bvec_pos,
2718 		.set_pos_fn = set_bvec_pos,
2719 		.count_fn = count_bvecs,
2720 		.copy_fn = copy_bvecs,
2721 	};
2722 
2723 	return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724 				    &fctx);
2725 }
2726 
2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728 				   struct ceph_file_extent *img_extents,
2729 				   u32 num_img_extents,
2730 				   struct bio_vec *bvecs)
2731 {
2732 	struct ceph_bvec_iter it = {
2733 		.bvecs = bvecs,
2734 		.iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2735 							     num_img_extents) },
2736 	};
2737 
2738 	return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739 					 &it);
2740 }
2741 
2742 static void rbd_img_handle_request_work(struct work_struct *work)
2743 {
2744 	struct rbd_img_request *img_req =
2745 	    container_of(work, struct rbd_img_request, work);
2746 
2747 	rbd_img_handle_request(img_req, img_req->work_result);
2748 }
2749 
2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751 {
2752 	INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753 	img_req->work_result = result;
2754 	queue_work(rbd_wq, &img_req->work);
2755 }
2756 
2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758 {
2759 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760 
2761 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2762 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763 		return true;
2764 	}
2765 
2766 	dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767 	     obj_req->ex.oe_objno);
2768 	return false;
2769 }
2770 
2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772 {
2773 	struct ceph_osd_request *osd_req;
2774 	int ret;
2775 
2776 	osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2777 	if (IS_ERR(osd_req))
2778 		return PTR_ERR(osd_req);
2779 
2780 	osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2781 			       obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2782 	rbd_osd_setup_data(osd_req, 0);
2783 	rbd_osd_format_read(osd_req);
2784 
2785 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2786 	if (ret)
2787 		return ret;
2788 
2789 	rbd_osd_submit(osd_req);
2790 	return 0;
2791 }
2792 
2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794 {
2795 	struct rbd_img_request *img_req = obj_req->img_request;
2796 	struct rbd_device *parent = img_req->rbd_dev->parent;
2797 	struct rbd_img_request *child_img_req;
2798 	int ret;
2799 
2800 	child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2801 	if (!child_img_req)
2802 		return -ENOMEM;
2803 
2804 	rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2805 	__set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806 	child_img_req->obj_request = obj_req;
2807 
2808 	down_read(&parent->header_rwsem);
2809 	rbd_img_capture_header(child_img_req);
2810 	up_read(&parent->header_rwsem);
2811 
2812 	dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813 	     obj_req);
2814 
2815 	if (!rbd_img_is_write(img_req)) {
2816 		switch (img_req->data_type) {
2817 		case OBJ_REQUEST_BIO:
2818 			ret = __rbd_img_fill_from_bio(child_img_req,
2819 						      obj_req->img_extents,
2820 						      obj_req->num_img_extents,
2821 						      &obj_req->bio_pos);
2822 			break;
2823 		case OBJ_REQUEST_BVECS:
2824 		case OBJ_REQUEST_OWN_BVECS:
2825 			ret = __rbd_img_fill_from_bvecs(child_img_req,
2826 						      obj_req->img_extents,
2827 						      obj_req->num_img_extents,
2828 						      &obj_req->bvec_pos);
2829 			break;
2830 		default:
2831 			BUG();
2832 		}
2833 	} else {
2834 		ret = rbd_img_fill_from_bvecs(child_img_req,
2835 					      obj_req->img_extents,
2836 					      obj_req->num_img_extents,
2837 					      obj_req->copyup_bvecs);
2838 	}
2839 	if (ret) {
2840 		rbd_img_request_destroy(child_img_req);
2841 		return ret;
2842 	}
2843 
2844 	/* avoid parent chain recursion */
2845 	rbd_img_schedule(child_img_req, 0);
2846 	return 0;
2847 }
2848 
2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850 {
2851 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852 	int ret;
2853 
2854 again:
2855 	switch (obj_req->read_state) {
2856 	case RBD_OBJ_READ_START:
2857 		rbd_assert(!*result);
2858 
2859 		if (!rbd_obj_may_exist(obj_req)) {
2860 			*result = -ENOENT;
2861 			obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862 			goto again;
2863 		}
2864 
2865 		ret = rbd_obj_read_object(obj_req);
2866 		if (ret) {
2867 			*result = ret;
2868 			return true;
2869 		}
2870 		obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871 		return false;
2872 	case RBD_OBJ_READ_OBJECT:
2873 		if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874 			/* reverse map this object extent onto the parent */
2875 			ret = rbd_obj_calc_img_extents(obj_req, false);
2876 			if (ret) {
2877 				*result = ret;
2878 				return true;
2879 			}
2880 			if (obj_req->num_img_extents) {
2881 				ret = rbd_obj_read_from_parent(obj_req);
2882 				if (ret) {
2883 					*result = ret;
2884 					return true;
2885 				}
2886 				obj_req->read_state = RBD_OBJ_READ_PARENT;
2887 				return false;
2888 			}
2889 		}
2890 
2891 		/*
2892 		 * -ENOENT means a hole in the image -- zero-fill the entire
2893 		 * length of the request.  A short read also implies zero-fill
2894 		 * to the end of the request.
2895 		 */
2896 		if (*result == -ENOENT) {
2897 			rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2898 			*result = 0;
2899 		} else if (*result >= 0) {
2900 			if (*result < obj_req->ex.oe_len)
2901 				rbd_obj_zero_range(obj_req, *result,
2902 						obj_req->ex.oe_len - *result);
2903 			else
2904 				rbd_assert(*result == obj_req->ex.oe_len);
2905 			*result = 0;
2906 		}
2907 		return true;
2908 	case RBD_OBJ_READ_PARENT:
2909 		/*
2910 		 * The parent image is read only up to the overlap -- zero-fill
2911 		 * from the overlap to the end of the request.
2912 		 */
2913 		if (!*result) {
2914 			u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915 
2916 			if (obj_overlap < obj_req->ex.oe_len)
2917 				rbd_obj_zero_range(obj_req, obj_overlap,
2918 					    obj_req->ex.oe_len - obj_overlap);
2919 		}
2920 		return true;
2921 	default:
2922 		BUG();
2923 	}
2924 }
2925 
2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927 {
2928 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929 
2930 	if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2931 		obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932 
2933 	if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934 	    (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935 		dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936 		return true;
2937 	}
2938 
2939 	return false;
2940 }
2941 
2942 /*
2943  * Return:
2944  *   0 - object map update sent
2945  *   1 - object map update isn't needed
2946  *  <0 - error
2947  */
2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949 {
2950 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951 	u8 new_state;
2952 
2953 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954 		return 1;
2955 
2956 	if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957 		new_state = OBJECT_PENDING;
2958 	else
2959 		new_state = OBJECT_EXISTS;
2960 
2961 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962 }
2963 
2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965 {
2966 	struct ceph_osd_request *osd_req;
2967 	int num_ops = count_write_ops(obj_req);
2968 	int which = 0;
2969 	int ret;
2970 
2971 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972 		num_ops++; /* stat */
2973 
2974 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975 	if (IS_ERR(osd_req))
2976 		return PTR_ERR(osd_req);
2977 
2978 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979 		ret = rbd_osd_setup_stat(osd_req, which++);
2980 		if (ret)
2981 			return ret;
2982 	}
2983 
2984 	rbd_osd_setup_write_ops(osd_req, which);
2985 	rbd_osd_format_write(osd_req);
2986 
2987 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2988 	if (ret)
2989 		return ret;
2990 
2991 	rbd_osd_submit(osd_req);
2992 	return 0;
2993 }
2994 
2995 /*
2996  * copyup_bvecs pages are never highmem pages
2997  */
2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999 {
3000 	struct ceph_bvec_iter it = {
3001 		.bvecs = bvecs,
3002 		.iter = { .bi_size = bytes },
3003 	};
3004 
3005 	ceph_bvec_iter_advance_step(&it, bytes, ({
3006 		if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007 			return false;
3008 	}));
3009 	return true;
3010 }
3011 
3012 #define MODS_ONLY	U32_MAX
3013 
3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015 				      u32 bytes)
3016 {
3017 	struct ceph_osd_request *osd_req;
3018 	int ret;
3019 
3020 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021 	rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022 
3023 	osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3024 	if (IS_ERR(osd_req))
3025 		return PTR_ERR(osd_req);
3026 
3027 	ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3028 	if (ret)
3029 		return ret;
3030 
3031 	rbd_osd_format_write(osd_req);
3032 
3033 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3034 	if (ret)
3035 		return ret;
3036 
3037 	rbd_osd_submit(osd_req);
3038 	return 0;
3039 }
3040 
3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042 					u32 bytes)
3043 {
3044 	struct ceph_osd_request *osd_req;
3045 	int num_ops = count_write_ops(obj_req);
3046 	int which = 0;
3047 	int ret;
3048 
3049 	dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050 
3051 	if (bytes != MODS_ONLY)
3052 		num_ops++; /* copyup */
3053 
3054 	osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055 	if (IS_ERR(osd_req))
3056 		return PTR_ERR(osd_req);
3057 
3058 	if (bytes != MODS_ONLY) {
3059 		ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3060 		if (ret)
3061 			return ret;
3062 	}
3063 
3064 	rbd_osd_setup_write_ops(osd_req, which);
3065 	rbd_osd_format_write(osd_req);
3066 
3067 	ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3068 	if (ret)
3069 		return ret;
3070 
3071 	rbd_osd_submit(osd_req);
3072 	return 0;
3073 }
3074 
3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076 {
3077 	u32 i;
3078 
3079 	rbd_assert(!obj_req->copyup_bvecs);
3080 	obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3081 	obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3082 					sizeof(*obj_req->copyup_bvecs),
3083 					GFP_NOIO);
3084 	if (!obj_req->copyup_bvecs)
3085 		return -ENOMEM;
3086 
3087 	for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088 		unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089 		struct page *page = alloc_page(GFP_NOIO);
3090 
3091 		if (!page)
3092 			return -ENOMEM;
3093 
3094 		bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3095 		obj_overlap -= len;
3096 	}
3097 
3098 	rbd_assert(!obj_overlap);
3099 	return 0;
3100 }
3101 
3102 /*
3103  * The target object doesn't exist.  Read the data for the entire
3104  * target object up to the overlap point (if any) from the parent,
3105  * so we can use it for a copyup.
3106  */
3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108 {
3109 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110 	int ret;
3111 
3112 	rbd_assert(obj_req->num_img_extents);
3113 	prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3114 		      rbd_dev->parent_overlap);
3115 	if (!obj_req->num_img_extents) {
3116 		/*
3117 		 * The overlap has become 0 (most likely because the
3118 		 * image has been flattened).  Re-submit the original write
3119 		 * request -- pass MODS_ONLY since the copyup isn't needed
3120 		 * anymore.
3121 		 */
3122 		return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123 	}
3124 
3125 	ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3126 	if (ret)
3127 		return ret;
3128 
3129 	return rbd_obj_read_from_parent(obj_req);
3130 }
3131 
3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133 {
3134 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135 	struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136 	u8 new_state;
3137 	u32 i;
3138 	int ret;
3139 
3140 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141 
3142 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143 		return;
3144 
3145 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146 		return;
3147 
3148 	for (i = 0; i < snapc->num_snaps; i++) {
3149 		if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150 		    i + 1 < snapc->num_snaps)
3151 			new_state = OBJECT_EXISTS_CLEAN;
3152 		else
3153 			new_state = OBJECT_EXISTS;
3154 
3155 		ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3156 					    new_state, NULL);
3157 		if (ret < 0) {
3158 			obj_req->pending.result = ret;
3159 			return;
3160 		}
3161 
3162 		rbd_assert(!ret);
3163 		obj_req->pending.num_pending++;
3164 	}
3165 }
3166 
3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168 {
3169 	u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170 	int ret;
3171 
3172 	rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173 
3174 	/*
3175 	 * Only send non-zero copyup data to save some I/O and network
3176 	 * bandwidth -- zero copyup data is equivalent to the object not
3177 	 * existing.
3178 	 */
3179 	if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180 		bytes = 0;
3181 
3182 	if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183 		/*
3184 		 * Send a copyup request with an empty snapshot context to
3185 		 * deep-copyup the object through all existing snapshots.
3186 		 * A second request with the current snapshot context will be
3187 		 * sent for the actual modification.
3188 		 */
3189 		ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190 		if (ret) {
3191 			obj_req->pending.result = ret;
3192 			return;
3193 		}
3194 
3195 		obj_req->pending.num_pending++;
3196 		bytes = MODS_ONLY;
3197 	}
3198 
3199 	ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200 	if (ret) {
3201 		obj_req->pending.result = ret;
3202 		return;
3203 	}
3204 
3205 	obj_req->pending.num_pending++;
3206 }
3207 
3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209 {
3210 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211 	int ret;
3212 
3213 again:
3214 	switch (obj_req->copyup_state) {
3215 	case RBD_OBJ_COPYUP_START:
3216 		rbd_assert(!*result);
3217 
3218 		ret = rbd_obj_copyup_read_parent(obj_req);
3219 		if (ret) {
3220 			*result = ret;
3221 			return true;
3222 		}
3223 		if (obj_req->num_img_extents)
3224 			obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225 		else
3226 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227 		return false;
3228 	case RBD_OBJ_COPYUP_READ_PARENT:
3229 		if (*result)
3230 			return true;
3231 
3232 		if (is_zero_bvecs(obj_req->copyup_bvecs,
3233 				  rbd_obj_img_extents_bytes(obj_req))) {
3234 			dout("%s %p detected zeros\n", __func__, obj_req);
3235 			obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236 		}
3237 
3238 		rbd_obj_copyup_object_maps(obj_req);
3239 		if (!obj_req->pending.num_pending) {
3240 			*result = obj_req->pending.result;
3241 			obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242 			goto again;
3243 		}
3244 		obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245 		return false;
3246 	case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247 		if (!pending_result_dec(&obj_req->pending, result))
3248 			return false;
3249 		fallthrough;
3250 	case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251 		if (*result) {
3252 			rbd_warn(rbd_dev, "snap object map update failed: %d",
3253 				 *result);
3254 			return true;
3255 		}
3256 
3257 		rbd_obj_copyup_write_object(obj_req);
3258 		if (!obj_req->pending.num_pending) {
3259 			*result = obj_req->pending.result;
3260 			obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261 			goto again;
3262 		}
3263 		obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264 		return false;
3265 	case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266 		if (!pending_result_dec(&obj_req->pending, result))
3267 			return false;
3268 		fallthrough;
3269 	case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270 		return true;
3271 	default:
3272 		BUG();
3273 	}
3274 }
3275 
3276 /*
3277  * Return:
3278  *   0 - object map update sent
3279  *   1 - object map update isn't needed
3280  *  <0 - error
3281  */
3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283 {
3284 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285 	u8 current_state = OBJECT_PENDING;
3286 
3287 	if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288 		return 1;
3289 
3290 	if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291 		return 1;
3292 
3293 	return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294 				     &current_state);
3295 }
3296 
3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298 {
3299 	struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300 	int ret;
3301 
3302 again:
3303 	switch (obj_req->write_state) {
3304 	case RBD_OBJ_WRITE_START:
3305 		rbd_assert(!*result);
3306 
3307 		rbd_obj_set_copyup_enabled(obj_req);
3308 		if (rbd_obj_write_is_noop(obj_req))
3309 			return true;
3310 
3311 		ret = rbd_obj_write_pre_object_map(obj_req);
3312 		if (ret < 0) {
3313 			*result = ret;
3314 			return true;
3315 		}
3316 		obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317 		if (ret > 0)
3318 			goto again;
3319 		return false;
3320 	case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321 		if (*result) {
3322 			rbd_warn(rbd_dev, "pre object map update failed: %d",
3323 				 *result);
3324 			return true;
3325 		}
3326 		ret = rbd_obj_write_object(obj_req);
3327 		if (ret) {
3328 			*result = ret;
3329 			return true;
3330 		}
3331 		obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332 		return false;
3333 	case RBD_OBJ_WRITE_OBJECT:
3334 		if (*result == -ENOENT) {
3335 			if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336 				*result = 0;
3337 				obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338 				obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339 				goto again;
3340 			}
3341 			/*
3342 			 * On a non-existent object:
3343 			 *   delete - -ENOENT, truncate/zero - 0
3344 			 */
3345 			if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346 				*result = 0;
3347 		}
3348 		if (*result)
3349 			return true;
3350 
3351 		obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352 		goto again;
3353 	case __RBD_OBJ_WRITE_COPYUP:
3354 		if (!rbd_obj_advance_copyup(obj_req, result))
3355 			return false;
3356 		fallthrough;
3357 	case RBD_OBJ_WRITE_COPYUP:
3358 		if (*result) {
3359 			rbd_warn(rbd_dev, "copyup failed: %d", *result);
3360 			return true;
3361 		}
3362 		ret = rbd_obj_write_post_object_map(obj_req);
3363 		if (ret < 0) {
3364 			*result = ret;
3365 			return true;
3366 		}
3367 		obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368 		if (ret > 0)
3369 			goto again;
3370 		return false;
3371 	case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372 		if (*result)
3373 			rbd_warn(rbd_dev, "post object map update failed: %d",
3374 				 *result);
3375 		return true;
3376 	default:
3377 		BUG();
3378 	}
3379 }
3380 
3381 /*
3382  * Return true if @obj_req is completed.
3383  */
3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385 				     int *result)
3386 {
3387 	struct rbd_img_request *img_req = obj_req->img_request;
3388 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3389 	bool done;
3390 
3391 	mutex_lock(&obj_req->state_mutex);
3392 	if (!rbd_img_is_write(img_req))
3393 		done = rbd_obj_advance_read(obj_req, result);
3394 	else
3395 		done = rbd_obj_advance_write(obj_req, result);
3396 	mutex_unlock(&obj_req->state_mutex);
3397 
3398 	if (done && *result) {
3399 		rbd_assert(*result < 0);
3400 		rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3401 			 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3402 			 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403 	}
3404 	return done;
3405 }
3406 
3407 /*
3408  * This is open-coded in rbd_img_handle_request() to avoid parent chain
3409  * recursion.
3410  */
3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412 {
3413 	if (__rbd_obj_handle_request(obj_req, &result))
3414 		rbd_img_handle_request(obj_req->img_request, result);
3415 }
3416 
3417 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418 {
3419 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3420 
3421 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422 		return false;
3423 
3424 	if (rbd_is_ro(rbd_dev))
3425 		return false;
3426 
3427 	rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428 	if (rbd_dev->opts->lock_on_read ||
3429 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430 		return true;
3431 
3432 	return rbd_img_is_write(img_req);
3433 }
3434 
3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436 {
3437 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3438 	bool locked;
3439 
3440 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3441 	locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442 	spin_lock(&rbd_dev->lock_lists_lock);
3443 	rbd_assert(list_empty(&img_req->lock_item));
3444 	if (!locked)
3445 		list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3446 	else
3447 		list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3448 	spin_unlock(&rbd_dev->lock_lists_lock);
3449 	return locked;
3450 }
3451 
3452 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453 {
3454 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3455 	bool need_wakeup;
3456 
3457 	lockdep_assert_held(&rbd_dev->lock_rwsem);
3458 	spin_lock(&rbd_dev->lock_lists_lock);
3459 	rbd_assert(!list_empty(&img_req->lock_item));
3460 	list_del_init(&img_req->lock_item);
3461 	need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3462 		       list_empty(&rbd_dev->running_list));
3463 	spin_unlock(&rbd_dev->lock_lists_lock);
3464 	if (need_wakeup)
3465 		complete(&rbd_dev->releasing_wait);
3466 }
3467 
3468 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3469 {
3470 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3471 
3472 	if (!need_exclusive_lock(img_req))
3473 		return 1;
3474 
3475 	if (rbd_lock_add_request(img_req))
3476 		return 1;
3477 
3478 	if (rbd_dev->opts->exclusive) {
3479 		WARN_ON(1); /* lock got released? */
3480 		return -EROFS;
3481 	}
3482 
3483 	/*
3484 	 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3485 	 * and cancel_delayed_work() in wake_lock_waiters().
3486 	 */
3487 	dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3488 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3489 	return 0;
3490 }
3491 
3492 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3493 {
3494 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3495 	struct rbd_obj_request *obj_req;
3496 
3497 	rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3498 	rbd_assert(!need_exclusive_lock(img_req) ||
3499 		   __rbd_is_lock_owner(rbd_dev));
3500 
3501 	if (rbd_img_is_write(img_req)) {
3502 		rbd_assert(!img_req->snapc);
3503 		down_read(&rbd_dev->header_rwsem);
3504 		img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3505 		up_read(&rbd_dev->header_rwsem);
3506 	}
3507 
3508 	for_each_obj_request(img_req, obj_req) {
3509 		int result = 0;
3510 
3511 		if (__rbd_obj_handle_request(obj_req, &result)) {
3512 			if (result) {
3513 				img_req->pending.result = result;
3514 				return;
3515 			}
3516 		} else {
3517 			img_req->pending.num_pending++;
3518 		}
3519 	}
3520 }
3521 
3522 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3523 {
3524 	int ret;
3525 
3526 again:
3527 	switch (img_req->state) {
3528 	case RBD_IMG_START:
3529 		rbd_assert(!*result);
3530 
3531 		ret = rbd_img_exclusive_lock(img_req);
3532 		if (ret < 0) {
3533 			*result = ret;
3534 			return true;
3535 		}
3536 		img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3537 		if (ret > 0)
3538 			goto again;
3539 		return false;
3540 	case RBD_IMG_EXCLUSIVE_LOCK:
3541 		if (*result)
3542 			return true;
3543 
3544 		rbd_img_object_requests(img_req);
3545 		if (!img_req->pending.num_pending) {
3546 			*result = img_req->pending.result;
3547 			img_req->state = RBD_IMG_OBJECT_REQUESTS;
3548 			goto again;
3549 		}
3550 		img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3551 		return false;
3552 	case __RBD_IMG_OBJECT_REQUESTS:
3553 		if (!pending_result_dec(&img_req->pending, result))
3554 			return false;
3555 		fallthrough;
3556 	case RBD_IMG_OBJECT_REQUESTS:
3557 		return true;
3558 	default:
3559 		BUG();
3560 	}
3561 }
3562 
3563 /*
3564  * Return true if @img_req is completed.
3565  */
3566 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3567 				     int *result)
3568 {
3569 	struct rbd_device *rbd_dev = img_req->rbd_dev;
3570 	bool done;
3571 
3572 	if (need_exclusive_lock(img_req)) {
3573 		down_read(&rbd_dev->lock_rwsem);
3574 		mutex_lock(&img_req->state_mutex);
3575 		done = rbd_img_advance(img_req, result);
3576 		if (done)
3577 			rbd_lock_del_request(img_req);
3578 		mutex_unlock(&img_req->state_mutex);
3579 		up_read(&rbd_dev->lock_rwsem);
3580 	} else {
3581 		mutex_lock(&img_req->state_mutex);
3582 		done = rbd_img_advance(img_req, result);
3583 		mutex_unlock(&img_req->state_mutex);
3584 	}
3585 
3586 	if (done && *result) {
3587 		rbd_assert(*result < 0);
3588 		rbd_warn(rbd_dev, "%s%s result %d",
3589 		      test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3590 		      obj_op_name(img_req->op_type), *result);
3591 	}
3592 	return done;
3593 }
3594 
3595 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3596 {
3597 again:
3598 	if (!__rbd_img_handle_request(img_req, &result))
3599 		return;
3600 
3601 	if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3602 		struct rbd_obj_request *obj_req = img_req->obj_request;
3603 
3604 		rbd_img_request_destroy(img_req);
3605 		if (__rbd_obj_handle_request(obj_req, &result)) {
3606 			img_req = obj_req->img_request;
3607 			goto again;
3608 		}
3609 	} else {
3610 		struct request *rq = blk_mq_rq_from_pdu(img_req);
3611 
3612 		rbd_img_request_destroy(img_req);
3613 		blk_mq_end_request(rq, errno_to_blk_status(result));
3614 	}
3615 }
3616 
3617 static const struct rbd_client_id rbd_empty_cid;
3618 
3619 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3620 			  const struct rbd_client_id *rhs)
3621 {
3622 	return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3623 }
3624 
3625 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3626 {
3627 	struct rbd_client_id cid;
3628 
3629 	mutex_lock(&rbd_dev->watch_mutex);
3630 	cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3631 	cid.handle = rbd_dev->watch_cookie;
3632 	mutex_unlock(&rbd_dev->watch_mutex);
3633 	return cid;
3634 }
3635 
3636 /*
3637  * lock_rwsem must be held for write
3638  */
3639 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3640 			      const struct rbd_client_id *cid)
3641 {
3642 	dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3643 	     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3644 	     cid->gid, cid->handle);
3645 	rbd_dev->owner_cid = *cid; /* struct */
3646 }
3647 
3648 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3649 {
3650 	mutex_lock(&rbd_dev->watch_mutex);
3651 	sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3652 	mutex_unlock(&rbd_dev->watch_mutex);
3653 }
3654 
3655 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3656 {
3657 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3658 
3659 	rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3660 	strcpy(rbd_dev->lock_cookie, cookie);
3661 	rbd_set_owner_cid(rbd_dev, &cid);
3662 	queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3663 }
3664 
3665 /*
3666  * lock_rwsem must be held for write
3667  */
3668 static int rbd_lock(struct rbd_device *rbd_dev)
3669 {
3670 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3671 	char cookie[32];
3672 	int ret;
3673 
3674 	WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3675 		rbd_dev->lock_cookie[0] != '\0');
3676 
3677 	format_lock_cookie(rbd_dev, cookie);
3678 	ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3679 			    RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3680 			    RBD_LOCK_TAG, "", 0);
3681 	if (ret && ret != -EEXIST)
3682 		return ret;
3683 
3684 	__rbd_lock(rbd_dev, cookie);
3685 	return 0;
3686 }
3687 
3688 /*
3689  * lock_rwsem must be held for write
3690  */
3691 static void rbd_unlock(struct rbd_device *rbd_dev)
3692 {
3693 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3694 	int ret;
3695 
3696 	WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3697 		rbd_dev->lock_cookie[0] == '\0');
3698 
3699 	ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3700 			      RBD_LOCK_NAME, rbd_dev->lock_cookie);
3701 	if (ret && ret != -ENOENT)
3702 		rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3703 
3704 	/* treat errors as the image is unlocked */
3705 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3706 	rbd_dev->lock_cookie[0] = '\0';
3707 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3708 	queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3709 }
3710 
3711 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3712 				enum rbd_notify_op notify_op,
3713 				struct page ***preply_pages,
3714 				size_t *preply_len)
3715 {
3716 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3717 	struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3718 	char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3719 	int buf_size = sizeof(buf);
3720 	void *p = buf;
3721 
3722 	dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3723 
3724 	/* encode *LockPayload NotifyMessage (op + ClientId) */
3725 	ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3726 	ceph_encode_32(&p, notify_op);
3727 	ceph_encode_64(&p, cid.gid);
3728 	ceph_encode_64(&p, cid.handle);
3729 
3730 	return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3731 				&rbd_dev->header_oloc, buf, buf_size,
3732 				RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3733 }
3734 
3735 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3736 			       enum rbd_notify_op notify_op)
3737 {
3738 	__rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3739 }
3740 
3741 static void rbd_notify_acquired_lock(struct work_struct *work)
3742 {
3743 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3744 						  acquired_lock_work);
3745 
3746 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3747 }
3748 
3749 static void rbd_notify_released_lock(struct work_struct *work)
3750 {
3751 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3752 						  released_lock_work);
3753 
3754 	rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3755 }
3756 
3757 static int rbd_request_lock(struct rbd_device *rbd_dev)
3758 {
3759 	struct page **reply_pages;
3760 	size_t reply_len;
3761 	bool lock_owner_responded = false;
3762 	int ret;
3763 
3764 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
3765 
3766 	ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3767 				   &reply_pages, &reply_len);
3768 	if (ret && ret != -ETIMEDOUT) {
3769 		rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3770 		goto out;
3771 	}
3772 
3773 	if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3774 		void *p = page_address(reply_pages[0]);
3775 		void *const end = p + reply_len;
3776 		u32 n;
3777 
3778 		ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3779 		while (n--) {
3780 			u8 struct_v;
3781 			u32 len;
3782 
3783 			ceph_decode_need(&p, end, 8 + 8, e_inval);
3784 			p += 8 + 8; /* skip gid and cookie */
3785 
3786 			ceph_decode_32_safe(&p, end, len, e_inval);
3787 			if (!len)
3788 				continue;
3789 
3790 			if (lock_owner_responded) {
3791 				rbd_warn(rbd_dev,
3792 					 "duplicate lock owners detected");
3793 				ret = -EIO;
3794 				goto out;
3795 			}
3796 
3797 			lock_owner_responded = true;
3798 			ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3799 						  &struct_v, &len);
3800 			if (ret) {
3801 				rbd_warn(rbd_dev,
3802 					 "failed to decode ResponseMessage: %d",
3803 					 ret);
3804 				goto e_inval;
3805 			}
3806 
3807 			ret = ceph_decode_32(&p);
3808 		}
3809 	}
3810 
3811 	if (!lock_owner_responded) {
3812 		rbd_warn(rbd_dev, "no lock owners detected");
3813 		ret = -ETIMEDOUT;
3814 	}
3815 
3816 out:
3817 	ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3818 	return ret;
3819 
3820 e_inval:
3821 	ret = -EINVAL;
3822 	goto out;
3823 }
3824 
3825 /*
3826  * Either image request state machine(s) or rbd_add_acquire_lock()
3827  * (i.e. "rbd map").
3828  */
3829 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3830 {
3831 	struct rbd_img_request *img_req;
3832 
3833 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3834 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3835 
3836 	cancel_delayed_work(&rbd_dev->lock_dwork);
3837 	if (!completion_done(&rbd_dev->acquire_wait)) {
3838 		rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3839 			   list_empty(&rbd_dev->running_list));
3840 		rbd_dev->acquire_err = result;
3841 		complete_all(&rbd_dev->acquire_wait);
3842 		return;
3843 	}
3844 
3845 	list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3846 		mutex_lock(&img_req->state_mutex);
3847 		rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3848 		rbd_img_schedule(img_req, result);
3849 		mutex_unlock(&img_req->state_mutex);
3850 	}
3851 
3852 	list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3853 }
3854 
3855 static bool locker_equal(const struct ceph_locker *lhs,
3856 			 const struct ceph_locker *rhs)
3857 {
3858 	return lhs->id.name.type == rhs->id.name.type &&
3859 	       lhs->id.name.num == rhs->id.name.num &&
3860 	       !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3861 	       ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3862 }
3863 
3864 static void free_locker(struct ceph_locker *locker)
3865 {
3866 	if (locker)
3867 		ceph_free_lockers(locker, 1);
3868 }
3869 
3870 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3871 {
3872 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3873 	struct ceph_locker *lockers;
3874 	u32 num_lockers;
3875 	u8 lock_type;
3876 	char *lock_tag;
3877 	u64 handle;
3878 	int ret;
3879 
3880 	ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3881 				 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3882 				 &lock_type, &lock_tag, &lockers, &num_lockers);
3883 	if (ret) {
3884 		rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3885 		return ERR_PTR(ret);
3886 	}
3887 
3888 	if (num_lockers == 0) {
3889 		dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3890 		lockers = NULL;
3891 		goto out;
3892 	}
3893 
3894 	if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3895 		rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3896 			 lock_tag);
3897 		goto err_busy;
3898 	}
3899 
3900 	if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3901 		rbd_warn(rbd_dev, "incompatible lock type detected");
3902 		goto err_busy;
3903 	}
3904 
3905 	WARN_ON(num_lockers != 1);
3906 	ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3907 		     &handle);
3908 	if (ret != 1) {
3909 		rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3910 			 lockers[0].id.cookie);
3911 		goto err_busy;
3912 	}
3913 	if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3914 		rbd_warn(rbd_dev, "locker has a blank address");
3915 		goto err_busy;
3916 	}
3917 
3918 	dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3919 	     __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3920 	     &lockers[0].info.addr.in_addr,
3921 	     le32_to_cpu(lockers[0].info.addr.nonce), handle);
3922 
3923 out:
3924 	kfree(lock_tag);
3925 	return lockers;
3926 
3927 err_busy:
3928 	kfree(lock_tag);
3929 	ceph_free_lockers(lockers, num_lockers);
3930 	return ERR_PTR(-EBUSY);
3931 }
3932 
3933 static int find_watcher(struct rbd_device *rbd_dev,
3934 			const struct ceph_locker *locker)
3935 {
3936 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3937 	struct ceph_watch_item *watchers;
3938 	u32 num_watchers;
3939 	u64 cookie;
3940 	int i;
3941 	int ret;
3942 
3943 	ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3944 				      &rbd_dev->header_oloc, &watchers,
3945 				      &num_watchers);
3946 	if (ret) {
3947 		rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3948 		return ret;
3949 	}
3950 
3951 	sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3952 	for (i = 0; i < num_watchers; i++) {
3953 		/*
3954 		 * Ignore addr->type while comparing.  This mimics
3955 		 * entity_addr_t::get_legacy_str() + strcmp().
3956 		 */
3957 		if (ceph_addr_equal_no_type(&watchers[i].addr,
3958 					    &locker->info.addr) &&
3959 		    watchers[i].cookie == cookie) {
3960 			struct rbd_client_id cid = {
3961 				.gid = le64_to_cpu(watchers[i].name.num),
3962 				.handle = cookie,
3963 			};
3964 
3965 			dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3966 			     rbd_dev, cid.gid, cid.handle);
3967 			rbd_set_owner_cid(rbd_dev, &cid);
3968 			ret = 1;
3969 			goto out;
3970 		}
3971 	}
3972 
3973 	dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3974 	ret = 0;
3975 out:
3976 	kfree(watchers);
3977 	return ret;
3978 }
3979 
3980 /*
3981  * lock_rwsem must be held for write
3982  */
3983 static int rbd_try_lock(struct rbd_device *rbd_dev)
3984 {
3985 	struct ceph_client *client = rbd_dev->rbd_client->client;
3986 	struct ceph_locker *locker, *refreshed_locker;
3987 	int ret;
3988 
3989 	for (;;) {
3990 		locker = refreshed_locker = NULL;
3991 
3992 		ret = rbd_lock(rbd_dev);
3993 		if (!ret)
3994 			goto out;
3995 		if (ret != -EBUSY) {
3996 			rbd_warn(rbd_dev, "failed to lock header: %d", ret);
3997 			goto out;
3998 		}
3999 
4000 		/* determine if the current lock holder is still alive */
4001 		locker = get_lock_owner_info(rbd_dev);
4002 		if (IS_ERR(locker)) {
4003 			ret = PTR_ERR(locker);
4004 			locker = NULL;
4005 			goto out;
4006 		}
4007 		if (!locker)
4008 			goto again;
4009 
4010 		ret = find_watcher(rbd_dev, locker);
4011 		if (ret)
4012 			goto out; /* request lock or error */
4013 
4014 		refreshed_locker = get_lock_owner_info(rbd_dev);
4015 		if (IS_ERR(refreshed_locker)) {
4016 			ret = PTR_ERR(refreshed_locker);
4017 			refreshed_locker = NULL;
4018 			goto out;
4019 		}
4020 		if (!refreshed_locker ||
4021 		    !locker_equal(locker, refreshed_locker))
4022 			goto again;
4023 
4024 		rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4025 			 ENTITY_NAME(locker->id.name));
4026 
4027 		ret = ceph_monc_blocklist_add(&client->monc,
4028 					      &locker->info.addr);
4029 		if (ret) {
4030 			rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4031 				 ENTITY_NAME(locker->id.name), ret);
4032 			goto out;
4033 		}
4034 
4035 		ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4036 					  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4037 					  locker->id.cookie, &locker->id.name);
4038 		if (ret && ret != -ENOENT) {
4039 			rbd_warn(rbd_dev, "failed to break header lock: %d",
4040 				 ret);
4041 			goto out;
4042 		}
4043 
4044 again:
4045 		free_locker(refreshed_locker);
4046 		free_locker(locker);
4047 	}
4048 
4049 out:
4050 	free_locker(refreshed_locker);
4051 	free_locker(locker);
4052 	return ret;
4053 }
4054 
4055 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4056 {
4057 	int ret;
4058 
4059 	ret = rbd_dev_refresh(rbd_dev);
4060 	if (ret)
4061 		return ret;
4062 
4063 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4064 		ret = rbd_object_map_open(rbd_dev);
4065 		if (ret)
4066 			return ret;
4067 	}
4068 
4069 	return 0;
4070 }
4071 
4072 /*
4073  * Return:
4074  *   0 - lock acquired
4075  *   1 - caller should call rbd_request_lock()
4076  *  <0 - error
4077  */
4078 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4079 {
4080 	int ret;
4081 
4082 	down_read(&rbd_dev->lock_rwsem);
4083 	dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4084 	     rbd_dev->lock_state);
4085 	if (__rbd_is_lock_owner(rbd_dev)) {
4086 		up_read(&rbd_dev->lock_rwsem);
4087 		return 0;
4088 	}
4089 
4090 	up_read(&rbd_dev->lock_rwsem);
4091 	down_write(&rbd_dev->lock_rwsem);
4092 	dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4093 	     rbd_dev->lock_state);
4094 	if (__rbd_is_lock_owner(rbd_dev)) {
4095 		up_write(&rbd_dev->lock_rwsem);
4096 		return 0;
4097 	}
4098 
4099 	ret = rbd_try_lock(rbd_dev);
4100 	if (ret < 0) {
4101 		rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4102 		goto out;
4103 	}
4104 	if (ret > 0) {
4105 		up_write(&rbd_dev->lock_rwsem);
4106 		return ret;
4107 	}
4108 
4109 	rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4110 	rbd_assert(list_empty(&rbd_dev->running_list));
4111 
4112 	ret = rbd_post_acquire_action(rbd_dev);
4113 	if (ret) {
4114 		rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4115 		/*
4116 		 * Can't stay in RBD_LOCK_STATE_LOCKED because
4117 		 * rbd_lock_add_request() would let the request through,
4118 		 * assuming that e.g. object map is locked and loaded.
4119 		 */
4120 		rbd_unlock(rbd_dev);
4121 	}
4122 
4123 out:
4124 	wake_lock_waiters(rbd_dev, ret);
4125 	up_write(&rbd_dev->lock_rwsem);
4126 	return ret;
4127 }
4128 
4129 static void rbd_acquire_lock(struct work_struct *work)
4130 {
4131 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4132 					    struct rbd_device, lock_dwork);
4133 	int ret;
4134 
4135 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4136 again:
4137 	ret = rbd_try_acquire_lock(rbd_dev);
4138 	if (ret <= 0) {
4139 		dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4140 		return;
4141 	}
4142 
4143 	ret = rbd_request_lock(rbd_dev);
4144 	if (ret == -ETIMEDOUT) {
4145 		goto again; /* treat this as a dead client */
4146 	} else if (ret == -EROFS) {
4147 		rbd_warn(rbd_dev, "peer will not release lock");
4148 		down_write(&rbd_dev->lock_rwsem);
4149 		wake_lock_waiters(rbd_dev, ret);
4150 		up_write(&rbd_dev->lock_rwsem);
4151 	} else if (ret < 0) {
4152 		rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4153 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4154 				 RBD_RETRY_DELAY);
4155 	} else {
4156 		/*
4157 		 * lock owner acked, but resend if we don't see them
4158 		 * release the lock
4159 		 */
4160 		dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4161 		     rbd_dev);
4162 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4163 		    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4164 	}
4165 }
4166 
4167 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4168 {
4169 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4170 	lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4171 
4172 	if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4173 		return false;
4174 
4175 	/*
4176 	 * Ensure that all in-flight IO is flushed.
4177 	 */
4178 	rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4179 	rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4180 	if (list_empty(&rbd_dev->running_list))
4181 		return true;
4182 
4183 	up_write(&rbd_dev->lock_rwsem);
4184 	wait_for_completion(&rbd_dev->releasing_wait);
4185 
4186 	down_write(&rbd_dev->lock_rwsem);
4187 	if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4188 		return false;
4189 
4190 	rbd_assert(list_empty(&rbd_dev->running_list));
4191 	return true;
4192 }
4193 
4194 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4195 {
4196 	if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4197 		rbd_object_map_close(rbd_dev);
4198 }
4199 
4200 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4201 {
4202 	rbd_assert(list_empty(&rbd_dev->running_list));
4203 
4204 	rbd_pre_release_action(rbd_dev);
4205 	rbd_unlock(rbd_dev);
4206 }
4207 
4208 /*
4209  * lock_rwsem must be held for write
4210  */
4211 static void rbd_release_lock(struct rbd_device *rbd_dev)
4212 {
4213 	if (!rbd_quiesce_lock(rbd_dev))
4214 		return;
4215 
4216 	__rbd_release_lock(rbd_dev);
4217 
4218 	/*
4219 	 * Give others a chance to grab the lock - we would re-acquire
4220 	 * almost immediately if we got new IO while draining the running
4221 	 * list otherwise.  We need to ack our own notifications, so this
4222 	 * lock_dwork will be requeued from rbd_handle_released_lock() by
4223 	 * way of maybe_kick_acquire().
4224 	 */
4225 	cancel_delayed_work(&rbd_dev->lock_dwork);
4226 }
4227 
4228 static void rbd_release_lock_work(struct work_struct *work)
4229 {
4230 	struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4231 						  unlock_work);
4232 
4233 	down_write(&rbd_dev->lock_rwsem);
4234 	rbd_release_lock(rbd_dev);
4235 	up_write(&rbd_dev->lock_rwsem);
4236 }
4237 
4238 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4239 {
4240 	bool have_requests;
4241 
4242 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4243 	if (__rbd_is_lock_owner(rbd_dev))
4244 		return;
4245 
4246 	spin_lock(&rbd_dev->lock_lists_lock);
4247 	have_requests = !list_empty(&rbd_dev->acquiring_list);
4248 	spin_unlock(&rbd_dev->lock_lists_lock);
4249 	if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4250 		dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4251 		mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4252 	}
4253 }
4254 
4255 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4256 				     void **p)
4257 {
4258 	struct rbd_client_id cid = { 0 };
4259 
4260 	if (struct_v >= 2) {
4261 		cid.gid = ceph_decode_64(p);
4262 		cid.handle = ceph_decode_64(p);
4263 	}
4264 
4265 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4266 	     cid.handle);
4267 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4268 		down_write(&rbd_dev->lock_rwsem);
4269 		if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4270 			dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4271 			     __func__, rbd_dev, cid.gid, cid.handle);
4272 		} else {
4273 			rbd_set_owner_cid(rbd_dev, &cid);
4274 		}
4275 		downgrade_write(&rbd_dev->lock_rwsem);
4276 	} else {
4277 		down_read(&rbd_dev->lock_rwsem);
4278 	}
4279 
4280 	maybe_kick_acquire(rbd_dev);
4281 	up_read(&rbd_dev->lock_rwsem);
4282 }
4283 
4284 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4285 				     void **p)
4286 {
4287 	struct rbd_client_id cid = { 0 };
4288 
4289 	if (struct_v >= 2) {
4290 		cid.gid = ceph_decode_64(p);
4291 		cid.handle = ceph_decode_64(p);
4292 	}
4293 
4294 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4295 	     cid.handle);
4296 	if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4297 		down_write(&rbd_dev->lock_rwsem);
4298 		if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4299 			dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4300 			     __func__, rbd_dev, cid.gid, cid.handle,
4301 			     rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4302 		} else {
4303 			rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4304 		}
4305 		downgrade_write(&rbd_dev->lock_rwsem);
4306 	} else {
4307 		down_read(&rbd_dev->lock_rwsem);
4308 	}
4309 
4310 	maybe_kick_acquire(rbd_dev);
4311 	up_read(&rbd_dev->lock_rwsem);
4312 }
4313 
4314 /*
4315  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4316  * ResponseMessage is needed.
4317  */
4318 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4319 				   void **p)
4320 {
4321 	struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4322 	struct rbd_client_id cid = { 0 };
4323 	int result = 1;
4324 
4325 	if (struct_v >= 2) {
4326 		cid.gid = ceph_decode_64(p);
4327 		cid.handle = ceph_decode_64(p);
4328 	}
4329 
4330 	dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4331 	     cid.handle);
4332 	if (rbd_cid_equal(&cid, &my_cid))
4333 		return result;
4334 
4335 	down_read(&rbd_dev->lock_rwsem);
4336 	if (__rbd_is_lock_owner(rbd_dev)) {
4337 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4338 		    rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4339 			goto out_unlock;
4340 
4341 		/*
4342 		 * encode ResponseMessage(0) so the peer can detect
4343 		 * a missing owner
4344 		 */
4345 		result = 0;
4346 
4347 		if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4348 			if (!rbd_dev->opts->exclusive) {
4349 				dout("%s rbd_dev %p queueing unlock_work\n",
4350 				     __func__, rbd_dev);
4351 				queue_work(rbd_dev->task_wq,
4352 					   &rbd_dev->unlock_work);
4353 			} else {
4354 				/* refuse to release the lock */
4355 				result = -EROFS;
4356 			}
4357 		}
4358 	}
4359 
4360 out_unlock:
4361 	up_read(&rbd_dev->lock_rwsem);
4362 	return result;
4363 }
4364 
4365 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4366 				     u64 notify_id, u64 cookie, s32 *result)
4367 {
4368 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4369 	char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4370 	int buf_size = sizeof(buf);
4371 	int ret;
4372 
4373 	if (result) {
4374 		void *p = buf;
4375 
4376 		/* encode ResponseMessage */
4377 		ceph_start_encoding(&p, 1, 1,
4378 				    buf_size - CEPH_ENCODING_START_BLK_LEN);
4379 		ceph_encode_32(&p, *result);
4380 	} else {
4381 		buf_size = 0;
4382 	}
4383 
4384 	ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4385 				   &rbd_dev->header_oloc, notify_id, cookie,
4386 				   buf, buf_size);
4387 	if (ret)
4388 		rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4389 }
4390 
4391 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4392 				   u64 cookie)
4393 {
4394 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4395 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4396 }
4397 
4398 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4399 					  u64 notify_id, u64 cookie, s32 result)
4400 {
4401 	dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4402 	__rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4403 }
4404 
4405 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4406 			 u64 notifier_id, void *data, size_t data_len)
4407 {
4408 	struct rbd_device *rbd_dev = arg;
4409 	void *p = data;
4410 	void *const end = p + data_len;
4411 	u8 struct_v = 0;
4412 	u32 len;
4413 	u32 notify_op;
4414 	int ret;
4415 
4416 	dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4417 	     __func__, rbd_dev, cookie, notify_id, data_len);
4418 	if (data_len) {
4419 		ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4420 					  &struct_v, &len);
4421 		if (ret) {
4422 			rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4423 				 ret);
4424 			return;
4425 		}
4426 
4427 		notify_op = ceph_decode_32(&p);
4428 	} else {
4429 		/* legacy notification for header updates */
4430 		notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4431 		len = 0;
4432 	}
4433 
4434 	dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4435 	switch (notify_op) {
4436 	case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4437 		rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4438 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4439 		break;
4440 	case RBD_NOTIFY_OP_RELEASED_LOCK:
4441 		rbd_handle_released_lock(rbd_dev, struct_v, &p);
4442 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4443 		break;
4444 	case RBD_NOTIFY_OP_REQUEST_LOCK:
4445 		ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4446 		if (ret <= 0)
4447 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4448 						      cookie, ret);
4449 		else
4450 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4451 		break;
4452 	case RBD_NOTIFY_OP_HEADER_UPDATE:
4453 		ret = rbd_dev_refresh(rbd_dev);
4454 		if (ret)
4455 			rbd_warn(rbd_dev, "refresh failed: %d", ret);
4456 
4457 		rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4458 		break;
4459 	default:
4460 		if (rbd_is_lock_owner(rbd_dev))
4461 			rbd_acknowledge_notify_result(rbd_dev, notify_id,
4462 						      cookie, -EOPNOTSUPP);
4463 		else
4464 			rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4465 		break;
4466 	}
4467 }
4468 
4469 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4470 
4471 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4472 {
4473 	struct rbd_device *rbd_dev = arg;
4474 
4475 	rbd_warn(rbd_dev, "encountered watch error: %d", err);
4476 
4477 	down_write(&rbd_dev->lock_rwsem);
4478 	rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4479 	up_write(&rbd_dev->lock_rwsem);
4480 
4481 	mutex_lock(&rbd_dev->watch_mutex);
4482 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4483 		__rbd_unregister_watch(rbd_dev);
4484 		rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4485 
4486 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4487 	}
4488 	mutex_unlock(&rbd_dev->watch_mutex);
4489 }
4490 
4491 /*
4492  * watch_mutex must be locked
4493  */
4494 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4495 {
4496 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4497 	struct ceph_osd_linger_request *handle;
4498 
4499 	rbd_assert(!rbd_dev->watch_handle);
4500 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4501 
4502 	handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4503 				 &rbd_dev->header_oloc, rbd_watch_cb,
4504 				 rbd_watch_errcb, rbd_dev);
4505 	if (IS_ERR(handle))
4506 		return PTR_ERR(handle);
4507 
4508 	rbd_dev->watch_handle = handle;
4509 	return 0;
4510 }
4511 
4512 /*
4513  * watch_mutex must be locked
4514  */
4515 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4516 {
4517 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4518 	int ret;
4519 
4520 	rbd_assert(rbd_dev->watch_handle);
4521 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4522 
4523 	ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4524 	if (ret)
4525 		rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4526 
4527 	rbd_dev->watch_handle = NULL;
4528 }
4529 
4530 static int rbd_register_watch(struct rbd_device *rbd_dev)
4531 {
4532 	int ret;
4533 
4534 	mutex_lock(&rbd_dev->watch_mutex);
4535 	rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4536 	ret = __rbd_register_watch(rbd_dev);
4537 	if (ret)
4538 		goto out;
4539 
4540 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4541 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4542 
4543 out:
4544 	mutex_unlock(&rbd_dev->watch_mutex);
4545 	return ret;
4546 }
4547 
4548 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4549 {
4550 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4551 
4552 	cancel_work_sync(&rbd_dev->acquired_lock_work);
4553 	cancel_work_sync(&rbd_dev->released_lock_work);
4554 	cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4555 	cancel_work_sync(&rbd_dev->unlock_work);
4556 }
4557 
4558 /*
4559  * header_rwsem must not be held to avoid a deadlock with
4560  * rbd_dev_refresh() when flushing notifies.
4561  */
4562 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4563 {
4564 	cancel_tasks_sync(rbd_dev);
4565 
4566 	mutex_lock(&rbd_dev->watch_mutex);
4567 	if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4568 		__rbd_unregister_watch(rbd_dev);
4569 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4570 	mutex_unlock(&rbd_dev->watch_mutex);
4571 
4572 	cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4573 	ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4574 }
4575 
4576 /*
4577  * lock_rwsem must be held for write
4578  */
4579 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4580 {
4581 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4582 	char cookie[32];
4583 	int ret;
4584 
4585 	if (!rbd_quiesce_lock(rbd_dev))
4586 		return;
4587 
4588 	format_lock_cookie(rbd_dev, cookie);
4589 	ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4590 				  &rbd_dev->header_oloc, RBD_LOCK_NAME,
4591 				  CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4592 				  RBD_LOCK_TAG, cookie);
4593 	if (ret) {
4594 		if (ret != -EOPNOTSUPP)
4595 			rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4596 				 ret);
4597 
4598 		/*
4599 		 * Lock cookie cannot be updated on older OSDs, so do
4600 		 * a manual release and queue an acquire.
4601 		 */
4602 		__rbd_release_lock(rbd_dev);
4603 		queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4604 	} else {
4605 		__rbd_lock(rbd_dev, cookie);
4606 		wake_lock_waiters(rbd_dev, 0);
4607 	}
4608 }
4609 
4610 static void rbd_reregister_watch(struct work_struct *work)
4611 {
4612 	struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4613 					    struct rbd_device, watch_dwork);
4614 	int ret;
4615 
4616 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
4617 
4618 	mutex_lock(&rbd_dev->watch_mutex);
4619 	if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4620 		mutex_unlock(&rbd_dev->watch_mutex);
4621 		return;
4622 	}
4623 
4624 	ret = __rbd_register_watch(rbd_dev);
4625 	if (ret) {
4626 		rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4627 		if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4628 			queue_delayed_work(rbd_dev->task_wq,
4629 					   &rbd_dev->watch_dwork,
4630 					   RBD_RETRY_DELAY);
4631 			mutex_unlock(&rbd_dev->watch_mutex);
4632 			return;
4633 		}
4634 
4635 		mutex_unlock(&rbd_dev->watch_mutex);
4636 		down_write(&rbd_dev->lock_rwsem);
4637 		wake_lock_waiters(rbd_dev, ret);
4638 		up_write(&rbd_dev->lock_rwsem);
4639 		return;
4640 	}
4641 
4642 	rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4643 	rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4644 	mutex_unlock(&rbd_dev->watch_mutex);
4645 
4646 	down_write(&rbd_dev->lock_rwsem);
4647 	if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4648 		rbd_reacquire_lock(rbd_dev);
4649 	up_write(&rbd_dev->lock_rwsem);
4650 
4651 	ret = rbd_dev_refresh(rbd_dev);
4652 	if (ret)
4653 		rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4654 }
4655 
4656 /*
4657  * Synchronous osd object method call.  Returns the number of bytes
4658  * returned in the outbound buffer, or a negative error code.
4659  */
4660 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4661 			     struct ceph_object_id *oid,
4662 			     struct ceph_object_locator *oloc,
4663 			     const char *method_name,
4664 			     const void *outbound,
4665 			     size_t outbound_size,
4666 			     void *inbound,
4667 			     size_t inbound_size)
4668 {
4669 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4670 	struct page *req_page = NULL;
4671 	struct page *reply_page;
4672 	int ret;
4673 
4674 	/*
4675 	 * Method calls are ultimately read operations.  The result
4676 	 * should placed into the inbound buffer provided.  They
4677 	 * also supply outbound data--parameters for the object
4678 	 * method.  Currently if this is present it will be a
4679 	 * snapshot id.
4680 	 */
4681 	if (outbound) {
4682 		if (outbound_size > PAGE_SIZE)
4683 			return -E2BIG;
4684 
4685 		req_page = alloc_page(GFP_KERNEL);
4686 		if (!req_page)
4687 			return -ENOMEM;
4688 
4689 		memcpy(page_address(req_page), outbound, outbound_size);
4690 	}
4691 
4692 	reply_page = alloc_page(GFP_KERNEL);
4693 	if (!reply_page) {
4694 		if (req_page)
4695 			__free_page(req_page);
4696 		return -ENOMEM;
4697 	}
4698 
4699 	ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4700 			     CEPH_OSD_FLAG_READ, req_page, outbound_size,
4701 			     &reply_page, &inbound_size);
4702 	if (!ret) {
4703 		memcpy(inbound, page_address(reply_page), inbound_size);
4704 		ret = inbound_size;
4705 	}
4706 
4707 	if (req_page)
4708 		__free_page(req_page);
4709 	__free_page(reply_page);
4710 	return ret;
4711 }
4712 
4713 static void rbd_queue_workfn(struct work_struct *work)
4714 {
4715 	struct rbd_img_request *img_request =
4716 	    container_of(work, struct rbd_img_request, work);
4717 	struct rbd_device *rbd_dev = img_request->rbd_dev;
4718 	enum obj_operation_type op_type = img_request->op_type;
4719 	struct request *rq = blk_mq_rq_from_pdu(img_request);
4720 	u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4721 	u64 length = blk_rq_bytes(rq);
4722 	u64 mapping_size;
4723 	int result;
4724 
4725 	/* Ignore/skip any zero-length requests */
4726 	if (!length) {
4727 		dout("%s: zero-length request\n", __func__);
4728 		result = 0;
4729 		goto err_img_request;
4730 	}
4731 
4732 	blk_mq_start_request(rq);
4733 
4734 	down_read(&rbd_dev->header_rwsem);
4735 	mapping_size = rbd_dev->mapping.size;
4736 	rbd_img_capture_header(img_request);
4737 	up_read(&rbd_dev->header_rwsem);
4738 
4739 	if (offset + length > mapping_size) {
4740 		rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4741 			 length, mapping_size);
4742 		result = -EIO;
4743 		goto err_img_request;
4744 	}
4745 
4746 	dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4747 	     img_request, obj_op_name(op_type), offset, length);
4748 
4749 	if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4750 		result = rbd_img_fill_nodata(img_request, offset, length);
4751 	else
4752 		result = rbd_img_fill_from_bio(img_request, offset, length,
4753 					       rq->bio);
4754 	if (result)
4755 		goto err_img_request;
4756 
4757 	rbd_img_handle_request(img_request, 0);
4758 	return;
4759 
4760 err_img_request:
4761 	rbd_img_request_destroy(img_request);
4762 	if (result)
4763 		rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4764 			 obj_op_name(op_type), length, offset, result);
4765 	blk_mq_end_request(rq, errno_to_blk_status(result));
4766 }
4767 
4768 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4769 		const struct blk_mq_queue_data *bd)
4770 {
4771 	struct rbd_device *rbd_dev = hctx->queue->queuedata;
4772 	struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4773 	enum obj_operation_type op_type;
4774 
4775 	switch (req_op(bd->rq)) {
4776 	case REQ_OP_DISCARD:
4777 		op_type = OBJ_OP_DISCARD;
4778 		break;
4779 	case REQ_OP_WRITE_ZEROES:
4780 		op_type = OBJ_OP_ZEROOUT;
4781 		break;
4782 	case REQ_OP_WRITE:
4783 		op_type = OBJ_OP_WRITE;
4784 		break;
4785 	case REQ_OP_READ:
4786 		op_type = OBJ_OP_READ;
4787 		break;
4788 	default:
4789 		rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4790 		return BLK_STS_IOERR;
4791 	}
4792 
4793 	rbd_img_request_init(img_req, rbd_dev, op_type);
4794 
4795 	if (rbd_img_is_write(img_req)) {
4796 		if (rbd_is_ro(rbd_dev)) {
4797 			rbd_warn(rbd_dev, "%s on read-only mapping",
4798 				 obj_op_name(img_req->op_type));
4799 			return BLK_STS_IOERR;
4800 		}
4801 		rbd_assert(!rbd_is_snap(rbd_dev));
4802 	}
4803 
4804 	INIT_WORK(&img_req->work, rbd_queue_workfn);
4805 	queue_work(rbd_wq, &img_req->work);
4806 	return BLK_STS_OK;
4807 }
4808 
4809 static void rbd_free_disk(struct rbd_device *rbd_dev)
4810 {
4811 	put_disk(rbd_dev->disk);
4812 	blk_mq_free_tag_set(&rbd_dev->tag_set);
4813 	rbd_dev->disk = NULL;
4814 }
4815 
4816 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4817 			     struct ceph_object_id *oid,
4818 			     struct ceph_object_locator *oloc,
4819 			     void *buf, int buf_len)
4820 
4821 {
4822 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4823 	struct ceph_osd_request *req;
4824 	struct page **pages;
4825 	int num_pages = calc_pages_for(0, buf_len);
4826 	int ret;
4827 
4828 	req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4829 	if (!req)
4830 		return -ENOMEM;
4831 
4832 	ceph_oid_copy(&req->r_base_oid, oid);
4833 	ceph_oloc_copy(&req->r_base_oloc, oloc);
4834 	req->r_flags = CEPH_OSD_FLAG_READ;
4835 
4836 	pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4837 	if (IS_ERR(pages)) {
4838 		ret = PTR_ERR(pages);
4839 		goto out_req;
4840 	}
4841 
4842 	osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4843 	osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4844 					 true);
4845 
4846 	ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4847 	if (ret)
4848 		goto out_req;
4849 
4850 	ceph_osdc_start_request(osdc, req);
4851 	ret = ceph_osdc_wait_request(osdc, req);
4852 	if (ret >= 0)
4853 		ceph_copy_from_page_vector(pages, buf, 0, ret);
4854 
4855 out_req:
4856 	ceph_osdc_put_request(req);
4857 	return ret;
4858 }
4859 
4860 /*
4861  * Read the complete header for the given rbd device.  On successful
4862  * return, the rbd_dev->header field will contain up-to-date
4863  * information about the image.
4864  */
4865 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4866 				  struct rbd_image_header *header,
4867 				  bool first_time)
4868 {
4869 	struct rbd_image_header_ondisk *ondisk = NULL;
4870 	u32 snap_count = 0;
4871 	u64 names_size = 0;
4872 	u32 want_count;
4873 	int ret;
4874 
4875 	/*
4876 	 * The complete header will include an array of its 64-bit
4877 	 * snapshot ids, followed by the names of those snapshots as
4878 	 * a contiguous block of NUL-terminated strings.  Note that
4879 	 * the number of snapshots could change by the time we read
4880 	 * it in, in which case we re-read it.
4881 	 */
4882 	do {
4883 		size_t size;
4884 
4885 		kfree(ondisk);
4886 
4887 		size = sizeof (*ondisk);
4888 		size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4889 		size += names_size;
4890 		ondisk = kmalloc(size, GFP_KERNEL);
4891 		if (!ondisk)
4892 			return -ENOMEM;
4893 
4894 		ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4895 					&rbd_dev->header_oloc, ondisk, size);
4896 		if (ret < 0)
4897 			goto out;
4898 		if ((size_t)ret < size) {
4899 			ret = -ENXIO;
4900 			rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4901 				size, ret);
4902 			goto out;
4903 		}
4904 		if (!rbd_dev_ondisk_valid(ondisk)) {
4905 			ret = -ENXIO;
4906 			rbd_warn(rbd_dev, "invalid header");
4907 			goto out;
4908 		}
4909 
4910 		names_size = le64_to_cpu(ondisk->snap_names_len);
4911 		want_count = snap_count;
4912 		snap_count = le32_to_cpu(ondisk->snap_count);
4913 	} while (snap_count != want_count);
4914 
4915 	ret = rbd_header_from_disk(header, ondisk, first_time);
4916 out:
4917 	kfree(ondisk);
4918 
4919 	return ret;
4920 }
4921 
4922 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4923 {
4924 	sector_t size;
4925 
4926 	/*
4927 	 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4928 	 * try to update its size.  If REMOVING is set, updating size
4929 	 * is just useless work since the device can't be opened.
4930 	 */
4931 	if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4932 	    !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4933 		size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4934 		dout("setting size to %llu sectors", (unsigned long long)size);
4935 		set_capacity_and_notify(rbd_dev->disk, size);
4936 	}
4937 }
4938 
4939 static const struct blk_mq_ops rbd_mq_ops = {
4940 	.queue_rq	= rbd_queue_rq,
4941 };
4942 
4943 static int rbd_init_disk(struct rbd_device *rbd_dev)
4944 {
4945 	struct gendisk *disk;
4946 	struct request_queue *q;
4947 	unsigned int objset_bytes =
4948 	    rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4949 	int err;
4950 
4951 	memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4952 	rbd_dev->tag_set.ops = &rbd_mq_ops;
4953 	rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4954 	rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4955 	rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4956 	rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4957 	rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4958 
4959 	err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4960 	if (err)
4961 		return err;
4962 
4963 	disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4964 	if (IS_ERR(disk)) {
4965 		err = PTR_ERR(disk);
4966 		goto out_tag_set;
4967 	}
4968 	q = disk->queue;
4969 
4970 	snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4971 		 rbd_dev->dev_id);
4972 	disk->major = rbd_dev->major;
4973 	disk->first_minor = rbd_dev->minor;
4974 	if (single_major)
4975 		disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4976 	else
4977 		disk->minors = RBD_MINORS_PER_MAJOR;
4978 	disk->fops = &rbd_bd_ops;
4979 	disk->private_data = rbd_dev;
4980 
4981 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4982 	/* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4983 
4984 	blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4985 	q->limits.max_sectors = queue_max_hw_sectors(q);
4986 	blk_queue_max_segments(q, USHRT_MAX);
4987 	blk_queue_max_segment_size(q, UINT_MAX);
4988 	blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4989 	blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4990 
4991 	if (rbd_dev->opts->trim) {
4992 		q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4993 		blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4994 		blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4995 	}
4996 
4997 	if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4998 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4999 
5000 	rbd_dev->disk = disk;
5001 
5002 	return 0;
5003 out_tag_set:
5004 	blk_mq_free_tag_set(&rbd_dev->tag_set);
5005 	return err;
5006 }
5007 
5008 /*
5009   sysfs
5010 */
5011 
5012 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5013 {
5014 	return container_of(dev, struct rbd_device, dev);
5015 }
5016 
5017 static ssize_t rbd_size_show(struct device *dev,
5018 			     struct device_attribute *attr, char *buf)
5019 {
5020 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5021 
5022 	return sprintf(buf, "%llu\n",
5023 		(unsigned long long)rbd_dev->mapping.size);
5024 }
5025 
5026 static ssize_t rbd_features_show(struct device *dev,
5027 			     struct device_attribute *attr, char *buf)
5028 {
5029 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5030 
5031 	return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5032 }
5033 
5034 static ssize_t rbd_major_show(struct device *dev,
5035 			      struct device_attribute *attr, char *buf)
5036 {
5037 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5038 
5039 	if (rbd_dev->major)
5040 		return sprintf(buf, "%d\n", rbd_dev->major);
5041 
5042 	return sprintf(buf, "(none)\n");
5043 }
5044 
5045 static ssize_t rbd_minor_show(struct device *dev,
5046 			      struct device_attribute *attr, char *buf)
5047 {
5048 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5049 
5050 	return sprintf(buf, "%d\n", rbd_dev->minor);
5051 }
5052 
5053 static ssize_t rbd_client_addr_show(struct device *dev,
5054 				    struct device_attribute *attr, char *buf)
5055 {
5056 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057 	struct ceph_entity_addr *client_addr =
5058 	    ceph_client_addr(rbd_dev->rbd_client->client);
5059 
5060 	return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5061 		       le32_to_cpu(client_addr->nonce));
5062 }
5063 
5064 static ssize_t rbd_client_id_show(struct device *dev,
5065 				  struct device_attribute *attr, char *buf)
5066 {
5067 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5068 
5069 	return sprintf(buf, "client%lld\n",
5070 		       ceph_client_gid(rbd_dev->rbd_client->client));
5071 }
5072 
5073 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5074 				     struct device_attribute *attr, char *buf)
5075 {
5076 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5077 
5078 	return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5079 }
5080 
5081 static ssize_t rbd_config_info_show(struct device *dev,
5082 				    struct device_attribute *attr, char *buf)
5083 {
5084 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5085 
5086 	if (!capable(CAP_SYS_ADMIN))
5087 		return -EPERM;
5088 
5089 	return sprintf(buf, "%s\n", rbd_dev->config_info);
5090 }
5091 
5092 static ssize_t rbd_pool_show(struct device *dev,
5093 			     struct device_attribute *attr, char *buf)
5094 {
5095 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5096 
5097 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5098 }
5099 
5100 static ssize_t rbd_pool_id_show(struct device *dev,
5101 			     struct device_attribute *attr, char *buf)
5102 {
5103 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5104 
5105 	return sprintf(buf, "%llu\n",
5106 			(unsigned long long) rbd_dev->spec->pool_id);
5107 }
5108 
5109 static ssize_t rbd_pool_ns_show(struct device *dev,
5110 				struct device_attribute *attr, char *buf)
5111 {
5112 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5113 
5114 	return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5115 }
5116 
5117 static ssize_t rbd_name_show(struct device *dev,
5118 			     struct device_attribute *attr, char *buf)
5119 {
5120 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121 
5122 	if (rbd_dev->spec->image_name)
5123 		return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5124 
5125 	return sprintf(buf, "(unknown)\n");
5126 }
5127 
5128 static ssize_t rbd_image_id_show(struct device *dev,
5129 			     struct device_attribute *attr, char *buf)
5130 {
5131 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5132 
5133 	return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5134 }
5135 
5136 /*
5137  * Shows the name of the currently-mapped snapshot (or
5138  * RBD_SNAP_HEAD_NAME for the base image).
5139  */
5140 static ssize_t rbd_snap_show(struct device *dev,
5141 			     struct device_attribute *attr,
5142 			     char *buf)
5143 {
5144 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5145 
5146 	return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5147 }
5148 
5149 static ssize_t rbd_snap_id_show(struct device *dev,
5150 				struct device_attribute *attr, char *buf)
5151 {
5152 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5153 
5154 	return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5155 }
5156 
5157 /*
5158  * For a v2 image, shows the chain of parent images, separated by empty
5159  * lines.  For v1 images or if there is no parent, shows "(no parent
5160  * image)".
5161  */
5162 static ssize_t rbd_parent_show(struct device *dev,
5163 			       struct device_attribute *attr,
5164 			       char *buf)
5165 {
5166 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5167 	ssize_t count = 0;
5168 
5169 	if (!rbd_dev->parent)
5170 		return sprintf(buf, "(no parent image)\n");
5171 
5172 	for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5173 		struct rbd_spec *spec = rbd_dev->parent_spec;
5174 
5175 		count += sprintf(&buf[count], "%s"
5176 			    "pool_id %llu\npool_name %s\n"
5177 			    "pool_ns %s\n"
5178 			    "image_id %s\nimage_name %s\n"
5179 			    "snap_id %llu\nsnap_name %s\n"
5180 			    "overlap %llu\n",
5181 			    !count ? "" : "\n", /* first? */
5182 			    spec->pool_id, spec->pool_name,
5183 			    spec->pool_ns ?: "",
5184 			    spec->image_id, spec->image_name ?: "(unknown)",
5185 			    spec->snap_id, spec->snap_name,
5186 			    rbd_dev->parent_overlap);
5187 	}
5188 
5189 	return count;
5190 }
5191 
5192 static ssize_t rbd_image_refresh(struct device *dev,
5193 				 struct device_attribute *attr,
5194 				 const char *buf,
5195 				 size_t size)
5196 {
5197 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5198 	int ret;
5199 
5200 	if (!capable(CAP_SYS_ADMIN))
5201 		return -EPERM;
5202 
5203 	ret = rbd_dev_refresh(rbd_dev);
5204 	if (ret)
5205 		return ret;
5206 
5207 	return size;
5208 }
5209 
5210 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5211 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5212 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5213 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5214 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5215 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5216 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5217 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5218 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5219 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5220 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5221 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5222 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5223 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5224 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5225 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5226 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5227 
5228 static struct attribute *rbd_attrs[] = {
5229 	&dev_attr_size.attr,
5230 	&dev_attr_features.attr,
5231 	&dev_attr_major.attr,
5232 	&dev_attr_minor.attr,
5233 	&dev_attr_client_addr.attr,
5234 	&dev_attr_client_id.attr,
5235 	&dev_attr_cluster_fsid.attr,
5236 	&dev_attr_config_info.attr,
5237 	&dev_attr_pool.attr,
5238 	&dev_attr_pool_id.attr,
5239 	&dev_attr_pool_ns.attr,
5240 	&dev_attr_name.attr,
5241 	&dev_attr_image_id.attr,
5242 	&dev_attr_current_snap.attr,
5243 	&dev_attr_snap_id.attr,
5244 	&dev_attr_parent.attr,
5245 	&dev_attr_refresh.attr,
5246 	NULL
5247 };
5248 
5249 static struct attribute_group rbd_attr_group = {
5250 	.attrs = rbd_attrs,
5251 };
5252 
5253 static const struct attribute_group *rbd_attr_groups[] = {
5254 	&rbd_attr_group,
5255 	NULL
5256 };
5257 
5258 static void rbd_dev_release(struct device *dev);
5259 
5260 static const struct device_type rbd_device_type = {
5261 	.name		= "rbd",
5262 	.groups		= rbd_attr_groups,
5263 	.release	= rbd_dev_release,
5264 };
5265 
5266 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5267 {
5268 	kref_get(&spec->kref);
5269 
5270 	return spec;
5271 }
5272 
5273 static void rbd_spec_free(struct kref *kref);
5274 static void rbd_spec_put(struct rbd_spec *spec)
5275 {
5276 	if (spec)
5277 		kref_put(&spec->kref, rbd_spec_free);
5278 }
5279 
5280 static struct rbd_spec *rbd_spec_alloc(void)
5281 {
5282 	struct rbd_spec *spec;
5283 
5284 	spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5285 	if (!spec)
5286 		return NULL;
5287 
5288 	spec->pool_id = CEPH_NOPOOL;
5289 	spec->snap_id = CEPH_NOSNAP;
5290 	kref_init(&spec->kref);
5291 
5292 	return spec;
5293 }
5294 
5295 static void rbd_spec_free(struct kref *kref)
5296 {
5297 	struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5298 
5299 	kfree(spec->pool_name);
5300 	kfree(spec->pool_ns);
5301 	kfree(spec->image_id);
5302 	kfree(spec->image_name);
5303 	kfree(spec->snap_name);
5304 	kfree(spec);
5305 }
5306 
5307 static void rbd_dev_free(struct rbd_device *rbd_dev)
5308 {
5309 	WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5310 	WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5311 
5312 	ceph_oid_destroy(&rbd_dev->header_oid);
5313 	ceph_oloc_destroy(&rbd_dev->header_oloc);
5314 	kfree(rbd_dev->config_info);
5315 
5316 	rbd_put_client(rbd_dev->rbd_client);
5317 	rbd_spec_put(rbd_dev->spec);
5318 	kfree(rbd_dev->opts);
5319 	kfree(rbd_dev);
5320 }
5321 
5322 static void rbd_dev_release(struct device *dev)
5323 {
5324 	struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5325 	bool need_put = !!rbd_dev->opts;
5326 
5327 	if (need_put) {
5328 		destroy_workqueue(rbd_dev->task_wq);
5329 		ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5330 	}
5331 
5332 	rbd_dev_free(rbd_dev);
5333 
5334 	/*
5335 	 * This is racy, but way better than putting module outside of
5336 	 * the release callback.  The race window is pretty small, so
5337 	 * doing something similar to dm (dm-builtin.c) is overkill.
5338 	 */
5339 	if (need_put)
5340 		module_put(THIS_MODULE);
5341 }
5342 
5343 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5344 {
5345 	struct rbd_device *rbd_dev;
5346 
5347 	rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5348 	if (!rbd_dev)
5349 		return NULL;
5350 
5351 	spin_lock_init(&rbd_dev->lock);
5352 	INIT_LIST_HEAD(&rbd_dev->node);
5353 	init_rwsem(&rbd_dev->header_rwsem);
5354 
5355 	rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5356 	ceph_oid_init(&rbd_dev->header_oid);
5357 	rbd_dev->header_oloc.pool = spec->pool_id;
5358 	if (spec->pool_ns) {
5359 		WARN_ON(!*spec->pool_ns);
5360 		rbd_dev->header_oloc.pool_ns =
5361 		    ceph_find_or_create_string(spec->pool_ns,
5362 					       strlen(spec->pool_ns));
5363 	}
5364 
5365 	mutex_init(&rbd_dev->watch_mutex);
5366 	rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5367 	INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5368 
5369 	init_rwsem(&rbd_dev->lock_rwsem);
5370 	rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5371 	INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5372 	INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5373 	INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5374 	INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5375 	spin_lock_init(&rbd_dev->lock_lists_lock);
5376 	INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5377 	INIT_LIST_HEAD(&rbd_dev->running_list);
5378 	init_completion(&rbd_dev->acquire_wait);
5379 	init_completion(&rbd_dev->releasing_wait);
5380 
5381 	spin_lock_init(&rbd_dev->object_map_lock);
5382 
5383 	rbd_dev->dev.bus = &rbd_bus_type;
5384 	rbd_dev->dev.type = &rbd_device_type;
5385 	rbd_dev->dev.parent = &rbd_root_dev;
5386 	device_initialize(&rbd_dev->dev);
5387 
5388 	return rbd_dev;
5389 }
5390 
5391 /*
5392  * Create a mapping rbd_dev.
5393  */
5394 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5395 					 struct rbd_spec *spec,
5396 					 struct rbd_options *opts)
5397 {
5398 	struct rbd_device *rbd_dev;
5399 
5400 	rbd_dev = __rbd_dev_create(spec);
5401 	if (!rbd_dev)
5402 		return NULL;
5403 
5404 	/* get an id and fill in device name */
5405 	rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5406 					 minor_to_rbd_dev_id(1 << MINORBITS),
5407 					 GFP_KERNEL);
5408 	if (rbd_dev->dev_id < 0)
5409 		goto fail_rbd_dev;
5410 
5411 	sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5412 	rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5413 						   rbd_dev->name);
5414 	if (!rbd_dev->task_wq)
5415 		goto fail_dev_id;
5416 
5417 	/* we have a ref from do_rbd_add() */
5418 	__module_get(THIS_MODULE);
5419 
5420 	rbd_dev->rbd_client = rbdc;
5421 	rbd_dev->spec = spec;
5422 	rbd_dev->opts = opts;
5423 
5424 	dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5425 	return rbd_dev;
5426 
5427 fail_dev_id:
5428 	ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5429 fail_rbd_dev:
5430 	rbd_dev_free(rbd_dev);
5431 	return NULL;
5432 }
5433 
5434 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5435 {
5436 	if (rbd_dev)
5437 		put_device(&rbd_dev->dev);
5438 }
5439 
5440 /*
5441  * Get the size and object order for an image snapshot, or if
5442  * snap_id is CEPH_NOSNAP, gets this information for the base
5443  * image.
5444  */
5445 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5446 				u8 *order, u64 *snap_size)
5447 {
5448 	__le64 snapid = cpu_to_le64(snap_id);
5449 	int ret;
5450 	struct {
5451 		u8 order;
5452 		__le64 size;
5453 	} __attribute__ ((packed)) size_buf = { 0 };
5454 
5455 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5456 				  &rbd_dev->header_oloc, "get_size",
5457 				  &snapid, sizeof(snapid),
5458 				  &size_buf, sizeof(size_buf));
5459 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5460 	if (ret < 0)
5461 		return ret;
5462 	if (ret < sizeof (size_buf))
5463 		return -ERANGE;
5464 
5465 	if (order) {
5466 		*order = size_buf.order;
5467 		dout("  order %u", (unsigned int)*order);
5468 	}
5469 	*snap_size = le64_to_cpu(size_buf.size);
5470 
5471 	dout("  snap_id 0x%016llx snap_size = %llu\n",
5472 		(unsigned long long)snap_id,
5473 		(unsigned long long)*snap_size);
5474 
5475 	return 0;
5476 }
5477 
5478 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5479 				    char **pobject_prefix)
5480 {
5481 	size_t size;
5482 	void *reply_buf;
5483 	char *object_prefix;
5484 	int ret;
5485 	void *p;
5486 
5487 	/* Response will be an encoded string, which includes a length */
5488 	size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5489 	reply_buf = kzalloc(size, GFP_KERNEL);
5490 	if (!reply_buf)
5491 		return -ENOMEM;
5492 
5493 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5494 				  &rbd_dev->header_oloc, "get_object_prefix",
5495 				  NULL, 0, reply_buf, size);
5496 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5497 	if (ret < 0)
5498 		goto out;
5499 
5500 	p = reply_buf;
5501 	object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5502 						    GFP_NOIO);
5503 	if (IS_ERR(object_prefix)) {
5504 		ret = PTR_ERR(object_prefix);
5505 		goto out;
5506 	}
5507 	ret = 0;
5508 
5509 	*pobject_prefix = object_prefix;
5510 	dout("  object_prefix = %s\n", object_prefix);
5511 out:
5512 	kfree(reply_buf);
5513 
5514 	return ret;
5515 }
5516 
5517 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5518 				     bool read_only, u64 *snap_features)
5519 {
5520 	struct {
5521 		__le64 snap_id;
5522 		u8 read_only;
5523 	} features_in;
5524 	struct {
5525 		__le64 features;
5526 		__le64 incompat;
5527 	} __attribute__ ((packed)) features_buf = { 0 };
5528 	u64 unsup;
5529 	int ret;
5530 
5531 	features_in.snap_id = cpu_to_le64(snap_id);
5532 	features_in.read_only = read_only;
5533 
5534 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5535 				  &rbd_dev->header_oloc, "get_features",
5536 				  &features_in, sizeof(features_in),
5537 				  &features_buf, sizeof(features_buf));
5538 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5539 	if (ret < 0)
5540 		return ret;
5541 	if (ret < sizeof (features_buf))
5542 		return -ERANGE;
5543 
5544 	unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5545 	if (unsup) {
5546 		rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5547 			 unsup);
5548 		return -ENXIO;
5549 	}
5550 
5551 	*snap_features = le64_to_cpu(features_buf.features);
5552 
5553 	dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5554 		(unsigned long long)snap_id,
5555 		(unsigned long long)*snap_features,
5556 		(unsigned long long)le64_to_cpu(features_buf.incompat));
5557 
5558 	return 0;
5559 }
5560 
5561 /*
5562  * These are generic image flags, but since they are used only for
5563  * object map, store them in rbd_dev->object_map_flags.
5564  *
5565  * For the same reason, this function is called only on object map
5566  * (re)load and not on header refresh.
5567  */
5568 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5569 {
5570 	__le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5571 	__le64 flags;
5572 	int ret;
5573 
5574 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5575 				  &rbd_dev->header_oloc, "get_flags",
5576 				  &snapid, sizeof(snapid),
5577 				  &flags, sizeof(flags));
5578 	if (ret < 0)
5579 		return ret;
5580 	if (ret < sizeof(flags))
5581 		return -EBADMSG;
5582 
5583 	rbd_dev->object_map_flags = le64_to_cpu(flags);
5584 	return 0;
5585 }
5586 
5587 struct parent_image_info {
5588 	u64		pool_id;
5589 	const char	*pool_ns;
5590 	const char	*image_id;
5591 	u64		snap_id;
5592 
5593 	bool		has_overlap;
5594 	u64		overlap;
5595 };
5596 
5597 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5598 {
5599 	kfree(pii->pool_ns);
5600 	kfree(pii->image_id);
5601 
5602 	memset(pii, 0, sizeof(*pii));
5603 }
5604 
5605 /*
5606  * The caller is responsible for @pii.
5607  */
5608 static int decode_parent_image_spec(void **p, void *end,
5609 				    struct parent_image_info *pii)
5610 {
5611 	u8 struct_v;
5612 	u32 struct_len;
5613 	int ret;
5614 
5615 	ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5616 				  &struct_v, &struct_len);
5617 	if (ret)
5618 		return ret;
5619 
5620 	ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5621 	pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5622 	if (IS_ERR(pii->pool_ns)) {
5623 		ret = PTR_ERR(pii->pool_ns);
5624 		pii->pool_ns = NULL;
5625 		return ret;
5626 	}
5627 	pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5628 	if (IS_ERR(pii->image_id)) {
5629 		ret = PTR_ERR(pii->image_id);
5630 		pii->image_id = NULL;
5631 		return ret;
5632 	}
5633 	ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5634 	return 0;
5635 
5636 e_inval:
5637 	return -EINVAL;
5638 }
5639 
5640 static int __get_parent_info(struct rbd_device *rbd_dev,
5641 			     struct page *req_page,
5642 			     struct page *reply_page,
5643 			     struct parent_image_info *pii)
5644 {
5645 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5646 	size_t reply_len = PAGE_SIZE;
5647 	void *p, *end;
5648 	int ret;
5649 
5650 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5651 			     "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5652 			     req_page, sizeof(u64), &reply_page, &reply_len);
5653 	if (ret)
5654 		return ret == -EOPNOTSUPP ? 1 : ret;
5655 
5656 	p = page_address(reply_page);
5657 	end = p + reply_len;
5658 	ret = decode_parent_image_spec(&p, end, pii);
5659 	if (ret)
5660 		return ret;
5661 
5662 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5663 			     "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5664 			     req_page, sizeof(u64), &reply_page, &reply_len);
5665 	if (ret)
5666 		return ret;
5667 
5668 	p = page_address(reply_page);
5669 	end = p + reply_len;
5670 	ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5671 	if (pii->has_overlap)
5672 		ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5673 
5674 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5675 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5676 	     pii->has_overlap, pii->overlap);
5677 	return 0;
5678 
5679 e_inval:
5680 	return -EINVAL;
5681 }
5682 
5683 /*
5684  * The caller is responsible for @pii.
5685  */
5686 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5687 				    struct page *req_page,
5688 				    struct page *reply_page,
5689 				    struct parent_image_info *pii)
5690 {
5691 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5692 	size_t reply_len = PAGE_SIZE;
5693 	void *p, *end;
5694 	int ret;
5695 
5696 	ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5697 			     "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5698 			     req_page, sizeof(u64), &reply_page, &reply_len);
5699 	if (ret)
5700 		return ret;
5701 
5702 	p = page_address(reply_page);
5703 	end = p + reply_len;
5704 	ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5705 	pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5706 	if (IS_ERR(pii->image_id)) {
5707 		ret = PTR_ERR(pii->image_id);
5708 		pii->image_id = NULL;
5709 		return ret;
5710 	}
5711 	ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5712 	pii->has_overlap = true;
5713 	ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5714 
5715 	dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5716 	     __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5717 	     pii->has_overlap, pii->overlap);
5718 	return 0;
5719 
5720 e_inval:
5721 	return -EINVAL;
5722 }
5723 
5724 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5725 				  struct parent_image_info *pii)
5726 {
5727 	struct page *req_page, *reply_page;
5728 	void *p;
5729 	int ret;
5730 
5731 	req_page = alloc_page(GFP_KERNEL);
5732 	if (!req_page)
5733 		return -ENOMEM;
5734 
5735 	reply_page = alloc_page(GFP_KERNEL);
5736 	if (!reply_page) {
5737 		__free_page(req_page);
5738 		return -ENOMEM;
5739 	}
5740 
5741 	p = page_address(req_page);
5742 	ceph_encode_64(&p, rbd_dev->spec->snap_id);
5743 	ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5744 	if (ret > 0)
5745 		ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5746 					       pii);
5747 
5748 	__free_page(req_page);
5749 	__free_page(reply_page);
5750 	return ret;
5751 }
5752 
5753 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5754 {
5755 	struct rbd_spec *parent_spec;
5756 	struct parent_image_info pii = { 0 };
5757 	int ret;
5758 
5759 	parent_spec = rbd_spec_alloc();
5760 	if (!parent_spec)
5761 		return -ENOMEM;
5762 
5763 	ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5764 	if (ret)
5765 		goto out_err;
5766 
5767 	if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5768 		goto out;	/* No parent?  No problem. */
5769 
5770 	/* The ceph file layout needs to fit pool id in 32 bits */
5771 
5772 	ret = -EIO;
5773 	if (pii.pool_id > (u64)U32_MAX) {
5774 		rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5775 			(unsigned long long)pii.pool_id, U32_MAX);
5776 		goto out_err;
5777 	}
5778 
5779 	/*
5780 	 * The parent won't change except when the clone is flattened,
5781 	 * so we only need to record the parent image spec once.
5782 	 */
5783 	parent_spec->pool_id = pii.pool_id;
5784 	if (pii.pool_ns && *pii.pool_ns) {
5785 		parent_spec->pool_ns = pii.pool_ns;
5786 		pii.pool_ns = NULL;
5787 	}
5788 	parent_spec->image_id = pii.image_id;
5789 	pii.image_id = NULL;
5790 	parent_spec->snap_id = pii.snap_id;
5791 
5792 	rbd_assert(!rbd_dev->parent_spec);
5793 	rbd_dev->parent_spec = parent_spec;
5794 	parent_spec = NULL;	/* rbd_dev now owns this */
5795 
5796 	/*
5797 	 * Record the parent overlap.  If it's zero, issue a warning as
5798 	 * we will proceed as if there is no parent.
5799 	 */
5800 	if (!pii.overlap)
5801 		rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5802 	rbd_dev->parent_overlap = pii.overlap;
5803 
5804 out:
5805 	ret = 0;
5806 out_err:
5807 	rbd_parent_info_cleanup(&pii);
5808 	rbd_spec_put(parent_spec);
5809 	return ret;
5810 }
5811 
5812 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5813 				    u64 *stripe_unit, u64 *stripe_count)
5814 {
5815 	struct {
5816 		__le64 stripe_unit;
5817 		__le64 stripe_count;
5818 	} __attribute__ ((packed)) striping_info_buf = { 0 };
5819 	size_t size = sizeof (striping_info_buf);
5820 	int ret;
5821 
5822 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5823 				&rbd_dev->header_oloc, "get_stripe_unit_count",
5824 				NULL, 0, &striping_info_buf, size);
5825 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5826 	if (ret < 0)
5827 		return ret;
5828 	if (ret < size)
5829 		return -ERANGE;
5830 
5831 	*stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5832 	*stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5833 	dout("  stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5834 	     *stripe_count);
5835 
5836 	return 0;
5837 }
5838 
5839 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5840 {
5841 	__le64 data_pool_buf;
5842 	int ret;
5843 
5844 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5845 				  &rbd_dev->header_oloc, "get_data_pool",
5846 				  NULL, 0, &data_pool_buf,
5847 				  sizeof(data_pool_buf));
5848 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5849 	if (ret < 0)
5850 		return ret;
5851 	if (ret < sizeof(data_pool_buf))
5852 		return -EBADMSG;
5853 
5854 	*data_pool_id = le64_to_cpu(data_pool_buf);
5855 	dout("  data_pool_id = %lld\n", *data_pool_id);
5856 	WARN_ON(*data_pool_id == CEPH_NOPOOL);
5857 
5858 	return 0;
5859 }
5860 
5861 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5862 {
5863 	CEPH_DEFINE_OID_ONSTACK(oid);
5864 	size_t image_id_size;
5865 	char *image_id;
5866 	void *p;
5867 	void *end;
5868 	size_t size;
5869 	void *reply_buf = NULL;
5870 	size_t len = 0;
5871 	char *image_name = NULL;
5872 	int ret;
5873 
5874 	rbd_assert(!rbd_dev->spec->image_name);
5875 
5876 	len = strlen(rbd_dev->spec->image_id);
5877 	image_id_size = sizeof (__le32) + len;
5878 	image_id = kmalloc(image_id_size, GFP_KERNEL);
5879 	if (!image_id)
5880 		return NULL;
5881 
5882 	p = image_id;
5883 	end = image_id + image_id_size;
5884 	ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5885 
5886 	size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5887 	reply_buf = kmalloc(size, GFP_KERNEL);
5888 	if (!reply_buf)
5889 		goto out;
5890 
5891 	ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5892 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5893 				  "dir_get_name", image_id, image_id_size,
5894 				  reply_buf, size);
5895 	if (ret < 0)
5896 		goto out;
5897 	p = reply_buf;
5898 	end = reply_buf + ret;
5899 
5900 	image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5901 	if (IS_ERR(image_name))
5902 		image_name = NULL;
5903 	else
5904 		dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5905 out:
5906 	kfree(reply_buf);
5907 	kfree(image_id);
5908 
5909 	return image_name;
5910 }
5911 
5912 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5913 {
5914 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5915 	const char *snap_name;
5916 	u32 which = 0;
5917 
5918 	/* Skip over names until we find the one we are looking for */
5919 
5920 	snap_name = rbd_dev->header.snap_names;
5921 	while (which < snapc->num_snaps) {
5922 		if (!strcmp(name, snap_name))
5923 			return snapc->snaps[which];
5924 		snap_name += strlen(snap_name) + 1;
5925 		which++;
5926 	}
5927 	return CEPH_NOSNAP;
5928 }
5929 
5930 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5931 {
5932 	struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5933 	u32 which;
5934 	bool found = false;
5935 	u64 snap_id;
5936 
5937 	for (which = 0; !found && which < snapc->num_snaps; which++) {
5938 		const char *snap_name;
5939 
5940 		snap_id = snapc->snaps[which];
5941 		snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5942 		if (IS_ERR(snap_name)) {
5943 			/* ignore no-longer existing snapshots */
5944 			if (PTR_ERR(snap_name) == -ENOENT)
5945 				continue;
5946 			else
5947 				break;
5948 		}
5949 		found = !strcmp(name, snap_name);
5950 		kfree(snap_name);
5951 	}
5952 	return found ? snap_id : CEPH_NOSNAP;
5953 }
5954 
5955 /*
5956  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5957  * no snapshot by that name is found, or if an error occurs.
5958  */
5959 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5960 {
5961 	if (rbd_dev->image_format == 1)
5962 		return rbd_v1_snap_id_by_name(rbd_dev, name);
5963 
5964 	return rbd_v2_snap_id_by_name(rbd_dev, name);
5965 }
5966 
5967 /*
5968  * An image being mapped will have everything but the snap id.
5969  */
5970 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5971 {
5972 	struct rbd_spec *spec = rbd_dev->spec;
5973 
5974 	rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5975 	rbd_assert(spec->image_id && spec->image_name);
5976 	rbd_assert(spec->snap_name);
5977 
5978 	if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5979 		u64 snap_id;
5980 
5981 		snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5982 		if (snap_id == CEPH_NOSNAP)
5983 			return -ENOENT;
5984 
5985 		spec->snap_id = snap_id;
5986 	} else {
5987 		spec->snap_id = CEPH_NOSNAP;
5988 	}
5989 
5990 	return 0;
5991 }
5992 
5993 /*
5994  * A parent image will have all ids but none of the names.
5995  *
5996  * All names in an rbd spec are dynamically allocated.  It's OK if we
5997  * can't figure out the name for an image id.
5998  */
5999 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6000 {
6001 	struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6002 	struct rbd_spec *spec = rbd_dev->spec;
6003 	const char *pool_name;
6004 	const char *image_name;
6005 	const char *snap_name;
6006 	int ret;
6007 
6008 	rbd_assert(spec->pool_id != CEPH_NOPOOL);
6009 	rbd_assert(spec->image_id);
6010 	rbd_assert(spec->snap_id != CEPH_NOSNAP);
6011 
6012 	/* Get the pool name; we have to make our own copy of this */
6013 
6014 	pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6015 	if (!pool_name) {
6016 		rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6017 		return -EIO;
6018 	}
6019 	pool_name = kstrdup(pool_name, GFP_KERNEL);
6020 	if (!pool_name)
6021 		return -ENOMEM;
6022 
6023 	/* Fetch the image name; tolerate failure here */
6024 
6025 	image_name = rbd_dev_image_name(rbd_dev);
6026 	if (!image_name)
6027 		rbd_warn(rbd_dev, "unable to get image name");
6028 
6029 	/* Fetch the snapshot name */
6030 
6031 	snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6032 	if (IS_ERR(snap_name)) {
6033 		ret = PTR_ERR(snap_name);
6034 		goto out_err;
6035 	}
6036 
6037 	spec->pool_name = pool_name;
6038 	spec->image_name = image_name;
6039 	spec->snap_name = snap_name;
6040 
6041 	return 0;
6042 
6043 out_err:
6044 	kfree(image_name);
6045 	kfree(pool_name);
6046 	return ret;
6047 }
6048 
6049 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6050 				   struct ceph_snap_context **psnapc)
6051 {
6052 	size_t size;
6053 	int ret;
6054 	void *reply_buf;
6055 	void *p;
6056 	void *end;
6057 	u64 seq;
6058 	u32 snap_count;
6059 	struct ceph_snap_context *snapc;
6060 	u32 i;
6061 
6062 	/*
6063 	 * We'll need room for the seq value (maximum snapshot id),
6064 	 * snapshot count, and array of that many snapshot ids.
6065 	 * For now we have a fixed upper limit on the number we're
6066 	 * prepared to receive.
6067 	 */
6068 	size = sizeof (__le64) + sizeof (__le32) +
6069 			RBD_MAX_SNAP_COUNT * sizeof (__le64);
6070 	reply_buf = kzalloc(size, GFP_KERNEL);
6071 	if (!reply_buf)
6072 		return -ENOMEM;
6073 
6074 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6075 				  &rbd_dev->header_oloc, "get_snapcontext",
6076 				  NULL, 0, reply_buf, size);
6077 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6078 	if (ret < 0)
6079 		goto out;
6080 
6081 	p = reply_buf;
6082 	end = reply_buf + ret;
6083 	ret = -ERANGE;
6084 	ceph_decode_64_safe(&p, end, seq, out);
6085 	ceph_decode_32_safe(&p, end, snap_count, out);
6086 
6087 	/*
6088 	 * Make sure the reported number of snapshot ids wouldn't go
6089 	 * beyond the end of our buffer.  But before checking that,
6090 	 * make sure the computed size of the snapshot context we
6091 	 * allocate is representable in a size_t.
6092 	 */
6093 	if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6094 				 / sizeof (u64)) {
6095 		ret = -EINVAL;
6096 		goto out;
6097 	}
6098 	if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6099 		goto out;
6100 	ret = 0;
6101 
6102 	snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6103 	if (!snapc) {
6104 		ret = -ENOMEM;
6105 		goto out;
6106 	}
6107 	snapc->seq = seq;
6108 	for (i = 0; i < snap_count; i++)
6109 		snapc->snaps[i] = ceph_decode_64(&p);
6110 
6111 	*psnapc = snapc;
6112 	dout("  snap context seq = %llu, snap_count = %u\n",
6113 		(unsigned long long)seq, (unsigned int)snap_count);
6114 out:
6115 	kfree(reply_buf);
6116 
6117 	return ret;
6118 }
6119 
6120 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6121 					u64 snap_id)
6122 {
6123 	size_t size;
6124 	void *reply_buf;
6125 	__le64 snapid;
6126 	int ret;
6127 	void *p;
6128 	void *end;
6129 	char *snap_name;
6130 
6131 	size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6132 	reply_buf = kmalloc(size, GFP_KERNEL);
6133 	if (!reply_buf)
6134 		return ERR_PTR(-ENOMEM);
6135 
6136 	snapid = cpu_to_le64(snap_id);
6137 	ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6138 				  &rbd_dev->header_oloc, "get_snapshot_name",
6139 				  &snapid, sizeof(snapid), reply_buf, size);
6140 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6141 	if (ret < 0) {
6142 		snap_name = ERR_PTR(ret);
6143 		goto out;
6144 	}
6145 
6146 	p = reply_buf;
6147 	end = reply_buf + ret;
6148 	snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6149 	if (IS_ERR(snap_name))
6150 		goto out;
6151 
6152 	dout("  snap_id 0x%016llx snap_name = %s\n",
6153 		(unsigned long long)snap_id, snap_name);
6154 out:
6155 	kfree(reply_buf);
6156 
6157 	return snap_name;
6158 }
6159 
6160 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6161 				  struct rbd_image_header *header,
6162 				  bool first_time)
6163 {
6164 	int ret;
6165 
6166 	ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6167 				    first_time ? &header->obj_order : NULL,
6168 				    &header->image_size);
6169 	if (ret)
6170 		return ret;
6171 
6172 	if (first_time) {
6173 		ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6174 		if (ret)
6175 			return ret;
6176 	}
6177 
6178 	ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6179 	if (ret)
6180 		return ret;
6181 
6182 	return 0;
6183 }
6184 
6185 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6186 			       struct rbd_image_header *header,
6187 			       bool first_time)
6188 {
6189 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6190 	rbd_assert(!header->object_prefix && !header->snapc);
6191 
6192 	if (rbd_dev->image_format == 1)
6193 		return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6194 
6195 	return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6196 }
6197 
6198 /*
6199  * Skips over white space at *buf, and updates *buf to point to the
6200  * first found non-space character (if any). Returns the length of
6201  * the token (string of non-white space characters) found.  Note
6202  * that *buf must be terminated with '\0'.
6203  */
6204 static inline size_t next_token(const char **buf)
6205 {
6206         /*
6207         * These are the characters that produce nonzero for
6208         * isspace() in the "C" and "POSIX" locales.
6209         */
6210 	static const char spaces[] = " \f\n\r\t\v";
6211 
6212         *buf += strspn(*buf, spaces);	/* Find start of token */
6213 
6214 	return strcspn(*buf, spaces);   /* Return token length */
6215 }
6216 
6217 /*
6218  * Finds the next token in *buf, dynamically allocates a buffer big
6219  * enough to hold a copy of it, and copies the token into the new
6220  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
6221  * that a duplicate buffer is created even for a zero-length token.
6222  *
6223  * Returns a pointer to the newly-allocated duplicate, or a null
6224  * pointer if memory for the duplicate was not available.  If
6225  * the lenp argument is a non-null pointer, the length of the token
6226  * (not including the '\0') is returned in *lenp.
6227  *
6228  * If successful, the *buf pointer will be updated to point beyond
6229  * the end of the found token.
6230  *
6231  * Note: uses GFP_KERNEL for allocation.
6232  */
6233 static inline char *dup_token(const char **buf, size_t *lenp)
6234 {
6235 	char *dup;
6236 	size_t len;
6237 
6238 	len = next_token(buf);
6239 	dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6240 	if (!dup)
6241 		return NULL;
6242 	*(dup + len) = '\0';
6243 	*buf += len;
6244 
6245 	if (lenp)
6246 		*lenp = len;
6247 
6248 	return dup;
6249 }
6250 
6251 static int rbd_parse_param(struct fs_parameter *param,
6252 			    struct rbd_parse_opts_ctx *pctx)
6253 {
6254 	struct rbd_options *opt = pctx->opts;
6255 	struct fs_parse_result result;
6256 	struct p_log log = {.prefix = "rbd"};
6257 	int token, ret;
6258 
6259 	ret = ceph_parse_param(param, pctx->copts, NULL);
6260 	if (ret != -ENOPARAM)
6261 		return ret;
6262 
6263 	token = __fs_parse(&log, rbd_parameters, param, &result);
6264 	dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6265 	if (token < 0) {
6266 		if (token == -ENOPARAM)
6267 			return inval_plog(&log, "Unknown parameter '%s'",
6268 					  param->key);
6269 		return token;
6270 	}
6271 
6272 	switch (token) {
6273 	case Opt_queue_depth:
6274 		if (result.uint_32 < 1)
6275 			goto out_of_range;
6276 		opt->queue_depth = result.uint_32;
6277 		break;
6278 	case Opt_alloc_size:
6279 		if (result.uint_32 < SECTOR_SIZE)
6280 			goto out_of_range;
6281 		if (!is_power_of_2(result.uint_32))
6282 			return inval_plog(&log, "alloc_size must be a power of 2");
6283 		opt->alloc_size = result.uint_32;
6284 		break;
6285 	case Opt_lock_timeout:
6286 		/* 0 is "wait forever" (i.e. infinite timeout) */
6287 		if (result.uint_32 > INT_MAX / 1000)
6288 			goto out_of_range;
6289 		opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6290 		break;
6291 	case Opt_pool_ns:
6292 		kfree(pctx->spec->pool_ns);
6293 		pctx->spec->pool_ns = param->string;
6294 		param->string = NULL;
6295 		break;
6296 	case Opt_compression_hint:
6297 		switch (result.uint_32) {
6298 		case Opt_compression_hint_none:
6299 			opt->alloc_hint_flags &=
6300 			    ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6301 			      CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6302 			break;
6303 		case Opt_compression_hint_compressible:
6304 			opt->alloc_hint_flags |=
6305 			    CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6306 			opt->alloc_hint_flags &=
6307 			    ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6308 			break;
6309 		case Opt_compression_hint_incompressible:
6310 			opt->alloc_hint_flags |=
6311 			    CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6312 			opt->alloc_hint_flags &=
6313 			    ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6314 			break;
6315 		default:
6316 			BUG();
6317 		}
6318 		break;
6319 	case Opt_read_only:
6320 		opt->read_only = true;
6321 		break;
6322 	case Opt_read_write:
6323 		opt->read_only = false;
6324 		break;
6325 	case Opt_lock_on_read:
6326 		opt->lock_on_read = true;
6327 		break;
6328 	case Opt_exclusive:
6329 		opt->exclusive = true;
6330 		break;
6331 	case Opt_notrim:
6332 		opt->trim = false;
6333 		break;
6334 	default:
6335 		BUG();
6336 	}
6337 
6338 	return 0;
6339 
6340 out_of_range:
6341 	return inval_plog(&log, "%s out of range", param->key);
6342 }
6343 
6344 /*
6345  * This duplicates most of generic_parse_monolithic(), untying it from
6346  * fs_context and skipping standard superblock and security options.
6347  */
6348 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6349 {
6350 	char *key;
6351 	int ret = 0;
6352 
6353 	dout("%s '%s'\n", __func__, options);
6354 	while ((key = strsep(&options, ",")) != NULL) {
6355 		if (*key) {
6356 			struct fs_parameter param = {
6357 				.key	= key,
6358 				.type	= fs_value_is_flag,
6359 			};
6360 			char *value = strchr(key, '=');
6361 			size_t v_len = 0;
6362 
6363 			if (value) {
6364 				if (value == key)
6365 					continue;
6366 				*value++ = 0;
6367 				v_len = strlen(value);
6368 				param.string = kmemdup_nul(value, v_len,
6369 							   GFP_KERNEL);
6370 				if (!param.string)
6371 					return -ENOMEM;
6372 				param.type = fs_value_is_string;
6373 			}
6374 			param.size = v_len;
6375 
6376 			ret = rbd_parse_param(&param, pctx);
6377 			kfree(param.string);
6378 			if (ret)
6379 				break;
6380 		}
6381 	}
6382 
6383 	return ret;
6384 }
6385 
6386 /*
6387  * Parse the options provided for an "rbd add" (i.e., rbd image
6388  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
6389  * and the data written is passed here via a NUL-terminated buffer.
6390  * Returns 0 if successful or an error code otherwise.
6391  *
6392  * The information extracted from these options is recorded in
6393  * the other parameters which return dynamically-allocated
6394  * structures:
6395  *  ceph_opts
6396  *      The address of a pointer that will refer to a ceph options
6397  *      structure.  Caller must release the returned pointer using
6398  *      ceph_destroy_options() when it is no longer needed.
6399  *  rbd_opts
6400  *	Address of an rbd options pointer.  Fully initialized by
6401  *	this function; caller must release with kfree().
6402  *  spec
6403  *	Address of an rbd image specification pointer.  Fully
6404  *	initialized by this function based on parsed options.
6405  *	Caller must release with rbd_spec_put().
6406  *
6407  * The options passed take this form:
6408  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6409  * where:
6410  *  <mon_addrs>
6411  *      A comma-separated list of one or more monitor addresses.
6412  *      A monitor address is an ip address, optionally followed
6413  *      by a port number (separated by a colon).
6414  *        I.e.:  ip1[:port1][,ip2[:port2]...]
6415  *  <options>
6416  *      A comma-separated list of ceph and/or rbd options.
6417  *  <pool_name>
6418  *      The name of the rados pool containing the rbd image.
6419  *  <image_name>
6420  *      The name of the image in that pool to map.
6421  *  <snap_id>
6422  *      An optional snapshot id.  If provided, the mapping will
6423  *      present data from the image at the time that snapshot was
6424  *      created.  The image head is used if no snapshot id is
6425  *      provided.  Snapshot mappings are always read-only.
6426  */
6427 static int rbd_add_parse_args(const char *buf,
6428 				struct ceph_options **ceph_opts,
6429 				struct rbd_options **opts,
6430 				struct rbd_spec **rbd_spec)
6431 {
6432 	size_t len;
6433 	char *options;
6434 	const char *mon_addrs;
6435 	char *snap_name;
6436 	size_t mon_addrs_size;
6437 	struct rbd_parse_opts_ctx pctx = { 0 };
6438 	int ret;
6439 
6440 	/* The first four tokens are required */
6441 
6442 	len = next_token(&buf);
6443 	if (!len) {
6444 		rbd_warn(NULL, "no monitor address(es) provided");
6445 		return -EINVAL;
6446 	}
6447 	mon_addrs = buf;
6448 	mon_addrs_size = len;
6449 	buf += len;
6450 
6451 	ret = -EINVAL;
6452 	options = dup_token(&buf, NULL);
6453 	if (!options)
6454 		return -ENOMEM;
6455 	if (!*options) {
6456 		rbd_warn(NULL, "no options provided");
6457 		goto out_err;
6458 	}
6459 
6460 	pctx.spec = rbd_spec_alloc();
6461 	if (!pctx.spec)
6462 		goto out_mem;
6463 
6464 	pctx.spec->pool_name = dup_token(&buf, NULL);
6465 	if (!pctx.spec->pool_name)
6466 		goto out_mem;
6467 	if (!*pctx.spec->pool_name) {
6468 		rbd_warn(NULL, "no pool name provided");
6469 		goto out_err;
6470 	}
6471 
6472 	pctx.spec->image_name = dup_token(&buf, NULL);
6473 	if (!pctx.spec->image_name)
6474 		goto out_mem;
6475 	if (!*pctx.spec->image_name) {
6476 		rbd_warn(NULL, "no image name provided");
6477 		goto out_err;
6478 	}
6479 
6480 	/*
6481 	 * Snapshot name is optional; default is to use "-"
6482 	 * (indicating the head/no snapshot).
6483 	 */
6484 	len = next_token(&buf);
6485 	if (!len) {
6486 		buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6487 		len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6488 	} else if (len > RBD_MAX_SNAP_NAME_LEN) {
6489 		ret = -ENAMETOOLONG;
6490 		goto out_err;
6491 	}
6492 	snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6493 	if (!snap_name)
6494 		goto out_mem;
6495 	*(snap_name + len) = '\0';
6496 	pctx.spec->snap_name = snap_name;
6497 
6498 	pctx.copts = ceph_alloc_options();
6499 	if (!pctx.copts)
6500 		goto out_mem;
6501 
6502 	/* Initialize all rbd options to the defaults */
6503 
6504 	pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6505 	if (!pctx.opts)
6506 		goto out_mem;
6507 
6508 	pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6509 	pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6510 	pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6511 	pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6512 	pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6513 	pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6514 	pctx.opts->trim = RBD_TRIM_DEFAULT;
6515 
6516 	ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6517 				 ',');
6518 	if (ret)
6519 		goto out_err;
6520 
6521 	ret = rbd_parse_options(options, &pctx);
6522 	if (ret)
6523 		goto out_err;
6524 
6525 	*ceph_opts = pctx.copts;
6526 	*opts = pctx.opts;
6527 	*rbd_spec = pctx.spec;
6528 	kfree(options);
6529 	return 0;
6530 
6531 out_mem:
6532 	ret = -ENOMEM;
6533 out_err:
6534 	kfree(pctx.opts);
6535 	ceph_destroy_options(pctx.copts);
6536 	rbd_spec_put(pctx.spec);
6537 	kfree(options);
6538 	return ret;
6539 }
6540 
6541 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6542 {
6543 	down_write(&rbd_dev->lock_rwsem);
6544 	if (__rbd_is_lock_owner(rbd_dev))
6545 		__rbd_release_lock(rbd_dev);
6546 	up_write(&rbd_dev->lock_rwsem);
6547 }
6548 
6549 /*
6550  * If the wait is interrupted, an error is returned even if the lock
6551  * was successfully acquired.  rbd_dev_image_unlock() will release it
6552  * if needed.
6553  */
6554 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6555 {
6556 	long ret;
6557 
6558 	if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6559 		if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6560 			return 0;
6561 
6562 		rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6563 		return -EINVAL;
6564 	}
6565 
6566 	if (rbd_is_ro(rbd_dev))
6567 		return 0;
6568 
6569 	rbd_assert(!rbd_is_lock_owner(rbd_dev));
6570 	queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6571 	ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6572 			    ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6573 	if (ret > 0) {
6574 		ret = rbd_dev->acquire_err;
6575 	} else {
6576 		cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6577 		if (!ret)
6578 			ret = -ETIMEDOUT;
6579 
6580 		rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6581 	}
6582 	if (ret)
6583 		return ret;
6584 
6585 	/*
6586 	 * The lock may have been released by now, unless automatic lock
6587 	 * transitions are disabled.
6588 	 */
6589 	rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6590 	return 0;
6591 }
6592 
6593 /*
6594  * An rbd format 2 image has a unique identifier, distinct from the
6595  * name given to it by the user.  Internally, that identifier is
6596  * what's used to specify the names of objects related to the image.
6597  *
6598  * A special "rbd id" object is used to map an rbd image name to its
6599  * id.  If that object doesn't exist, then there is no v2 rbd image
6600  * with the supplied name.
6601  *
6602  * This function will record the given rbd_dev's image_id field if
6603  * it can be determined, and in that case will return 0.  If any
6604  * errors occur a negative errno will be returned and the rbd_dev's
6605  * image_id field will be unchanged (and should be NULL).
6606  */
6607 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6608 {
6609 	int ret;
6610 	size_t size;
6611 	CEPH_DEFINE_OID_ONSTACK(oid);
6612 	void *response;
6613 	char *image_id;
6614 
6615 	/*
6616 	 * When probing a parent image, the image id is already
6617 	 * known (and the image name likely is not).  There's no
6618 	 * need to fetch the image id again in this case.  We
6619 	 * do still need to set the image format though.
6620 	 */
6621 	if (rbd_dev->spec->image_id) {
6622 		rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6623 
6624 		return 0;
6625 	}
6626 
6627 	/*
6628 	 * First, see if the format 2 image id file exists, and if
6629 	 * so, get the image's persistent id from it.
6630 	 */
6631 	ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6632 			       rbd_dev->spec->image_name);
6633 	if (ret)
6634 		return ret;
6635 
6636 	dout("rbd id object name is %s\n", oid.name);
6637 
6638 	/* Response will be an encoded string, which includes a length */
6639 	size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6640 	response = kzalloc(size, GFP_NOIO);
6641 	if (!response) {
6642 		ret = -ENOMEM;
6643 		goto out;
6644 	}
6645 
6646 	/* If it doesn't exist we'll assume it's a format 1 image */
6647 
6648 	ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6649 				  "get_id", NULL, 0,
6650 				  response, size);
6651 	dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6652 	if (ret == -ENOENT) {
6653 		image_id = kstrdup("", GFP_KERNEL);
6654 		ret = image_id ? 0 : -ENOMEM;
6655 		if (!ret)
6656 			rbd_dev->image_format = 1;
6657 	} else if (ret >= 0) {
6658 		void *p = response;
6659 
6660 		image_id = ceph_extract_encoded_string(&p, p + ret,
6661 						NULL, GFP_NOIO);
6662 		ret = PTR_ERR_OR_ZERO(image_id);
6663 		if (!ret)
6664 			rbd_dev->image_format = 2;
6665 	}
6666 
6667 	if (!ret) {
6668 		rbd_dev->spec->image_id = image_id;
6669 		dout("image_id is %s\n", image_id);
6670 	}
6671 out:
6672 	kfree(response);
6673 	ceph_oid_destroy(&oid);
6674 	return ret;
6675 }
6676 
6677 /*
6678  * Undo whatever state changes are made by v1 or v2 header info
6679  * call.
6680  */
6681 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6682 {
6683 	rbd_dev_parent_put(rbd_dev);
6684 	rbd_object_map_free(rbd_dev);
6685 	rbd_dev_mapping_clear(rbd_dev);
6686 
6687 	/* Free dynamic fields from the header, then zero it out */
6688 
6689 	rbd_image_header_cleanup(&rbd_dev->header);
6690 }
6691 
6692 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6693 				     struct rbd_image_header *header)
6694 {
6695 	int ret;
6696 
6697 	ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6698 	if (ret)
6699 		return ret;
6700 
6701 	/*
6702 	 * Get the and check features for the image.  Currently the
6703 	 * features are assumed to never change.
6704 	 */
6705 	ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6706 					rbd_is_ro(rbd_dev), &header->features);
6707 	if (ret)
6708 		return ret;
6709 
6710 	/* If the image supports fancy striping, get its parameters */
6711 
6712 	if (header->features & RBD_FEATURE_STRIPINGV2) {
6713 		ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6714 					       &header->stripe_count);
6715 		if (ret)
6716 			return ret;
6717 	}
6718 
6719 	if (header->features & RBD_FEATURE_DATA_POOL) {
6720 		ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6721 		if (ret)
6722 			return ret;
6723 	}
6724 
6725 	return 0;
6726 }
6727 
6728 /*
6729  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6730  * rbd_dev_image_probe() recursion depth, which means it's also the
6731  * length of the already discovered part of the parent chain.
6732  */
6733 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6734 {
6735 	struct rbd_device *parent = NULL;
6736 	int ret;
6737 
6738 	if (!rbd_dev->parent_spec)
6739 		return 0;
6740 
6741 	if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6742 		pr_info("parent chain is too long (%d)\n", depth);
6743 		ret = -EINVAL;
6744 		goto out_err;
6745 	}
6746 
6747 	parent = __rbd_dev_create(rbd_dev->parent_spec);
6748 	if (!parent) {
6749 		ret = -ENOMEM;
6750 		goto out_err;
6751 	}
6752 
6753 	/*
6754 	 * Images related by parent/child relationships always share
6755 	 * rbd_client and spec/parent_spec, so bump their refcounts.
6756 	 */
6757 	parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6758 	parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6759 
6760 	__set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6761 
6762 	ret = rbd_dev_image_probe(parent, depth);
6763 	if (ret < 0)
6764 		goto out_err;
6765 
6766 	rbd_dev->parent = parent;
6767 	atomic_set(&rbd_dev->parent_ref, 1);
6768 	return 0;
6769 
6770 out_err:
6771 	rbd_dev_unparent(rbd_dev);
6772 	rbd_dev_destroy(parent);
6773 	return ret;
6774 }
6775 
6776 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6777 {
6778 	clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6779 	rbd_free_disk(rbd_dev);
6780 	if (!single_major)
6781 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6782 }
6783 
6784 /*
6785  * rbd_dev->header_rwsem must be locked for write and will be unlocked
6786  * upon return.
6787  */
6788 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6789 {
6790 	int ret;
6791 
6792 	/* Record our major and minor device numbers. */
6793 
6794 	if (!single_major) {
6795 		ret = register_blkdev(0, rbd_dev->name);
6796 		if (ret < 0)
6797 			goto err_out_unlock;
6798 
6799 		rbd_dev->major = ret;
6800 		rbd_dev->minor = 0;
6801 	} else {
6802 		rbd_dev->major = rbd_major;
6803 		rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6804 	}
6805 
6806 	/* Set up the blkdev mapping. */
6807 
6808 	ret = rbd_init_disk(rbd_dev);
6809 	if (ret)
6810 		goto err_out_blkdev;
6811 
6812 	set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6813 	set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6814 
6815 	ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6816 	if (ret)
6817 		goto err_out_disk;
6818 
6819 	set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6820 	up_write(&rbd_dev->header_rwsem);
6821 	return 0;
6822 
6823 err_out_disk:
6824 	rbd_free_disk(rbd_dev);
6825 err_out_blkdev:
6826 	if (!single_major)
6827 		unregister_blkdev(rbd_dev->major, rbd_dev->name);
6828 err_out_unlock:
6829 	up_write(&rbd_dev->header_rwsem);
6830 	return ret;
6831 }
6832 
6833 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6834 {
6835 	struct rbd_spec *spec = rbd_dev->spec;
6836 	int ret;
6837 
6838 	/* Record the header object name for this rbd image. */
6839 
6840 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6841 	if (rbd_dev->image_format == 1)
6842 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6843 				       spec->image_name, RBD_SUFFIX);
6844 	else
6845 		ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6846 				       RBD_HEADER_PREFIX, spec->image_id);
6847 
6848 	return ret;
6849 }
6850 
6851 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6852 {
6853 	if (!is_snap) {
6854 		pr_info("image %s/%s%s%s does not exist\n",
6855 			rbd_dev->spec->pool_name,
6856 			rbd_dev->spec->pool_ns ?: "",
6857 			rbd_dev->spec->pool_ns ? "/" : "",
6858 			rbd_dev->spec->image_name);
6859 	} else {
6860 		pr_info("snap %s/%s%s%s@%s does not exist\n",
6861 			rbd_dev->spec->pool_name,
6862 			rbd_dev->spec->pool_ns ?: "",
6863 			rbd_dev->spec->pool_ns ? "/" : "",
6864 			rbd_dev->spec->image_name,
6865 			rbd_dev->spec->snap_name);
6866 	}
6867 }
6868 
6869 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6870 {
6871 	if (!rbd_is_ro(rbd_dev))
6872 		rbd_unregister_watch(rbd_dev);
6873 
6874 	rbd_dev_unprobe(rbd_dev);
6875 	rbd_dev->image_format = 0;
6876 	kfree(rbd_dev->spec->image_id);
6877 	rbd_dev->spec->image_id = NULL;
6878 }
6879 
6880 /*
6881  * Probe for the existence of the header object for the given rbd
6882  * device.  If this image is the one being mapped (i.e., not a
6883  * parent), initiate a watch on its header object before using that
6884  * object to get detailed information about the rbd image.
6885  *
6886  * On success, returns with header_rwsem held for write if called
6887  * with @depth == 0.
6888  */
6889 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6890 {
6891 	bool need_watch = !rbd_is_ro(rbd_dev);
6892 	int ret;
6893 
6894 	/*
6895 	 * Get the id from the image id object.  Unless there's an
6896 	 * error, rbd_dev->spec->image_id will be filled in with
6897 	 * a dynamically-allocated string, and rbd_dev->image_format
6898 	 * will be set to either 1 or 2.
6899 	 */
6900 	ret = rbd_dev_image_id(rbd_dev);
6901 	if (ret)
6902 		return ret;
6903 
6904 	ret = rbd_dev_header_name(rbd_dev);
6905 	if (ret)
6906 		goto err_out_format;
6907 
6908 	if (need_watch) {
6909 		ret = rbd_register_watch(rbd_dev);
6910 		if (ret) {
6911 			if (ret == -ENOENT)
6912 				rbd_print_dne(rbd_dev, false);
6913 			goto err_out_format;
6914 		}
6915 	}
6916 
6917 	if (!depth)
6918 		down_write(&rbd_dev->header_rwsem);
6919 
6920 	ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6921 	if (ret) {
6922 		if (ret == -ENOENT && !need_watch)
6923 			rbd_print_dne(rbd_dev, false);
6924 		goto err_out_probe;
6925 	}
6926 
6927 	rbd_init_layout(rbd_dev);
6928 
6929 	/*
6930 	 * If this image is the one being mapped, we have pool name and
6931 	 * id, image name and id, and snap name - need to fill snap id.
6932 	 * Otherwise this is a parent image, identified by pool, image
6933 	 * and snap ids - need to fill in names for those ids.
6934 	 */
6935 	if (!depth)
6936 		ret = rbd_spec_fill_snap_id(rbd_dev);
6937 	else
6938 		ret = rbd_spec_fill_names(rbd_dev);
6939 	if (ret) {
6940 		if (ret == -ENOENT)
6941 			rbd_print_dne(rbd_dev, true);
6942 		goto err_out_probe;
6943 	}
6944 
6945 	ret = rbd_dev_mapping_set(rbd_dev);
6946 	if (ret)
6947 		goto err_out_probe;
6948 
6949 	if (rbd_is_snap(rbd_dev) &&
6950 	    (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6951 		ret = rbd_object_map_load(rbd_dev);
6952 		if (ret)
6953 			goto err_out_probe;
6954 	}
6955 
6956 	if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6957 		ret = rbd_dev_setup_parent(rbd_dev);
6958 		if (ret)
6959 			goto err_out_probe;
6960 	}
6961 
6962 	ret = rbd_dev_probe_parent(rbd_dev, depth);
6963 	if (ret)
6964 		goto err_out_probe;
6965 
6966 	dout("discovered format %u image, header name is %s\n",
6967 		rbd_dev->image_format, rbd_dev->header_oid.name);
6968 	return 0;
6969 
6970 err_out_probe:
6971 	if (!depth)
6972 		up_write(&rbd_dev->header_rwsem);
6973 	if (need_watch)
6974 		rbd_unregister_watch(rbd_dev);
6975 	rbd_dev_unprobe(rbd_dev);
6976 err_out_format:
6977 	rbd_dev->image_format = 0;
6978 	kfree(rbd_dev->spec->image_id);
6979 	rbd_dev->spec->image_id = NULL;
6980 	return ret;
6981 }
6982 
6983 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6984 				  struct rbd_image_header *header)
6985 {
6986 	rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6987 	rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6988 
6989 	if (rbd_dev->header.image_size != header->image_size) {
6990 		rbd_dev->header.image_size = header->image_size;
6991 
6992 		if (!rbd_is_snap(rbd_dev)) {
6993 			rbd_dev->mapping.size = header->image_size;
6994 			rbd_dev_update_size(rbd_dev);
6995 		}
6996 	}
6997 
6998 	ceph_put_snap_context(rbd_dev->header.snapc);
6999 	rbd_dev->header.snapc = header->snapc;
7000 	header->snapc = NULL;
7001 
7002 	if (rbd_dev->image_format == 1) {
7003 		kfree(rbd_dev->header.snap_names);
7004 		rbd_dev->header.snap_names = header->snap_names;
7005 		header->snap_names = NULL;
7006 
7007 		kfree(rbd_dev->header.snap_sizes);
7008 		rbd_dev->header.snap_sizes = header->snap_sizes;
7009 		header->snap_sizes = NULL;
7010 	}
7011 }
7012 
7013 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7014 				  struct parent_image_info *pii)
7015 {
7016 	if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7017 		/*
7018 		 * Either the parent never existed, or we have
7019 		 * record of it but the image got flattened so it no
7020 		 * longer has a parent.  When the parent of a
7021 		 * layered image disappears we immediately set the
7022 		 * overlap to 0.  The effect of this is that all new
7023 		 * requests will be treated as if the image had no
7024 		 * parent.
7025 		 *
7026 		 * If !pii.has_overlap, the parent image spec is not
7027 		 * applicable.  It's there to avoid duplication in each
7028 		 * snapshot record.
7029 		 */
7030 		if (rbd_dev->parent_overlap) {
7031 			rbd_dev->parent_overlap = 0;
7032 			rbd_dev_parent_put(rbd_dev);
7033 			pr_info("%s: clone has been flattened\n",
7034 				rbd_dev->disk->disk_name);
7035 		}
7036 	} else {
7037 		rbd_assert(rbd_dev->parent_spec);
7038 
7039 		/*
7040 		 * Update the parent overlap.  If it became zero, issue
7041 		 * a warning as we will proceed as if there is no parent.
7042 		 */
7043 		if (!pii->overlap && rbd_dev->parent_overlap)
7044 			rbd_warn(rbd_dev,
7045 				 "clone has become standalone (overlap 0)");
7046 		rbd_dev->parent_overlap = pii->overlap;
7047 	}
7048 }
7049 
7050 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7051 {
7052 	struct rbd_image_header	header = { 0 };
7053 	struct parent_image_info pii = { 0 };
7054 	int ret;
7055 
7056 	dout("%s rbd_dev %p\n", __func__, rbd_dev);
7057 
7058 	ret = rbd_dev_header_info(rbd_dev, &header, false);
7059 	if (ret)
7060 		goto out;
7061 
7062 	/*
7063 	 * If there is a parent, see if it has disappeared due to the
7064 	 * mapped image getting flattened.
7065 	 */
7066 	if (rbd_dev->parent) {
7067 		ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7068 		if (ret)
7069 			goto out;
7070 	}
7071 
7072 	down_write(&rbd_dev->header_rwsem);
7073 	rbd_dev_update_header(rbd_dev, &header);
7074 	if (rbd_dev->parent)
7075 		rbd_dev_update_parent(rbd_dev, &pii);
7076 	up_write(&rbd_dev->header_rwsem);
7077 
7078 out:
7079 	rbd_parent_info_cleanup(&pii);
7080 	rbd_image_header_cleanup(&header);
7081 	return ret;
7082 }
7083 
7084 static ssize_t do_rbd_add(const char *buf, size_t count)
7085 {
7086 	struct rbd_device *rbd_dev = NULL;
7087 	struct ceph_options *ceph_opts = NULL;
7088 	struct rbd_options *rbd_opts = NULL;
7089 	struct rbd_spec *spec = NULL;
7090 	struct rbd_client *rbdc;
7091 	int rc;
7092 
7093 	if (!capable(CAP_SYS_ADMIN))
7094 		return -EPERM;
7095 
7096 	if (!try_module_get(THIS_MODULE))
7097 		return -ENODEV;
7098 
7099 	/* parse add command */
7100 	rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7101 	if (rc < 0)
7102 		goto out;
7103 
7104 	rbdc = rbd_get_client(ceph_opts);
7105 	if (IS_ERR(rbdc)) {
7106 		rc = PTR_ERR(rbdc);
7107 		goto err_out_args;
7108 	}
7109 
7110 	/* pick the pool */
7111 	rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7112 	if (rc < 0) {
7113 		if (rc == -ENOENT)
7114 			pr_info("pool %s does not exist\n", spec->pool_name);
7115 		goto err_out_client;
7116 	}
7117 	spec->pool_id = (u64)rc;
7118 
7119 	rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7120 	if (!rbd_dev) {
7121 		rc = -ENOMEM;
7122 		goto err_out_client;
7123 	}
7124 	rbdc = NULL;		/* rbd_dev now owns this */
7125 	spec = NULL;		/* rbd_dev now owns this */
7126 	rbd_opts = NULL;	/* rbd_dev now owns this */
7127 
7128 	/* if we are mapping a snapshot it will be a read-only mapping */
7129 	if (rbd_dev->opts->read_only ||
7130 	    strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7131 		__set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7132 
7133 	rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7134 	if (!rbd_dev->config_info) {
7135 		rc = -ENOMEM;
7136 		goto err_out_rbd_dev;
7137 	}
7138 
7139 	rc = rbd_dev_image_probe(rbd_dev, 0);
7140 	if (rc < 0)
7141 		goto err_out_rbd_dev;
7142 
7143 	if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7144 		rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7145 			 rbd_dev->layout.object_size);
7146 		rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7147 	}
7148 
7149 	rc = rbd_dev_device_setup(rbd_dev);
7150 	if (rc)
7151 		goto err_out_image_probe;
7152 
7153 	rc = rbd_add_acquire_lock(rbd_dev);
7154 	if (rc)
7155 		goto err_out_image_lock;
7156 
7157 	/* Everything's ready.  Announce the disk to the world. */
7158 
7159 	rc = device_add(&rbd_dev->dev);
7160 	if (rc)
7161 		goto err_out_image_lock;
7162 
7163 	rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7164 	if (rc)
7165 		goto err_out_cleanup_disk;
7166 
7167 	spin_lock(&rbd_dev_list_lock);
7168 	list_add_tail(&rbd_dev->node, &rbd_dev_list);
7169 	spin_unlock(&rbd_dev_list_lock);
7170 
7171 	pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7172 		(unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7173 		rbd_dev->header.features);
7174 	rc = count;
7175 out:
7176 	module_put(THIS_MODULE);
7177 	return rc;
7178 
7179 err_out_cleanup_disk:
7180 	rbd_free_disk(rbd_dev);
7181 err_out_image_lock:
7182 	rbd_dev_image_unlock(rbd_dev);
7183 	rbd_dev_device_release(rbd_dev);
7184 err_out_image_probe:
7185 	rbd_dev_image_release(rbd_dev);
7186 err_out_rbd_dev:
7187 	rbd_dev_destroy(rbd_dev);
7188 err_out_client:
7189 	rbd_put_client(rbdc);
7190 err_out_args:
7191 	rbd_spec_put(spec);
7192 	kfree(rbd_opts);
7193 	goto out;
7194 }
7195 
7196 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7197 {
7198 	if (single_major)
7199 		return -EINVAL;
7200 
7201 	return do_rbd_add(buf, count);
7202 }
7203 
7204 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7205 				      size_t count)
7206 {
7207 	return do_rbd_add(buf, count);
7208 }
7209 
7210 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7211 {
7212 	while (rbd_dev->parent) {
7213 		struct rbd_device *first = rbd_dev;
7214 		struct rbd_device *second = first->parent;
7215 		struct rbd_device *third;
7216 
7217 		/*
7218 		 * Follow to the parent with no grandparent and
7219 		 * remove it.
7220 		 */
7221 		while (second && (third = second->parent)) {
7222 			first = second;
7223 			second = third;
7224 		}
7225 		rbd_assert(second);
7226 		rbd_dev_image_release(second);
7227 		rbd_dev_destroy(second);
7228 		first->parent = NULL;
7229 		first->parent_overlap = 0;
7230 
7231 		rbd_assert(first->parent_spec);
7232 		rbd_spec_put(first->parent_spec);
7233 		first->parent_spec = NULL;
7234 	}
7235 }
7236 
7237 static ssize_t do_rbd_remove(const char *buf, size_t count)
7238 {
7239 	struct rbd_device *rbd_dev = NULL;
7240 	int dev_id;
7241 	char opt_buf[6];
7242 	bool force = false;
7243 	int ret;
7244 
7245 	if (!capable(CAP_SYS_ADMIN))
7246 		return -EPERM;
7247 
7248 	dev_id = -1;
7249 	opt_buf[0] = '\0';
7250 	sscanf(buf, "%d %5s", &dev_id, opt_buf);
7251 	if (dev_id < 0) {
7252 		pr_err("dev_id out of range\n");
7253 		return -EINVAL;
7254 	}
7255 	if (opt_buf[0] != '\0') {
7256 		if (!strcmp(opt_buf, "force")) {
7257 			force = true;
7258 		} else {
7259 			pr_err("bad remove option at '%s'\n", opt_buf);
7260 			return -EINVAL;
7261 		}
7262 	}
7263 
7264 	ret = -ENOENT;
7265 	spin_lock(&rbd_dev_list_lock);
7266 	list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7267 		if (rbd_dev->dev_id == dev_id) {
7268 			ret = 0;
7269 			break;
7270 		}
7271 	}
7272 	if (!ret) {
7273 		spin_lock_irq(&rbd_dev->lock);
7274 		if (rbd_dev->open_count && !force)
7275 			ret = -EBUSY;
7276 		else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7277 					  &rbd_dev->flags))
7278 			ret = -EINPROGRESS;
7279 		spin_unlock_irq(&rbd_dev->lock);
7280 	}
7281 	spin_unlock(&rbd_dev_list_lock);
7282 	if (ret)
7283 		return ret;
7284 
7285 	if (force) {
7286 		/*
7287 		 * Prevent new IO from being queued and wait for existing
7288 		 * IO to complete/fail.
7289 		 */
7290 		blk_mq_freeze_queue(rbd_dev->disk->queue);
7291 		blk_mark_disk_dead(rbd_dev->disk);
7292 	}
7293 
7294 	del_gendisk(rbd_dev->disk);
7295 	spin_lock(&rbd_dev_list_lock);
7296 	list_del_init(&rbd_dev->node);
7297 	spin_unlock(&rbd_dev_list_lock);
7298 	device_del(&rbd_dev->dev);
7299 
7300 	rbd_dev_image_unlock(rbd_dev);
7301 	rbd_dev_device_release(rbd_dev);
7302 	rbd_dev_image_release(rbd_dev);
7303 	rbd_dev_destroy(rbd_dev);
7304 	return count;
7305 }
7306 
7307 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7308 {
7309 	if (single_major)
7310 		return -EINVAL;
7311 
7312 	return do_rbd_remove(buf, count);
7313 }
7314 
7315 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7316 					 size_t count)
7317 {
7318 	return do_rbd_remove(buf, count);
7319 }
7320 
7321 /*
7322  * create control files in sysfs
7323  * /sys/bus/rbd/...
7324  */
7325 static int __init rbd_sysfs_init(void)
7326 {
7327 	int ret;
7328 
7329 	ret = device_register(&rbd_root_dev);
7330 	if (ret < 0) {
7331 		put_device(&rbd_root_dev);
7332 		return ret;
7333 	}
7334 
7335 	ret = bus_register(&rbd_bus_type);
7336 	if (ret < 0)
7337 		device_unregister(&rbd_root_dev);
7338 
7339 	return ret;
7340 }
7341 
7342 static void __exit rbd_sysfs_cleanup(void)
7343 {
7344 	bus_unregister(&rbd_bus_type);
7345 	device_unregister(&rbd_root_dev);
7346 }
7347 
7348 static int __init rbd_slab_init(void)
7349 {
7350 	rbd_assert(!rbd_img_request_cache);
7351 	rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7352 	if (!rbd_img_request_cache)
7353 		return -ENOMEM;
7354 
7355 	rbd_assert(!rbd_obj_request_cache);
7356 	rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7357 	if (!rbd_obj_request_cache)
7358 		goto out_err;
7359 
7360 	return 0;
7361 
7362 out_err:
7363 	kmem_cache_destroy(rbd_img_request_cache);
7364 	rbd_img_request_cache = NULL;
7365 	return -ENOMEM;
7366 }
7367 
7368 static void rbd_slab_exit(void)
7369 {
7370 	rbd_assert(rbd_obj_request_cache);
7371 	kmem_cache_destroy(rbd_obj_request_cache);
7372 	rbd_obj_request_cache = NULL;
7373 
7374 	rbd_assert(rbd_img_request_cache);
7375 	kmem_cache_destroy(rbd_img_request_cache);
7376 	rbd_img_request_cache = NULL;
7377 }
7378 
7379 static int __init rbd_init(void)
7380 {
7381 	int rc;
7382 
7383 	if (!libceph_compatible(NULL)) {
7384 		rbd_warn(NULL, "libceph incompatibility (quitting)");
7385 		return -EINVAL;
7386 	}
7387 
7388 	rc = rbd_slab_init();
7389 	if (rc)
7390 		return rc;
7391 
7392 	/*
7393 	 * The number of active work items is limited by the number of
7394 	 * rbd devices * queue depth, so leave @max_active at default.
7395 	 */
7396 	rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7397 	if (!rbd_wq) {
7398 		rc = -ENOMEM;
7399 		goto err_out_slab;
7400 	}
7401 
7402 	if (single_major) {
7403 		rbd_major = register_blkdev(0, RBD_DRV_NAME);
7404 		if (rbd_major < 0) {
7405 			rc = rbd_major;
7406 			goto err_out_wq;
7407 		}
7408 	}
7409 
7410 	rc = rbd_sysfs_init();
7411 	if (rc)
7412 		goto err_out_blkdev;
7413 
7414 	if (single_major)
7415 		pr_info("loaded (major %d)\n", rbd_major);
7416 	else
7417 		pr_info("loaded\n");
7418 
7419 	return 0;
7420 
7421 err_out_blkdev:
7422 	if (single_major)
7423 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7424 err_out_wq:
7425 	destroy_workqueue(rbd_wq);
7426 err_out_slab:
7427 	rbd_slab_exit();
7428 	return rc;
7429 }
7430 
7431 static void __exit rbd_exit(void)
7432 {
7433 	ida_destroy(&rbd_dev_id_ida);
7434 	rbd_sysfs_cleanup();
7435 	if (single_major)
7436 		unregister_blkdev(rbd_major, RBD_DRV_NAME);
7437 	destroy_workqueue(rbd_wq);
7438 	rbd_slab_exit();
7439 }
7440 
7441 module_init(rbd_init);
7442 module_exit(rbd_exit);
7443 
7444 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7445 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7446 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7447 /* following authorship retained from original osdblk.c */
7448 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7449 
7450 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7451 MODULE_LICENSE("GPL");
7452