1 2 /* 3 rbd.c -- Export ceph rados objects as a Linux block device 4 5 6 based on drivers/block/osdblk.c: 7 8 Copyright 2009 Red Hat, Inc. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING. If not, write to 21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 23 24 25 For usage instructions, please refer to: 26 27 Documentation/ABI/testing/sysfs-bus-rbd 28 29 */ 30 31 #include <linux/ceph/libceph.h> 32 #include <linux/ceph/osd_client.h> 33 #include <linux/ceph/mon_client.h> 34 #include <linux/ceph/decode.h> 35 #include <linux/parser.h> 36 #include <linux/bsearch.h> 37 38 #include <linux/kernel.h> 39 #include <linux/device.h> 40 #include <linux/module.h> 41 #include <linux/blk-mq.h> 42 #include <linux/fs.h> 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/idr.h> 46 #include <linux/workqueue.h> 47 48 #include "rbd_types.h" 49 50 #define RBD_DEBUG /* Activate rbd_assert() calls */ 51 52 /* 53 * The basic unit of block I/O is a sector. It is interpreted in a 54 * number of contexts in Linux (blk, bio, genhd), but the default is 55 * universally 512 bytes. These symbols are just slightly more 56 * meaningful than the bare numbers they represent. 57 */ 58 #define SECTOR_SHIFT 9 59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT) 60 61 /* 62 * Increment the given counter and return its updated value. 63 * If the counter is already 0 it will not be incremented. 64 * If the counter is already at its maximum value returns 65 * -EINVAL without updating it. 66 */ 67 static int atomic_inc_return_safe(atomic_t *v) 68 { 69 unsigned int counter; 70 71 counter = (unsigned int)__atomic_add_unless(v, 1, 0); 72 if (counter <= (unsigned int)INT_MAX) 73 return (int)counter; 74 75 atomic_dec(v); 76 77 return -EINVAL; 78 } 79 80 /* Decrement the counter. Return the resulting value, or -EINVAL */ 81 static int atomic_dec_return_safe(atomic_t *v) 82 { 83 int counter; 84 85 counter = atomic_dec_return(v); 86 if (counter >= 0) 87 return counter; 88 89 atomic_inc(v); 90 91 return -EINVAL; 92 } 93 94 #define RBD_DRV_NAME "rbd" 95 96 #define RBD_MINORS_PER_MAJOR 256 97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4 98 99 #define RBD_SNAP_DEV_NAME_PREFIX "snap_" 100 #define RBD_MAX_SNAP_NAME_LEN \ 101 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1)) 102 103 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */ 104 105 #define RBD_SNAP_HEAD_NAME "-" 106 107 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */ 108 109 /* This allows a single page to hold an image name sent by OSD */ 110 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1) 111 #define RBD_IMAGE_ID_LEN_MAX 64 112 113 #define RBD_OBJ_PREFIX_LEN_MAX 64 114 115 /* Feature bits */ 116 117 #define RBD_FEATURE_LAYERING (1<<0) 118 #define RBD_FEATURE_STRIPINGV2 (1<<1) 119 #define RBD_FEATURES_ALL \ 120 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2) 121 122 /* Features supported by this (client software) implementation. */ 123 124 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL) 125 126 /* 127 * An RBD device name will be "rbd#", where the "rbd" comes from 128 * RBD_DRV_NAME above, and # is a unique integer identifier. 129 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big 130 * enough to hold all possible device names. 131 */ 132 #define DEV_NAME_LEN 32 133 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1) 134 135 /* 136 * block device image metadata (in-memory version) 137 */ 138 struct rbd_image_header { 139 /* These six fields never change for a given rbd image */ 140 char *object_prefix; 141 __u8 obj_order; 142 __u8 crypt_type; 143 __u8 comp_type; 144 u64 stripe_unit; 145 u64 stripe_count; 146 u64 features; /* Might be changeable someday? */ 147 148 /* The remaining fields need to be updated occasionally */ 149 u64 image_size; 150 struct ceph_snap_context *snapc; 151 char *snap_names; /* format 1 only */ 152 u64 *snap_sizes; /* format 1 only */ 153 }; 154 155 /* 156 * An rbd image specification. 157 * 158 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely 159 * identify an image. Each rbd_dev structure includes a pointer to 160 * an rbd_spec structure that encapsulates this identity. 161 * 162 * Each of the id's in an rbd_spec has an associated name. For a 163 * user-mapped image, the names are supplied and the id's associated 164 * with them are looked up. For a layered image, a parent image is 165 * defined by the tuple, and the names are looked up. 166 * 167 * An rbd_dev structure contains a parent_spec pointer which is 168 * non-null if the image it represents is a child in a layered 169 * image. This pointer will refer to the rbd_spec structure used 170 * by the parent rbd_dev for its own identity (i.e., the structure 171 * is shared between the parent and child). 172 * 173 * Since these structures are populated once, during the discovery 174 * phase of image construction, they are effectively immutable so 175 * we make no effort to synchronize access to them. 176 * 177 * Note that code herein does not assume the image name is known (it 178 * could be a null pointer). 179 */ 180 struct rbd_spec { 181 u64 pool_id; 182 const char *pool_name; 183 184 const char *image_id; 185 const char *image_name; 186 187 u64 snap_id; 188 const char *snap_name; 189 190 struct kref kref; 191 }; 192 193 /* 194 * an instance of the client. multiple devices may share an rbd client. 195 */ 196 struct rbd_client { 197 struct ceph_client *client; 198 struct kref kref; 199 struct list_head node; 200 }; 201 202 struct rbd_img_request; 203 typedef void (*rbd_img_callback_t)(struct rbd_img_request *); 204 205 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */ 206 207 struct rbd_obj_request; 208 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *); 209 210 enum obj_request_type { 211 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES 212 }; 213 214 enum obj_operation_type { 215 OBJ_OP_WRITE, 216 OBJ_OP_READ, 217 OBJ_OP_DISCARD, 218 }; 219 220 enum obj_req_flags { 221 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */ 222 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */ 223 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */ 224 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */ 225 }; 226 227 struct rbd_obj_request { 228 const char *object_name; 229 u64 offset; /* object start byte */ 230 u64 length; /* bytes from offset */ 231 unsigned long flags; 232 233 /* 234 * An object request associated with an image will have its 235 * img_data flag set; a standalone object request will not. 236 * 237 * A standalone object request will have which == BAD_WHICH 238 * and a null obj_request pointer. 239 * 240 * An object request initiated in support of a layered image 241 * object (to check for its existence before a write) will 242 * have which == BAD_WHICH and a non-null obj_request pointer. 243 * 244 * Finally, an object request for rbd image data will have 245 * which != BAD_WHICH, and will have a non-null img_request 246 * pointer. The value of which will be in the range 247 * 0..(img_request->obj_request_count-1). 248 */ 249 union { 250 struct rbd_obj_request *obj_request; /* STAT op */ 251 struct { 252 struct rbd_img_request *img_request; 253 u64 img_offset; 254 /* links for img_request->obj_requests list */ 255 struct list_head links; 256 }; 257 }; 258 u32 which; /* posn image request list */ 259 260 enum obj_request_type type; 261 union { 262 struct bio *bio_list; 263 struct { 264 struct page **pages; 265 u32 page_count; 266 }; 267 }; 268 struct page **copyup_pages; 269 u32 copyup_page_count; 270 271 struct ceph_osd_request *osd_req; 272 273 u64 xferred; /* bytes transferred */ 274 int result; 275 276 rbd_obj_callback_t callback; 277 struct completion completion; 278 279 struct kref kref; 280 }; 281 282 enum img_req_flags { 283 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */ 284 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */ 285 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */ 286 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */ 287 }; 288 289 struct rbd_img_request { 290 struct rbd_device *rbd_dev; 291 u64 offset; /* starting image byte offset */ 292 u64 length; /* byte count from offset */ 293 unsigned long flags; 294 union { 295 u64 snap_id; /* for reads */ 296 struct ceph_snap_context *snapc; /* for writes */ 297 }; 298 union { 299 struct request *rq; /* block request */ 300 struct rbd_obj_request *obj_request; /* obj req initiator */ 301 }; 302 struct page **copyup_pages; 303 u32 copyup_page_count; 304 spinlock_t completion_lock;/* protects next_completion */ 305 u32 next_completion; 306 rbd_img_callback_t callback; 307 u64 xferred;/* aggregate bytes transferred */ 308 int result; /* first nonzero obj_request result */ 309 310 u32 obj_request_count; 311 struct list_head obj_requests; /* rbd_obj_request structs */ 312 313 struct kref kref; 314 }; 315 316 #define for_each_obj_request(ireq, oreq) \ 317 list_for_each_entry(oreq, &(ireq)->obj_requests, links) 318 #define for_each_obj_request_from(ireq, oreq) \ 319 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links) 320 #define for_each_obj_request_safe(ireq, oreq, n) \ 321 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links) 322 323 struct rbd_mapping { 324 u64 size; 325 u64 features; 326 bool read_only; 327 }; 328 329 /* 330 * a single device 331 */ 332 struct rbd_device { 333 int dev_id; /* blkdev unique id */ 334 335 int major; /* blkdev assigned major */ 336 int minor; 337 struct gendisk *disk; /* blkdev's gendisk and rq */ 338 339 u32 image_format; /* Either 1 or 2 */ 340 struct rbd_client *rbd_client; 341 342 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */ 343 344 spinlock_t lock; /* queue, flags, open_count */ 345 346 struct rbd_image_header header; 347 unsigned long flags; /* possibly lock protected */ 348 struct rbd_spec *spec; 349 struct rbd_options *opts; 350 351 char *header_name; 352 353 struct ceph_file_layout layout; 354 355 struct ceph_osd_event *watch_event; 356 struct rbd_obj_request *watch_request; 357 358 struct rbd_spec *parent_spec; 359 u64 parent_overlap; 360 atomic_t parent_ref; 361 struct rbd_device *parent; 362 363 /* Block layer tags. */ 364 struct blk_mq_tag_set tag_set; 365 366 /* protects updating the header */ 367 struct rw_semaphore header_rwsem; 368 369 struct rbd_mapping mapping; 370 371 struct list_head node; 372 373 /* sysfs related */ 374 struct device dev; 375 unsigned long open_count; /* protected by lock */ 376 }; 377 378 /* 379 * Flag bits for rbd_dev->flags. If atomicity is required, 380 * rbd_dev->lock is used to protect access. 381 * 382 * Currently, only the "removing" flag (which is coupled with the 383 * "open_count" field) requires atomic access. 384 */ 385 enum rbd_dev_flags { 386 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */ 387 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */ 388 }; 389 390 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */ 391 392 static LIST_HEAD(rbd_dev_list); /* devices */ 393 static DEFINE_SPINLOCK(rbd_dev_list_lock); 394 395 static LIST_HEAD(rbd_client_list); /* clients */ 396 static DEFINE_SPINLOCK(rbd_client_list_lock); 397 398 /* Slab caches for frequently-allocated structures */ 399 400 static struct kmem_cache *rbd_img_request_cache; 401 static struct kmem_cache *rbd_obj_request_cache; 402 static struct kmem_cache *rbd_segment_name_cache; 403 404 static int rbd_major; 405 static DEFINE_IDA(rbd_dev_id_ida); 406 407 static struct workqueue_struct *rbd_wq; 408 409 /* 410 * Default to false for now, as single-major requires >= 0.75 version of 411 * userspace rbd utility. 412 */ 413 static bool single_major = false; 414 module_param(single_major, bool, S_IRUGO); 415 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)"); 416 417 static int rbd_img_request_submit(struct rbd_img_request *img_request); 418 419 static void rbd_dev_device_release(struct device *dev); 420 421 static ssize_t rbd_add(struct bus_type *bus, const char *buf, 422 size_t count); 423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf, 424 size_t count); 425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf, 426 size_t count); 427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf, 428 size_t count); 429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping); 430 static void rbd_spec_put(struct rbd_spec *spec); 431 432 static int rbd_dev_id_to_minor(int dev_id) 433 { 434 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT; 435 } 436 437 static int minor_to_rbd_dev_id(int minor) 438 { 439 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT; 440 } 441 442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add); 443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove); 444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major); 445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major); 446 447 static struct attribute *rbd_bus_attrs[] = { 448 &bus_attr_add.attr, 449 &bus_attr_remove.attr, 450 &bus_attr_add_single_major.attr, 451 &bus_attr_remove_single_major.attr, 452 NULL, 453 }; 454 455 static umode_t rbd_bus_is_visible(struct kobject *kobj, 456 struct attribute *attr, int index) 457 { 458 if (!single_major && 459 (attr == &bus_attr_add_single_major.attr || 460 attr == &bus_attr_remove_single_major.attr)) 461 return 0; 462 463 return attr->mode; 464 } 465 466 static const struct attribute_group rbd_bus_group = { 467 .attrs = rbd_bus_attrs, 468 .is_visible = rbd_bus_is_visible, 469 }; 470 __ATTRIBUTE_GROUPS(rbd_bus); 471 472 static struct bus_type rbd_bus_type = { 473 .name = "rbd", 474 .bus_groups = rbd_bus_groups, 475 }; 476 477 static void rbd_root_dev_release(struct device *dev) 478 { 479 } 480 481 static struct device rbd_root_dev = { 482 .init_name = "rbd", 483 .release = rbd_root_dev_release, 484 }; 485 486 static __printf(2, 3) 487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...) 488 { 489 struct va_format vaf; 490 va_list args; 491 492 va_start(args, fmt); 493 vaf.fmt = fmt; 494 vaf.va = &args; 495 496 if (!rbd_dev) 497 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf); 498 else if (rbd_dev->disk) 499 printk(KERN_WARNING "%s: %s: %pV\n", 500 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf); 501 else if (rbd_dev->spec && rbd_dev->spec->image_name) 502 printk(KERN_WARNING "%s: image %s: %pV\n", 503 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf); 504 else if (rbd_dev->spec && rbd_dev->spec->image_id) 505 printk(KERN_WARNING "%s: id %s: %pV\n", 506 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf); 507 else /* punt */ 508 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n", 509 RBD_DRV_NAME, rbd_dev, &vaf); 510 va_end(args); 511 } 512 513 #ifdef RBD_DEBUG 514 #define rbd_assert(expr) \ 515 if (unlikely(!(expr))) { \ 516 printk(KERN_ERR "\nAssertion failure in %s() " \ 517 "at line %d:\n\n" \ 518 "\trbd_assert(%s);\n\n", \ 519 __func__, __LINE__, #expr); \ 520 BUG(); \ 521 } 522 #else /* !RBD_DEBUG */ 523 # define rbd_assert(expr) ((void) 0) 524 #endif /* !RBD_DEBUG */ 525 526 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request); 527 static void rbd_img_parent_read(struct rbd_obj_request *obj_request); 528 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev); 529 530 static int rbd_dev_refresh(struct rbd_device *rbd_dev); 531 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev); 532 static int rbd_dev_header_info(struct rbd_device *rbd_dev); 533 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev); 534 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 535 u64 snap_id); 536 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 537 u8 *order, u64 *snap_size); 538 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 539 u64 *snap_features); 540 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name); 541 542 static int rbd_open(struct block_device *bdev, fmode_t mode) 543 { 544 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 545 bool removing = false; 546 547 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only) 548 return -EROFS; 549 550 spin_lock_irq(&rbd_dev->lock); 551 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) 552 removing = true; 553 else 554 rbd_dev->open_count++; 555 spin_unlock_irq(&rbd_dev->lock); 556 if (removing) 557 return -ENOENT; 558 559 (void) get_device(&rbd_dev->dev); 560 561 return 0; 562 } 563 564 static void rbd_release(struct gendisk *disk, fmode_t mode) 565 { 566 struct rbd_device *rbd_dev = disk->private_data; 567 unsigned long open_count_before; 568 569 spin_lock_irq(&rbd_dev->lock); 570 open_count_before = rbd_dev->open_count--; 571 spin_unlock_irq(&rbd_dev->lock); 572 rbd_assert(open_count_before > 0); 573 574 put_device(&rbd_dev->dev); 575 } 576 577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg) 578 { 579 int ret = 0; 580 int val; 581 bool ro; 582 bool ro_changed = false; 583 584 /* get_user() may sleep, so call it before taking rbd_dev->lock */ 585 if (get_user(val, (int __user *)(arg))) 586 return -EFAULT; 587 588 ro = val ? true : false; 589 /* Snapshot doesn't allow to write*/ 590 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro) 591 return -EROFS; 592 593 spin_lock_irq(&rbd_dev->lock); 594 /* prevent others open this device */ 595 if (rbd_dev->open_count > 1) { 596 ret = -EBUSY; 597 goto out; 598 } 599 600 if (rbd_dev->mapping.read_only != ro) { 601 rbd_dev->mapping.read_only = ro; 602 ro_changed = true; 603 } 604 605 out: 606 spin_unlock_irq(&rbd_dev->lock); 607 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */ 608 if (ret == 0 && ro_changed) 609 set_disk_ro(rbd_dev->disk, ro ? 1 : 0); 610 611 return ret; 612 } 613 614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode, 615 unsigned int cmd, unsigned long arg) 616 { 617 struct rbd_device *rbd_dev = bdev->bd_disk->private_data; 618 int ret = 0; 619 620 switch (cmd) { 621 case BLKROSET: 622 ret = rbd_ioctl_set_ro(rbd_dev, arg); 623 break; 624 default: 625 ret = -ENOTTY; 626 } 627 628 return ret; 629 } 630 631 #ifdef CONFIG_COMPAT 632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode, 633 unsigned int cmd, unsigned long arg) 634 { 635 return rbd_ioctl(bdev, mode, cmd, arg); 636 } 637 #endif /* CONFIG_COMPAT */ 638 639 static const struct block_device_operations rbd_bd_ops = { 640 .owner = THIS_MODULE, 641 .open = rbd_open, 642 .release = rbd_release, 643 .ioctl = rbd_ioctl, 644 #ifdef CONFIG_COMPAT 645 .compat_ioctl = rbd_compat_ioctl, 646 #endif 647 }; 648 649 /* 650 * Initialize an rbd client instance. Success or not, this function 651 * consumes ceph_opts. Caller holds client_mutex. 652 */ 653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts) 654 { 655 struct rbd_client *rbdc; 656 int ret = -ENOMEM; 657 658 dout("%s:\n", __func__); 659 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL); 660 if (!rbdc) 661 goto out_opt; 662 663 kref_init(&rbdc->kref); 664 INIT_LIST_HEAD(&rbdc->node); 665 666 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0); 667 if (IS_ERR(rbdc->client)) 668 goto out_rbdc; 669 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */ 670 671 ret = ceph_open_session(rbdc->client); 672 if (ret < 0) 673 goto out_client; 674 675 spin_lock(&rbd_client_list_lock); 676 list_add_tail(&rbdc->node, &rbd_client_list); 677 spin_unlock(&rbd_client_list_lock); 678 679 dout("%s: rbdc %p\n", __func__, rbdc); 680 681 return rbdc; 682 out_client: 683 ceph_destroy_client(rbdc->client); 684 out_rbdc: 685 kfree(rbdc); 686 out_opt: 687 if (ceph_opts) 688 ceph_destroy_options(ceph_opts); 689 dout("%s: error %d\n", __func__, ret); 690 691 return ERR_PTR(ret); 692 } 693 694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc) 695 { 696 kref_get(&rbdc->kref); 697 698 return rbdc; 699 } 700 701 /* 702 * Find a ceph client with specific addr and configuration. If 703 * found, bump its reference count. 704 */ 705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts) 706 { 707 struct rbd_client *client_node; 708 bool found = false; 709 710 if (ceph_opts->flags & CEPH_OPT_NOSHARE) 711 return NULL; 712 713 spin_lock(&rbd_client_list_lock); 714 list_for_each_entry(client_node, &rbd_client_list, node) { 715 if (!ceph_compare_options(ceph_opts, client_node->client)) { 716 __rbd_get_client(client_node); 717 718 found = true; 719 break; 720 } 721 } 722 spin_unlock(&rbd_client_list_lock); 723 724 return found ? client_node : NULL; 725 } 726 727 /* 728 * (Per device) rbd map options 729 */ 730 enum { 731 Opt_queue_depth, 732 Opt_last_int, 733 /* int args above */ 734 Opt_last_string, 735 /* string args above */ 736 Opt_read_only, 737 Opt_read_write, 738 Opt_err 739 }; 740 741 static match_table_t rbd_opts_tokens = { 742 {Opt_queue_depth, "queue_depth=%d"}, 743 /* int args above */ 744 /* string args above */ 745 {Opt_read_only, "read_only"}, 746 {Opt_read_only, "ro"}, /* Alternate spelling */ 747 {Opt_read_write, "read_write"}, 748 {Opt_read_write, "rw"}, /* Alternate spelling */ 749 {Opt_err, NULL} 750 }; 751 752 struct rbd_options { 753 int queue_depth; 754 bool read_only; 755 }; 756 757 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ 758 #define RBD_READ_ONLY_DEFAULT false 759 760 static int parse_rbd_opts_token(char *c, void *private) 761 { 762 struct rbd_options *rbd_opts = private; 763 substring_t argstr[MAX_OPT_ARGS]; 764 int token, intval, ret; 765 766 token = match_token(c, rbd_opts_tokens, argstr); 767 if (token < Opt_last_int) { 768 ret = match_int(&argstr[0], &intval); 769 if (ret < 0) { 770 pr_err("bad mount option arg (not int) at '%s'\n", c); 771 return ret; 772 } 773 dout("got int token %d val %d\n", token, intval); 774 } else if (token > Opt_last_int && token < Opt_last_string) { 775 dout("got string token %d val %s\n", token, argstr[0].from); 776 } else { 777 dout("got token %d\n", token); 778 } 779 780 switch (token) { 781 case Opt_queue_depth: 782 if (intval < 1) { 783 pr_err("queue_depth out of range\n"); 784 return -EINVAL; 785 } 786 rbd_opts->queue_depth = intval; 787 break; 788 case Opt_read_only: 789 rbd_opts->read_only = true; 790 break; 791 case Opt_read_write: 792 rbd_opts->read_only = false; 793 break; 794 default: 795 /* libceph prints "bad option" msg */ 796 return -EINVAL; 797 } 798 799 return 0; 800 } 801 802 static char* obj_op_name(enum obj_operation_type op_type) 803 { 804 switch (op_type) { 805 case OBJ_OP_READ: 806 return "read"; 807 case OBJ_OP_WRITE: 808 return "write"; 809 case OBJ_OP_DISCARD: 810 return "discard"; 811 default: 812 return "???"; 813 } 814 } 815 816 /* 817 * Get a ceph client with specific addr and configuration, if one does 818 * not exist create it. Either way, ceph_opts is consumed by this 819 * function. 820 */ 821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts) 822 { 823 struct rbd_client *rbdc; 824 825 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING); 826 rbdc = rbd_client_find(ceph_opts); 827 if (rbdc) /* using an existing client */ 828 ceph_destroy_options(ceph_opts); 829 else 830 rbdc = rbd_client_create(ceph_opts); 831 mutex_unlock(&client_mutex); 832 833 return rbdc; 834 } 835 836 /* 837 * Destroy ceph client 838 * 839 * Caller must hold rbd_client_list_lock. 840 */ 841 static void rbd_client_release(struct kref *kref) 842 { 843 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref); 844 845 dout("%s: rbdc %p\n", __func__, rbdc); 846 spin_lock(&rbd_client_list_lock); 847 list_del(&rbdc->node); 848 spin_unlock(&rbd_client_list_lock); 849 850 ceph_destroy_client(rbdc->client); 851 kfree(rbdc); 852 } 853 854 /* 855 * Drop reference to ceph client node. If it's not referenced anymore, release 856 * it. 857 */ 858 static void rbd_put_client(struct rbd_client *rbdc) 859 { 860 if (rbdc) 861 kref_put(&rbdc->kref, rbd_client_release); 862 } 863 864 static bool rbd_image_format_valid(u32 image_format) 865 { 866 return image_format == 1 || image_format == 2; 867 } 868 869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk) 870 { 871 size_t size; 872 u32 snap_count; 873 874 /* The header has to start with the magic rbd header text */ 875 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT))) 876 return false; 877 878 /* The bio layer requires at least sector-sized I/O */ 879 880 if (ondisk->options.order < SECTOR_SHIFT) 881 return false; 882 883 /* If we use u64 in a few spots we may be able to loosen this */ 884 885 if (ondisk->options.order > 8 * sizeof (int) - 1) 886 return false; 887 888 /* 889 * The size of a snapshot header has to fit in a size_t, and 890 * that limits the number of snapshots. 891 */ 892 snap_count = le32_to_cpu(ondisk->snap_count); 893 size = SIZE_MAX - sizeof (struct ceph_snap_context); 894 if (snap_count > size / sizeof (__le64)) 895 return false; 896 897 /* 898 * Not only that, but the size of the entire the snapshot 899 * header must also be representable in a size_t. 900 */ 901 size -= snap_count * sizeof (__le64); 902 if ((u64) size < le64_to_cpu(ondisk->snap_names_len)) 903 return false; 904 905 return true; 906 } 907 908 /* 909 * Fill an rbd image header with information from the given format 1 910 * on-disk header. 911 */ 912 static int rbd_header_from_disk(struct rbd_device *rbd_dev, 913 struct rbd_image_header_ondisk *ondisk) 914 { 915 struct rbd_image_header *header = &rbd_dev->header; 916 bool first_time = header->object_prefix == NULL; 917 struct ceph_snap_context *snapc; 918 char *object_prefix = NULL; 919 char *snap_names = NULL; 920 u64 *snap_sizes = NULL; 921 u32 snap_count; 922 size_t size; 923 int ret = -ENOMEM; 924 u32 i; 925 926 /* Allocate this now to avoid having to handle failure below */ 927 928 if (first_time) { 929 size_t len; 930 931 len = strnlen(ondisk->object_prefix, 932 sizeof (ondisk->object_prefix)); 933 object_prefix = kmalloc(len + 1, GFP_KERNEL); 934 if (!object_prefix) 935 return -ENOMEM; 936 memcpy(object_prefix, ondisk->object_prefix, len); 937 object_prefix[len] = '\0'; 938 } 939 940 /* Allocate the snapshot context and fill it in */ 941 942 snap_count = le32_to_cpu(ondisk->snap_count); 943 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 944 if (!snapc) 945 goto out_err; 946 snapc->seq = le64_to_cpu(ondisk->snap_seq); 947 if (snap_count) { 948 struct rbd_image_snap_ondisk *snaps; 949 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len); 950 951 /* We'll keep a copy of the snapshot names... */ 952 953 if (snap_names_len > (u64)SIZE_MAX) 954 goto out_2big; 955 snap_names = kmalloc(snap_names_len, GFP_KERNEL); 956 if (!snap_names) 957 goto out_err; 958 959 /* ...as well as the array of their sizes. */ 960 961 size = snap_count * sizeof (*header->snap_sizes); 962 snap_sizes = kmalloc(size, GFP_KERNEL); 963 if (!snap_sizes) 964 goto out_err; 965 966 /* 967 * Copy the names, and fill in each snapshot's id 968 * and size. 969 * 970 * Note that rbd_dev_v1_header_info() guarantees the 971 * ondisk buffer we're working with has 972 * snap_names_len bytes beyond the end of the 973 * snapshot id array, this memcpy() is safe. 974 */ 975 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len); 976 snaps = ondisk->snaps; 977 for (i = 0; i < snap_count; i++) { 978 snapc->snaps[i] = le64_to_cpu(snaps[i].id); 979 snap_sizes[i] = le64_to_cpu(snaps[i].image_size); 980 } 981 } 982 983 /* We won't fail any more, fill in the header */ 984 985 if (first_time) { 986 header->object_prefix = object_prefix; 987 header->obj_order = ondisk->options.order; 988 header->crypt_type = ondisk->options.crypt_type; 989 header->comp_type = ondisk->options.comp_type; 990 /* The rest aren't used for format 1 images */ 991 header->stripe_unit = 0; 992 header->stripe_count = 0; 993 header->features = 0; 994 } else { 995 ceph_put_snap_context(header->snapc); 996 kfree(header->snap_names); 997 kfree(header->snap_sizes); 998 } 999 1000 /* The remaining fields always get updated (when we refresh) */ 1001 1002 header->image_size = le64_to_cpu(ondisk->image_size); 1003 header->snapc = snapc; 1004 header->snap_names = snap_names; 1005 header->snap_sizes = snap_sizes; 1006 1007 return 0; 1008 out_2big: 1009 ret = -EIO; 1010 out_err: 1011 kfree(snap_sizes); 1012 kfree(snap_names); 1013 ceph_put_snap_context(snapc); 1014 kfree(object_prefix); 1015 1016 return ret; 1017 } 1018 1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which) 1020 { 1021 const char *snap_name; 1022 1023 rbd_assert(which < rbd_dev->header.snapc->num_snaps); 1024 1025 /* Skip over names until we find the one we are looking for */ 1026 1027 snap_name = rbd_dev->header.snap_names; 1028 while (which--) 1029 snap_name += strlen(snap_name) + 1; 1030 1031 return kstrdup(snap_name, GFP_KERNEL); 1032 } 1033 1034 /* 1035 * Snapshot id comparison function for use with qsort()/bsearch(). 1036 * Note that result is for snapshots in *descending* order. 1037 */ 1038 static int snapid_compare_reverse(const void *s1, const void *s2) 1039 { 1040 u64 snap_id1 = *(u64 *)s1; 1041 u64 snap_id2 = *(u64 *)s2; 1042 1043 if (snap_id1 < snap_id2) 1044 return 1; 1045 return snap_id1 == snap_id2 ? 0 : -1; 1046 } 1047 1048 /* 1049 * Search a snapshot context to see if the given snapshot id is 1050 * present. 1051 * 1052 * Returns the position of the snapshot id in the array if it's found, 1053 * or BAD_SNAP_INDEX otherwise. 1054 * 1055 * Note: The snapshot array is in kept sorted (by the osd) in 1056 * reverse order, highest snapshot id first. 1057 */ 1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id) 1059 { 1060 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 1061 u64 *found; 1062 1063 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps, 1064 sizeof (snap_id), snapid_compare_reverse); 1065 1066 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX; 1067 } 1068 1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, 1070 u64 snap_id) 1071 { 1072 u32 which; 1073 const char *snap_name; 1074 1075 which = rbd_dev_snap_index(rbd_dev, snap_id); 1076 if (which == BAD_SNAP_INDEX) 1077 return ERR_PTR(-ENOENT); 1078 1079 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which); 1080 return snap_name ? snap_name : ERR_PTR(-ENOMEM); 1081 } 1082 1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id) 1084 { 1085 if (snap_id == CEPH_NOSNAP) 1086 return RBD_SNAP_HEAD_NAME; 1087 1088 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1089 if (rbd_dev->image_format == 1) 1090 return rbd_dev_v1_snap_name(rbd_dev, snap_id); 1091 1092 return rbd_dev_v2_snap_name(rbd_dev, snap_id); 1093 } 1094 1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 1096 u64 *snap_size) 1097 { 1098 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1099 if (snap_id == CEPH_NOSNAP) { 1100 *snap_size = rbd_dev->header.image_size; 1101 } else if (rbd_dev->image_format == 1) { 1102 u32 which; 1103 1104 which = rbd_dev_snap_index(rbd_dev, snap_id); 1105 if (which == BAD_SNAP_INDEX) 1106 return -ENOENT; 1107 1108 *snap_size = rbd_dev->header.snap_sizes[which]; 1109 } else { 1110 u64 size = 0; 1111 int ret; 1112 1113 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size); 1114 if (ret) 1115 return ret; 1116 1117 *snap_size = size; 1118 } 1119 return 0; 1120 } 1121 1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 1123 u64 *snap_features) 1124 { 1125 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 1126 if (snap_id == CEPH_NOSNAP) { 1127 *snap_features = rbd_dev->header.features; 1128 } else if (rbd_dev->image_format == 1) { 1129 *snap_features = 0; /* No features for format 1 */ 1130 } else { 1131 u64 features = 0; 1132 int ret; 1133 1134 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features); 1135 if (ret) 1136 return ret; 1137 1138 *snap_features = features; 1139 } 1140 return 0; 1141 } 1142 1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev) 1144 { 1145 u64 snap_id = rbd_dev->spec->snap_id; 1146 u64 size = 0; 1147 u64 features = 0; 1148 int ret; 1149 1150 ret = rbd_snap_size(rbd_dev, snap_id, &size); 1151 if (ret) 1152 return ret; 1153 ret = rbd_snap_features(rbd_dev, snap_id, &features); 1154 if (ret) 1155 return ret; 1156 1157 rbd_dev->mapping.size = size; 1158 rbd_dev->mapping.features = features; 1159 1160 return 0; 1161 } 1162 1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev) 1164 { 1165 rbd_dev->mapping.size = 0; 1166 rbd_dev->mapping.features = 0; 1167 } 1168 1169 static void rbd_segment_name_free(const char *name) 1170 { 1171 /* The explicit cast here is needed to drop the const qualifier */ 1172 1173 kmem_cache_free(rbd_segment_name_cache, (void *)name); 1174 } 1175 1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset) 1177 { 1178 char *name; 1179 u64 segment; 1180 int ret; 1181 char *name_format; 1182 1183 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO); 1184 if (!name) 1185 return NULL; 1186 segment = offset >> rbd_dev->header.obj_order; 1187 name_format = "%s.%012llx"; 1188 if (rbd_dev->image_format == 2) 1189 name_format = "%s.%016llx"; 1190 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format, 1191 rbd_dev->header.object_prefix, segment); 1192 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) { 1193 pr_err("error formatting segment name for #%llu (%d)\n", 1194 segment, ret); 1195 rbd_segment_name_free(name); 1196 name = NULL; 1197 } 1198 1199 return name; 1200 } 1201 1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset) 1203 { 1204 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1205 1206 return offset & (segment_size - 1); 1207 } 1208 1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev, 1210 u64 offset, u64 length) 1211 { 1212 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order; 1213 1214 offset &= segment_size - 1; 1215 1216 rbd_assert(length <= U64_MAX - offset); 1217 if (offset + length > segment_size) 1218 length = segment_size - offset; 1219 1220 return length; 1221 } 1222 1223 /* 1224 * returns the size of an object in the image 1225 */ 1226 static u64 rbd_obj_bytes(struct rbd_image_header *header) 1227 { 1228 return 1 << header->obj_order; 1229 } 1230 1231 /* 1232 * bio helpers 1233 */ 1234 1235 static void bio_chain_put(struct bio *chain) 1236 { 1237 struct bio *tmp; 1238 1239 while (chain) { 1240 tmp = chain; 1241 chain = chain->bi_next; 1242 bio_put(tmp); 1243 } 1244 } 1245 1246 /* 1247 * zeros a bio chain, starting at specific offset 1248 */ 1249 static void zero_bio_chain(struct bio *chain, int start_ofs) 1250 { 1251 struct bio_vec bv; 1252 struct bvec_iter iter; 1253 unsigned long flags; 1254 void *buf; 1255 int pos = 0; 1256 1257 while (chain) { 1258 bio_for_each_segment(bv, chain, iter) { 1259 if (pos + bv.bv_len > start_ofs) { 1260 int remainder = max(start_ofs - pos, 0); 1261 buf = bvec_kmap_irq(&bv, &flags); 1262 memset(buf + remainder, 0, 1263 bv.bv_len - remainder); 1264 flush_dcache_page(bv.bv_page); 1265 bvec_kunmap_irq(buf, &flags); 1266 } 1267 pos += bv.bv_len; 1268 } 1269 1270 chain = chain->bi_next; 1271 } 1272 } 1273 1274 /* 1275 * similar to zero_bio_chain(), zeros data defined by a page array, 1276 * starting at the given byte offset from the start of the array and 1277 * continuing up to the given end offset. The pages array is 1278 * assumed to be big enough to hold all bytes up to the end. 1279 */ 1280 static void zero_pages(struct page **pages, u64 offset, u64 end) 1281 { 1282 struct page **page = &pages[offset >> PAGE_SHIFT]; 1283 1284 rbd_assert(end > offset); 1285 rbd_assert(end - offset <= (u64)SIZE_MAX); 1286 while (offset < end) { 1287 size_t page_offset; 1288 size_t length; 1289 unsigned long flags; 1290 void *kaddr; 1291 1292 page_offset = offset & ~PAGE_MASK; 1293 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset); 1294 local_irq_save(flags); 1295 kaddr = kmap_atomic(*page); 1296 memset(kaddr + page_offset, 0, length); 1297 flush_dcache_page(*page); 1298 kunmap_atomic(kaddr); 1299 local_irq_restore(flags); 1300 1301 offset += length; 1302 page++; 1303 } 1304 } 1305 1306 /* 1307 * Clone a portion of a bio, starting at the given byte offset 1308 * and continuing for the number of bytes indicated. 1309 */ 1310 static struct bio *bio_clone_range(struct bio *bio_src, 1311 unsigned int offset, 1312 unsigned int len, 1313 gfp_t gfpmask) 1314 { 1315 struct bio *bio; 1316 1317 bio = bio_clone(bio_src, gfpmask); 1318 if (!bio) 1319 return NULL; /* ENOMEM */ 1320 1321 bio_advance(bio, offset); 1322 bio->bi_iter.bi_size = len; 1323 1324 return bio; 1325 } 1326 1327 /* 1328 * Clone a portion of a bio chain, starting at the given byte offset 1329 * into the first bio in the source chain and continuing for the 1330 * number of bytes indicated. The result is another bio chain of 1331 * exactly the given length, or a null pointer on error. 1332 * 1333 * The bio_src and offset parameters are both in-out. On entry they 1334 * refer to the first source bio and the offset into that bio where 1335 * the start of data to be cloned is located. 1336 * 1337 * On return, bio_src is updated to refer to the bio in the source 1338 * chain that contains first un-cloned byte, and *offset will 1339 * contain the offset of that byte within that bio. 1340 */ 1341 static struct bio *bio_chain_clone_range(struct bio **bio_src, 1342 unsigned int *offset, 1343 unsigned int len, 1344 gfp_t gfpmask) 1345 { 1346 struct bio *bi = *bio_src; 1347 unsigned int off = *offset; 1348 struct bio *chain = NULL; 1349 struct bio **end; 1350 1351 /* Build up a chain of clone bios up to the limit */ 1352 1353 if (!bi || off >= bi->bi_iter.bi_size || !len) 1354 return NULL; /* Nothing to clone */ 1355 1356 end = &chain; 1357 while (len) { 1358 unsigned int bi_size; 1359 struct bio *bio; 1360 1361 if (!bi) { 1362 rbd_warn(NULL, "bio_chain exhausted with %u left", len); 1363 goto out_err; /* EINVAL; ran out of bio's */ 1364 } 1365 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len); 1366 bio = bio_clone_range(bi, off, bi_size, gfpmask); 1367 if (!bio) 1368 goto out_err; /* ENOMEM */ 1369 1370 *end = bio; 1371 end = &bio->bi_next; 1372 1373 off += bi_size; 1374 if (off == bi->bi_iter.bi_size) { 1375 bi = bi->bi_next; 1376 off = 0; 1377 } 1378 len -= bi_size; 1379 } 1380 *bio_src = bi; 1381 *offset = off; 1382 1383 return chain; 1384 out_err: 1385 bio_chain_put(chain); 1386 1387 return NULL; 1388 } 1389 1390 /* 1391 * The default/initial value for all object request flags is 0. For 1392 * each flag, once its value is set to 1 it is never reset to 0 1393 * again. 1394 */ 1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request) 1396 { 1397 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) { 1398 struct rbd_device *rbd_dev; 1399 1400 rbd_dev = obj_request->img_request->rbd_dev; 1401 rbd_warn(rbd_dev, "obj_request %p already marked img_data", 1402 obj_request); 1403 } 1404 } 1405 1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request) 1407 { 1408 smp_mb(); 1409 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0; 1410 } 1411 1412 static void obj_request_done_set(struct rbd_obj_request *obj_request) 1413 { 1414 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) { 1415 struct rbd_device *rbd_dev = NULL; 1416 1417 if (obj_request_img_data_test(obj_request)) 1418 rbd_dev = obj_request->img_request->rbd_dev; 1419 rbd_warn(rbd_dev, "obj_request %p already marked done", 1420 obj_request); 1421 } 1422 } 1423 1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request) 1425 { 1426 smp_mb(); 1427 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0; 1428 } 1429 1430 /* 1431 * This sets the KNOWN flag after (possibly) setting the EXISTS 1432 * flag. The latter is set based on the "exists" value provided. 1433 * 1434 * Note that for our purposes once an object exists it never goes 1435 * away again. It's possible that the response from two existence 1436 * checks are separated by the creation of the target object, and 1437 * the first ("doesn't exist") response arrives *after* the second 1438 * ("does exist"). In that case we ignore the second one. 1439 */ 1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request, 1441 bool exists) 1442 { 1443 if (exists) 1444 set_bit(OBJ_REQ_EXISTS, &obj_request->flags); 1445 set_bit(OBJ_REQ_KNOWN, &obj_request->flags); 1446 smp_mb(); 1447 } 1448 1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request) 1450 { 1451 smp_mb(); 1452 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0; 1453 } 1454 1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request) 1456 { 1457 smp_mb(); 1458 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0; 1459 } 1460 1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request) 1462 { 1463 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev; 1464 1465 return obj_request->img_offset < 1466 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header)); 1467 } 1468 1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request) 1470 { 1471 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1472 atomic_read(&obj_request->kref.refcount)); 1473 kref_get(&obj_request->kref); 1474 } 1475 1476 static void rbd_obj_request_destroy(struct kref *kref); 1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request) 1478 { 1479 rbd_assert(obj_request != NULL); 1480 dout("%s: obj %p (was %d)\n", __func__, obj_request, 1481 atomic_read(&obj_request->kref.refcount)); 1482 kref_put(&obj_request->kref, rbd_obj_request_destroy); 1483 } 1484 1485 static void rbd_img_request_get(struct rbd_img_request *img_request) 1486 { 1487 dout("%s: img %p (was %d)\n", __func__, img_request, 1488 atomic_read(&img_request->kref.refcount)); 1489 kref_get(&img_request->kref); 1490 } 1491 1492 static bool img_request_child_test(struct rbd_img_request *img_request); 1493 static void rbd_parent_request_destroy(struct kref *kref); 1494 static void rbd_img_request_destroy(struct kref *kref); 1495 static void rbd_img_request_put(struct rbd_img_request *img_request) 1496 { 1497 rbd_assert(img_request != NULL); 1498 dout("%s: img %p (was %d)\n", __func__, img_request, 1499 atomic_read(&img_request->kref.refcount)); 1500 if (img_request_child_test(img_request)) 1501 kref_put(&img_request->kref, rbd_parent_request_destroy); 1502 else 1503 kref_put(&img_request->kref, rbd_img_request_destroy); 1504 } 1505 1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request, 1507 struct rbd_obj_request *obj_request) 1508 { 1509 rbd_assert(obj_request->img_request == NULL); 1510 1511 /* Image request now owns object's original reference */ 1512 obj_request->img_request = img_request; 1513 obj_request->which = img_request->obj_request_count; 1514 rbd_assert(!obj_request_img_data_test(obj_request)); 1515 obj_request_img_data_set(obj_request); 1516 rbd_assert(obj_request->which != BAD_WHICH); 1517 img_request->obj_request_count++; 1518 list_add_tail(&obj_request->links, &img_request->obj_requests); 1519 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1520 obj_request->which); 1521 } 1522 1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request, 1524 struct rbd_obj_request *obj_request) 1525 { 1526 rbd_assert(obj_request->which != BAD_WHICH); 1527 1528 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request, 1529 obj_request->which); 1530 list_del(&obj_request->links); 1531 rbd_assert(img_request->obj_request_count > 0); 1532 img_request->obj_request_count--; 1533 rbd_assert(obj_request->which == img_request->obj_request_count); 1534 obj_request->which = BAD_WHICH; 1535 rbd_assert(obj_request_img_data_test(obj_request)); 1536 rbd_assert(obj_request->img_request == img_request); 1537 obj_request->img_request = NULL; 1538 obj_request->callback = NULL; 1539 rbd_obj_request_put(obj_request); 1540 } 1541 1542 static bool obj_request_type_valid(enum obj_request_type type) 1543 { 1544 switch (type) { 1545 case OBJ_REQUEST_NODATA: 1546 case OBJ_REQUEST_BIO: 1547 case OBJ_REQUEST_PAGES: 1548 return true; 1549 default: 1550 return false; 1551 } 1552 } 1553 1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc, 1555 struct rbd_obj_request *obj_request) 1556 { 1557 dout("%s %p\n", __func__, obj_request); 1558 return ceph_osdc_start_request(osdc, obj_request->osd_req, false); 1559 } 1560 1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request) 1562 { 1563 dout("%s %p\n", __func__, obj_request); 1564 ceph_osdc_cancel_request(obj_request->osd_req); 1565 } 1566 1567 /* 1568 * Wait for an object request to complete. If interrupted, cancel the 1569 * underlying osd request. 1570 * 1571 * @timeout: in jiffies, 0 means "wait forever" 1572 */ 1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request, 1574 unsigned long timeout) 1575 { 1576 long ret; 1577 1578 dout("%s %p\n", __func__, obj_request); 1579 ret = wait_for_completion_interruptible_timeout( 1580 &obj_request->completion, 1581 ceph_timeout_jiffies(timeout)); 1582 if (ret <= 0) { 1583 if (ret == 0) 1584 ret = -ETIMEDOUT; 1585 rbd_obj_request_end(obj_request); 1586 } else { 1587 ret = 0; 1588 } 1589 1590 dout("%s %p ret %d\n", __func__, obj_request, (int)ret); 1591 return ret; 1592 } 1593 1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request) 1595 { 1596 return __rbd_obj_request_wait(obj_request, 0); 1597 } 1598 1599 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request, 1600 unsigned long timeout) 1601 { 1602 return __rbd_obj_request_wait(obj_request, timeout); 1603 } 1604 1605 static void rbd_img_request_complete(struct rbd_img_request *img_request) 1606 { 1607 1608 dout("%s: img %p\n", __func__, img_request); 1609 1610 /* 1611 * If no error occurred, compute the aggregate transfer 1612 * count for the image request. We could instead use 1613 * atomic64_cmpxchg() to update it as each object request 1614 * completes; not clear which way is better off hand. 1615 */ 1616 if (!img_request->result) { 1617 struct rbd_obj_request *obj_request; 1618 u64 xferred = 0; 1619 1620 for_each_obj_request(img_request, obj_request) 1621 xferred += obj_request->xferred; 1622 img_request->xferred = xferred; 1623 } 1624 1625 if (img_request->callback) 1626 img_request->callback(img_request); 1627 else 1628 rbd_img_request_put(img_request); 1629 } 1630 1631 /* 1632 * The default/initial value for all image request flags is 0. Each 1633 * is conditionally set to 1 at image request initialization time 1634 * and currently never change thereafter. 1635 */ 1636 static void img_request_write_set(struct rbd_img_request *img_request) 1637 { 1638 set_bit(IMG_REQ_WRITE, &img_request->flags); 1639 smp_mb(); 1640 } 1641 1642 static bool img_request_write_test(struct rbd_img_request *img_request) 1643 { 1644 smp_mb(); 1645 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0; 1646 } 1647 1648 /* 1649 * Set the discard flag when the img_request is an discard request 1650 */ 1651 static void img_request_discard_set(struct rbd_img_request *img_request) 1652 { 1653 set_bit(IMG_REQ_DISCARD, &img_request->flags); 1654 smp_mb(); 1655 } 1656 1657 static bool img_request_discard_test(struct rbd_img_request *img_request) 1658 { 1659 smp_mb(); 1660 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0; 1661 } 1662 1663 static void img_request_child_set(struct rbd_img_request *img_request) 1664 { 1665 set_bit(IMG_REQ_CHILD, &img_request->flags); 1666 smp_mb(); 1667 } 1668 1669 static void img_request_child_clear(struct rbd_img_request *img_request) 1670 { 1671 clear_bit(IMG_REQ_CHILD, &img_request->flags); 1672 smp_mb(); 1673 } 1674 1675 static bool img_request_child_test(struct rbd_img_request *img_request) 1676 { 1677 smp_mb(); 1678 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0; 1679 } 1680 1681 static void img_request_layered_set(struct rbd_img_request *img_request) 1682 { 1683 set_bit(IMG_REQ_LAYERED, &img_request->flags); 1684 smp_mb(); 1685 } 1686 1687 static void img_request_layered_clear(struct rbd_img_request *img_request) 1688 { 1689 clear_bit(IMG_REQ_LAYERED, &img_request->flags); 1690 smp_mb(); 1691 } 1692 1693 static bool img_request_layered_test(struct rbd_img_request *img_request) 1694 { 1695 smp_mb(); 1696 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0; 1697 } 1698 1699 static enum obj_operation_type 1700 rbd_img_request_op_type(struct rbd_img_request *img_request) 1701 { 1702 if (img_request_write_test(img_request)) 1703 return OBJ_OP_WRITE; 1704 else if (img_request_discard_test(img_request)) 1705 return OBJ_OP_DISCARD; 1706 else 1707 return OBJ_OP_READ; 1708 } 1709 1710 static void 1711 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request) 1712 { 1713 u64 xferred = obj_request->xferred; 1714 u64 length = obj_request->length; 1715 1716 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1717 obj_request, obj_request->img_request, obj_request->result, 1718 xferred, length); 1719 /* 1720 * ENOENT means a hole in the image. We zero-fill the entire 1721 * length of the request. A short read also implies zero-fill 1722 * to the end of the request. An error requires the whole 1723 * length of the request to be reported finished with an error 1724 * to the block layer. In each case we update the xferred 1725 * count to indicate the whole request was satisfied. 1726 */ 1727 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA); 1728 if (obj_request->result == -ENOENT) { 1729 if (obj_request->type == OBJ_REQUEST_BIO) 1730 zero_bio_chain(obj_request->bio_list, 0); 1731 else 1732 zero_pages(obj_request->pages, 0, length); 1733 obj_request->result = 0; 1734 } else if (xferred < length && !obj_request->result) { 1735 if (obj_request->type == OBJ_REQUEST_BIO) 1736 zero_bio_chain(obj_request->bio_list, xferred); 1737 else 1738 zero_pages(obj_request->pages, xferred, length); 1739 } 1740 obj_request->xferred = length; 1741 obj_request_done_set(obj_request); 1742 } 1743 1744 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request) 1745 { 1746 dout("%s: obj %p cb %p\n", __func__, obj_request, 1747 obj_request->callback); 1748 if (obj_request->callback) 1749 obj_request->callback(obj_request); 1750 else 1751 complete_all(&obj_request->completion); 1752 } 1753 1754 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request) 1755 { 1756 dout("%s: obj %p\n", __func__, obj_request); 1757 obj_request_done_set(obj_request); 1758 } 1759 1760 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request) 1761 { 1762 struct rbd_img_request *img_request = NULL; 1763 struct rbd_device *rbd_dev = NULL; 1764 bool layered = false; 1765 1766 if (obj_request_img_data_test(obj_request)) { 1767 img_request = obj_request->img_request; 1768 layered = img_request && img_request_layered_test(img_request); 1769 rbd_dev = img_request->rbd_dev; 1770 } 1771 1772 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__, 1773 obj_request, img_request, obj_request->result, 1774 obj_request->xferred, obj_request->length); 1775 if (layered && obj_request->result == -ENOENT && 1776 obj_request->img_offset < rbd_dev->parent_overlap) 1777 rbd_img_parent_read(obj_request); 1778 else if (img_request) 1779 rbd_img_obj_request_read_callback(obj_request); 1780 else 1781 obj_request_done_set(obj_request); 1782 } 1783 1784 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request) 1785 { 1786 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1787 obj_request->result, obj_request->length); 1788 /* 1789 * There is no such thing as a successful short write. Set 1790 * it to our originally-requested length. 1791 */ 1792 obj_request->xferred = obj_request->length; 1793 obj_request_done_set(obj_request); 1794 } 1795 1796 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request) 1797 { 1798 dout("%s: obj %p result %d %llu\n", __func__, obj_request, 1799 obj_request->result, obj_request->length); 1800 /* 1801 * There is no such thing as a successful short discard. Set 1802 * it to our originally-requested length. 1803 */ 1804 obj_request->xferred = obj_request->length; 1805 /* discarding a non-existent object is not a problem */ 1806 if (obj_request->result == -ENOENT) 1807 obj_request->result = 0; 1808 obj_request_done_set(obj_request); 1809 } 1810 1811 /* 1812 * For a simple stat call there's nothing to do. We'll do more if 1813 * this is part of a write sequence for a layered image. 1814 */ 1815 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request) 1816 { 1817 dout("%s: obj %p\n", __func__, obj_request); 1818 obj_request_done_set(obj_request); 1819 } 1820 1821 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req, 1822 struct ceph_msg *msg) 1823 { 1824 struct rbd_obj_request *obj_request = osd_req->r_priv; 1825 u16 opcode; 1826 1827 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg); 1828 rbd_assert(osd_req == obj_request->osd_req); 1829 if (obj_request_img_data_test(obj_request)) { 1830 rbd_assert(obj_request->img_request); 1831 rbd_assert(obj_request->which != BAD_WHICH); 1832 } else { 1833 rbd_assert(obj_request->which == BAD_WHICH); 1834 } 1835 1836 if (osd_req->r_result < 0) 1837 obj_request->result = osd_req->r_result; 1838 1839 rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP); 1840 1841 /* 1842 * We support a 64-bit length, but ultimately it has to be 1843 * passed to the block layer, which just supports a 32-bit 1844 * length field. 1845 */ 1846 obj_request->xferred = osd_req->r_reply_op_len[0]; 1847 rbd_assert(obj_request->xferred < (u64)UINT_MAX); 1848 1849 opcode = osd_req->r_ops[0].op; 1850 switch (opcode) { 1851 case CEPH_OSD_OP_READ: 1852 rbd_osd_read_callback(obj_request); 1853 break; 1854 case CEPH_OSD_OP_SETALLOCHINT: 1855 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE); 1856 /* fall through */ 1857 case CEPH_OSD_OP_WRITE: 1858 rbd_osd_write_callback(obj_request); 1859 break; 1860 case CEPH_OSD_OP_STAT: 1861 rbd_osd_stat_callback(obj_request); 1862 break; 1863 case CEPH_OSD_OP_DELETE: 1864 case CEPH_OSD_OP_TRUNCATE: 1865 case CEPH_OSD_OP_ZERO: 1866 rbd_osd_discard_callback(obj_request); 1867 break; 1868 case CEPH_OSD_OP_CALL: 1869 case CEPH_OSD_OP_NOTIFY_ACK: 1870 case CEPH_OSD_OP_WATCH: 1871 rbd_osd_trivial_callback(obj_request); 1872 break; 1873 default: 1874 rbd_warn(NULL, "%s: unsupported op %hu", 1875 obj_request->object_name, (unsigned short) opcode); 1876 break; 1877 } 1878 1879 if (obj_request_done_test(obj_request)) 1880 rbd_obj_request_complete(obj_request); 1881 } 1882 1883 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request) 1884 { 1885 struct rbd_img_request *img_request = obj_request->img_request; 1886 struct ceph_osd_request *osd_req = obj_request->osd_req; 1887 u64 snap_id; 1888 1889 rbd_assert(osd_req != NULL); 1890 1891 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP; 1892 ceph_osdc_build_request(osd_req, obj_request->offset, 1893 NULL, snap_id, NULL); 1894 } 1895 1896 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request) 1897 { 1898 struct rbd_img_request *img_request = obj_request->img_request; 1899 struct ceph_osd_request *osd_req = obj_request->osd_req; 1900 struct ceph_snap_context *snapc; 1901 struct timespec mtime = CURRENT_TIME; 1902 1903 rbd_assert(osd_req != NULL); 1904 1905 snapc = img_request ? img_request->snapc : NULL; 1906 ceph_osdc_build_request(osd_req, obj_request->offset, 1907 snapc, CEPH_NOSNAP, &mtime); 1908 } 1909 1910 /* 1911 * Create an osd request. A read request has one osd op (read). 1912 * A write request has either one (watch) or two (hint+write) osd ops. 1913 * (All rbd data writes are prefixed with an allocation hint op, but 1914 * technically osd watch is a write request, hence this distinction.) 1915 */ 1916 static struct ceph_osd_request *rbd_osd_req_create( 1917 struct rbd_device *rbd_dev, 1918 enum obj_operation_type op_type, 1919 unsigned int num_ops, 1920 struct rbd_obj_request *obj_request) 1921 { 1922 struct ceph_snap_context *snapc = NULL; 1923 struct ceph_osd_client *osdc; 1924 struct ceph_osd_request *osd_req; 1925 1926 if (obj_request_img_data_test(obj_request) && 1927 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) { 1928 struct rbd_img_request *img_request = obj_request->img_request; 1929 if (op_type == OBJ_OP_WRITE) { 1930 rbd_assert(img_request_write_test(img_request)); 1931 } else { 1932 rbd_assert(img_request_discard_test(img_request)); 1933 } 1934 snapc = img_request->snapc; 1935 } 1936 1937 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2)); 1938 1939 /* Allocate and initialize the request, for the num_ops ops */ 1940 1941 osdc = &rbd_dev->rbd_client->client->osdc; 1942 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, 1943 GFP_ATOMIC); 1944 if (!osd_req) 1945 return NULL; /* ENOMEM */ 1946 1947 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 1948 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1949 else 1950 osd_req->r_flags = CEPH_OSD_FLAG_READ; 1951 1952 osd_req->r_callback = rbd_osd_req_callback; 1953 osd_req->r_priv = obj_request; 1954 1955 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 1956 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 1957 1958 return osd_req; 1959 } 1960 1961 /* 1962 * Create a copyup osd request based on the information in the object 1963 * request supplied. A copyup request has two or three osd ops, a 1964 * copyup method call, potentially a hint op, and a write or truncate 1965 * or zero op. 1966 */ 1967 static struct ceph_osd_request * 1968 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request) 1969 { 1970 struct rbd_img_request *img_request; 1971 struct ceph_snap_context *snapc; 1972 struct rbd_device *rbd_dev; 1973 struct ceph_osd_client *osdc; 1974 struct ceph_osd_request *osd_req; 1975 int num_osd_ops = 3; 1976 1977 rbd_assert(obj_request_img_data_test(obj_request)); 1978 img_request = obj_request->img_request; 1979 rbd_assert(img_request); 1980 rbd_assert(img_request_write_test(img_request) || 1981 img_request_discard_test(img_request)); 1982 1983 if (img_request_discard_test(img_request)) 1984 num_osd_ops = 2; 1985 1986 /* Allocate and initialize the request, for all the ops */ 1987 1988 snapc = img_request->snapc; 1989 rbd_dev = img_request->rbd_dev; 1990 osdc = &rbd_dev->rbd_client->client->osdc; 1991 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops, 1992 false, GFP_ATOMIC); 1993 if (!osd_req) 1994 return NULL; /* ENOMEM */ 1995 1996 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK; 1997 osd_req->r_callback = rbd_osd_req_callback; 1998 osd_req->r_priv = obj_request; 1999 2000 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout); 2001 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name); 2002 2003 return osd_req; 2004 } 2005 2006 2007 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req) 2008 { 2009 ceph_osdc_put_request(osd_req); 2010 } 2011 2012 /* object_name is assumed to be a non-null pointer and NUL-terminated */ 2013 2014 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name, 2015 u64 offset, u64 length, 2016 enum obj_request_type type) 2017 { 2018 struct rbd_obj_request *obj_request; 2019 size_t size; 2020 char *name; 2021 2022 rbd_assert(obj_request_type_valid(type)); 2023 2024 size = strlen(object_name) + 1; 2025 name = kmalloc(size, GFP_NOIO); 2026 if (!name) 2027 return NULL; 2028 2029 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO); 2030 if (!obj_request) { 2031 kfree(name); 2032 return NULL; 2033 } 2034 2035 obj_request->object_name = memcpy(name, object_name, size); 2036 obj_request->offset = offset; 2037 obj_request->length = length; 2038 obj_request->flags = 0; 2039 obj_request->which = BAD_WHICH; 2040 obj_request->type = type; 2041 INIT_LIST_HEAD(&obj_request->links); 2042 init_completion(&obj_request->completion); 2043 kref_init(&obj_request->kref); 2044 2045 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name, 2046 offset, length, (int)type, obj_request); 2047 2048 return obj_request; 2049 } 2050 2051 static void rbd_obj_request_destroy(struct kref *kref) 2052 { 2053 struct rbd_obj_request *obj_request; 2054 2055 obj_request = container_of(kref, struct rbd_obj_request, kref); 2056 2057 dout("%s: obj %p\n", __func__, obj_request); 2058 2059 rbd_assert(obj_request->img_request == NULL); 2060 rbd_assert(obj_request->which == BAD_WHICH); 2061 2062 if (obj_request->osd_req) 2063 rbd_osd_req_destroy(obj_request->osd_req); 2064 2065 rbd_assert(obj_request_type_valid(obj_request->type)); 2066 switch (obj_request->type) { 2067 case OBJ_REQUEST_NODATA: 2068 break; /* Nothing to do */ 2069 case OBJ_REQUEST_BIO: 2070 if (obj_request->bio_list) 2071 bio_chain_put(obj_request->bio_list); 2072 break; 2073 case OBJ_REQUEST_PAGES: 2074 if (obj_request->pages) 2075 ceph_release_page_vector(obj_request->pages, 2076 obj_request->page_count); 2077 break; 2078 } 2079 2080 kfree(obj_request->object_name); 2081 obj_request->object_name = NULL; 2082 kmem_cache_free(rbd_obj_request_cache, obj_request); 2083 } 2084 2085 /* It's OK to call this for a device with no parent */ 2086 2087 static void rbd_spec_put(struct rbd_spec *spec); 2088 static void rbd_dev_unparent(struct rbd_device *rbd_dev) 2089 { 2090 rbd_dev_remove_parent(rbd_dev); 2091 rbd_spec_put(rbd_dev->parent_spec); 2092 rbd_dev->parent_spec = NULL; 2093 rbd_dev->parent_overlap = 0; 2094 } 2095 2096 /* 2097 * Parent image reference counting is used to determine when an 2098 * image's parent fields can be safely torn down--after there are no 2099 * more in-flight requests to the parent image. When the last 2100 * reference is dropped, cleaning them up is safe. 2101 */ 2102 static void rbd_dev_parent_put(struct rbd_device *rbd_dev) 2103 { 2104 int counter; 2105 2106 if (!rbd_dev->parent_spec) 2107 return; 2108 2109 counter = atomic_dec_return_safe(&rbd_dev->parent_ref); 2110 if (counter > 0) 2111 return; 2112 2113 /* Last reference; clean up parent data structures */ 2114 2115 if (!counter) 2116 rbd_dev_unparent(rbd_dev); 2117 else 2118 rbd_warn(rbd_dev, "parent reference underflow"); 2119 } 2120 2121 /* 2122 * If an image has a non-zero parent overlap, get a reference to its 2123 * parent. 2124 * 2125 * Returns true if the rbd device has a parent with a non-zero 2126 * overlap and a reference for it was successfully taken, or 2127 * false otherwise. 2128 */ 2129 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev) 2130 { 2131 int counter = 0; 2132 2133 if (!rbd_dev->parent_spec) 2134 return false; 2135 2136 down_read(&rbd_dev->header_rwsem); 2137 if (rbd_dev->parent_overlap) 2138 counter = atomic_inc_return_safe(&rbd_dev->parent_ref); 2139 up_read(&rbd_dev->header_rwsem); 2140 2141 if (counter < 0) 2142 rbd_warn(rbd_dev, "parent reference overflow"); 2143 2144 return counter > 0; 2145 } 2146 2147 /* 2148 * Caller is responsible for filling in the list of object requests 2149 * that comprises the image request, and the Linux request pointer 2150 * (if there is one). 2151 */ 2152 static struct rbd_img_request *rbd_img_request_create( 2153 struct rbd_device *rbd_dev, 2154 u64 offset, u64 length, 2155 enum obj_operation_type op_type, 2156 struct ceph_snap_context *snapc) 2157 { 2158 struct rbd_img_request *img_request; 2159 2160 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO); 2161 if (!img_request) 2162 return NULL; 2163 2164 img_request->rq = NULL; 2165 img_request->rbd_dev = rbd_dev; 2166 img_request->offset = offset; 2167 img_request->length = length; 2168 img_request->flags = 0; 2169 if (op_type == OBJ_OP_DISCARD) { 2170 img_request_discard_set(img_request); 2171 img_request->snapc = snapc; 2172 } else if (op_type == OBJ_OP_WRITE) { 2173 img_request_write_set(img_request); 2174 img_request->snapc = snapc; 2175 } else { 2176 img_request->snap_id = rbd_dev->spec->snap_id; 2177 } 2178 if (rbd_dev_parent_get(rbd_dev)) 2179 img_request_layered_set(img_request); 2180 spin_lock_init(&img_request->completion_lock); 2181 img_request->next_completion = 0; 2182 img_request->callback = NULL; 2183 img_request->result = 0; 2184 img_request->obj_request_count = 0; 2185 INIT_LIST_HEAD(&img_request->obj_requests); 2186 kref_init(&img_request->kref); 2187 2188 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev, 2189 obj_op_name(op_type), offset, length, img_request); 2190 2191 return img_request; 2192 } 2193 2194 static void rbd_img_request_destroy(struct kref *kref) 2195 { 2196 struct rbd_img_request *img_request; 2197 struct rbd_obj_request *obj_request; 2198 struct rbd_obj_request *next_obj_request; 2199 2200 img_request = container_of(kref, struct rbd_img_request, kref); 2201 2202 dout("%s: img %p\n", __func__, img_request); 2203 2204 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2205 rbd_img_obj_request_del(img_request, obj_request); 2206 rbd_assert(img_request->obj_request_count == 0); 2207 2208 if (img_request_layered_test(img_request)) { 2209 img_request_layered_clear(img_request); 2210 rbd_dev_parent_put(img_request->rbd_dev); 2211 } 2212 2213 if (img_request_write_test(img_request) || 2214 img_request_discard_test(img_request)) 2215 ceph_put_snap_context(img_request->snapc); 2216 2217 kmem_cache_free(rbd_img_request_cache, img_request); 2218 } 2219 2220 static struct rbd_img_request *rbd_parent_request_create( 2221 struct rbd_obj_request *obj_request, 2222 u64 img_offset, u64 length) 2223 { 2224 struct rbd_img_request *parent_request; 2225 struct rbd_device *rbd_dev; 2226 2227 rbd_assert(obj_request->img_request); 2228 rbd_dev = obj_request->img_request->rbd_dev; 2229 2230 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset, 2231 length, OBJ_OP_READ, NULL); 2232 if (!parent_request) 2233 return NULL; 2234 2235 img_request_child_set(parent_request); 2236 rbd_obj_request_get(obj_request); 2237 parent_request->obj_request = obj_request; 2238 2239 return parent_request; 2240 } 2241 2242 static void rbd_parent_request_destroy(struct kref *kref) 2243 { 2244 struct rbd_img_request *parent_request; 2245 struct rbd_obj_request *orig_request; 2246 2247 parent_request = container_of(kref, struct rbd_img_request, kref); 2248 orig_request = parent_request->obj_request; 2249 2250 parent_request->obj_request = NULL; 2251 rbd_obj_request_put(orig_request); 2252 img_request_child_clear(parent_request); 2253 2254 rbd_img_request_destroy(kref); 2255 } 2256 2257 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request) 2258 { 2259 struct rbd_img_request *img_request; 2260 unsigned int xferred; 2261 int result; 2262 bool more; 2263 2264 rbd_assert(obj_request_img_data_test(obj_request)); 2265 img_request = obj_request->img_request; 2266 2267 rbd_assert(obj_request->xferred <= (u64)UINT_MAX); 2268 xferred = (unsigned int)obj_request->xferred; 2269 result = obj_request->result; 2270 if (result) { 2271 struct rbd_device *rbd_dev = img_request->rbd_dev; 2272 enum obj_operation_type op_type; 2273 2274 if (img_request_discard_test(img_request)) 2275 op_type = OBJ_OP_DISCARD; 2276 else if (img_request_write_test(img_request)) 2277 op_type = OBJ_OP_WRITE; 2278 else 2279 op_type = OBJ_OP_READ; 2280 2281 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)", 2282 obj_op_name(op_type), obj_request->length, 2283 obj_request->img_offset, obj_request->offset); 2284 rbd_warn(rbd_dev, " result %d xferred %x", 2285 result, xferred); 2286 if (!img_request->result) 2287 img_request->result = result; 2288 /* 2289 * Need to end I/O on the entire obj_request worth of 2290 * bytes in case of error. 2291 */ 2292 xferred = obj_request->length; 2293 } 2294 2295 /* Image object requests don't own their page array */ 2296 2297 if (obj_request->type == OBJ_REQUEST_PAGES) { 2298 obj_request->pages = NULL; 2299 obj_request->page_count = 0; 2300 } 2301 2302 if (img_request_child_test(img_request)) { 2303 rbd_assert(img_request->obj_request != NULL); 2304 more = obj_request->which < img_request->obj_request_count - 1; 2305 } else { 2306 rbd_assert(img_request->rq != NULL); 2307 2308 more = blk_update_request(img_request->rq, result, xferred); 2309 if (!more) 2310 __blk_mq_end_request(img_request->rq, result); 2311 } 2312 2313 return more; 2314 } 2315 2316 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request) 2317 { 2318 struct rbd_img_request *img_request; 2319 u32 which = obj_request->which; 2320 bool more = true; 2321 2322 rbd_assert(obj_request_img_data_test(obj_request)); 2323 img_request = obj_request->img_request; 2324 2325 dout("%s: img %p obj %p\n", __func__, img_request, obj_request); 2326 rbd_assert(img_request != NULL); 2327 rbd_assert(img_request->obj_request_count > 0); 2328 rbd_assert(which != BAD_WHICH); 2329 rbd_assert(which < img_request->obj_request_count); 2330 2331 spin_lock_irq(&img_request->completion_lock); 2332 if (which != img_request->next_completion) 2333 goto out; 2334 2335 for_each_obj_request_from(img_request, obj_request) { 2336 rbd_assert(more); 2337 rbd_assert(which < img_request->obj_request_count); 2338 2339 if (!obj_request_done_test(obj_request)) 2340 break; 2341 more = rbd_img_obj_end_request(obj_request); 2342 which++; 2343 } 2344 2345 rbd_assert(more ^ (which == img_request->obj_request_count)); 2346 img_request->next_completion = which; 2347 out: 2348 spin_unlock_irq(&img_request->completion_lock); 2349 rbd_img_request_put(img_request); 2350 2351 if (!more) 2352 rbd_img_request_complete(img_request); 2353 } 2354 2355 /* 2356 * Add individual osd ops to the given ceph_osd_request and prepare 2357 * them for submission. num_ops is the current number of 2358 * osd operations already to the object request. 2359 */ 2360 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request, 2361 struct ceph_osd_request *osd_request, 2362 enum obj_operation_type op_type, 2363 unsigned int num_ops) 2364 { 2365 struct rbd_img_request *img_request = obj_request->img_request; 2366 struct rbd_device *rbd_dev = img_request->rbd_dev; 2367 u64 object_size = rbd_obj_bytes(&rbd_dev->header); 2368 u64 offset = obj_request->offset; 2369 u64 length = obj_request->length; 2370 u64 img_end; 2371 u16 opcode; 2372 2373 if (op_type == OBJ_OP_DISCARD) { 2374 if (!offset && length == object_size && 2375 (!img_request_layered_test(img_request) || 2376 !obj_request_overlaps_parent(obj_request))) { 2377 opcode = CEPH_OSD_OP_DELETE; 2378 } else if ((offset + length == object_size)) { 2379 opcode = CEPH_OSD_OP_TRUNCATE; 2380 } else { 2381 down_read(&rbd_dev->header_rwsem); 2382 img_end = rbd_dev->header.image_size; 2383 up_read(&rbd_dev->header_rwsem); 2384 2385 if (obj_request->img_offset + length == img_end) 2386 opcode = CEPH_OSD_OP_TRUNCATE; 2387 else 2388 opcode = CEPH_OSD_OP_ZERO; 2389 } 2390 } else if (op_type == OBJ_OP_WRITE) { 2391 opcode = CEPH_OSD_OP_WRITE; 2392 osd_req_op_alloc_hint_init(osd_request, num_ops, 2393 object_size, object_size); 2394 num_ops++; 2395 } else { 2396 opcode = CEPH_OSD_OP_READ; 2397 } 2398 2399 if (opcode == CEPH_OSD_OP_DELETE) 2400 osd_req_op_init(osd_request, num_ops, opcode, 0); 2401 else 2402 osd_req_op_extent_init(osd_request, num_ops, opcode, 2403 offset, length, 0, 0); 2404 2405 if (obj_request->type == OBJ_REQUEST_BIO) 2406 osd_req_op_extent_osd_data_bio(osd_request, num_ops, 2407 obj_request->bio_list, length); 2408 else if (obj_request->type == OBJ_REQUEST_PAGES) 2409 osd_req_op_extent_osd_data_pages(osd_request, num_ops, 2410 obj_request->pages, length, 2411 offset & ~PAGE_MASK, false, false); 2412 2413 /* Discards are also writes */ 2414 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) 2415 rbd_osd_req_format_write(obj_request); 2416 else 2417 rbd_osd_req_format_read(obj_request); 2418 } 2419 2420 /* 2421 * Split up an image request into one or more object requests, each 2422 * to a different object. The "type" parameter indicates whether 2423 * "data_desc" is the pointer to the head of a list of bio 2424 * structures, or the base of a page array. In either case this 2425 * function assumes data_desc describes memory sufficient to hold 2426 * all data described by the image request. 2427 */ 2428 static int rbd_img_request_fill(struct rbd_img_request *img_request, 2429 enum obj_request_type type, 2430 void *data_desc) 2431 { 2432 struct rbd_device *rbd_dev = img_request->rbd_dev; 2433 struct rbd_obj_request *obj_request = NULL; 2434 struct rbd_obj_request *next_obj_request; 2435 struct bio *bio_list = NULL; 2436 unsigned int bio_offset = 0; 2437 struct page **pages = NULL; 2438 enum obj_operation_type op_type; 2439 u64 img_offset; 2440 u64 resid; 2441 2442 dout("%s: img %p type %d data_desc %p\n", __func__, img_request, 2443 (int)type, data_desc); 2444 2445 img_offset = img_request->offset; 2446 resid = img_request->length; 2447 rbd_assert(resid > 0); 2448 op_type = rbd_img_request_op_type(img_request); 2449 2450 if (type == OBJ_REQUEST_BIO) { 2451 bio_list = data_desc; 2452 rbd_assert(img_offset == 2453 bio_list->bi_iter.bi_sector << SECTOR_SHIFT); 2454 } else if (type == OBJ_REQUEST_PAGES) { 2455 pages = data_desc; 2456 } 2457 2458 while (resid) { 2459 struct ceph_osd_request *osd_req; 2460 const char *object_name; 2461 u64 offset; 2462 u64 length; 2463 2464 object_name = rbd_segment_name(rbd_dev, img_offset); 2465 if (!object_name) 2466 goto out_unwind; 2467 offset = rbd_segment_offset(rbd_dev, img_offset); 2468 length = rbd_segment_length(rbd_dev, img_offset, resid); 2469 obj_request = rbd_obj_request_create(object_name, 2470 offset, length, type); 2471 /* object request has its own copy of the object name */ 2472 rbd_segment_name_free(object_name); 2473 if (!obj_request) 2474 goto out_unwind; 2475 2476 /* 2477 * set obj_request->img_request before creating the 2478 * osd_request so that it gets the right snapc 2479 */ 2480 rbd_img_obj_request_add(img_request, obj_request); 2481 2482 if (type == OBJ_REQUEST_BIO) { 2483 unsigned int clone_size; 2484 2485 rbd_assert(length <= (u64)UINT_MAX); 2486 clone_size = (unsigned int)length; 2487 obj_request->bio_list = 2488 bio_chain_clone_range(&bio_list, 2489 &bio_offset, 2490 clone_size, 2491 GFP_ATOMIC); 2492 if (!obj_request->bio_list) 2493 goto out_unwind; 2494 } else if (type == OBJ_REQUEST_PAGES) { 2495 unsigned int page_count; 2496 2497 obj_request->pages = pages; 2498 page_count = (u32)calc_pages_for(offset, length); 2499 obj_request->page_count = page_count; 2500 if ((offset + length) & ~PAGE_MASK) 2501 page_count--; /* more on last page */ 2502 pages += page_count; 2503 } 2504 2505 osd_req = rbd_osd_req_create(rbd_dev, op_type, 2506 (op_type == OBJ_OP_WRITE) ? 2 : 1, 2507 obj_request); 2508 if (!osd_req) 2509 goto out_unwind; 2510 2511 obj_request->osd_req = osd_req; 2512 obj_request->callback = rbd_img_obj_callback; 2513 obj_request->img_offset = img_offset; 2514 2515 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0); 2516 2517 rbd_img_request_get(img_request); 2518 2519 img_offset += length; 2520 resid -= length; 2521 } 2522 2523 return 0; 2524 2525 out_unwind: 2526 for_each_obj_request_safe(img_request, obj_request, next_obj_request) 2527 rbd_img_obj_request_del(img_request, obj_request); 2528 2529 return -ENOMEM; 2530 } 2531 2532 static void 2533 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request) 2534 { 2535 struct rbd_img_request *img_request; 2536 struct rbd_device *rbd_dev; 2537 struct page **pages; 2538 u32 page_count; 2539 2540 rbd_assert(obj_request->type == OBJ_REQUEST_BIO || 2541 obj_request->type == OBJ_REQUEST_NODATA); 2542 rbd_assert(obj_request_img_data_test(obj_request)); 2543 img_request = obj_request->img_request; 2544 rbd_assert(img_request); 2545 2546 rbd_dev = img_request->rbd_dev; 2547 rbd_assert(rbd_dev); 2548 2549 pages = obj_request->copyup_pages; 2550 rbd_assert(pages != NULL); 2551 obj_request->copyup_pages = NULL; 2552 page_count = obj_request->copyup_page_count; 2553 rbd_assert(page_count); 2554 obj_request->copyup_page_count = 0; 2555 ceph_release_page_vector(pages, page_count); 2556 2557 /* 2558 * We want the transfer count to reflect the size of the 2559 * original write request. There is no such thing as a 2560 * successful short write, so if the request was successful 2561 * we can just set it to the originally-requested length. 2562 */ 2563 if (!obj_request->result) 2564 obj_request->xferred = obj_request->length; 2565 2566 /* Finish up with the normal image object callback */ 2567 2568 rbd_img_obj_callback(obj_request); 2569 } 2570 2571 static void 2572 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request) 2573 { 2574 struct rbd_obj_request *orig_request; 2575 struct ceph_osd_request *osd_req; 2576 struct ceph_osd_client *osdc; 2577 struct rbd_device *rbd_dev; 2578 struct page **pages; 2579 enum obj_operation_type op_type; 2580 u32 page_count; 2581 int img_result; 2582 u64 parent_length; 2583 2584 rbd_assert(img_request_child_test(img_request)); 2585 2586 /* First get what we need from the image request */ 2587 2588 pages = img_request->copyup_pages; 2589 rbd_assert(pages != NULL); 2590 img_request->copyup_pages = NULL; 2591 page_count = img_request->copyup_page_count; 2592 rbd_assert(page_count); 2593 img_request->copyup_page_count = 0; 2594 2595 orig_request = img_request->obj_request; 2596 rbd_assert(orig_request != NULL); 2597 rbd_assert(obj_request_type_valid(orig_request->type)); 2598 img_result = img_request->result; 2599 parent_length = img_request->length; 2600 rbd_assert(parent_length == img_request->xferred); 2601 rbd_img_request_put(img_request); 2602 2603 rbd_assert(orig_request->img_request); 2604 rbd_dev = orig_request->img_request->rbd_dev; 2605 rbd_assert(rbd_dev); 2606 2607 /* 2608 * If the overlap has become 0 (most likely because the 2609 * image has been flattened) we need to free the pages 2610 * and re-submit the original write request. 2611 */ 2612 if (!rbd_dev->parent_overlap) { 2613 struct ceph_osd_client *osdc; 2614 2615 ceph_release_page_vector(pages, page_count); 2616 osdc = &rbd_dev->rbd_client->client->osdc; 2617 img_result = rbd_obj_request_submit(osdc, orig_request); 2618 if (!img_result) 2619 return; 2620 } 2621 2622 if (img_result) 2623 goto out_err; 2624 2625 /* 2626 * The original osd request is of no use to use any more. 2627 * We need a new one that can hold the three ops in a copyup 2628 * request. Allocate the new copyup osd request for the 2629 * original request, and release the old one. 2630 */ 2631 img_result = -ENOMEM; 2632 osd_req = rbd_osd_req_create_copyup(orig_request); 2633 if (!osd_req) 2634 goto out_err; 2635 rbd_osd_req_destroy(orig_request->osd_req); 2636 orig_request->osd_req = osd_req; 2637 orig_request->copyup_pages = pages; 2638 orig_request->copyup_page_count = page_count; 2639 2640 /* Initialize the copyup op */ 2641 2642 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup"); 2643 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0, 2644 false, false); 2645 2646 /* Add the other op(s) */ 2647 2648 op_type = rbd_img_request_op_type(orig_request->img_request); 2649 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1); 2650 2651 /* All set, send it off. */ 2652 2653 orig_request->callback = rbd_img_obj_copyup_callback; 2654 osdc = &rbd_dev->rbd_client->client->osdc; 2655 img_result = rbd_obj_request_submit(osdc, orig_request); 2656 if (!img_result) 2657 return; 2658 out_err: 2659 /* Record the error code and complete the request */ 2660 2661 orig_request->result = img_result; 2662 orig_request->xferred = 0; 2663 obj_request_done_set(orig_request); 2664 rbd_obj_request_complete(orig_request); 2665 } 2666 2667 /* 2668 * Read from the parent image the range of data that covers the 2669 * entire target of the given object request. This is used for 2670 * satisfying a layered image write request when the target of an 2671 * object request from the image request does not exist. 2672 * 2673 * A page array big enough to hold the returned data is allocated 2674 * and supplied to rbd_img_request_fill() as the "data descriptor." 2675 * When the read completes, this page array will be transferred to 2676 * the original object request for the copyup operation. 2677 * 2678 * If an error occurs, record it as the result of the original 2679 * object request and mark it done so it gets completed. 2680 */ 2681 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request) 2682 { 2683 struct rbd_img_request *img_request = NULL; 2684 struct rbd_img_request *parent_request = NULL; 2685 struct rbd_device *rbd_dev; 2686 u64 img_offset; 2687 u64 length; 2688 struct page **pages = NULL; 2689 u32 page_count; 2690 int result; 2691 2692 rbd_assert(obj_request_img_data_test(obj_request)); 2693 rbd_assert(obj_request_type_valid(obj_request->type)); 2694 2695 img_request = obj_request->img_request; 2696 rbd_assert(img_request != NULL); 2697 rbd_dev = img_request->rbd_dev; 2698 rbd_assert(rbd_dev->parent != NULL); 2699 2700 /* 2701 * Determine the byte range covered by the object in the 2702 * child image to which the original request was to be sent. 2703 */ 2704 img_offset = obj_request->img_offset - obj_request->offset; 2705 length = (u64)1 << rbd_dev->header.obj_order; 2706 2707 /* 2708 * There is no defined parent data beyond the parent 2709 * overlap, so limit what we read at that boundary if 2710 * necessary. 2711 */ 2712 if (img_offset + length > rbd_dev->parent_overlap) { 2713 rbd_assert(img_offset < rbd_dev->parent_overlap); 2714 length = rbd_dev->parent_overlap - img_offset; 2715 } 2716 2717 /* 2718 * Allocate a page array big enough to receive the data read 2719 * from the parent. 2720 */ 2721 page_count = (u32)calc_pages_for(0, length); 2722 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2723 if (IS_ERR(pages)) { 2724 result = PTR_ERR(pages); 2725 pages = NULL; 2726 goto out_err; 2727 } 2728 2729 result = -ENOMEM; 2730 parent_request = rbd_parent_request_create(obj_request, 2731 img_offset, length); 2732 if (!parent_request) 2733 goto out_err; 2734 2735 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages); 2736 if (result) 2737 goto out_err; 2738 parent_request->copyup_pages = pages; 2739 parent_request->copyup_page_count = page_count; 2740 2741 parent_request->callback = rbd_img_obj_parent_read_full_callback; 2742 result = rbd_img_request_submit(parent_request); 2743 if (!result) 2744 return 0; 2745 2746 parent_request->copyup_pages = NULL; 2747 parent_request->copyup_page_count = 0; 2748 parent_request->obj_request = NULL; 2749 rbd_obj_request_put(obj_request); 2750 out_err: 2751 if (pages) 2752 ceph_release_page_vector(pages, page_count); 2753 if (parent_request) 2754 rbd_img_request_put(parent_request); 2755 obj_request->result = result; 2756 obj_request->xferred = 0; 2757 obj_request_done_set(obj_request); 2758 2759 return result; 2760 } 2761 2762 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request) 2763 { 2764 struct rbd_obj_request *orig_request; 2765 struct rbd_device *rbd_dev; 2766 int result; 2767 2768 rbd_assert(!obj_request_img_data_test(obj_request)); 2769 2770 /* 2771 * All we need from the object request is the original 2772 * request and the result of the STAT op. Grab those, then 2773 * we're done with the request. 2774 */ 2775 orig_request = obj_request->obj_request; 2776 obj_request->obj_request = NULL; 2777 rbd_obj_request_put(orig_request); 2778 rbd_assert(orig_request); 2779 rbd_assert(orig_request->img_request); 2780 2781 result = obj_request->result; 2782 obj_request->result = 0; 2783 2784 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__, 2785 obj_request, orig_request, result, 2786 obj_request->xferred, obj_request->length); 2787 rbd_obj_request_put(obj_request); 2788 2789 /* 2790 * If the overlap has become 0 (most likely because the 2791 * image has been flattened) we need to free the pages 2792 * and re-submit the original write request. 2793 */ 2794 rbd_dev = orig_request->img_request->rbd_dev; 2795 if (!rbd_dev->parent_overlap) { 2796 struct ceph_osd_client *osdc; 2797 2798 osdc = &rbd_dev->rbd_client->client->osdc; 2799 result = rbd_obj_request_submit(osdc, orig_request); 2800 if (!result) 2801 return; 2802 } 2803 2804 /* 2805 * Our only purpose here is to determine whether the object 2806 * exists, and we don't want to treat the non-existence as 2807 * an error. If something else comes back, transfer the 2808 * error to the original request and complete it now. 2809 */ 2810 if (!result) { 2811 obj_request_existence_set(orig_request, true); 2812 } else if (result == -ENOENT) { 2813 obj_request_existence_set(orig_request, false); 2814 } else if (result) { 2815 orig_request->result = result; 2816 goto out; 2817 } 2818 2819 /* 2820 * Resubmit the original request now that we have recorded 2821 * whether the target object exists. 2822 */ 2823 orig_request->result = rbd_img_obj_request_submit(orig_request); 2824 out: 2825 if (orig_request->result) 2826 rbd_obj_request_complete(orig_request); 2827 } 2828 2829 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request) 2830 { 2831 struct rbd_obj_request *stat_request; 2832 struct rbd_device *rbd_dev; 2833 struct ceph_osd_client *osdc; 2834 struct page **pages = NULL; 2835 u32 page_count; 2836 size_t size; 2837 int ret; 2838 2839 /* 2840 * The response data for a STAT call consists of: 2841 * le64 length; 2842 * struct { 2843 * le32 tv_sec; 2844 * le32 tv_nsec; 2845 * } mtime; 2846 */ 2847 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32); 2848 page_count = (u32)calc_pages_for(0, size); 2849 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 2850 if (IS_ERR(pages)) 2851 return PTR_ERR(pages); 2852 2853 ret = -ENOMEM; 2854 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0, 2855 OBJ_REQUEST_PAGES); 2856 if (!stat_request) 2857 goto out; 2858 2859 rbd_obj_request_get(obj_request); 2860 stat_request->obj_request = obj_request; 2861 stat_request->pages = pages; 2862 stat_request->page_count = page_count; 2863 2864 rbd_assert(obj_request->img_request); 2865 rbd_dev = obj_request->img_request->rbd_dev; 2866 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 2867 stat_request); 2868 if (!stat_request->osd_req) 2869 goto out; 2870 stat_request->callback = rbd_img_obj_exists_callback; 2871 2872 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0); 2873 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0, 2874 false, false); 2875 rbd_osd_req_format_read(stat_request); 2876 2877 osdc = &rbd_dev->rbd_client->client->osdc; 2878 ret = rbd_obj_request_submit(osdc, stat_request); 2879 out: 2880 if (ret) 2881 rbd_obj_request_put(obj_request); 2882 2883 return ret; 2884 } 2885 2886 static bool img_obj_request_simple(struct rbd_obj_request *obj_request) 2887 { 2888 struct rbd_img_request *img_request; 2889 struct rbd_device *rbd_dev; 2890 2891 rbd_assert(obj_request_img_data_test(obj_request)); 2892 2893 img_request = obj_request->img_request; 2894 rbd_assert(img_request); 2895 rbd_dev = img_request->rbd_dev; 2896 2897 /* Reads */ 2898 if (!img_request_write_test(img_request) && 2899 !img_request_discard_test(img_request)) 2900 return true; 2901 2902 /* Non-layered writes */ 2903 if (!img_request_layered_test(img_request)) 2904 return true; 2905 2906 /* 2907 * Layered writes outside of the parent overlap range don't 2908 * share any data with the parent. 2909 */ 2910 if (!obj_request_overlaps_parent(obj_request)) 2911 return true; 2912 2913 /* 2914 * Entire-object layered writes - we will overwrite whatever 2915 * parent data there is anyway. 2916 */ 2917 if (!obj_request->offset && 2918 obj_request->length == rbd_obj_bytes(&rbd_dev->header)) 2919 return true; 2920 2921 /* 2922 * If the object is known to already exist, its parent data has 2923 * already been copied. 2924 */ 2925 if (obj_request_known_test(obj_request) && 2926 obj_request_exists_test(obj_request)) 2927 return true; 2928 2929 return false; 2930 } 2931 2932 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request) 2933 { 2934 if (img_obj_request_simple(obj_request)) { 2935 struct rbd_device *rbd_dev; 2936 struct ceph_osd_client *osdc; 2937 2938 rbd_dev = obj_request->img_request->rbd_dev; 2939 osdc = &rbd_dev->rbd_client->client->osdc; 2940 2941 return rbd_obj_request_submit(osdc, obj_request); 2942 } 2943 2944 /* 2945 * It's a layered write. The target object might exist but 2946 * we may not know that yet. If we know it doesn't exist, 2947 * start by reading the data for the full target object from 2948 * the parent so we can use it for a copyup to the target. 2949 */ 2950 if (obj_request_known_test(obj_request)) 2951 return rbd_img_obj_parent_read_full(obj_request); 2952 2953 /* We don't know whether the target exists. Go find out. */ 2954 2955 return rbd_img_obj_exists_submit(obj_request); 2956 } 2957 2958 static int rbd_img_request_submit(struct rbd_img_request *img_request) 2959 { 2960 struct rbd_obj_request *obj_request; 2961 struct rbd_obj_request *next_obj_request; 2962 2963 dout("%s: img %p\n", __func__, img_request); 2964 for_each_obj_request_safe(img_request, obj_request, next_obj_request) { 2965 int ret; 2966 2967 ret = rbd_img_obj_request_submit(obj_request); 2968 if (ret) 2969 return ret; 2970 } 2971 2972 return 0; 2973 } 2974 2975 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request) 2976 { 2977 struct rbd_obj_request *obj_request; 2978 struct rbd_device *rbd_dev; 2979 u64 obj_end; 2980 u64 img_xferred; 2981 int img_result; 2982 2983 rbd_assert(img_request_child_test(img_request)); 2984 2985 /* First get what we need from the image request and release it */ 2986 2987 obj_request = img_request->obj_request; 2988 img_xferred = img_request->xferred; 2989 img_result = img_request->result; 2990 rbd_img_request_put(img_request); 2991 2992 /* 2993 * If the overlap has become 0 (most likely because the 2994 * image has been flattened) we need to re-submit the 2995 * original request. 2996 */ 2997 rbd_assert(obj_request); 2998 rbd_assert(obj_request->img_request); 2999 rbd_dev = obj_request->img_request->rbd_dev; 3000 if (!rbd_dev->parent_overlap) { 3001 struct ceph_osd_client *osdc; 3002 3003 osdc = &rbd_dev->rbd_client->client->osdc; 3004 img_result = rbd_obj_request_submit(osdc, obj_request); 3005 if (!img_result) 3006 return; 3007 } 3008 3009 obj_request->result = img_result; 3010 if (obj_request->result) 3011 goto out; 3012 3013 /* 3014 * We need to zero anything beyond the parent overlap 3015 * boundary. Since rbd_img_obj_request_read_callback() 3016 * will zero anything beyond the end of a short read, an 3017 * easy way to do this is to pretend the data from the 3018 * parent came up short--ending at the overlap boundary. 3019 */ 3020 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length); 3021 obj_end = obj_request->img_offset + obj_request->length; 3022 if (obj_end > rbd_dev->parent_overlap) { 3023 u64 xferred = 0; 3024 3025 if (obj_request->img_offset < rbd_dev->parent_overlap) 3026 xferred = rbd_dev->parent_overlap - 3027 obj_request->img_offset; 3028 3029 obj_request->xferred = min(img_xferred, xferred); 3030 } else { 3031 obj_request->xferred = img_xferred; 3032 } 3033 out: 3034 rbd_img_obj_request_read_callback(obj_request); 3035 rbd_obj_request_complete(obj_request); 3036 } 3037 3038 static void rbd_img_parent_read(struct rbd_obj_request *obj_request) 3039 { 3040 struct rbd_img_request *img_request; 3041 int result; 3042 3043 rbd_assert(obj_request_img_data_test(obj_request)); 3044 rbd_assert(obj_request->img_request != NULL); 3045 rbd_assert(obj_request->result == (s32) -ENOENT); 3046 rbd_assert(obj_request_type_valid(obj_request->type)); 3047 3048 /* rbd_read_finish(obj_request, obj_request->length); */ 3049 img_request = rbd_parent_request_create(obj_request, 3050 obj_request->img_offset, 3051 obj_request->length); 3052 result = -ENOMEM; 3053 if (!img_request) 3054 goto out_err; 3055 3056 if (obj_request->type == OBJ_REQUEST_BIO) 3057 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3058 obj_request->bio_list); 3059 else 3060 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES, 3061 obj_request->pages); 3062 if (result) 3063 goto out_err; 3064 3065 img_request->callback = rbd_img_parent_read_callback; 3066 result = rbd_img_request_submit(img_request); 3067 if (result) 3068 goto out_err; 3069 3070 return; 3071 out_err: 3072 if (img_request) 3073 rbd_img_request_put(img_request); 3074 obj_request->result = result; 3075 obj_request->xferred = 0; 3076 obj_request_done_set(obj_request); 3077 } 3078 3079 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id) 3080 { 3081 struct rbd_obj_request *obj_request; 3082 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3083 int ret; 3084 3085 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3086 OBJ_REQUEST_NODATA); 3087 if (!obj_request) 3088 return -ENOMEM; 3089 3090 ret = -ENOMEM; 3091 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3092 obj_request); 3093 if (!obj_request->osd_req) 3094 goto out; 3095 3096 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK, 3097 notify_id, 0, 0); 3098 rbd_osd_req_format_read(obj_request); 3099 3100 ret = rbd_obj_request_submit(osdc, obj_request); 3101 if (ret) 3102 goto out; 3103 ret = rbd_obj_request_wait(obj_request); 3104 out: 3105 rbd_obj_request_put(obj_request); 3106 3107 return ret; 3108 } 3109 3110 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data) 3111 { 3112 struct rbd_device *rbd_dev = (struct rbd_device *)data; 3113 int ret; 3114 3115 if (!rbd_dev) 3116 return; 3117 3118 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__, 3119 rbd_dev->header_name, (unsigned long long)notify_id, 3120 (unsigned int)opcode); 3121 3122 /* 3123 * Until adequate refresh error handling is in place, there is 3124 * not much we can do here, except warn. 3125 * 3126 * See http://tracker.ceph.com/issues/5040 3127 */ 3128 ret = rbd_dev_refresh(rbd_dev); 3129 if (ret) 3130 rbd_warn(rbd_dev, "refresh failed: %d", ret); 3131 3132 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id); 3133 if (ret) 3134 rbd_warn(rbd_dev, "notify_ack ret %d", ret); 3135 } 3136 3137 /* 3138 * Send a (un)watch request and wait for the ack. Return a request 3139 * with a ref held on success or error. 3140 */ 3141 static struct rbd_obj_request *rbd_obj_watch_request_helper( 3142 struct rbd_device *rbd_dev, 3143 bool watch) 3144 { 3145 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3146 struct ceph_options *opts = osdc->client->options; 3147 struct rbd_obj_request *obj_request; 3148 int ret; 3149 3150 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0, 3151 OBJ_REQUEST_NODATA); 3152 if (!obj_request) 3153 return ERR_PTR(-ENOMEM); 3154 3155 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1, 3156 obj_request); 3157 if (!obj_request->osd_req) { 3158 ret = -ENOMEM; 3159 goto out; 3160 } 3161 3162 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH, 3163 rbd_dev->watch_event->cookie, 0, watch); 3164 rbd_osd_req_format_write(obj_request); 3165 3166 if (watch) 3167 ceph_osdc_set_request_linger(osdc, obj_request->osd_req); 3168 3169 ret = rbd_obj_request_submit(osdc, obj_request); 3170 if (ret) 3171 goto out; 3172 3173 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout); 3174 if (ret) 3175 goto out; 3176 3177 ret = obj_request->result; 3178 if (ret) { 3179 if (watch) 3180 rbd_obj_request_end(obj_request); 3181 goto out; 3182 } 3183 3184 return obj_request; 3185 3186 out: 3187 rbd_obj_request_put(obj_request); 3188 return ERR_PTR(ret); 3189 } 3190 3191 /* 3192 * Initiate a watch request, synchronously. 3193 */ 3194 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev) 3195 { 3196 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3197 struct rbd_obj_request *obj_request; 3198 int ret; 3199 3200 rbd_assert(!rbd_dev->watch_event); 3201 rbd_assert(!rbd_dev->watch_request); 3202 3203 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev, 3204 &rbd_dev->watch_event); 3205 if (ret < 0) 3206 return ret; 3207 3208 obj_request = rbd_obj_watch_request_helper(rbd_dev, true); 3209 if (IS_ERR(obj_request)) { 3210 ceph_osdc_cancel_event(rbd_dev->watch_event); 3211 rbd_dev->watch_event = NULL; 3212 return PTR_ERR(obj_request); 3213 } 3214 3215 /* 3216 * A watch request is set to linger, so the underlying osd 3217 * request won't go away until we unregister it. We retain 3218 * a pointer to the object request during that time (in 3219 * rbd_dev->watch_request), so we'll keep a reference to it. 3220 * We'll drop that reference after we've unregistered it in 3221 * rbd_dev_header_unwatch_sync(). 3222 */ 3223 rbd_dev->watch_request = obj_request; 3224 3225 return 0; 3226 } 3227 3228 /* 3229 * Tear down a watch request, synchronously. 3230 */ 3231 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev) 3232 { 3233 struct rbd_obj_request *obj_request; 3234 3235 rbd_assert(rbd_dev->watch_event); 3236 rbd_assert(rbd_dev->watch_request); 3237 3238 rbd_obj_request_end(rbd_dev->watch_request); 3239 rbd_obj_request_put(rbd_dev->watch_request); 3240 rbd_dev->watch_request = NULL; 3241 3242 obj_request = rbd_obj_watch_request_helper(rbd_dev, false); 3243 if (!IS_ERR(obj_request)) 3244 rbd_obj_request_put(obj_request); 3245 else 3246 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)", 3247 PTR_ERR(obj_request)); 3248 3249 ceph_osdc_cancel_event(rbd_dev->watch_event); 3250 rbd_dev->watch_event = NULL; 3251 } 3252 3253 /* 3254 * Synchronous osd object method call. Returns the number of bytes 3255 * returned in the outbound buffer, or a negative error code. 3256 */ 3257 static int rbd_obj_method_sync(struct rbd_device *rbd_dev, 3258 const char *object_name, 3259 const char *class_name, 3260 const char *method_name, 3261 const void *outbound, 3262 size_t outbound_size, 3263 void *inbound, 3264 size_t inbound_size) 3265 { 3266 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3267 struct rbd_obj_request *obj_request; 3268 struct page **pages; 3269 u32 page_count; 3270 int ret; 3271 3272 /* 3273 * Method calls are ultimately read operations. The result 3274 * should placed into the inbound buffer provided. They 3275 * also supply outbound data--parameters for the object 3276 * method. Currently if this is present it will be a 3277 * snapshot id. 3278 */ 3279 page_count = (u32)calc_pages_for(0, inbound_size); 3280 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3281 if (IS_ERR(pages)) 3282 return PTR_ERR(pages); 3283 3284 ret = -ENOMEM; 3285 obj_request = rbd_obj_request_create(object_name, 0, inbound_size, 3286 OBJ_REQUEST_PAGES); 3287 if (!obj_request) 3288 goto out; 3289 3290 obj_request->pages = pages; 3291 obj_request->page_count = page_count; 3292 3293 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3294 obj_request); 3295 if (!obj_request->osd_req) 3296 goto out; 3297 3298 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL, 3299 class_name, method_name); 3300 if (outbound_size) { 3301 struct ceph_pagelist *pagelist; 3302 3303 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS); 3304 if (!pagelist) 3305 goto out; 3306 3307 ceph_pagelist_init(pagelist); 3308 ceph_pagelist_append(pagelist, outbound, outbound_size); 3309 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0, 3310 pagelist); 3311 } 3312 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0, 3313 obj_request->pages, inbound_size, 3314 0, false, false); 3315 rbd_osd_req_format_read(obj_request); 3316 3317 ret = rbd_obj_request_submit(osdc, obj_request); 3318 if (ret) 3319 goto out; 3320 ret = rbd_obj_request_wait(obj_request); 3321 if (ret) 3322 goto out; 3323 3324 ret = obj_request->result; 3325 if (ret < 0) 3326 goto out; 3327 3328 rbd_assert(obj_request->xferred < (u64)INT_MAX); 3329 ret = (int)obj_request->xferred; 3330 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred); 3331 out: 3332 if (obj_request) 3333 rbd_obj_request_put(obj_request); 3334 else 3335 ceph_release_page_vector(pages, page_count); 3336 3337 return ret; 3338 } 3339 3340 static void rbd_queue_workfn(struct work_struct *work) 3341 { 3342 struct request *rq = blk_mq_rq_from_pdu(work); 3343 struct rbd_device *rbd_dev = rq->q->queuedata; 3344 struct rbd_img_request *img_request; 3345 struct ceph_snap_context *snapc = NULL; 3346 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT; 3347 u64 length = blk_rq_bytes(rq); 3348 enum obj_operation_type op_type; 3349 u64 mapping_size; 3350 int result; 3351 3352 if (rq->cmd_type != REQ_TYPE_FS) { 3353 dout("%s: non-fs request type %d\n", __func__, 3354 (int) rq->cmd_type); 3355 result = -EIO; 3356 goto err; 3357 } 3358 3359 if (rq->cmd_flags & REQ_DISCARD) 3360 op_type = OBJ_OP_DISCARD; 3361 else if (rq->cmd_flags & REQ_WRITE) 3362 op_type = OBJ_OP_WRITE; 3363 else 3364 op_type = OBJ_OP_READ; 3365 3366 /* Ignore/skip any zero-length requests */ 3367 3368 if (!length) { 3369 dout("%s: zero-length request\n", __func__); 3370 result = 0; 3371 goto err_rq; 3372 } 3373 3374 /* Only reads are allowed to a read-only device */ 3375 3376 if (op_type != OBJ_OP_READ) { 3377 if (rbd_dev->mapping.read_only) { 3378 result = -EROFS; 3379 goto err_rq; 3380 } 3381 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP); 3382 } 3383 3384 /* 3385 * Quit early if the mapped snapshot no longer exists. It's 3386 * still possible the snapshot will have disappeared by the 3387 * time our request arrives at the osd, but there's no sense in 3388 * sending it if we already know. 3389 */ 3390 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) { 3391 dout("request for non-existent snapshot"); 3392 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP); 3393 result = -ENXIO; 3394 goto err_rq; 3395 } 3396 3397 if (offset && length > U64_MAX - offset + 1) { 3398 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset, 3399 length); 3400 result = -EINVAL; 3401 goto err_rq; /* Shouldn't happen */ 3402 } 3403 3404 blk_mq_start_request(rq); 3405 3406 down_read(&rbd_dev->header_rwsem); 3407 mapping_size = rbd_dev->mapping.size; 3408 if (op_type != OBJ_OP_READ) { 3409 snapc = rbd_dev->header.snapc; 3410 ceph_get_snap_context(snapc); 3411 } 3412 up_read(&rbd_dev->header_rwsem); 3413 3414 if (offset + length > mapping_size) { 3415 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset, 3416 length, mapping_size); 3417 result = -EIO; 3418 goto err_rq; 3419 } 3420 3421 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type, 3422 snapc); 3423 if (!img_request) { 3424 result = -ENOMEM; 3425 goto err_rq; 3426 } 3427 img_request->rq = rq; 3428 3429 if (op_type == OBJ_OP_DISCARD) 3430 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA, 3431 NULL); 3432 else 3433 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO, 3434 rq->bio); 3435 if (result) 3436 goto err_img_request; 3437 3438 result = rbd_img_request_submit(img_request); 3439 if (result) 3440 goto err_img_request; 3441 3442 return; 3443 3444 err_img_request: 3445 rbd_img_request_put(img_request); 3446 err_rq: 3447 if (result) 3448 rbd_warn(rbd_dev, "%s %llx at %llx result %d", 3449 obj_op_name(op_type), length, offset, result); 3450 ceph_put_snap_context(snapc); 3451 err: 3452 blk_mq_end_request(rq, result); 3453 } 3454 3455 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx, 3456 const struct blk_mq_queue_data *bd) 3457 { 3458 struct request *rq = bd->rq; 3459 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3460 3461 queue_work(rbd_wq, work); 3462 return BLK_MQ_RQ_QUEUE_OK; 3463 } 3464 3465 /* 3466 * a queue callback. Makes sure that we don't create a bio that spans across 3467 * multiple osd objects. One exception would be with a single page bios, 3468 * which we handle later at bio_chain_clone_range() 3469 */ 3470 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 3471 struct bio_vec *bvec) 3472 { 3473 struct rbd_device *rbd_dev = q->queuedata; 3474 sector_t sector_offset; 3475 sector_t sectors_per_obj; 3476 sector_t obj_sector_offset; 3477 int ret; 3478 3479 /* 3480 * Find how far into its rbd object the partition-relative 3481 * bio start sector is to offset relative to the enclosing 3482 * device. 3483 */ 3484 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector; 3485 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT); 3486 obj_sector_offset = sector_offset & (sectors_per_obj - 1); 3487 3488 /* 3489 * Compute the number of bytes from that offset to the end 3490 * of the object. Account for what's already used by the bio. 3491 */ 3492 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT; 3493 if (ret > bmd->bi_size) 3494 ret -= bmd->bi_size; 3495 else 3496 ret = 0; 3497 3498 /* 3499 * Don't send back more than was asked for. And if the bio 3500 * was empty, let the whole thing through because: "Note 3501 * that a block device *must* allow a single page to be 3502 * added to an empty bio." 3503 */ 3504 rbd_assert(bvec->bv_len <= PAGE_SIZE); 3505 if (ret > (int) bvec->bv_len || !bmd->bi_size) 3506 ret = (int) bvec->bv_len; 3507 3508 return ret; 3509 } 3510 3511 static void rbd_free_disk(struct rbd_device *rbd_dev) 3512 { 3513 struct gendisk *disk = rbd_dev->disk; 3514 3515 if (!disk) 3516 return; 3517 3518 rbd_dev->disk = NULL; 3519 if (disk->flags & GENHD_FL_UP) { 3520 del_gendisk(disk); 3521 if (disk->queue) 3522 blk_cleanup_queue(disk->queue); 3523 blk_mq_free_tag_set(&rbd_dev->tag_set); 3524 } 3525 put_disk(disk); 3526 } 3527 3528 static int rbd_obj_read_sync(struct rbd_device *rbd_dev, 3529 const char *object_name, 3530 u64 offset, u64 length, void *buf) 3531 3532 { 3533 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 3534 struct rbd_obj_request *obj_request; 3535 struct page **pages = NULL; 3536 u32 page_count; 3537 size_t size; 3538 int ret; 3539 3540 page_count = (u32) calc_pages_for(offset, length); 3541 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL); 3542 if (IS_ERR(pages)) 3543 return PTR_ERR(pages); 3544 3545 ret = -ENOMEM; 3546 obj_request = rbd_obj_request_create(object_name, offset, length, 3547 OBJ_REQUEST_PAGES); 3548 if (!obj_request) 3549 goto out; 3550 3551 obj_request->pages = pages; 3552 obj_request->page_count = page_count; 3553 3554 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1, 3555 obj_request); 3556 if (!obj_request->osd_req) 3557 goto out; 3558 3559 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ, 3560 offset, length, 0, 0); 3561 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0, 3562 obj_request->pages, 3563 obj_request->length, 3564 obj_request->offset & ~PAGE_MASK, 3565 false, false); 3566 rbd_osd_req_format_read(obj_request); 3567 3568 ret = rbd_obj_request_submit(osdc, obj_request); 3569 if (ret) 3570 goto out; 3571 ret = rbd_obj_request_wait(obj_request); 3572 if (ret) 3573 goto out; 3574 3575 ret = obj_request->result; 3576 if (ret < 0) 3577 goto out; 3578 3579 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX); 3580 size = (size_t) obj_request->xferred; 3581 ceph_copy_from_page_vector(pages, buf, 0, size); 3582 rbd_assert(size <= (size_t)INT_MAX); 3583 ret = (int)size; 3584 out: 3585 if (obj_request) 3586 rbd_obj_request_put(obj_request); 3587 else 3588 ceph_release_page_vector(pages, page_count); 3589 3590 return ret; 3591 } 3592 3593 /* 3594 * Read the complete header for the given rbd device. On successful 3595 * return, the rbd_dev->header field will contain up-to-date 3596 * information about the image. 3597 */ 3598 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev) 3599 { 3600 struct rbd_image_header_ondisk *ondisk = NULL; 3601 u32 snap_count = 0; 3602 u64 names_size = 0; 3603 u32 want_count; 3604 int ret; 3605 3606 /* 3607 * The complete header will include an array of its 64-bit 3608 * snapshot ids, followed by the names of those snapshots as 3609 * a contiguous block of NUL-terminated strings. Note that 3610 * the number of snapshots could change by the time we read 3611 * it in, in which case we re-read it. 3612 */ 3613 do { 3614 size_t size; 3615 3616 kfree(ondisk); 3617 3618 size = sizeof (*ondisk); 3619 size += snap_count * sizeof (struct rbd_image_snap_ondisk); 3620 size += names_size; 3621 ondisk = kmalloc(size, GFP_KERNEL); 3622 if (!ondisk) 3623 return -ENOMEM; 3624 3625 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name, 3626 0, size, ondisk); 3627 if (ret < 0) 3628 goto out; 3629 if ((size_t)ret < size) { 3630 ret = -ENXIO; 3631 rbd_warn(rbd_dev, "short header read (want %zd got %d)", 3632 size, ret); 3633 goto out; 3634 } 3635 if (!rbd_dev_ondisk_valid(ondisk)) { 3636 ret = -ENXIO; 3637 rbd_warn(rbd_dev, "invalid header"); 3638 goto out; 3639 } 3640 3641 names_size = le64_to_cpu(ondisk->snap_names_len); 3642 want_count = snap_count; 3643 snap_count = le32_to_cpu(ondisk->snap_count); 3644 } while (snap_count != want_count); 3645 3646 ret = rbd_header_from_disk(rbd_dev, ondisk); 3647 out: 3648 kfree(ondisk); 3649 3650 return ret; 3651 } 3652 3653 /* 3654 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to 3655 * has disappeared from the (just updated) snapshot context. 3656 */ 3657 static void rbd_exists_validate(struct rbd_device *rbd_dev) 3658 { 3659 u64 snap_id; 3660 3661 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) 3662 return; 3663 3664 snap_id = rbd_dev->spec->snap_id; 3665 if (snap_id == CEPH_NOSNAP) 3666 return; 3667 3668 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX) 3669 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 3670 } 3671 3672 static void rbd_dev_update_size(struct rbd_device *rbd_dev) 3673 { 3674 sector_t size; 3675 bool removing; 3676 3677 /* 3678 * Don't hold the lock while doing disk operations, 3679 * or lock ordering will conflict with the bdev mutex via: 3680 * rbd_add() -> blkdev_get() -> rbd_open() 3681 */ 3682 spin_lock_irq(&rbd_dev->lock); 3683 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags); 3684 spin_unlock_irq(&rbd_dev->lock); 3685 /* 3686 * If the device is being removed, rbd_dev->disk has 3687 * been destroyed, so don't try to update its size 3688 */ 3689 if (!removing) { 3690 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE; 3691 dout("setting size to %llu sectors", (unsigned long long)size); 3692 set_capacity(rbd_dev->disk, size); 3693 revalidate_disk(rbd_dev->disk); 3694 } 3695 } 3696 3697 static int rbd_dev_refresh(struct rbd_device *rbd_dev) 3698 { 3699 u64 mapping_size; 3700 int ret; 3701 3702 down_write(&rbd_dev->header_rwsem); 3703 mapping_size = rbd_dev->mapping.size; 3704 3705 ret = rbd_dev_header_info(rbd_dev); 3706 if (ret) 3707 goto out; 3708 3709 /* 3710 * If there is a parent, see if it has disappeared due to the 3711 * mapped image getting flattened. 3712 */ 3713 if (rbd_dev->parent) { 3714 ret = rbd_dev_v2_parent_info(rbd_dev); 3715 if (ret) 3716 goto out; 3717 } 3718 3719 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) { 3720 rbd_dev->mapping.size = rbd_dev->header.image_size; 3721 } else { 3722 /* validate mapped snapshot's EXISTS flag */ 3723 rbd_exists_validate(rbd_dev); 3724 } 3725 3726 out: 3727 up_write(&rbd_dev->header_rwsem); 3728 if (!ret && mapping_size != rbd_dev->mapping.size) 3729 rbd_dev_update_size(rbd_dev); 3730 3731 return ret; 3732 } 3733 3734 static int rbd_init_request(void *data, struct request *rq, 3735 unsigned int hctx_idx, unsigned int request_idx, 3736 unsigned int numa_node) 3737 { 3738 struct work_struct *work = blk_mq_rq_to_pdu(rq); 3739 3740 INIT_WORK(work, rbd_queue_workfn); 3741 return 0; 3742 } 3743 3744 static struct blk_mq_ops rbd_mq_ops = { 3745 .queue_rq = rbd_queue_rq, 3746 .map_queue = blk_mq_map_queue, 3747 .init_request = rbd_init_request, 3748 }; 3749 3750 static int rbd_init_disk(struct rbd_device *rbd_dev) 3751 { 3752 struct gendisk *disk; 3753 struct request_queue *q; 3754 u64 segment_size; 3755 int err; 3756 3757 /* create gendisk info */ 3758 disk = alloc_disk(single_major ? 3759 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) : 3760 RBD_MINORS_PER_MAJOR); 3761 if (!disk) 3762 return -ENOMEM; 3763 3764 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d", 3765 rbd_dev->dev_id); 3766 disk->major = rbd_dev->major; 3767 disk->first_minor = rbd_dev->minor; 3768 if (single_major) 3769 disk->flags |= GENHD_FL_EXT_DEVT; 3770 disk->fops = &rbd_bd_ops; 3771 disk->private_data = rbd_dev; 3772 3773 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set)); 3774 rbd_dev->tag_set.ops = &rbd_mq_ops; 3775 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth; 3776 rbd_dev->tag_set.numa_node = NUMA_NO_NODE; 3777 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 3778 rbd_dev->tag_set.nr_hw_queues = 1; 3779 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct); 3780 3781 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set); 3782 if (err) 3783 goto out_disk; 3784 3785 q = blk_mq_init_queue(&rbd_dev->tag_set); 3786 if (IS_ERR(q)) { 3787 err = PTR_ERR(q); 3788 goto out_tag_set; 3789 } 3790 3791 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 3792 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */ 3793 3794 /* set io sizes to object size */ 3795 segment_size = rbd_obj_bytes(&rbd_dev->header); 3796 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE); 3797 blk_queue_max_segments(q, segment_size / SECTOR_SIZE); 3798 blk_queue_max_segment_size(q, segment_size); 3799 blk_queue_io_min(q, segment_size); 3800 blk_queue_io_opt(q, segment_size); 3801 3802 /* enable the discard support */ 3803 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 3804 q->limits.discard_granularity = segment_size; 3805 q->limits.discard_alignment = segment_size; 3806 q->limits.max_discard_sectors = segment_size / SECTOR_SIZE; 3807 q->limits.discard_zeroes_data = 1; 3808 3809 blk_queue_merge_bvec(q, rbd_merge_bvec); 3810 disk->queue = q; 3811 3812 q->queuedata = rbd_dev; 3813 3814 rbd_dev->disk = disk; 3815 3816 return 0; 3817 out_tag_set: 3818 blk_mq_free_tag_set(&rbd_dev->tag_set); 3819 out_disk: 3820 put_disk(disk); 3821 return err; 3822 } 3823 3824 /* 3825 sysfs 3826 */ 3827 3828 static struct rbd_device *dev_to_rbd_dev(struct device *dev) 3829 { 3830 return container_of(dev, struct rbd_device, dev); 3831 } 3832 3833 static ssize_t rbd_size_show(struct device *dev, 3834 struct device_attribute *attr, char *buf) 3835 { 3836 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3837 3838 return sprintf(buf, "%llu\n", 3839 (unsigned long long)rbd_dev->mapping.size); 3840 } 3841 3842 /* 3843 * Note this shows the features for whatever's mapped, which is not 3844 * necessarily the base image. 3845 */ 3846 static ssize_t rbd_features_show(struct device *dev, 3847 struct device_attribute *attr, char *buf) 3848 { 3849 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3850 3851 return sprintf(buf, "0x%016llx\n", 3852 (unsigned long long)rbd_dev->mapping.features); 3853 } 3854 3855 static ssize_t rbd_major_show(struct device *dev, 3856 struct device_attribute *attr, char *buf) 3857 { 3858 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3859 3860 if (rbd_dev->major) 3861 return sprintf(buf, "%d\n", rbd_dev->major); 3862 3863 return sprintf(buf, "(none)\n"); 3864 } 3865 3866 static ssize_t rbd_minor_show(struct device *dev, 3867 struct device_attribute *attr, char *buf) 3868 { 3869 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3870 3871 return sprintf(buf, "%d\n", rbd_dev->minor); 3872 } 3873 3874 static ssize_t rbd_client_id_show(struct device *dev, 3875 struct device_attribute *attr, char *buf) 3876 { 3877 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3878 3879 return sprintf(buf, "client%lld\n", 3880 ceph_client_id(rbd_dev->rbd_client->client)); 3881 } 3882 3883 static ssize_t rbd_pool_show(struct device *dev, 3884 struct device_attribute *attr, char *buf) 3885 { 3886 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3887 3888 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name); 3889 } 3890 3891 static ssize_t rbd_pool_id_show(struct device *dev, 3892 struct device_attribute *attr, char *buf) 3893 { 3894 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3895 3896 return sprintf(buf, "%llu\n", 3897 (unsigned long long) rbd_dev->spec->pool_id); 3898 } 3899 3900 static ssize_t rbd_name_show(struct device *dev, 3901 struct device_attribute *attr, char *buf) 3902 { 3903 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3904 3905 if (rbd_dev->spec->image_name) 3906 return sprintf(buf, "%s\n", rbd_dev->spec->image_name); 3907 3908 return sprintf(buf, "(unknown)\n"); 3909 } 3910 3911 static ssize_t rbd_image_id_show(struct device *dev, 3912 struct device_attribute *attr, char *buf) 3913 { 3914 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3915 3916 return sprintf(buf, "%s\n", rbd_dev->spec->image_id); 3917 } 3918 3919 /* 3920 * Shows the name of the currently-mapped snapshot (or 3921 * RBD_SNAP_HEAD_NAME for the base image). 3922 */ 3923 static ssize_t rbd_snap_show(struct device *dev, 3924 struct device_attribute *attr, 3925 char *buf) 3926 { 3927 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3928 3929 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name); 3930 } 3931 3932 /* 3933 * For a v2 image, shows the chain of parent images, separated by empty 3934 * lines. For v1 images or if there is no parent, shows "(no parent 3935 * image)". 3936 */ 3937 static ssize_t rbd_parent_show(struct device *dev, 3938 struct device_attribute *attr, 3939 char *buf) 3940 { 3941 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3942 ssize_t count = 0; 3943 3944 if (!rbd_dev->parent) 3945 return sprintf(buf, "(no parent image)\n"); 3946 3947 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) { 3948 struct rbd_spec *spec = rbd_dev->parent_spec; 3949 3950 count += sprintf(&buf[count], "%s" 3951 "pool_id %llu\npool_name %s\n" 3952 "image_id %s\nimage_name %s\n" 3953 "snap_id %llu\nsnap_name %s\n" 3954 "overlap %llu\n", 3955 !count ? "" : "\n", /* first? */ 3956 spec->pool_id, spec->pool_name, 3957 spec->image_id, spec->image_name ?: "(unknown)", 3958 spec->snap_id, spec->snap_name, 3959 rbd_dev->parent_overlap); 3960 } 3961 3962 return count; 3963 } 3964 3965 static ssize_t rbd_image_refresh(struct device *dev, 3966 struct device_attribute *attr, 3967 const char *buf, 3968 size_t size) 3969 { 3970 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 3971 int ret; 3972 3973 ret = rbd_dev_refresh(rbd_dev); 3974 if (ret) 3975 return ret; 3976 3977 return size; 3978 } 3979 3980 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL); 3981 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL); 3982 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL); 3983 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL); 3984 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL); 3985 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL); 3986 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL); 3987 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL); 3988 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL); 3989 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh); 3990 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL); 3991 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL); 3992 3993 static struct attribute *rbd_attrs[] = { 3994 &dev_attr_size.attr, 3995 &dev_attr_features.attr, 3996 &dev_attr_major.attr, 3997 &dev_attr_minor.attr, 3998 &dev_attr_client_id.attr, 3999 &dev_attr_pool.attr, 4000 &dev_attr_pool_id.attr, 4001 &dev_attr_name.attr, 4002 &dev_attr_image_id.attr, 4003 &dev_attr_current_snap.attr, 4004 &dev_attr_parent.attr, 4005 &dev_attr_refresh.attr, 4006 NULL 4007 }; 4008 4009 static struct attribute_group rbd_attr_group = { 4010 .attrs = rbd_attrs, 4011 }; 4012 4013 static const struct attribute_group *rbd_attr_groups[] = { 4014 &rbd_attr_group, 4015 NULL 4016 }; 4017 4018 static void rbd_sysfs_dev_release(struct device *dev) 4019 { 4020 } 4021 4022 static struct device_type rbd_device_type = { 4023 .name = "rbd", 4024 .groups = rbd_attr_groups, 4025 .release = rbd_sysfs_dev_release, 4026 }; 4027 4028 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec) 4029 { 4030 kref_get(&spec->kref); 4031 4032 return spec; 4033 } 4034 4035 static void rbd_spec_free(struct kref *kref); 4036 static void rbd_spec_put(struct rbd_spec *spec) 4037 { 4038 if (spec) 4039 kref_put(&spec->kref, rbd_spec_free); 4040 } 4041 4042 static struct rbd_spec *rbd_spec_alloc(void) 4043 { 4044 struct rbd_spec *spec; 4045 4046 spec = kzalloc(sizeof (*spec), GFP_KERNEL); 4047 if (!spec) 4048 return NULL; 4049 4050 spec->pool_id = CEPH_NOPOOL; 4051 spec->snap_id = CEPH_NOSNAP; 4052 kref_init(&spec->kref); 4053 4054 return spec; 4055 } 4056 4057 static void rbd_spec_free(struct kref *kref) 4058 { 4059 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref); 4060 4061 kfree(spec->pool_name); 4062 kfree(spec->image_id); 4063 kfree(spec->image_name); 4064 kfree(spec->snap_name); 4065 kfree(spec); 4066 } 4067 4068 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc, 4069 struct rbd_spec *spec, 4070 struct rbd_options *opts) 4071 { 4072 struct rbd_device *rbd_dev; 4073 4074 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL); 4075 if (!rbd_dev) 4076 return NULL; 4077 4078 spin_lock_init(&rbd_dev->lock); 4079 rbd_dev->flags = 0; 4080 atomic_set(&rbd_dev->parent_ref, 0); 4081 INIT_LIST_HEAD(&rbd_dev->node); 4082 init_rwsem(&rbd_dev->header_rwsem); 4083 4084 rbd_dev->rbd_client = rbdc; 4085 rbd_dev->spec = spec; 4086 rbd_dev->opts = opts; 4087 4088 /* Initialize the layout used for all rbd requests */ 4089 4090 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4091 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1); 4092 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER); 4093 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id); 4094 4095 return rbd_dev; 4096 } 4097 4098 static void rbd_dev_destroy(struct rbd_device *rbd_dev) 4099 { 4100 rbd_put_client(rbd_dev->rbd_client); 4101 rbd_spec_put(rbd_dev->spec); 4102 kfree(rbd_dev->opts); 4103 kfree(rbd_dev); 4104 } 4105 4106 /* 4107 * Get the size and object order for an image snapshot, or if 4108 * snap_id is CEPH_NOSNAP, gets this information for the base 4109 * image. 4110 */ 4111 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id, 4112 u8 *order, u64 *snap_size) 4113 { 4114 __le64 snapid = cpu_to_le64(snap_id); 4115 int ret; 4116 struct { 4117 u8 order; 4118 __le64 size; 4119 } __attribute__ ((packed)) size_buf = { 0 }; 4120 4121 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4122 "rbd", "get_size", 4123 &snapid, sizeof (snapid), 4124 &size_buf, sizeof (size_buf)); 4125 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4126 if (ret < 0) 4127 return ret; 4128 if (ret < sizeof (size_buf)) 4129 return -ERANGE; 4130 4131 if (order) { 4132 *order = size_buf.order; 4133 dout(" order %u", (unsigned int)*order); 4134 } 4135 *snap_size = le64_to_cpu(size_buf.size); 4136 4137 dout(" snap_id 0x%016llx snap_size = %llu\n", 4138 (unsigned long long)snap_id, 4139 (unsigned long long)*snap_size); 4140 4141 return 0; 4142 } 4143 4144 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev) 4145 { 4146 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP, 4147 &rbd_dev->header.obj_order, 4148 &rbd_dev->header.image_size); 4149 } 4150 4151 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev) 4152 { 4153 void *reply_buf; 4154 int ret; 4155 void *p; 4156 4157 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL); 4158 if (!reply_buf) 4159 return -ENOMEM; 4160 4161 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4162 "rbd", "get_object_prefix", NULL, 0, 4163 reply_buf, RBD_OBJ_PREFIX_LEN_MAX); 4164 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4165 if (ret < 0) 4166 goto out; 4167 4168 p = reply_buf; 4169 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p, 4170 p + ret, NULL, GFP_NOIO); 4171 ret = 0; 4172 4173 if (IS_ERR(rbd_dev->header.object_prefix)) { 4174 ret = PTR_ERR(rbd_dev->header.object_prefix); 4175 rbd_dev->header.object_prefix = NULL; 4176 } else { 4177 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix); 4178 } 4179 out: 4180 kfree(reply_buf); 4181 4182 return ret; 4183 } 4184 4185 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id, 4186 u64 *snap_features) 4187 { 4188 __le64 snapid = cpu_to_le64(snap_id); 4189 struct { 4190 __le64 features; 4191 __le64 incompat; 4192 } __attribute__ ((packed)) features_buf = { 0 }; 4193 u64 incompat; 4194 int ret; 4195 4196 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4197 "rbd", "get_features", 4198 &snapid, sizeof (snapid), 4199 &features_buf, sizeof (features_buf)); 4200 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4201 if (ret < 0) 4202 return ret; 4203 if (ret < sizeof (features_buf)) 4204 return -ERANGE; 4205 4206 incompat = le64_to_cpu(features_buf.incompat); 4207 if (incompat & ~RBD_FEATURES_SUPPORTED) 4208 return -ENXIO; 4209 4210 *snap_features = le64_to_cpu(features_buf.features); 4211 4212 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n", 4213 (unsigned long long)snap_id, 4214 (unsigned long long)*snap_features, 4215 (unsigned long long)le64_to_cpu(features_buf.incompat)); 4216 4217 return 0; 4218 } 4219 4220 static int rbd_dev_v2_features(struct rbd_device *rbd_dev) 4221 { 4222 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP, 4223 &rbd_dev->header.features); 4224 } 4225 4226 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev) 4227 { 4228 struct rbd_spec *parent_spec; 4229 size_t size; 4230 void *reply_buf = NULL; 4231 __le64 snapid; 4232 void *p; 4233 void *end; 4234 u64 pool_id; 4235 char *image_id; 4236 u64 snap_id; 4237 u64 overlap; 4238 int ret; 4239 4240 parent_spec = rbd_spec_alloc(); 4241 if (!parent_spec) 4242 return -ENOMEM; 4243 4244 size = sizeof (__le64) + /* pool_id */ 4245 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */ 4246 sizeof (__le64) + /* snap_id */ 4247 sizeof (__le64); /* overlap */ 4248 reply_buf = kmalloc(size, GFP_KERNEL); 4249 if (!reply_buf) { 4250 ret = -ENOMEM; 4251 goto out_err; 4252 } 4253 4254 snapid = cpu_to_le64(rbd_dev->spec->snap_id); 4255 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4256 "rbd", "get_parent", 4257 &snapid, sizeof (snapid), 4258 reply_buf, size); 4259 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4260 if (ret < 0) 4261 goto out_err; 4262 4263 p = reply_buf; 4264 end = reply_buf + ret; 4265 ret = -ERANGE; 4266 ceph_decode_64_safe(&p, end, pool_id, out_err); 4267 if (pool_id == CEPH_NOPOOL) { 4268 /* 4269 * Either the parent never existed, or we have 4270 * record of it but the image got flattened so it no 4271 * longer has a parent. When the parent of a 4272 * layered image disappears we immediately set the 4273 * overlap to 0. The effect of this is that all new 4274 * requests will be treated as if the image had no 4275 * parent. 4276 */ 4277 if (rbd_dev->parent_overlap) { 4278 rbd_dev->parent_overlap = 0; 4279 rbd_dev_parent_put(rbd_dev); 4280 pr_info("%s: clone image has been flattened\n", 4281 rbd_dev->disk->disk_name); 4282 } 4283 4284 goto out; /* No parent? No problem. */ 4285 } 4286 4287 /* The ceph file layout needs to fit pool id in 32 bits */ 4288 4289 ret = -EIO; 4290 if (pool_id > (u64)U32_MAX) { 4291 rbd_warn(NULL, "parent pool id too large (%llu > %u)", 4292 (unsigned long long)pool_id, U32_MAX); 4293 goto out_err; 4294 } 4295 4296 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4297 if (IS_ERR(image_id)) { 4298 ret = PTR_ERR(image_id); 4299 goto out_err; 4300 } 4301 ceph_decode_64_safe(&p, end, snap_id, out_err); 4302 ceph_decode_64_safe(&p, end, overlap, out_err); 4303 4304 /* 4305 * The parent won't change (except when the clone is 4306 * flattened, already handled that). So we only need to 4307 * record the parent spec we have not already done so. 4308 */ 4309 if (!rbd_dev->parent_spec) { 4310 parent_spec->pool_id = pool_id; 4311 parent_spec->image_id = image_id; 4312 parent_spec->snap_id = snap_id; 4313 rbd_dev->parent_spec = parent_spec; 4314 parent_spec = NULL; /* rbd_dev now owns this */ 4315 } else { 4316 kfree(image_id); 4317 } 4318 4319 /* 4320 * We always update the parent overlap. If it's zero we issue 4321 * a warning, as we will proceed as if there was no parent. 4322 */ 4323 if (!overlap) { 4324 if (parent_spec) { 4325 /* refresh, careful to warn just once */ 4326 if (rbd_dev->parent_overlap) 4327 rbd_warn(rbd_dev, 4328 "clone now standalone (overlap became 0)"); 4329 } else { 4330 /* initial probe */ 4331 rbd_warn(rbd_dev, "clone is standalone (overlap 0)"); 4332 } 4333 } 4334 rbd_dev->parent_overlap = overlap; 4335 4336 out: 4337 ret = 0; 4338 out_err: 4339 kfree(reply_buf); 4340 rbd_spec_put(parent_spec); 4341 4342 return ret; 4343 } 4344 4345 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev) 4346 { 4347 struct { 4348 __le64 stripe_unit; 4349 __le64 stripe_count; 4350 } __attribute__ ((packed)) striping_info_buf = { 0 }; 4351 size_t size = sizeof (striping_info_buf); 4352 void *p; 4353 u64 obj_size; 4354 u64 stripe_unit; 4355 u64 stripe_count; 4356 int ret; 4357 4358 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4359 "rbd", "get_stripe_unit_count", NULL, 0, 4360 (char *)&striping_info_buf, size); 4361 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4362 if (ret < 0) 4363 return ret; 4364 if (ret < size) 4365 return -ERANGE; 4366 4367 /* 4368 * We don't actually support the "fancy striping" feature 4369 * (STRIPINGV2) yet, but if the striping sizes are the 4370 * defaults the behavior is the same as before. So find 4371 * out, and only fail if the image has non-default values. 4372 */ 4373 ret = -EINVAL; 4374 obj_size = (u64)1 << rbd_dev->header.obj_order; 4375 p = &striping_info_buf; 4376 stripe_unit = ceph_decode_64(&p); 4377 if (stripe_unit != obj_size) { 4378 rbd_warn(rbd_dev, "unsupported stripe unit " 4379 "(got %llu want %llu)", 4380 stripe_unit, obj_size); 4381 return -EINVAL; 4382 } 4383 stripe_count = ceph_decode_64(&p); 4384 if (stripe_count != 1) { 4385 rbd_warn(rbd_dev, "unsupported stripe count " 4386 "(got %llu want 1)", stripe_count); 4387 return -EINVAL; 4388 } 4389 rbd_dev->header.stripe_unit = stripe_unit; 4390 rbd_dev->header.stripe_count = stripe_count; 4391 4392 return 0; 4393 } 4394 4395 static char *rbd_dev_image_name(struct rbd_device *rbd_dev) 4396 { 4397 size_t image_id_size; 4398 char *image_id; 4399 void *p; 4400 void *end; 4401 size_t size; 4402 void *reply_buf = NULL; 4403 size_t len = 0; 4404 char *image_name = NULL; 4405 int ret; 4406 4407 rbd_assert(!rbd_dev->spec->image_name); 4408 4409 len = strlen(rbd_dev->spec->image_id); 4410 image_id_size = sizeof (__le32) + len; 4411 image_id = kmalloc(image_id_size, GFP_KERNEL); 4412 if (!image_id) 4413 return NULL; 4414 4415 p = image_id; 4416 end = image_id + image_id_size; 4417 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len); 4418 4419 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX; 4420 reply_buf = kmalloc(size, GFP_KERNEL); 4421 if (!reply_buf) 4422 goto out; 4423 4424 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY, 4425 "rbd", "dir_get_name", 4426 image_id, image_id_size, 4427 reply_buf, size); 4428 if (ret < 0) 4429 goto out; 4430 p = reply_buf; 4431 end = reply_buf + ret; 4432 4433 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL); 4434 if (IS_ERR(image_name)) 4435 image_name = NULL; 4436 else 4437 dout("%s: name is %s len is %zd\n", __func__, image_name, len); 4438 out: 4439 kfree(reply_buf); 4440 kfree(image_id); 4441 4442 return image_name; 4443 } 4444 4445 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4446 { 4447 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4448 const char *snap_name; 4449 u32 which = 0; 4450 4451 /* Skip over names until we find the one we are looking for */ 4452 4453 snap_name = rbd_dev->header.snap_names; 4454 while (which < snapc->num_snaps) { 4455 if (!strcmp(name, snap_name)) 4456 return snapc->snaps[which]; 4457 snap_name += strlen(snap_name) + 1; 4458 which++; 4459 } 4460 return CEPH_NOSNAP; 4461 } 4462 4463 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4464 { 4465 struct ceph_snap_context *snapc = rbd_dev->header.snapc; 4466 u32 which; 4467 bool found = false; 4468 u64 snap_id; 4469 4470 for (which = 0; !found && which < snapc->num_snaps; which++) { 4471 const char *snap_name; 4472 4473 snap_id = snapc->snaps[which]; 4474 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id); 4475 if (IS_ERR(snap_name)) { 4476 /* ignore no-longer existing snapshots */ 4477 if (PTR_ERR(snap_name) == -ENOENT) 4478 continue; 4479 else 4480 break; 4481 } 4482 found = !strcmp(name, snap_name); 4483 kfree(snap_name); 4484 } 4485 return found ? snap_id : CEPH_NOSNAP; 4486 } 4487 4488 /* 4489 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if 4490 * no snapshot by that name is found, or if an error occurs. 4491 */ 4492 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name) 4493 { 4494 if (rbd_dev->image_format == 1) 4495 return rbd_v1_snap_id_by_name(rbd_dev, name); 4496 4497 return rbd_v2_snap_id_by_name(rbd_dev, name); 4498 } 4499 4500 /* 4501 * An image being mapped will have everything but the snap id. 4502 */ 4503 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev) 4504 { 4505 struct rbd_spec *spec = rbd_dev->spec; 4506 4507 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name); 4508 rbd_assert(spec->image_id && spec->image_name); 4509 rbd_assert(spec->snap_name); 4510 4511 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) { 4512 u64 snap_id; 4513 4514 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name); 4515 if (snap_id == CEPH_NOSNAP) 4516 return -ENOENT; 4517 4518 spec->snap_id = snap_id; 4519 } else { 4520 spec->snap_id = CEPH_NOSNAP; 4521 } 4522 4523 return 0; 4524 } 4525 4526 /* 4527 * A parent image will have all ids but none of the names. 4528 * 4529 * All names in an rbd spec are dynamically allocated. It's OK if we 4530 * can't figure out the name for an image id. 4531 */ 4532 static int rbd_spec_fill_names(struct rbd_device *rbd_dev) 4533 { 4534 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc; 4535 struct rbd_spec *spec = rbd_dev->spec; 4536 const char *pool_name; 4537 const char *image_name; 4538 const char *snap_name; 4539 int ret; 4540 4541 rbd_assert(spec->pool_id != CEPH_NOPOOL); 4542 rbd_assert(spec->image_id); 4543 rbd_assert(spec->snap_id != CEPH_NOSNAP); 4544 4545 /* Get the pool name; we have to make our own copy of this */ 4546 4547 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id); 4548 if (!pool_name) { 4549 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id); 4550 return -EIO; 4551 } 4552 pool_name = kstrdup(pool_name, GFP_KERNEL); 4553 if (!pool_name) 4554 return -ENOMEM; 4555 4556 /* Fetch the image name; tolerate failure here */ 4557 4558 image_name = rbd_dev_image_name(rbd_dev); 4559 if (!image_name) 4560 rbd_warn(rbd_dev, "unable to get image name"); 4561 4562 /* Fetch the snapshot name */ 4563 4564 snap_name = rbd_snap_name(rbd_dev, spec->snap_id); 4565 if (IS_ERR(snap_name)) { 4566 ret = PTR_ERR(snap_name); 4567 goto out_err; 4568 } 4569 4570 spec->pool_name = pool_name; 4571 spec->image_name = image_name; 4572 spec->snap_name = snap_name; 4573 4574 return 0; 4575 4576 out_err: 4577 kfree(image_name); 4578 kfree(pool_name); 4579 return ret; 4580 } 4581 4582 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev) 4583 { 4584 size_t size; 4585 int ret; 4586 void *reply_buf; 4587 void *p; 4588 void *end; 4589 u64 seq; 4590 u32 snap_count; 4591 struct ceph_snap_context *snapc; 4592 u32 i; 4593 4594 /* 4595 * We'll need room for the seq value (maximum snapshot id), 4596 * snapshot count, and array of that many snapshot ids. 4597 * For now we have a fixed upper limit on the number we're 4598 * prepared to receive. 4599 */ 4600 size = sizeof (__le64) + sizeof (__le32) + 4601 RBD_MAX_SNAP_COUNT * sizeof (__le64); 4602 reply_buf = kzalloc(size, GFP_KERNEL); 4603 if (!reply_buf) 4604 return -ENOMEM; 4605 4606 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4607 "rbd", "get_snapcontext", NULL, 0, 4608 reply_buf, size); 4609 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4610 if (ret < 0) 4611 goto out; 4612 4613 p = reply_buf; 4614 end = reply_buf + ret; 4615 ret = -ERANGE; 4616 ceph_decode_64_safe(&p, end, seq, out); 4617 ceph_decode_32_safe(&p, end, snap_count, out); 4618 4619 /* 4620 * Make sure the reported number of snapshot ids wouldn't go 4621 * beyond the end of our buffer. But before checking that, 4622 * make sure the computed size of the snapshot context we 4623 * allocate is representable in a size_t. 4624 */ 4625 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context)) 4626 / sizeof (u64)) { 4627 ret = -EINVAL; 4628 goto out; 4629 } 4630 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64))) 4631 goto out; 4632 ret = 0; 4633 4634 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL); 4635 if (!snapc) { 4636 ret = -ENOMEM; 4637 goto out; 4638 } 4639 snapc->seq = seq; 4640 for (i = 0; i < snap_count; i++) 4641 snapc->snaps[i] = ceph_decode_64(&p); 4642 4643 ceph_put_snap_context(rbd_dev->header.snapc); 4644 rbd_dev->header.snapc = snapc; 4645 4646 dout(" snap context seq = %llu, snap_count = %u\n", 4647 (unsigned long long)seq, (unsigned int)snap_count); 4648 out: 4649 kfree(reply_buf); 4650 4651 return ret; 4652 } 4653 4654 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, 4655 u64 snap_id) 4656 { 4657 size_t size; 4658 void *reply_buf; 4659 __le64 snapid; 4660 int ret; 4661 void *p; 4662 void *end; 4663 char *snap_name; 4664 4665 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN; 4666 reply_buf = kmalloc(size, GFP_KERNEL); 4667 if (!reply_buf) 4668 return ERR_PTR(-ENOMEM); 4669 4670 snapid = cpu_to_le64(snap_id); 4671 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name, 4672 "rbd", "get_snapshot_name", 4673 &snapid, sizeof (snapid), 4674 reply_buf, size); 4675 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 4676 if (ret < 0) { 4677 snap_name = ERR_PTR(ret); 4678 goto out; 4679 } 4680 4681 p = reply_buf; 4682 end = reply_buf + ret; 4683 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL); 4684 if (IS_ERR(snap_name)) 4685 goto out; 4686 4687 dout(" snap_id 0x%016llx snap_name = %s\n", 4688 (unsigned long long)snap_id, snap_name); 4689 out: 4690 kfree(reply_buf); 4691 4692 return snap_name; 4693 } 4694 4695 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev) 4696 { 4697 bool first_time = rbd_dev->header.object_prefix == NULL; 4698 int ret; 4699 4700 ret = rbd_dev_v2_image_size(rbd_dev); 4701 if (ret) 4702 return ret; 4703 4704 if (first_time) { 4705 ret = rbd_dev_v2_header_onetime(rbd_dev); 4706 if (ret) 4707 return ret; 4708 } 4709 4710 ret = rbd_dev_v2_snap_context(rbd_dev); 4711 dout("rbd_dev_v2_snap_context returned %d\n", ret); 4712 4713 return ret; 4714 } 4715 4716 static int rbd_dev_header_info(struct rbd_device *rbd_dev) 4717 { 4718 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 4719 4720 if (rbd_dev->image_format == 1) 4721 return rbd_dev_v1_header_info(rbd_dev); 4722 4723 return rbd_dev_v2_header_info(rbd_dev); 4724 } 4725 4726 static int rbd_bus_add_dev(struct rbd_device *rbd_dev) 4727 { 4728 struct device *dev; 4729 int ret; 4730 4731 dev = &rbd_dev->dev; 4732 dev->bus = &rbd_bus_type; 4733 dev->type = &rbd_device_type; 4734 dev->parent = &rbd_root_dev; 4735 dev->release = rbd_dev_device_release; 4736 dev_set_name(dev, "%d", rbd_dev->dev_id); 4737 ret = device_register(dev); 4738 4739 return ret; 4740 } 4741 4742 static void rbd_bus_del_dev(struct rbd_device *rbd_dev) 4743 { 4744 device_unregister(&rbd_dev->dev); 4745 } 4746 4747 /* 4748 * Get a unique rbd identifier for the given new rbd_dev, and add 4749 * the rbd_dev to the global list. 4750 */ 4751 static int rbd_dev_id_get(struct rbd_device *rbd_dev) 4752 { 4753 int new_dev_id; 4754 4755 new_dev_id = ida_simple_get(&rbd_dev_id_ida, 4756 0, minor_to_rbd_dev_id(1 << MINORBITS), 4757 GFP_KERNEL); 4758 if (new_dev_id < 0) 4759 return new_dev_id; 4760 4761 rbd_dev->dev_id = new_dev_id; 4762 4763 spin_lock(&rbd_dev_list_lock); 4764 list_add_tail(&rbd_dev->node, &rbd_dev_list); 4765 spin_unlock(&rbd_dev_list_lock); 4766 4767 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id); 4768 4769 return 0; 4770 } 4771 4772 /* 4773 * Remove an rbd_dev from the global list, and record that its 4774 * identifier is no longer in use. 4775 */ 4776 static void rbd_dev_id_put(struct rbd_device *rbd_dev) 4777 { 4778 spin_lock(&rbd_dev_list_lock); 4779 list_del_init(&rbd_dev->node); 4780 spin_unlock(&rbd_dev_list_lock); 4781 4782 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id); 4783 4784 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id); 4785 } 4786 4787 /* 4788 * Skips over white space at *buf, and updates *buf to point to the 4789 * first found non-space character (if any). Returns the length of 4790 * the token (string of non-white space characters) found. Note 4791 * that *buf must be terminated with '\0'. 4792 */ 4793 static inline size_t next_token(const char **buf) 4794 { 4795 /* 4796 * These are the characters that produce nonzero for 4797 * isspace() in the "C" and "POSIX" locales. 4798 */ 4799 const char *spaces = " \f\n\r\t\v"; 4800 4801 *buf += strspn(*buf, spaces); /* Find start of token */ 4802 4803 return strcspn(*buf, spaces); /* Return token length */ 4804 } 4805 4806 /* 4807 * Finds the next token in *buf, dynamically allocates a buffer big 4808 * enough to hold a copy of it, and copies the token into the new 4809 * buffer. The copy is guaranteed to be terminated with '\0'. Note 4810 * that a duplicate buffer is created even for a zero-length token. 4811 * 4812 * Returns a pointer to the newly-allocated duplicate, or a null 4813 * pointer if memory for the duplicate was not available. If 4814 * the lenp argument is a non-null pointer, the length of the token 4815 * (not including the '\0') is returned in *lenp. 4816 * 4817 * If successful, the *buf pointer will be updated to point beyond 4818 * the end of the found token. 4819 * 4820 * Note: uses GFP_KERNEL for allocation. 4821 */ 4822 static inline char *dup_token(const char **buf, size_t *lenp) 4823 { 4824 char *dup; 4825 size_t len; 4826 4827 len = next_token(buf); 4828 dup = kmemdup(*buf, len + 1, GFP_KERNEL); 4829 if (!dup) 4830 return NULL; 4831 *(dup + len) = '\0'; 4832 *buf += len; 4833 4834 if (lenp) 4835 *lenp = len; 4836 4837 return dup; 4838 } 4839 4840 /* 4841 * Parse the options provided for an "rbd add" (i.e., rbd image 4842 * mapping) request. These arrive via a write to /sys/bus/rbd/add, 4843 * and the data written is passed here via a NUL-terminated buffer. 4844 * Returns 0 if successful or an error code otherwise. 4845 * 4846 * The information extracted from these options is recorded in 4847 * the other parameters which return dynamically-allocated 4848 * structures: 4849 * ceph_opts 4850 * The address of a pointer that will refer to a ceph options 4851 * structure. Caller must release the returned pointer using 4852 * ceph_destroy_options() when it is no longer needed. 4853 * rbd_opts 4854 * Address of an rbd options pointer. Fully initialized by 4855 * this function; caller must release with kfree(). 4856 * spec 4857 * Address of an rbd image specification pointer. Fully 4858 * initialized by this function based on parsed options. 4859 * Caller must release with rbd_spec_put(). 4860 * 4861 * The options passed take this form: 4862 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>] 4863 * where: 4864 * <mon_addrs> 4865 * A comma-separated list of one or more monitor addresses. 4866 * A monitor address is an ip address, optionally followed 4867 * by a port number (separated by a colon). 4868 * I.e.: ip1[:port1][,ip2[:port2]...] 4869 * <options> 4870 * A comma-separated list of ceph and/or rbd options. 4871 * <pool_name> 4872 * The name of the rados pool containing the rbd image. 4873 * <image_name> 4874 * The name of the image in that pool to map. 4875 * <snap_id> 4876 * An optional snapshot id. If provided, the mapping will 4877 * present data from the image at the time that snapshot was 4878 * created. The image head is used if no snapshot id is 4879 * provided. Snapshot mappings are always read-only. 4880 */ 4881 static int rbd_add_parse_args(const char *buf, 4882 struct ceph_options **ceph_opts, 4883 struct rbd_options **opts, 4884 struct rbd_spec **rbd_spec) 4885 { 4886 size_t len; 4887 char *options; 4888 const char *mon_addrs; 4889 char *snap_name; 4890 size_t mon_addrs_size; 4891 struct rbd_spec *spec = NULL; 4892 struct rbd_options *rbd_opts = NULL; 4893 struct ceph_options *copts; 4894 int ret; 4895 4896 /* The first four tokens are required */ 4897 4898 len = next_token(&buf); 4899 if (!len) { 4900 rbd_warn(NULL, "no monitor address(es) provided"); 4901 return -EINVAL; 4902 } 4903 mon_addrs = buf; 4904 mon_addrs_size = len + 1; 4905 buf += len; 4906 4907 ret = -EINVAL; 4908 options = dup_token(&buf, NULL); 4909 if (!options) 4910 return -ENOMEM; 4911 if (!*options) { 4912 rbd_warn(NULL, "no options provided"); 4913 goto out_err; 4914 } 4915 4916 spec = rbd_spec_alloc(); 4917 if (!spec) 4918 goto out_mem; 4919 4920 spec->pool_name = dup_token(&buf, NULL); 4921 if (!spec->pool_name) 4922 goto out_mem; 4923 if (!*spec->pool_name) { 4924 rbd_warn(NULL, "no pool name provided"); 4925 goto out_err; 4926 } 4927 4928 spec->image_name = dup_token(&buf, NULL); 4929 if (!spec->image_name) 4930 goto out_mem; 4931 if (!*spec->image_name) { 4932 rbd_warn(NULL, "no image name provided"); 4933 goto out_err; 4934 } 4935 4936 /* 4937 * Snapshot name is optional; default is to use "-" 4938 * (indicating the head/no snapshot). 4939 */ 4940 len = next_token(&buf); 4941 if (!len) { 4942 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */ 4943 len = sizeof (RBD_SNAP_HEAD_NAME) - 1; 4944 } else if (len > RBD_MAX_SNAP_NAME_LEN) { 4945 ret = -ENAMETOOLONG; 4946 goto out_err; 4947 } 4948 snap_name = kmemdup(buf, len + 1, GFP_KERNEL); 4949 if (!snap_name) 4950 goto out_mem; 4951 *(snap_name + len) = '\0'; 4952 spec->snap_name = snap_name; 4953 4954 /* Initialize all rbd options to the defaults */ 4955 4956 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL); 4957 if (!rbd_opts) 4958 goto out_mem; 4959 4960 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT; 4961 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT; 4962 4963 copts = ceph_parse_options(options, mon_addrs, 4964 mon_addrs + mon_addrs_size - 1, 4965 parse_rbd_opts_token, rbd_opts); 4966 if (IS_ERR(copts)) { 4967 ret = PTR_ERR(copts); 4968 goto out_err; 4969 } 4970 kfree(options); 4971 4972 *ceph_opts = copts; 4973 *opts = rbd_opts; 4974 *rbd_spec = spec; 4975 4976 return 0; 4977 out_mem: 4978 ret = -ENOMEM; 4979 out_err: 4980 kfree(rbd_opts); 4981 rbd_spec_put(spec); 4982 kfree(options); 4983 4984 return ret; 4985 } 4986 4987 /* 4988 * Return pool id (>= 0) or a negative error code. 4989 */ 4990 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name) 4991 { 4992 struct ceph_options *opts = rbdc->client->options; 4993 u64 newest_epoch; 4994 int tries = 0; 4995 int ret; 4996 4997 again: 4998 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name); 4999 if (ret == -ENOENT && tries++ < 1) { 5000 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap", 5001 &newest_epoch); 5002 if (ret < 0) 5003 return ret; 5004 5005 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) { 5006 ceph_monc_request_next_osdmap(&rbdc->client->monc); 5007 (void) ceph_monc_wait_osdmap(&rbdc->client->monc, 5008 newest_epoch, 5009 opts->mount_timeout); 5010 goto again; 5011 } else { 5012 /* the osdmap we have is new enough */ 5013 return -ENOENT; 5014 } 5015 } 5016 5017 return ret; 5018 } 5019 5020 /* 5021 * An rbd format 2 image has a unique identifier, distinct from the 5022 * name given to it by the user. Internally, that identifier is 5023 * what's used to specify the names of objects related to the image. 5024 * 5025 * A special "rbd id" object is used to map an rbd image name to its 5026 * id. If that object doesn't exist, then there is no v2 rbd image 5027 * with the supplied name. 5028 * 5029 * This function will record the given rbd_dev's image_id field if 5030 * it can be determined, and in that case will return 0. If any 5031 * errors occur a negative errno will be returned and the rbd_dev's 5032 * image_id field will be unchanged (and should be NULL). 5033 */ 5034 static int rbd_dev_image_id(struct rbd_device *rbd_dev) 5035 { 5036 int ret; 5037 size_t size; 5038 char *object_name; 5039 void *response; 5040 char *image_id; 5041 5042 /* 5043 * When probing a parent image, the image id is already 5044 * known (and the image name likely is not). There's no 5045 * need to fetch the image id again in this case. We 5046 * do still need to set the image format though. 5047 */ 5048 if (rbd_dev->spec->image_id) { 5049 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1; 5050 5051 return 0; 5052 } 5053 5054 /* 5055 * First, see if the format 2 image id file exists, and if 5056 * so, get the image's persistent id from it. 5057 */ 5058 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name); 5059 object_name = kmalloc(size, GFP_NOIO); 5060 if (!object_name) 5061 return -ENOMEM; 5062 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name); 5063 dout("rbd id object name is %s\n", object_name); 5064 5065 /* Response will be an encoded string, which includes a length */ 5066 5067 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX; 5068 response = kzalloc(size, GFP_NOIO); 5069 if (!response) { 5070 ret = -ENOMEM; 5071 goto out; 5072 } 5073 5074 /* If it doesn't exist we'll assume it's a format 1 image */ 5075 5076 ret = rbd_obj_method_sync(rbd_dev, object_name, 5077 "rbd", "get_id", NULL, 0, 5078 response, RBD_IMAGE_ID_LEN_MAX); 5079 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret); 5080 if (ret == -ENOENT) { 5081 image_id = kstrdup("", GFP_KERNEL); 5082 ret = image_id ? 0 : -ENOMEM; 5083 if (!ret) 5084 rbd_dev->image_format = 1; 5085 } else if (ret >= 0) { 5086 void *p = response; 5087 5088 image_id = ceph_extract_encoded_string(&p, p + ret, 5089 NULL, GFP_NOIO); 5090 ret = PTR_ERR_OR_ZERO(image_id); 5091 if (!ret) 5092 rbd_dev->image_format = 2; 5093 } 5094 5095 if (!ret) { 5096 rbd_dev->spec->image_id = image_id; 5097 dout("image_id is %s\n", image_id); 5098 } 5099 out: 5100 kfree(response); 5101 kfree(object_name); 5102 5103 return ret; 5104 } 5105 5106 /* 5107 * Undo whatever state changes are made by v1 or v2 header info 5108 * call. 5109 */ 5110 static void rbd_dev_unprobe(struct rbd_device *rbd_dev) 5111 { 5112 struct rbd_image_header *header; 5113 5114 rbd_dev_parent_put(rbd_dev); 5115 5116 /* Free dynamic fields from the header, then zero it out */ 5117 5118 header = &rbd_dev->header; 5119 ceph_put_snap_context(header->snapc); 5120 kfree(header->snap_sizes); 5121 kfree(header->snap_names); 5122 kfree(header->object_prefix); 5123 memset(header, 0, sizeof (*header)); 5124 } 5125 5126 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev) 5127 { 5128 int ret; 5129 5130 ret = rbd_dev_v2_object_prefix(rbd_dev); 5131 if (ret) 5132 goto out_err; 5133 5134 /* 5135 * Get the and check features for the image. Currently the 5136 * features are assumed to never change. 5137 */ 5138 ret = rbd_dev_v2_features(rbd_dev); 5139 if (ret) 5140 goto out_err; 5141 5142 /* If the image supports fancy striping, get its parameters */ 5143 5144 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) { 5145 ret = rbd_dev_v2_striping_info(rbd_dev); 5146 if (ret < 0) 5147 goto out_err; 5148 } 5149 /* No support for crypto and compression type format 2 images */ 5150 5151 return 0; 5152 out_err: 5153 rbd_dev->header.features = 0; 5154 kfree(rbd_dev->header.object_prefix); 5155 rbd_dev->header.object_prefix = NULL; 5156 5157 return ret; 5158 } 5159 5160 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev) 5161 { 5162 struct rbd_device *parent = NULL; 5163 struct rbd_spec *parent_spec; 5164 struct rbd_client *rbdc; 5165 int ret; 5166 5167 if (!rbd_dev->parent_spec) 5168 return 0; 5169 /* 5170 * We need to pass a reference to the client and the parent 5171 * spec when creating the parent rbd_dev. Images related by 5172 * parent/child relationships always share both. 5173 */ 5174 parent_spec = rbd_spec_get(rbd_dev->parent_spec); 5175 rbdc = __rbd_get_client(rbd_dev->rbd_client); 5176 5177 ret = -ENOMEM; 5178 parent = rbd_dev_create(rbdc, parent_spec, NULL); 5179 if (!parent) 5180 goto out_err; 5181 5182 ret = rbd_dev_image_probe(parent, false); 5183 if (ret < 0) 5184 goto out_err; 5185 rbd_dev->parent = parent; 5186 atomic_set(&rbd_dev->parent_ref, 1); 5187 5188 return 0; 5189 out_err: 5190 if (parent) { 5191 rbd_dev_unparent(rbd_dev); 5192 kfree(rbd_dev->header_name); 5193 rbd_dev_destroy(parent); 5194 } else { 5195 rbd_put_client(rbdc); 5196 rbd_spec_put(parent_spec); 5197 } 5198 5199 return ret; 5200 } 5201 5202 static int rbd_dev_device_setup(struct rbd_device *rbd_dev) 5203 { 5204 int ret; 5205 5206 /* Get an id and fill in device name. */ 5207 5208 ret = rbd_dev_id_get(rbd_dev); 5209 if (ret) 5210 return ret; 5211 5212 BUILD_BUG_ON(DEV_NAME_LEN 5213 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH); 5214 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id); 5215 5216 /* Record our major and minor device numbers. */ 5217 5218 if (!single_major) { 5219 ret = register_blkdev(0, rbd_dev->name); 5220 if (ret < 0) 5221 goto err_out_id; 5222 5223 rbd_dev->major = ret; 5224 rbd_dev->minor = 0; 5225 } else { 5226 rbd_dev->major = rbd_major; 5227 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id); 5228 } 5229 5230 /* Set up the blkdev mapping. */ 5231 5232 ret = rbd_init_disk(rbd_dev); 5233 if (ret) 5234 goto err_out_blkdev; 5235 5236 ret = rbd_dev_mapping_set(rbd_dev); 5237 if (ret) 5238 goto err_out_disk; 5239 5240 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE); 5241 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only); 5242 5243 ret = rbd_bus_add_dev(rbd_dev); 5244 if (ret) 5245 goto err_out_mapping; 5246 5247 /* Everything's ready. Announce the disk to the world. */ 5248 5249 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5250 add_disk(rbd_dev->disk); 5251 5252 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name, 5253 (unsigned long long) rbd_dev->mapping.size); 5254 5255 return ret; 5256 5257 err_out_mapping: 5258 rbd_dev_mapping_clear(rbd_dev); 5259 err_out_disk: 5260 rbd_free_disk(rbd_dev); 5261 err_out_blkdev: 5262 if (!single_major) 5263 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5264 err_out_id: 5265 rbd_dev_id_put(rbd_dev); 5266 rbd_dev_mapping_clear(rbd_dev); 5267 5268 return ret; 5269 } 5270 5271 static int rbd_dev_header_name(struct rbd_device *rbd_dev) 5272 { 5273 struct rbd_spec *spec = rbd_dev->spec; 5274 size_t size; 5275 5276 /* Record the header object name for this rbd image. */ 5277 5278 rbd_assert(rbd_image_format_valid(rbd_dev->image_format)); 5279 5280 if (rbd_dev->image_format == 1) 5281 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX); 5282 else 5283 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id); 5284 5285 rbd_dev->header_name = kmalloc(size, GFP_KERNEL); 5286 if (!rbd_dev->header_name) 5287 return -ENOMEM; 5288 5289 if (rbd_dev->image_format == 1) 5290 sprintf(rbd_dev->header_name, "%s%s", 5291 spec->image_name, RBD_SUFFIX); 5292 else 5293 sprintf(rbd_dev->header_name, "%s%s", 5294 RBD_HEADER_PREFIX, spec->image_id); 5295 return 0; 5296 } 5297 5298 static void rbd_dev_image_release(struct rbd_device *rbd_dev) 5299 { 5300 rbd_dev_unprobe(rbd_dev); 5301 kfree(rbd_dev->header_name); 5302 rbd_dev->header_name = NULL; 5303 rbd_dev->image_format = 0; 5304 kfree(rbd_dev->spec->image_id); 5305 rbd_dev->spec->image_id = NULL; 5306 5307 rbd_dev_destroy(rbd_dev); 5308 } 5309 5310 /* 5311 * Probe for the existence of the header object for the given rbd 5312 * device. If this image is the one being mapped (i.e., not a 5313 * parent), initiate a watch on its header object before using that 5314 * object to get detailed information about the rbd image. 5315 */ 5316 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping) 5317 { 5318 int ret; 5319 5320 /* 5321 * Get the id from the image id object. Unless there's an 5322 * error, rbd_dev->spec->image_id will be filled in with 5323 * a dynamically-allocated string, and rbd_dev->image_format 5324 * will be set to either 1 or 2. 5325 */ 5326 ret = rbd_dev_image_id(rbd_dev); 5327 if (ret) 5328 return ret; 5329 5330 ret = rbd_dev_header_name(rbd_dev); 5331 if (ret) 5332 goto err_out_format; 5333 5334 if (mapping) { 5335 ret = rbd_dev_header_watch_sync(rbd_dev); 5336 if (ret) { 5337 if (ret == -ENOENT) 5338 pr_info("image %s/%s does not exist\n", 5339 rbd_dev->spec->pool_name, 5340 rbd_dev->spec->image_name); 5341 goto out_header_name; 5342 } 5343 } 5344 5345 ret = rbd_dev_header_info(rbd_dev); 5346 if (ret) 5347 goto err_out_watch; 5348 5349 /* 5350 * If this image is the one being mapped, we have pool name and 5351 * id, image name and id, and snap name - need to fill snap id. 5352 * Otherwise this is a parent image, identified by pool, image 5353 * and snap ids - need to fill in names for those ids. 5354 */ 5355 if (mapping) 5356 ret = rbd_spec_fill_snap_id(rbd_dev); 5357 else 5358 ret = rbd_spec_fill_names(rbd_dev); 5359 if (ret) { 5360 if (ret == -ENOENT) 5361 pr_info("snap %s/%s@%s does not exist\n", 5362 rbd_dev->spec->pool_name, 5363 rbd_dev->spec->image_name, 5364 rbd_dev->spec->snap_name); 5365 goto err_out_probe; 5366 } 5367 5368 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) { 5369 ret = rbd_dev_v2_parent_info(rbd_dev); 5370 if (ret) 5371 goto err_out_probe; 5372 5373 /* 5374 * Need to warn users if this image is the one being 5375 * mapped and has a parent. 5376 */ 5377 if (mapping && rbd_dev->parent_spec) 5378 rbd_warn(rbd_dev, 5379 "WARNING: kernel layering is EXPERIMENTAL!"); 5380 } 5381 5382 ret = rbd_dev_probe_parent(rbd_dev); 5383 if (ret) 5384 goto err_out_probe; 5385 5386 dout("discovered format %u image, header name is %s\n", 5387 rbd_dev->image_format, rbd_dev->header_name); 5388 return 0; 5389 5390 err_out_probe: 5391 rbd_dev_unprobe(rbd_dev); 5392 err_out_watch: 5393 if (mapping) 5394 rbd_dev_header_unwatch_sync(rbd_dev); 5395 out_header_name: 5396 kfree(rbd_dev->header_name); 5397 rbd_dev->header_name = NULL; 5398 err_out_format: 5399 rbd_dev->image_format = 0; 5400 kfree(rbd_dev->spec->image_id); 5401 rbd_dev->spec->image_id = NULL; 5402 return ret; 5403 } 5404 5405 static ssize_t do_rbd_add(struct bus_type *bus, 5406 const char *buf, 5407 size_t count) 5408 { 5409 struct rbd_device *rbd_dev = NULL; 5410 struct ceph_options *ceph_opts = NULL; 5411 struct rbd_options *rbd_opts = NULL; 5412 struct rbd_spec *spec = NULL; 5413 struct rbd_client *rbdc; 5414 bool read_only; 5415 int rc = -ENOMEM; 5416 5417 if (!try_module_get(THIS_MODULE)) 5418 return -ENODEV; 5419 5420 /* parse add command */ 5421 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec); 5422 if (rc < 0) 5423 goto err_out_module; 5424 5425 rbdc = rbd_get_client(ceph_opts); 5426 if (IS_ERR(rbdc)) { 5427 rc = PTR_ERR(rbdc); 5428 goto err_out_args; 5429 } 5430 5431 /* pick the pool */ 5432 rc = rbd_add_get_pool_id(rbdc, spec->pool_name); 5433 if (rc < 0) { 5434 if (rc == -ENOENT) 5435 pr_info("pool %s does not exist\n", spec->pool_name); 5436 goto err_out_client; 5437 } 5438 spec->pool_id = (u64)rc; 5439 5440 /* The ceph file layout needs to fit pool id in 32 bits */ 5441 5442 if (spec->pool_id > (u64)U32_MAX) { 5443 rbd_warn(NULL, "pool id too large (%llu > %u)", 5444 (unsigned long long)spec->pool_id, U32_MAX); 5445 rc = -EIO; 5446 goto err_out_client; 5447 } 5448 5449 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts); 5450 if (!rbd_dev) 5451 goto err_out_client; 5452 rbdc = NULL; /* rbd_dev now owns this */ 5453 spec = NULL; /* rbd_dev now owns this */ 5454 rbd_opts = NULL; /* rbd_dev now owns this */ 5455 5456 rc = rbd_dev_image_probe(rbd_dev, true); 5457 if (rc < 0) 5458 goto err_out_rbd_dev; 5459 5460 /* If we are mapping a snapshot it must be marked read-only */ 5461 5462 read_only = rbd_dev->opts->read_only; 5463 if (rbd_dev->spec->snap_id != CEPH_NOSNAP) 5464 read_only = true; 5465 rbd_dev->mapping.read_only = read_only; 5466 5467 rc = rbd_dev_device_setup(rbd_dev); 5468 if (rc) { 5469 /* 5470 * rbd_dev_header_unwatch_sync() can't be moved into 5471 * rbd_dev_image_release() without refactoring, see 5472 * commit 1f3ef78861ac. 5473 */ 5474 rbd_dev_header_unwatch_sync(rbd_dev); 5475 rbd_dev_image_release(rbd_dev); 5476 goto err_out_module; 5477 } 5478 5479 return count; 5480 5481 err_out_rbd_dev: 5482 rbd_dev_destroy(rbd_dev); 5483 err_out_client: 5484 rbd_put_client(rbdc); 5485 err_out_args: 5486 rbd_spec_put(spec); 5487 kfree(rbd_opts); 5488 err_out_module: 5489 module_put(THIS_MODULE); 5490 5491 dout("Error adding device %s\n", buf); 5492 5493 return (ssize_t)rc; 5494 } 5495 5496 static ssize_t rbd_add(struct bus_type *bus, 5497 const char *buf, 5498 size_t count) 5499 { 5500 if (single_major) 5501 return -EINVAL; 5502 5503 return do_rbd_add(bus, buf, count); 5504 } 5505 5506 static ssize_t rbd_add_single_major(struct bus_type *bus, 5507 const char *buf, 5508 size_t count) 5509 { 5510 return do_rbd_add(bus, buf, count); 5511 } 5512 5513 static void rbd_dev_device_release(struct device *dev) 5514 { 5515 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev); 5516 5517 rbd_free_disk(rbd_dev); 5518 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags); 5519 rbd_dev_mapping_clear(rbd_dev); 5520 if (!single_major) 5521 unregister_blkdev(rbd_dev->major, rbd_dev->name); 5522 rbd_dev_id_put(rbd_dev); 5523 rbd_dev_mapping_clear(rbd_dev); 5524 } 5525 5526 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev) 5527 { 5528 while (rbd_dev->parent) { 5529 struct rbd_device *first = rbd_dev; 5530 struct rbd_device *second = first->parent; 5531 struct rbd_device *third; 5532 5533 /* 5534 * Follow to the parent with no grandparent and 5535 * remove it. 5536 */ 5537 while (second && (third = second->parent)) { 5538 first = second; 5539 second = third; 5540 } 5541 rbd_assert(second); 5542 rbd_dev_image_release(second); 5543 first->parent = NULL; 5544 first->parent_overlap = 0; 5545 5546 rbd_assert(first->parent_spec); 5547 rbd_spec_put(first->parent_spec); 5548 first->parent_spec = NULL; 5549 } 5550 } 5551 5552 static ssize_t do_rbd_remove(struct bus_type *bus, 5553 const char *buf, 5554 size_t count) 5555 { 5556 struct rbd_device *rbd_dev = NULL; 5557 struct list_head *tmp; 5558 int dev_id; 5559 unsigned long ul; 5560 bool already = false; 5561 int ret; 5562 5563 ret = kstrtoul(buf, 10, &ul); 5564 if (ret) 5565 return ret; 5566 5567 /* convert to int; abort if we lost anything in the conversion */ 5568 dev_id = (int)ul; 5569 if (dev_id != ul) 5570 return -EINVAL; 5571 5572 ret = -ENOENT; 5573 spin_lock(&rbd_dev_list_lock); 5574 list_for_each(tmp, &rbd_dev_list) { 5575 rbd_dev = list_entry(tmp, struct rbd_device, node); 5576 if (rbd_dev->dev_id == dev_id) { 5577 ret = 0; 5578 break; 5579 } 5580 } 5581 if (!ret) { 5582 spin_lock_irq(&rbd_dev->lock); 5583 if (rbd_dev->open_count) 5584 ret = -EBUSY; 5585 else 5586 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING, 5587 &rbd_dev->flags); 5588 spin_unlock_irq(&rbd_dev->lock); 5589 } 5590 spin_unlock(&rbd_dev_list_lock); 5591 if (ret < 0 || already) 5592 return ret; 5593 5594 rbd_dev_header_unwatch_sync(rbd_dev); 5595 /* 5596 * flush remaining watch callbacks - these must be complete 5597 * before the osd_client is shutdown 5598 */ 5599 dout("%s: flushing notifies", __func__); 5600 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc); 5601 5602 /* 5603 * Don't free anything from rbd_dev->disk until after all 5604 * notifies are completely processed. Otherwise 5605 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting 5606 * in a potential use after free of rbd_dev->disk or rbd_dev. 5607 */ 5608 rbd_bus_del_dev(rbd_dev); 5609 rbd_dev_image_release(rbd_dev); 5610 module_put(THIS_MODULE); 5611 5612 return count; 5613 } 5614 5615 static ssize_t rbd_remove(struct bus_type *bus, 5616 const char *buf, 5617 size_t count) 5618 { 5619 if (single_major) 5620 return -EINVAL; 5621 5622 return do_rbd_remove(bus, buf, count); 5623 } 5624 5625 static ssize_t rbd_remove_single_major(struct bus_type *bus, 5626 const char *buf, 5627 size_t count) 5628 { 5629 return do_rbd_remove(bus, buf, count); 5630 } 5631 5632 /* 5633 * create control files in sysfs 5634 * /sys/bus/rbd/... 5635 */ 5636 static int rbd_sysfs_init(void) 5637 { 5638 int ret; 5639 5640 ret = device_register(&rbd_root_dev); 5641 if (ret < 0) 5642 return ret; 5643 5644 ret = bus_register(&rbd_bus_type); 5645 if (ret < 0) 5646 device_unregister(&rbd_root_dev); 5647 5648 return ret; 5649 } 5650 5651 static void rbd_sysfs_cleanup(void) 5652 { 5653 bus_unregister(&rbd_bus_type); 5654 device_unregister(&rbd_root_dev); 5655 } 5656 5657 static int rbd_slab_init(void) 5658 { 5659 rbd_assert(!rbd_img_request_cache); 5660 rbd_img_request_cache = kmem_cache_create("rbd_img_request", 5661 sizeof (struct rbd_img_request), 5662 __alignof__(struct rbd_img_request), 5663 0, NULL); 5664 if (!rbd_img_request_cache) 5665 return -ENOMEM; 5666 5667 rbd_assert(!rbd_obj_request_cache); 5668 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request", 5669 sizeof (struct rbd_obj_request), 5670 __alignof__(struct rbd_obj_request), 5671 0, NULL); 5672 if (!rbd_obj_request_cache) 5673 goto out_err; 5674 5675 rbd_assert(!rbd_segment_name_cache); 5676 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name", 5677 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL); 5678 if (rbd_segment_name_cache) 5679 return 0; 5680 out_err: 5681 if (rbd_obj_request_cache) { 5682 kmem_cache_destroy(rbd_obj_request_cache); 5683 rbd_obj_request_cache = NULL; 5684 } 5685 5686 kmem_cache_destroy(rbd_img_request_cache); 5687 rbd_img_request_cache = NULL; 5688 5689 return -ENOMEM; 5690 } 5691 5692 static void rbd_slab_exit(void) 5693 { 5694 rbd_assert(rbd_segment_name_cache); 5695 kmem_cache_destroy(rbd_segment_name_cache); 5696 rbd_segment_name_cache = NULL; 5697 5698 rbd_assert(rbd_obj_request_cache); 5699 kmem_cache_destroy(rbd_obj_request_cache); 5700 rbd_obj_request_cache = NULL; 5701 5702 rbd_assert(rbd_img_request_cache); 5703 kmem_cache_destroy(rbd_img_request_cache); 5704 rbd_img_request_cache = NULL; 5705 } 5706 5707 static int __init rbd_init(void) 5708 { 5709 int rc; 5710 5711 if (!libceph_compatible(NULL)) { 5712 rbd_warn(NULL, "libceph incompatibility (quitting)"); 5713 return -EINVAL; 5714 } 5715 5716 rc = rbd_slab_init(); 5717 if (rc) 5718 return rc; 5719 5720 /* 5721 * The number of active work items is limited by the number of 5722 * rbd devices * queue depth, so leave @max_active at default. 5723 */ 5724 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0); 5725 if (!rbd_wq) { 5726 rc = -ENOMEM; 5727 goto err_out_slab; 5728 } 5729 5730 if (single_major) { 5731 rbd_major = register_blkdev(0, RBD_DRV_NAME); 5732 if (rbd_major < 0) { 5733 rc = rbd_major; 5734 goto err_out_wq; 5735 } 5736 } 5737 5738 rc = rbd_sysfs_init(); 5739 if (rc) 5740 goto err_out_blkdev; 5741 5742 if (single_major) 5743 pr_info("loaded (major %d)\n", rbd_major); 5744 else 5745 pr_info("loaded\n"); 5746 5747 return 0; 5748 5749 err_out_blkdev: 5750 if (single_major) 5751 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5752 err_out_wq: 5753 destroy_workqueue(rbd_wq); 5754 err_out_slab: 5755 rbd_slab_exit(); 5756 return rc; 5757 } 5758 5759 static void __exit rbd_exit(void) 5760 { 5761 ida_destroy(&rbd_dev_id_ida); 5762 rbd_sysfs_cleanup(); 5763 if (single_major) 5764 unregister_blkdev(rbd_major, RBD_DRV_NAME); 5765 destroy_workqueue(rbd_wq); 5766 rbd_slab_exit(); 5767 } 5768 5769 module_init(rbd_init); 5770 module_exit(rbd_exit); 5771 5772 MODULE_AUTHOR("Alex Elder <elder@inktank.com>"); 5773 MODULE_AUTHOR("Sage Weil <sage@newdream.net>"); 5774 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>"); 5775 /* following authorship retained from original osdblk.c */ 5776 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>"); 5777 5778 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver"); 5779 MODULE_LICENSE("GPL"); 5780