1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * 5 * May be copied or modified under the terms of the GNU General Public 6 * License. See linux/COPYING for more information. 7 * 8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 9 * DVD-RAM devices. 10 * 11 * Theory of operation: 12 * 13 * At the lowest level, there is the standard driver for the CD/DVD device, 14 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 15 * but it doesn't know anything about the special restrictions that apply to 16 * packet writing. One restriction is that write requests must be aligned to 17 * packet boundaries on the physical media, and the size of a write request 18 * must be equal to the packet size. Another restriction is that a 19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 20 * command, if the previous command was a write. 21 * 22 * The purpose of the packet writing driver is to hide these restrictions from 23 * higher layers, such as file systems, and present a block device that can be 24 * randomly read and written using 2kB-sized blocks. 25 * 26 * The lowest layer in the packet writing driver is the packet I/O scheduler. 27 * Its data is defined by the struct packet_iosched and includes two bio 28 * queues with pending read and write requests. These queues are processed 29 * by the pkt_iosched_process_queue() function. The write requests in this 30 * queue are already properly aligned and sized. This layer is responsible for 31 * issuing the flush cache commands and scheduling the I/O in a good order. 32 * 33 * The next layer transforms unaligned write requests to aligned writes. This 34 * transformation requires reading missing pieces of data from the underlying 35 * block device, assembling the pieces to full packets and queuing them to the 36 * packet I/O scheduler. 37 * 38 * At the top layer there is a custom make_request_fn function that forwards 39 * read requests directly to the iosched queue and puts write requests in the 40 * unaligned write queue. A kernel thread performs the necessary read 41 * gathering to convert the unaligned writes to aligned writes and then feeds 42 * them to the packet I/O scheduler. 43 * 44 *************************************************************************/ 45 46 #include <linux/pktcdvd.h> 47 #include <linux/config.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/kthread.h> 52 #include <linux/errno.h> 53 #include <linux/spinlock.h> 54 #include <linux/file.h> 55 #include <linux/proc_fs.h> 56 #include <linux/seq_file.h> 57 #include <linux/miscdevice.h> 58 #include <linux/suspend.h> 59 #include <linux/mutex.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_ioctl.h> 62 #include <scsi/scsi.h> 63 64 #include <asm/uaccess.h> 65 66 #if PACKET_DEBUG 67 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 68 #else 69 #define DPRINTK(fmt, args...) 70 #endif 71 72 #if PACKET_DEBUG > 1 73 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 74 #else 75 #define VPRINTK(fmt, args...) 76 #endif 77 78 #define MAX_SPEED 0xffff 79 80 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 81 82 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 83 static struct proc_dir_entry *pkt_proc; 84 static int pkt_major; 85 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 86 static mempool_t *psd_pool; 87 88 89 static void pkt_bio_finished(struct pktcdvd_device *pd) 90 { 91 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 92 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 93 VPRINTK("pktcdvd: queue empty\n"); 94 atomic_set(&pd->iosched.attention, 1); 95 wake_up(&pd->wqueue); 96 } 97 } 98 99 static void pkt_bio_destructor(struct bio *bio) 100 { 101 kfree(bio->bi_io_vec); 102 kfree(bio); 103 } 104 105 static struct bio *pkt_bio_alloc(int nr_iovecs) 106 { 107 struct bio_vec *bvl = NULL; 108 struct bio *bio; 109 110 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 111 if (!bio) 112 goto no_bio; 113 bio_init(bio); 114 115 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 116 if (!bvl) 117 goto no_bvl; 118 119 bio->bi_max_vecs = nr_iovecs; 120 bio->bi_io_vec = bvl; 121 bio->bi_destructor = pkt_bio_destructor; 122 123 return bio; 124 125 no_bvl: 126 kfree(bio); 127 no_bio: 128 return NULL; 129 } 130 131 /* 132 * Allocate a packet_data struct 133 */ 134 static struct packet_data *pkt_alloc_packet_data(int frames) 135 { 136 int i; 137 struct packet_data *pkt; 138 139 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 140 if (!pkt) 141 goto no_pkt; 142 143 pkt->frames = frames; 144 pkt->w_bio = pkt_bio_alloc(frames); 145 if (!pkt->w_bio) 146 goto no_bio; 147 148 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 149 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 150 if (!pkt->pages[i]) 151 goto no_page; 152 } 153 154 spin_lock_init(&pkt->lock); 155 156 for (i = 0; i < frames; i++) { 157 struct bio *bio = pkt_bio_alloc(1); 158 if (!bio) 159 goto no_rd_bio; 160 pkt->r_bios[i] = bio; 161 } 162 163 return pkt; 164 165 no_rd_bio: 166 for (i = 0; i < frames; i++) { 167 struct bio *bio = pkt->r_bios[i]; 168 if (bio) 169 bio_put(bio); 170 } 171 172 no_page: 173 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 174 if (pkt->pages[i]) 175 __free_page(pkt->pages[i]); 176 bio_put(pkt->w_bio); 177 no_bio: 178 kfree(pkt); 179 no_pkt: 180 return NULL; 181 } 182 183 /* 184 * Free a packet_data struct 185 */ 186 static void pkt_free_packet_data(struct packet_data *pkt) 187 { 188 int i; 189 190 for (i = 0; i < pkt->frames; i++) { 191 struct bio *bio = pkt->r_bios[i]; 192 if (bio) 193 bio_put(bio); 194 } 195 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 196 __free_page(pkt->pages[i]); 197 bio_put(pkt->w_bio); 198 kfree(pkt); 199 } 200 201 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 202 { 203 struct packet_data *pkt, *next; 204 205 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 206 207 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 208 pkt_free_packet_data(pkt); 209 } 210 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 211 } 212 213 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 214 { 215 struct packet_data *pkt; 216 217 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 218 219 while (nr_packets > 0) { 220 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 221 if (!pkt) { 222 pkt_shrink_pktlist(pd); 223 return 0; 224 } 225 pkt->id = nr_packets; 226 pkt->pd = pd; 227 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 228 nr_packets--; 229 } 230 return 1; 231 } 232 233 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 234 { 235 struct rb_node *n = rb_next(&node->rb_node); 236 if (!n) 237 return NULL; 238 return rb_entry(n, struct pkt_rb_node, rb_node); 239 } 240 241 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 242 { 243 rb_erase(&node->rb_node, &pd->bio_queue); 244 mempool_free(node, pd->rb_pool); 245 pd->bio_queue_size--; 246 BUG_ON(pd->bio_queue_size < 0); 247 } 248 249 /* 250 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 251 */ 252 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 253 { 254 struct rb_node *n = pd->bio_queue.rb_node; 255 struct rb_node *next; 256 struct pkt_rb_node *tmp; 257 258 if (!n) { 259 BUG_ON(pd->bio_queue_size > 0); 260 return NULL; 261 } 262 263 for (;;) { 264 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 265 if (s <= tmp->bio->bi_sector) 266 next = n->rb_left; 267 else 268 next = n->rb_right; 269 if (!next) 270 break; 271 n = next; 272 } 273 274 if (s > tmp->bio->bi_sector) { 275 tmp = pkt_rbtree_next(tmp); 276 if (!tmp) 277 return NULL; 278 } 279 BUG_ON(s > tmp->bio->bi_sector); 280 return tmp; 281 } 282 283 /* 284 * Insert a node into the pd->bio_queue rb tree. 285 */ 286 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 287 { 288 struct rb_node **p = &pd->bio_queue.rb_node; 289 struct rb_node *parent = NULL; 290 sector_t s = node->bio->bi_sector; 291 struct pkt_rb_node *tmp; 292 293 while (*p) { 294 parent = *p; 295 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 296 if (s < tmp->bio->bi_sector) 297 p = &(*p)->rb_left; 298 else 299 p = &(*p)->rb_right; 300 } 301 rb_link_node(&node->rb_node, parent, p); 302 rb_insert_color(&node->rb_node, &pd->bio_queue); 303 pd->bio_queue_size++; 304 } 305 306 /* 307 * Add a bio to a single linked list defined by its head and tail pointers. 308 */ 309 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 310 { 311 bio->bi_next = NULL; 312 if (*list_tail) { 313 BUG_ON((*list_head) == NULL); 314 (*list_tail)->bi_next = bio; 315 (*list_tail) = bio; 316 } else { 317 BUG_ON((*list_head) != NULL); 318 (*list_head) = bio; 319 (*list_tail) = bio; 320 } 321 } 322 323 /* 324 * Remove and return the first bio from a single linked list defined by its 325 * head and tail pointers. 326 */ 327 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 328 { 329 struct bio *bio; 330 331 if (*list_head == NULL) 332 return NULL; 333 334 bio = *list_head; 335 *list_head = bio->bi_next; 336 if (*list_head == NULL) 337 *list_tail = NULL; 338 339 bio->bi_next = NULL; 340 return bio; 341 } 342 343 /* 344 * Send a packet_command to the underlying block device and 345 * wait for completion. 346 */ 347 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 348 { 349 char sense[SCSI_SENSE_BUFFERSIZE]; 350 request_queue_t *q; 351 struct request *rq; 352 DECLARE_COMPLETION(wait); 353 int err = 0; 354 355 q = bdev_get_queue(pd->bdev); 356 357 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ, 358 __GFP_WAIT); 359 rq->errors = 0; 360 rq->rq_disk = pd->bdev->bd_disk; 361 rq->bio = NULL; 362 rq->buffer = NULL; 363 rq->timeout = 60*HZ; 364 rq->data = cgc->buffer; 365 rq->data_len = cgc->buflen; 366 rq->sense = sense; 367 memset(sense, 0, sizeof(sense)); 368 rq->sense_len = 0; 369 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER; 370 if (cgc->quiet) 371 rq->flags |= REQ_QUIET; 372 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 373 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE) 374 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE); 375 rq->cmd_len = COMMAND_SIZE(rq->cmd[0]); 376 377 rq->ref_count++; 378 rq->flags |= REQ_NOMERGE; 379 rq->waiting = &wait; 380 rq->end_io = blk_end_sync_rq; 381 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1); 382 generic_unplug_device(q); 383 wait_for_completion(&wait); 384 385 if (rq->errors) 386 err = -EIO; 387 388 blk_put_request(rq); 389 return err; 390 } 391 392 /* 393 * A generic sense dump / resolve mechanism should be implemented across 394 * all ATAPI + SCSI devices. 395 */ 396 static void pkt_dump_sense(struct packet_command *cgc) 397 { 398 static char *info[9] = { "No sense", "Recovered error", "Not ready", 399 "Medium error", "Hardware error", "Illegal request", 400 "Unit attention", "Data protect", "Blank check" }; 401 int i; 402 struct request_sense *sense = cgc->sense; 403 404 printk("pktcdvd:"); 405 for (i = 0; i < CDROM_PACKET_SIZE; i++) 406 printk(" %02x", cgc->cmd[i]); 407 printk(" - "); 408 409 if (sense == NULL) { 410 printk("no sense\n"); 411 return; 412 } 413 414 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 415 416 if (sense->sense_key > 8) { 417 printk(" (INVALID)\n"); 418 return; 419 } 420 421 printk(" (%s)\n", info[sense->sense_key]); 422 } 423 424 /* 425 * flush the drive cache to media 426 */ 427 static int pkt_flush_cache(struct pktcdvd_device *pd) 428 { 429 struct packet_command cgc; 430 431 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 432 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 433 cgc.quiet = 1; 434 435 /* 436 * the IMMED bit -- we default to not setting it, although that 437 * would allow a much faster close, this is safer 438 */ 439 #if 0 440 cgc.cmd[1] = 1 << 1; 441 #endif 442 return pkt_generic_packet(pd, &cgc); 443 } 444 445 /* 446 * speed is given as the normal factor, e.g. 4 for 4x 447 */ 448 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed) 449 { 450 struct packet_command cgc; 451 struct request_sense sense; 452 int ret; 453 454 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 455 cgc.sense = &sense; 456 cgc.cmd[0] = GPCMD_SET_SPEED; 457 cgc.cmd[2] = (read_speed >> 8) & 0xff; 458 cgc.cmd[3] = read_speed & 0xff; 459 cgc.cmd[4] = (write_speed >> 8) & 0xff; 460 cgc.cmd[5] = write_speed & 0xff; 461 462 if ((ret = pkt_generic_packet(pd, &cgc))) 463 pkt_dump_sense(&cgc); 464 465 return ret; 466 } 467 468 /* 469 * Queue a bio for processing by the low-level CD device. Must be called 470 * from process context. 471 */ 472 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 473 { 474 spin_lock(&pd->iosched.lock); 475 if (bio_data_dir(bio) == READ) { 476 pkt_add_list_last(bio, &pd->iosched.read_queue, 477 &pd->iosched.read_queue_tail); 478 } else { 479 pkt_add_list_last(bio, &pd->iosched.write_queue, 480 &pd->iosched.write_queue_tail); 481 } 482 spin_unlock(&pd->iosched.lock); 483 484 atomic_set(&pd->iosched.attention, 1); 485 wake_up(&pd->wqueue); 486 } 487 488 /* 489 * Process the queued read/write requests. This function handles special 490 * requirements for CDRW drives: 491 * - A cache flush command must be inserted before a read request if the 492 * previous request was a write. 493 * - Switching between reading and writing is slow, so don't do it more often 494 * than necessary. 495 * - Optimize for throughput at the expense of latency. This means that streaming 496 * writes will never be interrupted by a read, but if the drive has to seek 497 * before the next write, switch to reading instead if there are any pending 498 * read requests. 499 * - Set the read speed according to current usage pattern. When only reading 500 * from the device, it's best to use the highest possible read speed, but 501 * when switching often between reading and writing, it's better to have the 502 * same read and write speeds. 503 */ 504 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 505 { 506 507 if (atomic_read(&pd->iosched.attention) == 0) 508 return; 509 atomic_set(&pd->iosched.attention, 0); 510 511 for (;;) { 512 struct bio *bio; 513 int reads_queued, writes_queued; 514 515 spin_lock(&pd->iosched.lock); 516 reads_queued = (pd->iosched.read_queue != NULL); 517 writes_queued = (pd->iosched.write_queue != NULL); 518 spin_unlock(&pd->iosched.lock); 519 520 if (!reads_queued && !writes_queued) 521 break; 522 523 if (pd->iosched.writing) { 524 int need_write_seek = 1; 525 spin_lock(&pd->iosched.lock); 526 bio = pd->iosched.write_queue; 527 spin_unlock(&pd->iosched.lock); 528 if (bio && (bio->bi_sector == pd->iosched.last_write)) 529 need_write_seek = 0; 530 if (need_write_seek && reads_queued) { 531 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 532 VPRINTK("pktcdvd: write, waiting\n"); 533 break; 534 } 535 pkt_flush_cache(pd); 536 pd->iosched.writing = 0; 537 } 538 } else { 539 if (!reads_queued && writes_queued) { 540 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 541 VPRINTK("pktcdvd: read, waiting\n"); 542 break; 543 } 544 pd->iosched.writing = 1; 545 } 546 } 547 548 spin_lock(&pd->iosched.lock); 549 if (pd->iosched.writing) { 550 bio = pkt_get_list_first(&pd->iosched.write_queue, 551 &pd->iosched.write_queue_tail); 552 } else { 553 bio = pkt_get_list_first(&pd->iosched.read_queue, 554 &pd->iosched.read_queue_tail); 555 } 556 spin_unlock(&pd->iosched.lock); 557 558 if (!bio) 559 continue; 560 561 if (bio_data_dir(bio) == READ) 562 pd->iosched.successive_reads += bio->bi_size >> 10; 563 else { 564 pd->iosched.successive_reads = 0; 565 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 566 } 567 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 568 if (pd->read_speed == pd->write_speed) { 569 pd->read_speed = MAX_SPEED; 570 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 571 } 572 } else { 573 if (pd->read_speed != pd->write_speed) { 574 pd->read_speed = pd->write_speed; 575 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 576 } 577 } 578 579 atomic_inc(&pd->cdrw.pending_bios); 580 generic_make_request(bio); 581 } 582 } 583 584 /* 585 * Special care is needed if the underlying block device has a small 586 * max_phys_segments value. 587 */ 588 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q) 589 { 590 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 591 /* 592 * The cdrom device can handle one segment/frame 593 */ 594 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 595 return 0; 596 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 597 /* 598 * We can handle this case at the expense of some extra memory 599 * copies during write operations 600 */ 601 set_bit(PACKET_MERGE_SEGS, &pd->flags); 602 return 0; 603 } else { 604 printk("pktcdvd: cdrom max_phys_segments too small\n"); 605 return -EIO; 606 } 607 } 608 609 /* 610 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 611 */ 612 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 613 { 614 unsigned int copy_size = CD_FRAMESIZE; 615 616 while (copy_size > 0) { 617 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 618 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 619 src_bvl->bv_offset + offs; 620 void *vto = page_address(dst_page) + dst_offs; 621 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 622 623 BUG_ON(len < 0); 624 memcpy(vto, vfrom, len); 625 kunmap_atomic(vfrom, KM_USER0); 626 627 seg++; 628 offs = 0; 629 dst_offs += len; 630 copy_size -= len; 631 } 632 } 633 634 /* 635 * Copy all data for this packet to pkt->pages[], so that 636 * a) The number of required segments for the write bio is minimized, which 637 * is necessary for some scsi controllers. 638 * b) The data can be used as cache to avoid read requests if we receive a 639 * new write request for the same zone. 640 */ 641 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 642 { 643 int f, p, offs; 644 645 /* Copy all data to pkt->pages[] */ 646 p = 0; 647 offs = 0; 648 for (f = 0; f < pkt->frames; f++) { 649 if (bvec[f].bv_page != pkt->pages[p]) { 650 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 651 void *vto = page_address(pkt->pages[p]) + offs; 652 memcpy(vto, vfrom, CD_FRAMESIZE); 653 kunmap_atomic(vfrom, KM_USER0); 654 bvec[f].bv_page = pkt->pages[p]; 655 bvec[f].bv_offset = offs; 656 } else { 657 BUG_ON(bvec[f].bv_offset != offs); 658 } 659 offs += CD_FRAMESIZE; 660 if (offs >= PAGE_SIZE) { 661 offs = 0; 662 p++; 663 } 664 } 665 } 666 667 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err) 668 { 669 struct packet_data *pkt = bio->bi_private; 670 struct pktcdvd_device *pd = pkt->pd; 671 BUG_ON(!pd); 672 673 if (bio->bi_size) 674 return 1; 675 676 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 677 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 678 679 if (err) 680 atomic_inc(&pkt->io_errors); 681 if (atomic_dec_and_test(&pkt->io_wait)) { 682 atomic_inc(&pkt->run_sm); 683 wake_up(&pd->wqueue); 684 } 685 pkt_bio_finished(pd); 686 687 return 0; 688 } 689 690 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err) 691 { 692 struct packet_data *pkt = bio->bi_private; 693 struct pktcdvd_device *pd = pkt->pd; 694 BUG_ON(!pd); 695 696 if (bio->bi_size) 697 return 1; 698 699 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 700 701 pd->stats.pkt_ended++; 702 703 pkt_bio_finished(pd); 704 atomic_dec(&pkt->io_wait); 705 atomic_inc(&pkt->run_sm); 706 wake_up(&pd->wqueue); 707 return 0; 708 } 709 710 /* 711 * Schedule reads for the holes in a packet 712 */ 713 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 714 { 715 int frames_read = 0; 716 struct bio *bio; 717 int f; 718 char written[PACKET_MAX_SIZE]; 719 720 BUG_ON(!pkt->orig_bios); 721 722 atomic_set(&pkt->io_wait, 0); 723 atomic_set(&pkt->io_errors, 0); 724 725 /* 726 * Figure out which frames we need to read before we can write. 727 */ 728 memset(written, 0, sizeof(written)); 729 spin_lock(&pkt->lock); 730 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 731 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 732 int num_frames = bio->bi_size / CD_FRAMESIZE; 733 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 734 BUG_ON(first_frame < 0); 735 BUG_ON(first_frame + num_frames > pkt->frames); 736 for (f = first_frame; f < first_frame + num_frames; f++) 737 written[f] = 1; 738 } 739 spin_unlock(&pkt->lock); 740 741 if (pkt->cache_valid) { 742 VPRINTK("pkt_gather_data: zone %llx cached\n", 743 (unsigned long long)pkt->sector); 744 goto out_account; 745 } 746 747 /* 748 * Schedule reads for missing parts of the packet. 749 */ 750 for (f = 0; f < pkt->frames; f++) { 751 int p, offset; 752 if (written[f]) 753 continue; 754 bio = pkt->r_bios[f]; 755 bio_init(bio); 756 bio->bi_max_vecs = 1; 757 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 758 bio->bi_bdev = pd->bdev; 759 bio->bi_end_io = pkt_end_io_read; 760 bio->bi_private = pkt; 761 762 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 763 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 764 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 765 f, pkt->pages[p], offset); 766 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 767 BUG(); 768 769 atomic_inc(&pkt->io_wait); 770 bio->bi_rw = READ; 771 pkt_queue_bio(pd, bio); 772 frames_read++; 773 } 774 775 out_account: 776 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 777 frames_read, (unsigned long long)pkt->sector); 778 pd->stats.pkt_started++; 779 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 780 } 781 782 /* 783 * Find a packet matching zone, or the least recently used packet if 784 * there is no match. 785 */ 786 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 787 { 788 struct packet_data *pkt; 789 790 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 791 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 792 list_del_init(&pkt->list); 793 if (pkt->sector != zone) 794 pkt->cache_valid = 0; 795 return pkt; 796 } 797 } 798 BUG(); 799 return NULL; 800 } 801 802 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 803 { 804 if (pkt->cache_valid) { 805 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 806 } else { 807 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 808 } 809 } 810 811 /* 812 * recover a failed write, query for relocation if possible 813 * 814 * returns 1 if recovery is possible, or 0 if not 815 * 816 */ 817 static int pkt_start_recovery(struct packet_data *pkt) 818 { 819 /* 820 * FIXME. We need help from the file system to implement 821 * recovery handling. 822 */ 823 return 0; 824 #if 0 825 struct request *rq = pkt->rq; 826 struct pktcdvd_device *pd = rq->rq_disk->private_data; 827 struct block_device *pkt_bdev; 828 struct super_block *sb = NULL; 829 unsigned long old_block, new_block; 830 sector_t new_sector; 831 832 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 833 if (pkt_bdev) { 834 sb = get_super(pkt_bdev); 835 bdput(pkt_bdev); 836 } 837 838 if (!sb) 839 return 0; 840 841 if (!sb->s_op || !sb->s_op->relocate_blocks) 842 goto out; 843 844 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 845 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 846 goto out; 847 848 new_sector = new_block * (CD_FRAMESIZE >> 9); 849 pkt->sector = new_sector; 850 851 pkt->bio->bi_sector = new_sector; 852 pkt->bio->bi_next = NULL; 853 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 854 pkt->bio->bi_idx = 0; 855 856 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 857 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 858 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 859 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 860 BUG_ON(pkt->bio->bi_private != pkt); 861 862 drop_super(sb); 863 return 1; 864 865 out: 866 drop_super(sb); 867 return 0; 868 #endif 869 } 870 871 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 872 { 873 #if PACKET_DEBUG > 1 874 static const char *state_name[] = { 875 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 876 }; 877 enum packet_data_state old_state = pkt->state; 878 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 879 state_name[old_state], state_name[state]); 880 #endif 881 pkt->state = state; 882 } 883 884 /* 885 * Scan the work queue to see if we can start a new packet. 886 * returns non-zero if any work was done. 887 */ 888 static int pkt_handle_queue(struct pktcdvd_device *pd) 889 { 890 struct packet_data *pkt, *p; 891 struct bio *bio = NULL; 892 sector_t zone = 0; /* Suppress gcc warning */ 893 struct pkt_rb_node *node, *first_node; 894 struct rb_node *n; 895 896 VPRINTK("handle_queue\n"); 897 898 atomic_set(&pd->scan_queue, 0); 899 900 if (list_empty(&pd->cdrw.pkt_free_list)) { 901 VPRINTK("handle_queue: no pkt\n"); 902 return 0; 903 } 904 905 /* 906 * Try to find a zone we are not already working on. 907 */ 908 spin_lock(&pd->lock); 909 first_node = pkt_rbtree_find(pd, pd->current_sector); 910 if (!first_node) { 911 n = rb_first(&pd->bio_queue); 912 if (n) 913 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 914 } 915 node = first_node; 916 while (node) { 917 bio = node->bio; 918 zone = ZONE(bio->bi_sector, pd); 919 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 920 if (p->sector == zone) { 921 bio = NULL; 922 goto try_next_bio; 923 } 924 } 925 break; 926 try_next_bio: 927 node = pkt_rbtree_next(node); 928 if (!node) { 929 n = rb_first(&pd->bio_queue); 930 if (n) 931 node = rb_entry(n, struct pkt_rb_node, rb_node); 932 } 933 if (node == first_node) 934 node = NULL; 935 } 936 spin_unlock(&pd->lock); 937 if (!bio) { 938 VPRINTK("handle_queue: no bio\n"); 939 return 0; 940 } 941 942 pkt = pkt_get_packet_data(pd, zone); 943 944 pd->current_sector = zone + pd->settings.size; 945 pkt->sector = zone; 946 BUG_ON(pkt->frames != pd->settings.size >> 2); 947 pkt->write_size = 0; 948 949 /* 950 * Scan work queue for bios in the same zone and link them 951 * to this packet. 952 */ 953 spin_lock(&pd->lock); 954 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 955 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 956 bio = node->bio; 957 VPRINTK("pkt_handle_queue: found zone=%llx\n", 958 (unsigned long long)ZONE(bio->bi_sector, pd)); 959 if (ZONE(bio->bi_sector, pd) != zone) 960 break; 961 pkt_rbtree_erase(pd, node); 962 spin_lock(&pkt->lock); 963 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 964 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 965 spin_unlock(&pkt->lock); 966 } 967 spin_unlock(&pd->lock); 968 969 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 970 pkt_set_state(pkt, PACKET_WAITING_STATE); 971 atomic_set(&pkt->run_sm, 1); 972 973 spin_lock(&pd->cdrw.active_list_lock); 974 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 975 spin_unlock(&pd->cdrw.active_list_lock); 976 977 return 1; 978 } 979 980 /* 981 * Assemble a bio to write one packet and queue the bio for processing 982 * by the underlying block device. 983 */ 984 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 985 { 986 struct bio *bio; 987 int f; 988 int frames_write; 989 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 990 991 for (f = 0; f < pkt->frames; f++) { 992 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 993 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 994 } 995 996 /* 997 * Fill-in bvec with data from orig_bios. 998 */ 999 frames_write = 0; 1000 spin_lock(&pkt->lock); 1001 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1002 int segment = bio->bi_idx; 1003 int src_offs = 0; 1004 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1005 int num_frames = bio->bi_size / CD_FRAMESIZE; 1006 BUG_ON(first_frame < 0); 1007 BUG_ON(first_frame + num_frames > pkt->frames); 1008 for (f = first_frame; f < first_frame + num_frames; f++) { 1009 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1010 1011 while (src_offs >= src_bvl->bv_len) { 1012 src_offs -= src_bvl->bv_len; 1013 segment++; 1014 BUG_ON(segment >= bio->bi_vcnt); 1015 src_bvl = bio_iovec_idx(bio, segment); 1016 } 1017 1018 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1019 bvec[f].bv_page = src_bvl->bv_page; 1020 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1021 } else { 1022 pkt_copy_bio_data(bio, segment, src_offs, 1023 bvec[f].bv_page, bvec[f].bv_offset); 1024 } 1025 src_offs += CD_FRAMESIZE; 1026 frames_write++; 1027 } 1028 } 1029 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1030 spin_unlock(&pkt->lock); 1031 1032 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1033 frames_write, (unsigned long long)pkt->sector); 1034 BUG_ON(frames_write != pkt->write_size); 1035 1036 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1037 pkt_make_local_copy(pkt, bvec); 1038 pkt->cache_valid = 1; 1039 } else { 1040 pkt->cache_valid = 0; 1041 } 1042 1043 /* Start the write request */ 1044 bio_init(pkt->w_bio); 1045 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1046 pkt->w_bio->bi_sector = pkt->sector; 1047 pkt->w_bio->bi_bdev = pd->bdev; 1048 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1049 pkt->w_bio->bi_private = pkt; 1050 for (f = 0; f < pkt->frames; f++) 1051 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1052 BUG(); 1053 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt); 1054 1055 atomic_set(&pkt->io_wait, 1); 1056 pkt->w_bio->bi_rw = WRITE; 1057 pkt_queue_bio(pd, pkt->w_bio); 1058 } 1059 1060 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1061 { 1062 struct bio *bio, *next; 1063 1064 if (!uptodate) 1065 pkt->cache_valid = 0; 1066 1067 /* Finish all bios corresponding to this packet */ 1068 bio = pkt->orig_bios; 1069 while (bio) { 1070 next = bio->bi_next; 1071 bio->bi_next = NULL; 1072 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO); 1073 bio = next; 1074 } 1075 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1076 } 1077 1078 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1079 { 1080 int uptodate; 1081 1082 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1083 1084 for (;;) { 1085 switch (pkt->state) { 1086 case PACKET_WAITING_STATE: 1087 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1088 return; 1089 1090 pkt->sleep_time = 0; 1091 pkt_gather_data(pd, pkt); 1092 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1093 break; 1094 1095 case PACKET_READ_WAIT_STATE: 1096 if (atomic_read(&pkt->io_wait) > 0) 1097 return; 1098 1099 if (atomic_read(&pkt->io_errors) > 0) { 1100 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1101 } else { 1102 pkt_start_write(pd, pkt); 1103 } 1104 break; 1105 1106 case PACKET_WRITE_WAIT_STATE: 1107 if (atomic_read(&pkt->io_wait) > 0) 1108 return; 1109 1110 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1111 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1112 } else { 1113 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1114 } 1115 break; 1116 1117 case PACKET_RECOVERY_STATE: 1118 if (pkt_start_recovery(pkt)) { 1119 pkt_start_write(pd, pkt); 1120 } else { 1121 VPRINTK("No recovery possible\n"); 1122 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1123 } 1124 break; 1125 1126 case PACKET_FINISHED_STATE: 1127 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1128 pkt_finish_packet(pkt, uptodate); 1129 return; 1130 1131 default: 1132 BUG(); 1133 break; 1134 } 1135 } 1136 } 1137 1138 static void pkt_handle_packets(struct pktcdvd_device *pd) 1139 { 1140 struct packet_data *pkt, *next; 1141 1142 VPRINTK("pkt_handle_packets\n"); 1143 1144 /* 1145 * Run state machine for active packets 1146 */ 1147 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1148 if (atomic_read(&pkt->run_sm) > 0) { 1149 atomic_set(&pkt->run_sm, 0); 1150 pkt_run_state_machine(pd, pkt); 1151 } 1152 } 1153 1154 /* 1155 * Move no longer active packets to the free list 1156 */ 1157 spin_lock(&pd->cdrw.active_list_lock); 1158 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1159 if (pkt->state == PACKET_FINISHED_STATE) { 1160 list_del(&pkt->list); 1161 pkt_put_packet_data(pd, pkt); 1162 pkt_set_state(pkt, PACKET_IDLE_STATE); 1163 atomic_set(&pd->scan_queue, 1); 1164 } 1165 } 1166 spin_unlock(&pd->cdrw.active_list_lock); 1167 } 1168 1169 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1170 { 1171 struct packet_data *pkt; 1172 int i; 1173 1174 for (i = 0; i < PACKET_NUM_STATES; i++) 1175 states[i] = 0; 1176 1177 spin_lock(&pd->cdrw.active_list_lock); 1178 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1179 states[pkt->state]++; 1180 } 1181 spin_unlock(&pd->cdrw.active_list_lock); 1182 } 1183 1184 /* 1185 * kcdrwd is woken up when writes have been queued for one of our 1186 * registered devices 1187 */ 1188 static int kcdrwd(void *foobar) 1189 { 1190 struct pktcdvd_device *pd = foobar; 1191 struct packet_data *pkt; 1192 long min_sleep_time, residue; 1193 1194 set_user_nice(current, -20); 1195 1196 for (;;) { 1197 DECLARE_WAITQUEUE(wait, current); 1198 1199 /* 1200 * Wait until there is something to do 1201 */ 1202 add_wait_queue(&pd->wqueue, &wait); 1203 for (;;) { 1204 set_current_state(TASK_INTERRUPTIBLE); 1205 1206 /* Check if we need to run pkt_handle_queue */ 1207 if (atomic_read(&pd->scan_queue) > 0) 1208 goto work_to_do; 1209 1210 /* Check if we need to run the state machine for some packet */ 1211 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1212 if (atomic_read(&pkt->run_sm) > 0) 1213 goto work_to_do; 1214 } 1215 1216 /* Check if we need to process the iosched queues */ 1217 if (atomic_read(&pd->iosched.attention) != 0) 1218 goto work_to_do; 1219 1220 /* Otherwise, go to sleep */ 1221 if (PACKET_DEBUG > 1) { 1222 int states[PACKET_NUM_STATES]; 1223 pkt_count_states(pd, states); 1224 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1225 states[0], states[1], states[2], states[3], 1226 states[4], states[5]); 1227 } 1228 1229 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1230 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1231 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1232 min_sleep_time = pkt->sleep_time; 1233 } 1234 1235 generic_unplug_device(bdev_get_queue(pd->bdev)); 1236 1237 VPRINTK("kcdrwd: sleeping\n"); 1238 residue = schedule_timeout(min_sleep_time); 1239 VPRINTK("kcdrwd: wake up\n"); 1240 1241 /* make swsusp happy with our thread */ 1242 try_to_freeze(); 1243 1244 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1245 if (!pkt->sleep_time) 1246 continue; 1247 pkt->sleep_time -= min_sleep_time - residue; 1248 if (pkt->sleep_time <= 0) { 1249 pkt->sleep_time = 0; 1250 atomic_inc(&pkt->run_sm); 1251 } 1252 } 1253 1254 if (signal_pending(current)) { 1255 flush_signals(current); 1256 } 1257 if (kthread_should_stop()) 1258 break; 1259 } 1260 work_to_do: 1261 set_current_state(TASK_RUNNING); 1262 remove_wait_queue(&pd->wqueue, &wait); 1263 1264 if (kthread_should_stop()) 1265 break; 1266 1267 /* 1268 * if pkt_handle_queue returns true, we can queue 1269 * another request. 1270 */ 1271 while (pkt_handle_queue(pd)) 1272 ; 1273 1274 /* 1275 * Handle packet state machine 1276 */ 1277 pkt_handle_packets(pd); 1278 1279 /* 1280 * Handle iosched queues 1281 */ 1282 pkt_iosched_process_queue(pd); 1283 } 1284 1285 return 0; 1286 } 1287 1288 static void pkt_print_settings(struct pktcdvd_device *pd) 1289 { 1290 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1291 printk("%u blocks, ", pd->settings.size >> 2); 1292 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1293 } 1294 1295 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1296 { 1297 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1298 1299 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1300 cgc->cmd[2] = page_code | (page_control << 6); 1301 cgc->cmd[7] = cgc->buflen >> 8; 1302 cgc->cmd[8] = cgc->buflen & 0xff; 1303 cgc->data_direction = CGC_DATA_READ; 1304 return pkt_generic_packet(pd, cgc); 1305 } 1306 1307 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1308 { 1309 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1310 memset(cgc->buffer, 0, 2); 1311 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1312 cgc->cmd[1] = 0x10; /* PF */ 1313 cgc->cmd[7] = cgc->buflen >> 8; 1314 cgc->cmd[8] = cgc->buflen & 0xff; 1315 cgc->data_direction = CGC_DATA_WRITE; 1316 return pkt_generic_packet(pd, cgc); 1317 } 1318 1319 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1320 { 1321 struct packet_command cgc; 1322 int ret; 1323 1324 /* set up command and get the disc info */ 1325 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1326 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1327 cgc.cmd[8] = cgc.buflen = 2; 1328 cgc.quiet = 1; 1329 1330 if ((ret = pkt_generic_packet(pd, &cgc))) 1331 return ret; 1332 1333 /* not all drives have the same disc_info length, so requeue 1334 * packet with the length the drive tells us it can supply 1335 */ 1336 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1337 sizeof(di->disc_information_length); 1338 1339 if (cgc.buflen > sizeof(disc_information)) 1340 cgc.buflen = sizeof(disc_information); 1341 1342 cgc.cmd[8] = cgc.buflen; 1343 return pkt_generic_packet(pd, &cgc); 1344 } 1345 1346 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1347 { 1348 struct packet_command cgc; 1349 int ret; 1350 1351 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1352 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1353 cgc.cmd[1] = type & 3; 1354 cgc.cmd[4] = (track & 0xff00) >> 8; 1355 cgc.cmd[5] = track & 0xff; 1356 cgc.cmd[8] = 8; 1357 cgc.quiet = 1; 1358 1359 if ((ret = pkt_generic_packet(pd, &cgc))) 1360 return ret; 1361 1362 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1363 sizeof(ti->track_information_length); 1364 1365 if (cgc.buflen > sizeof(track_information)) 1366 cgc.buflen = sizeof(track_information); 1367 1368 cgc.cmd[8] = cgc.buflen; 1369 return pkt_generic_packet(pd, &cgc); 1370 } 1371 1372 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written) 1373 { 1374 disc_information di; 1375 track_information ti; 1376 __u32 last_track; 1377 int ret = -1; 1378 1379 if ((ret = pkt_get_disc_info(pd, &di))) 1380 return ret; 1381 1382 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1383 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1384 return ret; 1385 1386 /* if this track is blank, try the previous. */ 1387 if (ti.blank) { 1388 last_track--; 1389 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1390 return ret; 1391 } 1392 1393 /* if last recorded field is valid, return it. */ 1394 if (ti.lra_v) { 1395 *last_written = be32_to_cpu(ti.last_rec_address); 1396 } else { 1397 /* make it up instead */ 1398 *last_written = be32_to_cpu(ti.track_start) + 1399 be32_to_cpu(ti.track_size); 1400 if (ti.free_blocks) 1401 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1402 } 1403 return 0; 1404 } 1405 1406 /* 1407 * write mode select package based on pd->settings 1408 */ 1409 static int pkt_set_write_settings(struct pktcdvd_device *pd) 1410 { 1411 struct packet_command cgc; 1412 struct request_sense sense; 1413 write_param_page *wp; 1414 char buffer[128]; 1415 int ret, size; 1416 1417 /* doesn't apply to DVD+RW or DVD-RAM */ 1418 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1419 return 0; 1420 1421 memset(buffer, 0, sizeof(buffer)); 1422 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1423 cgc.sense = &sense; 1424 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1425 pkt_dump_sense(&cgc); 1426 return ret; 1427 } 1428 1429 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1430 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1431 if (size > sizeof(buffer)) 1432 size = sizeof(buffer); 1433 1434 /* 1435 * now get it all 1436 */ 1437 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1438 cgc.sense = &sense; 1439 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1440 pkt_dump_sense(&cgc); 1441 return ret; 1442 } 1443 1444 /* 1445 * write page is offset header + block descriptor length 1446 */ 1447 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1448 1449 wp->fp = pd->settings.fp; 1450 wp->track_mode = pd->settings.track_mode; 1451 wp->write_type = pd->settings.write_type; 1452 wp->data_block_type = pd->settings.block_mode; 1453 1454 wp->multi_session = 0; 1455 1456 #ifdef PACKET_USE_LS 1457 wp->link_size = 7; 1458 wp->ls_v = 1; 1459 #endif 1460 1461 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1462 wp->session_format = 0; 1463 wp->subhdr2 = 0x20; 1464 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1465 wp->session_format = 0x20; 1466 wp->subhdr2 = 8; 1467 #if 0 1468 wp->mcn[0] = 0x80; 1469 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1470 #endif 1471 } else { 1472 /* 1473 * paranoia 1474 */ 1475 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type); 1476 return 1; 1477 } 1478 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1479 1480 cgc.buflen = cgc.cmd[8] = size; 1481 if ((ret = pkt_mode_select(pd, &cgc))) { 1482 pkt_dump_sense(&cgc); 1483 return ret; 1484 } 1485 1486 pkt_print_settings(pd); 1487 return 0; 1488 } 1489 1490 /* 1491 * 1 -- we can write to this track, 0 -- we can't 1492 */ 1493 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1494 { 1495 switch (pd->mmc3_profile) { 1496 case 0x1a: /* DVD+RW */ 1497 case 0x12: /* DVD-RAM */ 1498 /* The track is always writable on DVD+RW/DVD-RAM */ 1499 return 1; 1500 default: 1501 break; 1502 } 1503 1504 if (!ti->packet || !ti->fp) 1505 return 0; 1506 1507 /* 1508 * "good" settings as per Mt Fuji. 1509 */ 1510 if (ti->rt == 0 && ti->blank == 0) 1511 return 1; 1512 1513 if (ti->rt == 0 && ti->blank == 1) 1514 return 1; 1515 1516 if (ti->rt == 1 && ti->blank == 0) 1517 return 1; 1518 1519 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1520 return 0; 1521 } 1522 1523 /* 1524 * 1 -- we can write to this disc, 0 -- we can't 1525 */ 1526 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1527 { 1528 switch (pd->mmc3_profile) { 1529 case 0x0a: /* CD-RW */ 1530 case 0xffff: /* MMC3 not supported */ 1531 break; 1532 case 0x1a: /* DVD+RW */ 1533 case 0x13: /* DVD-RW */ 1534 case 0x12: /* DVD-RAM */ 1535 return 1; 1536 default: 1537 VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile); 1538 return 0; 1539 } 1540 1541 /* 1542 * for disc type 0xff we should probably reserve a new track. 1543 * but i'm not sure, should we leave this to user apps? probably. 1544 */ 1545 if (di->disc_type == 0xff) { 1546 printk("pktcdvd: Unknown disc. No track?\n"); 1547 return 0; 1548 } 1549 1550 if (di->disc_type != 0x20 && di->disc_type != 0) { 1551 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type); 1552 return 0; 1553 } 1554 1555 if (di->erasable == 0) { 1556 printk("pktcdvd: Disc not erasable\n"); 1557 return 0; 1558 } 1559 1560 if (di->border_status == PACKET_SESSION_RESERVED) { 1561 printk("pktcdvd: Can't write to last track (reserved)\n"); 1562 return 0; 1563 } 1564 1565 return 1; 1566 } 1567 1568 static int pkt_probe_settings(struct pktcdvd_device *pd) 1569 { 1570 struct packet_command cgc; 1571 unsigned char buf[12]; 1572 disc_information di; 1573 track_information ti; 1574 int ret, track; 1575 1576 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1577 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1578 cgc.cmd[8] = 8; 1579 ret = pkt_generic_packet(pd, &cgc); 1580 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1581 1582 memset(&di, 0, sizeof(disc_information)); 1583 memset(&ti, 0, sizeof(track_information)); 1584 1585 if ((ret = pkt_get_disc_info(pd, &di))) { 1586 printk("failed get_disc\n"); 1587 return ret; 1588 } 1589 1590 if (!pkt_writable_disc(pd, &di)) 1591 return -EROFS; 1592 1593 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1594 1595 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1596 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1597 printk("pktcdvd: failed get_track\n"); 1598 return ret; 1599 } 1600 1601 if (!pkt_writable_track(pd, &ti)) { 1602 printk("pktcdvd: can't write to this track\n"); 1603 return -EROFS; 1604 } 1605 1606 /* 1607 * we keep packet size in 512 byte units, makes it easier to 1608 * deal with request calculations. 1609 */ 1610 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1611 if (pd->settings.size == 0) { 1612 printk("pktcdvd: detected zero packet size!\n"); 1613 return -ENXIO; 1614 } 1615 if (pd->settings.size > PACKET_MAX_SECTORS) { 1616 printk("pktcdvd: packet size is too big\n"); 1617 return -EROFS; 1618 } 1619 pd->settings.fp = ti.fp; 1620 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1621 1622 if (ti.nwa_v) { 1623 pd->nwa = be32_to_cpu(ti.next_writable); 1624 set_bit(PACKET_NWA_VALID, &pd->flags); 1625 } 1626 1627 /* 1628 * in theory we could use lra on -RW media as well and just zero 1629 * blocks that haven't been written yet, but in practice that 1630 * is just a no-go. we'll use that for -R, naturally. 1631 */ 1632 if (ti.lra_v) { 1633 pd->lra = be32_to_cpu(ti.last_rec_address); 1634 set_bit(PACKET_LRA_VALID, &pd->flags); 1635 } else { 1636 pd->lra = 0xffffffff; 1637 set_bit(PACKET_LRA_VALID, &pd->flags); 1638 } 1639 1640 /* 1641 * fine for now 1642 */ 1643 pd->settings.link_loss = 7; 1644 pd->settings.write_type = 0; /* packet */ 1645 pd->settings.track_mode = ti.track_mode; 1646 1647 /* 1648 * mode1 or mode2 disc 1649 */ 1650 switch (ti.data_mode) { 1651 case PACKET_MODE1: 1652 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1653 break; 1654 case PACKET_MODE2: 1655 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1656 break; 1657 default: 1658 printk("pktcdvd: unknown data mode\n"); 1659 return -EROFS; 1660 } 1661 return 0; 1662 } 1663 1664 /* 1665 * enable/disable write caching on drive 1666 */ 1667 static int pkt_write_caching(struct pktcdvd_device *pd, int set) 1668 { 1669 struct packet_command cgc; 1670 struct request_sense sense; 1671 unsigned char buf[64]; 1672 int ret; 1673 1674 memset(buf, 0, sizeof(buf)); 1675 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1676 cgc.sense = &sense; 1677 cgc.buflen = pd->mode_offset + 12; 1678 1679 /* 1680 * caching mode page might not be there, so quiet this command 1681 */ 1682 cgc.quiet = 1; 1683 1684 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1685 return ret; 1686 1687 buf[pd->mode_offset + 10] |= (!!set << 2); 1688 1689 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1690 ret = pkt_mode_select(pd, &cgc); 1691 if (ret) { 1692 printk("pktcdvd: write caching control failed\n"); 1693 pkt_dump_sense(&cgc); 1694 } else if (!ret && set) 1695 printk("pktcdvd: enabled write caching on %s\n", pd->name); 1696 return ret; 1697 } 1698 1699 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1700 { 1701 struct packet_command cgc; 1702 1703 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1704 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1705 cgc.cmd[4] = lockflag ? 1 : 0; 1706 return pkt_generic_packet(pd, &cgc); 1707 } 1708 1709 /* 1710 * Returns drive maximum write speed 1711 */ 1712 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed) 1713 { 1714 struct packet_command cgc; 1715 struct request_sense sense; 1716 unsigned char buf[256+18]; 1717 unsigned char *cap_buf; 1718 int ret, offset; 1719 1720 memset(buf, 0, sizeof(buf)); 1721 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1722 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1723 cgc.sense = &sense; 1724 1725 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1726 if (ret) { 1727 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1728 sizeof(struct mode_page_header); 1729 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1730 if (ret) { 1731 pkt_dump_sense(&cgc); 1732 return ret; 1733 } 1734 } 1735 1736 offset = 20; /* Obsoleted field, used by older drives */ 1737 if (cap_buf[1] >= 28) 1738 offset = 28; /* Current write speed selected */ 1739 if (cap_buf[1] >= 30) { 1740 /* If the drive reports at least one "Logical Unit Write 1741 * Speed Performance Descriptor Block", use the information 1742 * in the first block. (contains the highest speed) 1743 */ 1744 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 1745 if (num_spdb > 0) 1746 offset = 34; 1747 } 1748 1749 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 1750 return 0; 1751 } 1752 1753 /* These tables from cdrecord - I don't have orange book */ 1754 /* standard speed CD-RW (1-4x) */ 1755 static char clv_to_speed[16] = { 1756 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1757 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1758 }; 1759 /* high speed CD-RW (-10x) */ 1760 static char hs_clv_to_speed[16] = { 1761 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1762 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1763 }; 1764 /* ultra high speed CD-RW */ 1765 static char us_clv_to_speed[16] = { 1766 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1767 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 1768 }; 1769 1770 /* 1771 * reads the maximum media speed from ATIP 1772 */ 1773 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed) 1774 { 1775 struct packet_command cgc; 1776 struct request_sense sense; 1777 unsigned char buf[64]; 1778 unsigned int size, st, sp; 1779 int ret; 1780 1781 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 1782 cgc.sense = &sense; 1783 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 1784 cgc.cmd[1] = 2; 1785 cgc.cmd[2] = 4; /* READ ATIP */ 1786 cgc.cmd[8] = 2; 1787 ret = pkt_generic_packet(pd, &cgc); 1788 if (ret) { 1789 pkt_dump_sense(&cgc); 1790 return ret; 1791 } 1792 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 1793 if (size > sizeof(buf)) 1794 size = sizeof(buf); 1795 1796 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 1797 cgc.sense = &sense; 1798 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 1799 cgc.cmd[1] = 2; 1800 cgc.cmd[2] = 4; 1801 cgc.cmd[8] = size; 1802 ret = pkt_generic_packet(pd, &cgc); 1803 if (ret) { 1804 pkt_dump_sense(&cgc); 1805 return ret; 1806 } 1807 1808 if (!buf[6] & 0x40) { 1809 printk("pktcdvd: Disc type is not CD-RW\n"); 1810 return 1; 1811 } 1812 if (!buf[6] & 0x4) { 1813 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n"); 1814 return 1; 1815 } 1816 1817 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 1818 1819 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 1820 1821 /* Info from cdrecord */ 1822 switch (st) { 1823 case 0: /* standard speed */ 1824 *speed = clv_to_speed[sp]; 1825 break; 1826 case 1: /* high speed */ 1827 *speed = hs_clv_to_speed[sp]; 1828 break; 1829 case 2: /* ultra high speed */ 1830 *speed = us_clv_to_speed[sp]; 1831 break; 1832 default: 1833 printk("pktcdvd: Unknown disc sub-type %d\n",st); 1834 return 1; 1835 } 1836 if (*speed) { 1837 printk("pktcdvd: Max. media speed: %d\n",*speed); 1838 return 0; 1839 } else { 1840 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st); 1841 return 1; 1842 } 1843 } 1844 1845 static int pkt_perform_opc(struct pktcdvd_device *pd) 1846 { 1847 struct packet_command cgc; 1848 struct request_sense sense; 1849 int ret; 1850 1851 VPRINTK("pktcdvd: Performing OPC\n"); 1852 1853 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1854 cgc.sense = &sense; 1855 cgc.timeout = 60*HZ; 1856 cgc.cmd[0] = GPCMD_SEND_OPC; 1857 cgc.cmd[1] = 1; 1858 if ((ret = pkt_generic_packet(pd, &cgc))) 1859 pkt_dump_sense(&cgc); 1860 return ret; 1861 } 1862 1863 static int pkt_open_write(struct pktcdvd_device *pd) 1864 { 1865 int ret; 1866 unsigned int write_speed, media_write_speed, read_speed; 1867 1868 if ((ret = pkt_probe_settings(pd))) { 1869 VPRINTK("pktcdvd: %s failed probe\n", pd->name); 1870 return ret; 1871 } 1872 1873 if ((ret = pkt_set_write_settings(pd))) { 1874 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name); 1875 return -EIO; 1876 } 1877 1878 pkt_write_caching(pd, USE_WCACHING); 1879 1880 if ((ret = pkt_get_max_speed(pd, &write_speed))) 1881 write_speed = 16 * 177; 1882 switch (pd->mmc3_profile) { 1883 case 0x13: /* DVD-RW */ 1884 case 0x1a: /* DVD+RW */ 1885 case 0x12: /* DVD-RAM */ 1886 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed); 1887 break; 1888 default: 1889 if ((ret = pkt_media_speed(pd, &media_write_speed))) 1890 media_write_speed = 16; 1891 write_speed = min(write_speed, media_write_speed * 177); 1892 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176); 1893 break; 1894 } 1895 read_speed = write_speed; 1896 1897 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 1898 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name); 1899 return -EIO; 1900 } 1901 pd->write_speed = write_speed; 1902 pd->read_speed = read_speed; 1903 1904 if ((ret = pkt_perform_opc(pd))) { 1905 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name); 1906 } 1907 1908 return 0; 1909 } 1910 1911 /* 1912 * called at open time. 1913 */ 1914 static int pkt_open_dev(struct pktcdvd_device *pd, int write) 1915 { 1916 int ret; 1917 long lba; 1918 request_queue_t *q; 1919 1920 /* 1921 * We need to re-open the cdrom device without O_NONBLOCK to be able 1922 * to read/write from/to it. It is already opened in O_NONBLOCK mode 1923 * so bdget() can't fail. 1924 */ 1925 bdget(pd->bdev->bd_dev); 1926 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) 1927 goto out; 1928 1929 if ((ret = bd_claim(pd->bdev, pd))) 1930 goto out_putdev; 1931 1932 if ((ret = pkt_get_last_written(pd, &lba))) { 1933 printk("pktcdvd: pkt_get_last_written failed\n"); 1934 goto out_unclaim; 1935 } 1936 1937 set_capacity(pd->disk, lba << 2); 1938 set_capacity(pd->bdev->bd_disk, lba << 2); 1939 bd_set_size(pd->bdev, (loff_t)lba << 11); 1940 1941 q = bdev_get_queue(pd->bdev); 1942 if (write) { 1943 if ((ret = pkt_open_write(pd))) 1944 goto out_unclaim; 1945 /* 1946 * Some CDRW drives can not handle writes larger than one packet, 1947 * even if the size is a multiple of the packet size. 1948 */ 1949 spin_lock_irq(q->queue_lock); 1950 blk_queue_max_sectors(q, pd->settings.size); 1951 spin_unlock_irq(q->queue_lock); 1952 set_bit(PACKET_WRITABLE, &pd->flags); 1953 } else { 1954 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 1955 clear_bit(PACKET_WRITABLE, &pd->flags); 1956 } 1957 1958 if ((ret = pkt_set_segment_merging(pd, q))) 1959 goto out_unclaim; 1960 1961 if (write) { 1962 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 1963 printk("pktcdvd: not enough memory for buffers\n"); 1964 ret = -ENOMEM; 1965 goto out_unclaim; 1966 } 1967 printk("pktcdvd: %lukB available on disc\n", lba << 1); 1968 } 1969 1970 return 0; 1971 1972 out_unclaim: 1973 bd_release(pd->bdev); 1974 out_putdev: 1975 blkdev_put(pd->bdev); 1976 out: 1977 return ret; 1978 } 1979 1980 /* 1981 * called when the device is closed. makes sure that the device flushes 1982 * the internal cache before we close. 1983 */ 1984 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 1985 { 1986 if (flush && pkt_flush_cache(pd)) 1987 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name); 1988 1989 pkt_lock_door(pd, 0); 1990 1991 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 1992 bd_release(pd->bdev); 1993 blkdev_put(pd->bdev); 1994 1995 pkt_shrink_pktlist(pd); 1996 } 1997 1998 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 1999 { 2000 if (dev_minor >= MAX_WRITERS) 2001 return NULL; 2002 return pkt_devs[dev_minor]; 2003 } 2004 2005 static int pkt_open(struct inode *inode, struct file *file) 2006 { 2007 struct pktcdvd_device *pd = NULL; 2008 int ret; 2009 2010 VPRINTK("pktcdvd: entering open\n"); 2011 2012 mutex_lock(&ctl_mutex); 2013 pd = pkt_find_dev_from_minor(iminor(inode)); 2014 if (!pd) { 2015 ret = -ENODEV; 2016 goto out; 2017 } 2018 BUG_ON(pd->refcnt < 0); 2019 2020 pd->refcnt++; 2021 if (pd->refcnt > 1) { 2022 if ((file->f_mode & FMODE_WRITE) && 2023 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2024 ret = -EBUSY; 2025 goto out_dec; 2026 } 2027 } else { 2028 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE); 2029 if (ret) 2030 goto out_dec; 2031 /* 2032 * needed here as well, since ext2 (among others) may change 2033 * the blocksize at mount time 2034 */ 2035 set_blocksize(inode->i_bdev, CD_FRAMESIZE); 2036 } 2037 2038 mutex_unlock(&ctl_mutex); 2039 return 0; 2040 2041 out_dec: 2042 pd->refcnt--; 2043 out: 2044 VPRINTK("pktcdvd: failed open (%d)\n", ret); 2045 mutex_unlock(&ctl_mutex); 2046 return ret; 2047 } 2048 2049 static int pkt_close(struct inode *inode, struct file *file) 2050 { 2051 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2052 int ret = 0; 2053 2054 mutex_lock(&ctl_mutex); 2055 pd->refcnt--; 2056 BUG_ON(pd->refcnt < 0); 2057 if (pd->refcnt == 0) { 2058 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2059 pkt_release_dev(pd, flush); 2060 } 2061 mutex_unlock(&ctl_mutex); 2062 return ret; 2063 } 2064 2065 2066 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err) 2067 { 2068 struct packet_stacked_data *psd = bio->bi_private; 2069 struct pktcdvd_device *pd = psd->pd; 2070 2071 if (bio->bi_size) 2072 return 1; 2073 2074 bio_put(bio); 2075 bio_endio(psd->bio, psd->bio->bi_size, err); 2076 mempool_free(psd, psd_pool); 2077 pkt_bio_finished(pd); 2078 return 0; 2079 } 2080 2081 static int pkt_make_request(request_queue_t *q, struct bio *bio) 2082 { 2083 struct pktcdvd_device *pd; 2084 char b[BDEVNAME_SIZE]; 2085 sector_t zone; 2086 struct packet_data *pkt; 2087 int was_empty, blocked_bio; 2088 struct pkt_rb_node *node; 2089 2090 pd = q->queuedata; 2091 if (!pd) { 2092 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2093 goto end_io; 2094 } 2095 2096 /* 2097 * Clone READ bios so we can have our own bi_end_io callback. 2098 */ 2099 if (bio_data_dir(bio) == READ) { 2100 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2101 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2102 2103 psd->pd = pd; 2104 psd->bio = bio; 2105 cloned_bio->bi_bdev = pd->bdev; 2106 cloned_bio->bi_private = psd; 2107 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2108 pd->stats.secs_r += bio->bi_size >> 9; 2109 pkt_queue_bio(pd, cloned_bio); 2110 return 0; 2111 } 2112 2113 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2114 printk("pktcdvd: WRITE for ro device %s (%llu)\n", 2115 pd->name, (unsigned long long)bio->bi_sector); 2116 goto end_io; 2117 } 2118 2119 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2120 printk("pktcdvd: wrong bio size\n"); 2121 goto end_io; 2122 } 2123 2124 blk_queue_bounce(q, &bio); 2125 2126 zone = ZONE(bio->bi_sector, pd); 2127 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2128 (unsigned long long)bio->bi_sector, 2129 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2130 2131 /* Check if we have to split the bio */ 2132 { 2133 struct bio_pair *bp; 2134 sector_t last_zone; 2135 int first_sectors; 2136 2137 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2138 if (last_zone != zone) { 2139 BUG_ON(last_zone != zone + pd->settings.size); 2140 first_sectors = last_zone - bio->bi_sector; 2141 bp = bio_split(bio, bio_split_pool, first_sectors); 2142 BUG_ON(!bp); 2143 pkt_make_request(q, &bp->bio1); 2144 pkt_make_request(q, &bp->bio2); 2145 bio_pair_release(bp); 2146 return 0; 2147 } 2148 } 2149 2150 /* 2151 * If we find a matching packet in state WAITING or READ_WAIT, we can 2152 * just append this bio to that packet. 2153 */ 2154 spin_lock(&pd->cdrw.active_list_lock); 2155 blocked_bio = 0; 2156 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2157 if (pkt->sector == zone) { 2158 spin_lock(&pkt->lock); 2159 if ((pkt->state == PACKET_WAITING_STATE) || 2160 (pkt->state == PACKET_READ_WAIT_STATE)) { 2161 pkt_add_list_last(bio, &pkt->orig_bios, 2162 &pkt->orig_bios_tail); 2163 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2164 if ((pkt->write_size >= pkt->frames) && 2165 (pkt->state == PACKET_WAITING_STATE)) { 2166 atomic_inc(&pkt->run_sm); 2167 wake_up(&pd->wqueue); 2168 } 2169 spin_unlock(&pkt->lock); 2170 spin_unlock(&pd->cdrw.active_list_lock); 2171 return 0; 2172 } else { 2173 blocked_bio = 1; 2174 } 2175 spin_unlock(&pkt->lock); 2176 } 2177 } 2178 spin_unlock(&pd->cdrw.active_list_lock); 2179 2180 /* 2181 * No matching packet found. Store the bio in the work queue. 2182 */ 2183 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2184 node->bio = bio; 2185 spin_lock(&pd->lock); 2186 BUG_ON(pd->bio_queue_size < 0); 2187 was_empty = (pd->bio_queue_size == 0); 2188 pkt_rbtree_insert(pd, node); 2189 spin_unlock(&pd->lock); 2190 2191 /* 2192 * Wake up the worker thread. 2193 */ 2194 atomic_set(&pd->scan_queue, 1); 2195 if (was_empty) { 2196 /* This wake_up is required for correct operation */ 2197 wake_up(&pd->wqueue); 2198 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2199 /* 2200 * This wake up is not required for correct operation, 2201 * but improves performance in some cases. 2202 */ 2203 wake_up(&pd->wqueue); 2204 } 2205 return 0; 2206 end_io: 2207 bio_io_error(bio, bio->bi_size); 2208 return 0; 2209 } 2210 2211 2212 2213 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec) 2214 { 2215 struct pktcdvd_device *pd = q->queuedata; 2216 sector_t zone = ZONE(bio->bi_sector, pd); 2217 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size; 2218 int remaining = (pd->settings.size << 9) - used; 2219 int remaining2; 2220 2221 /* 2222 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2223 * boundary, pkt_make_request() will split the bio. 2224 */ 2225 remaining2 = PAGE_SIZE - bio->bi_size; 2226 remaining = max(remaining, remaining2); 2227 2228 BUG_ON(remaining < 0); 2229 return remaining; 2230 } 2231 2232 static void pkt_init_queue(struct pktcdvd_device *pd) 2233 { 2234 request_queue_t *q = pd->disk->queue; 2235 2236 blk_queue_make_request(q, pkt_make_request); 2237 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2238 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2239 blk_queue_merge_bvec(q, pkt_merge_bvec); 2240 q->queuedata = pd; 2241 } 2242 2243 static int pkt_seq_show(struct seq_file *m, void *p) 2244 { 2245 struct pktcdvd_device *pd = m->private; 2246 char *msg; 2247 char bdev_buf[BDEVNAME_SIZE]; 2248 int states[PACKET_NUM_STATES]; 2249 2250 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2251 bdevname(pd->bdev, bdev_buf)); 2252 2253 seq_printf(m, "\nSettings:\n"); 2254 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2255 2256 if (pd->settings.write_type == 0) 2257 msg = "Packet"; 2258 else 2259 msg = "Unknown"; 2260 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2261 2262 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2263 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2264 2265 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2266 2267 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2268 msg = "Mode 1"; 2269 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2270 msg = "Mode 2"; 2271 else 2272 msg = "Unknown"; 2273 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2274 2275 seq_printf(m, "\nStatistics:\n"); 2276 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2277 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2278 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2279 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2280 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2281 2282 seq_printf(m, "\nMisc:\n"); 2283 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2284 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2285 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2286 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2287 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2288 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2289 2290 seq_printf(m, "\nQueue state:\n"); 2291 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2292 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2293 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2294 2295 pkt_count_states(pd, states); 2296 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2297 states[0], states[1], states[2], states[3], states[4], states[5]); 2298 2299 return 0; 2300 } 2301 2302 static int pkt_seq_open(struct inode *inode, struct file *file) 2303 { 2304 return single_open(file, pkt_seq_show, PDE(inode)->data); 2305 } 2306 2307 static struct file_operations pkt_proc_fops = { 2308 .open = pkt_seq_open, 2309 .read = seq_read, 2310 .llseek = seq_lseek, 2311 .release = single_release 2312 }; 2313 2314 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2315 { 2316 int i; 2317 int ret = 0; 2318 char b[BDEVNAME_SIZE]; 2319 struct proc_dir_entry *proc; 2320 struct block_device *bdev; 2321 2322 if (pd->pkt_dev == dev) { 2323 printk("pktcdvd: Recursive setup not allowed\n"); 2324 return -EBUSY; 2325 } 2326 for (i = 0; i < MAX_WRITERS; i++) { 2327 struct pktcdvd_device *pd2 = pkt_devs[i]; 2328 if (!pd2) 2329 continue; 2330 if (pd2->bdev->bd_dev == dev) { 2331 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b)); 2332 return -EBUSY; 2333 } 2334 if (pd2->pkt_dev == dev) { 2335 printk("pktcdvd: Can't chain pktcdvd devices\n"); 2336 return -EBUSY; 2337 } 2338 } 2339 2340 bdev = bdget(dev); 2341 if (!bdev) 2342 return -ENOMEM; 2343 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); 2344 if (ret) 2345 return ret; 2346 2347 /* This is safe, since we have a reference from open(). */ 2348 __module_get(THIS_MODULE); 2349 2350 pd->bdev = bdev; 2351 set_blocksize(bdev, CD_FRAMESIZE); 2352 2353 pkt_init_queue(pd); 2354 2355 atomic_set(&pd->cdrw.pending_bios, 0); 2356 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2357 if (IS_ERR(pd->cdrw.thread)) { 2358 printk("pktcdvd: can't start kernel thread\n"); 2359 ret = -ENOMEM; 2360 goto out_mem; 2361 } 2362 2363 proc = create_proc_entry(pd->name, 0, pkt_proc); 2364 if (proc) { 2365 proc->data = pd; 2366 proc->proc_fops = &pkt_proc_fops; 2367 } 2368 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2369 return 0; 2370 2371 out_mem: 2372 blkdev_put(bdev); 2373 /* This is safe: open() is still holding a reference. */ 2374 module_put(THIS_MODULE); 2375 return ret; 2376 } 2377 2378 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2379 { 2380 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2381 2382 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); 2383 2384 switch (cmd) { 2385 /* 2386 * forward selected CDROM ioctls to CD-ROM, for UDF 2387 */ 2388 case CDROMMULTISESSION: 2389 case CDROMREADTOCENTRY: 2390 case CDROM_LAST_WRITTEN: 2391 case CDROM_SEND_PACKET: 2392 case SCSI_IOCTL_SEND_COMMAND: 2393 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2394 2395 case CDROMEJECT: 2396 /* 2397 * The door gets locked when the device is opened, so we 2398 * have to unlock it or else the eject command fails. 2399 */ 2400 if (pd->refcnt == 1) 2401 pkt_lock_door(pd, 0); 2402 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2403 2404 default: 2405 VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd); 2406 return -ENOTTY; 2407 } 2408 2409 return 0; 2410 } 2411 2412 static int pkt_media_changed(struct gendisk *disk) 2413 { 2414 struct pktcdvd_device *pd = disk->private_data; 2415 struct gendisk *attached_disk; 2416 2417 if (!pd) 2418 return 0; 2419 if (!pd->bdev) 2420 return 0; 2421 attached_disk = pd->bdev->bd_disk; 2422 if (!attached_disk) 2423 return 0; 2424 return attached_disk->fops->media_changed(attached_disk); 2425 } 2426 2427 static struct block_device_operations pktcdvd_ops = { 2428 .owner = THIS_MODULE, 2429 .open = pkt_open, 2430 .release = pkt_close, 2431 .ioctl = pkt_ioctl, 2432 .media_changed = pkt_media_changed, 2433 }; 2434 2435 /* 2436 * Set up mapping from pktcdvd device to CD-ROM device. 2437 */ 2438 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd) 2439 { 2440 int idx; 2441 int ret = -ENOMEM; 2442 struct pktcdvd_device *pd; 2443 struct gendisk *disk; 2444 dev_t dev = new_decode_dev(ctrl_cmd->dev); 2445 2446 for (idx = 0; idx < MAX_WRITERS; idx++) 2447 if (!pkt_devs[idx]) 2448 break; 2449 if (idx == MAX_WRITERS) { 2450 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS); 2451 return -EBUSY; 2452 } 2453 2454 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2455 if (!pd) 2456 return ret; 2457 2458 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2459 sizeof(struct pkt_rb_node)); 2460 if (!pd->rb_pool) 2461 goto out_mem; 2462 2463 disk = alloc_disk(1); 2464 if (!disk) 2465 goto out_mem; 2466 pd->disk = disk; 2467 2468 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2469 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2470 spin_lock_init(&pd->cdrw.active_list_lock); 2471 2472 spin_lock_init(&pd->lock); 2473 spin_lock_init(&pd->iosched.lock); 2474 sprintf(pd->name, "pktcdvd%d", idx); 2475 init_waitqueue_head(&pd->wqueue); 2476 pd->bio_queue = RB_ROOT; 2477 2478 disk->major = pkt_major; 2479 disk->first_minor = idx; 2480 disk->fops = &pktcdvd_ops; 2481 disk->flags = GENHD_FL_REMOVABLE; 2482 sprintf(disk->disk_name, "pktcdvd%d", idx); 2483 disk->private_data = pd; 2484 disk->queue = blk_alloc_queue(GFP_KERNEL); 2485 if (!disk->queue) 2486 goto out_mem2; 2487 2488 pd->pkt_dev = MKDEV(disk->major, disk->first_minor); 2489 ret = pkt_new_dev(pd, dev); 2490 if (ret) 2491 goto out_new_dev; 2492 2493 add_disk(disk); 2494 pkt_devs[idx] = pd; 2495 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2496 return 0; 2497 2498 out_new_dev: 2499 blk_cleanup_queue(disk->queue); 2500 out_mem2: 2501 put_disk(disk); 2502 out_mem: 2503 if (pd->rb_pool) 2504 mempool_destroy(pd->rb_pool); 2505 kfree(pd); 2506 return ret; 2507 } 2508 2509 /* 2510 * Tear down mapping from pktcdvd device to CD-ROM device. 2511 */ 2512 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd) 2513 { 2514 struct pktcdvd_device *pd; 2515 int idx; 2516 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev); 2517 2518 for (idx = 0; idx < MAX_WRITERS; idx++) { 2519 pd = pkt_devs[idx]; 2520 if (pd && (pd->pkt_dev == pkt_dev)) 2521 break; 2522 } 2523 if (idx == MAX_WRITERS) { 2524 DPRINTK("pktcdvd: dev not setup\n"); 2525 return -ENXIO; 2526 } 2527 2528 if (pd->refcnt > 0) 2529 return -EBUSY; 2530 2531 if (!IS_ERR(pd->cdrw.thread)) 2532 kthread_stop(pd->cdrw.thread); 2533 2534 blkdev_put(pd->bdev); 2535 2536 remove_proc_entry(pd->name, pkt_proc); 2537 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name); 2538 2539 del_gendisk(pd->disk); 2540 blk_cleanup_queue(pd->disk->queue); 2541 put_disk(pd->disk); 2542 2543 pkt_devs[idx] = NULL; 2544 mempool_destroy(pd->rb_pool); 2545 kfree(pd); 2546 2547 /* This is safe: open() is still holding a reference. */ 2548 module_put(THIS_MODULE); 2549 return 0; 2550 } 2551 2552 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2553 { 2554 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2555 if (pd) { 2556 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2557 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2558 } else { 2559 ctrl_cmd->dev = 0; 2560 ctrl_cmd->pkt_dev = 0; 2561 } 2562 ctrl_cmd->num_devices = MAX_WRITERS; 2563 } 2564 2565 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2566 { 2567 void __user *argp = (void __user *)arg; 2568 struct pkt_ctrl_command ctrl_cmd; 2569 int ret = 0; 2570 2571 if (cmd != PACKET_CTRL_CMD) 2572 return -ENOTTY; 2573 2574 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2575 return -EFAULT; 2576 2577 switch (ctrl_cmd.command) { 2578 case PKT_CTRL_CMD_SETUP: 2579 if (!capable(CAP_SYS_ADMIN)) 2580 return -EPERM; 2581 mutex_lock(&ctl_mutex); 2582 ret = pkt_setup_dev(&ctrl_cmd); 2583 mutex_unlock(&ctl_mutex); 2584 break; 2585 case PKT_CTRL_CMD_TEARDOWN: 2586 if (!capable(CAP_SYS_ADMIN)) 2587 return -EPERM; 2588 mutex_lock(&ctl_mutex); 2589 ret = pkt_remove_dev(&ctrl_cmd); 2590 mutex_unlock(&ctl_mutex); 2591 break; 2592 case PKT_CTRL_CMD_STATUS: 2593 mutex_lock(&ctl_mutex); 2594 pkt_get_status(&ctrl_cmd); 2595 mutex_unlock(&ctl_mutex); 2596 break; 2597 default: 2598 return -ENOTTY; 2599 } 2600 2601 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2602 return -EFAULT; 2603 return ret; 2604 } 2605 2606 2607 static struct file_operations pkt_ctl_fops = { 2608 .ioctl = pkt_ctl_ioctl, 2609 .owner = THIS_MODULE, 2610 }; 2611 2612 static struct miscdevice pkt_misc = { 2613 .minor = MISC_DYNAMIC_MINOR, 2614 .name = "pktcdvd", 2615 .devfs_name = "pktcdvd/control", 2616 .fops = &pkt_ctl_fops 2617 }; 2618 2619 static int __init pkt_init(void) 2620 { 2621 int ret; 2622 2623 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 2624 sizeof(struct packet_stacked_data)); 2625 if (!psd_pool) 2626 return -ENOMEM; 2627 2628 ret = register_blkdev(pkt_major, "pktcdvd"); 2629 if (ret < 0) { 2630 printk("pktcdvd: Unable to register block device\n"); 2631 goto out2; 2632 } 2633 if (!pkt_major) 2634 pkt_major = ret; 2635 2636 ret = misc_register(&pkt_misc); 2637 if (ret) { 2638 printk("pktcdvd: Unable to register misc device\n"); 2639 goto out; 2640 } 2641 2642 mutex_init(&ctl_mutex); 2643 2644 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver); 2645 2646 return 0; 2647 2648 out: 2649 unregister_blkdev(pkt_major, "pktcdvd"); 2650 out2: 2651 mempool_destroy(psd_pool); 2652 return ret; 2653 } 2654 2655 static void __exit pkt_exit(void) 2656 { 2657 remove_proc_entry("pktcdvd", proc_root_driver); 2658 misc_deregister(&pkt_misc); 2659 unregister_blkdev(pkt_major, "pktcdvd"); 2660 mempool_destroy(psd_pool); 2661 } 2662 2663 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 2664 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 2665 MODULE_LICENSE("GPL"); 2666 2667 module_init(pkt_init); 2668 module_exit(pkt_exit); 2669