xref: /linux/drivers/block/pktcdvd.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom ->submit_bio function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/backing-dev.h>
50 #include <linux/compat.h>
51 #include <linux/debugfs.h>
52 #include <linux/device.h>
53 #include <linux/errno.h>
54 #include <linux/file.h>
55 #include <linux/freezer.h>
56 #include <linux/kernel.h>
57 #include <linux/kthread.h>
58 #include <linux/miscdevice.h>
59 #include <linux/module.h>
60 #include <linux/mutex.h>
61 #include <linux/nospec.h>
62 #include <linux/pktcdvd.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/slab.h>
66 #include <linux/spinlock.h>
67 #include <linux/types.h>
68 #include <linux/uaccess.h>
69 
70 #include <scsi/scsi.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <scsi/scsi_ioctl.h>
73 
74 #include <asm/unaligned.h>
75 
76 #define DRIVER_NAME	"pktcdvd"
77 
78 #define MAX_SPEED 0xffff
79 
80 static DEFINE_MUTEX(pktcdvd_mutex);
81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82 static struct proc_dir_entry *pkt_proc;
83 static int pktdev_major;
84 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
85 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
86 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
87 static mempool_t psd_pool;
88 static struct bio_set pkt_bio_set;
89 
90 /* /sys/class/pktcdvd */
91 static struct class	class_pktcdvd;
92 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
93 
94 /* forward declaration */
95 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
96 static int pkt_remove_dev(dev_t pkt_dev);
97 
98 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
99 {
100 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
101 }
102 
103 /**********************************************************
104  * sysfs interface for pktcdvd
105  * by (C) 2006  Thomas Maier <balagi@justmail.de>
106 
107   /sys/class/pktcdvd/pktcdvd[0-7]/
108                      stat/reset
109                      stat/packets_started
110                      stat/packets_finished
111                      stat/kb_written
112                      stat/kb_read
113                      stat/kb_read_gather
114                      write_queue/size
115                      write_queue/congestion_off
116                      write_queue/congestion_on
117  **********************************************************/
118 
119 static ssize_t packets_started_show(struct device *dev,
120 				    struct device_attribute *attr, char *buf)
121 {
122 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
123 
124 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
125 }
126 static DEVICE_ATTR_RO(packets_started);
127 
128 static ssize_t packets_finished_show(struct device *dev,
129 				     struct device_attribute *attr, char *buf)
130 {
131 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
132 
133 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
134 }
135 static DEVICE_ATTR_RO(packets_finished);
136 
137 static ssize_t kb_written_show(struct device *dev,
138 			       struct device_attribute *attr, char *buf)
139 {
140 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
141 
142 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
143 }
144 static DEVICE_ATTR_RO(kb_written);
145 
146 static ssize_t kb_read_show(struct device *dev,
147 			    struct device_attribute *attr, char *buf)
148 {
149 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
150 
151 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
152 }
153 static DEVICE_ATTR_RO(kb_read);
154 
155 static ssize_t kb_read_gather_show(struct device *dev,
156 				   struct device_attribute *attr, char *buf)
157 {
158 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
159 
160 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
161 }
162 static DEVICE_ATTR_RO(kb_read_gather);
163 
164 static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
165 			   const char *buf, size_t len)
166 {
167 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
168 
169 	if (len > 0) {
170 		pd->stats.pkt_started = 0;
171 		pd->stats.pkt_ended = 0;
172 		pd->stats.secs_w = 0;
173 		pd->stats.secs_rg = 0;
174 		pd->stats.secs_r = 0;
175 	}
176 	return len;
177 }
178 static DEVICE_ATTR_WO(reset);
179 
180 static struct attribute *pkt_stat_attrs[] = {
181 	&dev_attr_packets_finished.attr,
182 	&dev_attr_packets_started.attr,
183 	&dev_attr_kb_read.attr,
184 	&dev_attr_kb_written.attr,
185 	&dev_attr_kb_read_gather.attr,
186 	&dev_attr_reset.attr,
187 	NULL,
188 };
189 
190 static const struct attribute_group pkt_stat_group = {
191 	.name = "stat",
192 	.attrs = pkt_stat_attrs,
193 };
194 
195 static ssize_t size_show(struct device *dev,
196 			 struct device_attribute *attr, char *buf)
197 {
198 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
199 	int n;
200 
201 	spin_lock(&pd->lock);
202 	n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
203 	spin_unlock(&pd->lock);
204 	return n;
205 }
206 static DEVICE_ATTR_RO(size);
207 
208 static void init_write_congestion_marks(int* lo, int* hi)
209 {
210 	if (*hi > 0) {
211 		*hi = max(*hi, 500);
212 		*hi = min(*hi, 1000000);
213 		if (*lo <= 0)
214 			*lo = *hi - 100;
215 		else {
216 			*lo = min(*lo, *hi - 100);
217 			*lo = max(*lo, 100);
218 		}
219 	} else {
220 		*hi = -1;
221 		*lo = -1;
222 	}
223 }
224 
225 static ssize_t congestion_off_show(struct device *dev,
226 				   struct device_attribute *attr, char *buf)
227 {
228 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
229 	int n;
230 
231 	spin_lock(&pd->lock);
232 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
233 	spin_unlock(&pd->lock);
234 	return n;
235 }
236 
237 static ssize_t congestion_off_store(struct device *dev,
238 				    struct device_attribute *attr,
239 				    const char *buf, size_t len)
240 {
241 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
242 	int val, ret;
243 
244 	ret = kstrtoint(buf, 10, &val);
245 	if (ret)
246 		return ret;
247 
248 	spin_lock(&pd->lock);
249 	pd->write_congestion_off = val;
250 	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
251 	spin_unlock(&pd->lock);
252 	return len;
253 }
254 static DEVICE_ATTR_RW(congestion_off);
255 
256 static ssize_t congestion_on_show(struct device *dev,
257 				  struct device_attribute *attr, char *buf)
258 {
259 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
260 	int n;
261 
262 	spin_lock(&pd->lock);
263 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
264 	spin_unlock(&pd->lock);
265 	return n;
266 }
267 
268 static ssize_t congestion_on_store(struct device *dev,
269 				   struct device_attribute *attr,
270 				   const char *buf, size_t len)
271 {
272 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
273 	int val, ret;
274 
275 	ret = kstrtoint(buf, 10, &val);
276 	if (ret)
277 		return ret;
278 
279 	spin_lock(&pd->lock);
280 	pd->write_congestion_on = val;
281 	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
282 	spin_unlock(&pd->lock);
283 	return len;
284 }
285 static DEVICE_ATTR_RW(congestion_on);
286 
287 static struct attribute *pkt_wq_attrs[] = {
288 	&dev_attr_congestion_on.attr,
289 	&dev_attr_congestion_off.attr,
290 	&dev_attr_size.attr,
291 	NULL,
292 };
293 
294 static const struct attribute_group pkt_wq_group = {
295 	.name = "write_queue",
296 	.attrs = pkt_wq_attrs,
297 };
298 
299 static const struct attribute_group *pkt_groups[] = {
300 	&pkt_stat_group,
301 	&pkt_wq_group,
302 	NULL,
303 };
304 
305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306 {
307 	if (class_is_registered(&class_pktcdvd)) {
308 		pd->dev = device_create_with_groups(&class_pktcdvd, NULL,
309 						    MKDEV(0, 0), pd, pkt_groups,
310 						    "%s", pd->disk->disk_name);
311 		if (IS_ERR(pd->dev))
312 			pd->dev = NULL;
313 	}
314 }
315 
316 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
317 {
318 	if (class_is_registered(&class_pktcdvd))
319 		device_unregister(pd->dev);
320 }
321 
322 
323 /********************************************************************
324   /sys/class/pktcdvd/
325                      add            map block device
326                      remove         unmap packet dev
327                      device_map     show mappings
328  *******************************************************************/
329 
330 static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr,
331 			       char *data)
332 {
333 	int n = 0;
334 	int idx;
335 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
336 	for (idx = 0; idx < MAX_WRITERS; idx++) {
337 		struct pktcdvd_device *pd = pkt_devs[idx];
338 		if (!pd)
339 			continue;
340 		n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n",
341 			pd->disk->disk_name,
342 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
343 			MAJOR(file_bdev(pd->bdev_file)->bd_dev),
344 			MINOR(file_bdev(pd->bdev_file)->bd_dev));
345 	}
346 	mutex_unlock(&ctl_mutex);
347 	return n;
348 }
349 static CLASS_ATTR_RO(device_map);
350 
351 static ssize_t add_store(const struct class *c, const struct class_attribute *attr,
352 			 const char *buf, size_t count)
353 {
354 	unsigned int major, minor;
355 
356 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
357 		/* pkt_setup_dev() expects caller to hold reference to self */
358 		if (!try_module_get(THIS_MODULE))
359 			return -ENODEV;
360 
361 		pkt_setup_dev(MKDEV(major, minor), NULL);
362 
363 		module_put(THIS_MODULE);
364 
365 		return count;
366 	}
367 
368 	return -EINVAL;
369 }
370 static CLASS_ATTR_WO(add);
371 
372 static ssize_t remove_store(const struct class *c, const struct class_attribute *attr,
373 			    const char *buf, size_t count)
374 {
375 	unsigned int major, minor;
376 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
377 		pkt_remove_dev(MKDEV(major, minor));
378 		return count;
379 	}
380 	return -EINVAL;
381 }
382 static CLASS_ATTR_WO(remove);
383 
384 static struct attribute *class_pktcdvd_attrs[] = {
385 	&class_attr_add.attr,
386 	&class_attr_remove.attr,
387 	&class_attr_device_map.attr,
388 	NULL,
389 };
390 ATTRIBUTE_GROUPS(class_pktcdvd);
391 
392 static struct class class_pktcdvd = {
393 	.name		= DRIVER_NAME,
394 	.class_groups	= class_pktcdvd_groups,
395 };
396 
397 static int pkt_sysfs_init(void)
398 {
399 	/*
400 	 * create control files in sysfs
401 	 * /sys/class/pktcdvd/...
402 	 */
403 	return class_register(&class_pktcdvd);
404 }
405 
406 static void pkt_sysfs_cleanup(void)
407 {
408 	class_unregister(&class_pktcdvd);
409 }
410 
411 /********************************************************************
412   entries in debugfs
413 
414   /sys/kernel/debug/pktcdvd[0-7]/
415 			info
416 
417  *******************************************************************/
418 
419 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
420 {
421 	struct packet_data *pkt;
422 	int i;
423 
424 	for (i = 0; i < PACKET_NUM_STATES; i++)
425 		states[i] = 0;
426 
427 	spin_lock(&pd->cdrw.active_list_lock);
428 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
429 		states[pkt->state]++;
430 	}
431 	spin_unlock(&pd->cdrw.active_list_lock);
432 }
433 
434 static int pkt_seq_show(struct seq_file *m, void *p)
435 {
436 	struct pktcdvd_device *pd = m->private;
437 	char *msg;
438 	int states[PACKET_NUM_STATES];
439 
440 	seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name,
441 		   file_bdev(pd->bdev_file));
442 
443 	seq_printf(m, "\nSettings:\n");
444 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
445 
446 	if (pd->settings.write_type == 0)
447 		msg = "Packet";
448 	else
449 		msg = "Unknown";
450 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
451 
452 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
453 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
454 
455 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
456 
457 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
458 		msg = "Mode 1";
459 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
460 		msg = "Mode 2";
461 	else
462 		msg = "Unknown";
463 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
464 
465 	seq_printf(m, "\nStatistics:\n");
466 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
467 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
468 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
469 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
470 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
471 
472 	seq_printf(m, "\nMisc:\n");
473 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
474 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
475 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
476 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
477 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
478 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
479 
480 	seq_printf(m, "\nQueue state:\n");
481 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
482 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
483 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector);
484 
485 	pkt_count_states(pd, states);
486 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
487 		   states[0], states[1], states[2], states[3], states[4], states[5]);
488 
489 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
490 			pd->write_congestion_off,
491 			pd->write_congestion_on);
492 	return 0;
493 }
494 DEFINE_SHOW_ATTRIBUTE(pkt_seq);
495 
496 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
497 {
498 	if (!pkt_debugfs_root)
499 		return;
500 	pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
501 	if (!pd->dfs_d_root)
502 		return;
503 
504 	pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root,
505 					     pd, &pkt_seq_fops);
506 }
507 
508 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
509 {
510 	if (!pkt_debugfs_root)
511 		return;
512 	debugfs_remove(pd->dfs_f_info);
513 	debugfs_remove(pd->dfs_d_root);
514 	pd->dfs_f_info = NULL;
515 	pd->dfs_d_root = NULL;
516 }
517 
518 static void pkt_debugfs_init(void)
519 {
520 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
521 }
522 
523 static void pkt_debugfs_cleanup(void)
524 {
525 	debugfs_remove(pkt_debugfs_root);
526 	pkt_debugfs_root = NULL;
527 }
528 
529 /* ----------------------------------------------------------*/
530 
531 
532 static void pkt_bio_finished(struct pktcdvd_device *pd)
533 {
534 	struct device *ddev = disk_to_dev(pd->disk);
535 
536 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
537 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
538 		dev_dbg(ddev, "queue empty\n");
539 		atomic_set(&pd->iosched.attention, 1);
540 		wake_up(&pd->wqueue);
541 	}
542 }
543 
544 /*
545  * Allocate a packet_data struct
546  */
547 static struct packet_data *pkt_alloc_packet_data(int frames)
548 {
549 	int i;
550 	struct packet_data *pkt;
551 
552 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
553 	if (!pkt)
554 		goto no_pkt;
555 
556 	pkt->frames = frames;
557 	pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
558 	if (!pkt->w_bio)
559 		goto no_bio;
560 
561 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
562 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
563 		if (!pkt->pages[i])
564 			goto no_page;
565 	}
566 
567 	spin_lock_init(&pkt->lock);
568 	bio_list_init(&pkt->orig_bios);
569 
570 	for (i = 0; i < frames; i++) {
571 		pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
572 		if (!pkt->r_bios[i])
573 			goto no_rd_bio;
574 	}
575 
576 	return pkt;
577 
578 no_rd_bio:
579 	for (i = 0; i < frames; i++)
580 		kfree(pkt->r_bios[i]);
581 no_page:
582 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
583 		if (pkt->pages[i])
584 			__free_page(pkt->pages[i]);
585 	kfree(pkt->w_bio);
586 no_bio:
587 	kfree(pkt);
588 no_pkt:
589 	return NULL;
590 }
591 
592 /*
593  * Free a packet_data struct
594  */
595 static void pkt_free_packet_data(struct packet_data *pkt)
596 {
597 	int i;
598 
599 	for (i = 0; i < pkt->frames; i++)
600 		kfree(pkt->r_bios[i]);
601 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
602 		__free_page(pkt->pages[i]);
603 	kfree(pkt->w_bio);
604 	kfree(pkt);
605 }
606 
607 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
608 {
609 	struct packet_data *pkt, *next;
610 
611 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
612 
613 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
614 		pkt_free_packet_data(pkt);
615 	}
616 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
617 }
618 
619 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
620 {
621 	struct packet_data *pkt;
622 
623 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
624 
625 	while (nr_packets > 0) {
626 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
627 		if (!pkt) {
628 			pkt_shrink_pktlist(pd);
629 			return 0;
630 		}
631 		pkt->id = nr_packets;
632 		pkt->pd = pd;
633 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
634 		nr_packets--;
635 	}
636 	return 1;
637 }
638 
639 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
640 {
641 	struct rb_node *n = rb_next(&node->rb_node);
642 	if (!n)
643 		return NULL;
644 	return rb_entry(n, struct pkt_rb_node, rb_node);
645 }
646 
647 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
648 {
649 	rb_erase(&node->rb_node, &pd->bio_queue);
650 	mempool_free(node, &pd->rb_pool);
651 	pd->bio_queue_size--;
652 	BUG_ON(pd->bio_queue_size < 0);
653 }
654 
655 /*
656  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
657  */
658 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
659 {
660 	struct rb_node *n = pd->bio_queue.rb_node;
661 	struct rb_node *next;
662 	struct pkt_rb_node *tmp;
663 
664 	if (!n) {
665 		BUG_ON(pd->bio_queue_size > 0);
666 		return NULL;
667 	}
668 
669 	for (;;) {
670 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
671 		if (s <= tmp->bio->bi_iter.bi_sector)
672 			next = n->rb_left;
673 		else
674 			next = n->rb_right;
675 		if (!next)
676 			break;
677 		n = next;
678 	}
679 
680 	if (s > tmp->bio->bi_iter.bi_sector) {
681 		tmp = pkt_rbtree_next(tmp);
682 		if (!tmp)
683 			return NULL;
684 	}
685 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
686 	return tmp;
687 }
688 
689 /*
690  * Insert a node into the pd->bio_queue rb tree.
691  */
692 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
693 {
694 	struct rb_node **p = &pd->bio_queue.rb_node;
695 	struct rb_node *parent = NULL;
696 	sector_t s = node->bio->bi_iter.bi_sector;
697 	struct pkt_rb_node *tmp;
698 
699 	while (*p) {
700 		parent = *p;
701 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
702 		if (s < tmp->bio->bi_iter.bi_sector)
703 			p = &(*p)->rb_left;
704 		else
705 			p = &(*p)->rb_right;
706 	}
707 	rb_link_node(&node->rb_node, parent, p);
708 	rb_insert_color(&node->rb_node, &pd->bio_queue);
709 	pd->bio_queue_size++;
710 }
711 
712 /*
713  * Send a packet_command to the underlying block device and
714  * wait for completion.
715  */
716 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
717 {
718 	struct request_queue *q = bdev_get_queue(file_bdev(pd->bdev_file));
719 	struct scsi_cmnd *scmd;
720 	struct request *rq;
721 	int ret = 0;
722 
723 	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
724 			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
725 	if (IS_ERR(rq))
726 		return PTR_ERR(rq);
727 	scmd = blk_mq_rq_to_pdu(rq);
728 
729 	if (cgc->buflen) {
730 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
731 				      GFP_NOIO);
732 		if (ret)
733 			goto out;
734 	}
735 
736 	scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
737 	memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
738 
739 	rq->timeout = 60*HZ;
740 	if (cgc->quiet)
741 		rq->rq_flags |= RQF_QUIET;
742 
743 	blk_execute_rq(rq, false);
744 	if (scmd->result)
745 		ret = -EIO;
746 out:
747 	blk_mq_free_request(rq);
748 	return ret;
749 }
750 
751 static const char *sense_key_string(__u8 index)
752 {
753 	static const char * const info[] = {
754 		"No sense", "Recovered error", "Not ready",
755 		"Medium error", "Hardware error", "Illegal request",
756 		"Unit attention", "Data protect", "Blank check",
757 	};
758 
759 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
760 }
761 
762 /*
763  * A generic sense dump / resolve mechanism should be implemented across
764  * all ATAPI + SCSI devices.
765  */
766 static void pkt_dump_sense(struct pktcdvd_device *pd,
767 			   struct packet_command *cgc)
768 {
769 	struct device *ddev = disk_to_dev(pd->disk);
770 	struct scsi_sense_hdr *sshdr = cgc->sshdr;
771 
772 	if (sshdr)
773 		dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n",
774 			CDROM_PACKET_SIZE, cgc->cmd,
775 			sshdr->sense_key, sshdr->asc, sshdr->ascq,
776 			sense_key_string(sshdr->sense_key));
777 	else
778 		dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
779 }
780 
781 /*
782  * flush the drive cache to media
783  */
784 static int pkt_flush_cache(struct pktcdvd_device *pd)
785 {
786 	struct packet_command cgc;
787 
788 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
789 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
790 	cgc.quiet = 1;
791 
792 	/*
793 	 * the IMMED bit -- we default to not setting it, although that
794 	 * would allow a much faster close, this is safer
795 	 */
796 #if 0
797 	cgc.cmd[1] = 1 << 1;
798 #endif
799 	return pkt_generic_packet(pd, &cgc);
800 }
801 
802 /*
803  * speed is given as the normal factor, e.g. 4 for 4x
804  */
805 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
806 				unsigned write_speed, unsigned read_speed)
807 {
808 	struct packet_command cgc;
809 	struct scsi_sense_hdr sshdr;
810 	int ret;
811 
812 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
813 	cgc.sshdr = &sshdr;
814 	cgc.cmd[0] = GPCMD_SET_SPEED;
815 	put_unaligned_be16(read_speed, &cgc.cmd[2]);
816 	put_unaligned_be16(write_speed, &cgc.cmd[4]);
817 
818 	ret = pkt_generic_packet(pd, &cgc);
819 	if (ret)
820 		pkt_dump_sense(pd, &cgc);
821 
822 	return ret;
823 }
824 
825 /*
826  * Queue a bio for processing by the low-level CD device. Must be called
827  * from process context.
828  */
829 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
830 {
831 	/*
832 	 * Some CDRW drives can not handle writes larger than one packet,
833 	 * even if the size is a multiple of the packet size.
834 	 */
835 	bio->bi_opf |= REQ_NOMERGE;
836 
837 	spin_lock(&pd->iosched.lock);
838 	if (bio_data_dir(bio) == READ)
839 		bio_list_add(&pd->iosched.read_queue, bio);
840 	else
841 		bio_list_add(&pd->iosched.write_queue, bio);
842 	spin_unlock(&pd->iosched.lock);
843 
844 	atomic_set(&pd->iosched.attention, 1);
845 	wake_up(&pd->wqueue);
846 }
847 
848 /*
849  * Process the queued read/write requests. This function handles special
850  * requirements for CDRW drives:
851  * - A cache flush command must be inserted before a read request if the
852  *   previous request was a write.
853  * - Switching between reading and writing is slow, so don't do it more often
854  *   than necessary.
855  * - Optimize for throughput at the expense of latency. This means that streaming
856  *   writes will never be interrupted by a read, but if the drive has to seek
857  *   before the next write, switch to reading instead if there are any pending
858  *   read requests.
859  * - Set the read speed according to current usage pattern. When only reading
860  *   from the device, it's best to use the highest possible read speed, but
861  *   when switching often between reading and writing, it's better to have the
862  *   same read and write speeds.
863  */
864 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
865 {
866 	struct device *ddev = disk_to_dev(pd->disk);
867 
868 	if (atomic_read(&pd->iosched.attention) == 0)
869 		return;
870 	atomic_set(&pd->iosched.attention, 0);
871 
872 	for (;;) {
873 		struct bio *bio;
874 		int reads_queued, writes_queued;
875 
876 		spin_lock(&pd->iosched.lock);
877 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
878 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
879 		spin_unlock(&pd->iosched.lock);
880 
881 		if (!reads_queued && !writes_queued)
882 			break;
883 
884 		if (pd->iosched.writing) {
885 			int need_write_seek = 1;
886 			spin_lock(&pd->iosched.lock);
887 			bio = bio_list_peek(&pd->iosched.write_queue);
888 			spin_unlock(&pd->iosched.lock);
889 			if (bio && (bio->bi_iter.bi_sector ==
890 				    pd->iosched.last_write))
891 				need_write_seek = 0;
892 			if (need_write_seek && reads_queued) {
893 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
894 					dev_dbg(ddev, "write, waiting\n");
895 					break;
896 				}
897 				pkt_flush_cache(pd);
898 				pd->iosched.writing = 0;
899 			}
900 		} else {
901 			if (!reads_queued && writes_queued) {
902 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
903 					dev_dbg(ddev, "read, waiting\n");
904 					break;
905 				}
906 				pd->iosched.writing = 1;
907 			}
908 		}
909 
910 		spin_lock(&pd->iosched.lock);
911 		if (pd->iosched.writing)
912 			bio = bio_list_pop(&pd->iosched.write_queue);
913 		else
914 			bio = bio_list_pop(&pd->iosched.read_queue);
915 		spin_unlock(&pd->iosched.lock);
916 
917 		if (!bio)
918 			continue;
919 
920 		if (bio_data_dir(bio) == READ)
921 			pd->iosched.successive_reads +=
922 				bio->bi_iter.bi_size >> 10;
923 		else {
924 			pd->iosched.successive_reads = 0;
925 			pd->iosched.last_write = bio_end_sector(bio);
926 		}
927 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
928 			if (pd->read_speed == pd->write_speed) {
929 				pd->read_speed = MAX_SPEED;
930 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
931 			}
932 		} else {
933 			if (pd->read_speed != pd->write_speed) {
934 				pd->read_speed = pd->write_speed;
935 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
936 			}
937 		}
938 
939 		atomic_inc(&pd->cdrw.pending_bios);
940 		submit_bio_noacct(bio);
941 	}
942 }
943 
944 /*
945  * Special care is needed if the underlying block device has a small
946  * max_phys_segments value.
947  */
948 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
949 {
950 	struct device *ddev = disk_to_dev(pd->disk);
951 
952 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) {
953 		/*
954 		 * The cdrom device can handle one segment/frame
955 		 */
956 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
957 		return 0;
958 	}
959 
960 	if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) {
961 		/*
962 		 * We can handle this case at the expense of some extra memory
963 		 * copies during write operations
964 		 */
965 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
966 		return 0;
967 	}
968 
969 	dev_err(ddev, "cdrom max_phys_segments too small\n");
970 	return -EIO;
971 }
972 
973 static void pkt_end_io_read(struct bio *bio)
974 {
975 	struct packet_data *pkt = bio->bi_private;
976 	struct pktcdvd_device *pd = pkt->pd;
977 	BUG_ON(!pd);
978 
979 	dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n",
980 		bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status);
981 
982 	if (bio->bi_status)
983 		atomic_inc(&pkt->io_errors);
984 	bio_uninit(bio);
985 	if (atomic_dec_and_test(&pkt->io_wait)) {
986 		atomic_inc(&pkt->run_sm);
987 		wake_up(&pd->wqueue);
988 	}
989 	pkt_bio_finished(pd);
990 }
991 
992 static void pkt_end_io_packet_write(struct bio *bio)
993 {
994 	struct packet_data *pkt = bio->bi_private;
995 	struct pktcdvd_device *pd = pkt->pd;
996 	BUG_ON(!pd);
997 
998 	dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status);
999 
1000 	pd->stats.pkt_ended++;
1001 
1002 	bio_uninit(bio);
1003 	pkt_bio_finished(pd);
1004 	atomic_dec(&pkt->io_wait);
1005 	atomic_inc(&pkt->run_sm);
1006 	wake_up(&pd->wqueue);
1007 }
1008 
1009 /*
1010  * Schedule reads for the holes in a packet
1011  */
1012 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1013 {
1014 	struct device *ddev = disk_to_dev(pd->disk);
1015 	int frames_read = 0;
1016 	struct bio *bio;
1017 	int f;
1018 	char written[PACKET_MAX_SIZE];
1019 
1020 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1021 
1022 	atomic_set(&pkt->io_wait, 0);
1023 	atomic_set(&pkt->io_errors, 0);
1024 
1025 	/*
1026 	 * Figure out which frames we need to read before we can write.
1027 	 */
1028 	memset(written, 0, sizeof(written));
1029 	spin_lock(&pkt->lock);
1030 	bio_list_for_each(bio, &pkt->orig_bios) {
1031 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1032 			(CD_FRAMESIZE >> 9);
1033 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1034 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1035 		BUG_ON(first_frame < 0);
1036 		BUG_ON(first_frame + num_frames > pkt->frames);
1037 		for (f = first_frame; f < first_frame + num_frames; f++)
1038 			written[f] = 1;
1039 	}
1040 	spin_unlock(&pkt->lock);
1041 
1042 	if (pkt->cache_valid) {
1043 		dev_dbg(ddev, "zone %llx cached\n", pkt->sector);
1044 		goto out_account;
1045 	}
1046 
1047 	/*
1048 	 * Schedule reads for missing parts of the packet.
1049 	 */
1050 	for (f = 0; f < pkt->frames; f++) {
1051 		int p, offset;
1052 
1053 		if (written[f])
1054 			continue;
1055 
1056 		bio = pkt->r_bios[f];
1057 		bio_init(bio, file_bdev(pd->bdev_file), bio->bi_inline_vecs, 1,
1058 			 REQ_OP_READ);
1059 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1060 		bio->bi_end_io = pkt_end_io_read;
1061 		bio->bi_private = pkt;
1062 
1063 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1064 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1065 		dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f,
1066 			pkt->pages[p], offset);
1067 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1068 			BUG();
1069 
1070 		atomic_inc(&pkt->io_wait);
1071 		pkt_queue_bio(pd, bio);
1072 		frames_read++;
1073 	}
1074 
1075 out_account:
1076 	dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector);
1077 	pd->stats.pkt_started++;
1078 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1079 }
1080 
1081 /*
1082  * Find a packet matching zone, or the least recently used packet if
1083  * there is no match.
1084  */
1085 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1086 {
1087 	struct packet_data *pkt;
1088 
1089 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1090 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1091 			list_del_init(&pkt->list);
1092 			if (pkt->sector != zone)
1093 				pkt->cache_valid = 0;
1094 			return pkt;
1095 		}
1096 	}
1097 	BUG();
1098 	return NULL;
1099 }
1100 
1101 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1102 {
1103 	if (pkt->cache_valid) {
1104 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1105 	} else {
1106 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1107 	}
1108 }
1109 
1110 static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt,
1111 				 enum packet_data_state state)
1112 {
1113 	static const char *state_name[] = {
1114 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1115 	};
1116 	enum packet_data_state old_state = pkt->state;
1117 
1118 	dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n",
1119 		pkt->id, pkt->sector, state_name[old_state], state_name[state]);
1120 
1121 	pkt->state = state;
1122 }
1123 
1124 /*
1125  * Scan the work queue to see if we can start a new packet.
1126  * returns non-zero if any work was done.
1127  */
1128 static int pkt_handle_queue(struct pktcdvd_device *pd)
1129 {
1130 	struct device *ddev = disk_to_dev(pd->disk);
1131 	struct packet_data *pkt, *p;
1132 	struct bio *bio = NULL;
1133 	sector_t zone = 0; /* Suppress gcc warning */
1134 	struct pkt_rb_node *node, *first_node;
1135 	struct rb_node *n;
1136 
1137 	atomic_set(&pd->scan_queue, 0);
1138 
1139 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1140 		dev_dbg(ddev, "no pkt\n");
1141 		return 0;
1142 	}
1143 
1144 	/*
1145 	 * Try to find a zone we are not already working on.
1146 	 */
1147 	spin_lock(&pd->lock);
1148 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1149 	if (!first_node) {
1150 		n = rb_first(&pd->bio_queue);
1151 		if (n)
1152 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1153 	}
1154 	node = first_node;
1155 	while (node) {
1156 		bio = node->bio;
1157 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1158 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1159 			if (p->sector == zone) {
1160 				bio = NULL;
1161 				goto try_next_bio;
1162 			}
1163 		}
1164 		break;
1165 try_next_bio:
1166 		node = pkt_rbtree_next(node);
1167 		if (!node) {
1168 			n = rb_first(&pd->bio_queue);
1169 			if (n)
1170 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1171 		}
1172 		if (node == first_node)
1173 			node = NULL;
1174 	}
1175 	spin_unlock(&pd->lock);
1176 	if (!bio) {
1177 		dev_dbg(ddev, "no bio\n");
1178 		return 0;
1179 	}
1180 
1181 	pkt = pkt_get_packet_data(pd, zone);
1182 
1183 	pd->current_sector = zone + pd->settings.size;
1184 	pkt->sector = zone;
1185 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1186 	pkt->write_size = 0;
1187 
1188 	/*
1189 	 * Scan work queue for bios in the same zone and link them
1190 	 * to this packet.
1191 	 */
1192 	spin_lock(&pd->lock);
1193 	dev_dbg(ddev, "looking for zone %llx\n", zone);
1194 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1195 		sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd);
1196 
1197 		bio = node->bio;
1198 		dev_dbg(ddev, "found zone=%llx\n", tmp);
1199 		if (tmp != zone)
1200 			break;
1201 		pkt_rbtree_erase(pd, node);
1202 		spin_lock(&pkt->lock);
1203 		bio_list_add(&pkt->orig_bios, bio);
1204 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1205 		spin_unlock(&pkt->lock);
1206 	}
1207 	/* check write congestion marks, and if bio_queue_size is
1208 	 * below, wake up any waiters
1209 	 */
1210 	if (pd->congested &&
1211 	    pd->bio_queue_size <= pd->write_congestion_off) {
1212 		pd->congested = false;
1213 		wake_up_var(&pd->congested);
1214 	}
1215 	spin_unlock(&pd->lock);
1216 
1217 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1218 	pkt_set_state(ddev, pkt, PACKET_WAITING_STATE);
1219 	atomic_set(&pkt->run_sm, 1);
1220 
1221 	spin_lock(&pd->cdrw.active_list_lock);
1222 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1223 	spin_unlock(&pd->cdrw.active_list_lock);
1224 
1225 	return 1;
1226 }
1227 
1228 /**
1229  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1230  * another
1231  * @src: source bio list
1232  * @dst: destination bio list
1233  *
1234  * Stops when it reaches the end of either the @src list or @dst list - that is,
1235  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1236  * bios).
1237  */
1238 static void bio_list_copy_data(struct bio *dst, struct bio *src)
1239 {
1240 	struct bvec_iter src_iter = src->bi_iter;
1241 	struct bvec_iter dst_iter = dst->bi_iter;
1242 
1243 	while (1) {
1244 		if (!src_iter.bi_size) {
1245 			src = src->bi_next;
1246 			if (!src)
1247 				break;
1248 
1249 			src_iter = src->bi_iter;
1250 		}
1251 
1252 		if (!dst_iter.bi_size) {
1253 			dst = dst->bi_next;
1254 			if (!dst)
1255 				break;
1256 
1257 			dst_iter = dst->bi_iter;
1258 		}
1259 
1260 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1261 	}
1262 }
1263 
1264 /*
1265  * Assemble a bio to write one packet and queue the bio for processing
1266  * by the underlying block device.
1267  */
1268 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1269 {
1270 	struct device *ddev = disk_to_dev(pd->disk);
1271 	int f;
1272 
1273 	bio_init(pkt->w_bio, file_bdev(pd->bdev_file), pkt->w_bio->bi_inline_vecs,
1274 		 pkt->frames, REQ_OP_WRITE);
1275 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1276 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1277 	pkt->w_bio->bi_private = pkt;
1278 
1279 	/* XXX: locking? */
1280 	for (f = 0; f < pkt->frames; f++) {
1281 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1282 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1283 
1284 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1285 			BUG();
1286 	}
1287 	dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1288 
1289 	/*
1290 	 * Fill-in bvec with data from orig_bios.
1291 	 */
1292 	spin_lock(&pkt->lock);
1293 	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1294 
1295 	pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE);
1296 	spin_unlock(&pkt->lock);
1297 
1298 	dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector);
1299 
1300 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1301 		pkt->cache_valid = 1;
1302 	else
1303 		pkt->cache_valid = 0;
1304 
1305 	/* Start the write request */
1306 	atomic_set(&pkt->io_wait, 1);
1307 	pkt_queue_bio(pd, pkt->w_bio);
1308 }
1309 
1310 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1311 {
1312 	struct bio *bio;
1313 
1314 	if (status)
1315 		pkt->cache_valid = 0;
1316 
1317 	/* Finish all bios corresponding to this packet */
1318 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1319 		bio->bi_status = status;
1320 		bio_endio(bio);
1321 	}
1322 }
1323 
1324 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1325 {
1326 	struct device *ddev = disk_to_dev(pd->disk);
1327 
1328 	dev_dbg(ddev, "pkt %d\n", pkt->id);
1329 
1330 	for (;;) {
1331 		switch (pkt->state) {
1332 		case PACKET_WAITING_STATE:
1333 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1334 				return;
1335 
1336 			pkt->sleep_time = 0;
1337 			pkt_gather_data(pd, pkt);
1338 			pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE);
1339 			break;
1340 
1341 		case PACKET_READ_WAIT_STATE:
1342 			if (atomic_read(&pkt->io_wait) > 0)
1343 				return;
1344 
1345 			if (atomic_read(&pkt->io_errors) > 0) {
1346 				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1347 			} else {
1348 				pkt_start_write(pd, pkt);
1349 			}
1350 			break;
1351 
1352 		case PACKET_WRITE_WAIT_STATE:
1353 			if (atomic_read(&pkt->io_wait) > 0)
1354 				return;
1355 
1356 			if (!pkt->w_bio->bi_status) {
1357 				pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1358 			} else {
1359 				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1360 			}
1361 			break;
1362 
1363 		case PACKET_RECOVERY_STATE:
1364 			dev_dbg(ddev, "No recovery possible\n");
1365 			pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1366 			break;
1367 
1368 		case PACKET_FINISHED_STATE:
1369 			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1370 			return;
1371 
1372 		default:
1373 			BUG();
1374 			break;
1375 		}
1376 	}
1377 }
1378 
1379 static void pkt_handle_packets(struct pktcdvd_device *pd)
1380 {
1381 	struct device *ddev = disk_to_dev(pd->disk);
1382 	struct packet_data *pkt, *next;
1383 
1384 	/*
1385 	 * Run state machine for active packets
1386 	 */
1387 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1388 		if (atomic_read(&pkt->run_sm) > 0) {
1389 			atomic_set(&pkt->run_sm, 0);
1390 			pkt_run_state_machine(pd, pkt);
1391 		}
1392 	}
1393 
1394 	/*
1395 	 * Move no longer active packets to the free list
1396 	 */
1397 	spin_lock(&pd->cdrw.active_list_lock);
1398 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1399 		if (pkt->state == PACKET_FINISHED_STATE) {
1400 			list_del(&pkt->list);
1401 			pkt_put_packet_data(pd, pkt);
1402 			pkt_set_state(ddev, pkt, PACKET_IDLE_STATE);
1403 			atomic_set(&pd->scan_queue, 1);
1404 		}
1405 	}
1406 	spin_unlock(&pd->cdrw.active_list_lock);
1407 }
1408 
1409 /*
1410  * kcdrwd is woken up when writes have been queued for one of our
1411  * registered devices
1412  */
1413 static int kcdrwd(void *foobar)
1414 {
1415 	struct pktcdvd_device *pd = foobar;
1416 	struct device *ddev = disk_to_dev(pd->disk);
1417 	struct packet_data *pkt;
1418 	int states[PACKET_NUM_STATES];
1419 	long min_sleep_time, residue;
1420 
1421 	set_user_nice(current, MIN_NICE);
1422 	set_freezable();
1423 
1424 	for (;;) {
1425 		DECLARE_WAITQUEUE(wait, current);
1426 
1427 		/*
1428 		 * Wait until there is something to do
1429 		 */
1430 		add_wait_queue(&pd->wqueue, &wait);
1431 		for (;;) {
1432 			set_current_state(TASK_INTERRUPTIBLE);
1433 
1434 			/* Check if we need to run pkt_handle_queue */
1435 			if (atomic_read(&pd->scan_queue) > 0)
1436 				goto work_to_do;
1437 
1438 			/* Check if we need to run the state machine for some packet */
1439 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1440 				if (atomic_read(&pkt->run_sm) > 0)
1441 					goto work_to_do;
1442 			}
1443 
1444 			/* Check if we need to process the iosched queues */
1445 			if (atomic_read(&pd->iosched.attention) != 0)
1446 				goto work_to_do;
1447 
1448 			/* Otherwise, go to sleep */
1449 			pkt_count_states(pd, states);
1450 			dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1451 				states[0], states[1], states[2], states[3], states[4], states[5]);
1452 
1453 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1454 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1455 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1456 					min_sleep_time = pkt->sleep_time;
1457 			}
1458 
1459 			dev_dbg(ddev, "sleeping\n");
1460 			residue = schedule_timeout(min_sleep_time);
1461 			dev_dbg(ddev, "wake up\n");
1462 
1463 			/* make swsusp happy with our thread */
1464 			try_to_freeze();
1465 
1466 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1467 				if (!pkt->sleep_time)
1468 					continue;
1469 				pkt->sleep_time -= min_sleep_time - residue;
1470 				if (pkt->sleep_time <= 0) {
1471 					pkt->sleep_time = 0;
1472 					atomic_inc(&pkt->run_sm);
1473 				}
1474 			}
1475 
1476 			if (kthread_should_stop())
1477 				break;
1478 		}
1479 work_to_do:
1480 		set_current_state(TASK_RUNNING);
1481 		remove_wait_queue(&pd->wqueue, &wait);
1482 
1483 		if (kthread_should_stop())
1484 			break;
1485 
1486 		/*
1487 		 * if pkt_handle_queue returns true, we can queue
1488 		 * another request.
1489 		 */
1490 		while (pkt_handle_queue(pd))
1491 			;
1492 
1493 		/*
1494 		 * Handle packet state machine
1495 		 */
1496 		pkt_handle_packets(pd);
1497 
1498 		/*
1499 		 * Handle iosched queues
1500 		 */
1501 		pkt_iosched_process_queue(pd);
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 static void pkt_print_settings(struct pktcdvd_device *pd)
1508 {
1509 	dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n",
1510 		 pd->settings.fp ? "Fixed" : "Variable",
1511 		 pd->settings.size >> 2,
1512 		 pd->settings.block_mode == 8 ? '1' : '2');
1513 }
1514 
1515 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1516 {
1517 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1518 
1519 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1520 	cgc->cmd[2] = page_code | (page_control << 6);
1521 	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1522 	cgc->data_direction = CGC_DATA_READ;
1523 	return pkt_generic_packet(pd, cgc);
1524 }
1525 
1526 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1527 {
1528 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1529 	memset(cgc->buffer, 0, 2);
1530 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1531 	cgc->cmd[1] = 0x10;		/* PF */
1532 	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1533 	cgc->data_direction = CGC_DATA_WRITE;
1534 	return pkt_generic_packet(pd, cgc);
1535 }
1536 
1537 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1538 {
1539 	struct packet_command cgc;
1540 	int ret;
1541 
1542 	/* set up command and get the disc info */
1543 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1544 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1545 	cgc.cmd[8] = cgc.buflen = 2;
1546 	cgc.quiet = 1;
1547 
1548 	ret = pkt_generic_packet(pd, &cgc);
1549 	if (ret)
1550 		return ret;
1551 
1552 	/* not all drives have the same disc_info length, so requeue
1553 	 * packet with the length the drive tells us it can supply
1554 	 */
1555 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1556 		     sizeof(di->disc_information_length);
1557 
1558 	if (cgc.buflen > sizeof(disc_information))
1559 		cgc.buflen = sizeof(disc_information);
1560 
1561 	cgc.cmd[8] = cgc.buflen;
1562 	return pkt_generic_packet(pd, &cgc);
1563 }
1564 
1565 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1566 {
1567 	struct packet_command cgc;
1568 	int ret;
1569 
1570 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1571 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1572 	cgc.cmd[1] = type & 3;
1573 	put_unaligned_be16(track, &cgc.cmd[4]);
1574 	cgc.cmd[8] = 8;
1575 	cgc.quiet = 1;
1576 
1577 	ret = pkt_generic_packet(pd, &cgc);
1578 	if (ret)
1579 		return ret;
1580 
1581 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1582 		     sizeof(ti->track_information_length);
1583 
1584 	if (cgc.buflen > sizeof(track_information))
1585 		cgc.buflen = sizeof(track_information);
1586 
1587 	cgc.cmd[8] = cgc.buflen;
1588 	return pkt_generic_packet(pd, &cgc);
1589 }
1590 
1591 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1592 						long *last_written)
1593 {
1594 	disc_information di;
1595 	track_information ti;
1596 	__u32 last_track;
1597 	int ret;
1598 
1599 	ret = pkt_get_disc_info(pd, &di);
1600 	if (ret)
1601 		return ret;
1602 
1603 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1604 	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1605 	if (ret)
1606 		return ret;
1607 
1608 	/* if this track is blank, try the previous. */
1609 	if (ti.blank) {
1610 		last_track--;
1611 		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1612 		if (ret)
1613 			return ret;
1614 	}
1615 
1616 	/* if last recorded field is valid, return it. */
1617 	if (ti.lra_v) {
1618 		*last_written = be32_to_cpu(ti.last_rec_address);
1619 	} else {
1620 		/* make it up instead */
1621 		*last_written = be32_to_cpu(ti.track_start) +
1622 				be32_to_cpu(ti.track_size);
1623 		if (ti.free_blocks)
1624 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1625 	}
1626 	return 0;
1627 }
1628 
1629 /*
1630  * write mode select package based on pd->settings
1631  */
1632 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1633 {
1634 	struct device *ddev = disk_to_dev(pd->disk);
1635 	struct packet_command cgc;
1636 	struct scsi_sense_hdr sshdr;
1637 	write_param_page *wp;
1638 	char buffer[128];
1639 	int ret, size;
1640 
1641 	/* doesn't apply to DVD+RW or DVD-RAM */
1642 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1643 		return 0;
1644 
1645 	memset(buffer, 0, sizeof(buffer));
1646 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1647 	cgc.sshdr = &sshdr;
1648 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1649 	if (ret) {
1650 		pkt_dump_sense(pd, &cgc);
1651 		return ret;
1652 	}
1653 
1654 	size = 2 + get_unaligned_be16(&buffer[0]);
1655 	pd->mode_offset = get_unaligned_be16(&buffer[6]);
1656 	if (size > sizeof(buffer))
1657 		size = sizeof(buffer);
1658 
1659 	/*
1660 	 * now get it all
1661 	 */
1662 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1663 	cgc.sshdr = &sshdr;
1664 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1665 	if (ret) {
1666 		pkt_dump_sense(pd, &cgc);
1667 		return ret;
1668 	}
1669 
1670 	/*
1671 	 * write page is offset header + block descriptor length
1672 	 */
1673 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1674 
1675 	wp->fp = pd->settings.fp;
1676 	wp->track_mode = pd->settings.track_mode;
1677 	wp->write_type = pd->settings.write_type;
1678 	wp->data_block_type = pd->settings.block_mode;
1679 
1680 	wp->multi_session = 0;
1681 
1682 #ifdef PACKET_USE_LS
1683 	wp->link_size = 7;
1684 	wp->ls_v = 1;
1685 #endif
1686 
1687 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1688 		wp->session_format = 0;
1689 		wp->subhdr2 = 0x20;
1690 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1691 		wp->session_format = 0x20;
1692 		wp->subhdr2 = 8;
1693 #if 0
1694 		wp->mcn[0] = 0x80;
1695 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1696 #endif
1697 	} else {
1698 		/*
1699 		 * paranoia
1700 		 */
1701 		dev_err(ddev, "write mode wrong %d\n", wp->data_block_type);
1702 		return 1;
1703 	}
1704 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1705 
1706 	cgc.buflen = cgc.cmd[8] = size;
1707 	ret = pkt_mode_select(pd, &cgc);
1708 	if (ret) {
1709 		pkt_dump_sense(pd, &cgc);
1710 		return ret;
1711 	}
1712 
1713 	pkt_print_settings(pd);
1714 	return 0;
1715 }
1716 
1717 /*
1718  * 1 -- we can write to this track, 0 -- we can't
1719  */
1720 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1721 {
1722 	struct device *ddev = disk_to_dev(pd->disk);
1723 
1724 	switch (pd->mmc3_profile) {
1725 		case 0x1a: /* DVD+RW */
1726 		case 0x12: /* DVD-RAM */
1727 			/* The track is always writable on DVD+RW/DVD-RAM */
1728 			return 1;
1729 		default:
1730 			break;
1731 	}
1732 
1733 	if (!ti->packet || !ti->fp)
1734 		return 0;
1735 
1736 	/*
1737 	 * "good" settings as per Mt Fuji.
1738 	 */
1739 	if (ti->rt == 0 && ti->blank == 0)
1740 		return 1;
1741 
1742 	if (ti->rt == 0 && ti->blank == 1)
1743 		return 1;
1744 
1745 	if (ti->rt == 1 && ti->blank == 0)
1746 		return 1;
1747 
1748 	dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1749 	return 0;
1750 }
1751 
1752 /*
1753  * 1 -- we can write to this disc, 0 -- we can't
1754  */
1755 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1756 {
1757 	struct device *ddev = disk_to_dev(pd->disk);
1758 
1759 	switch (pd->mmc3_profile) {
1760 		case 0x0a: /* CD-RW */
1761 		case 0xffff: /* MMC3 not supported */
1762 			break;
1763 		case 0x1a: /* DVD+RW */
1764 		case 0x13: /* DVD-RW */
1765 		case 0x12: /* DVD-RAM */
1766 			return 1;
1767 		default:
1768 			dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile);
1769 			return 0;
1770 	}
1771 
1772 	/*
1773 	 * for disc type 0xff we should probably reserve a new track.
1774 	 * but i'm not sure, should we leave this to user apps? probably.
1775 	 */
1776 	if (di->disc_type == 0xff) {
1777 		dev_notice(ddev, "unknown disc - no track?\n");
1778 		return 0;
1779 	}
1780 
1781 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1782 		dev_err(ddev, "wrong disc type (%x)\n", di->disc_type);
1783 		return 0;
1784 	}
1785 
1786 	if (di->erasable == 0) {
1787 		dev_err(ddev, "disc not erasable\n");
1788 		return 0;
1789 	}
1790 
1791 	if (di->border_status == PACKET_SESSION_RESERVED) {
1792 		dev_err(ddev, "can't write to last track (reserved)\n");
1793 		return 0;
1794 	}
1795 
1796 	return 1;
1797 }
1798 
1799 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1800 {
1801 	struct device *ddev = disk_to_dev(pd->disk);
1802 	struct packet_command cgc;
1803 	unsigned char buf[12];
1804 	disc_information di;
1805 	track_information ti;
1806 	int ret, track;
1807 
1808 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1809 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1810 	cgc.cmd[8] = 8;
1811 	ret = pkt_generic_packet(pd, &cgc);
1812 	pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]);
1813 
1814 	memset(&di, 0, sizeof(disc_information));
1815 	memset(&ti, 0, sizeof(track_information));
1816 
1817 	ret = pkt_get_disc_info(pd, &di);
1818 	if (ret) {
1819 		dev_err(ddev, "failed get_disc\n");
1820 		return ret;
1821 	}
1822 
1823 	if (!pkt_writable_disc(pd, &di))
1824 		return -EROFS;
1825 
1826 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1827 
1828 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1829 	ret = pkt_get_track_info(pd, track, 1, &ti);
1830 	if (ret) {
1831 		dev_err(ddev, "failed get_track\n");
1832 		return ret;
1833 	}
1834 
1835 	if (!pkt_writable_track(pd, &ti)) {
1836 		dev_err(ddev, "can't write to this track\n");
1837 		return -EROFS;
1838 	}
1839 
1840 	/*
1841 	 * we keep packet size in 512 byte units, makes it easier to
1842 	 * deal with request calculations.
1843 	 */
1844 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1845 	if (pd->settings.size == 0) {
1846 		dev_notice(ddev, "detected zero packet size!\n");
1847 		return -ENXIO;
1848 	}
1849 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1850 		dev_err(ddev, "packet size is too big\n");
1851 		return -EROFS;
1852 	}
1853 	pd->settings.fp = ti.fp;
1854 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1855 
1856 	if (ti.nwa_v) {
1857 		pd->nwa = be32_to_cpu(ti.next_writable);
1858 		set_bit(PACKET_NWA_VALID, &pd->flags);
1859 	}
1860 
1861 	/*
1862 	 * in theory we could use lra on -RW media as well and just zero
1863 	 * blocks that haven't been written yet, but in practice that
1864 	 * is just a no-go. we'll use that for -R, naturally.
1865 	 */
1866 	if (ti.lra_v) {
1867 		pd->lra = be32_to_cpu(ti.last_rec_address);
1868 		set_bit(PACKET_LRA_VALID, &pd->flags);
1869 	} else {
1870 		pd->lra = 0xffffffff;
1871 		set_bit(PACKET_LRA_VALID, &pd->flags);
1872 	}
1873 
1874 	/*
1875 	 * fine for now
1876 	 */
1877 	pd->settings.link_loss = 7;
1878 	pd->settings.write_type = 0;	/* packet */
1879 	pd->settings.track_mode = ti.track_mode;
1880 
1881 	/*
1882 	 * mode1 or mode2 disc
1883 	 */
1884 	switch (ti.data_mode) {
1885 		case PACKET_MODE1:
1886 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1887 			break;
1888 		case PACKET_MODE2:
1889 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1890 			break;
1891 		default:
1892 			dev_err(ddev, "unknown data mode\n");
1893 			return -EROFS;
1894 	}
1895 	return 0;
1896 }
1897 
1898 /*
1899  * enable/disable write caching on drive
1900  */
1901 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd)
1902 {
1903 	struct device *ddev = disk_to_dev(pd->disk);
1904 	struct packet_command cgc;
1905 	struct scsi_sense_hdr sshdr;
1906 	unsigned char buf[64];
1907 	bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE);
1908 	int ret;
1909 
1910 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1911 	cgc.sshdr = &sshdr;
1912 	cgc.buflen = pd->mode_offset + 12;
1913 
1914 	/*
1915 	 * caching mode page might not be there, so quiet this command
1916 	 */
1917 	cgc.quiet = 1;
1918 
1919 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1920 	if (ret)
1921 		return ret;
1922 
1923 	/*
1924 	 * use drive write caching -- we need deferred error handling to be
1925 	 * able to successfully recover with this option (drive will return good
1926 	 * status as soon as the cdb is validated).
1927 	 */
1928 	buf[pd->mode_offset + 10] |= (set << 2);
1929 
1930 	cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]);
1931 	ret = pkt_mode_select(pd, &cgc);
1932 	if (ret) {
1933 		dev_err(ddev, "write caching control failed\n");
1934 		pkt_dump_sense(pd, &cgc);
1935 	} else if (!ret && set)
1936 		dev_notice(ddev, "enabled write caching\n");
1937 	return ret;
1938 }
1939 
1940 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1941 {
1942 	struct packet_command cgc;
1943 
1944 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1945 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1946 	cgc.cmd[4] = lockflag ? 1 : 0;
1947 	return pkt_generic_packet(pd, &cgc);
1948 }
1949 
1950 /*
1951  * Returns drive maximum write speed
1952  */
1953 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1954 						unsigned *write_speed)
1955 {
1956 	struct packet_command cgc;
1957 	struct scsi_sense_hdr sshdr;
1958 	unsigned char buf[256+18];
1959 	unsigned char *cap_buf;
1960 	int ret, offset;
1961 
1962 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1963 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1964 	cgc.sshdr = &sshdr;
1965 
1966 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1967 	if (ret) {
1968 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1969 			     sizeof(struct mode_page_header);
1970 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1971 		if (ret) {
1972 			pkt_dump_sense(pd, &cgc);
1973 			return ret;
1974 		}
1975 	}
1976 
1977 	offset = 20;			    /* Obsoleted field, used by older drives */
1978 	if (cap_buf[1] >= 28)
1979 		offset = 28;		    /* Current write speed selected */
1980 	if (cap_buf[1] >= 30) {
1981 		/* If the drive reports at least one "Logical Unit Write
1982 		 * Speed Performance Descriptor Block", use the information
1983 		 * in the first block. (contains the highest speed)
1984 		 */
1985 		int num_spdb = get_unaligned_be16(&cap_buf[30]);
1986 		if (num_spdb > 0)
1987 			offset = 34;
1988 	}
1989 
1990 	*write_speed = get_unaligned_be16(&cap_buf[offset]);
1991 	return 0;
1992 }
1993 
1994 /* These tables from cdrecord - I don't have orange book */
1995 /* standard speed CD-RW (1-4x) */
1996 static char clv_to_speed[16] = {
1997 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1998 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1999 };
2000 /* high speed CD-RW (-10x) */
2001 static char hs_clv_to_speed[16] = {
2002 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2003 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2004 };
2005 /* ultra high speed CD-RW */
2006 static char us_clv_to_speed[16] = {
2007 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2008 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2009 };
2010 
2011 /*
2012  * reads the maximum media speed from ATIP
2013  */
2014 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2015 						unsigned *speed)
2016 {
2017 	struct device *ddev = disk_to_dev(pd->disk);
2018 	struct packet_command cgc;
2019 	struct scsi_sense_hdr sshdr;
2020 	unsigned char buf[64];
2021 	unsigned int size, st, sp;
2022 	int ret;
2023 
2024 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2025 	cgc.sshdr = &sshdr;
2026 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2027 	cgc.cmd[1] = 2;
2028 	cgc.cmd[2] = 4; /* READ ATIP */
2029 	cgc.cmd[8] = 2;
2030 	ret = pkt_generic_packet(pd, &cgc);
2031 	if (ret) {
2032 		pkt_dump_sense(pd, &cgc);
2033 		return ret;
2034 	}
2035 	size = 2 + get_unaligned_be16(&buf[0]);
2036 	if (size > sizeof(buf))
2037 		size = sizeof(buf);
2038 
2039 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2040 	cgc.sshdr = &sshdr;
2041 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2042 	cgc.cmd[1] = 2;
2043 	cgc.cmd[2] = 4;
2044 	cgc.cmd[8] = size;
2045 	ret = pkt_generic_packet(pd, &cgc);
2046 	if (ret) {
2047 		pkt_dump_sense(pd, &cgc);
2048 		return ret;
2049 	}
2050 
2051 	if (!(buf[6] & 0x40)) {
2052 		dev_notice(ddev, "disc type is not CD-RW\n");
2053 		return 1;
2054 	}
2055 	if (!(buf[6] & 0x4)) {
2056 		dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n");
2057 		return 1;
2058 	}
2059 
2060 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2061 
2062 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2063 
2064 	/* Info from cdrecord */
2065 	switch (st) {
2066 		case 0: /* standard speed */
2067 			*speed = clv_to_speed[sp];
2068 			break;
2069 		case 1: /* high speed */
2070 			*speed = hs_clv_to_speed[sp];
2071 			break;
2072 		case 2: /* ultra high speed */
2073 			*speed = us_clv_to_speed[sp];
2074 			break;
2075 		default:
2076 			dev_notice(ddev, "unknown disc sub-type %d\n", st);
2077 			return 1;
2078 	}
2079 	if (*speed) {
2080 		dev_info(ddev, "maximum media speed: %d\n", *speed);
2081 		return 0;
2082 	} else {
2083 		dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st);
2084 		return 1;
2085 	}
2086 }
2087 
2088 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2089 {
2090 	struct device *ddev = disk_to_dev(pd->disk);
2091 	struct packet_command cgc;
2092 	struct scsi_sense_hdr sshdr;
2093 	int ret;
2094 
2095 	dev_dbg(ddev, "Performing OPC\n");
2096 
2097 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2098 	cgc.sshdr = &sshdr;
2099 	cgc.timeout = 60*HZ;
2100 	cgc.cmd[0] = GPCMD_SEND_OPC;
2101 	cgc.cmd[1] = 1;
2102 	ret = pkt_generic_packet(pd, &cgc);
2103 	if (ret)
2104 		pkt_dump_sense(pd, &cgc);
2105 	return ret;
2106 }
2107 
2108 static int pkt_open_write(struct pktcdvd_device *pd)
2109 {
2110 	struct device *ddev = disk_to_dev(pd->disk);
2111 	int ret;
2112 	unsigned int write_speed, media_write_speed, read_speed;
2113 
2114 	ret = pkt_probe_settings(pd);
2115 	if (ret) {
2116 		dev_dbg(ddev, "failed probe\n");
2117 		return ret;
2118 	}
2119 
2120 	ret = pkt_set_write_settings(pd);
2121 	if (ret) {
2122 		dev_notice(ddev, "failed saving write settings\n");
2123 		return -EIO;
2124 	}
2125 
2126 	pkt_write_caching(pd);
2127 
2128 	ret = pkt_get_max_speed(pd, &write_speed);
2129 	if (ret)
2130 		write_speed = 16 * 177;
2131 	switch (pd->mmc3_profile) {
2132 		case 0x13: /* DVD-RW */
2133 		case 0x1a: /* DVD+RW */
2134 		case 0x12: /* DVD-RAM */
2135 			dev_notice(ddev, "write speed %ukB/s\n", write_speed);
2136 			break;
2137 		default:
2138 			ret = pkt_media_speed(pd, &media_write_speed);
2139 			if (ret)
2140 				media_write_speed = 16;
2141 			write_speed = min(write_speed, media_write_speed * 177);
2142 			dev_notice(ddev, "write speed %ux\n", write_speed / 176);
2143 			break;
2144 	}
2145 	read_speed = write_speed;
2146 
2147 	ret = pkt_set_speed(pd, write_speed, read_speed);
2148 	if (ret) {
2149 		dev_notice(ddev, "couldn't set write speed\n");
2150 		return -EIO;
2151 	}
2152 	pd->write_speed = write_speed;
2153 	pd->read_speed = read_speed;
2154 
2155 	ret = pkt_perform_opc(pd);
2156 	if (ret)
2157 		dev_notice(ddev, "Optimum Power Calibration failed\n");
2158 
2159 	return 0;
2160 }
2161 
2162 /*
2163  * called at open time.
2164  */
2165 static int pkt_open_dev(struct pktcdvd_device *pd, bool write)
2166 {
2167 	struct device *ddev = disk_to_dev(pd->disk);
2168 	int ret;
2169 	long lba;
2170 	struct request_queue *q;
2171 	struct file *bdev_file;
2172 
2173 	/*
2174 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2175 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2176 	 * so open should not fail.
2177 	 */
2178 	bdev_file = bdev_file_open_by_dev(file_bdev(pd->bdev_file)->bd_dev,
2179 				       BLK_OPEN_READ, pd, NULL);
2180 	if (IS_ERR(bdev_file)) {
2181 		ret = PTR_ERR(bdev_file);
2182 		goto out;
2183 	}
2184 	pd->f_open_bdev = bdev_file;
2185 
2186 	ret = pkt_get_last_written(pd, &lba);
2187 	if (ret) {
2188 		dev_err(ddev, "pkt_get_last_written failed\n");
2189 		goto out_putdev;
2190 	}
2191 
2192 	set_capacity(pd->disk, lba << 2);
2193 	set_capacity_and_notify(file_bdev(pd->bdev_file)->bd_disk, lba << 2);
2194 
2195 	q = bdev_get_queue(file_bdev(pd->bdev_file));
2196 	if (write) {
2197 		ret = pkt_open_write(pd);
2198 		if (ret)
2199 			goto out_putdev;
2200 		set_bit(PACKET_WRITABLE, &pd->flags);
2201 	} else {
2202 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2203 		clear_bit(PACKET_WRITABLE, &pd->flags);
2204 	}
2205 
2206 	ret = pkt_set_segment_merging(pd, q);
2207 	if (ret)
2208 		goto out_putdev;
2209 
2210 	if (write) {
2211 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2212 			dev_err(ddev, "not enough memory for buffers\n");
2213 			ret = -ENOMEM;
2214 			goto out_putdev;
2215 		}
2216 		dev_info(ddev, "%lukB available on disc\n", lba << 1);
2217 	}
2218 
2219 	return 0;
2220 
2221 out_putdev:
2222 	fput(bdev_file);
2223 out:
2224 	return ret;
2225 }
2226 
2227 /*
2228  * called when the device is closed. makes sure that the device flushes
2229  * the internal cache before we close.
2230  */
2231 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2232 {
2233 	struct device *ddev = disk_to_dev(pd->disk);
2234 
2235 	if (flush && pkt_flush_cache(pd))
2236 		dev_notice(ddev, "not flushing cache\n");
2237 
2238 	pkt_lock_door(pd, 0);
2239 
2240 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2241 	fput(pd->f_open_bdev);
2242 	pd->f_open_bdev = NULL;
2243 
2244 	pkt_shrink_pktlist(pd);
2245 }
2246 
2247 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2248 {
2249 	if (dev_minor >= MAX_WRITERS)
2250 		return NULL;
2251 
2252 	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2253 	return pkt_devs[dev_minor];
2254 }
2255 
2256 static int pkt_open(struct gendisk *disk, blk_mode_t mode)
2257 {
2258 	struct pktcdvd_device *pd = NULL;
2259 	int ret;
2260 
2261 	mutex_lock(&pktcdvd_mutex);
2262 	mutex_lock(&ctl_mutex);
2263 	pd = pkt_find_dev_from_minor(disk->first_minor);
2264 	if (!pd) {
2265 		ret = -ENODEV;
2266 		goto out;
2267 	}
2268 	BUG_ON(pd->refcnt < 0);
2269 
2270 	pd->refcnt++;
2271 	if (pd->refcnt > 1) {
2272 		if ((mode & BLK_OPEN_WRITE) &&
2273 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2274 			ret = -EBUSY;
2275 			goto out_dec;
2276 		}
2277 	} else {
2278 		ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE);
2279 		if (ret)
2280 			goto out_dec;
2281 		/*
2282 		 * needed here as well, since ext2 (among others) may change
2283 		 * the blocksize at mount time
2284 		 */
2285 		set_blocksize(disk->part0, CD_FRAMESIZE);
2286 	}
2287 	mutex_unlock(&ctl_mutex);
2288 	mutex_unlock(&pktcdvd_mutex);
2289 	return 0;
2290 
2291 out_dec:
2292 	pd->refcnt--;
2293 out:
2294 	mutex_unlock(&ctl_mutex);
2295 	mutex_unlock(&pktcdvd_mutex);
2296 	return ret;
2297 }
2298 
2299 static void pkt_release(struct gendisk *disk)
2300 {
2301 	struct pktcdvd_device *pd = disk->private_data;
2302 
2303 	mutex_lock(&pktcdvd_mutex);
2304 	mutex_lock(&ctl_mutex);
2305 	pd->refcnt--;
2306 	BUG_ON(pd->refcnt < 0);
2307 	if (pd->refcnt == 0) {
2308 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2309 		pkt_release_dev(pd, flush);
2310 	}
2311 	mutex_unlock(&ctl_mutex);
2312 	mutex_unlock(&pktcdvd_mutex);
2313 }
2314 
2315 
2316 static void pkt_end_io_read_cloned(struct bio *bio)
2317 {
2318 	struct packet_stacked_data *psd = bio->bi_private;
2319 	struct pktcdvd_device *pd = psd->pd;
2320 
2321 	psd->bio->bi_status = bio->bi_status;
2322 	bio_put(bio);
2323 	bio_endio(psd->bio);
2324 	mempool_free(psd, &psd_pool);
2325 	pkt_bio_finished(pd);
2326 }
2327 
2328 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2329 {
2330 	struct bio *cloned_bio = bio_alloc_clone(file_bdev(pd->bdev_file), bio,
2331 		GFP_NOIO, &pkt_bio_set);
2332 	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2333 
2334 	psd->pd = pd;
2335 	psd->bio = bio;
2336 	cloned_bio->bi_private = psd;
2337 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2338 	pd->stats.secs_r += bio_sectors(bio);
2339 	pkt_queue_bio(pd, cloned_bio);
2340 }
2341 
2342 static void pkt_make_request_write(struct bio *bio)
2343 {
2344 	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data;
2345 	sector_t zone;
2346 	struct packet_data *pkt;
2347 	int was_empty, blocked_bio;
2348 	struct pkt_rb_node *node;
2349 
2350 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2351 
2352 	/*
2353 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2354 	 * just append this bio to that packet.
2355 	 */
2356 	spin_lock(&pd->cdrw.active_list_lock);
2357 	blocked_bio = 0;
2358 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2359 		if (pkt->sector == zone) {
2360 			spin_lock(&pkt->lock);
2361 			if ((pkt->state == PACKET_WAITING_STATE) ||
2362 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2363 				bio_list_add(&pkt->orig_bios, bio);
2364 				pkt->write_size +=
2365 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2366 				if ((pkt->write_size >= pkt->frames) &&
2367 				    (pkt->state == PACKET_WAITING_STATE)) {
2368 					atomic_inc(&pkt->run_sm);
2369 					wake_up(&pd->wqueue);
2370 				}
2371 				spin_unlock(&pkt->lock);
2372 				spin_unlock(&pd->cdrw.active_list_lock);
2373 				return;
2374 			} else {
2375 				blocked_bio = 1;
2376 			}
2377 			spin_unlock(&pkt->lock);
2378 		}
2379 	}
2380 	spin_unlock(&pd->cdrw.active_list_lock);
2381 
2382 	/*
2383 	 * Test if there is enough room left in the bio work queue
2384 	 * (queue size >= congestion on mark).
2385 	 * If not, wait till the work queue size is below the congestion off mark.
2386 	 */
2387 	spin_lock(&pd->lock);
2388 	if (pd->write_congestion_on > 0
2389 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2390 		struct wait_bit_queue_entry wqe;
2391 
2392 		init_wait_var_entry(&wqe, &pd->congested, 0);
2393 		for (;;) {
2394 			prepare_to_wait_event(__var_waitqueue(&pd->congested),
2395 					      &wqe.wq_entry,
2396 					      TASK_UNINTERRUPTIBLE);
2397 			if (pd->bio_queue_size <= pd->write_congestion_off)
2398 				break;
2399 			pd->congested = true;
2400 			spin_unlock(&pd->lock);
2401 			schedule();
2402 			spin_lock(&pd->lock);
2403 		}
2404 	}
2405 	spin_unlock(&pd->lock);
2406 
2407 	/*
2408 	 * No matching packet found. Store the bio in the work queue.
2409 	 */
2410 	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2411 	node->bio = bio;
2412 	spin_lock(&pd->lock);
2413 	BUG_ON(pd->bio_queue_size < 0);
2414 	was_empty = (pd->bio_queue_size == 0);
2415 	pkt_rbtree_insert(pd, node);
2416 	spin_unlock(&pd->lock);
2417 
2418 	/*
2419 	 * Wake up the worker thread.
2420 	 */
2421 	atomic_set(&pd->scan_queue, 1);
2422 	if (was_empty) {
2423 		/* This wake_up is required for correct operation */
2424 		wake_up(&pd->wqueue);
2425 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2426 		/*
2427 		 * This wake up is not required for correct operation,
2428 		 * but improves performance in some cases.
2429 		 */
2430 		wake_up(&pd->wqueue);
2431 	}
2432 }
2433 
2434 static void pkt_submit_bio(struct bio *bio)
2435 {
2436 	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data;
2437 	struct device *ddev = disk_to_dev(pd->disk);
2438 	struct bio *split;
2439 
2440 	bio = bio_split_to_limits(bio);
2441 	if (!bio)
2442 		return;
2443 
2444 	dev_dbg(ddev, "start = %6llx stop = %6llx\n",
2445 		bio->bi_iter.bi_sector, bio_end_sector(bio));
2446 
2447 	/*
2448 	 * Clone READ bios so we can have our own bi_end_io callback.
2449 	 */
2450 	if (bio_data_dir(bio) == READ) {
2451 		pkt_make_request_read(pd, bio);
2452 		return;
2453 	}
2454 
2455 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2456 		dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector);
2457 		goto end_io;
2458 	}
2459 
2460 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2461 		dev_err(ddev, "wrong bio size\n");
2462 		goto end_io;
2463 	}
2464 
2465 	do {
2466 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2467 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2468 
2469 		if (last_zone != zone) {
2470 			BUG_ON(last_zone != zone + pd->settings.size);
2471 
2472 			split = bio_split(bio, last_zone -
2473 					  bio->bi_iter.bi_sector,
2474 					  GFP_NOIO, &pkt_bio_set);
2475 			bio_chain(split, bio);
2476 		} else {
2477 			split = bio;
2478 		}
2479 
2480 		pkt_make_request_write(split);
2481 	} while (split != bio);
2482 
2483 	return;
2484 end_io:
2485 	bio_io_error(bio);
2486 }
2487 
2488 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2489 {
2490 	struct device *ddev = disk_to_dev(pd->disk);
2491 	int i;
2492 	struct file *bdev_file;
2493 	struct scsi_device *sdev;
2494 
2495 	if (pd->pkt_dev == dev) {
2496 		dev_err(ddev, "recursive setup not allowed\n");
2497 		return -EBUSY;
2498 	}
2499 	for (i = 0; i < MAX_WRITERS; i++) {
2500 		struct pktcdvd_device *pd2 = pkt_devs[i];
2501 		if (!pd2)
2502 			continue;
2503 		if (file_bdev(pd2->bdev_file)->bd_dev == dev) {
2504 			dev_err(ddev, "%pg already setup\n",
2505 				file_bdev(pd2->bdev_file));
2506 			return -EBUSY;
2507 		}
2508 		if (pd2->pkt_dev == dev) {
2509 			dev_err(ddev, "can't chain pktcdvd devices\n");
2510 			return -EBUSY;
2511 		}
2512 	}
2513 
2514 	bdev_file = bdev_file_open_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY,
2515 				       NULL, NULL);
2516 	if (IS_ERR(bdev_file))
2517 		return PTR_ERR(bdev_file);
2518 	sdev = scsi_device_from_queue(file_bdev(bdev_file)->bd_disk->queue);
2519 	if (!sdev) {
2520 		fput(bdev_file);
2521 		return -EINVAL;
2522 	}
2523 	put_device(&sdev->sdev_gendev);
2524 
2525 	/* This is safe, since we have a reference from open(). */
2526 	__module_get(THIS_MODULE);
2527 
2528 	pd->bdev_file = bdev_file;
2529 	set_blocksize(file_bdev(bdev_file), CD_FRAMESIZE);
2530 
2531 	atomic_set(&pd->cdrw.pending_bios, 0);
2532 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name);
2533 	if (IS_ERR(pd->cdrw.thread)) {
2534 		dev_err(ddev, "can't start kernel thread\n");
2535 		goto out_mem;
2536 	}
2537 
2538 	proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd);
2539 	dev_notice(ddev, "writer mapped to %pg\n", file_bdev(bdev_file));
2540 	return 0;
2541 
2542 out_mem:
2543 	fput(bdev_file);
2544 	/* This is safe: open() is still holding a reference. */
2545 	module_put(THIS_MODULE);
2546 	return -ENOMEM;
2547 }
2548 
2549 static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode,
2550 		unsigned int cmd, unsigned long arg)
2551 {
2552 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2553 	struct device *ddev = disk_to_dev(pd->disk);
2554 	int ret;
2555 
2556 	dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2557 
2558 	mutex_lock(&pktcdvd_mutex);
2559 	switch (cmd) {
2560 	case CDROMEJECT:
2561 		/*
2562 		 * The door gets locked when the device is opened, so we
2563 		 * have to unlock it or else the eject command fails.
2564 		 */
2565 		if (pd->refcnt == 1)
2566 			pkt_lock_door(pd, 0);
2567 		fallthrough;
2568 	/*
2569 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2570 	 */
2571 	case CDROMMULTISESSION:
2572 	case CDROMREADTOCENTRY:
2573 	case CDROM_LAST_WRITTEN:
2574 	case CDROM_SEND_PACKET:
2575 	case SCSI_IOCTL_SEND_COMMAND:
2576 		if (!bdev->bd_disk->fops->ioctl)
2577 			ret = -ENOTTY;
2578 		else
2579 			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2580 		break;
2581 	default:
2582 		dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd);
2583 		ret = -ENOTTY;
2584 	}
2585 	mutex_unlock(&pktcdvd_mutex);
2586 
2587 	return ret;
2588 }
2589 
2590 static unsigned int pkt_check_events(struct gendisk *disk,
2591 				     unsigned int clearing)
2592 {
2593 	struct pktcdvd_device *pd = disk->private_data;
2594 	struct gendisk *attached_disk;
2595 
2596 	if (!pd)
2597 		return 0;
2598 	if (!pd->bdev_file)
2599 		return 0;
2600 	attached_disk = file_bdev(pd->bdev_file)->bd_disk;
2601 	if (!attached_disk || !attached_disk->fops->check_events)
2602 		return 0;
2603 	return attached_disk->fops->check_events(attached_disk, clearing);
2604 }
2605 
2606 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2607 {
2608 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2609 }
2610 
2611 static const struct block_device_operations pktcdvd_ops = {
2612 	.owner =		THIS_MODULE,
2613 	.submit_bio =		pkt_submit_bio,
2614 	.open =			pkt_open,
2615 	.release =		pkt_release,
2616 	.ioctl =		pkt_ioctl,
2617 	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2618 	.check_events =		pkt_check_events,
2619 	.devnode =		pkt_devnode,
2620 };
2621 
2622 /*
2623  * Set up mapping from pktcdvd device to CD-ROM device.
2624  */
2625 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2626 {
2627 	struct queue_limits lim = {
2628 		.max_hw_sectors		= PACKET_MAX_SECTORS,
2629 		.logical_block_size	= CD_FRAMESIZE,
2630 	};
2631 	int idx;
2632 	int ret = -ENOMEM;
2633 	struct pktcdvd_device *pd;
2634 	struct gendisk *disk;
2635 
2636 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2637 
2638 	for (idx = 0; idx < MAX_WRITERS; idx++)
2639 		if (!pkt_devs[idx])
2640 			break;
2641 	if (idx == MAX_WRITERS) {
2642 		pr_err("max %d writers supported\n", MAX_WRITERS);
2643 		ret = -EBUSY;
2644 		goto out_mutex;
2645 	}
2646 
2647 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2648 	if (!pd)
2649 		goto out_mutex;
2650 
2651 	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2652 					sizeof(struct pkt_rb_node));
2653 	if (ret)
2654 		goto out_mem;
2655 
2656 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2657 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2658 	spin_lock_init(&pd->cdrw.active_list_lock);
2659 
2660 	spin_lock_init(&pd->lock);
2661 	spin_lock_init(&pd->iosched.lock);
2662 	bio_list_init(&pd->iosched.read_queue);
2663 	bio_list_init(&pd->iosched.write_queue);
2664 	init_waitqueue_head(&pd->wqueue);
2665 	pd->bio_queue = RB_ROOT;
2666 
2667 	pd->write_congestion_on  = write_congestion_on;
2668 	pd->write_congestion_off = write_congestion_off;
2669 
2670 	disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2671 	if (IS_ERR(disk)) {
2672 		ret = PTR_ERR(disk);
2673 		goto out_mem;
2674 	}
2675 	pd->disk = disk;
2676 	disk->major = pktdev_major;
2677 	disk->first_minor = idx;
2678 	disk->minors = 1;
2679 	disk->fops = &pktcdvd_ops;
2680 	disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2681 	snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx);
2682 	disk->private_data = pd;
2683 
2684 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2685 	ret = pkt_new_dev(pd, dev);
2686 	if (ret)
2687 		goto out_mem2;
2688 
2689 	/* inherit events of the host device */
2690 	disk->events = file_bdev(pd->bdev_file)->bd_disk->events;
2691 
2692 	ret = add_disk(disk);
2693 	if (ret)
2694 		goto out_mem2;
2695 
2696 	pkt_sysfs_dev_new(pd);
2697 	pkt_debugfs_dev_new(pd);
2698 
2699 	pkt_devs[idx] = pd;
2700 	if (pkt_dev)
2701 		*pkt_dev = pd->pkt_dev;
2702 
2703 	mutex_unlock(&ctl_mutex);
2704 	return 0;
2705 
2706 out_mem2:
2707 	put_disk(disk);
2708 out_mem:
2709 	mempool_exit(&pd->rb_pool);
2710 	kfree(pd);
2711 out_mutex:
2712 	mutex_unlock(&ctl_mutex);
2713 	pr_err("setup of pktcdvd device failed\n");
2714 	return ret;
2715 }
2716 
2717 /*
2718  * Tear down mapping from pktcdvd device to CD-ROM device.
2719  */
2720 static int pkt_remove_dev(dev_t pkt_dev)
2721 {
2722 	struct pktcdvd_device *pd;
2723 	struct device *ddev;
2724 	int idx;
2725 	int ret = 0;
2726 
2727 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2728 
2729 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2730 		pd = pkt_devs[idx];
2731 		if (pd && (pd->pkt_dev == pkt_dev))
2732 			break;
2733 	}
2734 	if (idx == MAX_WRITERS) {
2735 		pr_debug("dev not setup\n");
2736 		ret = -ENXIO;
2737 		goto out;
2738 	}
2739 
2740 	if (pd->refcnt > 0) {
2741 		ret = -EBUSY;
2742 		goto out;
2743 	}
2744 
2745 	ddev = disk_to_dev(pd->disk);
2746 
2747 	if (!IS_ERR(pd->cdrw.thread))
2748 		kthread_stop(pd->cdrw.thread);
2749 
2750 	pkt_devs[idx] = NULL;
2751 
2752 	pkt_debugfs_dev_remove(pd);
2753 	pkt_sysfs_dev_remove(pd);
2754 
2755 	fput(pd->bdev_file);
2756 
2757 	remove_proc_entry(pd->disk->disk_name, pkt_proc);
2758 	dev_notice(ddev, "writer unmapped\n");
2759 
2760 	del_gendisk(pd->disk);
2761 	put_disk(pd->disk);
2762 
2763 	mempool_exit(&pd->rb_pool);
2764 	kfree(pd);
2765 
2766 	/* This is safe: open() is still holding a reference. */
2767 	module_put(THIS_MODULE);
2768 
2769 out:
2770 	mutex_unlock(&ctl_mutex);
2771 	return ret;
2772 }
2773 
2774 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2775 {
2776 	struct pktcdvd_device *pd;
2777 
2778 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2779 
2780 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2781 	if (pd) {
2782 		ctrl_cmd->dev = new_encode_dev(file_bdev(pd->bdev_file)->bd_dev);
2783 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2784 	} else {
2785 		ctrl_cmd->dev = 0;
2786 		ctrl_cmd->pkt_dev = 0;
2787 	}
2788 	ctrl_cmd->num_devices = MAX_WRITERS;
2789 
2790 	mutex_unlock(&ctl_mutex);
2791 }
2792 
2793 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2794 {
2795 	void __user *argp = (void __user *)arg;
2796 	struct pkt_ctrl_command ctrl_cmd;
2797 	int ret = 0;
2798 	dev_t pkt_dev = 0;
2799 
2800 	if (cmd != PACKET_CTRL_CMD)
2801 		return -ENOTTY;
2802 
2803 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2804 		return -EFAULT;
2805 
2806 	switch (ctrl_cmd.command) {
2807 	case PKT_CTRL_CMD_SETUP:
2808 		if (!capable(CAP_SYS_ADMIN))
2809 			return -EPERM;
2810 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2811 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2812 		break;
2813 	case PKT_CTRL_CMD_TEARDOWN:
2814 		if (!capable(CAP_SYS_ADMIN))
2815 			return -EPERM;
2816 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2817 		break;
2818 	case PKT_CTRL_CMD_STATUS:
2819 		pkt_get_status(&ctrl_cmd);
2820 		break;
2821 	default:
2822 		return -ENOTTY;
2823 	}
2824 
2825 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2826 		return -EFAULT;
2827 	return ret;
2828 }
2829 
2830 #ifdef CONFIG_COMPAT
2831 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2832 {
2833 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2834 }
2835 #endif
2836 
2837 static const struct file_operations pkt_ctl_fops = {
2838 	.open		= nonseekable_open,
2839 	.unlocked_ioctl	= pkt_ctl_ioctl,
2840 #ifdef CONFIG_COMPAT
2841 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2842 #endif
2843 	.owner		= THIS_MODULE,
2844 	.llseek		= no_llseek,
2845 };
2846 
2847 static struct miscdevice pkt_misc = {
2848 	.minor 		= MISC_DYNAMIC_MINOR,
2849 	.name  		= DRIVER_NAME,
2850 	.nodename	= "pktcdvd/control",
2851 	.fops  		= &pkt_ctl_fops
2852 };
2853 
2854 static int __init pkt_init(void)
2855 {
2856 	int ret;
2857 
2858 	mutex_init(&ctl_mutex);
2859 
2860 	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2861 				    sizeof(struct packet_stacked_data));
2862 	if (ret)
2863 		return ret;
2864 	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2865 	if (ret) {
2866 		mempool_exit(&psd_pool);
2867 		return ret;
2868 	}
2869 
2870 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2871 	if (ret < 0) {
2872 		pr_err("unable to register block device\n");
2873 		goto out2;
2874 	}
2875 	if (!pktdev_major)
2876 		pktdev_major = ret;
2877 
2878 	ret = pkt_sysfs_init();
2879 	if (ret)
2880 		goto out;
2881 
2882 	pkt_debugfs_init();
2883 
2884 	ret = misc_register(&pkt_misc);
2885 	if (ret) {
2886 		pr_err("unable to register misc device\n");
2887 		goto out_misc;
2888 	}
2889 
2890 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2891 
2892 	return 0;
2893 
2894 out_misc:
2895 	pkt_debugfs_cleanup();
2896 	pkt_sysfs_cleanup();
2897 out:
2898 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2899 out2:
2900 	mempool_exit(&psd_pool);
2901 	bioset_exit(&pkt_bio_set);
2902 	return ret;
2903 }
2904 
2905 static void __exit pkt_exit(void)
2906 {
2907 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2908 	misc_deregister(&pkt_misc);
2909 
2910 	pkt_debugfs_cleanup();
2911 	pkt_sysfs_cleanup();
2912 
2913 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2914 	mempool_exit(&psd_pool);
2915 	bioset_exit(&pkt_bio_set);
2916 }
2917 
2918 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2919 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2920 MODULE_LICENSE("GPL");
2921 
2922 module_init(pkt_init);
2923 module_exit(pkt_exit);
2924