1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/pktcdvd.h> 50 #include <linux/module.h> 51 #include <linux/types.h> 52 #include <linux/kernel.h> 53 #include <linux/compat.h> 54 #include <linux/kthread.h> 55 #include <linux/errno.h> 56 #include <linux/spinlock.h> 57 #include <linux/file.h> 58 #include <linux/proc_fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/miscdevice.h> 61 #include <linux/freezer.h> 62 #include <linux/mutex.h> 63 #include <linux/slab.h> 64 #include <linux/backing-dev.h> 65 #include <scsi/scsi_cmnd.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsi.h> 68 #include <linux/debugfs.h> 69 #include <linux/device.h> 70 71 #include <asm/uaccess.h> 72 73 #define DRIVER_NAME "pktcdvd" 74 75 #define pkt_err(pd, fmt, ...) \ 76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__) 77 #define pkt_notice(pd, fmt, ...) \ 78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__) 79 #define pkt_info(pd, fmt, ...) \ 80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__) 81 82 #define pkt_dbg(level, pd, fmt, ...) \ 83 do { \ 84 if (level == 2 && PACKET_DEBUG >= 2) \ 85 pr_notice("%s: %s():" fmt, \ 86 pd->name, __func__, ##__VA_ARGS__); \ 87 else if (level == 1 && PACKET_DEBUG >= 1) \ 88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \ 89 } while (0) 90 91 #define MAX_SPEED 0xffff 92 93 static DEFINE_MUTEX(pktcdvd_mutex); 94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 95 static struct proc_dir_entry *pkt_proc; 96 static int pktdev_major; 97 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 99 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 100 static mempool_t *psd_pool; 101 102 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 103 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 104 105 /* forward declaration */ 106 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 107 static int pkt_remove_dev(dev_t pkt_dev); 108 static int pkt_seq_show(struct seq_file *m, void *p); 109 110 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd) 111 { 112 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1); 113 } 114 115 /* 116 * create and register a pktcdvd kernel object. 117 */ 118 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 119 const char* name, 120 struct kobject* parent, 121 struct kobj_type* ktype) 122 { 123 struct pktcdvd_kobj *p; 124 int error; 125 126 p = kzalloc(sizeof(*p), GFP_KERNEL); 127 if (!p) 128 return NULL; 129 p->pd = pd; 130 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 131 if (error) { 132 kobject_put(&p->kobj); 133 return NULL; 134 } 135 kobject_uevent(&p->kobj, KOBJ_ADD); 136 return p; 137 } 138 /* 139 * remove a pktcdvd kernel object. 140 */ 141 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 142 { 143 if (p) 144 kobject_put(&p->kobj); 145 } 146 /* 147 * default release function for pktcdvd kernel objects. 148 */ 149 static void pkt_kobj_release(struct kobject *kobj) 150 { 151 kfree(to_pktcdvdkobj(kobj)); 152 } 153 154 155 /********************************************************** 156 * 157 * sysfs interface for pktcdvd 158 * by (C) 2006 Thomas Maier <balagi@justmail.de> 159 * 160 **********************************************************/ 161 162 #define DEF_ATTR(_obj,_name,_mode) \ 163 static struct attribute _obj = { .name = _name, .mode = _mode } 164 165 /********************************************************** 166 /sys/class/pktcdvd/pktcdvd[0-7]/ 167 stat/reset 168 stat/packets_started 169 stat/packets_finished 170 stat/kb_written 171 stat/kb_read 172 stat/kb_read_gather 173 write_queue/size 174 write_queue/congestion_off 175 write_queue/congestion_on 176 **********************************************************/ 177 178 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 179 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 180 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 181 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 182 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 183 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 184 185 static struct attribute *kobj_pkt_attrs_stat[] = { 186 &kobj_pkt_attr_st1, 187 &kobj_pkt_attr_st2, 188 &kobj_pkt_attr_st3, 189 &kobj_pkt_attr_st4, 190 &kobj_pkt_attr_st5, 191 &kobj_pkt_attr_st6, 192 NULL 193 }; 194 195 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 196 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 197 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 198 199 static struct attribute *kobj_pkt_attrs_wqueue[] = { 200 &kobj_pkt_attr_wq1, 201 &kobj_pkt_attr_wq2, 202 &kobj_pkt_attr_wq3, 203 NULL 204 }; 205 206 static ssize_t kobj_pkt_show(struct kobject *kobj, 207 struct attribute *attr, char *data) 208 { 209 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 210 int n = 0; 211 int v; 212 if (strcmp(attr->name, "packets_started") == 0) { 213 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 214 215 } else if (strcmp(attr->name, "packets_finished") == 0) { 216 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 217 218 } else if (strcmp(attr->name, "kb_written") == 0) { 219 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 220 221 } else if (strcmp(attr->name, "kb_read") == 0) { 222 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 223 224 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 225 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 226 227 } else if (strcmp(attr->name, "size") == 0) { 228 spin_lock(&pd->lock); 229 v = pd->bio_queue_size; 230 spin_unlock(&pd->lock); 231 n = sprintf(data, "%d\n", v); 232 233 } else if (strcmp(attr->name, "congestion_off") == 0) { 234 spin_lock(&pd->lock); 235 v = pd->write_congestion_off; 236 spin_unlock(&pd->lock); 237 n = sprintf(data, "%d\n", v); 238 239 } else if (strcmp(attr->name, "congestion_on") == 0) { 240 spin_lock(&pd->lock); 241 v = pd->write_congestion_on; 242 spin_unlock(&pd->lock); 243 n = sprintf(data, "%d\n", v); 244 } 245 return n; 246 } 247 248 static void init_write_congestion_marks(int* lo, int* hi) 249 { 250 if (*hi > 0) { 251 *hi = max(*hi, 500); 252 *hi = min(*hi, 1000000); 253 if (*lo <= 0) 254 *lo = *hi - 100; 255 else { 256 *lo = min(*lo, *hi - 100); 257 *lo = max(*lo, 100); 258 } 259 } else { 260 *hi = -1; 261 *lo = -1; 262 } 263 } 264 265 static ssize_t kobj_pkt_store(struct kobject *kobj, 266 struct attribute *attr, 267 const char *data, size_t len) 268 { 269 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 270 int val; 271 272 if (strcmp(attr->name, "reset") == 0 && len > 0) { 273 pd->stats.pkt_started = 0; 274 pd->stats.pkt_ended = 0; 275 pd->stats.secs_w = 0; 276 pd->stats.secs_rg = 0; 277 pd->stats.secs_r = 0; 278 279 } else if (strcmp(attr->name, "congestion_off") == 0 280 && sscanf(data, "%d", &val) == 1) { 281 spin_lock(&pd->lock); 282 pd->write_congestion_off = val; 283 init_write_congestion_marks(&pd->write_congestion_off, 284 &pd->write_congestion_on); 285 spin_unlock(&pd->lock); 286 287 } else if (strcmp(attr->name, "congestion_on") == 0 288 && sscanf(data, "%d", &val) == 1) { 289 spin_lock(&pd->lock); 290 pd->write_congestion_on = val; 291 init_write_congestion_marks(&pd->write_congestion_off, 292 &pd->write_congestion_on); 293 spin_unlock(&pd->lock); 294 } 295 return len; 296 } 297 298 static const struct sysfs_ops kobj_pkt_ops = { 299 .show = kobj_pkt_show, 300 .store = kobj_pkt_store 301 }; 302 static struct kobj_type kobj_pkt_type_stat = { 303 .release = pkt_kobj_release, 304 .sysfs_ops = &kobj_pkt_ops, 305 .default_attrs = kobj_pkt_attrs_stat 306 }; 307 static struct kobj_type kobj_pkt_type_wqueue = { 308 .release = pkt_kobj_release, 309 .sysfs_ops = &kobj_pkt_ops, 310 .default_attrs = kobj_pkt_attrs_wqueue 311 }; 312 313 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 314 { 315 if (class_pktcdvd) { 316 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL, 317 "%s", pd->name); 318 if (IS_ERR(pd->dev)) 319 pd->dev = NULL; 320 } 321 if (pd->dev) { 322 pd->kobj_stat = pkt_kobj_create(pd, "stat", 323 &pd->dev->kobj, 324 &kobj_pkt_type_stat); 325 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 326 &pd->dev->kobj, 327 &kobj_pkt_type_wqueue); 328 } 329 } 330 331 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 332 { 333 pkt_kobj_remove(pd->kobj_stat); 334 pkt_kobj_remove(pd->kobj_wqueue); 335 if (class_pktcdvd) 336 device_unregister(pd->dev); 337 } 338 339 340 /******************************************************************** 341 /sys/class/pktcdvd/ 342 add map block device 343 remove unmap packet dev 344 device_map show mappings 345 *******************************************************************/ 346 347 static void class_pktcdvd_release(struct class *cls) 348 { 349 kfree(cls); 350 } 351 static ssize_t class_pktcdvd_show_map(struct class *c, 352 struct class_attribute *attr, 353 char *data) 354 { 355 int n = 0; 356 int idx; 357 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 358 for (idx = 0; idx < MAX_WRITERS; idx++) { 359 struct pktcdvd_device *pd = pkt_devs[idx]; 360 if (!pd) 361 continue; 362 n += sprintf(data+n, "%s %u:%u %u:%u\n", 363 pd->name, 364 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 365 MAJOR(pd->bdev->bd_dev), 366 MINOR(pd->bdev->bd_dev)); 367 } 368 mutex_unlock(&ctl_mutex); 369 return n; 370 } 371 372 static ssize_t class_pktcdvd_store_add(struct class *c, 373 struct class_attribute *attr, 374 const char *buf, 375 size_t count) 376 { 377 unsigned int major, minor; 378 379 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 380 /* pkt_setup_dev() expects caller to hold reference to self */ 381 if (!try_module_get(THIS_MODULE)) 382 return -ENODEV; 383 384 pkt_setup_dev(MKDEV(major, minor), NULL); 385 386 module_put(THIS_MODULE); 387 388 return count; 389 } 390 391 return -EINVAL; 392 } 393 394 static ssize_t class_pktcdvd_store_remove(struct class *c, 395 struct class_attribute *attr, 396 const char *buf, 397 size_t count) 398 { 399 unsigned int major, minor; 400 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 401 pkt_remove_dev(MKDEV(major, minor)); 402 return count; 403 } 404 return -EINVAL; 405 } 406 407 static struct class_attribute class_pktcdvd_attrs[] = { 408 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 409 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 410 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 411 __ATTR_NULL 412 }; 413 414 415 static int pkt_sysfs_init(void) 416 { 417 int ret = 0; 418 419 /* 420 * create control files in sysfs 421 * /sys/class/pktcdvd/... 422 */ 423 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 424 if (!class_pktcdvd) 425 return -ENOMEM; 426 class_pktcdvd->name = DRIVER_NAME; 427 class_pktcdvd->owner = THIS_MODULE; 428 class_pktcdvd->class_release = class_pktcdvd_release; 429 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 430 ret = class_register(class_pktcdvd); 431 if (ret) { 432 kfree(class_pktcdvd); 433 class_pktcdvd = NULL; 434 pr_err("failed to create class pktcdvd\n"); 435 return ret; 436 } 437 return 0; 438 } 439 440 static void pkt_sysfs_cleanup(void) 441 { 442 if (class_pktcdvd) 443 class_destroy(class_pktcdvd); 444 class_pktcdvd = NULL; 445 } 446 447 /******************************************************************** 448 entries in debugfs 449 450 /sys/kernel/debug/pktcdvd[0-7]/ 451 info 452 453 *******************************************************************/ 454 455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 456 { 457 return pkt_seq_show(m, p); 458 } 459 460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 461 { 462 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 463 } 464 465 static const struct file_operations debug_fops = { 466 .open = pkt_debugfs_fops_open, 467 .read = seq_read, 468 .llseek = seq_lseek, 469 .release = single_release, 470 .owner = THIS_MODULE, 471 }; 472 473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 474 { 475 if (!pkt_debugfs_root) 476 return; 477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 478 if (!pd->dfs_d_root) 479 return; 480 481 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 482 pd->dfs_d_root, pd, &debug_fops); 483 } 484 485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 486 { 487 if (!pkt_debugfs_root) 488 return; 489 debugfs_remove(pd->dfs_f_info); 490 debugfs_remove(pd->dfs_d_root); 491 pd->dfs_f_info = NULL; 492 pd->dfs_d_root = NULL; 493 } 494 495 static void pkt_debugfs_init(void) 496 { 497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 498 } 499 500 static void pkt_debugfs_cleanup(void) 501 { 502 debugfs_remove(pkt_debugfs_root); 503 pkt_debugfs_root = NULL; 504 } 505 506 /* ----------------------------------------------------------*/ 507 508 509 static void pkt_bio_finished(struct pktcdvd_device *pd) 510 { 511 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 512 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 513 pkt_dbg(2, pd, "queue empty\n"); 514 atomic_set(&pd->iosched.attention, 1); 515 wake_up(&pd->wqueue); 516 } 517 } 518 519 /* 520 * Allocate a packet_data struct 521 */ 522 static struct packet_data *pkt_alloc_packet_data(int frames) 523 { 524 int i; 525 struct packet_data *pkt; 526 527 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 528 if (!pkt) 529 goto no_pkt; 530 531 pkt->frames = frames; 532 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames); 533 if (!pkt->w_bio) 534 goto no_bio; 535 536 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 537 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 538 if (!pkt->pages[i]) 539 goto no_page; 540 } 541 542 spin_lock_init(&pkt->lock); 543 bio_list_init(&pkt->orig_bios); 544 545 for (i = 0; i < frames; i++) { 546 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1); 547 if (!bio) 548 goto no_rd_bio; 549 550 pkt->r_bios[i] = bio; 551 } 552 553 return pkt; 554 555 no_rd_bio: 556 for (i = 0; i < frames; i++) { 557 struct bio *bio = pkt->r_bios[i]; 558 if (bio) 559 bio_put(bio); 560 } 561 562 no_page: 563 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 564 if (pkt->pages[i]) 565 __free_page(pkt->pages[i]); 566 bio_put(pkt->w_bio); 567 no_bio: 568 kfree(pkt); 569 no_pkt: 570 return NULL; 571 } 572 573 /* 574 * Free a packet_data struct 575 */ 576 static void pkt_free_packet_data(struct packet_data *pkt) 577 { 578 int i; 579 580 for (i = 0; i < pkt->frames; i++) { 581 struct bio *bio = pkt->r_bios[i]; 582 if (bio) 583 bio_put(bio); 584 } 585 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 586 __free_page(pkt->pages[i]); 587 bio_put(pkt->w_bio); 588 kfree(pkt); 589 } 590 591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 592 { 593 struct packet_data *pkt, *next; 594 595 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 596 597 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 598 pkt_free_packet_data(pkt); 599 } 600 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 601 } 602 603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 604 { 605 struct packet_data *pkt; 606 607 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 608 609 while (nr_packets > 0) { 610 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 611 if (!pkt) { 612 pkt_shrink_pktlist(pd); 613 return 0; 614 } 615 pkt->id = nr_packets; 616 pkt->pd = pd; 617 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 618 nr_packets--; 619 } 620 return 1; 621 } 622 623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 624 { 625 struct rb_node *n = rb_next(&node->rb_node); 626 if (!n) 627 return NULL; 628 return rb_entry(n, struct pkt_rb_node, rb_node); 629 } 630 631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 632 { 633 rb_erase(&node->rb_node, &pd->bio_queue); 634 mempool_free(node, pd->rb_pool); 635 pd->bio_queue_size--; 636 BUG_ON(pd->bio_queue_size < 0); 637 } 638 639 /* 640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 641 */ 642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 643 { 644 struct rb_node *n = pd->bio_queue.rb_node; 645 struct rb_node *next; 646 struct pkt_rb_node *tmp; 647 648 if (!n) { 649 BUG_ON(pd->bio_queue_size > 0); 650 return NULL; 651 } 652 653 for (;;) { 654 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 655 if (s <= tmp->bio->bi_iter.bi_sector) 656 next = n->rb_left; 657 else 658 next = n->rb_right; 659 if (!next) 660 break; 661 n = next; 662 } 663 664 if (s > tmp->bio->bi_iter.bi_sector) { 665 tmp = pkt_rbtree_next(tmp); 666 if (!tmp) 667 return NULL; 668 } 669 BUG_ON(s > tmp->bio->bi_iter.bi_sector); 670 return tmp; 671 } 672 673 /* 674 * Insert a node into the pd->bio_queue rb tree. 675 */ 676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 677 { 678 struct rb_node **p = &pd->bio_queue.rb_node; 679 struct rb_node *parent = NULL; 680 sector_t s = node->bio->bi_iter.bi_sector; 681 struct pkt_rb_node *tmp; 682 683 while (*p) { 684 parent = *p; 685 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 686 if (s < tmp->bio->bi_iter.bi_sector) 687 p = &(*p)->rb_left; 688 else 689 p = &(*p)->rb_right; 690 } 691 rb_link_node(&node->rb_node, parent, p); 692 rb_insert_color(&node->rb_node, &pd->bio_queue); 693 pd->bio_queue_size++; 694 } 695 696 /* 697 * Send a packet_command to the underlying block device and 698 * wait for completion. 699 */ 700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 701 { 702 struct request_queue *q = bdev_get_queue(pd->bdev); 703 struct request *rq; 704 int ret = 0; 705 706 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 707 WRITE : READ, __GFP_WAIT); 708 if (IS_ERR(rq)) 709 return PTR_ERR(rq); 710 blk_rq_set_block_pc(rq); 711 712 if (cgc->buflen) { 713 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, 714 __GFP_WAIT); 715 if (ret) 716 goto out; 717 } 718 719 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 720 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 721 722 rq->timeout = 60*HZ; 723 if (cgc->quiet) 724 rq->cmd_flags |= REQ_QUIET; 725 726 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 727 if (rq->errors) 728 ret = -EIO; 729 out: 730 blk_put_request(rq); 731 return ret; 732 } 733 734 static const char *sense_key_string(__u8 index) 735 { 736 static const char * const info[] = { 737 "No sense", "Recovered error", "Not ready", 738 "Medium error", "Hardware error", "Illegal request", 739 "Unit attention", "Data protect", "Blank check", 740 }; 741 742 return index < ARRAY_SIZE(info) ? info[index] : "INVALID"; 743 } 744 745 /* 746 * A generic sense dump / resolve mechanism should be implemented across 747 * all ATAPI + SCSI devices. 748 */ 749 static void pkt_dump_sense(struct pktcdvd_device *pd, 750 struct packet_command *cgc) 751 { 752 struct request_sense *sense = cgc->sense; 753 754 if (sense) 755 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n", 756 CDROM_PACKET_SIZE, cgc->cmd, 757 sense->sense_key, sense->asc, sense->ascq, 758 sense_key_string(sense->sense_key)); 759 else 760 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd); 761 } 762 763 /* 764 * flush the drive cache to media 765 */ 766 static int pkt_flush_cache(struct pktcdvd_device *pd) 767 { 768 struct packet_command cgc; 769 770 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 771 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 772 cgc.quiet = 1; 773 774 /* 775 * the IMMED bit -- we default to not setting it, although that 776 * would allow a much faster close, this is safer 777 */ 778 #if 0 779 cgc.cmd[1] = 1 << 1; 780 #endif 781 return pkt_generic_packet(pd, &cgc); 782 } 783 784 /* 785 * speed is given as the normal factor, e.g. 4 for 4x 786 */ 787 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 788 unsigned write_speed, unsigned read_speed) 789 { 790 struct packet_command cgc; 791 struct request_sense sense; 792 int ret; 793 794 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 795 cgc.sense = &sense; 796 cgc.cmd[0] = GPCMD_SET_SPEED; 797 cgc.cmd[2] = (read_speed >> 8) & 0xff; 798 cgc.cmd[3] = read_speed & 0xff; 799 cgc.cmd[4] = (write_speed >> 8) & 0xff; 800 cgc.cmd[5] = write_speed & 0xff; 801 802 if ((ret = pkt_generic_packet(pd, &cgc))) 803 pkt_dump_sense(pd, &cgc); 804 805 return ret; 806 } 807 808 /* 809 * Queue a bio for processing by the low-level CD device. Must be called 810 * from process context. 811 */ 812 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 813 { 814 spin_lock(&pd->iosched.lock); 815 if (bio_data_dir(bio) == READ) 816 bio_list_add(&pd->iosched.read_queue, bio); 817 else 818 bio_list_add(&pd->iosched.write_queue, bio); 819 spin_unlock(&pd->iosched.lock); 820 821 atomic_set(&pd->iosched.attention, 1); 822 wake_up(&pd->wqueue); 823 } 824 825 /* 826 * Process the queued read/write requests. This function handles special 827 * requirements for CDRW drives: 828 * - A cache flush command must be inserted before a read request if the 829 * previous request was a write. 830 * - Switching between reading and writing is slow, so don't do it more often 831 * than necessary. 832 * - Optimize for throughput at the expense of latency. This means that streaming 833 * writes will never be interrupted by a read, but if the drive has to seek 834 * before the next write, switch to reading instead if there are any pending 835 * read requests. 836 * - Set the read speed according to current usage pattern. When only reading 837 * from the device, it's best to use the highest possible read speed, but 838 * when switching often between reading and writing, it's better to have the 839 * same read and write speeds. 840 */ 841 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 842 { 843 844 if (atomic_read(&pd->iosched.attention) == 0) 845 return; 846 atomic_set(&pd->iosched.attention, 0); 847 848 for (;;) { 849 struct bio *bio; 850 int reads_queued, writes_queued; 851 852 spin_lock(&pd->iosched.lock); 853 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 854 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 855 spin_unlock(&pd->iosched.lock); 856 857 if (!reads_queued && !writes_queued) 858 break; 859 860 if (pd->iosched.writing) { 861 int need_write_seek = 1; 862 spin_lock(&pd->iosched.lock); 863 bio = bio_list_peek(&pd->iosched.write_queue); 864 spin_unlock(&pd->iosched.lock); 865 if (bio && (bio->bi_iter.bi_sector == 866 pd->iosched.last_write)) 867 need_write_seek = 0; 868 if (need_write_seek && reads_queued) { 869 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 870 pkt_dbg(2, pd, "write, waiting\n"); 871 break; 872 } 873 pkt_flush_cache(pd); 874 pd->iosched.writing = 0; 875 } 876 } else { 877 if (!reads_queued && writes_queued) { 878 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 879 pkt_dbg(2, pd, "read, waiting\n"); 880 break; 881 } 882 pd->iosched.writing = 1; 883 } 884 } 885 886 spin_lock(&pd->iosched.lock); 887 if (pd->iosched.writing) 888 bio = bio_list_pop(&pd->iosched.write_queue); 889 else 890 bio = bio_list_pop(&pd->iosched.read_queue); 891 spin_unlock(&pd->iosched.lock); 892 893 if (!bio) 894 continue; 895 896 if (bio_data_dir(bio) == READ) 897 pd->iosched.successive_reads += 898 bio->bi_iter.bi_size >> 10; 899 else { 900 pd->iosched.successive_reads = 0; 901 pd->iosched.last_write = bio_end_sector(bio); 902 } 903 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 904 if (pd->read_speed == pd->write_speed) { 905 pd->read_speed = MAX_SPEED; 906 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 907 } 908 } else { 909 if (pd->read_speed != pd->write_speed) { 910 pd->read_speed = pd->write_speed; 911 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 912 } 913 } 914 915 atomic_inc(&pd->cdrw.pending_bios); 916 generic_make_request(bio); 917 } 918 } 919 920 /* 921 * Special care is needed if the underlying block device has a small 922 * max_phys_segments value. 923 */ 924 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 925 { 926 if ((pd->settings.size << 9) / CD_FRAMESIZE 927 <= queue_max_segments(q)) { 928 /* 929 * The cdrom device can handle one segment/frame 930 */ 931 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 932 return 0; 933 } else if ((pd->settings.size << 9) / PAGE_SIZE 934 <= queue_max_segments(q)) { 935 /* 936 * We can handle this case at the expense of some extra memory 937 * copies during write operations 938 */ 939 set_bit(PACKET_MERGE_SEGS, &pd->flags); 940 return 0; 941 } else { 942 pkt_err(pd, "cdrom max_phys_segments too small\n"); 943 return -EIO; 944 } 945 } 946 947 /* 948 * Copy all data for this packet to pkt->pages[], so that 949 * a) The number of required segments for the write bio is minimized, which 950 * is necessary for some scsi controllers. 951 * b) The data can be used as cache to avoid read requests if we receive a 952 * new write request for the same zone. 953 */ 954 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 955 { 956 int f, p, offs; 957 958 /* Copy all data to pkt->pages[] */ 959 p = 0; 960 offs = 0; 961 for (f = 0; f < pkt->frames; f++) { 962 if (bvec[f].bv_page != pkt->pages[p]) { 963 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset; 964 void *vto = page_address(pkt->pages[p]) + offs; 965 memcpy(vto, vfrom, CD_FRAMESIZE); 966 kunmap_atomic(vfrom); 967 bvec[f].bv_page = pkt->pages[p]; 968 bvec[f].bv_offset = offs; 969 } else { 970 BUG_ON(bvec[f].bv_offset != offs); 971 } 972 offs += CD_FRAMESIZE; 973 if (offs >= PAGE_SIZE) { 974 offs = 0; 975 p++; 976 } 977 } 978 } 979 980 static void pkt_end_io_read(struct bio *bio, int err) 981 { 982 struct packet_data *pkt = bio->bi_private; 983 struct pktcdvd_device *pd = pkt->pd; 984 BUG_ON(!pd); 985 986 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n", 987 bio, (unsigned long long)pkt->sector, 988 (unsigned long long)bio->bi_iter.bi_sector, err); 989 990 if (err) 991 atomic_inc(&pkt->io_errors); 992 if (atomic_dec_and_test(&pkt->io_wait)) { 993 atomic_inc(&pkt->run_sm); 994 wake_up(&pd->wqueue); 995 } 996 pkt_bio_finished(pd); 997 } 998 999 static void pkt_end_io_packet_write(struct bio *bio, int err) 1000 { 1001 struct packet_data *pkt = bio->bi_private; 1002 struct pktcdvd_device *pd = pkt->pd; 1003 BUG_ON(!pd); 1004 1005 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err); 1006 1007 pd->stats.pkt_ended++; 1008 1009 pkt_bio_finished(pd); 1010 atomic_dec(&pkt->io_wait); 1011 atomic_inc(&pkt->run_sm); 1012 wake_up(&pd->wqueue); 1013 } 1014 1015 /* 1016 * Schedule reads for the holes in a packet 1017 */ 1018 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1019 { 1020 int frames_read = 0; 1021 struct bio *bio; 1022 int f; 1023 char written[PACKET_MAX_SIZE]; 1024 1025 BUG_ON(bio_list_empty(&pkt->orig_bios)); 1026 1027 atomic_set(&pkt->io_wait, 0); 1028 atomic_set(&pkt->io_errors, 0); 1029 1030 /* 1031 * Figure out which frames we need to read before we can write. 1032 */ 1033 memset(written, 0, sizeof(written)); 1034 spin_lock(&pkt->lock); 1035 bio_list_for_each(bio, &pkt->orig_bios) { 1036 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) / 1037 (CD_FRAMESIZE >> 9); 1038 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE; 1039 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1040 BUG_ON(first_frame < 0); 1041 BUG_ON(first_frame + num_frames > pkt->frames); 1042 for (f = first_frame; f < first_frame + num_frames; f++) 1043 written[f] = 1; 1044 } 1045 spin_unlock(&pkt->lock); 1046 1047 if (pkt->cache_valid) { 1048 pkt_dbg(2, pd, "zone %llx cached\n", 1049 (unsigned long long)pkt->sector); 1050 goto out_account; 1051 } 1052 1053 /* 1054 * Schedule reads for missing parts of the packet. 1055 */ 1056 for (f = 0; f < pkt->frames; f++) { 1057 int p, offset; 1058 1059 if (written[f]) 1060 continue; 1061 1062 bio = pkt->r_bios[f]; 1063 bio_reset(bio); 1064 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1065 bio->bi_bdev = pd->bdev; 1066 bio->bi_end_io = pkt_end_io_read; 1067 bio->bi_private = pkt; 1068 1069 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1070 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1071 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n", 1072 f, pkt->pages[p], offset); 1073 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1074 BUG(); 1075 1076 atomic_inc(&pkt->io_wait); 1077 bio->bi_rw = READ; 1078 pkt_queue_bio(pd, bio); 1079 frames_read++; 1080 } 1081 1082 out_account: 1083 pkt_dbg(2, pd, "need %d frames for zone %llx\n", 1084 frames_read, (unsigned long long)pkt->sector); 1085 pd->stats.pkt_started++; 1086 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1087 } 1088 1089 /* 1090 * Find a packet matching zone, or the least recently used packet if 1091 * there is no match. 1092 */ 1093 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1094 { 1095 struct packet_data *pkt; 1096 1097 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1098 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1099 list_del_init(&pkt->list); 1100 if (pkt->sector != zone) 1101 pkt->cache_valid = 0; 1102 return pkt; 1103 } 1104 } 1105 BUG(); 1106 return NULL; 1107 } 1108 1109 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1110 { 1111 if (pkt->cache_valid) { 1112 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1113 } else { 1114 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1115 } 1116 } 1117 1118 /* 1119 * recover a failed write, query for relocation if possible 1120 * 1121 * returns 1 if recovery is possible, or 0 if not 1122 * 1123 */ 1124 static int pkt_start_recovery(struct packet_data *pkt) 1125 { 1126 /* 1127 * FIXME. We need help from the file system to implement 1128 * recovery handling. 1129 */ 1130 return 0; 1131 #if 0 1132 struct request *rq = pkt->rq; 1133 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1134 struct block_device *pkt_bdev; 1135 struct super_block *sb = NULL; 1136 unsigned long old_block, new_block; 1137 sector_t new_sector; 1138 1139 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1140 if (pkt_bdev) { 1141 sb = get_super(pkt_bdev); 1142 bdput(pkt_bdev); 1143 } 1144 1145 if (!sb) 1146 return 0; 1147 1148 if (!sb->s_op->relocate_blocks) 1149 goto out; 1150 1151 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1152 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1153 goto out; 1154 1155 new_sector = new_block * (CD_FRAMESIZE >> 9); 1156 pkt->sector = new_sector; 1157 1158 bio_reset(pkt->bio); 1159 pkt->bio->bi_bdev = pd->bdev; 1160 pkt->bio->bi_rw = REQ_WRITE; 1161 pkt->bio->bi_iter.bi_sector = new_sector; 1162 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE; 1163 pkt->bio->bi_vcnt = pkt->frames; 1164 1165 pkt->bio->bi_end_io = pkt_end_io_packet_write; 1166 pkt->bio->bi_private = pkt; 1167 1168 drop_super(sb); 1169 return 1; 1170 1171 out: 1172 drop_super(sb); 1173 return 0; 1174 #endif 1175 } 1176 1177 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1178 { 1179 #if PACKET_DEBUG > 1 1180 static const char *state_name[] = { 1181 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1182 }; 1183 enum packet_data_state old_state = pkt->state; 1184 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n", 1185 pkt->id, (unsigned long long)pkt->sector, 1186 state_name[old_state], state_name[state]); 1187 #endif 1188 pkt->state = state; 1189 } 1190 1191 /* 1192 * Scan the work queue to see if we can start a new packet. 1193 * returns non-zero if any work was done. 1194 */ 1195 static int pkt_handle_queue(struct pktcdvd_device *pd) 1196 { 1197 struct packet_data *pkt, *p; 1198 struct bio *bio = NULL; 1199 sector_t zone = 0; /* Suppress gcc warning */ 1200 struct pkt_rb_node *node, *first_node; 1201 struct rb_node *n; 1202 int wakeup; 1203 1204 atomic_set(&pd->scan_queue, 0); 1205 1206 if (list_empty(&pd->cdrw.pkt_free_list)) { 1207 pkt_dbg(2, pd, "no pkt\n"); 1208 return 0; 1209 } 1210 1211 /* 1212 * Try to find a zone we are not already working on. 1213 */ 1214 spin_lock(&pd->lock); 1215 first_node = pkt_rbtree_find(pd, pd->current_sector); 1216 if (!first_node) { 1217 n = rb_first(&pd->bio_queue); 1218 if (n) 1219 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1220 } 1221 node = first_node; 1222 while (node) { 1223 bio = node->bio; 1224 zone = get_zone(bio->bi_iter.bi_sector, pd); 1225 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1226 if (p->sector == zone) { 1227 bio = NULL; 1228 goto try_next_bio; 1229 } 1230 } 1231 break; 1232 try_next_bio: 1233 node = pkt_rbtree_next(node); 1234 if (!node) { 1235 n = rb_first(&pd->bio_queue); 1236 if (n) 1237 node = rb_entry(n, struct pkt_rb_node, rb_node); 1238 } 1239 if (node == first_node) 1240 node = NULL; 1241 } 1242 spin_unlock(&pd->lock); 1243 if (!bio) { 1244 pkt_dbg(2, pd, "no bio\n"); 1245 return 0; 1246 } 1247 1248 pkt = pkt_get_packet_data(pd, zone); 1249 1250 pd->current_sector = zone + pd->settings.size; 1251 pkt->sector = zone; 1252 BUG_ON(pkt->frames != pd->settings.size >> 2); 1253 pkt->write_size = 0; 1254 1255 /* 1256 * Scan work queue for bios in the same zone and link them 1257 * to this packet. 1258 */ 1259 spin_lock(&pd->lock); 1260 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone); 1261 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1262 bio = node->bio; 1263 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long) 1264 get_zone(bio->bi_iter.bi_sector, pd)); 1265 if (get_zone(bio->bi_iter.bi_sector, pd) != zone) 1266 break; 1267 pkt_rbtree_erase(pd, node); 1268 spin_lock(&pkt->lock); 1269 bio_list_add(&pkt->orig_bios, bio); 1270 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE; 1271 spin_unlock(&pkt->lock); 1272 } 1273 /* check write congestion marks, and if bio_queue_size is 1274 below, wake up any waiters */ 1275 wakeup = (pd->write_congestion_on > 0 1276 && pd->bio_queue_size <= pd->write_congestion_off); 1277 spin_unlock(&pd->lock); 1278 if (wakeup) { 1279 clear_bdi_congested(&pd->disk->queue->backing_dev_info, 1280 BLK_RW_ASYNC); 1281 } 1282 1283 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1284 pkt_set_state(pkt, PACKET_WAITING_STATE); 1285 atomic_set(&pkt->run_sm, 1); 1286 1287 spin_lock(&pd->cdrw.active_list_lock); 1288 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1289 spin_unlock(&pd->cdrw.active_list_lock); 1290 1291 return 1; 1292 } 1293 1294 /* 1295 * Assemble a bio to write one packet and queue the bio for processing 1296 * by the underlying block device. 1297 */ 1298 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1299 { 1300 int f; 1301 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1302 1303 bio_reset(pkt->w_bio); 1304 pkt->w_bio->bi_iter.bi_sector = pkt->sector; 1305 pkt->w_bio->bi_bdev = pd->bdev; 1306 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1307 pkt->w_bio->bi_private = pkt; 1308 1309 /* XXX: locking? */ 1310 for (f = 0; f < pkt->frames; f++) { 1311 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1312 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1313 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1314 BUG(); 1315 } 1316 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt); 1317 1318 /* 1319 * Fill-in bvec with data from orig_bios. 1320 */ 1321 spin_lock(&pkt->lock); 1322 bio_copy_data(pkt->w_bio, pkt->orig_bios.head); 1323 1324 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1325 spin_unlock(&pkt->lock); 1326 1327 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n", 1328 pkt->write_size, (unsigned long long)pkt->sector); 1329 1330 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1331 pkt_make_local_copy(pkt, bvec); 1332 pkt->cache_valid = 1; 1333 } else { 1334 pkt->cache_valid = 0; 1335 } 1336 1337 /* Start the write request */ 1338 atomic_set(&pkt->io_wait, 1); 1339 pkt->w_bio->bi_rw = WRITE; 1340 pkt_queue_bio(pd, pkt->w_bio); 1341 } 1342 1343 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1344 { 1345 struct bio *bio; 1346 1347 if (!uptodate) 1348 pkt->cache_valid = 0; 1349 1350 /* Finish all bios corresponding to this packet */ 1351 while ((bio = bio_list_pop(&pkt->orig_bios))) 1352 bio_endio(bio, uptodate ? 0 : -EIO); 1353 } 1354 1355 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1356 { 1357 int uptodate; 1358 1359 pkt_dbg(2, pd, "pkt %d\n", pkt->id); 1360 1361 for (;;) { 1362 switch (pkt->state) { 1363 case PACKET_WAITING_STATE: 1364 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1365 return; 1366 1367 pkt->sleep_time = 0; 1368 pkt_gather_data(pd, pkt); 1369 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1370 break; 1371 1372 case PACKET_READ_WAIT_STATE: 1373 if (atomic_read(&pkt->io_wait) > 0) 1374 return; 1375 1376 if (atomic_read(&pkt->io_errors) > 0) { 1377 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1378 } else { 1379 pkt_start_write(pd, pkt); 1380 } 1381 break; 1382 1383 case PACKET_WRITE_WAIT_STATE: 1384 if (atomic_read(&pkt->io_wait) > 0) 1385 return; 1386 1387 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1388 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1389 } else { 1390 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1391 } 1392 break; 1393 1394 case PACKET_RECOVERY_STATE: 1395 if (pkt_start_recovery(pkt)) { 1396 pkt_start_write(pd, pkt); 1397 } else { 1398 pkt_dbg(2, pd, "No recovery possible\n"); 1399 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1400 } 1401 break; 1402 1403 case PACKET_FINISHED_STATE: 1404 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1405 pkt_finish_packet(pkt, uptodate); 1406 return; 1407 1408 default: 1409 BUG(); 1410 break; 1411 } 1412 } 1413 } 1414 1415 static void pkt_handle_packets(struct pktcdvd_device *pd) 1416 { 1417 struct packet_data *pkt, *next; 1418 1419 /* 1420 * Run state machine for active packets 1421 */ 1422 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1423 if (atomic_read(&pkt->run_sm) > 0) { 1424 atomic_set(&pkt->run_sm, 0); 1425 pkt_run_state_machine(pd, pkt); 1426 } 1427 } 1428 1429 /* 1430 * Move no longer active packets to the free list 1431 */ 1432 spin_lock(&pd->cdrw.active_list_lock); 1433 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1434 if (pkt->state == PACKET_FINISHED_STATE) { 1435 list_del(&pkt->list); 1436 pkt_put_packet_data(pd, pkt); 1437 pkt_set_state(pkt, PACKET_IDLE_STATE); 1438 atomic_set(&pd->scan_queue, 1); 1439 } 1440 } 1441 spin_unlock(&pd->cdrw.active_list_lock); 1442 } 1443 1444 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1445 { 1446 struct packet_data *pkt; 1447 int i; 1448 1449 for (i = 0; i < PACKET_NUM_STATES; i++) 1450 states[i] = 0; 1451 1452 spin_lock(&pd->cdrw.active_list_lock); 1453 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1454 states[pkt->state]++; 1455 } 1456 spin_unlock(&pd->cdrw.active_list_lock); 1457 } 1458 1459 /* 1460 * kcdrwd is woken up when writes have been queued for one of our 1461 * registered devices 1462 */ 1463 static int kcdrwd(void *foobar) 1464 { 1465 struct pktcdvd_device *pd = foobar; 1466 struct packet_data *pkt; 1467 long min_sleep_time, residue; 1468 1469 set_user_nice(current, MIN_NICE); 1470 set_freezable(); 1471 1472 for (;;) { 1473 DECLARE_WAITQUEUE(wait, current); 1474 1475 /* 1476 * Wait until there is something to do 1477 */ 1478 add_wait_queue(&pd->wqueue, &wait); 1479 for (;;) { 1480 set_current_state(TASK_INTERRUPTIBLE); 1481 1482 /* Check if we need to run pkt_handle_queue */ 1483 if (atomic_read(&pd->scan_queue) > 0) 1484 goto work_to_do; 1485 1486 /* Check if we need to run the state machine for some packet */ 1487 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1488 if (atomic_read(&pkt->run_sm) > 0) 1489 goto work_to_do; 1490 } 1491 1492 /* Check if we need to process the iosched queues */ 1493 if (atomic_read(&pd->iosched.attention) != 0) 1494 goto work_to_do; 1495 1496 /* Otherwise, go to sleep */ 1497 if (PACKET_DEBUG > 1) { 1498 int states[PACKET_NUM_STATES]; 1499 pkt_count_states(pd, states); 1500 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1501 states[0], states[1], states[2], 1502 states[3], states[4], states[5]); 1503 } 1504 1505 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1506 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1507 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1508 min_sleep_time = pkt->sleep_time; 1509 } 1510 1511 pkt_dbg(2, pd, "sleeping\n"); 1512 residue = schedule_timeout(min_sleep_time); 1513 pkt_dbg(2, pd, "wake up\n"); 1514 1515 /* make swsusp happy with our thread */ 1516 try_to_freeze(); 1517 1518 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1519 if (!pkt->sleep_time) 1520 continue; 1521 pkt->sleep_time -= min_sleep_time - residue; 1522 if (pkt->sleep_time <= 0) { 1523 pkt->sleep_time = 0; 1524 atomic_inc(&pkt->run_sm); 1525 } 1526 } 1527 1528 if (kthread_should_stop()) 1529 break; 1530 } 1531 work_to_do: 1532 set_current_state(TASK_RUNNING); 1533 remove_wait_queue(&pd->wqueue, &wait); 1534 1535 if (kthread_should_stop()) 1536 break; 1537 1538 /* 1539 * if pkt_handle_queue returns true, we can queue 1540 * another request. 1541 */ 1542 while (pkt_handle_queue(pd)) 1543 ; 1544 1545 /* 1546 * Handle packet state machine 1547 */ 1548 pkt_handle_packets(pd); 1549 1550 /* 1551 * Handle iosched queues 1552 */ 1553 pkt_iosched_process_queue(pd); 1554 } 1555 1556 return 0; 1557 } 1558 1559 static void pkt_print_settings(struct pktcdvd_device *pd) 1560 { 1561 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n", 1562 pd->settings.fp ? "Fixed" : "Variable", 1563 pd->settings.size >> 2, 1564 pd->settings.block_mode == 8 ? '1' : '2'); 1565 } 1566 1567 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1568 { 1569 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1570 1571 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1572 cgc->cmd[2] = page_code | (page_control << 6); 1573 cgc->cmd[7] = cgc->buflen >> 8; 1574 cgc->cmd[8] = cgc->buflen & 0xff; 1575 cgc->data_direction = CGC_DATA_READ; 1576 return pkt_generic_packet(pd, cgc); 1577 } 1578 1579 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1580 { 1581 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1582 memset(cgc->buffer, 0, 2); 1583 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1584 cgc->cmd[1] = 0x10; /* PF */ 1585 cgc->cmd[7] = cgc->buflen >> 8; 1586 cgc->cmd[8] = cgc->buflen & 0xff; 1587 cgc->data_direction = CGC_DATA_WRITE; 1588 return pkt_generic_packet(pd, cgc); 1589 } 1590 1591 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1592 { 1593 struct packet_command cgc; 1594 int ret; 1595 1596 /* set up command and get the disc info */ 1597 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1598 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1599 cgc.cmd[8] = cgc.buflen = 2; 1600 cgc.quiet = 1; 1601 1602 if ((ret = pkt_generic_packet(pd, &cgc))) 1603 return ret; 1604 1605 /* not all drives have the same disc_info length, so requeue 1606 * packet with the length the drive tells us it can supply 1607 */ 1608 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1609 sizeof(di->disc_information_length); 1610 1611 if (cgc.buflen > sizeof(disc_information)) 1612 cgc.buflen = sizeof(disc_information); 1613 1614 cgc.cmd[8] = cgc.buflen; 1615 return pkt_generic_packet(pd, &cgc); 1616 } 1617 1618 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1619 { 1620 struct packet_command cgc; 1621 int ret; 1622 1623 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1624 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1625 cgc.cmd[1] = type & 3; 1626 cgc.cmd[4] = (track & 0xff00) >> 8; 1627 cgc.cmd[5] = track & 0xff; 1628 cgc.cmd[8] = 8; 1629 cgc.quiet = 1; 1630 1631 if ((ret = pkt_generic_packet(pd, &cgc))) 1632 return ret; 1633 1634 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1635 sizeof(ti->track_information_length); 1636 1637 if (cgc.buflen > sizeof(track_information)) 1638 cgc.buflen = sizeof(track_information); 1639 1640 cgc.cmd[8] = cgc.buflen; 1641 return pkt_generic_packet(pd, &cgc); 1642 } 1643 1644 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1645 long *last_written) 1646 { 1647 disc_information di; 1648 track_information ti; 1649 __u32 last_track; 1650 int ret = -1; 1651 1652 if ((ret = pkt_get_disc_info(pd, &di))) 1653 return ret; 1654 1655 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1656 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1657 return ret; 1658 1659 /* if this track is blank, try the previous. */ 1660 if (ti.blank) { 1661 last_track--; 1662 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1663 return ret; 1664 } 1665 1666 /* if last recorded field is valid, return it. */ 1667 if (ti.lra_v) { 1668 *last_written = be32_to_cpu(ti.last_rec_address); 1669 } else { 1670 /* make it up instead */ 1671 *last_written = be32_to_cpu(ti.track_start) + 1672 be32_to_cpu(ti.track_size); 1673 if (ti.free_blocks) 1674 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1675 } 1676 return 0; 1677 } 1678 1679 /* 1680 * write mode select package based on pd->settings 1681 */ 1682 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1683 { 1684 struct packet_command cgc; 1685 struct request_sense sense; 1686 write_param_page *wp; 1687 char buffer[128]; 1688 int ret, size; 1689 1690 /* doesn't apply to DVD+RW or DVD-RAM */ 1691 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1692 return 0; 1693 1694 memset(buffer, 0, sizeof(buffer)); 1695 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1696 cgc.sense = &sense; 1697 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1698 pkt_dump_sense(pd, &cgc); 1699 return ret; 1700 } 1701 1702 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1703 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1704 if (size > sizeof(buffer)) 1705 size = sizeof(buffer); 1706 1707 /* 1708 * now get it all 1709 */ 1710 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1711 cgc.sense = &sense; 1712 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1713 pkt_dump_sense(pd, &cgc); 1714 return ret; 1715 } 1716 1717 /* 1718 * write page is offset header + block descriptor length 1719 */ 1720 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1721 1722 wp->fp = pd->settings.fp; 1723 wp->track_mode = pd->settings.track_mode; 1724 wp->write_type = pd->settings.write_type; 1725 wp->data_block_type = pd->settings.block_mode; 1726 1727 wp->multi_session = 0; 1728 1729 #ifdef PACKET_USE_LS 1730 wp->link_size = 7; 1731 wp->ls_v = 1; 1732 #endif 1733 1734 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1735 wp->session_format = 0; 1736 wp->subhdr2 = 0x20; 1737 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1738 wp->session_format = 0x20; 1739 wp->subhdr2 = 8; 1740 #if 0 1741 wp->mcn[0] = 0x80; 1742 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1743 #endif 1744 } else { 1745 /* 1746 * paranoia 1747 */ 1748 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type); 1749 return 1; 1750 } 1751 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1752 1753 cgc.buflen = cgc.cmd[8] = size; 1754 if ((ret = pkt_mode_select(pd, &cgc))) { 1755 pkt_dump_sense(pd, &cgc); 1756 return ret; 1757 } 1758 1759 pkt_print_settings(pd); 1760 return 0; 1761 } 1762 1763 /* 1764 * 1 -- we can write to this track, 0 -- we can't 1765 */ 1766 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1767 { 1768 switch (pd->mmc3_profile) { 1769 case 0x1a: /* DVD+RW */ 1770 case 0x12: /* DVD-RAM */ 1771 /* The track is always writable on DVD+RW/DVD-RAM */ 1772 return 1; 1773 default: 1774 break; 1775 } 1776 1777 if (!ti->packet || !ti->fp) 1778 return 0; 1779 1780 /* 1781 * "good" settings as per Mt Fuji. 1782 */ 1783 if (ti->rt == 0 && ti->blank == 0) 1784 return 1; 1785 1786 if (ti->rt == 0 && ti->blank == 1) 1787 return 1; 1788 1789 if (ti->rt == 1 && ti->blank == 0) 1790 return 1; 1791 1792 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1793 return 0; 1794 } 1795 1796 /* 1797 * 1 -- we can write to this disc, 0 -- we can't 1798 */ 1799 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1800 { 1801 switch (pd->mmc3_profile) { 1802 case 0x0a: /* CD-RW */ 1803 case 0xffff: /* MMC3 not supported */ 1804 break; 1805 case 0x1a: /* DVD+RW */ 1806 case 0x13: /* DVD-RW */ 1807 case 0x12: /* DVD-RAM */ 1808 return 1; 1809 default: 1810 pkt_dbg(2, pd, "Wrong disc profile (%x)\n", 1811 pd->mmc3_profile); 1812 return 0; 1813 } 1814 1815 /* 1816 * for disc type 0xff we should probably reserve a new track. 1817 * but i'm not sure, should we leave this to user apps? probably. 1818 */ 1819 if (di->disc_type == 0xff) { 1820 pkt_notice(pd, "unknown disc - no track?\n"); 1821 return 0; 1822 } 1823 1824 if (di->disc_type != 0x20 && di->disc_type != 0) { 1825 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type); 1826 return 0; 1827 } 1828 1829 if (di->erasable == 0) { 1830 pkt_notice(pd, "disc not erasable\n"); 1831 return 0; 1832 } 1833 1834 if (di->border_status == PACKET_SESSION_RESERVED) { 1835 pkt_err(pd, "can't write to last track (reserved)\n"); 1836 return 0; 1837 } 1838 1839 return 1; 1840 } 1841 1842 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1843 { 1844 struct packet_command cgc; 1845 unsigned char buf[12]; 1846 disc_information di; 1847 track_information ti; 1848 int ret, track; 1849 1850 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1851 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1852 cgc.cmd[8] = 8; 1853 ret = pkt_generic_packet(pd, &cgc); 1854 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1855 1856 memset(&di, 0, sizeof(disc_information)); 1857 memset(&ti, 0, sizeof(track_information)); 1858 1859 if ((ret = pkt_get_disc_info(pd, &di))) { 1860 pkt_err(pd, "failed get_disc\n"); 1861 return ret; 1862 } 1863 1864 if (!pkt_writable_disc(pd, &di)) 1865 return -EROFS; 1866 1867 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1868 1869 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1870 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1871 pkt_err(pd, "failed get_track\n"); 1872 return ret; 1873 } 1874 1875 if (!pkt_writable_track(pd, &ti)) { 1876 pkt_err(pd, "can't write to this track\n"); 1877 return -EROFS; 1878 } 1879 1880 /* 1881 * we keep packet size in 512 byte units, makes it easier to 1882 * deal with request calculations. 1883 */ 1884 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1885 if (pd->settings.size == 0) { 1886 pkt_notice(pd, "detected zero packet size!\n"); 1887 return -ENXIO; 1888 } 1889 if (pd->settings.size > PACKET_MAX_SECTORS) { 1890 pkt_err(pd, "packet size is too big\n"); 1891 return -EROFS; 1892 } 1893 pd->settings.fp = ti.fp; 1894 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1895 1896 if (ti.nwa_v) { 1897 pd->nwa = be32_to_cpu(ti.next_writable); 1898 set_bit(PACKET_NWA_VALID, &pd->flags); 1899 } 1900 1901 /* 1902 * in theory we could use lra on -RW media as well and just zero 1903 * blocks that haven't been written yet, but in practice that 1904 * is just a no-go. we'll use that for -R, naturally. 1905 */ 1906 if (ti.lra_v) { 1907 pd->lra = be32_to_cpu(ti.last_rec_address); 1908 set_bit(PACKET_LRA_VALID, &pd->flags); 1909 } else { 1910 pd->lra = 0xffffffff; 1911 set_bit(PACKET_LRA_VALID, &pd->flags); 1912 } 1913 1914 /* 1915 * fine for now 1916 */ 1917 pd->settings.link_loss = 7; 1918 pd->settings.write_type = 0; /* packet */ 1919 pd->settings.track_mode = ti.track_mode; 1920 1921 /* 1922 * mode1 or mode2 disc 1923 */ 1924 switch (ti.data_mode) { 1925 case PACKET_MODE1: 1926 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1927 break; 1928 case PACKET_MODE2: 1929 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1930 break; 1931 default: 1932 pkt_err(pd, "unknown data mode\n"); 1933 return -EROFS; 1934 } 1935 return 0; 1936 } 1937 1938 /* 1939 * enable/disable write caching on drive 1940 */ 1941 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 1942 int set) 1943 { 1944 struct packet_command cgc; 1945 struct request_sense sense; 1946 unsigned char buf[64]; 1947 int ret; 1948 1949 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1950 cgc.sense = &sense; 1951 cgc.buflen = pd->mode_offset + 12; 1952 1953 /* 1954 * caching mode page might not be there, so quiet this command 1955 */ 1956 cgc.quiet = 1; 1957 1958 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1959 return ret; 1960 1961 buf[pd->mode_offset + 10] |= (!!set << 2); 1962 1963 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1964 ret = pkt_mode_select(pd, &cgc); 1965 if (ret) { 1966 pkt_err(pd, "write caching control failed\n"); 1967 pkt_dump_sense(pd, &cgc); 1968 } else if (!ret && set) 1969 pkt_notice(pd, "enabled write caching\n"); 1970 return ret; 1971 } 1972 1973 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1974 { 1975 struct packet_command cgc; 1976 1977 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1978 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1979 cgc.cmd[4] = lockflag ? 1 : 0; 1980 return pkt_generic_packet(pd, &cgc); 1981 } 1982 1983 /* 1984 * Returns drive maximum write speed 1985 */ 1986 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1987 unsigned *write_speed) 1988 { 1989 struct packet_command cgc; 1990 struct request_sense sense; 1991 unsigned char buf[256+18]; 1992 unsigned char *cap_buf; 1993 int ret, offset; 1994 1995 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1996 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1997 cgc.sense = &sense; 1998 1999 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2000 if (ret) { 2001 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2002 sizeof(struct mode_page_header); 2003 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2004 if (ret) { 2005 pkt_dump_sense(pd, &cgc); 2006 return ret; 2007 } 2008 } 2009 2010 offset = 20; /* Obsoleted field, used by older drives */ 2011 if (cap_buf[1] >= 28) 2012 offset = 28; /* Current write speed selected */ 2013 if (cap_buf[1] >= 30) { 2014 /* If the drive reports at least one "Logical Unit Write 2015 * Speed Performance Descriptor Block", use the information 2016 * in the first block. (contains the highest speed) 2017 */ 2018 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2019 if (num_spdb > 0) 2020 offset = 34; 2021 } 2022 2023 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2024 return 0; 2025 } 2026 2027 /* These tables from cdrecord - I don't have orange book */ 2028 /* standard speed CD-RW (1-4x) */ 2029 static char clv_to_speed[16] = { 2030 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2031 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2032 }; 2033 /* high speed CD-RW (-10x) */ 2034 static char hs_clv_to_speed[16] = { 2035 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2036 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2037 }; 2038 /* ultra high speed CD-RW */ 2039 static char us_clv_to_speed[16] = { 2040 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2041 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2042 }; 2043 2044 /* 2045 * reads the maximum media speed from ATIP 2046 */ 2047 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2048 unsigned *speed) 2049 { 2050 struct packet_command cgc; 2051 struct request_sense sense; 2052 unsigned char buf[64]; 2053 unsigned int size, st, sp; 2054 int ret; 2055 2056 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2057 cgc.sense = &sense; 2058 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2059 cgc.cmd[1] = 2; 2060 cgc.cmd[2] = 4; /* READ ATIP */ 2061 cgc.cmd[8] = 2; 2062 ret = pkt_generic_packet(pd, &cgc); 2063 if (ret) { 2064 pkt_dump_sense(pd, &cgc); 2065 return ret; 2066 } 2067 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2068 if (size > sizeof(buf)) 2069 size = sizeof(buf); 2070 2071 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2072 cgc.sense = &sense; 2073 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2074 cgc.cmd[1] = 2; 2075 cgc.cmd[2] = 4; 2076 cgc.cmd[8] = size; 2077 ret = pkt_generic_packet(pd, &cgc); 2078 if (ret) { 2079 pkt_dump_sense(pd, &cgc); 2080 return ret; 2081 } 2082 2083 if (!(buf[6] & 0x40)) { 2084 pkt_notice(pd, "disc type is not CD-RW\n"); 2085 return 1; 2086 } 2087 if (!(buf[6] & 0x4)) { 2088 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n"); 2089 return 1; 2090 } 2091 2092 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2093 2094 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2095 2096 /* Info from cdrecord */ 2097 switch (st) { 2098 case 0: /* standard speed */ 2099 *speed = clv_to_speed[sp]; 2100 break; 2101 case 1: /* high speed */ 2102 *speed = hs_clv_to_speed[sp]; 2103 break; 2104 case 2: /* ultra high speed */ 2105 *speed = us_clv_to_speed[sp]; 2106 break; 2107 default: 2108 pkt_notice(pd, "unknown disc sub-type %d\n", st); 2109 return 1; 2110 } 2111 if (*speed) { 2112 pkt_info(pd, "maximum media speed: %d\n", *speed); 2113 return 0; 2114 } else { 2115 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st); 2116 return 1; 2117 } 2118 } 2119 2120 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2121 { 2122 struct packet_command cgc; 2123 struct request_sense sense; 2124 int ret; 2125 2126 pkt_dbg(2, pd, "Performing OPC\n"); 2127 2128 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2129 cgc.sense = &sense; 2130 cgc.timeout = 60*HZ; 2131 cgc.cmd[0] = GPCMD_SEND_OPC; 2132 cgc.cmd[1] = 1; 2133 if ((ret = pkt_generic_packet(pd, &cgc))) 2134 pkt_dump_sense(pd, &cgc); 2135 return ret; 2136 } 2137 2138 static int pkt_open_write(struct pktcdvd_device *pd) 2139 { 2140 int ret; 2141 unsigned int write_speed, media_write_speed, read_speed; 2142 2143 if ((ret = pkt_probe_settings(pd))) { 2144 pkt_dbg(2, pd, "failed probe\n"); 2145 return ret; 2146 } 2147 2148 if ((ret = pkt_set_write_settings(pd))) { 2149 pkt_dbg(1, pd, "failed saving write settings\n"); 2150 return -EIO; 2151 } 2152 2153 pkt_write_caching(pd, USE_WCACHING); 2154 2155 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2156 write_speed = 16 * 177; 2157 switch (pd->mmc3_profile) { 2158 case 0x13: /* DVD-RW */ 2159 case 0x1a: /* DVD+RW */ 2160 case 0x12: /* DVD-RAM */ 2161 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed); 2162 break; 2163 default: 2164 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2165 media_write_speed = 16; 2166 write_speed = min(write_speed, media_write_speed * 177); 2167 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176); 2168 break; 2169 } 2170 read_speed = write_speed; 2171 2172 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2173 pkt_dbg(1, pd, "couldn't set write speed\n"); 2174 return -EIO; 2175 } 2176 pd->write_speed = write_speed; 2177 pd->read_speed = read_speed; 2178 2179 if ((ret = pkt_perform_opc(pd))) { 2180 pkt_dbg(1, pd, "Optimum Power Calibration failed\n"); 2181 } 2182 2183 return 0; 2184 } 2185 2186 /* 2187 * called at open time. 2188 */ 2189 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2190 { 2191 int ret; 2192 long lba; 2193 struct request_queue *q; 2194 2195 /* 2196 * We need to re-open the cdrom device without O_NONBLOCK to be able 2197 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2198 * so bdget() can't fail. 2199 */ 2200 bdget(pd->bdev->bd_dev); 2201 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd))) 2202 goto out; 2203 2204 if ((ret = pkt_get_last_written(pd, &lba))) { 2205 pkt_err(pd, "pkt_get_last_written failed\n"); 2206 goto out_putdev; 2207 } 2208 2209 set_capacity(pd->disk, lba << 2); 2210 set_capacity(pd->bdev->bd_disk, lba << 2); 2211 bd_set_size(pd->bdev, (loff_t)lba << 11); 2212 2213 q = bdev_get_queue(pd->bdev); 2214 if (write) { 2215 if ((ret = pkt_open_write(pd))) 2216 goto out_putdev; 2217 /* 2218 * Some CDRW drives can not handle writes larger than one packet, 2219 * even if the size is a multiple of the packet size. 2220 */ 2221 spin_lock_irq(q->queue_lock); 2222 blk_queue_max_hw_sectors(q, pd->settings.size); 2223 spin_unlock_irq(q->queue_lock); 2224 set_bit(PACKET_WRITABLE, &pd->flags); 2225 } else { 2226 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2227 clear_bit(PACKET_WRITABLE, &pd->flags); 2228 } 2229 2230 if ((ret = pkt_set_segment_merging(pd, q))) 2231 goto out_putdev; 2232 2233 if (write) { 2234 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2235 pkt_err(pd, "not enough memory for buffers\n"); 2236 ret = -ENOMEM; 2237 goto out_putdev; 2238 } 2239 pkt_info(pd, "%lukB available on disc\n", lba << 1); 2240 } 2241 2242 return 0; 2243 2244 out_putdev: 2245 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2246 out: 2247 return ret; 2248 } 2249 2250 /* 2251 * called when the device is closed. makes sure that the device flushes 2252 * the internal cache before we close. 2253 */ 2254 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2255 { 2256 if (flush && pkt_flush_cache(pd)) 2257 pkt_dbg(1, pd, "not flushing cache\n"); 2258 2259 pkt_lock_door(pd, 0); 2260 2261 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2262 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL); 2263 2264 pkt_shrink_pktlist(pd); 2265 } 2266 2267 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2268 { 2269 if (dev_minor >= MAX_WRITERS) 2270 return NULL; 2271 return pkt_devs[dev_minor]; 2272 } 2273 2274 static int pkt_open(struct block_device *bdev, fmode_t mode) 2275 { 2276 struct pktcdvd_device *pd = NULL; 2277 int ret; 2278 2279 mutex_lock(&pktcdvd_mutex); 2280 mutex_lock(&ctl_mutex); 2281 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2282 if (!pd) { 2283 ret = -ENODEV; 2284 goto out; 2285 } 2286 BUG_ON(pd->refcnt < 0); 2287 2288 pd->refcnt++; 2289 if (pd->refcnt > 1) { 2290 if ((mode & FMODE_WRITE) && 2291 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2292 ret = -EBUSY; 2293 goto out_dec; 2294 } 2295 } else { 2296 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2297 if (ret) 2298 goto out_dec; 2299 /* 2300 * needed here as well, since ext2 (among others) may change 2301 * the blocksize at mount time 2302 */ 2303 set_blocksize(bdev, CD_FRAMESIZE); 2304 } 2305 2306 mutex_unlock(&ctl_mutex); 2307 mutex_unlock(&pktcdvd_mutex); 2308 return 0; 2309 2310 out_dec: 2311 pd->refcnt--; 2312 out: 2313 mutex_unlock(&ctl_mutex); 2314 mutex_unlock(&pktcdvd_mutex); 2315 return ret; 2316 } 2317 2318 static void pkt_close(struct gendisk *disk, fmode_t mode) 2319 { 2320 struct pktcdvd_device *pd = disk->private_data; 2321 2322 mutex_lock(&pktcdvd_mutex); 2323 mutex_lock(&ctl_mutex); 2324 pd->refcnt--; 2325 BUG_ON(pd->refcnt < 0); 2326 if (pd->refcnt == 0) { 2327 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2328 pkt_release_dev(pd, flush); 2329 } 2330 mutex_unlock(&ctl_mutex); 2331 mutex_unlock(&pktcdvd_mutex); 2332 } 2333 2334 2335 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2336 { 2337 struct packet_stacked_data *psd = bio->bi_private; 2338 struct pktcdvd_device *pd = psd->pd; 2339 2340 bio_put(bio); 2341 bio_endio(psd->bio, err); 2342 mempool_free(psd, psd_pool); 2343 pkt_bio_finished(pd); 2344 } 2345 2346 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio) 2347 { 2348 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2349 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2350 2351 psd->pd = pd; 2352 psd->bio = bio; 2353 cloned_bio->bi_bdev = pd->bdev; 2354 cloned_bio->bi_private = psd; 2355 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2356 pd->stats.secs_r += bio_sectors(bio); 2357 pkt_queue_bio(pd, cloned_bio); 2358 } 2359 2360 static void pkt_make_request_write(struct request_queue *q, struct bio *bio) 2361 { 2362 struct pktcdvd_device *pd = q->queuedata; 2363 sector_t zone; 2364 struct packet_data *pkt; 2365 int was_empty, blocked_bio; 2366 struct pkt_rb_node *node; 2367 2368 zone = get_zone(bio->bi_iter.bi_sector, pd); 2369 2370 /* 2371 * If we find a matching packet in state WAITING or READ_WAIT, we can 2372 * just append this bio to that packet. 2373 */ 2374 spin_lock(&pd->cdrw.active_list_lock); 2375 blocked_bio = 0; 2376 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2377 if (pkt->sector == zone) { 2378 spin_lock(&pkt->lock); 2379 if ((pkt->state == PACKET_WAITING_STATE) || 2380 (pkt->state == PACKET_READ_WAIT_STATE)) { 2381 bio_list_add(&pkt->orig_bios, bio); 2382 pkt->write_size += 2383 bio->bi_iter.bi_size / CD_FRAMESIZE; 2384 if ((pkt->write_size >= pkt->frames) && 2385 (pkt->state == PACKET_WAITING_STATE)) { 2386 atomic_inc(&pkt->run_sm); 2387 wake_up(&pd->wqueue); 2388 } 2389 spin_unlock(&pkt->lock); 2390 spin_unlock(&pd->cdrw.active_list_lock); 2391 return; 2392 } else { 2393 blocked_bio = 1; 2394 } 2395 spin_unlock(&pkt->lock); 2396 } 2397 } 2398 spin_unlock(&pd->cdrw.active_list_lock); 2399 2400 /* 2401 * Test if there is enough room left in the bio work queue 2402 * (queue size >= congestion on mark). 2403 * If not, wait till the work queue size is below the congestion off mark. 2404 */ 2405 spin_lock(&pd->lock); 2406 if (pd->write_congestion_on > 0 2407 && pd->bio_queue_size >= pd->write_congestion_on) { 2408 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC); 2409 do { 2410 spin_unlock(&pd->lock); 2411 congestion_wait(BLK_RW_ASYNC, HZ); 2412 spin_lock(&pd->lock); 2413 } while(pd->bio_queue_size > pd->write_congestion_off); 2414 } 2415 spin_unlock(&pd->lock); 2416 2417 /* 2418 * No matching packet found. Store the bio in the work queue. 2419 */ 2420 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2421 node->bio = bio; 2422 spin_lock(&pd->lock); 2423 BUG_ON(pd->bio_queue_size < 0); 2424 was_empty = (pd->bio_queue_size == 0); 2425 pkt_rbtree_insert(pd, node); 2426 spin_unlock(&pd->lock); 2427 2428 /* 2429 * Wake up the worker thread. 2430 */ 2431 atomic_set(&pd->scan_queue, 1); 2432 if (was_empty) { 2433 /* This wake_up is required for correct operation */ 2434 wake_up(&pd->wqueue); 2435 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2436 /* 2437 * This wake up is not required for correct operation, 2438 * but improves performance in some cases. 2439 */ 2440 wake_up(&pd->wqueue); 2441 } 2442 } 2443 2444 static void pkt_make_request(struct request_queue *q, struct bio *bio) 2445 { 2446 struct pktcdvd_device *pd; 2447 char b[BDEVNAME_SIZE]; 2448 struct bio *split; 2449 2450 pd = q->queuedata; 2451 if (!pd) { 2452 pr_err("%s incorrect request queue\n", 2453 bdevname(bio->bi_bdev, b)); 2454 goto end_io; 2455 } 2456 2457 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n", 2458 (unsigned long long)bio->bi_iter.bi_sector, 2459 (unsigned long long)bio_end_sector(bio)); 2460 2461 /* 2462 * Clone READ bios so we can have our own bi_end_io callback. 2463 */ 2464 if (bio_data_dir(bio) == READ) { 2465 pkt_make_request_read(pd, bio); 2466 return; 2467 } 2468 2469 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2470 pkt_notice(pd, "WRITE for ro device (%llu)\n", 2471 (unsigned long long)bio->bi_iter.bi_sector); 2472 goto end_io; 2473 } 2474 2475 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) { 2476 pkt_err(pd, "wrong bio size\n"); 2477 goto end_io; 2478 } 2479 2480 blk_queue_bounce(q, &bio); 2481 2482 do { 2483 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd); 2484 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd); 2485 2486 if (last_zone != zone) { 2487 BUG_ON(last_zone != zone + pd->settings.size); 2488 2489 split = bio_split(bio, last_zone - 2490 bio->bi_iter.bi_sector, 2491 GFP_NOIO, fs_bio_set); 2492 bio_chain(split, bio); 2493 } else { 2494 split = bio; 2495 } 2496 2497 pkt_make_request_write(q, split); 2498 } while (split != bio); 2499 2500 return; 2501 end_io: 2502 bio_io_error(bio); 2503 } 2504 2505 2506 2507 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2508 struct bio_vec *bvec) 2509 { 2510 struct pktcdvd_device *pd = q->queuedata; 2511 sector_t zone = get_zone(bmd->bi_sector, pd); 2512 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size; 2513 int remaining = (pd->settings.size << 9) - used; 2514 int remaining2; 2515 2516 /* 2517 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2518 * boundary, pkt_make_request() will split the bio. 2519 */ 2520 remaining2 = PAGE_SIZE - bmd->bi_size; 2521 remaining = max(remaining, remaining2); 2522 2523 BUG_ON(remaining < 0); 2524 return remaining; 2525 } 2526 2527 static void pkt_init_queue(struct pktcdvd_device *pd) 2528 { 2529 struct request_queue *q = pd->disk->queue; 2530 2531 blk_queue_make_request(q, pkt_make_request); 2532 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2533 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2534 blk_queue_merge_bvec(q, pkt_merge_bvec); 2535 q->queuedata = pd; 2536 } 2537 2538 static int pkt_seq_show(struct seq_file *m, void *p) 2539 { 2540 struct pktcdvd_device *pd = m->private; 2541 char *msg; 2542 char bdev_buf[BDEVNAME_SIZE]; 2543 int states[PACKET_NUM_STATES]; 2544 2545 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2546 bdevname(pd->bdev, bdev_buf)); 2547 2548 seq_printf(m, "\nSettings:\n"); 2549 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2550 2551 if (pd->settings.write_type == 0) 2552 msg = "Packet"; 2553 else 2554 msg = "Unknown"; 2555 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2556 2557 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2558 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2559 2560 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2561 2562 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2563 msg = "Mode 1"; 2564 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2565 msg = "Mode 2"; 2566 else 2567 msg = "Unknown"; 2568 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2569 2570 seq_printf(m, "\nStatistics:\n"); 2571 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2572 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2573 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2574 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2575 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2576 2577 seq_printf(m, "\nMisc:\n"); 2578 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2579 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2580 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2581 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2582 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2583 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2584 2585 seq_printf(m, "\nQueue state:\n"); 2586 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2587 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2588 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2589 2590 pkt_count_states(pd, states); 2591 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2592 states[0], states[1], states[2], states[3], states[4], states[5]); 2593 2594 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2595 pd->write_congestion_off, 2596 pd->write_congestion_on); 2597 return 0; 2598 } 2599 2600 static int pkt_seq_open(struct inode *inode, struct file *file) 2601 { 2602 return single_open(file, pkt_seq_show, PDE_DATA(inode)); 2603 } 2604 2605 static const struct file_operations pkt_proc_fops = { 2606 .open = pkt_seq_open, 2607 .read = seq_read, 2608 .llseek = seq_lseek, 2609 .release = single_release 2610 }; 2611 2612 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2613 { 2614 int i; 2615 int ret = 0; 2616 char b[BDEVNAME_SIZE]; 2617 struct block_device *bdev; 2618 2619 if (pd->pkt_dev == dev) { 2620 pkt_err(pd, "recursive setup not allowed\n"); 2621 return -EBUSY; 2622 } 2623 for (i = 0; i < MAX_WRITERS; i++) { 2624 struct pktcdvd_device *pd2 = pkt_devs[i]; 2625 if (!pd2) 2626 continue; 2627 if (pd2->bdev->bd_dev == dev) { 2628 pkt_err(pd, "%s already setup\n", 2629 bdevname(pd2->bdev, b)); 2630 return -EBUSY; 2631 } 2632 if (pd2->pkt_dev == dev) { 2633 pkt_err(pd, "can't chain pktcdvd devices\n"); 2634 return -EBUSY; 2635 } 2636 } 2637 2638 bdev = bdget(dev); 2639 if (!bdev) 2640 return -ENOMEM; 2641 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL); 2642 if (ret) 2643 return ret; 2644 2645 /* This is safe, since we have a reference from open(). */ 2646 __module_get(THIS_MODULE); 2647 2648 pd->bdev = bdev; 2649 set_blocksize(bdev, CD_FRAMESIZE); 2650 2651 pkt_init_queue(pd); 2652 2653 atomic_set(&pd->cdrw.pending_bios, 0); 2654 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2655 if (IS_ERR(pd->cdrw.thread)) { 2656 pkt_err(pd, "can't start kernel thread\n"); 2657 ret = -ENOMEM; 2658 goto out_mem; 2659 } 2660 2661 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2662 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b)); 2663 return 0; 2664 2665 out_mem: 2666 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY); 2667 /* This is safe: open() is still holding a reference. */ 2668 module_put(THIS_MODULE); 2669 return ret; 2670 } 2671 2672 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2673 { 2674 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2675 int ret; 2676 2677 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n", 2678 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2679 2680 mutex_lock(&pktcdvd_mutex); 2681 switch (cmd) { 2682 case CDROMEJECT: 2683 /* 2684 * The door gets locked when the device is opened, so we 2685 * have to unlock it or else the eject command fails. 2686 */ 2687 if (pd->refcnt == 1) 2688 pkt_lock_door(pd, 0); 2689 /* fallthru */ 2690 /* 2691 * forward selected CDROM ioctls to CD-ROM, for UDF 2692 */ 2693 case CDROMMULTISESSION: 2694 case CDROMREADTOCENTRY: 2695 case CDROM_LAST_WRITTEN: 2696 case CDROM_SEND_PACKET: 2697 case SCSI_IOCTL_SEND_COMMAND: 2698 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg); 2699 break; 2700 2701 default: 2702 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd); 2703 ret = -ENOTTY; 2704 } 2705 mutex_unlock(&pktcdvd_mutex); 2706 2707 return ret; 2708 } 2709 2710 static unsigned int pkt_check_events(struct gendisk *disk, 2711 unsigned int clearing) 2712 { 2713 struct pktcdvd_device *pd = disk->private_data; 2714 struct gendisk *attached_disk; 2715 2716 if (!pd) 2717 return 0; 2718 if (!pd->bdev) 2719 return 0; 2720 attached_disk = pd->bdev->bd_disk; 2721 if (!attached_disk || !attached_disk->fops->check_events) 2722 return 0; 2723 return attached_disk->fops->check_events(attached_disk, clearing); 2724 } 2725 2726 static const struct block_device_operations pktcdvd_ops = { 2727 .owner = THIS_MODULE, 2728 .open = pkt_open, 2729 .release = pkt_close, 2730 .ioctl = pkt_ioctl, 2731 .check_events = pkt_check_events, 2732 }; 2733 2734 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode) 2735 { 2736 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name); 2737 } 2738 2739 /* 2740 * Set up mapping from pktcdvd device to CD-ROM device. 2741 */ 2742 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2743 { 2744 int idx; 2745 int ret = -ENOMEM; 2746 struct pktcdvd_device *pd; 2747 struct gendisk *disk; 2748 2749 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2750 2751 for (idx = 0; idx < MAX_WRITERS; idx++) 2752 if (!pkt_devs[idx]) 2753 break; 2754 if (idx == MAX_WRITERS) { 2755 pr_err("max %d writers supported\n", MAX_WRITERS); 2756 ret = -EBUSY; 2757 goto out_mutex; 2758 } 2759 2760 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2761 if (!pd) 2762 goto out_mutex; 2763 2764 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2765 sizeof(struct pkt_rb_node)); 2766 if (!pd->rb_pool) 2767 goto out_mem; 2768 2769 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2770 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2771 spin_lock_init(&pd->cdrw.active_list_lock); 2772 2773 spin_lock_init(&pd->lock); 2774 spin_lock_init(&pd->iosched.lock); 2775 bio_list_init(&pd->iosched.read_queue); 2776 bio_list_init(&pd->iosched.write_queue); 2777 sprintf(pd->name, DRIVER_NAME"%d", idx); 2778 init_waitqueue_head(&pd->wqueue); 2779 pd->bio_queue = RB_ROOT; 2780 2781 pd->write_congestion_on = write_congestion_on; 2782 pd->write_congestion_off = write_congestion_off; 2783 2784 disk = alloc_disk(1); 2785 if (!disk) 2786 goto out_mem; 2787 pd->disk = disk; 2788 disk->major = pktdev_major; 2789 disk->first_minor = idx; 2790 disk->fops = &pktcdvd_ops; 2791 disk->flags = GENHD_FL_REMOVABLE; 2792 strcpy(disk->disk_name, pd->name); 2793 disk->devnode = pktcdvd_devnode; 2794 disk->private_data = pd; 2795 disk->queue = blk_alloc_queue(GFP_KERNEL); 2796 if (!disk->queue) 2797 goto out_mem2; 2798 2799 pd->pkt_dev = MKDEV(pktdev_major, idx); 2800 ret = pkt_new_dev(pd, dev); 2801 if (ret) 2802 goto out_new_dev; 2803 2804 /* inherit events of the host device */ 2805 disk->events = pd->bdev->bd_disk->events; 2806 disk->async_events = pd->bdev->bd_disk->async_events; 2807 2808 add_disk(disk); 2809 2810 pkt_sysfs_dev_new(pd); 2811 pkt_debugfs_dev_new(pd); 2812 2813 pkt_devs[idx] = pd; 2814 if (pkt_dev) 2815 *pkt_dev = pd->pkt_dev; 2816 2817 mutex_unlock(&ctl_mutex); 2818 return 0; 2819 2820 out_new_dev: 2821 blk_cleanup_queue(disk->queue); 2822 out_mem2: 2823 put_disk(disk); 2824 out_mem: 2825 if (pd->rb_pool) 2826 mempool_destroy(pd->rb_pool); 2827 kfree(pd); 2828 out_mutex: 2829 mutex_unlock(&ctl_mutex); 2830 pr_err("setup of pktcdvd device failed\n"); 2831 return ret; 2832 } 2833 2834 /* 2835 * Tear down mapping from pktcdvd device to CD-ROM device. 2836 */ 2837 static int pkt_remove_dev(dev_t pkt_dev) 2838 { 2839 struct pktcdvd_device *pd; 2840 int idx; 2841 int ret = 0; 2842 2843 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2844 2845 for (idx = 0; idx < MAX_WRITERS; idx++) { 2846 pd = pkt_devs[idx]; 2847 if (pd && (pd->pkt_dev == pkt_dev)) 2848 break; 2849 } 2850 if (idx == MAX_WRITERS) { 2851 pr_debug("dev not setup\n"); 2852 ret = -ENXIO; 2853 goto out; 2854 } 2855 2856 if (pd->refcnt > 0) { 2857 ret = -EBUSY; 2858 goto out; 2859 } 2860 if (!IS_ERR(pd->cdrw.thread)) 2861 kthread_stop(pd->cdrw.thread); 2862 2863 pkt_devs[idx] = NULL; 2864 2865 pkt_debugfs_dev_remove(pd); 2866 pkt_sysfs_dev_remove(pd); 2867 2868 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY); 2869 2870 remove_proc_entry(pd->name, pkt_proc); 2871 pkt_dbg(1, pd, "writer unmapped\n"); 2872 2873 del_gendisk(pd->disk); 2874 blk_cleanup_queue(pd->disk->queue); 2875 put_disk(pd->disk); 2876 2877 mempool_destroy(pd->rb_pool); 2878 kfree(pd); 2879 2880 /* This is safe: open() is still holding a reference. */ 2881 module_put(THIS_MODULE); 2882 2883 out: 2884 mutex_unlock(&ctl_mutex); 2885 return ret; 2886 } 2887 2888 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2889 { 2890 struct pktcdvd_device *pd; 2891 2892 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2893 2894 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2895 if (pd) { 2896 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2897 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2898 } else { 2899 ctrl_cmd->dev = 0; 2900 ctrl_cmd->pkt_dev = 0; 2901 } 2902 ctrl_cmd->num_devices = MAX_WRITERS; 2903 2904 mutex_unlock(&ctl_mutex); 2905 } 2906 2907 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2908 { 2909 void __user *argp = (void __user *)arg; 2910 struct pkt_ctrl_command ctrl_cmd; 2911 int ret = 0; 2912 dev_t pkt_dev = 0; 2913 2914 if (cmd != PACKET_CTRL_CMD) 2915 return -ENOTTY; 2916 2917 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2918 return -EFAULT; 2919 2920 switch (ctrl_cmd.command) { 2921 case PKT_CTRL_CMD_SETUP: 2922 if (!capable(CAP_SYS_ADMIN)) 2923 return -EPERM; 2924 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2925 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2926 break; 2927 case PKT_CTRL_CMD_TEARDOWN: 2928 if (!capable(CAP_SYS_ADMIN)) 2929 return -EPERM; 2930 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2931 break; 2932 case PKT_CTRL_CMD_STATUS: 2933 pkt_get_status(&ctrl_cmd); 2934 break; 2935 default: 2936 return -ENOTTY; 2937 } 2938 2939 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2940 return -EFAULT; 2941 return ret; 2942 } 2943 2944 #ifdef CONFIG_COMPAT 2945 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2946 { 2947 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2948 } 2949 #endif 2950 2951 static const struct file_operations pkt_ctl_fops = { 2952 .open = nonseekable_open, 2953 .unlocked_ioctl = pkt_ctl_ioctl, 2954 #ifdef CONFIG_COMPAT 2955 .compat_ioctl = pkt_ctl_compat_ioctl, 2956 #endif 2957 .owner = THIS_MODULE, 2958 .llseek = no_llseek, 2959 }; 2960 2961 static struct miscdevice pkt_misc = { 2962 .minor = MISC_DYNAMIC_MINOR, 2963 .name = DRIVER_NAME, 2964 .nodename = "pktcdvd/control", 2965 .fops = &pkt_ctl_fops 2966 }; 2967 2968 static int __init pkt_init(void) 2969 { 2970 int ret; 2971 2972 mutex_init(&ctl_mutex); 2973 2974 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 2975 sizeof(struct packet_stacked_data)); 2976 if (!psd_pool) 2977 return -ENOMEM; 2978 2979 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2980 if (ret < 0) { 2981 pr_err("unable to register block device\n"); 2982 goto out2; 2983 } 2984 if (!pktdev_major) 2985 pktdev_major = ret; 2986 2987 ret = pkt_sysfs_init(); 2988 if (ret) 2989 goto out; 2990 2991 pkt_debugfs_init(); 2992 2993 ret = misc_register(&pkt_misc); 2994 if (ret) { 2995 pr_err("unable to register misc device\n"); 2996 goto out_misc; 2997 } 2998 2999 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 3000 3001 return 0; 3002 3003 out_misc: 3004 pkt_debugfs_cleanup(); 3005 pkt_sysfs_cleanup(); 3006 out: 3007 unregister_blkdev(pktdev_major, DRIVER_NAME); 3008 out2: 3009 mempool_destroy(psd_pool); 3010 return ret; 3011 } 3012 3013 static void __exit pkt_exit(void) 3014 { 3015 remove_proc_entry("driver/"DRIVER_NAME, NULL); 3016 misc_deregister(&pkt_misc); 3017 3018 pkt_debugfs_cleanup(); 3019 pkt_sysfs_cleanup(); 3020 3021 unregister_blkdev(pktdev_major, DRIVER_NAME); 3022 mempool_destroy(psd_pool); 3023 } 3024 3025 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3026 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3027 MODULE_LICENSE("GPL"); 3028 3029 module_init(pkt_init); 3030 module_exit(pkt_exit); 3031