1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * such as drivers/scsi/sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom ->submit_bio function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/backing-dev.h> 50 #include <linux/compat.h> 51 #include <linux/debugfs.h> 52 #include <linux/device.h> 53 #include <linux/errno.h> 54 #include <linux/file.h> 55 #include <linux/freezer.h> 56 #include <linux/kernel.h> 57 #include <linux/kthread.h> 58 #include <linux/miscdevice.h> 59 #include <linux/module.h> 60 #include <linux/mutex.h> 61 #include <linux/nospec.h> 62 #include <linux/pktcdvd.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/slab.h> 66 #include <linux/spinlock.h> 67 #include <linux/types.h> 68 #include <linux/uaccess.h> 69 70 #include <scsi/scsi.h> 71 #include <scsi/scsi_cmnd.h> 72 #include <scsi/scsi_ioctl.h> 73 74 #include <asm/unaligned.h> 75 76 #define DRIVER_NAME "pktcdvd" 77 78 #define MAX_SPEED 0xffff 79 80 static DEFINE_MUTEX(pktcdvd_mutex); 81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 82 static struct proc_dir_entry *pkt_proc; 83 static int pktdev_major; 84 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 85 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 86 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 87 static mempool_t psd_pool; 88 static struct bio_set pkt_bio_set; 89 90 /* /sys/class/pktcdvd */ 91 static struct class class_pktcdvd; 92 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 93 94 /* forward declaration */ 95 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 96 static int pkt_remove_dev(dev_t pkt_dev); 97 98 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd) 99 { 100 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1); 101 } 102 103 /********************************************************** 104 * sysfs interface for pktcdvd 105 * by (C) 2006 Thomas Maier <balagi@justmail.de> 106 107 /sys/class/pktcdvd/pktcdvd[0-7]/ 108 stat/reset 109 stat/packets_started 110 stat/packets_finished 111 stat/kb_written 112 stat/kb_read 113 stat/kb_read_gather 114 write_queue/size 115 write_queue/congestion_off 116 write_queue/congestion_on 117 **********************************************************/ 118 119 static ssize_t packets_started_show(struct device *dev, 120 struct device_attribute *attr, char *buf) 121 { 122 struct pktcdvd_device *pd = dev_get_drvdata(dev); 123 124 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started); 125 } 126 static DEVICE_ATTR_RO(packets_started); 127 128 static ssize_t packets_finished_show(struct device *dev, 129 struct device_attribute *attr, char *buf) 130 { 131 struct pktcdvd_device *pd = dev_get_drvdata(dev); 132 133 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended); 134 } 135 static DEVICE_ATTR_RO(packets_finished); 136 137 static ssize_t kb_written_show(struct device *dev, 138 struct device_attribute *attr, char *buf) 139 { 140 struct pktcdvd_device *pd = dev_get_drvdata(dev); 141 142 return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1); 143 } 144 static DEVICE_ATTR_RO(kb_written); 145 146 static ssize_t kb_read_show(struct device *dev, 147 struct device_attribute *attr, char *buf) 148 { 149 struct pktcdvd_device *pd = dev_get_drvdata(dev); 150 151 return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1); 152 } 153 static DEVICE_ATTR_RO(kb_read); 154 155 static ssize_t kb_read_gather_show(struct device *dev, 156 struct device_attribute *attr, char *buf) 157 { 158 struct pktcdvd_device *pd = dev_get_drvdata(dev); 159 160 return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1); 161 } 162 static DEVICE_ATTR_RO(kb_read_gather); 163 164 static ssize_t reset_store(struct device *dev, struct device_attribute *attr, 165 const char *buf, size_t len) 166 { 167 struct pktcdvd_device *pd = dev_get_drvdata(dev); 168 169 if (len > 0) { 170 pd->stats.pkt_started = 0; 171 pd->stats.pkt_ended = 0; 172 pd->stats.secs_w = 0; 173 pd->stats.secs_rg = 0; 174 pd->stats.secs_r = 0; 175 } 176 return len; 177 } 178 static DEVICE_ATTR_WO(reset); 179 180 static struct attribute *pkt_stat_attrs[] = { 181 &dev_attr_packets_finished.attr, 182 &dev_attr_packets_started.attr, 183 &dev_attr_kb_read.attr, 184 &dev_attr_kb_written.attr, 185 &dev_attr_kb_read_gather.attr, 186 &dev_attr_reset.attr, 187 NULL, 188 }; 189 190 static const struct attribute_group pkt_stat_group = { 191 .name = "stat", 192 .attrs = pkt_stat_attrs, 193 }; 194 195 static ssize_t size_show(struct device *dev, 196 struct device_attribute *attr, char *buf) 197 { 198 struct pktcdvd_device *pd = dev_get_drvdata(dev); 199 int n; 200 201 spin_lock(&pd->lock); 202 n = sysfs_emit(buf, "%d\n", pd->bio_queue_size); 203 spin_unlock(&pd->lock); 204 return n; 205 } 206 static DEVICE_ATTR_RO(size); 207 208 static void init_write_congestion_marks(int* lo, int* hi) 209 { 210 if (*hi > 0) { 211 *hi = max(*hi, 500); 212 *hi = min(*hi, 1000000); 213 if (*lo <= 0) 214 *lo = *hi - 100; 215 else { 216 *lo = min(*lo, *hi - 100); 217 *lo = max(*lo, 100); 218 } 219 } else { 220 *hi = -1; 221 *lo = -1; 222 } 223 } 224 225 static ssize_t congestion_off_show(struct device *dev, 226 struct device_attribute *attr, char *buf) 227 { 228 struct pktcdvd_device *pd = dev_get_drvdata(dev); 229 int n; 230 231 spin_lock(&pd->lock); 232 n = sysfs_emit(buf, "%d\n", pd->write_congestion_off); 233 spin_unlock(&pd->lock); 234 return n; 235 } 236 237 static ssize_t congestion_off_store(struct device *dev, 238 struct device_attribute *attr, 239 const char *buf, size_t len) 240 { 241 struct pktcdvd_device *pd = dev_get_drvdata(dev); 242 int val, ret; 243 244 ret = kstrtoint(buf, 10, &val); 245 if (ret) 246 return ret; 247 248 spin_lock(&pd->lock); 249 pd->write_congestion_off = val; 250 init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on); 251 spin_unlock(&pd->lock); 252 return len; 253 } 254 static DEVICE_ATTR_RW(congestion_off); 255 256 static ssize_t congestion_on_show(struct device *dev, 257 struct device_attribute *attr, char *buf) 258 { 259 struct pktcdvd_device *pd = dev_get_drvdata(dev); 260 int n; 261 262 spin_lock(&pd->lock); 263 n = sysfs_emit(buf, "%d\n", pd->write_congestion_on); 264 spin_unlock(&pd->lock); 265 return n; 266 } 267 268 static ssize_t congestion_on_store(struct device *dev, 269 struct device_attribute *attr, 270 const char *buf, size_t len) 271 { 272 struct pktcdvd_device *pd = dev_get_drvdata(dev); 273 int val, ret; 274 275 ret = kstrtoint(buf, 10, &val); 276 if (ret) 277 return ret; 278 279 spin_lock(&pd->lock); 280 pd->write_congestion_on = val; 281 init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on); 282 spin_unlock(&pd->lock); 283 return len; 284 } 285 static DEVICE_ATTR_RW(congestion_on); 286 287 static struct attribute *pkt_wq_attrs[] = { 288 &dev_attr_congestion_on.attr, 289 &dev_attr_congestion_off.attr, 290 &dev_attr_size.attr, 291 NULL, 292 }; 293 294 static const struct attribute_group pkt_wq_group = { 295 .name = "write_queue", 296 .attrs = pkt_wq_attrs, 297 }; 298 299 static const struct attribute_group *pkt_groups[] = { 300 &pkt_stat_group, 301 &pkt_wq_group, 302 NULL, 303 }; 304 305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 306 { 307 if (class_is_registered(&class_pktcdvd)) { 308 pd->dev = device_create_with_groups(&class_pktcdvd, NULL, 309 MKDEV(0, 0), pd, pkt_groups, 310 "%s", pd->disk->disk_name); 311 if (IS_ERR(pd->dev)) 312 pd->dev = NULL; 313 } 314 } 315 316 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 317 { 318 if (class_is_registered(&class_pktcdvd)) 319 device_unregister(pd->dev); 320 } 321 322 323 /******************************************************************** 324 /sys/class/pktcdvd/ 325 add map block device 326 remove unmap packet dev 327 device_map show mappings 328 *******************************************************************/ 329 330 static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr, 331 char *data) 332 { 333 int n = 0; 334 int idx; 335 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 336 for (idx = 0; idx < MAX_WRITERS; idx++) { 337 struct pktcdvd_device *pd = pkt_devs[idx]; 338 if (!pd) 339 continue; 340 n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n", 341 pd->disk->disk_name, 342 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 343 MAJOR(pd->bdev_handle->bdev->bd_dev), 344 MINOR(pd->bdev_handle->bdev->bd_dev)); 345 } 346 mutex_unlock(&ctl_mutex); 347 return n; 348 } 349 static CLASS_ATTR_RO(device_map); 350 351 static ssize_t add_store(const struct class *c, const struct class_attribute *attr, 352 const char *buf, size_t count) 353 { 354 unsigned int major, minor; 355 356 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 357 /* pkt_setup_dev() expects caller to hold reference to self */ 358 if (!try_module_get(THIS_MODULE)) 359 return -ENODEV; 360 361 pkt_setup_dev(MKDEV(major, minor), NULL); 362 363 module_put(THIS_MODULE); 364 365 return count; 366 } 367 368 return -EINVAL; 369 } 370 static CLASS_ATTR_WO(add); 371 372 static ssize_t remove_store(const struct class *c, const struct class_attribute *attr, 373 const char *buf, size_t count) 374 { 375 unsigned int major, minor; 376 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 377 pkt_remove_dev(MKDEV(major, minor)); 378 return count; 379 } 380 return -EINVAL; 381 } 382 static CLASS_ATTR_WO(remove); 383 384 static struct attribute *class_pktcdvd_attrs[] = { 385 &class_attr_add.attr, 386 &class_attr_remove.attr, 387 &class_attr_device_map.attr, 388 NULL, 389 }; 390 ATTRIBUTE_GROUPS(class_pktcdvd); 391 392 static struct class class_pktcdvd = { 393 .name = DRIVER_NAME, 394 .class_groups = class_pktcdvd_groups, 395 }; 396 397 static int pkt_sysfs_init(void) 398 { 399 /* 400 * create control files in sysfs 401 * /sys/class/pktcdvd/... 402 */ 403 return class_register(&class_pktcdvd); 404 } 405 406 static void pkt_sysfs_cleanup(void) 407 { 408 class_unregister(&class_pktcdvd); 409 } 410 411 /******************************************************************** 412 entries in debugfs 413 414 /sys/kernel/debug/pktcdvd[0-7]/ 415 info 416 417 *******************************************************************/ 418 419 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 420 { 421 struct packet_data *pkt; 422 int i; 423 424 for (i = 0; i < PACKET_NUM_STATES; i++) 425 states[i] = 0; 426 427 spin_lock(&pd->cdrw.active_list_lock); 428 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 429 states[pkt->state]++; 430 } 431 spin_unlock(&pd->cdrw.active_list_lock); 432 } 433 434 static int pkt_seq_show(struct seq_file *m, void *p) 435 { 436 struct pktcdvd_device *pd = m->private; 437 char *msg; 438 int states[PACKET_NUM_STATES]; 439 440 seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name, 441 pd->bdev_handle->bdev); 442 443 seq_printf(m, "\nSettings:\n"); 444 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 445 446 if (pd->settings.write_type == 0) 447 msg = "Packet"; 448 else 449 msg = "Unknown"; 450 seq_printf(m, "\twrite type:\t\t%s\n", msg); 451 452 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 453 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 454 455 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 456 457 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 458 msg = "Mode 1"; 459 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 460 msg = "Mode 2"; 461 else 462 msg = "Unknown"; 463 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 464 465 seq_printf(m, "\nStatistics:\n"); 466 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 467 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 468 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 469 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 470 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 471 472 seq_printf(m, "\nMisc:\n"); 473 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 474 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 475 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 476 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 477 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 478 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 479 480 seq_printf(m, "\nQueue state:\n"); 481 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 482 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 483 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector); 484 485 pkt_count_states(pd, states); 486 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 487 states[0], states[1], states[2], states[3], states[4], states[5]); 488 489 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 490 pd->write_congestion_off, 491 pd->write_congestion_on); 492 return 0; 493 } 494 DEFINE_SHOW_ATTRIBUTE(pkt_seq); 495 496 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 497 { 498 if (!pkt_debugfs_root) 499 return; 500 pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root); 501 if (!pd->dfs_d_root) 502 return; 503 504 pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root, 505 pd, &pkt_seq_fops); 506 } 507 508 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 509 { 510 if (!pkt_debugfs_root) 511 return; 512 debugfs_remove(pd->dfs_f_info); 513 debugfs_remove(pd->dfs_d_root); 514 pd->dfs_f_info = NULL; 515 pd->dfs_d_root = NULL; 516 } 517 518 static void pkt_debugfs_init(void) 519 { 520 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 521 } 522 523 static void pkt_debugfs_cleanup(void) 524 { 525 debugfs_remove(pkt_debugfs_root); 526 pkt_debugfs_root = NULL; 527 } 528 529 /* ----------------------------------------------------------*/ 530 531 532 static void pkt_bio_finished(struct pktcdvd_device *pd) 533 { 534 struct device *ddev = disk_to_dev(pd->disk); 535 536 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 537 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 538 dev_dbg(ddev, "queue empty\n"); 539 atomic_set(&pd->iosched.attention, 1); 540 wake_up(&pd->wqueue); 541 } 542 } 543 544 /* 545 * Allocate a packet_data struct 546 */ 547 static struct packet_data *pkt_alloc_packet_data(int frames) 548 { 549 int i; 550 struct packet_data *pkt; 551 552 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 553 if (!pkt) 554 goto no_pkt; 555 556 pkt->frames = frames; 557 pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL); 558 if (!pkt->w_bio) 559 goto no_bio; 560 561 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 562 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 563 if (!pkt->pages[i]) 564 goto no_page; 565 } 566 567 spin_lock_init(&pkt->lock); 568 bio_list_init(&pkt->orig_bios); 569 570 for (i = 0; i < frames; i++) { 571 pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL); 572 if (!pkt->r_bios[i]) 573 goto no_rd_bio; 574 } 575 576 return pkt; 577 578 no_rd_bio: 579 for (i = 0; i < frames; i++) 580 kfree(pkt->r_bios[i]); 581 no_page: 582 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 583 if (pkt->pages[i]) 584 __free_page(pkt->pages[i]); 585 kfree(pkt->w_bio); 586 no_bio: 587 kfree(pkt); 588 no_pkt: 589 return NULL; 590 } 591 592 /* 593 * Free a packet_data struct 594 */ 595 static void pkt_free_packet_data(struct packet_data *pkt) 596 { 597 int i; 598 599 for (i = 0; i < pkt->frames; i++) 600 kfree(pkt->r_bios[i]); 601 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 602 __free_page(pkt->pages[i]); 603 kfree(pkt->w_bio); 604 kfree(pkt); 605 } 606 607 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 608 { 609 struct packet_data *pkt, *next; 610 611 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 612 613 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 614 pkt_free_packet_data(pkt); 615 } 616 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 617 } 618 619 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 620 { 621 struct packet_data *pkt; 622 623 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 624 625 while (nr_packets > 0) { 626 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 627 if (!pkt) { 628 pkt_shrink_pktlist(pd); 629 return 0; 630 } 631 pkt->id = nr_packets; 632 pkt->pd = pd; 633 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 634 nr_packets--; 635 } 636 return 1; 637 } 638 639 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 640 { 641 struct rb_node *n = rb_next(&node->rb_node); 642 if (!n) 643 return NULL; 644 return rb_entry(n, struct pkt_rb_node, rb_node); 645 } 646 647 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 648 { 649 rb_erase(&node->rb_node, &pd->bio_queue); 650 mempool_free(node, &pd->rb_pool); 651 pd->bio_queue_size--; 652 BUG_ON(pd->bio_queue_size < 0); 653 } 654 655 /* 656 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 657 */ 658 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 659 { 660 struct rb_node *n = pd->bio_queue.rb_node; 661 struct rb_node *next; 662 struct pkt_rb_node *tmp; 663 664 if (!n) { 665 BUG_ON(pd->bio_queue_size > 0); 666 return NULL; 667 } 668 669 for (;;) { 670 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 671 if (s <= tmp->bio->bi_iter.bi_sector) 672 next = n->rb_left; 673 else 674 next = n->rb_right; 675 if (!next) 676 break; 677 n = next; 678 } 679 680 if (s > tmp->bio->bi_iter.bi_sector) { 681 tmp = pkt_rbtree_next(tmp); 682 if (!tmp) 683 return NULL; 684 } 685 BUG_ON(s > tmp->bio->bi_iter.bi_sector); 686 return tmp; 687 } 688 689 /* 690 * Insert a node into the pd->bio_queue rb tree. 691 */ 692 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 693 { 694 struct rb_node **p = &pd->bio_queue.rb_node; 695 struct rb_node *parent = NULL; 696 sector_t s = node->bio->bi_iter.bi_sector; 697 struct pkt_rb_node *tmp; 698 699 while (*p) { 700 parent = *p; 701 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 702 if (s < tmp->bio->bi_iter.bi_sector) 703 p = &(*p)->rb_left; 704 else 705 p = &(*p)->rb_right; 706 } 707 rb_link_node(&node->rb_node, parent, p); 708 rb_insert_color(&node->rb_node, &pd->bio_queue); 709 pd->bio_queue_size++; 710 } 711 712 /* 713 * Send a packet_command to the underlying block device and 714 * wait for completion. 715 */ 716 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 717 { 718 struct request_queue *q = bdev_get_queue(pd->bdev_handle->bdev); 719 struct scsi_cmnd *scmd; 720 struct request *rq; 721 int ret = 0; 722 723 rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 724 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 725 if (IS_ERR(rq)) 726 return PTR_ERR(rq); 727 scmd = blk_mq_rq_to_pdu(rq); 728 729 if (cgc->buflen) { 730 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, 731 GFP_NOIO); 732 if (ret) 733 goto out; 734 } 735 736 scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 737 memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE); 738 739 rq->timeout = 60*HZ; 740 if (cgc->quiet) 741 rq->rq_flags |= RQF_QUIET; 742 743 blk_execute_rq(rq, false); 744 if (scmd->result) 745 ret = -EIO; 746 out: 747 blk_mq_free_request(rq); 748 return ret; 749 } 750 751 static const char *sense_key_string(__u8 index) 752 { 753 static const char * const info[] = { 754 "No sense", "Recovered error", "Not ready", 755 "Medium error", "Hardware error", "Illegal request", 756 "Unit attention", "Data protect", "Blank check", 757 }; 758 759 return index < ARRAY_SIZE(info) ? info[index] : "INVALID"; 760 } 761 762 /* 763 * A generic sense dump / resolve mechanism should be implemented across 764 * all ATAPI + SCSI devices. 765 */ 766 static void pkt_dump_sense(struct pktcdvd_device *pd, 767 struct packet_command *cgc) 768 { 769 struct device *ddev = disk_to_dev(pd->disk); 770 struct scsi_sense_hdr *sshdr = cgc->sshdr; 771 772 if (sshdr) 773 dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n", 774 CDROM_PACKET_SIZE, cgc->cmd, 775 sshdr->sense_key, sshdr->asc, sshdr->ascq, 776 sense_key_string(sshdr->sense_key)); 777 else 778 dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd); 779 } 780 781 /* 782 * flush the drive cache to media 783 */ 784 static int pkt_flush_cache(struct pktcdvd_device *pd) 785 { 786 struct packet_command cgc; 787 788 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 789 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 790 cgc.quiet = 1; 791 792 /* 793 * the IMMED bit -- we default to not setting it, although that 794 * would allow a much faster close, this is safer 795 */ 796 #if 0 797 cgc.cmd[1] = 1 << 1; 798 #endif 799 return pkt_generic_packet(pd, &cgc); 800 } 801 802 /* 803 * speed is given as the normal factor, e.g. 4 for 4x 804 */ 805 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 806 unsigned write_speed, unsigned read_speed) 807 { 808 struct packet_command cgc; 809 struct scsi_sense_hdr sshdr; 810 int ret; 811 812 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 813 cgc.sshdr = &sshdr; 814 cgc.cmd[0] = GPCMD_SET_SPEED; 815 put_unaligned_be16(read_speed, &cgc.cmd[2]); 816 put_unaligned_be16(write_speed, &cgc.cmd[4]); 817 818 ret = pkt_generic_packet(pd, &cgc); 819 if (ret) 820 pkt_dump_sense(pd, &cgc); 821 822 return ret; 823 } 824 825 /* 826 * Queue a bio for processing by the low-level CD device. Must be called 827 * from process context. 828 */ 829 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 830 { 831 spin_lock(&pd->iosched.lock); 832 if (bio_data_dir(bio) == READ) 833 bio_list_add(&pd->iosched.read_queue, bio); 834 else 835 bio_list_add(&pd->iosched.write_queue, bio); 836 spin_unlock(&pd->iosched.lock); 837 838 atomic_set(&pd->iosched.attention, 1); 839 wake_up(&pd->wqueue); 840 } 841 842 /* 843 * Process the queued read/write requests. This function handles special 844 * requirements for CDRW drives: 845 * - A cache flush command must be inserted before a read request if the 846 * previous request was a write. 847 * - Switching between reading and writing is slow, so don't do it more often 848 * than necessary. 849 * - Optimize for throughput at the expense of latency. This means that streaming 850 * writes will never be interrupted by a read, but if the drive has to seek 851 * before the next write, switch to reading instead if there are any pending 852 * read requests. 853 * - Set the read speed according to current usage pattern. When only reading 854 * from the device, it's best to use the highest possible read speed, but 855 * when switching often between reading and writing, it's better to have the 856 * same read and write speeds. 857 */ 858 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 859 { 860 struct device *ddev = disk_to_dev(pd->disk); 861 862 if (atomic_read(&pd->iosched.attention) == 0) 863 return; 864 atomic_set(&pd->iosched.attention, 0); 865 866 for (;;) { 867 struct bio *bio; 868 int reads_queued, writes_queued; 869 870 spin_lock(&pd->iosched.lock); 871 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 872 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 873 spin_unlock(&pd->iosched.lock); 874 875 if (!reads_queued && !writes_queued) 876 break; 877 878 if (pd->iosched.writing) { 879 int need_write_seek = 1; 880 spin_lock(&pd->iosched.lock); 881 bio = bio_list_peek(&pd->iosched.write_queue); 882 spin_unlock(&pd->iosched.lock); 883 if (bio && (bio->bi_iter.bi_sector == 884 pd->iosched.last_write)) 885 need_write_seek = 0; 886 if (need_write_seek && reads_queued) { 887 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 888 dev_dbg(ddev, "write, waiting\n"); 889 break; 890 } 891 pkt_flush_cache(pd); 892 pd->iosched.writing = 0; 893 } 894 } else { 895 if (!reads_queued && writes_queued) { 896 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 897 dev_dbg(ddev, "read, waiting\n"); 898 break; 899 } 900 pd->iosched.writing = 1; 901 } 902 } 903 904 spin_lock(&pd->iosched.lock); 905 if (pd->iosched.writing) 906 bio = bio_list_pop(&pd->iosched.write_queue); 907 else 908 bio = bio_list_pop(&pd->iosched.read_queue); 909 spin_unlock(&pd->iosched.lock); 910 911 if (!bio) 912 continue; 913 914 if (bio_data_dir(bio) == READ) 915 pd->iosched.successive_reads += 916 bio->bi_iter.bi_size >> 10; 917 else { 918 pd->iosched.successive_reads = 0; 919 pd->iosched.last_write = bio_end_sector(bio); 920 } 921 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 922 if (pd->read_speed == pd->write_speed) { 923 pd->read_speed = MAX_SPEED; 924 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 925 } 926 } else { 927 if (pd->read_speed != pd->write_speed) { 928 pd->read_speed = pd->write_speed; 929 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 930 } 931 } 932 933 atomic_inc(&pd->cdrw.pending_bios); 934 submit_bio_noacct(bio); 935 } 936 } 937 938 /* 939 * Special care is needed if the underlying block device has a small 940 * max_phys_segments value. 941 */ 942 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 943 { 944 struct device *ddev = disk_to_dev(pd->disk); 945 946 if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) { 947 /* 948 * The cdrom device can handle one segment/frame 949 */ 950 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 951 return 0; 952 } 953 954 if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) { 955 /* 956 * We can handle this case at the expense of some extra memory 957 * copies during write operations 958 */ 959 set_bit(PACKET_MERGE_SEGS, &pd->flags); 960 return 0; 961 } 962 963 dev_err(ddev, "cdrom max_phys_segments too small\n"); 964 return -EIO; 965 } 966 967 static void pkt_end_io_read(struct bio *bio) 968 { 969 struct packet_data *pkt = bio->bi_private; 970 struct pktcdvd_device *pd = pkt->pd; 971 BUG_ON(!pd); 972 973 dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n", 974 bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status); 975 976 if (bio->bi_status) 977 atomic_inc(&pkt->io_errors); 978 bio_uninit(bio); 979 if (atomic_dec_and_test(&pkt->io_wait)) { 980 atomic_inc(&pkt->run_sm); 981 wake_up(&pd->wqueue); 982 } 983 pkt_bio_finished(pd); 984 } 985 986 static void pkt_end_io_packet_write(struct bio *bio) 987 { 988 struct packet_data *pkt = bio->bi_private; 989 struct pktcdvd_device *pd = pkt->pd; 990 BUG_ON(!pd); 991 992 dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status); 993 994 pd->stats.pkt_ended++; 995 996 bio_uninit(bio); 997 pkt_bio_finished(pd); 998 atomic_dec(&pkt->io_wait); 999 atomic_inc(&pkt->run_sm); 1000 wake_up(&pd->wqueue); 1001 } 1002 1003 /* 1004 * Schedule reads for the holes in a packet 1005 */ 1006 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1007 { 1008 struct device *ddev = disk_to_dev(pd->disk); 1009 int frames_read = 0; 1010 struct bio *bio; 1011 int f; 1012 char written[PACKET_MAX_SIZE]; 1013 1014 BUG_ON(bio_list_empty(&pkt->orig_bios)); 1015 1016 atomic_set(&pkt->io_wait, 0); 1017 atomic_set(&pkt->io_errors, 0); 1018 1019 /* 1020 * Figure out which frames we need to read before we can write. 1021 */ 1022 memset(written, 0, sizeof(written)); 1023 spin_lock(&pkt->lock); 1024 bio_list_for_each(bio, &pkt->orig_bios) { 1025 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) / 1026 (CD_FRAMESIZE >> 9); 1027 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE; 1028 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1029 BUG_ON(first_frame < 0); 1030 BUG_ON(first_frame + num_frames > pkt->frames); 1031 for (f = first_frame; f < first_frame + num_frames; f++) 1032 written[f] = 1; 1033 } 1034 spin_unlock(&pkt->lock); 1035 1036 if (pkt->cache_valid) { 1037 dev_dbg(ddev, "zone %llx cached\n", pkt->sector); 1038 goto out_account; 1039 } 1040 1041 /* 1042 * Schedule reads for missing parts of the packet. 1043 */ 1044 for (f = 0; f < pkt->frames; f++) { 1045 int p, offset; 1046 1047 if (written[f]) 1048 continue; 1049 1050 bio = pkt->r_bios[f]; 1051 bio_init(bio, pd->bdev_handle->bdev, bio->bi_inline_vecs, 1, 1052 REQ_OP_READ); 1053 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1054 bio->bi_end_io = pkt_end_io_read; 1055 bio->bi_private = pkt; 1056 1057 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1058 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1059 dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f, 1060 pkt->pages[p], offset); 1061 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1062 BUG(); 1063 1064 atomic_inc(&pkt->io_wait); 1065 pkt_queue_bio(pd, bio); 1066 frames_read++; 1067 } 1068 1069 out_account: 1070 dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector); 1071 pd->stats.pkt_started++; 1072 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1073 } 1074 1075 /* 1076 * Find a packet matching zone, or the least recently used packet if 1077 * there is no match. 1078 */ 1079 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1080 { 1081 struct packet_data *pkt; 1082 1083 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1084 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1085 list_del_init(&pkt->list); 1086 if (pkt->sector != zone) 1087 pkt->cache_valid = 0; 1088 return pkt; 1089 } 1090 } 1091 BUG(); 1092 return NULL; 1093 } 1094 1095 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1096 { 1097 if (pkt->cache_valid) { 1098 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1099 } else { 1100 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1101 } 1102 } 1103 1104 static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt, 1105 enum packet_data_state state) 1106 { 1107 static const char *state_name[] = { 1108 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1109 }; 1110 enum packet_data_state old_state = pkt->state; 1111 1112 dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n", 1113 pkt->id, pkt->sector, state_name[old_state], state_name[state]); 1114 1115 pkt->state = state; 1116 } 1117 1118 /* 1119 * Scan the work queue to see if we can start a new packet. 1120 * returns non-zero if any work was done. 1121 */ 1122 static int pkt_handle_queue(struct pktcdvd_device *pd) 1123 { 1124 struct device *ddev = disk_to_dev(pd->disk); 1125 struct packet_data *pkt, *p; 1126 struct bio *bio = NULL; 1127 sector_t zone = 0; /* Suppress gcc warning */ 1128 struct pkt_rb_node *node, *first_node; 1129 struct rb_node *n; 1130 1131 atomic_set(&pd->scan_queue, 0); 1132 1133 if (list_empty(&pd->cdrw.pkt_free_list)) { 1134 dev_dbg(ddev, "no pkt\n"); 1135 return 0; 1136 } 1137 1138 /* 1139 * Try to find a zone we are not already working on. 1140 */ 1141 spin_lock(&pd->lock); 1142 first_node = pkt_rbtree_find(pd, pd->current_sector); 1143 if (!first_node) { 1144 n = rb_first(&pd->bio_queue); 1145 if (n) 1146 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1147 } 1148 node = first_node; 1149 while (node) { 1150 bio = node->bio; 1151 zone = get_zone(bio->bi_iter.bi_sector, pd); 1152 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1153 if (p->sector == zone) { 1154 bio = NULL; 1155 goto try_next_bio; 1156 } 1157 } 1158 break; 1159 try_next_bio: 1160 node = pkt_rbtree_next(node); 1161 if (!node) { 1162 n = rb_first(&pd->bio_queue); 1163 if (n) 1164 node = rb_entry(n, struct pkt_rb_node, rb_node); 1165 } 1166 if (node == first_node) 1167 node = NULL; 1168 } 1169 spin_unlock(&pd->lock); 1170 if (!bio) { 1171 dev_dbg(ddev, "no bio\n"); 1172 return 0; 1173 } 1174 1175 pkt = pkt_get_packet_data(pd, zone); 1176 1177 pd->current_sector = zone + pd->settings.size; 1178 pkt->sector = zone; 1179 BUG_ON(pkt->frames != pd->settings.size >> 2); 1180 pkt->write_size = 0; 1181 1182 /* 1183 * Scan work queue for bios in the same zone and link them 1184 * to this packet. 1185 */ 1186 spin_lock(&pd->lock); 1187 dev_dbg(ddev, "looking for zone %llx\n", zone); 1188 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1189 sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd); 1190 1191 bio = node->bio; 1192 dev_dbg(ddev, "found zone=%llx\n", tmp); 1193 if (tmp != zone) 1194 break; 1195 pkt_rbtree_erase(pd, node); 1196 spin_lock(&pkt->lock); 1197 bio_list_add(&pkt->orig_bios, bio); 1198 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE; 1199 spin_unlock(&pkt->lock); 1200 } 1201 /* check write congestion marks, and if bio_queue_size is 1202 * below, wake up any waiters 1203 */ 1204 if (pd->congested && 1205 pd->bio_queue_size <= pd->write_congestion_off) { 1206 pd->congested = false; 1207 wake_up_var(&pd->congested); 1208 } 1209 spin_unlock(&pd->lock); 1210 1211 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1212 pkt_set_state(ddev, pkt, PACKET_WAITING_STATE); 1213 atomic_set(&pkt->run_sm, 1); 1214 1215 spin_lock(&pd->cdrw.active_list_lock); 1216 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1217 spin_unlock(&pd->cdrw.active_list_lock); 1218 1219 return 1; 1220 } 1221 1222 /** 1223 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1224 * another 1225 * @src: source bio list 1226 * @dst: destination bio list 1227 * 1228 * Stops when it reaches the end of either the @src list or @dst list - that is, 1229 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1230 * bios). 1231 */ 1232 static void bio_list_copy_data(struct bio *dst, struct bio *src) 1233 { 1234 struct bvec_iter src_iter = src->bi_iter; 1235 struct bvec_iter dst_iter = dst->bi_iter; 1236 1237 while (1) { 1238 if (!src_iter.bi_size) { 1239 src = src->bi_next; 1240 if (!src) 1241 break; 1242 1243 src_iter = src->bi_iter; 1244 } 1245 1246 if (!dst_iter.bi_size) { 1247 dst = dst->bi_next; 1248 if (!dst) 1249 break; 1250 1251 dst_iter = dst->bi_iter; 1252 } 1253 1254 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1255 } 1256 } 1257 1258 /* 1259 * Assemble a bio to write one packet and queue the bio for processing 1260 * by the underlying block device. 1261 */ 1262 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1263 { 1264 struct device *ddev = disk_to_dev(pd->disk); 1265 int f; 1266 1267 bio_init(pkt->w_bio, pd->bdev_handle->bdev, pkt->w_bio->bi_inline_vecs, 1268 pkt->frames, REQ_OP_WRITE); 1269 pkt->w_bio->bi_iter.bi_sector = pkt->sector; 1270 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1271 pkt->w_bio->bi_private = pkt; 1272 1273 /* XXX: locking? */ 1274 for (f = 0; f < pkt->frames; f++) { 1275 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1276 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1277 1278 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset)) 1279 BUG(); 1280 } 1281 dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt); 1282 1283 /* 1284 * Fill-in bvec with data from orig_bios. 1285 */ 1286 spin_lock(&pkt->lock); 1287 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head); 1288 1289 pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE); 1290 spin_unlock(&pkt->lock); 1291 1292 dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector); 1293 1294 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) 1295 pkt->cache_valid = 1; 1296 else 1297 pkt->cache_valid = 0; 1298 1299 /* Start the write request */ 1300 atomic_set(&pkt->io_wait, 1); 1301 pkt_queue_bio(pd, pkt->w_bio); 1302 } 1303 1304 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status) 1305 { 1306 struct bio *bio; 1307 1308 if (status) 1309 pkt->cache_valid = 0; 1310 1311 /* Finish all bios corresponding to this packet */ 1312 while ((bio = bio_list_pop(&pkt->orig_bios))) { 1313 bio->bi_status = status; 1314 bio_endio(bio); 1315 } 1316 } 1317 1318 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1319 { 1320 struct device *ddev = disk_to_dev(pd->disk); 1321 1322 dev_dbg(ddev, "pkt %d\n", pkt->id); 1323 1324 for (;;) { 1325 switch (pkt->state) { 1326 case PACKET_WAITING_STATE: 1327 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1328 return; 1329 1330 pkt->sleep_time = 0; 1331 pkt_gather_data(pd, pkt); 1332 pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE); 1333 break; 1334 1335 case PACKET_READ_WAIT_STATE: 1336 if (atomic_read(&pkt->io_wait) > 0) 1337 return; 1338 1339 if (atomic_read(&pkt->io_errors) > 0) { 1340 pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE); 1341 } else { 1342 pkt_start_write(pd, pkt); 1343 } 1344 break; 1345 1346 case PACKET_WRITE_WAIT_STATE: 1347 if (atomic_read(&pkt->io_wait) > 0) 1348 return; 1349 1350 if (!pkt->w_bio->bi_status) { 1351 pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE); 1352 } else { 1353 pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE); 1354 } 1355 break; 1356 1357 case PACKET_RECOVERY_STATE: 1358 dev_dbg(ddev, "No recovery possible\n"); 1359 pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE); 1360 break; 1361 1362 case PACKET_FINISHED_STATE: 1363 pkt_finish_packet(pkt, pkt->w_bio->bi_status); 1364 return; 1365 1366 default: 1367 BUG(); 1368 break; 1369 } 1370 } 1371 } 1372 1373 static void pkt_handle_packets(struct pktcdvd_device *pd) 1374 { 1375 struct device *ddev = disk_to_dev(pd->disk); 1376 struct packet_data *pkt, *next; 1377 1378 /* 1379 * Run state machine for active packets 1380 */ 1381 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1382 if (atomic_read(&pkt->run_sm) > 0) { 1383 atomic_set(&pkt->run_sm, 0); 1384 pkt_run_state_machine(pd, pkt); 1385 } 1386 } 1387 1388 /* 1389 * Move no longer active packets to the free list 1390 */ 1391 spin_lock(&pd->cdrw.active_list_lock); 1392 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1393 if (pkt->state == PACKET_FINISHED_STATE) { 1394 list_del(&pkt->list); 1395 pkt_put_packet_data(pd, pkt); 1396 pkt_set_state(ddev, pkt, PACKET_IDLE_STATE); 1397 atomic_set(&pd->scan_queue, 1); 1398 } 1399 } 1400 spin_unlock(&pd->cdrw.active_list_lock); 1401 } 1402 1403 /* 1404 * kcdrwd is woken up when writes have been queued for one of our 1405 * registered devices 1406 */ 1407 static int kcdrwd(void *foobar) 1408 { 1409 struct pktcdvd_device *pd = foobar; 1410 struct device *ddev = disk_to_dev(pd->disk); 1411 struct packet_data *pkt; 1412 int states[PACKET_NUM_STATES]; 1413 long min_sleep_time, residue; 1414 1415 set_user_nice(current, MIN_NICE); 1416 set_freezable(); 1417 1418 for (;;) { 1419 DECLARE_WAITQUEUE(wait, current); 1420 1421 /* 1422 * Wait until there is something to do 1423 */ 1424 add_wait_queue(&pd->wqueue, &wait); 1425 for (;;) { 1426 set_current_state(TASK_INTERRUPTIBLE); 1427 1428 /* Check if we need to run pkt_handle_queue */ 1429 if (atomic_read(&pd->scan_queue) > 0) 1430 goto work_to_do; 1431 1432 /* Check if we need to run the state machine for some packet */ 1433 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1434 if (atomic_read(&pkt->run_sm) > 0) 1435 goto work_to_do; 1436 } 1437 1438 /* Check if we need to process the iosched queues */ 1439 if (atomic_read(&pd->iosched.attention) != 0) 1440 goto work_to_do; 1441 1442 /* Otherwise, go to sleep */ 1443 pkt_count_states(pd, states); 1444 dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1445 states[0], states[1], states[2], states[3], states[4], states[5]); 1446 1447 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1448 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1449 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1450 min_sleep_time = pkt->sleep_time; 1451 } 1452 1453 dev_dbg(ddev, "sleeping\n"); 1454 residue = schedule_timeout(min_sleep_time); 1455 dev_dbg(ddev, "wake up\n"); 1456 1457 /* make swsusp happy with our thread */ 1458 try_to_freeze(); 1459 1460 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1461 if (!pkt->sleep_time) 1462 continue; 1463 pkt->sleep_time -= min_sleep_time - residue; 1464 if (pkt->sleep_time <= 0) { 1465 pkt->sleep_time = 0; 1466 atomic_inc(&pkt->run_sm); 1467 } 1468 } 1469 1470 if (kthread_should_stop()) 1471 break; 1472 } 1473 work_to_do: 1474 set_current_state(TASK_RUNNING); 1475 remove_wait_queue(&pd->wqueue, &wait); 1476 1477 if (kthread_should_stop()) 1478 break; 1479 1480 /* 1481 * if pkt_handle_queue returns true, we can queue 1482 * another request. 1483 */ 1484 while (pkt_handle_queue(pd)) 1485 ; 1486 1487 /* 1488 * Handle packet state machine 1489 */ 1490 pkt_handle_packets(pd); 1491 1492 /* 1493 * Handle iosched queues 1494 */ 1495 pkt_iosched_process_queue(pd); 1496 } 1497 1498 return 0; 1499 } 1500 1501 static void pkt_print_settings(struct pktcdvd_device *pd) 1502 { 1503 dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n", 1504 pd->settings.fp ? "Fixed" : "Variable", 1505 pd->settings.size >> 2, 1506 pd->settings.block_mode == 8 ? '1' : '2'); 1507 } 1508 1509 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1510 { 1511 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1512 1513 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1514 cgc->cmd[2] = page_code | (page_control << 6); 1515 put_unaligned_be16(cgc->buflen, &cgc->cmd[7]); 1516 cgc->data_direction = CGC_DATA_READ; 1517 return pkt_generic_packet(pd, cgc); 1518 } 1519 1520 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1521 { 1522 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1523 memset(cgc->buffer, 0, 2); 1524 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1525 cgc->cmd[1] = 0x10; /* PF */ 1526 put_unaligned_be16(cgc->buflen, &cgc->cmd[7]); 1527 cgc->data_direction = CGC_DATA_WRITE; 1528 return pkt_generic_packet(pd, cgc); 1529 } 1530 1531 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1532 { 1533 struct packet_command cgc; 1534 int ret; 1535 1536 /* set up command and get the disc info */ 1537 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1538 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1539 cgc.cmd[8] = cgc.buflen = 2; 1540 cgc.quiet = 1; 1541 1542 ret = pkt_generic_packet(pd, &cgc); 1543 if (ret) 1544 return ret; 1545 1546 /* not all drives have the same disc_info length, so requeue 1547 * packet with the length the drive tells us it can supply 1548 */ 1549 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1550 sizeof(di->disc_information_length); 1551 1552 if (cgc.buflen > sizeof(disc_information)) 1553 cgc.buflen = sizeof(disc_information); 1554 1555 cgc.cmd[8] = cgc.buflen; 1556 return pkt_generic_packet(pd, &cgc); 1557 } 1558 1559 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1560 { 1561 struct packet_command cgc; 1562 int ret; 1563 1564 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1565 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1566 cgc.cmd[1] = type & 3; 1567 put_unaligned_be16(track, &cgc.cmd[4]); 1568 cgc.cmd[8] = 8; 1569 cgc.quiet = 1; 1570 1571 ret = pkt_generic_packet(pd, &cgc); 1572 if (ret) 1573 return ret; 1574 1575 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1576 sizeof(ti->track_information_length); 1577 1578 if (cgc.buflen > sizeof(track_information)) 1579 cgc.buflen = sizeof(track_information); 1580 1581 cgc.cmd[8] = cgc.buflen; 1582 return pkt_generic_packet(pd, &cgc); 1583 } 1584 1585 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1586 long *last_written) 1587 { 1588 disc_information di; 1589 track_information ti; 1590 __u32 last_track; 1591 int ret; 1592 1593 ret = pkt_get_disc_info(pd, &di); 1594 if (ret) 1595 return ret; 1596 1597 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1598 ret = pkt_get_track_info(pd, last_track, 1, &ti); 1599 if (ret) 1600 return ret; 1601 1602 /* if this track is blank, try the previous. */ 1603 if (ti.blank) { 1604 last_track--; 1605 ret = pkt_get_track_info(pd, last_track, 1, &ti); 1606 if (ret) 1607 return ret; 1608 } 1609 1610 /* if last recorded field is valid, return it. */ 1611 if (ti.lra_v) { 1612 *last_written = be32_to_cpu(ti.last_rec_address); 1613 } else { 1614 /* make it up instead */ 1615 *last_written = be32_to_cpu(ti.track_start) + 1616 be32_to_cpu(ti.track_size); 1617 if (ti.free_blocks) 1618 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1619 } 1620 return 0; 1621 } 1622 1623 /* 1624 * write mode select package based on pd->settings 1625 */ 1626 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1627 { 1628 struct device *ddev = disk_to_dev(pd->disk); 1629 struct packet_command cgc; 1630 struct scsi_sense_hdr sshdr; 1631 write_param_page *wp; 1632 char buffer[128]; 1633 int ret, size; 1634 1635 /* doesn't apply to DVD+RW or DVD-RAM */ 1636 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1637 return 0; 1638 1639 memset(buffer, 0, sizeof(buffer)); 1640 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1641 cgc.sshdr = &sshdr; 1642 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0); 1643 if (ret) { 1644 pkt_dump_sense(pd, &cgc); 1645 return ret; 1646 } 1647 1648 size = 2 + get_unaligned_be16(&buffer[0]); 1649 pd->mode_offset = get_unaligned_be16(&buffer[6]); 1650 if (size > sizeof(buffer)) 1651 size = sizeof(buffer); 1652 1653 /* 1654 * now get it all 1655 */ 1656 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1657 cgc.sshdr = &sshdr; 1658 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0); 1659 if (ret) { 1660 pkt_dump_sense(pd, &cgc); 1661 return ret; 1662 } 1663 1664 /* 1665 * write page is offset header + block descriptor length 1666 */ 1667 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1668 1669 wp->fp = pd->settings.fp; 1670 wp->track_mode = pd->settings.track_mode; 1671 wp->write_type = pd->settings.write_type; 1672 wp->data_block_type = pd->settings.block_mode; 1673 1674 wp->multi_session = 0; 1675 1676 #ifdef PACKET_USE_LS 1677 wp->link_size = 7; 1678 wp->ls_v = 1; 1679 #endif 1680 1681 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1682 wp->session_format = 0; 1683 wp->subhdr2 = 0x20; 1684 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1685 wp->session_format = 0x20; 1686 wp->subhdr2 = 8; 1687 #if 0 1688 wp->mcn[0] = 0x80; 1689 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1690 #endif 1691 } else { 1692 /* 1693 * paranoia 1694 */ 1695 dev_err(ddev, "write mode wrong %d\n", wp->data_block_type); 1696 return 1; 1697 } 1698 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1699 1700 cgc.buflen = cgc.cmd[8] = size; 1701 ret = pkt_mode_select(pd, &cgc); 1702 if (ret) { 1703 pkt_dump_sense(pd, &cgc); 1704 return ret; 1705 } 1706 1707 pkt_print_settings(pd); 1708 return 0; 1709 } 1710 1711 /* 1712 * 1 -- we can write to this track, 0 -- we can't 1713 */ 1714 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1715 { 1716 struct device *ddev = disk_to_dev(pd->disk); 1717 1718 switch (pd->mmc3_profile) { 1719 case 0x1a: /* DVD+RW */ 1720 case 0x12: /* DVD-RAM */ 1721 /* The track is always writable on DVD+RW/DVD-RAM */ 1722 return 1; 1723 default: 1724 break; 1725 } 1726 1727 if (!ti->packet || !ti->fp) 1728 return 0; 1729 1730 /* 1731 * "good" settings as per Mt Fuji. 1732 */ 1733 if (ti->rt == 0 && ti->blank == 0) 1734 return 1; 1735 1736 if (ti->rt == 0 && ti->blank == 1) 1737 return 1; 1738 1739 if (ti->rt == 1 && ti->blank == 0) 1740 return 1; 1741 1742 dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1743 return 0; 1744 } 1745 1746 /* 1747 * 1 -- we can write to this disc, 0 -- we can't 1748 */ 1749 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1750 { 1751 struct device *ddev = disk_to_dev(pd->disk); 1752 1753 switch (pd->mmc3_profile) { 1754 case 0x0a: /* CD-RW */ 1755 case 0xffff: /* MMC3 not supported */ 1756 break; 1757 case 0x1a: /* DVD+RW */ 1758 case 0x13: /* DVD-RW */ 1759 case 0x12: /* DVD-RAM */ 1760 return 1; 1761 default: 1762 dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile); 1763 return 0; 1764 } 1765 1766 /* 1767 * for disc type 0xff we should probably reserve a new track. 1768 * but i'm not sure, should we leave this to user apps? probably. 1769 */ 1770 if (di->disc_type == 0xff) { 1771 dev_notice(ddev, "unknown disc - no track?\n"); 1772 return 0; 1773 } 1774 1775 if (di->disc_type != 0x20 && di->disc_type != 0) { 1776 dev_err(ddev, "wrong disc type (%x)\n", di->disc_type); 1777 return 0; 1778 } 1779 1780 if (di->erasable == 0) { 1781 dev_err(ddev, "disc not erasable\n"); 1782 return 0; 1783 } 1784 1785 if (di->border_status == PACKET_SESSION_RESERVED) { 1786 dev_err(ddev, "can't write to last track (reserved)\n"); 1787 return 0; 1788 } 1789 1790 return 1; 1791 } 1792 1793 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1794 { 1795 struct device *ddev = disk_to_dev(pd->disk); 1796 struct packet_command cgc; 1797 unsigned char buf[12]; 1798 disc_information di; 1799 track_information ti; 1800 int ret, track; 1801 1802 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1803 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1804 cgc.cmd[8] = 8; 1805 ret = pkt_generic_packet(pd, &cgc); 1806 pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]); 1807 1808 memset(&di, 0, sizeof(disc_information)); 1809 memset(&ti, 0, sizeof(track_information)); 1810 1811 ret = pkt_get_disc_info(pd, &di); 1812 if (ret) { 1813 dev_err(ddev, "failed get_disc\n"); 1814 return ret; 1815 } 1816 1817 if (!pkt_writable_disc(pd, &di)) 1818 return -EROFS; 1819 1820 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1821 1822 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1823 ret = pkt_get_track_info(pd, track, 1, &ti); 1824 if (ret) { 1825 dev_err(ddev, "failed get_track\n"); 1826 return ret; 1827 } 1828 1829 if (!pkt_writable_track(pd, &ti)) { 1830 dev_err(ddev, "can't write to this track\n"); 1831 return -EROFS; 1832 } 1833 1834 /* 1835 * we keep packet size in 512 byte units, makes it easier to 1836 * deal with request calculations. 1837 */ 1838 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1839 if (pd->settings.size == 0) { 1840 dev_notice(ddev, "detected zero packet size!\n"); 1841 return -ENXIO; 1842 } 1843 if (pd->settings.size > PACKET_MAX_SECTORS) { 1844 dev_err(ddev, "packet size is too big\n"); 1845 return -EROFS; 1846 } 1847 pd->settings.fp = ti.fp; 1848 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1849 1850 if (ti.nwa_v) { 1851 pd->nwa = be32_to_cpu(ti.next_writable); 1852 set_bit(PACKET_NWA_VALID, &pd->flags); 1853 } 1854 1855 /* 1856 * in theory we could use lra on -RW media as well and just zero 1857 * blocks that haven't been written yet, but in practice that 1858 * is just a no-go. we'll use that for -R, naturally. 1859 */ 1860 if (ti.lra_v) { 1861 pd->lra = be32_to_cpu(ti.last_rec_address); 1862 set_bit(PACKET_LRA_VALID, &pd->flags); 1863 } else { 1864 pd->lra = 0xffffffff; 1865 set_bit(PACKET_LRA_VALID, &pd->flags); 1866 } 1867 1868 /* 1869 * fine for now 1870 */ 1871 pd->settings.link_loss = 7; 1872 pd->settings.write_type = 0; /* packet */ 1873 pd->settings.track_mode = ti.track_mode; 1874 1875 /* 1876 * mode1 or mode2 disc 1877 */ 1878 switch (ti.data_mode) { 1879 case PACKET_MODE1: 1880 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1881 break; 1882 case PACKET_MODE2: 1883 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1884 break; 1885 default: 1886 dev_err(ddev, "unknown data mode\n"); 1887 return -EROFS; 1888 } 1889 return 0; 1890 } 1891 1892 /* 1893 * enable/disable write caching on drive 1894 */ 1895 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd) 1896 { 1897 struct device *ddev = disk_to_dev(pd->disk); 1898 struct packet_command cgc; 1899 struct scsi_sense_hdr sshdr; 1900 unsigned char buf[64]; 1901 bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE); 1902 int ret; 1903 1904 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1905 cgc.sshdr = &sshdr; 1906 cgc.buflen = pd->mode_offset + 12; 1907 1908 /* 1909 * caching mode page might not be there, so quiet this command 1910 */ 1911 cgc.quiet = 1; 1912 1913 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0); 1914 if (ret) 1915 return ret; 1916 1917 /* 1918 * use drive write caching -- we need deferred error handling to be 1919 * able to successfully recover with this option (drive will return good 1920 * status as soon as the cdb is validated). 1921 */ 1922 buf[pd->mode_offset + 10] |= (set << 2); 1923 1924 cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]); 1925 ret = pkt_mode_select(pd, &cgc); 1926 if (ret) { 1927 dev_err(ddev, "write caching control failed\n"); 1928 pkt_dump_sense(pd, &cgc); 1929 } else if (!ret && set) 1930 dev_notice(ddev, "enabled write caching\n"); 1931 return ret; 1932 } 1933 1934 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1935 { 1936 struct packet_command cgc; 1937 1938 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1939 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1940 cgc.cmd[4] = lockflag ? 1 : 0; 1941 return pkt_generic_packet(pd, &cgc); 1942 } 1943 1944 /* 1945 * Returns drive maximum write speed 1946 */ 1947 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1948 unsigned *write_speed) 1949 { 1950 struct packet_command cgc; 1951 struct scsi_sense_hdr sshdr; 1952 unsigned char buf[256+18]; 1953 unsigned char *cap_buf; 1954 int ret, offset; 1955 1956 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1957 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1958 cgc.sshdr = &sshdr; 1959 1960 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1961 if (ret) { 1962 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1963 sizeof(struct mode_page_header); 1964 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1965 if (ret) { 1966 pkt_dump_sense(pd, &cgc); 1967 return ret; 1968 } 1969 } 1970 1971 offset = 20; /* Obsoleted field, used by older drives */ 1972 if (cap_buf[1] >= 28) 1973 offset = 28; /* Current write speed selected */ 1974 if (cap_buf[1] >= 30) { 1975 /* If the drive reports at least one "Logical Unit Write 1976 * Speed Performance Descriptor Block", use the information 1977 * in the first block. (contains the highest speed) 1978 */ 1979 int num_spdb = get_unaligned_be16(&cap_buf[30]); 1980 if (num_spdb > 0) 1981 offset = 34; 1982 } 1983 1984 *write_speed = get_unaligned_be16(&cap_buf[offset]); 1985 return 0; 1986 } 1987 1988 /* These tables from cdrecord - I don't have orange book */ 1989 /* standard speed CD-RW (1-4x) */ 1990 static char clv_to_speed[16] = { 1991 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1992 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1993 }; 1994 /* high speed CD-RW (-10x) */ 1995 static char hs_clv_to_speed[16] = { 1996 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1997 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1998 }; 1999 /* ultra high speed CD-RW */ 2000 static char us_clv_to_speed[16] = { 2001 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2002 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2003 }; 2004 2005 /* 2006 * reads the maximum media speed from ATIP 2007 */ 2008 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2009 unsigned *speed) 2010 { 2011 struct device *ddev = disk_to_dev(pd->disk); 2012 struct packet_command cgc; 2013 struct scsi_sense_hdr sshdr; 2014 unsigned char buf[64]; 2015 unsigned int size, st, sp; 2016 int ret; 2017 2018 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2019 cgc.sshdr = &sshdr; 2020 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2021 cgc.cmd[1] = 2; 2022 cgc.cmd[2] = 4; /* READ ATIP */ 2023 cgc.cmd[8] = 2; 2024 ret = pkt_generic_packet(pd, &cgc); 2025 if (ret) { 2026 pkt_dump_sense(pd, &cgc); 2027 return ret; 2028 } 2029 size = 2 + get_unaligned_be16(&buf[0]); 2030 if (size > sizeof(buf)) 2031 size = sizeof(buf); 2032 2033 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2034 cgc.sshdr = &sshdr; 2035 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2036 cgc.cmd[1] = 2; 2037 cgc.cmd[2] = 4; 2038 cgc.cmd[8] = size; 2039 ret = pkt_generic_packet(pd, &cgc); 2040 if (ret) { 2041 pkt_dump_sense(pd, &cgc); 2042 return ret; 2043 } 2044 2045 if (!(buf[6] & 0x40)) { 2046 dev_notice(ddev, "disc type is not CD-RW\n"); 2047 return 1; 2048 } 2049 if (!(buf[6] & 0x4)) { 2050 dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n"); 2051 return 1; 2052 } 2053 2054 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2055 2056 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2057 2058 /* Info from cdrecord */ 2059 switch (st) { 2060 case 0: /* standard speed */ 2061 *speed = clv_to_speed[sp]; 2062 break; 2063 case 1: /* high speed */ 2064 *speed = hs_clv_to_speed[sp]; 2065 break; 2066 case 2: /* ultra high speed */ 2067 *speed = us_clv_to_speed[sp]; 2068 break; 2069 default: 2070 dev_notice(ddev, "unknown disc sub-type %d\n", st); 2071 return 1; 2072 } 2073 if (*speed) { 2074 dev_info(ddev, "maximum media speed: %d\n", *speed); 2075 return 0; 2076 } else { 2077 dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st); 2078 return 1; 2079 } 2080 } 2081 2082 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2083 { 2084 struct device *ddev = disk_to_dev(pd->disk); 2085 struct packet_command cgc; 2086 struct scsi_sense_hdr sshdr; 2087 int ret; 2088 2089 dev_dbg(ddev, "Performing OPC\n"); 2090 2091 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2092 cgc.sshdr = &sshdr; 2093 cgc.timeout = 60*HZ; 2094 cgc.cmd[0] = GPCMD_SEND_OPC; 2095 cgc.cmd[1] = 1; 2096 ret = pkt_generic_packet(pd, &cgc); 2097 if (ret) 2098 pkt_dump_sense(pd, &cgc); 2099 return ret; 2100 } 2101 2102 static int pkt_open_write(struct pktcdvd_device *pd) 2103 { 2104 struct device *ddev = disk_to_dev(pd->disk); 2105 int ret; 2106 unsigned int write_speed, media_write_speed, read_speed; 2107 2108 ret = pkt_probe_settings(pd); 2109 if (ret) { 2110 dev_dbg(ddev, "failed probe\n"); 2111 return ret; 2112 } 2113 2114 ret = pkt_set_write_settings(pd); 2115 if (ret) { 2116 dev_notice(ddev, "failed saving write settings\n"); 2117 return -EIO; 2118 } 2119 2120 pkt_write_caching(pd); 2121 2122 ret = pkt_get_max_speed(pd, &write_speed); 2123 if (ret) 2124 write_speed = 16 * 177; 2125 switch (pd->mmc3_profile) { 2126 case 0x13: /* DVD-RW */ 2127 case 0x1a: /* DVD+RW */ 2128 case 0x12: /* DVD-RAM */ 2129 dev_notice(ddev, "write speed %ukB/s\n", write_speed); 2130 break; 2131 default: 2132 ret = pkt_media_speed(pd, &media_write_speed); 2133 if (ret) 2134 media_write_speed = 16; 2135 write_speed = min(write_speed, media_write_speed * 177); 2136 dev_notice(ddev, "write speed %ux\n", write_speed / 176); 2137 break; 2138 } 2139 read_speed = write_speed; 2140 2141 ret = pkt_set_speed(pd, write_speed, read_speed); 2142 if (ret) { 2143 dev_notice(ddev, "couldn't set write speed\n"); 2144 return -EIO; 2145 } 2146 pd->write_speed = write_speed; 2147 pd->read_speed = read_speed; 2148 2149 ret = pkt_perform_opc(pd); 2150 if (ret) 2151 dev_notice(ddev, "Optimum Power Calibration failed\n"); 2152 2153 return 0; 2154 } 2155 2156 /* 2157 * called at open time. 2158 */ 2159 static int pkt_open_dev(struct pktcdvd_device *pd, bool write) 2160 { 2161 struct device *ddev = disk_to_dev(pd->disk); 2162 int ret; 2163 long lba; 2164 struct request_queue *q; 2165 struct bdev_handle *bdev_handle; 2166 2167 /* 2168 * We need to re-open the cdrom device without O_NONBLOCK to be able 2169 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2170 * so open should not fail. 2171 */ 2172 bdev_handle = bdev_open_by_dev(pd->bdev_handle->bdev->bd_dev, 2173 BLK_OPEN_READ, pd, NULL); 2174 if (IS_ERR(bdev_handle)) { 2175 ret = PTR_ERR(bdev_handle); 2176 goto out; 2177 } 2178 pd->open_bdev_handle = bdev_handle; 2179 2180 ret = pkt_get_last_written(pd, &lba); 2181 if (ret) { 2182 dev_err(ddev, "pkt_get_last_written failed\n"); 2183 goto out_putdev; 2184 } 2185 2186 set_capacity(pd->disk, lba << 2); 2187 set_capacity_and_notify(pd->bdev_handle->bdev->bd_disk, lba << 2); 2188 2189 q = bdev_get_queue(pd->bdev_handle->bdev); 2190 if (write) { 2191 ret = pkt_open_write(pd); 2192 if (ret) 2193 goto out_putdev; 2194 /* 2195 * Some CDRW drives can not handle writes larger than one packet, 2196 * even if the size is a multiple of the packet size. 2197 */ 2198 blk_queue_max_hw_sectors(q, pd->settings.size); 2199 set_bit(PACKET_WRITABLE, &pd->flags); 2200 } else { 2201 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2202 clear_bit(PACKET_WRITABLE, &pd->flags); 2203 } 2204 2205 ret = pkt_set_segment_merging(pd, q); 2206 if (ret) 2207 goto out_putdev; 2208 2209 if (write) { 2210 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2211 dev_err(ddev, "not enough memory for buffers\n"); 2212 ret = -ENOMEM; 2213 goto out_putdev; 2214 } 2215 dev_info(ddev, "%lukB available on disc\n", lba << 1); 2216 } 2217 2218 return 0; 2219 2220 out_putdev: 2221 bdev_release(bdev_handle); 2222 out: 2223 return ret; 2224 } 2225 2226 /* 2227 * called when the device is closed. makes sure that the device flushes 2228 * the internal cache before we close. 2229 */ 2230 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2231 { 2232 struct device *ddev = disk_to_dev(pd->disk); 2233 2234 if (flush && pkt_flush_cache(pd)) 2235 dev_notice(ddev, "not flushing cache\n"); 2236 2237 pkt_lock_door(pd, 0); 2238 2239 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2240 bdev_release(pd->open_bdev_handle); 2241 pd->open_bdev_handle = NULL; 2242 2243 pkt_shrink_pktlist(pd); 2244 } 2245 2246 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2247 { 2248 if (dev_minor >= MAX_WRITERS) 2249 return NULL; 2250 2251 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS); 2252 return pkt_devs[dev_minor]; 2253 } 2254 2255 static int pkt_open(struct gendisk *disk, blk_mode_t mode) 2256 { 2257 struct pktcdvd_device *pd = NULL; 2258 int ret; 2259 2260 mutex_lock(&pktcdvd_mutex); 2261 mutex_lock(&ctl_mutex); 2262 pd = pkt_find_dev_from_minor(disk->first_minor); 2263 if (!pd) { 2264 ret = -ENODEV; 2265 goto out; 2266 } 2267 BUG_ON(pd->refcnt < 0); 2268 2269 pd->refcnt++; 2270 if (pd->refcnt > 1) { 2271 if ((mode & BLK_OPEN_WRITE) && 2272 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2273 ret = -EBUSY; 2274 goto out_dec; 2275 } 2276 } else { 2277 ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE); 2278 if (ret) 2279 goto out_dec; 2280 /* 2281 * needed here as well, since ext2 (among others) may change 2282 * the blocksize at mount time 2283 */ 2284 set_blocksize(disk->part0, CD_FRAMESIZE); 2285 } 2286 mutex_unlock(&ctl_mutex); 2287 mutex_unlock(&pktcdvd_mutex); 2288 return 0; 2289 2290 out_dec: 2291 pd->refcnt--; 2292 out: 2293 mutex_unlock(&ctl_mutex); 2294 mutex_unlock(&pktcdvd_mutex); 2295 return ret; 2296 } 2297 2298 static void pkt_release(struct gendisk *disk) 2299 { 2300 struct pktcdvd_device *pd = disk->private_data; 2301 2302 mutex_lock(&pktcdvd_mutex); 2303 mutex_lock(&ctl_mutex); 2304 pd->refcnt--; 2305 BUG_ON(pd->refcnt < 0); 2306 if (pd->refcnt == 0) { 2307 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2308 pkt_release_dev(pd, flush); 2309 } 2310 mutex_unlock(&ctl_mutex); 2311 mutex_unlock(&pktcdvd_mutex); 2312 } 2313 2314 2315 static void pkt_end_io_read_cloned(struct bio *bio) 2316 { 2317 struct packet_stacked_data *psd = bio->bi_private; 2318 struct pktcdvd_device *pd = psd->pd; 2319 2320 psd->bio->bi_status = bio->bi_status; 2321 bio_put(bio); 2322 bio_endio(psd->bio); 2323 mempool_free(psd, &psd_pool); 2324 pkt_bio_finished(pd); 2325 } 2326 2327 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio) 2328 { 2329 struct bio *cloned_bio = bio_alloc_clone(pd->bdev_handle->bdev, bio, 2330 GFP_NOIO, &pkt_bio_set); 2331 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO); 2332 2333 psd->pd = pd; 2334 psd->bio = bio; 2335 cloned_bio->bi_private = psd; 2336 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2337 pd->stats.secs_r += bio_sectors(bio); 2338 pkt_queue_bio(pd, cloned_bio); 2339 } 2340 2341 static void pkt_make_request_write(struct request_queue *q, struct bio *bio) 2342 { 2343 struct pktcdvd_device *pd = q->queuedata; 2344 sector_t zone; 2345 struct packet_data *pkt; 2346 int was_empty, blocked_bio; 2347 struct pkt_rb_node *node; 2348 2349 zone = get_zone(bio->bi_iter.bi_sector, pd); 2350 2351 /* 2352 * If we find a matching packet in state WAITING or READ_WAIT, we can 2353 * just append this bio to that packet. 2354 */ 2355 spin_lock(&pd->cdrw.active_list_lock); 2356 blocked_bio = 0; 2357 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2358 if (pkt->sector == zone) { 2359 spin_lock(&pkt->lock); 2360 if ((pkt->state == PACKET_WAITING_STATE) || 2361 (pkt->state == PACKET_READ_WAIT_STATE)) { 2362 bio_list_add(&pkt->orig_bios, bio); 2363 pkt->write_size += 2364 bio->bi_iter.bi_size / CD_FRAMESIZE; 2365 if ((pkt->write_size >= pkt->frames) && 2366 (pkt->state == PACKET_WAITING_STATE)) { 2367 atomic_inc(&pkt->run_sm); 2368 wake_up(&pd->wqueue); 2369 } 2370 spin_unlock(&pkt->lock); 2371 spin_unlock(&pd->cdrw.active_list_lock); 2372 return; 2373 } else { 2374 blocked_bio = 1; 2375 } 2376 spin_unlock(&pkt->lock); 2377 } 2378 } 2379 spin_unlock(&pd->cdrw.active_list_lock); 2380 2381 /* 2382 * Test if there is enough room left in the bio work queue 2383 * (queue size >= congestion on mark). 2384 * If not, wait till the work queue size is below the congestion off mark. 2385 */ 2386 spin_lock(&pd->lock); 2387 if (pd->write_congestion_on > 0 2388 && pd->bio_queue_size >= pd->write_congestion_on) { 2389 struct wait_bit_queue_entry wqe; 2390 2391 init_wait_var_entry(&wqe, &pd->congested, 0); 2392 for (;;) { 2393 prepare_to_wait_event(__var_waitqueue(&pd->congested), 2394 &wqe.wq_entry, 2395 TASK_UNINTERRUPTIBLE); 2396 if (pd->bio_queue_size <= pd->write_congestion_off) 2397 break; 2398 pd->congested = true; 2399 spin_unlock(&pd->lock); 2400 schedule(); 2401 spin_lock(&pd->lock); 2402 } 2403 } 2404 spin_unlock(&pd->lock); 2405 2406 /* 2407 * No matching packet found. Store the bio in the work queue. 2408 */ 2409 node = mempool_alloc(&pd->rb_pool, GFP_NOIO); 2410 node->bio = bio; 2411 spin_lock(&pd->lock); 2412 BUG_ON(pd->bio_queue_size < 0); 2413 was_empty = (pd->bio_queue_size == 0); 2414 pkt_rbtree_insert(pd, node); 2415 spin_unlock(&pd->lock); 2416 2417 /* 2418 * Wake up the worker thread. 2419 */ 2420 atomic_set(&pd->scan_queue, 1); 2421 if (was_empty) { 2422 /* This wake_up is required for correct operation */ 2423 wake_up(&pd->wqueue); 2424 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2425 /* 2426 * This wake up is not required for correct operation, 2427 * but improves performance in some cases. 2428 */ 2429 wake_up(&pd->wqueue); 2430 } 2431 } 2432 2433 static void pkt_submit_bio(struct bio *bio) 2434 { 2435 struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata; 2436 struct device *ddev = disk_to_dev(pd->disk); 2437 struct bio *split; 2438 2439 bio = bio_split_to_limits(bio); 2440 if (!bio) 2441 return; 2442 2443 dev_dbg(ddev, "start = %6llx stop = %6llx\n", 2444 bio->bi_iter.bi_sector, bio_end_sector(bio)); 2445 2446 /* 2447 * Clone READ bios so we can have our own bi_end_io callback. 2448 */ 2449 if (bio_data_dir(bio) == READ) { 2450 pkt_make_request_read(pd, bio); 2451 return; 2452 } 2453 2454 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2455 dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector); 2456 goto end_io; 2457 } 2458 2459 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) { 2460 dev_err(ddev, "wrong bio size\n"); 2461 goto end_io; 2462 } 2463 2464 do { 2465 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd); 2466 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd); 2467 2468 if (last_zone != zone) { 2469 BUG_ON(last_zone != zone + pd->settings.size); 2470 2471 split = bio_split(bio, last_zone - 2472 bio->bi_iter.bi_sector, 2473 GFP_NOIO, &pkt_bio_set); 2474 bio_chain(split, bio); 2475 } else { 2476 split = bio; 2477 } 2478 2479 pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split); 2480 } while (split != bio); 2481 2482 return; 2483 end_io: 2484 bio_io_error(bio); 2485 } 2486 2487 static void pkt_init_queue(struct pktcdvd_device *pd) 2488 { 2489 struct request_queue *q = pd->disk->queue; 2490 2491 blk_queue_logical_block_size(q, CD_FRAMESIZE); 2492 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS); 2493 q->queuedata = pd; 2494 } 2495 2496 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2497 { 2498 struct device *ddev = disk_to_dev(pd->disk); 2499 int i; 2500 struct bdev_handle *bdev_handle; 2501 struct scsi_device *sdev; 2502 2503 if (pd->pkt_dev == dev) { 2504 dev_err(ddev, "recursive setup not allowed\n"); 2505 return -EBUSY; 2506 } 2507 for (i = 0; i < MAX_WRITERS; i++) { 2508 struct pktcdvd_device *pd2 = pkt_devs[i]; 2509 if (!pd2) 2510 continue; 2511 if (pd2->bdev_handle->bdev->bd_dev == dev) { 2512 dev_err(ddev, "%pg already setup\n", 2513 pd2->bdev_handle->bdev); 2514 return -EBUSY; 2515 } 2516 if (pd2->pkt_dev == dev) { 2517 dev_err(ddev, "can't chain pktcdvd devices\n"); 2518 return -EBUSY; 2519 } 2520 } 2521 2522 bdev_handle = bdev_open_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY, 2523 NULL, NULL); 2524 if (IS_ERR(bdev_handle)) 2525 return PTR_ERR(bdev_handle); 2526 sdev = scsi_device_from_queue(bdev_handle->bdev->bd_disk->queue); 2527 if (!sdev) { 2528 bdev_release(bdev_handle); 2529 return -EINVAL; 2530 } 2531 put_device(&sdev->sdev_gendev); 2532 2533 /* This is safe, since we have a reference from open(). */ 2534 __module_get(THIS_MODULE); 2535 2536 pd->bdev_handle = bdev_handle; 2537 set_blocksize(bdev_handle->bdev, CD_FRAMESIZE); 2538 2539 pkt_init_queue(pd); 2540 2541 atomic_set(&pd->cdrw.pending_bios, 0); 2542 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name); 2543 if (IS_ERR(pd->cdrw.thread)) { 2544 dev_err(ddev, "can't start kernel thread\n"); 2545 goto out_mem; 2546 } 2547 2548 proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd); 2549 dev_notice(ddev, "writer mapped to %pg\n", bdev_handle->bdev); 2550 return 0; 2551 2552 out_mem: 2553 bdev_release(bdev_handle); 2554 /* This is safe: open() is still holding a reference. */ 2555 module_put(THIS_MODULE); 2556 return -ENOMEM; 2557 } 2558 2559 static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode, 2560 unsigned int cmd, unsigned long arg) 2561 { 2562 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2563 struct device *ddev = disk_to_dev(pd->disk); 2564 int ret; 2565 2566 dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2567 2568 mutex_lock(&pktcdvd_mutex); 2569 switch (cmd) { 2570 case CDROMEJECT: 2571 /* 2572 * The door gets locked when the device is opened, so we 2573 * have to unlock it or else the eject command fails. 2574 */ 2575 if (pd->refcnt == 1) 2576 pkt_lock_door(pd, 0); 2577 fallthrough; 2578 /* 2579 * forward selected CDROM ioctls to CD-ROM, for UDF 2580 */ 2581 case CDROMMULTISESSION: 2582 case CDROMREADTOCENTRY: 2583 case CDROM_LAST_WRITTEN: 2584 case CDROM_SEND_PACKET: 2585 case SCSI_IOCTL_SEND_COMMAND: 2586 if (!bdev->bd_disk->fops->ioctl) 2587 ret = -ENOTTY; 2588 else 2589 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 2590 break; 2591 default: 2592 dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd); 2593 ret = -ENOTTY; 2594 } 2595 mutex_unlock(&pktcdvd_mutex); 2596 2597 return ret; 2598 } 2599 2600 static unsigned int pkt_check_events(struct gendisk *disk, 2601 unsigned int clearing) 2602 { 2603 struct pktcdvd_device *pd = disk->private_data; 2604 struct gendisk *attached_disk; 2605 2606 if (!pd) 2607 return 0; 2608 if (!pd->bdev_handle) 2609 return 0; 2610 attached_disk = pd->bdev_handle->bdev->bd_disk; 2611 if (!attached_disk || !attached_disk->fops->check_events) 2612 return 0; 2613 return attached_disk->fops->check_events(attached_disk, clearing); 2614 } 2615 2616 static char *pkt_devnode(struct gendisk *disk, umode_t *mode) 2617 { 2618 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name); 2619 } 2620 2621 static const struct block_device_operations pktcdvd_ops = { 2622 .owner = THIS_MODULE, 2623 .submit_bio = pkt_submit_bio, 2624 .open = pkt_open, 2625 .release = pkt_release, 2626 .ioctl = pkt_ioctl, 2627 .compat_ioctl = blkdev_compat_ptr_ioctl, 2628 .check_events = pkt_check_events, 2629 .devnode = pkt_devnode, 2630 }; 2631 2632 /* 2633 * Set up mapping from pktcdvd device to CD-ROM device. 2634 */ 2635 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2636 { 2637 int idx; 2638 int ret = -ENOMEM; 2639 struct pktcdvd_device *pd; 2640 struct gendisk *disk; 2641 2642 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2643 2644 for (idx = 0; idx < MAX_WRITERS; idx++) 2645 if (!pkt_devs[idx]) 2646 break; 2647 if (idx == MAX_WRITERS) { 2648 pr_err("max %d writers supported\n", MAX_WRITERS); 2649 ret = -EBUSY; 2650 goto out_mutex; 2651 } 2652 2653 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2654 if (!pd) 2655 goto out_mutex; 2656 2657 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE, 2658 sizeof(struct pkt_rb_node)); 2659 if (ret) 2660 goto out_mem; 2661 2662 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2663 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2664 spin_lock_init(&pd->cdrw.active_list_lock); 2665 2666 spin_lock_init(&pd->lock); 2667 spin_lock_init(&pd->iosched.lock); 2668 bio_list_init(&pd->iosched.read_queue); 2669 bio_list_init(&pd->iosched.write_queue); 2670 init_waitqueue_head(&pd->wqueue); 2671 pd->bio_queue = RB_ROOT; 2672 2673 pd->write_congestion_on = write_congestion_on; 2674 pd->write_congestion_off = write_congestion_off; 2675 2676 ret = -ENOMEM; 2677 disk = blk_alloc_disk(NUMA_NO_NODE); 2678 if (!disk) 2679 goto out_mem; 2680 pd->disk = disk; 2681 disk->major = pktdev_major; 2682 disk->first_minor = idx; 2683 disk->minors = 1; 2684 disk->fops = &pktcdvd_ops; 2685 disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART; 2686 snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx); 2687 disk->private_data = pd; 2688 2689 pd->pkt_dev = MKDEV(pktdev_major, idx); 2690 ret = pkt_new_dev(pd, dev); 2691 if (ret) 2692 goto out_mem2; 2693 2694 /* inherit events of the host device */ 2695 disk->events = pd->bdev_handle->bdev->bd_disk->events; 2696 2697 ret = add_disk(disk); 2698 if (ret) 2699 goto out_mem2; 2700 2701 pkt_sysfs_dev_new(pd); 2702 pkt_debugfs_dev_new(pd); 2703 2704 pkt_devs[idx] = pd; 2705 if (pkt_dev) 2706 *pkt_dev = pd->pkt_dev; 2707 2708 mutex_unlock(&ctl_mutex); 2709 return 0; 2710 2711 out_mem2: 2712 put_disk(disk); 2713 out_mem: 2714 mempool_exit(&pd->rb_pool); 2715 kfree(pd); 2716 out_mutex: 2717 mutex_unlock(&ctl_mutex); 2718 pr_err("setup of pktcdvd device failed\n"); 2719 return ret; 2720 } 2721 2722 /* 2723 * Tear down mapping from pktcdvd device to CD-ROM device. 2724 */ 2725 static int pkt_remove_dev(dev_t pkt_dev) 2726 { 2727 struct pktcdvd_device *pd; 2728 struct device *ddev; 2729 int idx; 2730 int ret = 0; 2731 2732 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2733 2734 for (idx = 0; idx < MAX_WRITERS; idx++) { 2735 pd = pkt_devs[idx]; 2736 if (pd && (pd->pkt_dev == pkt_dev)) 2737 break; 2738 } 2739 if (idx == MAX_WRITERS) { 2740 pr_debug("dev not setup\n"); 2741 ret = -ENXIO; 2742 goto out; 2743 } 2744 2745 if (pd->refcnt > 0) { 2746 ret = -EBUSY; 2747 goto out; 2748 } 2749 2750 ddev = disk_to_dev(pd->disk); 2751 2752 if (!IS_ERR(pd->cdrw.thread)) 2753 kthread_stop(pd->cdrw.thread); 2754 2755 pkt_devs[idx] = NULL; 2756 2757 pkt_debugfs_dev_remove(pd); 2758 pkt_sysfs_dev_remove(pd); 2759 2760 bdev_release(pd->bdev_handle); 2761 2762 remove_proc_entry(pd->disk->disk_name, pkt_proc); 2763 dev_notice(ddev, "writer unmapped\n"); 2764 2765 del_gendisk(pd->disk); 2766 put_disk(pd->disk); 2767 2768 mempool_exit(&pd->rb_pool); 2769 kfree(pd); 2770 2771 /* This is safe: open() is still holding a reference. */ 2772 module_put(THIS_MODULE); 2773 2774 out: 2775 mutex_unlock(&ctl_mutex); 2776 return ret; 2777 } 2778 2779 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2780 { 2781 struct pktcdvd_device *pd; 2782 2783 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2784 2785 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2786 if (pd) { 2787 ctrl_cmd->dev = new_encode_dev(pd->bdev_handle->bdev->bd_dev); 2788 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2789 } else { 2790 ctrl_cmd->dev = 0; 2791 ctrl_cmd->pkt_dev = 0; 2792 } 2793 ctrl_cmd->num_devices = MAX_WRITERS; 2794 2795 mutex_unlock(&ctl_mutex); 2796 } 2797 2798 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2799 { 2800 void __user *argp = (void __user *)arg; 2801 struct pkt_ctrl_command ctrl_cmd; 2802 int ret = 0; 2803 dev_t pkt_dev = 0; 2804 2805 if (cmd != PACKET_CTRL_CMD) 2806 return -ENOTTY; 2807 2808 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2809 return -EFAULT; 2810 2811 switch (ctrl_cmd.command) { 2812 case PKT_CTRL_CMD_SETUP: 2813 if (!capable(CAP_SYS_ADMIN)) 2814 return -EPERM; 2815 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2816 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2817 break; 2818 case PKT_CTRL_CMD_TEARDOWN: 2819 if (!capable(CAP_SYS_ADMIN)) 2820 return -EPERM; 2821 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2822 break; 2823 case PKT_CTRL_CMD_STATUS: 2824 pkt_get_status(&ctrl_cmd); 2825 break; 2826 default: 2827 return -ENOTTY; 2828 } 2829 2830 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2831 return -EFAULT; 2832 return ret; 2833 } 2834 2835 #ifdef CONFIG_COMPAT 2836 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2837 { 2838 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2839 } 2840 #endif 2841 2842 static const struct file_operations pkt_ctl_fops = { 2843 .open = nonseekable_open, 2844 .unlocked_ioctl = pkt_ctl_ioctl, 2845 #ifdef CONFIG_COMPAT 2846 .compat_ioctl = pkt_ctl_compat_ioctl, 2847 #endif 2848 .owner = THIS_MODULE, 2849 .llseek = no_llseek, 2850 }; 2851 2852 static struct miscdevice pkt_misc = { 2853 .minor = MISC_DYNAMIC_MINOR, 2854 .name = DRIVER_NAME, 2855 .nodename = "pktcdvd/control", 2856 .fops = &pkt_ctl_fops 2857 }; 2858 2859 static int __init pkt_init(void) 2860 { 2861 int ret; 2862 2863 mutex_init(&ctl_mutex); 2864 2865 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE, 2866 sizeof(struct packet_stacked_data)); 2867 if (ret) 2868 return ret; 2869 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0); 2870 if (ret) { 2871 mempool_exit(&psd_pool); 2872 return ret; 2873 } 2874 2875 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2876 if (ret < 0) { 2877 pr_err("unable to register block device\n"); 2878 goto out2; 2879 } 2880 if (!pktdev_major) 2881 pktdev_major = ret; 2882 2883 ret = pkt_sysfs_init(); 2884 if (ret) 2885 goto out; 2886 2887 pkt_debugfs_init(); 2888 2889 ret = misc_register(&pkt_misc); 2890 if (ret) { 2891 pr_err("unable to register misc device\n"); 2892 goto out_misc; 2893 } 2894 2895 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 2896 2897 return 0; 2898 2899 out_misc: 2900 pkt_debugfs_cleanup(); 2901 pkt_sysfs_cleanup(); 2902 out: 2903 unregister_blkdev(pktdev_major, DRIVER_NAME); 2904 out2: 2905 mempool_exit(&psd_pool); 2906 bioset_exit(&pkt_bio_set); 2907 return ret; 2908 } 2909 2910 static void __exit pkt_exit(void) 2911 { 2912 remove_proc_entry("driver/"DRIVER_NAME, NULL); 2913 misc_deregister(&pkt_misc); 2914 2915 pkt_debugfs_cleanup(); 2916 pkt_sysfs_cleanup(); 2917 2918 unregister_blkdev(pktdev_major, DRIVER_NAME); 2919 mempool_exit(&psd_pool); 2920 bioset_exit(&pkt_bio_set); 2921 } 2922 2923 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 2924 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 2925 MODULE_LICENSE("GPL"); 2926 2927 module_init(pkt_init); 2928 module_exit(pkt_exit); 2929