xref: /linux/drivers/block/pktcdvd.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  *
5  * May be copied or modified under the terms of the GNU General Public
6  * License.  See linux/COPYING for more information.
7  *
8  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
9  * DVD-RAM devices.
10  *
11  * Theory of operation:
12  *
13  * At the lowest level, there is the standard driver for the CD/DVD device,
14  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15  * but it doesn't know anything about the special restrictions that apply to
16  * packet writing. One restriction is that write requests must be aligned to
17  * packet boundaries on the physical media, and the size of a write request
18  * must be equal to the packet size. Another restriction is that a
19  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20  * command, if the previous command was a write.
21  *
22  * The purpose of the packet writing driver is to hide these restrictions from
23  * higher layers, such as file systems, and present a block device that can be
24  * randomly read and written using 2kB-sized blocks.
25  *
26  * The lowest layer in the packet writing driver is the packet I/O scheduler.
27  * Its data is defined by the struct packet_iosched and includes two bio
28  * queues with pending read and write requests. These queues are processed
29  * by the pkt_iosched_process_queue() function. The write requests in this
30  * queue are already properly aligned and sized. This layer is responsible for
31  * issuing the flush cache commands and scheduling the I/O in a good order.
32  *
33  * The next layer transforms unaligned write requests to aligned writes. This
34  * transformation requires reading missing pieces of data from the underlying
35  * block device, assembling the pieces to full packets and queuing them to the
36  * packet I/O scheduler.
37  *
38  * At the top layer there is a custom make_request_fn function that forwards
39  * read requests directly to the iosched queue and puts write requests in the
40  * unaligned write queue. A kernel thread performs the necessary read
41  * gathering to convert the unaligned writes to aligned writes and then feeds
42  * them to the packet I/O scheduler.
43  *
44  *************************************************************************/
45 
46 #include <linux/pktcdvd.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/kthread.h>
51 #include <linux/errno.h>
52 #include <linux/spinlock.h>
53 #include <linux/file.h>
54 #include <linux/proc_fs.h>
55 #include <linux/seq_file.h>
56 #include <linux/miscdevice.h>
57 #include <linux/suspend.h>
58 #include <linux/mutex.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_ioctl.h>
61 #include <scsi/scsi.h>
62 
63 #include <asm/uaccess.h>
64 
65 #if PACKET_DEBUG
66 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
67 #else
68 #define DPRINTK(fmt, args...)
69 #endif
70 
71 #if PACKET_DEBUG > 1
72 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
73 #else
74 #define VPRINTK(fmt, args...)
75 #endif
76 
77 #define MAX_SPEED 0xffff
78 
79 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
80 
81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82 static struct proc_dir_entry *pkt_proc;
83 static int pkt_major;
84 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
85 static mempool_t *psd_pool;
86 
87 
88 static void pkt_bio_finished(struct pktcdvd_device *pd)
89 {
90 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
91 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
92 		VPRINTK("pktcdvd: queue empty\n");
93 		atomic_set(&pd->iosched.attention, 1);
94 		wake_up(&pd->wqueue);
95 	}
96 }
97 
98 static void pkt_bio_destructor(struct bio *bio)
99 {
100 	kfree(bio->bi_io_vec);
101 	kfree(bio);
102 }
103 
104 static struct bio *pkt_bio_alloc(int nr_iovecs)
105 {
106 	struct bio_vec *bvl = NULL;
107 	struct bio *bio;
108 
109 	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
110 	if (!bio)
111 		goto no_bio;
112 	bio_init(bio);
113 
114 	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
115 	if (!bvl)
116 		goto no_bvl;
117 
118 	bio->bi_max_vecs = nr_iovecs;
119 	bio->bi_io_vec = bvl;
120 	bio->bi_destructor = pkt_bio_destructor;
121 
122 	return bio;
123 
124  no_bvl:
125 	kfree(bio);
126  no_bio:
127 	return NULL;
128 }
129 
130 /*
131  * Allocate a packet_data struct
132  */
133 static struct packet_data *pkt_alloc_packet_data(int frames)
134 {
135 	int i;
136 	struct packet_data *pkt;
137 
138 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
139 	if (!pkt)
140 		goto no_pkt;
141 
142 	pkt->frames = frames;
143 	pkt->w_bio = pkt_bio_alloc(frames);
144 	if (!pkt->w_bio)
145 		goto no_bio;
146 
147 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
148 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
149 		if (!pkt->pages[i])
150 			goto no_page;
151 	}
152 
153 	spin_lock_init(&pkt->lock);
154 
155 	for (i = 0; i < frames; i++) {
156 		struct bio *bio = pkt_bio_alloc(1);
157 		if (!bio)
158 			goto no_rd_bio;
159 		pkt->r_bios[i] = bio;
160 	}
161 
162 	return pkt;
163 
164 no_rd_bio:
165 	for (i = 0; i < frames; i++) {
166 		struct bio *bio = pkt->r_bios[i];
167 		if (bio)
168 			bio_put(bio);
169 	}
170 
171 no_page:
172 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
173 		if (pkt->pages[i])
174 			__free_page(pkt->pages[i]);
175 	bio_put(pkt->w_bio);
176 no_bio:
177 	kfree(pkt);
178 no_pkt:
179 	return NULL;
180 }
181 
182 /*
183  * Free a packet_data struct
184  */
185 static void pkt_free_packet_data(struct packet_data *pkt)
186 {
187 	int i;
188 
189 	for (i = 0; i < pkt->frames; i++) {
190 		struct bio *bio = pkt->r_bios[i];
191 		if (bio)
192 			bio_put(bio);
193 	}
194 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
195 		__free_page(pkt->pages[i]);
196 	bio_put(pkt->w_bio);
197 	kfree(pkt);
198 }
199 
200 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
201 {
202 	struct packet_data *pkt, *next;
203 
204 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
205 
206 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
207 		pkt_free_packet_data(pkt);
208 	}
209 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
210 }
211 
212 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
213 {
214 	struct packet_data *pkt;
215 
216 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
217 
218 	while (nr_packets > 0) {
219 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
220 		if (!pkt) {
221 			pkt_shrink_pktlist(pd);
222 			return 0;
223 		}
224 		pkt->id = nr_packets;
225 		pkt->pd = pd;
226 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
227 		nr_packets--;
228 	}
229 	return 1;
230 }
231 
232 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
233 {
234 	struct rb_node *n = rb_next(&node->rb_node);
235 	if (!n)
236 		return NULL;
237 	return rb_entry(n, struct pkt_rb_node, rb_node);
238 }
239 
240 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
241 {
242 	rb_erase(&node->rb_node, &pd->bio_queue);
243 	mempool_free(node, pd->rb_pool);
244 	pd->bio_queue_size--;
245 	BUG_ON(pd->bio_queue_size < 0);
246 }
247 
248 /*
249  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
250  */
251 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
252 {
253 	struct rb_node *n = pd->bio_queue.rb_node;
254 	struct rb_node *next;
255 	struct pkt_rb_node *tmp;
256 
257 	if (!n) {
258 		BUG_ON(pd->bio_queue_size > 0);
259 		return NULL;
260 	}
261 
262 	for (;;) {
263 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
264 		if (s <= tmp->bio->bi_sector)
265 			next = n->rb_left;
266 		else
267 			next = n->rb_right;
268 		if (!next)
269 			break;
270 		n = next;
271 	}
272 
273 	if (s > tmp->bio->bi_sector) {
274 		tmp = pkt_rbtree_next(tmp);
275 		if (!tmp)
276 			return NULL;
277 	}
278 	BUG_ON(s > tmp->bio->bi_sector);
279 	return tmp;
280 }
281 
282 /*
283  * Insert a node into the pd->bio_queue rb tree.
284  */
285 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
286 {
287 	struct rb_node **p = &pd->bio_queue.rb_node;
288 	struct rb_node *parent = NULL;
289 	sector_t s = node->bio->bi_sector;
290 	struct pkt_rb_node *tmp;
291 
292 	while (*p) {
293 		parent = *p;
294 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
295 		if (s < tmp->bio->bi_sector)
296 			p = &(*p)->rb_left;
297 		else
298 			p = &(*p)->rb_right;
299 	}
300 	rb_link_node(&node->rb_node, parent, p);
301 	rb_insert_color(&node->rb_node, &pd->bio_queue);
302 	pd->bio_queue_size++;
303 }
304 
305 /*
306  * Add a bio to a single linked list defined by its head and tail pointers.
307  */
308 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
309 {
310 	bio->bi_next = NULL;
311 	if (*list_tail) {
312 		BUG_ON((*list_head) == NULL);
313 		(*list_tail)->bi_next = bio;
314 		(*list_tail) = bio;
315 	} else {
316 		BUG_ON((*list_head) != NULL);
317 		(*list_head) = bio;
318 		(*list_tail) = bio;
319 	}
320 }
321 
322 /*
323  * Remove and return the first bio from a single linked list defined by its
324  * head and tail pointers.
325  */
326 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
327 {
328 	struct bio *bio;
329 
330 	if (*list_head == NULL)
331 		return NULL;
332 
333 	bio = *list_head;
334 	*list_head = bio->bi_next;
335 	if (*list_head == NULL)
336 		*list_tail = NULL;
337 
338 	bio->bi_next = NULL;
339 	return bio;
340 }
341 
342 /*
343  * Send a packet_command to the underlying block device and
344  * wait for completion.
345  */
346 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
347 {
348 	char sense[SCSI_SENSE_BUFFERSIZE];
349 	request_queue_t *q;
350 	struct request *rq;
351 	DECLARE_COMPLETION(wait);
352 	int err = 0;
353 
354 	q = bdev_get_queue(pd->bdev);
355 
356 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
357 			     __GFP_WAIT);
358 	rq->errors = 0;
359 	rq->rq_disk = pd->bdev->bd_disk;
360 	rq->bio = NULL;
361 	rq->buffer = NULL;
362 	rq->timeout = 60*HZ;
363 	rq->data = cgc->buffer;
364 	rq->data_len = cgc->buflen;
365 	rq->sense = sense;
366 	memset(sense, 0, sizeof(sense));
367 	rq->sense_len = 0;
368 	rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
369 	if (cgc->quiet)
370 		rq->flags |= REQ_QUIET;
371 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
372 	if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
373 		memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
374 	rq->cmd_len = COMMAND_SIZE(rq->cmd[0]);
375 
376 	rq->ref_count++;
377 	rq->flags |= REQ_NOMERGE;
378 	rq->waiting = &wait;
379 	rq->end_io = blk_end_sync_rq;
380 	elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
381 	generic_unplug_device(q);
382 	wait_for_completion(&wait);
383 
384 	if (rq->errors)
385 		err = -EIO;
386 
387 	blk_put_request(rq);
388 	return err;
389 }
390 
391 /*
392  * A generic sense dump / resolve mechanism should be implemented across
393  * all ATAPI + SCSI devices.
394  */
395 static void pkt_dump_sense(struct packet_command *cgc)
396 {
397 	static char *info[9] = { "No sense", "Recovered error", "Not ready",
398 				 "Medium error", "Hardware error", "Illegal request",
399 				 "Unit attention", "Data protect", "Blank check" };
400 	int i;
401 	struct request_sense *sense = cgc->sense;
402 
403 	printk("pktcdvd:");
404 	for (i = 0; i < CDROM_PACKET_SIZE; i++)
405 		printk(" %02x", cgc->cmd[i]);
406 	printk(" - ");
407 
408 	if (sense == NULL) {
409 		printk("no sense\n");
410 		return;
411 	}
412 
413 	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
414 
415 	if (sense->sense_key > 8) {
416 		printk(" (INVALID)\n");
417 		return;
418 	}
419 
420 	printk(" (%s)\n", info[sense->sense_key]);
421 }
422 
423 /*
424  * flush the drive cache to media
425  */
426 static int pkt_flush_cache(struct pktcdvd_device *pd)
427 {
428 	struct packet_command cgc;
429 
430 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
431 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
432 	cgc.quiet = 1;
433 
434 	/*
435 	 * the IMMED bit -- we default to not setting it, although that
436 	 * would allow a much faster close, this is safer
437 	 */
438 #if 0
439 	cgc.cmd[1] = 1 << 1;
440 #endif
441 	return pkt_generic_packet(pd, &cgc);
442 }
443 
444 /*
445  * speed is given as the normal factor, e.g. 4 for 4x
446  */
447 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
448 {
449 	struct packet_command cgc;
450 	struct request_sense sense;
451 	int ret;
452 
453 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
454 	cgc.sense = &sense;
455 	cgc.cmd[0] = GPCMD_SET_SPEED;
456 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
457 	cgc.cmd[3] = read_speed & 0xff;
458 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
459 	cgc.cmd[5] = write_speed & 0xff;
460 
461 	if ((ret = pkt_generic_packet(pd, &cgc)))
462 		pkt_dump_sense(&cgc);
463 
464 	return ret;
465 }
466 
467 /*
468  * Queue a bio for processing by the low-level CD device. Must be called
469  * from process context.
470  */
471 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
472 {
473 	spin_lock(&pd->iosched.lock);
474 	if (bio_data_dir(bio) == READ) {
475 		pkt_add_list_last(bio, &pd->iosched.read_queue,
476 				  &pd->iosched.read_queue_tail);
477 	} else {
478 		pkt_add_list_last(bio, &pd->iosched.write_queue,
479 				  &pd->iosched.write_queue_tail);
480 	}
481 	spin_unlock(&pd->iosched.lock);
482 
483 	atomic_set(&pd->iosched.attention, 1);
484 	wake_up(&pd->wqueue);
485 }
486 
487 /*
488  * Process the queued read/write requests. This function handles special
489  * requirements for CDRW drives:
490  * - A cache flush command must be inserted before a read request if the
491  *   previous request was a write.
492  * - Switching between reading and writing is slow, so don't do it more often
493  *   than necessary.
494  * - Optimize for throughput at the expense of latency. This means that streaming
495  *   writes will never be interrupted by a read, but if the drive has to seek
496  *   before the next write, switch to reading instead if there are any pending
497  *   read requests.
498  * - Set the read speed according to current usage pattern. When only reading
499  *   from the device, it's best to use the highest possible read speed, but
500  *   when switching often between reading and writing, it's better to have the
501  *   same read and write speeds.
502  */
503 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
504 {
505 
506 	if (atomic_read(&pd->iosched.attention) == 0)
507 		return;
508 	atomic_set(&pd->iosched.attention, 0);
509 
510 	for (;;) {
511 		struct bio *bio;
512 		int reads_queued, writes_queued;
513 
514 		spin_lock(&pd->iosched.lock);
515 		reads_queued = (pd->iosched.read_queue != NULL);
516 		writes_queued = (pd->iosched.write_queue != NULL);
517 		spin_unlock(&pd->iosched.lock);
518 
519 		if (!reads_queued && !writes_queued)
520 			break;
521 
522 		if (pd->iosched.writing) {
523 			int need_write_seek = 1;
524 			spin_lock(&pd->iosched.lock);
525 			bio = pd->iosched.write_queue;
526 			spin_unlock(&pd->iosched.lock);
527 			if (bio && (bio->bi_sector == pd->iosched.last_write))
528 				need_write_seek = 0;
529 			if (need_write_seek && reads_queued) {
530 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
531 					VPRINTK("pktcdvd: write, waiting\n");
532 					break;
533 				}
534 				pkt_flush_cache(pd);
535 				pd->iosched.writing = 0;
536 			}
537 		} else {
538 			if (!reads_queued && writes_queued) {
539 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
540 					VPRINTK("pktcdvd: read, waiting\n");
541 					break;
542 				}
543 				pd->iosched.writing = 1;
544 			}
545 		}
546 
547 		spin_lock(&pd->iosched.lock);
548 		if (pd->iosched.writing) {
549 			bio = pkt_get_list_first(&pd->iosched.write_queue,
550 						 &pd->iosched.write_queue_tail);
551 		} else {
552 			bio = pkt_get_list_first(&pd->iosched.read_queue,
553 						 &pd->iosched.read_queue_tail);
554 		}
555 		spin_unlock(&pd->iosched.lock);
556 
557 		if (!bio)
558 			continue;
559 
560 		if (bio_data_dir(bio) == READ)
561 			pd->iosched.successive_reads += bio->bi_size >> 10;
562 		else {
563 			pd->iosched.successive_reads = 0;
564 			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
565 		}
566 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
567 			if (pd->read_speed == pd->write_speed) {
568 				pd->read_speed = MAX_SPEED;
569 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
570 			}
571 		} else {
572 			if (pd->read_speed != pd->write_speed) {
573 				pd->read_speed = pd->write_speed;
574 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
575 			}
576 		}
577 
578 		atomic_inc(&pd->cdrw.pending_bios);
579 		generic_make_request(bio);
580 	}
581 }
582 
583 /*
584  * Special care is needed if the underlying block device has a small
585  * max_phys_segments value.
586  */
587 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
588 {
589 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
590 		/*
591 		 * The cdrom device can handle one segment/frame
592 		 */
593 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
594 		return 0;
595 	} else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
596 		/*
597 		 * We can handle this case at the expense of some extra memory
598 		 * copies during write operations
599 		 */
600 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
601 		return 0;
602 	} else {
603 		printk("pktcdvd: cdrom max_phys_segments too small\n");
604 		return -EIO;
605 	}
606 }
607 
608 /*
609  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
610  */
611 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
612 {
613 	unsigned int copy_size = CD_FRAMESIZE;
614 
615 	while (copy_size > 0) {
616 		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
617 		void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
618 			src_bvl->bv_offset + offs;
619 		void *vto = page_address(dst_page) + dst_offs;
620 		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
621 
622 		BUG_ON(len < 0);
623 		memcpy(vto, vfrom, len);
624 		kunmap_atomic(vfrom, KM_USER0);
625 
626 		seg++;
627 		offs = 0;
628 		dst_offs += len;
629 		copy_size -= len;
630 	}
631 }
632 
633 /*
634  * Copy all data for this packet to pkt->pages[], so that
635  * a) The number of required segments for the write bio is minimized, which
636  *    is necessary for some scsi controllers.
637  * b) The data can be used as cache to avoid read requests if we receive a
638  *    new write request for the same zone.
639  */
640 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
641 {
642 	int f, p, offs;
643 
644 	/* Copy all data to pkt->pages[] */
645 	p = 0;
646 	offs = 0;
647 	for (f = 0; f < pkt->frames; f++) {
648 		if (bvec[f].bv_page != pkt->pages[p]) {
649 			void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
650 			void *vto = page_address(pkt->pages[p]) + offs;
651 			memcpy(vto, vfrom, CD_FRAMESIZE);
652 			kunmap_atomic(vfrom, KM_USER0);
653 			bvec[f].bv_page = pkt->pages[p];
654 			bvec[f].bv_offset = offs;
655 		} else {
656 			BUG_ON(bvec[f].bv_offset != offs);
657 		}
658 		offs += CD_FRAMESIZE;
659 		if (offs >= PAGE_SIZE) {
660 			offs = 0;
661 			p++;
662 		}
663 	}
664 }
665 
666 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
667 {
668 	struct packet_data *pkt = bio->bi_private;
669 	struct pktcdvd_device *pd = pkt->pd;
670 	BUG_ON(!pd);
671 
672 	if (bio->bi_size)
673 		return 1;
674 
675 	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
676 		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
677 
678 	if (err)
679 		atomic_inc(&pkt->io_errors);
680 	if (atomic_dec_and_test(&pkt->io_wait)) {
681 		atomic_inc(&pkt->run_sm);
682 		wake_up(&pd->wqueue);
683 	}
684 	pkt_bio_finished(pd);
685 
686 	return 0;
687 }
688 
689 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
690 {
691 	struct packet_data *pkt = bio->bi_private;
692 	struct pktcdvd_device *pd = pkt->pd;
693 	BUG_ON(!pd);
694 
695 	if (bio->bi_size)
696 		return 1;
697 
698 	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
699 
700 	pd->stats.pkt_ended++;
701 
702 	pkt_bio_finished(pd);
703 	atomic_dec(&pkt->io_wait);
704 	atomic_inc(&pkt->run_sm);
705 	wake_up(&pd->wqueue);
706 	return 0;
707 }
708 
709 /*
710  * Schedule reads for the holes in a packet
711  */
712 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
713 {
714 	int frames_read = 0;
715 	struct bio *bio;
716 	int f;
717 	char written[PACKET_MAX_SIZE];
718 
719 	BUG_ON(!pkt->orig_bios);
720 
721 	atomic_set(&pkt->io_wait, 0);
722 	atomic_set(&pkt->io_errors, 0);
723 
724 	/*
725 	 * Figure out which frames we need to read before we can write.
726 	 */
727 	memset(written, 0, sizeof(written));
728 	spin_lock(&pkt->lock);
729 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
730 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
731 		int num_frames = bio->bi_size / CD_FRAMESIZE;
732 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
733 		BUG_ON(first_frame < 0);
734 		BUG_ON(first_frame + num_frames > pkt->frames);
735 		for (f = first_frame; f < first_frame + num_frames; f++)
736 			written[f] = 1;
737 	}
738 	spin_unlock(&pkt->lock);
739 
740 	if (pkt->cache_valid) {
741 		VPRINTK("pkt_gather_data: zone %llx cached\n",
742 			(unsigned long long)pkt->sector);
743 		goto out_account;
744 	}
745 
746 	/*
747 	 * Schedule reads for missing parts of the packet.
748 	 */
749 	for (f = 0; f < pkt->frames; f++) {
750 		int p, offset;
751 		if (written[f])
752 			continue;
753 		bio = pkt->r_bios[f];
754 		bio_init(bio);
755 		bio->bi_max_vecs = 1;
756 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
757 		bio->bi_bdev = pd->bdev;
758 		bio->bi_end_io = pkt_end_io_read;
759 		bio->bi_private = pkt;
760 
761 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
762 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
763 		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
764 			f, pkt->pages[p], offset);
765 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
766 			BUG();
767 
768 		atomic_inc(&pkt->io_wait);
769 		bio->bi_rw = READ;
770 		pkt_queue_bio(pd, bio);
771 		frames_read++;
772 	}
773 
774 out_account:
775 	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
776 		frames_read, (unsigned long long)pkt->sector);
777 	pd->stats.pkt_started++;
778 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
779 }
780 
781 /*
782  * Find a packet matching zone, or the least recently used packet if
783  * there is no match.
784  */
785 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
786 {
787 	struct packet_data *pkt;
788 
789 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
790 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
791 			list_del_init(&pkt->list);
792 			if (pkt->sector != zone)
793 				pkt->cache_valid = 0;
794 			return pkt;
795 		}
796 	}
797 	BUG();
798 	return NULL;
799 }
800 
801 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
802 {
803 	if (pkt->cache_valid) {
804 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
805 	} else {
806 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
807 	}
808 }
809 
810 /*
811  * recover a failed write, query for relocation if possible
812  *
813  * returns 1 if recovery is possible, or 0 if not
814  *
815  */
816 static int pkt_start_recovery(struct packet_data *pkt)
817 {
818 	/*
819 	 * FIXME. We need help from the file system to implement
820 	 * recovery handling.
821 	 */
822 	return 0;
823 #if 0
824 	struct request *rq = pkt->rq;
825 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
826 	struct block_device *pkt_bdev;
827 	struct super_block *sb = NULL;
828 	unsigned long old_block, new_block;
829 	sector_t new_sector;
830 
831 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
832 	if (pkt_bdev) {
833 		sb = get_super(pkt_bdev);
834 		bdput(pkt_bdev);
835 	}
836 
837 	if (!sb)
838 		return 0;
839 
840 	if (!sb->s_op || !sb->s_op->relocate_blocks)
841 		goto out;
842 
843 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
844 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
845 		goto out;
846 
847 	new_sector = new_block * (CD_FRAMESIZE >> 9);
848 	pkt->sector = new_sector;
849 
850 	pkt->bio->bi_sector = new_sector;
851 	pkt->bio->bi_next = NULL;
852 	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
853 	pkt->bio->bi_idx = 0;
854 
855 	BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
856 	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
857 	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
858 	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
859 	BUG_ON(pkt->bio->bi_private != pkt);
860 
861 	drop_super(sb);
862 	return 1;
863 
864 out:
865 	drop_super(sb);
866 	return 0;
867 #endif
868 }
869 
870 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
871 {
872 #if PACKET_DEBUG > 1
873 	static const char *state_name[] = {
874 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
875 	};
876 	enum packet_data_state old_state = pkt->state;
877 	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
878 		state_name[old_state], state_name[state]);
879 #endif
880 	pkt->state = state;
881 }
882 
883 /*
884  * Scan the work queue to see if we can start a new packet.
885  * returns non-zero if any work was done.
886  */
887 static int pkt_handle_queue(struct pktcdvd_device *pd)
888 {
889 	struct packet_data *pkt, *p;
890 	struct bio *bio = NULL;
891 	sector_t zone = 0; /* Suppress gcc warning */
892 	struct pkt_rb_node *node, *first_node;
893 	struct rb_node *n;
894 
895 	VPRINTK("handle_queue\n");
896 
897 	atomic_set(&pd->scan_queue, 0);
898 
899 	if (list_empty(&pd->cdrw.pkt_free_list)) {
900 		VPRINTK("handle_queue: no pkt\n");
901 		return 0;
902 	}
903 
904 	/*
905 	 * Try to find a zone we are not already working on.
906 	 */
907 	spin_lock(&pd->lock);
908 	first_node = pkt_rbtree_find(pd, pd->current_sector);
909 	if (!first_node) {
910 		n = rb_first(&pd->bio_queue);
911 		if (n)
912 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
913 	}
914 	node = first_node;
915 	while (node) {
916 		bio = node->bio;
917 		zone = ZONE(bio->bi_sector, pd);
918 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
919 			if (p->sector == zone) {
920 				bio = NULL;
921 				goto try_next_bio;
922 			}
923 		}
924 		break;
925 try_next_bio:
926 		node = pkt_rbtree_next(node);
927 		if (!node) {
928 			n = rb_first(&pd->bio_queue);
929 			if (n)
930 				node = rb_entry(n, struct pkt_rb_node, rb_node);
931 		}
932 		if (node == first_node)
933 			node = NULL;
934 	}
935 	spin_unlock(&pd->lock);
936 	if (!bio) {
937 		VPRINTK("handle_queue: no bio\n");
938 		return 0;
939 	}
940 
941 	pkt = pkt_get_packet_data(pd, zone);
942 
943 	pd->current_sector = zone + pd->settings.size;
944 	pkt->sector = zone;
945 	BUG_ON(pkt->frames != pd->settings.size >> 2);
946 	pkt->write_size = 0;
947 
948 	/*
949 	 * Scan work queue for bios in the same zone and link them
950 	 * to this packet.
951 	 */
952 	spin_lock(&pd->lock);
953 	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
954 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
955 		bio = node->bio;
956 		VPRINTK("pkt_handle_queue: found zone=%llx\n",
957 			(unsigned long long)ZONE(bio->bi_sector, pd));
958 		if (ZONE(bio->bi_sector, pd) != zone)
959 			break;
960 		pkt_rbtree_erase(pd, node);
961 		spin_lock(&pkt->lock);
962 		pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
963 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
964 		spin_unlock(&pkt->lock);
965 	}
966 	spin_unlock(&pd->lock);
967 
968 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
969 	pkt_set_state(pkt, PACKET_WAITING_STATE);
970 	atomic_set(&pkt->run_sm, 1);
971 
972 	spin_lock(&pd->cdrw.active_list_lock);
973 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
974 	spin_unlock(&pd->cdrw.active_list_lock);
975 
976 	return 1;
977 }
978 
979 /*
980  * Assemble a bio to write one packet and queue the bio for processing
981  * by the underlying block device.
982  */
983 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
984 {
985 	struct bio *bio;
986 	int f;
987 	int frames_write;
988 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
989 
990 	for (f = 0; f < pkt->frames; f++) {
991 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
992 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
993 	}
994 
995 	/*
996 	 * Fill-in bvec with data from orig_bios.
997 	 */
998 	frames_write = 0;
999 	spin_lock(&pkt->lock);
1000 	for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1001 		int segment = bio->bi_idx;
1002 		int src_offs = 0;
1003 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1004 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1005 		BUG_ON(first_frame < 0);
1006 		BUG_ON(first_frame + num_frames > pkt->frames);
1007 		for (f = first_frame; f < first_frame + num_frames; f++) {
1008 			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1009 
1010 			while (src_offs >= src_bvl->bv_len) {
1011 				src_offs -= src_bvl->bv_len;
1012 				segment++;
1013 				BUG_ON(segment >= bio->bi_vcnt);
1014 				src_bvl = bio_iovec_idx(bio, segment);
1015 			}
1016 
1017 			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1018 				bvec[f].bv_page = src_bvl->bv_page;
1019 				bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1020 			} else {
1021 				pkt_copy_bio_data(bio, segment, src_offs,
1022 						  bvec[f].bv_page, bvec[f].bv_offset);
1023 			}
1024 			src_offs += CD_FRAMESIZE;
1025 			frames_write++;
1026 		}
1027 	}
1028 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1029 	spin_unlock(&pkt->lock);
1030 
1031 	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1032 		frames_write, (unsigned long long)pkt->sector);
1033 	BUG_ON(frames_write != pkt->write_size);
1034 
1035 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1036 		pkt_make_local_copy(pkt, bvec);
1037 		pkt->cache_valid = 1;
1038 	} else {
1039 		pkt->cache_valid = 0;
1040 	}
1041 
1042 	/* Start the write request */
1043 	bio_init(pkt->w_bio);
1044 	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1045 	pkt->w_bio->bi_sector = pkt->sector;
1046 	pkt->w_bio->bi_bdev = pd->bdev;
1047 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1048 	pkt->w_bio->bi_private = pkt;
1049 	for (f = 0; f < pkt->frames; f++)
1050 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1051 			BUG();
1052 	VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1053 
1054 	atomic_set(&pkt->io_wait, 1);
1055 	pkt->w_bio->bi_rw = WRITE;
1056 	pkt_queue_bio(pd, pkt->w_bio);
1057 }
1058 
1059 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1060 {
1061 	struct bio *bio, *next;
1062 
1063 	if (!uptodate)
1064 		pkt->cache_valid = 0;
1065 
1066 	/* Finish all bios corresponding to this packet */
1067 	bio = pkt->orig_bios;
1068 	while (bio) {
1069 		next = bio->bi_next;
1070 		bio->bi_next = NULL;
1071 		bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1072 		bio = next;
1073 	}
1074 	pkt->orig_bios = pkt->orig_bios_tail = NULL;
1075 }
1076 
1077 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1078 {
1079 	int uptodate;
1080 
1081 	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1082 
1083 	for (;;) {
1084 		switch (pkt->state) {
1085 		case PACKET_WAITING_STATE:
1086 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1087 				return;
1088 
1089 			pkt->sleep_time = 0;
1090 			pkt_gather_data(pd, pkt);
1091 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1092 			break;
1093 
1094 		case PACKET_READ_WAIT_STATE:
1095 			if (atomic_read(&pkt->io_wait) > 0)
1096 				return;
1097 
1098 			if (atomic_read(&pkt->io_errors) > 0) {
1099 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1100 			} else {
1101 				pkt_start_write(pd, pkt);
1102 			}
1103 			break;
1104 
1105 		case PACKET_WRITE_WAIT_STATE:
1106 			if (atomic_read(&pkt->io_wait) > 0)
1107 				return;
1108 
1109 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1110 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1111 			} else {
1112 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1113 			}
1114 			break;
1115 
1116 		case PACKET_RECOVERY_STATE:
1117 			if (pkt_start_recovery(pkt)) {
1118 				pkt_start_write(pd, pkt);
1119 			} else {
1120 				VPRINTK("No recovery possible\n");
1121 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1122 			}
1123 			break;
1124 
1125 		case PACKET_FINISHED_STATE:
1126 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1127 			pkt_finish_packet(pkt, uptodate);
1128 			return;
1129 
1130 		default:
1131 			BUG();
1132 			break;
1133 		}
1134 	}
1135 }
1136 
1137 static void pkt_handle_packets(struct pktcdvd_device *pd)
1138 {
1139 	struct packet_data *pkt, *next;
1140 
1141 	VPRINTK("pkt_handle_packets\n");
1142 
1143 	/*
1144 	 * Run state machine for active packets
1145 	 */
1146 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1147 		if (atomic_read(&pkt->run_sm) > 0) {
1148 			atomic_set(&pkt->run_sm, 0);
1149 			pkt_run_state_machine(pd, pkt);
1150 		}
1151 	}
1152 
1153 	/*
1154 	 * Move no longer active packets to the free list
1155 	 */
1156 	spin_lock(&pd->cdrw.active_list_lock);
1157 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1158 		if (pkt->state == PACKET_FINISHED_STATE) {
1159 			list_del(&pkt->list);
1160 			pkt_put_packet_data(pd, pkt);
1161 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1162 			atomic_set(&pd->scan_queue, 1);
1163 		}
1164 	}
1165 	spin_unlock(&pd->cdrw.active_list_lock);
1166 }
1167 
1168 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1169 {
1170 	struct packet_data *pkt;
1171 	int i;
1172 
1173 	for (i = 0; i < PACKET_NUM_STATES; i++)
1174 		states[i] = 0;
1175 
1176 	spin_lock(&pd->cdrw.active_list_lock);
1177 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1178 		states[pkt->state]++;
1179 	}
1180 	spin_unlock(&pd->cdrw.active_list_lock);
1181 }
1182 
1183 /*
1184  * kcdrwd is woken up when writes have been queued for one of our
1185  * registered devices
1186  */
1187 static int kcdrwd(void *foobar)
1188 {
1189 	struct pktcdvd_device *pd = foobar;
1190 	struct packet_data *pkt;
1191 	long min_sleep_time, residue;
1192 
1193 	set_user_nice(current, -20);
1194 
1195 	for (;;) {
1196 		DECLARE_WAITQUEUE(wait, current);
1197 
1198 		/*
1199 		 * Wait until there is something to do
1200 		 */
1201 		add_wait_queue(&pd->wqueue, &wait);
1202 		for (;;) {
1203 			set_current_state(TASK_INTERRUPTIBLE);
1204 
1205 			/* Check if we need to run pkt_handle_queue */
1206 			if (atomic_read(&pd->scan_queue) > 0)
1207 				goto work_to_do;
1208 
1209 			/* Check if we need to run the state machine for some packet */
1210 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1211 				if (atomic_read(&pkt->run_sm) > 0)
1212 					goto work_to_do;
1213 			}
1214 
1215 			/* Check if we need to process the iosched queues */
1216 			if (atomic_read(&pd->iosched.attention) != 0)
1217 				goto work_to_do;
1218 
1219 			/* Otherwise, go to sleep */
1220 			if (PACKET_DEBUG > 1) {
1221 				int states[PACKET_NUM_STATES];
1222 				pkt_count_states(pd, states);
1223 				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1224 					states[0], states[1], states[2], states[3],
1225 					states[4], states[5]);
1226 			}
1227 
1228 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1229 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1230 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1231 					min_sleep_time = pkt->sleep_time;
1232 			}
1233 
1234 			generic_unplug_device(bdev_get_queue(pd->bdev));
1235 
1236 			VPRINTK("kcdrwd: sleeping\n");
1237 			residue = schedule_timeout(min_sleep_time);
1238 			VPRINTK("kcdrwd: wake up\n");
1239 
1240 			/* make swsusp happy with our thread */
1241 			try_to_freeze();
1242 
1243 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1244 				if (!pkt->sleep_time)
1245 					continue;
1246 				pkt->sleep_time -= min_sleep_time - residue;
1247 				if (pkt->sleep_time <= 0) {
1248 					pkt->sleep_time = 0;
1249 					atomic_inc(&pkt->run_sm);
1250 				}
1251 			}
1252 
1253 			if (signal_pending(current)) {
1254 				flush_signals(current);
1255 			}
1256 			if (kthread_should_stop())
1257 				break;
1258 		}
1259 work_to_do:
1260 		set_current_state(TASK_RUNNING);
1261 		remove_wait_queue(&pd->wqueue, &wait);
1262 
1263 		if (kthread_should_stop())
1264 			break;
1265 
1266 		/*
1267 		 * if pkt_handle_queue returns true, we can queue
1268 		 * another request.
1269 		 */
1270 		while (pkt_handle_queue(pd))
1271 			;
1272 
1273 		/*
1274 		 * Handle packet state machine
1275 		 */
1276 		pkt_handle_packets(pd);
1277 
1278 		/*
1279 		 * Handle iosched queues
1280 		 */
1281 		pkt_iosched_process_queue(pd);
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 static void pkt_print_settings(struct pktcdvd_device *pd)
1288 {
1289 	printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1290 	printk("%u blocks, ", pd->settings.size >> 2);
1291 	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1292 }
1293 
1294 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1295 {
1296 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1297 
1298 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1299 	cgc->cmd[2] = page_code | (page_control << 6);
1300 	cgc->cmd[7] = cgc->buflen >> 8;
1301 	cgc->cmd[8] = cgc->buflen & 0xff;
1302 	cgc->data_direction = CGC_DATA_READ;
1303 	return pkt_generic_packet(pd, cgc);
1304 }
1305 
1306 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1307 {
1308 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1309 	memset(cgc->buffer, 0, 2);
1310 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1311 	cgc->cmd[1] = 0x10;		/* PF */
1312 	cgc->cmd[7] = cgc->buflen >> 8;
1313 	cgc->cmd[8] = cgc->buflen & 0xff;
1314 	cgc->data_direction = CGC_DATA_WRITE;
1315 	return pkt_generic_packet(pd, cgc);
1316 }
1317 
1318 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1319 {
1320 	struct packet_command cgc;
1321 	int ret;
1322 
1323 	/* set up command and get the disc info */
1324 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1325 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1326 	cgc.cmd[8] = cgc.buflen = 2;
1327 	cgc.quiet = 1;
1328 
1329 	if ((ret = pkt_generic_packet(pd, &cgc)))
1330 		return ret;
1331 
1332 	/* not all drives have the same disc_info length, so requeue
1333 	 * packet with the length the drive tells us it can supply
1334 	 */
1335 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1336 		     sizeof(di->disc_information_length);
1337 
1338 	if (cgc.buflen > sizeof(disc_information))
1339 		cgc.buflen = sizeof(disc_information);
1340 
1341 	cgc.cmd[8] = cgc.buflen;
1342 	return pkt_generic_packet(pd, &cgc);
1343 }
1344 
1345 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1346 {
1347 	struct packet_command cgc;
1348 	int ret;
1349 
1350 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1351 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1352 	cgc.cmd[1] = type & 3;
1353 	cgc.cmd[4] = (track & 0xff00) >> 8;
1354 	cgc.cmd[5] = track & 0xff;
1355 	cgc.cmd[8] = 8;
1356 	cgc.quiet = 1;
1357 
1358 	if ((ret = pkt_generic_packet(pd, &cgc)))
1359 		return ret;
1360 
1361 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1362 		     sizeof(ti->track_information_length);
1363 
1364 	if (cgc.buflen > sizeof(track_information))
1365 		cgc.buflen = sizeof(track_information);
1366 
1367 	cgc.cmd[8] = cgc.buflen;
1368 	return pkt_generic_packet(pd, &cgc);
1369 }
1370 
1371 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1372 {
1373 	disc_information di;
1374 	track_information ti;
1375 	__u32 last_track;
1376 	int ret = -1;
1377 
1378 	if ((ret = pkt_get_disc_info(pd, &di)))
1379 		return ret;
1380 
1381 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1382 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1383 		return ret;
1384 
1385 	/* if this track is blank, try the previous. */
1386 	if (ti.blank) {
1387 		last_track--;
1388 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1389 			return ret;
1390 	}
1391 
1392 	/* if last recorded field is valid, return it. */
1393 	if (ti.lra_v) {
1394 		*last_written = be32_to_cpu(ti.last_rec_address);
1395 	} else {
1396 		/* make it up instead */
1397 		*last_written = be32_to_cpu(ti.track_start) +
1398 				be32_to_cpu(ti.track_size);
1399 		if (ti.free_blocks)
1400 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1401 	}
1402 	return 0;
1403 }
1404 
1405 /*
1406  * write mode select package based on pd->settings
1407  */
1408 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1409 {
1410 	struct packet_command cgc;
1411 	struct request_sense sense;
1412 	write_param_page *wp;
1413 	char buffer[128];
1414 	int ret, size;
1415 
1416 	/* doesn't apply to DVD+RW or DVD-RAM */
1417 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1418 		return 0;
1419 
1420 	memset(buffer, 0, sizeof(buffer));
1421 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1422 	cgc.sense = &sense;
1423 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1424 		pkt_dump_sense(&cgc);
1425 		return ret;
1426 	}
1427 
1428 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1429 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1430 	if (size > sizeof(buffer))
1431 		size = sizeof(buffer);
1432 
1433 	/*
1434 	 * now get it all
1435 	 */
1436 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1437 	cgc.sense = &sense;
1438 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1439 		pkt_dump_sense(&cgc);
1440 		return ret;
1441 	}
1442 
1443 	/*
1444 	 * write page is offset header + block descriptor length
1445 	 */
1446 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1447 
1448 	wp->fp = pd->settings.fp;
1449 	wp->track_mode = pd->settings.track_mode;
1450 	wp->write_type = pd->settings.write_type;
1451 	wp->data_block_type = pd->settings.block_mode;
1452 
1453 	wp->multi_session = 0;
1454 
1455 #ifdef PACKET_USE_LS
1456 	wp->link_size = 7;
1457 	wp->ls_v = 1;
1458 #endif
1459 
1460 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1461 		wp->session_format = 0;
1462 		wp->subhdr2 = 0x20;
1463 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1464 		wp->session_format = 0x20;
1465 		wp->subhdr2 = 8;
1466 #if 0
1467 		wp->mcn[0] = 0x80;
1468 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1469 #endif
1470 	} else {
1471 		/*
1472 		 * paranoia
1473 		 */
1474 		printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1475 		return 1;
1476 	}
1477 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1478 
1479 	cgc.buflen = cgc.cmd[8] = size;
1480 	if ((ret = pkt_mode_select(pd, &cgc))) {
1481 		pkt_dump_sense(&cgc);
1482 		return ret;
1483 	}
1484 
1485 	pkt_print_settings(pd);
1486 	return 0;
1487 }
1488 
1489 /*
1490  * 1 -- we can write to this track, 0 -- we can't
1491  */
1492 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1493 {
1494 	switch (pd->mmc3_profile) {
1495 		case 0x1a: /* DVD+RW */
1496 		case 0x12: /* DVD-RAM */
1497 			/* The track is always writable on DVD+RW/DVD-RAM */
1498 			return 1;
1499 		default:
1500 			break;
1501 	}
1502 
1503 	if (!ti->packet || !ti->fp)
1504 		return 0;
1505 
1506 	/*
1507 	 * "good" settings as per Mt Fuji.
1508 	 */
1509 	if (ti->rt == 0 && ti->blank == 0)
1510 		return 1;
1511 
1512 	if (ti->rt == 0 && ti->blank == 1)
1513 		return 1;
1514 
1515 	if (ti->rt == 1 && ti->blank == 0)
1516 		return 1;
1517 
1518 	printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1519 	return 0;
1520 }
1521 
1522 /*
1523  * 1 -- we can write to this disc, 0 -- we can't
1524  */
1525 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1526 {
1527 	switch (pd->mmc3_profile) {
1528 		case 0x0a: /* CD-RW */
1529 		case 0xffff: /* MMC3 not supported */
1530 			break;
1531 		case 0x1a: /* DVD+RW */
1532 		case 0x13: /* DVD-RW */
1533 		case 0x12: /* DVD-RAM */
1534 			return 1;
1535 		default:
1536 			VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1537 			return 0;
1538 	}
1539 
1540 	/*
1541 	 * for disc type 0xff we should probably reserve a new track.
1542 	 * but i'm not sure, should we leave this to user apps? probably.
1543 	 */
1544 	if (di->disc_type == 0xff) {
1545 		printk("pktcdvd: Unknown disc. No track?\n");
1546 		return 0;
1547 	}
1548 
1549 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1550 		printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1551 		return 0;
1552 	}
1553 
1554 	if (di->erasable == 0) {
1555 		printk("pktcdvd: Disc not erasable\n");
1556 		return 0;
1557 	}
1558 
1559 	if (di->border_status == PACKET_SESSION_RESERVED) {
1560 		printk("pktcdvd: Can't write to last track (reserved)\n");
1561 		return 0;
1562 	}
1563 
1564 	return 1;
1565 }
1566 
1567 static int pkt_probe_settings(struct pktcdvd_device *pd)
1568 {
1569 	struct packet_command cgc;
1570 	unsigned char buf[12];
1571 	disc_information di;
1572 	track_information ti;
1573 	int ret, track;
1574 
1575 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1576 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1577 	cgc.cmd[8] = 8;
1578 	ret = pkt_generic_packet(pd, &cgc);
1579 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1580 
1581 	memset(&di, 0, sizeof(disc_information));
1582 	memset(&ti, 0, sizeof(track_information));
1583 
1584 	if ((ret = pkt_get_disc_info(pd, &di))) {
1585 		printk("failed get_disc\n");
1586 		return ret;
1587 	}
1588 
1589 	if (!pkt_writable_disc(pd, &di))
1590 		return -EROFS;
1591 
1592 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1593 
1594 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1595 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1596 		printk("pktcdvd: failed get_track\n");
1597 		return ret;
1598 	}
1599 
1600 	if (!pkt_writable_track(pd, &ti)) {
1601 		printk("pktcdvd: can't write to this track\n");
1602 		return -EROFS;
1603 	}
1604 
1605 	/*
1606 	 * we keep packet size in 512 byte units, makes it easier to
1607 	 * deal with request calculations.
1608 	 */
1609 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1610 	if (pd->settings.size == 0) {
1611 		printk("pktcdvd: detected zero packet size!\n");
1612 		return -ENXIO;
1613 	}
1614 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1615 		printk("pktcdvd: packet size is too big\n");
1616 		return -EROFS;
1617 	}
1618 	pd->settings.fp = ti.fp;
1619 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1620 
1621 	if (ti.nwa_v) {
1622 		pd->nwa = be32_to_cpu(ti.next_writable);
1623 		set_bit(PACKET_NWA_VALID, &pd->flags);
1624 	}
1625 
1626 	/*
1627 	 * in theory we could use lra on -RW media as well and just zero
1628 	 * blocks that haven't been written yet, but in practice that
1629 	 * is just a no-go. we'll use that for -R, naturally.
1630 	 */
1631 	if (ti.lra_v) {
1632 		pd->lra = be32_to_cpu(ti.last_rec_address);
1633 		set_bit(PACKET_LRA_VALID, &pd->flags);
1634 	} else {
1635 		pd->lra = 0xffffffff;
1636 		set_bit(PACKET_LRA_VALID, &pd->flags);
1637 	}
1638 
1639 	/*
1640 	 * fine for now
1641 	 */
1642 	pd->settings.link_loss = 7;
1643 	pd->settings.write_type = 0;	/* packet */
1644 	pd->settings.track_mode = ti.track_mode;
1645 
1646 	/*
1647 	 * mode1 or mode2 disc
1648 	 */
1649 	switch (ti.data_mode) {
1650 		case PACKET_MODE1:
1651 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1652 			break;
1653 		case PACKET_MODE2:
1654 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1655 			break;
1656 		default:
1657 			printk("pktcdvd: unknown data mode\n");
1658 			return -EROFS;
1659 	}
1660 	return 0;
1661 }
1662 
1663 /*
1664  * enable/disable write caching on drive
1665  */
1666 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1667 {
1668 	struct packet_command cgc;
1669 	struct request_sense sense;
1670 	unsigned char buf[64];
1671 	int ret;
1672 
1673 	memset(buf, 0, sizeof(buf));
1674 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1675 	cgc.sense = &sense;
1676 	cgc.buflen = pd->mode_offset + 12;
1677 
1678 	/*
1679 	 * caching mode page might not be there, so quiet this command
1680 	 */
1681 	cgc.quiet = 1;
1682 
1683 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1684 		return ret;
1685 
1686 	buf[pd->mode_offset + 10] |= (!!set << 2);
1687 
1688 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1689 	ret = pkt_mode_select(pd, &cgc);
1690 	if (ret) {
1691 		printk("pktcdvd: write caching control failed\n");
1692 		pkt_dump_sense(&cgc);
1693 	} else if (!ret && set)
1694 		printk("pktcdvd: enabled write caching on %s\n", pd->name);
1695 	return ret;
1696 }
1697 
1698 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1699 {
1700 	struct packet_command cgc;
1701 
1702 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1703 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1704 	cgc.cmd[4] = lockflag ? 1 : 0;
1705 	return pkt_generic_packet(pd, &cgc);
1706 }
1707 
1708 /*
1709  * Returns drive maximum write speed
1710  */
1711 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1712 {
1713 	struct packet_command cgc;
1714 	struct request_sense sense;
1715 	unsigned char buf[256+18];
1716 	unsigned char *cap_buf;
1717 	int ret, offset;
1718 
1719 	memset(buf, 0, sizeof(buf));
1720 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1721 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1722 	cgc.sense = &sense;
1723 
1724 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1725 	if (ret) {
1726 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1727 			     sizeof(struct mode_page_header);
1728 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1729 		if (ret) {
1730 			pkt_dump_sense(&cgc);
1731 			return ret;
1732 		}
1733 	}
1734 
1735 	offset = 20;			    /* Obsoleted field, used by older drives */
1736 	if (cap_buf[1] >= 28)
1737 		offset = 28;		    /* Current write speed selected */
1738 	if (cap_buf[1] >= 30) {
1739 		/* If the drive reports at least one "Logical Unit Write
1740 		 * Speed Performance Descriptor Block", use the information
1741 		 * in the first block. (contains the highest speed)
1742 		 */
1743 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1744 		if (num_spdb > 0)
1745 			offset = 34;
1746 	}
1747 
1748 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1749 	return 0;
1750 }
1751 
1752 /* These tables from cdrecord - I don't have orange book */
1753 /* standard speed CD-RW (1-4x) */
1754 static char clv_to_speed[16] = {
1755 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1756 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1757 };
1758 /* high speed CD-RW (-10x) */
1759 static char hs_clv_to_speed[16] = {
1760 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1761 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1762 };
1763 /* ultra high speed CD-RW */
1764 static char us_clv_to_speed[16] = {
1765 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1766 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1767 };
1768 
1769 /*
1770  * reads the maximum media speed from ATIP
1771  */
1772 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1773 {
1774 	struct packet_command cgc;
1775 	struct request_sense sense;
1776 	unsigned char buf[64];
1777 	unsigned int size, st, sp;
1778 	int ret;
1779 
1780 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1781 	cgc.sense = &sense;
1782 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1783 	cgc.cmd[1] = 2;
1784 	cgc.cmd[2] = 4; /* READ ATIP */
1785 	cgc.cmd[8] = 2;
1786 	ret = pkt_generic_packet(pd, &cgc);
1787 	if (ret) {
1788 		pkt_dump_sense(&cgc);
1789 		return ret;
1790 	}
1791 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1792 	if (size > sizeof(buf))
1793 		size = sizeof(buf);
1794 
1795 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1796 	cgc.sense = &sense;
1797 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1798 	cgc.cmd[1] = 2;
1799 	cgc.cmd[2] = 4;
1800 	cgc.cmd[8] = size;
1801 	ret = pkt_generic_packet(pd, &cgc);
1802 	if (ret) {
1803 		pkt_dump_sense(&cgc);
1804 		return ret;
1805 	}
1806 
1807 	if (!buf[6] & 0x40) {
1808 		printk("pktcdvd: Disc type is not CD-RW\n");
1809 		return 1;
1810 	}
1811 	if (!buf[6] & 0x4) {
1812 		printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1813 		return 1;
1814 	}
1815 
1816 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1817 
1818 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1819 
1820 	/* Info from cdrecord */
1821 	switch (st) {
1822 		case 0: /* standard speed */
1823 			*speed = clv_to_speed[sp];
1824 			break;
1825 		case 1: /* high speed */
1826 			*speed = hs_clv_to_speed[sp];
1827 			break;
1828 		case 2: /* ultra high speed */
1829 			*speed = us_clv_to_speed[sp];
1830 			break;
1831 		default:
1832 			printk("pktcdvd: Unknown disc sub-type %d\n",st);
1833 			return 1;
1834 	}
1835 	if (*speed) {
1836 		printk("pktcdvd: Max. media speed: %d\n",*speed);
1837 		return 0;
1838 	} else {
1839 		printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1840 		return 1;
1841 	}
1842 }
1843 
1844 static int pkt_perform_opc(struct pktcdvd_device *pd)
1845 {
1846 	struct packet_command cgc;
1847 	struct request_sense sense;
1848 	int ret;
1849 
1850 	VPRINTK("pktcdvd: Performing OPC\n");
1851 
1852 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1853 	cgc.sense = &sense;
1854 	cgc.timeout = 60*HZ;
1855 	cgc.cmd[0] = GPCMD_SEND_OPC;
1856 	cgc.cmd[1] = 1;
1857 	if ((ret = pkt_generic_packet(pd, &cgc)))
1858 		pkt_dump_sense(&cgc);
1859 	return ret;
1860 }
1861 
1862 static int pkt_open_write(struct pktcdvd_device *pd)
1863 {
1864 	int ret;
1865 	unsigned int write_speed, media_write_speed, read_speed;
1866 
1867 	if ((ret = pkt_probe_settings(pd))) {
1868 		VPRINTK("pktcdvd: %s failed probe\n", pd->name);
1869 		return ret;
1870 	}
1871 
1872 	if ((ret = pkt_set_write_settings(pd))) {
1873 		DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1874 		return -EIO;
1875 	}
1876 
1877 	pkt_write_caching(pd, USE_WCACHING);
1878 
1879 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
1880 		write_speed = 16 * 177;
1881 	switch (pd->mmc3_profile) {
1882 		case 0x13: /* DVD-RW */
1883 		case 0x1a: /* DVD+RW */
1884 		case 0x12: /* DVD-RAM */
1885 			DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1886 			break;
1887 		default:
1888 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
1889 				media_write_speed = 16;
1890 			write_speed = min(write_speed, media_write_speed * 177);
1891 			DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1892 			break;
1893 	}
1894 	read_speed = write_speed;
1895 
1896 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1897 		DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1898 		return -EIO;
1899 	}
1900 	pd->write_speed = write_speed;
1901 	pd->read_speed = read_speed;
1902 
1903 	if ((ret = pkt_perform_opc(pd))) {
1904 		DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 /*
1911  * called at open time.
1912  */
1913 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1914 {
1915 	int ret;
1916 	long lba;
1917 	request_queue_t *q;
1918 
1919 	/*
1920 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
1921 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1922 	 * so bdget() can't fail.
1923 	 */
1924 	bdget(pd->bdev->bd_dev);
1925 	if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1926 		goto out;
1927 
1928 	if ((ret = bd_claim(pd->bdev, pd)))
1929 		goto out_putdev;
1930 
1931 	if ((ret = pkt_get_last_written(pd, &lba))) {
1932 		printk("pktcdvd: pkt_get_last_written failed\n");
1933 		goto out_unclaim;
1934 	}
1935 
1936 	set_capacity(pd->disk, lba << 2);
1937 	set_capacity(pd->bdev->bd_disk, lba << 2);
1938 	bd_set_size(pd->bdev, (loff_t)lba << 11);
1939 
1940 	q = bdev_get_queue(pd->bdev);
1941 	if (write) {
1942 		if ((ret = pkt_open_write(pd)))
1943 			goto out_unclaim;
1944 		/*
1945 		 * Some CDRW drives can not handle writes larger than one packet,
1946 		 * even if the size is a multiple of the packet size.
1947 		 */
1948 		spin_lock_irq(q->queue_lock);
1949 		blk_queue_max_sectors(q, pd->settings.size);
1950 		spin_unlock_irq(q->queue_lock);
1951 		set_bit(PACKET_WRITABLE, &pd->flags);
1952 	} else {
1953 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1954 		clear_bit(PACKET_WRITABLE, &pd->flags);
1955 	}
1956 
1957 	if ((ret = pkt_set_segment_merging(pd, q)))
1958 		goto out_unclaim;
1959 
1960 	if (write) {
1961 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
1962 			printk("pktcdvd: not enough memory for buffers\n");
1963 			ret = -ENOMEM;
1964 			goto out_unclaim;
1965 		}
1966 		printk("pktcdvd: %lukB available on disc\n", lba << 1);
1967 	}
1968 
1969 	return 0;
1970 
1971 out_unclaim:
1972 	bd_release(pd->bdev);
1973 out_putdev:
1974 	blkdev_put(pd->bdev);
1975 out:
1976 	return ret;
1977 }
1978 
1979 /*
1980  * called when the device is closed. makes sure that the device flushes
1981  * the internal cache before we close.
1982  */
1983 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
1984 {
1985 	if (flush && pkt_flush_cache(pd))
1986 		DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
1987 
1988 	pkt_lock_door(pd, 0);
1989 
1990 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1991 	bd_release(pd->bdev);
1992 	blkdev_put(pd->bdev);
1993 
1994 	pkt_shrink_pktlist(pd);
1995 }
1996 
1997 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
1998 {
1999 	if (dev_minor >= MAX_WRITERS)
2000 		return NULL;
2001 	return pkt_devs[dev_minor];
2002 }
2003 
2004 static int pkt_open(struct inode *inode, struct file *file)
2005 {
2006 	struct pktcdvd_device *pd = NULL;
2007 	int ret;
2008 
2009 	VPRINTK("pktcdvd: entering open\n");
2010 
2011 	mutex_lock(&ctl_mutex);
2012 	pd = pkt_find_dev_from_minor(iminor(inode));
2013 	if (!pd) {
2014 		ret = -ENODEV;
2015 		goto out;
2016 	}
2017 	BUG_ON(pd->refcnt < 0);
2018 
2019 	pd->refcnt++;
2020 	if (pd->refcnt > 1) {
2021 		if ((file->f_mode & FMODE_WRITE) &&
2022 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2023 			ret = -EBUSY;
2024 			goto out_dec;
2025 		}
2026 	} else {
2027 		ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2028 		if (ret)
2029 			goto out_dec;
2030 		/*
2031 		 * needed here as well, since ext2 (among others) may change
2032 		 * the blocksize at mount time
2033 		 */
2034 		set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2035 	}
2036 
2037 	mutex_unlock(&ctl_mutex);
2038 	return 0;
2039 
2040 out_dec:
2041 	pd->refcnt--;
2042 out:
2043 	VPRINTK("pktcdvd: failed open (%d)\n", ret);
2044 	mutex_unlock(&ctl_mutex);
2045 	return ret;
2046 }
2047 
2048 static int pkt_close(struct inode *inode, struct file *file)
2049 {
2050 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2051 	int ret = 0;
2052 
2053 	mutex_lock(&ctl_mutex);
2054 	pd->refcnt--;
2055 	BUG_ON(pd->refcnt < 0);
2056 	if (pd->refcnt == 0) {
2057 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2058 		pkt_release_dev(pd, flush);
2059 	}
2060 	mutex_unlock(&ctl_mutex);
2061 	return ret;
2062 }
2063 
2064 
2065 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2066 {
2067 	struct packet_stacked_data *psd = bio->bi_private;
2068 	struct pktcdvd_device *pd = psd->pd;
2069 
2070 	if (bio->bi_size)
2071 		return 1;
2072 
2073 	bio_put(bio);
2074 	bio_endio(psd->bio, psd->bio->bi_size, err);
2075 	mempool_free(psd, psd_pool);
2076 	pkt_bio_finished(pd);
2077 	return 0;
2078 }
2079 
2080 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2081 {
2082 	struct pktcdvd_device *pd;
2083 	char b[BDEVNAME_SIZE];
2084 	sector_t zone;
2085 	struct packet_data *pkt;
2086 	int was_empty, blocked_bio;
2087 	struct pkt_rb_node *node;
2088 
2089 	pd = q->queuedata;
2090 	if (!pd) {
2091 		printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2092 		goto end_io;
2093 	}
2094 
2095 	/*
2096 	 * Clone READ bios so we can have our own bi_end_io callback.
2097 	 */
2098 	if (bio_data_dir(bio) == READ) {
2099 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2100 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2101 
2102 		psd->pd = pd;
2103 		psd->bio = bio;
2104 		cloned_bio->bi_bdev = pd->bdev;
2105 		cloned_bio->bi_private = psd;
2106 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2107 		pd->stats.secs_r += bio->bi_size >> 9;
2108 		pkt_queue_bio(pd, cloned_bio);
2109 		return 0;
2110 	}
2111 
2112 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2113 		printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2114 			pd->name, (unsigned long long)bio->bi_sector);
2115 		goto end_io;
2116 	}
2117 
2118 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2119 		printk("pktcdvd: wrong bio size\n");
2120 		goto end_io;
2121 	}
2122 
2123 	blk_queue_bounce(q, &bio);
2124 
2125 	zone = ZONE(bio->bi_sector, pd);
2126 	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2127 		(unsigned long long)bio->bi_sector,
2128 		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2129 
2130 	/* Check if we have to split the bio */
2131 	{
2132 		struct bio_pair *bp;
2133 		sector_t last_zone;
2134 		int first_sectors;
2135 
2136 		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2137 		if (last_zone != zone) {
2138 			BUG_ON(last_zone != zone + pd->settings.size);
2139 			first_sectors = last_zone - bio->bi_sector;
2140 			bp = bio_split(bio, bio_split_pool, first_sectors);
2141 			BUG_ON(!bp);
2142 			pkt_make_request(q, &bp->bio1);
2143 			pkt_make_request(q, &bp->bio2);
2144 			bio_pair_release(bp);
2145 			return 0;
2146 		}
2147 	}
2148 
2149 	/*
2150 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2151 	 * just append this bio to that packet.
2152 	 */
2153 	spin_lock(&pd->cdrw.active_list_lock);
2154 	blocked_bio = 0;
2155 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2156 		if (pkt->sector == zone) {
2157 			spin_lock(&pkt->lock);
2158 			if ((pkt->state == PACKET_WAITING_STATE) ||
2159 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2160 				pkt_add_list_last(bio, &pkt->orig_bios,
2161 						  &pkt->orig_bios_tail);
2162 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2163 				if ((pkt->write_size >= pkt->frames) &&
2164 				    (pkt->state == PACKET_WAITING_STATE)) {
2165 					atomic_inc(&pkt->run_sm);
2166 					wake_up(&pd->wqueue);
2167 				}
2168 				spin_unlock(&pkt->lock);
2169 				spin_unlock(&pd->cdrw.active_list_lock);
2170 				return 0;
2171 			} else {
2172 				blocked_bio = 1;
2173 			}
2174 			spin_unlock(&pkt->lock);
2175 		}
2176 	}
2177 	spin_unlock(&pd->cdrw.active_list_lock);
2178 
2179 	/*
2180 	 * No matching packet found. Store the bio in the work queue.
2181 	 */
2182 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2183 	node->bio = bio;
2184 	spin_lock(&pd->lock);
2185 	BUG_ON(pd->bio_queue_size < 0);
2186 	was_empty = (pd->bio_queue_size == 0);
2187 	pkt_rbtree_insert(pd, node);
2188 	spin_unlock(&pd->lock);
2189 
2190 	/*
2191 	 * Wake up the worker thread.
2192 	 */
2193 	atomic_set(&pd->scan_queue, 1);
2194 	if (was_empty) {
2195 		/* This wake_up is required for correct operation */
2196 		wake_up(&pd->wqueue);
2197 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2198 		/*
2199 		 * This wake up is not required for correct operation,
2200 		 * but improves performance in some cases.
2201 		 */
2202 		wake_up(&pd->wqueue);
2203 	}
2204 	return 0;
2205 end_io:
2206 	bio_io_error(bio, bio->bi_size);
2207 	return 0;
2208 }
2209 
2210 
2211 
2212 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2213 {
2214 	struct pktcdvd_device *pd = q->queuedata;
2215 	sector_t zone = ZONE(bio->bi_sector, pd);
2216 	int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2217 	int remaining = (pd->settings.size << 9) - used;
2218 	int remaining2;
2219 
2220 	/*
2221 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2222 	 * boundary, pkt_make_request() will split the bio.
2223 	 */
2224 	remaining2 = PAGE_SIZE - bio->bi_size;
2225 	remaining = max(remaining, remaining2);
2226 
2227 	BUG_ON(remaining < 0);
2228 	return remaining;
2229 }
2230 
2231 static void pkt_init_queue(struct pktcdvd_device *pd)
2232 {
2233 	request_queue_t *q = pd->disk->queue;
2234 
2235 	blk_queue_make_request(q, pkt_make_request);
2236 	blk_queue_hardsect_size(q, CD_FRAMESIZE);
2237 	blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2238 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2239 	q->queuedata = pd;
2240 }
2241 
2242 static int pkt_seq_show(struct seq_file *m, void *p)
2243 {
2244 	struct pktcdvd_device *pd = m->private;
2245 	char *msg;
2246 	char bdev_buf[BDEVNAME_SIZE];
2247 	int states[PACKET_NUM_STATES];
2248 
2249 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2250 		   bdevname(pd->bdev, bdev_buf));
2251 
2252 	seq_printf(m, "\nSettings:\n");
2253 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2254 
2255 	if (pd->settings.write_type == 0)
2256 		msg = "Packet";
2257 	else
2258 		msg = "Unknown";
2259 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2260 
2261 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2262 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2263 
2264 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2265 
2266 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2267 		msg = "Mode 1";
2268 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2269 		msg = "Mode 2";
2270 	else
2271 		msg = "Unknown";
2272 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2273 
2274 	seq_printf(m, "\nStatistics:\n");
2275 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2276 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2277 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2278 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2279 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2280 
2281 	seq_printf(m, "\nMisc:\n");
2282 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2283 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2284 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2285 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2286 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2287 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2288 
2289 	seq_printf(m, "\nQueue state:\n");
2290 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2291 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2292 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2293 
2294 	pkt_count_states(pd, states);
2295 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2296 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2297 
2298 	return 0;
2299 }
2300 
2301 static int pkt_seq_open(struct inode *inode, struct file *file)
2302 {
2303 	return single_open(file, pkt_seq_show, PDE(inode)->data);
2304 }
2305 
2306 static struct file_operations pkt_proc_fops = {
2307 	.open	= pkt_seq_open,
2308 	.read	= seq_read,
2309 	.llseek	= seq_lseek,
2310 	.release = single_release
2311 };
2312 
2313 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2314 {
2315 	int i;
2316 	int ret = 0;
2317 	char b[BDEVNAME_SIZE];
2318 	struct proc_dir_entry *proc;
2319 	struct block_device *bdev;
2320 
2321 	if (pd->pkt_dev == dev) {
2322 		printk("pktcdvd: Recursive setup not allowed\n");
2323 		return -EBUSY;
2324 	}
2325 	for (i = 0; i < MAX_WRITERS; i++) {
2326 		struct pktcdvd_device *pd2 = pkt_devs[i];
2327 		if (!pd2)
2328 			continue;
2329 		if (pd2->bdev->bd_dev == dev) {
2330 			printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2331 			return -EBUSY;
2332 		}
2333 		if (pd2->pkt_dev == dev) {
2334 			printk("pktcdvd: Can't chain pktcdvd devices\n");
2335 			return -EBUSY;
2336 		}
2337 	}
2338 
2339 	bdev = bdget(dev);
2340 	if (!bdev)
2341 		return -ENOMEM;
2342 	ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2343 	if (ret)
2344 		return ret;
2345 
2346 	/* This is safe, since we have a reference from open(). */
2347 	__module_get(THIS_MODULE);
2348 
2349 	pd->bdev = bdev;
2350 	set_blocksize(bdev, CD_FRAMESIZE);
2351 
2352 	pkt_init_queue(pd);
2353 
2354 	atomic_set(&pd->cdrw.pending_bios, 0);
2355 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2356 	if (IS_ERR(pd->cdrw.thread)) {
2357 		printk("pktcdvd: can't start kernel thread\n");
2358 		ret = -ENOMEM;
2359 		goto out_mem;
2360 	}
2361 
2362 	proc = create_proc_entry(pd->name, 0, pkt_proc);
2363 	if (proc) {
2364 		proc->data = pd;
2365 		proc->proc_fops = &pkt_proc_fops;
2366 	}
2367 	DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2368 	return 0;
2369 
2370 out_mem:
2371 	blkdev_put(bdev);
2372 	/* This is safe: open() is still holding a reference. */
2373 	module_put(THIS_MODULE);
2374 	return ret;
2375 }
2376 
2377 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2378 {
2379 	struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2380 
2381 	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2382 
2383 	switch (cmd) {
2384 	/*
2385 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2386 	 */
2387 	case CDROMMULTISESSION:
2388 	case CDROMREADTOCENTRY:
2389 	case CDROM_LAST_WRITTEN:
2390 	case CDROM_SEND_PACKET:
2391 	case SCSI_IOCTL_SEND_COMMAND:
2392 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2393 
2394 	case CDROMEJECT:
2395 		/*
2396 		 * The door gets locked when the device is opened, so we
2397 		 * have to unlock it or else the eject command fails.
2398 		 */
2399 		if (pd->refcnt == 1)
2400 			pkt_lock_door(pd, 0);
2401 		return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2402 
2403 	default:
2404 		VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2405 		return -ENOTTY;
2406 	}
2407 
2408 	return 0;
2409 }
2410 
2411 static int pkt_media_changed(struct gendisk *disk)
2412 {
2413 	struct pktcdvd_device *pd = disk->private_data;
2414 	struct gendisk *attached_disk;
2415 
2416 	if (!pd)
2417 		return 0;
2418 	if (!pd->bdev)
2419 		return 0;
2420 	attached_disk = pd->bdev->bd_disk;
2421 	if (!attached_disk)
2422 		return 0;
2423 	return attached_disk->fops->media_changed(attached_disk);
2424 }
2425 
2426 static struct block_device_operations pktcdvd_ops = {
2427 	.owner =		THIS_MODULE,
2428 	.open =			pkt_open,
2429 	.release =		pkt_close,
2430 	.ioctl =		pkt_ioctl,
2431 	.media_changed =	pkt_media_changed,
2432 };
2433 
2434 /*
2435  * Set up mapping from pktcdvd device to CD-ROM device.
2436  */
2437 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2438 {
2439 	int idx;
2440 	int ret = -ENOMEM;
2441 	struct pktcdvd_device *pd;
2442 	struct gendisk *disk;
2443 	dev_t dev = new_decode_dev(ctrl_cmd->dev);
2444 
2445 	for (idx = 0; idx < MAX_WRITERS; idx++)
2446 		if (!pkt_devs[idx])
2447 			break;
2448 	if (idx == MAX_WRITERS) {
2449 		printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2450 		return -EBUSY;
2451 	}
2452 
2453 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2454 	if (!pd)
2455 		return ret;
2456 
2457 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2458 						  sizeof(struct pkt_rb_node));
2459 	if (!pd->rb_pool)
2460 		goto out_mem;
2461 
2462 	disk = alloc_disk(1);
2463 	if (!disk)
2464 		goto out_mem;
2465 	pd->disk = disk;
2466 
2467 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2468 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2469 	spin_lock_init(&pd->cdrw.active_list_lock);
2470 
2471 	spin_lock_init(&pd->lock);
2472 	spin_lock_init(&pd->iosched.lock);
2473 	sprintf(pd->name, "pktcdvd%d", idx);
2474 	init_waitqueue_head(&pd->wqueue);
2475 	pd->bio_queue = RB_ROOT;
2476 
2477 	disk->major = pkt_major;
2478 	disk->first_minor = idx;
2479 	disk->fops = &pktcdvd_ops;
2480 	disk->flags = GENHD_FL_REMOVABLE;
2481 	sprintf(disk->disk_name, "pktcdvd%d", idx);
2482 	disk->private_data = pd;
2483 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2484 	if (!disk->queue)
2485 		goto out_mem2;
2486 
2487 	pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2488 	ret = pkt_new_dev(pd, dev);
2489 	if (ret)
2490 		goto out_new_dev;
2491 
2492 	add_disk(disk);
2493 	pkt_devs[idx] = pd;
2494 	ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2495 	return 0;
2496 
2497 out_new_dev:
2498 	blk_cleanup_queue(disk->queue);
2499 out_mem2:
2500 	put_disk(disk);
2501 out_mem:
2502 	if (pd->rb_pool)
2503 		mempool_destroy(pd->rb_pool);
2504 	kfree(pd);
2505 	return ret;
2506 }
2507 
2508 /*
2509  * Tear down mapping from pktcdvd device to CD-ROM device.
2510  */
2511 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2512 {
2513 	struct pktcdvd_device *pd;
2514 	int idx;
2515 	dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2516 
2517 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2518 		pd = pkt_devs[idx];
2519 		if (pd && (pd->pkt_dev == pkt_dev))
2520 			break;
2521 	}
2522 	if (idx == MAX_WRITERS) {
2523 		DPRINTK("pktcdvd: dev not setup\n");
2524 		return -ENXIO;
2525 	}
2526 
2527 	if (pd->refcnt > 0)
2528 		return -EBUSY;
2529 
2530 	if (!IS_ERR(pd->cdrw.thread))
2531 		kthread_stop(pd->cdrw.thread);
2532 
2533 	blkdev_put(pd->bdev);
2534 
2535 	remove_proc_entry(pd->name, pkt_proc);
2536 	DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2537 
2538 	del_gendisk(pd->disk);
2539 	blk_cleanup_queue(pd->disk->queue);
2540 	put_disk(pd->disk);
2541 
2542 	pkt_devs[idx] = NULL;
2543 	mempool_destroy(pd->rb_pool);
2544 	kfree(pd);
2545 
2546 	/* This is safe: open() is still holding a reference. */
2547 	module_put(THIS_MODULE);
2548 	return 0;
2549 }
2550 
2551 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2552 {
2553 	struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2554 	if (pd) {
2555 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2556 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2557 	} else {
2558 		ctrl_cmd->dev = 0;
2559 		ctrl_cmd->pkt_dev = 0;
2560 	}
2561 	ctrl_cmd->num_devices = MAX_WRITERS;
2562 }
2563 
2564 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2565 {
2566 	void __user *argp = (void __user *)arg;
2567 	struct pkt_ctrl_command ctrl_cmd;
2568 	int ret = 0;
2569 
2570 	if (cmd != PACKET_CTRL_CMD)
2571 		return -ENOTTY;
2572 
2573 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2574 		return -EFAULT;
2575 
2576 	switch (ctrl_cmd.command) {
2577 	case PKT_CTRL_CMD_SETUP:
2578 		if (!capable(CAP_SYS_ADMIN))
2579 			return -EPERM;
2580 		mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2581 		ret = pkt_setup_dev(&ctrl_cmd);
2582 		mutex_unlock(&ctl_mutex);
2583 		break;
2584 	case PKT_CTRL_CMD_TEARDOWN:
2585 		if (!capable(CAP_SYS_ADMIN))
2586 			return -EPERM;
2587 		mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2588 		ret = pkt_remove_dev(&ctrl_cmd);
2589 		mutex_unlock(&ctl_mutex);
2590 		break;
2591 	case PKT_CTRL_CMD_STATUS:
2592 		mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2593 		pkt_get_status(&ctrl_cmd);
2594 		mutex_unlock(&ctl_mutex);
2595 		break;
2596 	default:
2597 		return -ENOTTY;
2598 	}
2599 
2600 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2601 		return -EFAULT;
2602 	return ret;
2603 }
2604 
2605 
2606 static struct file_operations pkt_ctl_fops = {
2607 	.ioctl	 = pkt_ctl_ioctl,
2608 	.owner	 = THIS_MODULE,
2609 };
2610 
2611 static struct miscdevice pkt_misc = {
2612 	.minor 		= MISC_DYNAMIC_MINOR,
2613 	.name  		= "pktcdvd",
2614 	.fops  		= &pkt_ctl_fops
2615 };
2616 
2617 static int __init pkt_init(void)
2618 {
2619 	int ret;
2620 
2621 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2622 					sizeof(struct packet_stacked_data));
2623 	if (!psd_pool)
2624 		return -ENOMEM;
2625 
2626 	ret = register_blkdev(pkt_major, "pktcdvd");
2627 	if (ret < 0) {
2628 		printk("pktcdvd: Unable to register block device\n");
2629 		goto out2;
2630 	}
2631 	if (!pkt_major)
2632 		pkt_major = ret;
2633 
2634 	ret = misc_register(&pkt_misc);
2635 	if (ret) {
2636 		printk("pktcdvd: Unable to register misc device\n");
2637 		goto out;
2638 	}
2639 
2640 	mutex_init(&ctl_mutex);
2641 
2642 	pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2643 
2644 	return 0;
2645 
2646 out:
2647 	unregister_blkdev(pkt_major, "pktcdvd");
2648 out2:
2649 	mempool_destroy(psd_pool);
2650 	return ret;
2651 }
2652 
2653 static void __exit pkt_exit(void)
2654 {
2655 	remove_proc_entry("pktcdvd", proc_root_driver);
2656 	misc_deregister(&pkt_misc);
2657 	unregister_blkdev(pkt_major, "pktcdvd");
2658 	mempool_destroy(psd_pool);
2659 }
2660 
2661 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2662 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2663 MODULE_LICENSE("GPL");
2664 
2665 module_init(pkt_init);
2666 module_exit(pkt_exit);
2667