1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * such as drivers/scsi/sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom ->submit_bio function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #include <linux/backing-dev.h> 50 #include <linux/compat.h> 51 #include <linux/debugfs.h> 52 #include <linux/device.h> 53 #include <linux/errno.h> 54 #include <linux/file.h> 55 #include <linux/freezer.h> 56 #include <linux/kernel.h> 57 #include <linux/kthread.h> 58 #include <linux/miscdevice.h> 59 #include <linux/module.h> 60 #include <linux/mutex.h> 61 #include <linux/nospec.h> 62 #include <linux/pktcdvd.h> 63 #include <linux/proc_fs.h> 64 #include <linux/seq_file.h> 65 #include <linux/slab.h> 66 #include <linux/spinlock.h> 67 #include <linux/types.h> 68 #include <linux/uaccess.h> 69 70 #include <scsi/scsi.h> 71 #include <scsi/scsi_cmnd.h> 72 #include <scsi/scsi_ioctl.h> 73 74 #include <asm/unaligned.h> 75 76 #define DRIVER_NAME "pktcdvd" 77 78 #define MAX_SPEED 0xffff 79 80 static DEFINE_MUTEX(pktcdvd_mutex); 81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 82 static struct proc_dir_entry *pkt_proc; 83 static int pktdev_major; 84 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 85 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 86 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 87 static mempool_t psd_pool; 88 static struct bio_set pkt_bio_set; 89 90 /* /sys/class/pktcdvd */ 91 static struct class class_pktcdvd; 92 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */ 93 94 /* forward declaration */ 95 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 96 static int pkt_remove_dev(dev_t pkt_dev); 97 98 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd) 99 { 100 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1); 101 } 102 103 /********************************************************** 104 * sysfs interface for pktcdvd 105 * by (C) 2006 Thomas Maier <balagi@justmail.de> 106 107 /sys/class/pktcdvd/pktcdvd[0-7]/ 108 stat/reset 109 stat/packets_started 110 stat/packets_finished 111 stat/kb_written 112 stat/kb_read 113 stat/kb_read_gather 114 write_queue/size 115 write_queue/congestion_off 116 write_queue/congestion_on 117 **********************************************************/ 118 119 static ssize_t packets_started_show(struct device *dev, 120 struct device_attribute *attr, char *buf) 121 { 122 struct pktcdvd_device *pd = dev_get_drvdata(dev); 123 124 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started); 125 } 126 static DEVICE_ATTR_RO(packets_started); 127 128 static ssize_t packets_finished_show(struct device *dev, 129 struct device_attribute *attr, char *buf) 130 { 131 struct pktcdvd_device *pd = dev_get_drvdata(dev); 132 133 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended); 134 } 135 static DEVICE_ATTR_RO(packets_finished); 136 137 static ssize_t kb_written_show(struct device *dev, 138 struct device_attribute *attr, char *buf) 139 { 140 struct pktcdvd_device *pd = dev_get_drvdata(dev); 141 142 return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1); 143 } 144 static DEVICE_ATTR_RO(kb_written); 145 146 static ssize_t kb_read_show(struct device *dev, 147 struct device_attribute *attr, char *buf) 148 { 149 struct pktcdvd_device *pd = dev_get_drvdata(dev); 150 151 return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1); 152 } 153 static DEVICE_ATTR_RO(kb_read); 154 155 static ssize_t kb_read_gather_show(struct device *dev, 156 struct device_attribute *attr, char *buf) 157 { 158 struct pktcdvd_device *pd = dev_get_drvdata(dev); 159 160 return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1); 161 } 162 static DEVICE_ATTR_RO(kb_read_gather); 163 164 static ssize_t reset_store(struct device *dev, struct device_attribute *attr, 165 const char *buf, size_t len) 166 { 167 struct pktcdvd_device *pd = dev_get_drvdata(dev); 168 169 if (len > 0) { 170 pd->stats.pkt_started = 0; 171 pd->stats.pkt_ended = 0; 172 pd->stats.secs_w = 0; 173 pd->stats.secs_rg = 0; 174 pd->stats.secs_r = 0; 175 } 176 return len; 177 } 178 static DEVICE_ATTR_WO(reset); 179 180 static struct attribute *pkt_stat_attrs[] = { 181 &dev_attr_packets_finished.attr, 182 &dev_attr_packets_started.attr, 183 &dev_attr_kb_read.attr, 184 &dev_attr_kb_written.attr, 185 &dev_attr_kb_read_gather.attr, 186 &dev_attr_reset.attr, 187 NULL, 188 }; 189 190 static const struct attribute_group pkt_stat_group = { 191 .name = "stat", 192 .attrs = pkt_stat_attrs, 193 }; 194 195 static ssize_t size_show(struct device *dev, 196 struct device_attribute *attr, char *buf) 197 { 198 struct pktcdvd_device *pd = dev_get_drvdata(dev); 199 int n; 200 201 spin_lock(&pd->lock); 202 n = sysfs_emit(buf, "%d\n", pd->bio_queue_size); 203 spin_unlock(&pd->lock); 204 return n; 205 } 206 static DEVICE_ATTR_RO(size); 207 208 static void init_write_congestion_marks(int* lo, int* hi) 209 { 210 if (*hi > 0) { 211 *hi = max(*hi, 500); 212 *hi = min(*hi, 1000000); 213 if (*lo <= 0) 214 *lo = *hi - 100; 215 else { 216 *lo = min(*lo, *hi - 100); 217 *lo = max(*lo, 100); 218 } 219 } else { 220 *hi = -1; 221 *lo = -1; 222 } 223 } 224 225 static ssize_t congestion_off_show(struct device *dev, 226 struct device_attribute *attr, char *buf) 227 { 228 struct pktcdvd_device *pd = dev_get_drvdata(dev); 229 int n; 230 231 spin_lock(&pd->lock); 232 n = sysfs_emit(buf, "%d\n", pd->write_congestion_off); 233 spin_unlock(&pd->lock); 234 return n; 235 } 236 237 static ssize_t congestion_off_store(struct device *dev, 238 struct device_attribute *attr, 239 const char *buf, size_t len) 240 { 241 struct pktcdvd_device *pd = dev_get_drvdata(dev); 242 int val, ret; 243 244 ret = kstrtoint(buf, 10, &val); 245 if (ret) 246 return ret; 247 248 spin_lock(&pd->lock); 249 pd->write_congestion_off = val; 250 init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on); 251 spin_unlock(&pd->lock); 252 return len; 253 } 254 static DEVICE_ATTR_RW(congestion_off); 255 256 static ssize_t congestion_on_show(struct device *dev, 257 struct device_attribute *attr, char *buf) 258 { 259 struct pktcdvd_device *pd = dev_get_drvdata(dev); 260 int n; 261 262 spin_lock(&pd->lock); 263 n = sysfs_emit(buf, "%d\n", pd->write_congestion_on); 264 spin_unlock(&pd->lock); 265 return n; 266 } 267 268 static ssize_t congestion_on_store(struct device *dev, 269 struct device_attribute *attr, 270 const char *buf, size_t len) 271 { 272 struct pktcdvd_device *pd = dev_get_drvdata(dev); 273 int val, ret; 274 275 ret = kstrtoint(buf, 10, &val); 276 if (ret) 277 return ret; 278 279 spin_lock(&pd->lock); 280 pd->write_congestion_on = val; 281 init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on); 282 spin_unlock(&pd->lock); 283 return len; 284 } 285 static DEVICE_ATTR_RW(congestion_on); 286 287 static struct attribute *pkt_wq_attrs[] = { 288 &dev_attr_congestion_on.attr, 289 &dev_attr_congestion_off.attr, 290 &dev_attr_size.attr, 291 NULL, 292 }; 293 294 static const struct attribute_group pkt_wq_group = { 295 .name = "write_queue", 296 .attrs = pkt_wq_attrs, 297 }; 298 299 static const struct attribute_group *pkt_groups[] = { 300 &pkt_stat_group, 301 &pkt_wq_group, 302 NULL, 303 }; 304 305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 306 { 307 if (class_is_registered(&class_pktcdvd)) { 308 pd->dev = device_create_with_groups(&class_pktcdvd, NULL, 309 MKDEV(0, 0), pd, pkt_groups, 310 "%s", pd->disk->disk_name); 311 if (IS_ERR(pd->dev)) 312 pd->dev = NULL; 313 } 314 } 315 316 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 317 { 318 if (class_is_registered(&class_pktcdvd)) 319 device_unregister(pd->dev); 320 } 321 322 323 /******************************************************************** 324 /sys/class/pktcdvd/ 325 add map block device 326 remove unmap packet dev 327 device_map show mappings 328 *******************************************************************/ 329 330 static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr, 331 char *data) 332 { 333 int n = 0; 334 int idx; 335 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 336 for (idx = 0; idx < MAX_WRITERS; idx++) { 337 struct pktcdvd_device *pd = pkt_devs[idx]; 338 if (!pd) 339 continue; 340 n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n", 341 pd->disk->disk_name, 342 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 343 MAJOR(file_bdev(pd->bdev_file)->bd_dev), 344 MINOR(file_bdev(pd->bdev_file)->bd_dev)); 345 } 346 mutex_unlock(&ctl_mutex); 347 return n; 348 } 349 static CLASS_ATTR_RO(device_map); 350 351 static ssize_t add_store(const struct class *c, const struct class_attribute *attr, 352 const char *buf, size_t count) 353 { 354 unsigned int major, minor; 355 356 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 357 /* pkt_setup_dev() expects caller to hold reference to self */ 358 if (!try_module_get(THIS_MODULE)) 359 return -ENODEV; 360 361 pkt_setup_dev(MKDEV(major, minor), NULL); 362 363 module_put(THIS_MODULE); 364 365 return count; 366 } 367 368 return -EINVAL; 369 } 370 static CLASS_ATTR_WO(add); 371 372 static ssize_t remove_store(const struct class *c, const struct class_attribute *attr, 373 const char *buf, size_t count) 374 { 375 unsigned int major, minor; 376 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 377 pkt_remove_dev(MKDEV(major, minor)); 378 return count; 379 } 380 return -EINVAL; 381 } 382 static CLASS_ATTR_WO(remove); 383 384 static struct attribute *class_pktcdvd_attrs[] = { 385 &class_attr_add.attr, 386 &class_attr_remove.attr, 387 &class_attr_device_map.attr, 388 NULL, 389 }; 390 ATTRIBUTE_GROUPS(class_pktcdvd); 391 392 static struct class class_pktcdvd = { 393 .name = DRIVER_NAME, 394 .class_groups = class_pktcdvd_groups, 395 }; 396 397 static int pkt_sysfs_init(void) 398 { 399 /* 400 * create control files in sysfs 401 * /sys/class/pktcdvd/... 402 */ 403 return class_register(&class_pktcdvd); 404 } 405 406 static void pkt_sysfs_cleanup(void) 407 { 408 class_unregister(&class_pktcdvd); 409 } 410 411 /******************************************************************** 412 entries in debugfs 413 414 /sys/kernel/debug/pktcdvd[0-7]/ 415 info 416 417 *******************************************************************/ 418 419 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 420 { 421 struct packet_data *pkt; 422 int i; 423 424 for (i = 0; i < PACKET_NUM_STATES; i++) 425 states[i] = 0; 426 427 spin_lock(&pd->cdrw.active_list_lock); 428 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 429 states[pkt->state]++; 430 } 431 spin_unlock(&pd->cdrw.active_list_lock); 432 } 433 434 static int pkt_seq_show(struct seq_file *m, void *p) 435 { 436 struct pktcdvd_device *pd = m->private; 437 char *msg; 438 int states[PACKET_NUM_STATES]; 439 440 seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name, 441 file_bdev(pd->bdev_file)); 442 443 seq_printf(m, "\nSettings:\n"); 444 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 445 446 if (pd->settings.write_type == 0) 447 msg = "Packet"; 448 else 449 msg = "Unknown"; 450 seq_printf(m, "\twrite type:\t\t%s\n", msg); 451 452 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 453 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 454 455 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 456 457 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 458 msg = "Mode 1"; 459 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 460 msg = "Mode 2"; 461 else 462 msg = "Unknown"; 463 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 464 465 seq_printf(m, "\nStatistics:\n"); 466 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 467 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 468 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 469 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 470 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 471 472 seq_printf(m, "\nMisc:\n"); 473 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 474 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 475 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 476 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 477 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 478 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 479 480 seq_printf(m, "\nQueue state:\n"); 481 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 482 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 483 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector); 484 485 pkt_count_states(pd, states); 486 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 487 states[0], states[1], states[2], states[3], states[4], states[5]); 488 489 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 490 pd->write_congestion_off, 491 pd->write_congestion_on); 492 return 0; 493 } 494 DEFINE_SHOW_ATTRIBUTE(pkt_seq); 495 496 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 497 { 498 if (!pkt_debugfs_root) 499 return; 500 pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root); 501 502 pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root, 503 pd, &pkt_seq_fops); 504 } 505 506 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 507 { 508 if (!pkt_debugfs_root) 509 return; 510 debugfs_remove(pd->dfs_f_info); 511 debugfs_remove(pd->dfs_d_root); 512 pd->dfs_f_info = NULL; 513 pd->dfs_d_root = NULL; 514 } 515 516 static void pkt_debugfs_init(void) 517 { 518 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 519 } 520 521 static void pkt_debugfs_cleanup(void) 522 { 523 debugfs_remove(pkt_debugfs_root); 524 pkt_debugfs_root = NULL; 525 } 526 527 /* ----------------------------------------------------------*/ 528 529 530 static void pkt_bio_finished(struct pktcdvd_device *pd) 531 { 532 struct device *ddev = disk_to_dev(pd->disk); 533 534 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 535 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 536 dev_dbg(ddev, "queue empty\n"); 537 atomic_set(&pd->iosched.attention, 1); 538 wake_up(&pd->wqueue); 539 } 540 } 541 542 /* 543 * Allocate a packet_data struct 544 */ 545 static struct packet_data *pkt_alloc_packet_data(int frames) 546 { 547 int i; 548 struct packet_data *pkt; 549 550 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 551 if (!pkt) 552 goto no_pkt; 553 554 pkt->frames = frames; 555 pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL); 556 if (!pkt->w_bio) 557 goto no_bio; 558 559 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 560 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 561 if (!pkt->pages[i]) 562 goto no_page; 563 } 564 565 spin_lock_init(&pkt->lock); 566 bio_list_init(&pkt->orig_bios); 567 568 for (i = 0; i < frames; i++) { 569 pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL); 570 if (!pkt->r_bios[i]) 571 goto no_rd_bio; 572 } 573 574 return pkt; 575 576 no_rd_bio: 577 for (i = 0; i < frames; i++) 578 kfree(pkt->r_bios[i]); 579 no_page: 580 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 581 if (pkt->pages[i]) 582 __free_page(pkt->pages[i]); 583 kfree(pkt->w_bio); 584 no_bio: 585 kfree(pkt); 586 no_pkt: 587 return NULL; 588 } 589 590 /* 591 * Free a packet_data struct 592 */ 593 static void pkt_free_packet_data(struct packet_data *pkt) 594 { 595 int i; 596 597 for (i = 0; i < pkt->frames; i++) 598 kfree(pkt->r_bios[i]); 599 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 600 __free_page(pkt->pages[i]); 601 kfree(pkt->w_bio); 602 kfree(pkt); 603 } 604 605 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 606 { 607 struct packet_data *pkt, *next; 608 609 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 610 611 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 612 pkt_free_packet_data(pkt); 613 } 614 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 615 } 616 617 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 618 { 619 struct packet_data *pkt; 620 621 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 622 623 while (nr_packets > 0) { 624 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 625 if (!pkt) { 626 pkt_shrink_pktlist(pd); 627 return 0; 628 } 629 pkt->id = nr_packets; 630 pkt->pd = pd; 631 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 632 nr_packets--; 633 } 634 return 1; 635 } 636 637 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 638 { 639 struct rb_node *n = rb_next(&node->rb_node); 640 if (!n) 641 return NULL; 642 return rb_entry(n, struct pkt_rb_node, rb_node); 643 } 644 645 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 646 { 647 rb_erase(&node->rb_node, &pd->bio_queue); 648 mempool_free(node, &pd->rb_pool); 649 pd->bio_queue_size--; 650 BUG_ON(pd->bio_queue_size < 0); 651 } 652 653 /* 654 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 655 */ 656 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 657 { 658 struct rb_node *n = pd->bio_queue.rb_node; 659 struct rb_node *next; 660 struct pkt_rb_node *tmp; 661 662 if (!n) { 663 BUG_ON(pd->bio_queue_size > 0); 664 return NULL; 665 } 666 667 for (;;) { 668 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 669 if (s <= tmp->bio->bi_iter.bi_sector) 670 next = n->rb_left; 671 else 672 next = n->rb_right; 673 if (!next) 674 break; 675 n = next; 676 } 677 678 if (s > tmp->bio->bi_iter.bi_sector) { 679 tmp = pkt_rbtree_next(tmp); 680 if (!tmp) 681 return NULL; 682 } 683 BUG_ON(s > tmp->bio->bi_iter.bi_sector); 684 return tmp; 685 } 686 687 /* 688 * Insert a node into the pd->bio_queue rb tree. 689 */ 690 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 691 { 692 struct rb_node **p = &pd->bio_queue.rb_node; 693 struct rb_node *parent = NULL; 694 sector_t s = node->bio->bi_iter.bi_sector; 695 struct pkt_rb_node *tmp; 696 697 while (*p) { 698 parent = *p; 699 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 700 if (s < tmp->bio->bi_iter.bi_sector) 701 p = &(*p)->rb_left; 702 else 703 p = &(*p)->rb_right; 704 } 705 rb_link_node(&node->rb_node, parent, p); 706 rb_insert_color(&node->rb_node, &pd->bio_queue); 707 pd->bio_queue_size++; 708 } 709 710 /* 711 * Send a packet_command to the underlying block device and 712 * wait for completion. 713 */ 714 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 715 { 716 struct request_queue *q = bdev_get_queue(file_bdev(pd->bdev_file)); 717 struct scsi_cmnd *scmd; 718 struct request *rq; 719 int ret = 0; 720 721 rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 722 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 723 if (IS_ERR(rq)) 724 return PTR_ERR(rq); 725 scmd = blk_mq_rq_to_pdu(rq); 726 727 if (cgc->buflen) { 728 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, 729 GFP_NOIO); 730 if (ret) 731 goto out; 732 } 733 734 scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 735 memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE); 736 737 rq->timeout = 60*HZ; 738 if (cgc->quiet) 739 rq->rq_flags |= RQF_QUIET; 740 741 blk_execute_rq(rq, false); 742 if (scmd->result) 743 ret = -EIO; 744 out: 745 blk_mq_free_request(rq); 746 return ret; 747 } 748 749 static const char *sense_key_string(__u8 index) 750 { 751 static const char * const info[] = { 752 "No sense", "Recovered error", "Not ready", 753 "Medium error", "Hardware error", "Illegal request", 754 "Unit attention", "Data protect", "Blank check", 755 }; 756 757 return index < ARRAY_SIZE(info) ? info[index] : "INVALID"; 758 } 759 760 /* 761 * A generic sense dump / resolve mechanism should be implemented across 762 * all ATAPI + SCSI devices. 763 */ 764 static void pkt_dump_sense(struct pktcdvd_device *pd, 765 struct packet_command *cgc) 766 { 767 struct device *ddev = disk_to_dev(pd->disk); 768 struct scsi_sense_hdr *sshdr = cgc->sshdr; 769 770 if (sshdr) 771 dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n", 772 CDROM_PACKET_SIZE, cgc->cmd, 773 sshdr->sense_key, sshdr->asc, sshdr->ascq, 774 sense_key_string(sshdr->sense_key)); 775 else 776 dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd); 777 } 778 779 /* 780 * flush the drive cache to media 781 */ 782 static int pkt_flush_cache(struct pktcdvd_device *pd) 783 { 784 struct packet_command cgc; 785 786 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 787 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 788 cgc.quiet = 1; 789 790 /* 791 * the IMMED bit -- we default to not setting it, although that 792 * would allow a much faster close, this is safer 793 */ 794 #if 0 795 cgc.cmd[1] = 1 << 1; 796 #endif 797 return pkt_generic_packet(pd, &cgc); 798 } 799 800 /* 801 * speed is given as the normal factor, e.g. 4 for 4x 802 */ 803 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 804 unsigned write_speed, unsigned read_speed) 805 { 806 struct packet_command cgc; 807 struct scsi_sense_hdr sshdr; 808 int ret; 809 810 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 811 cgc.sshdr = &sshdr; 812 cgc.cmd[0] = GPCMD_SET_SPEED; 813 put_unaligned_be16(read_speed, &cgc.cmd[2]); 814 put_unaligned_be16(write_speed, &cgc.cmd[4]); 815 816 ret = pkt_generic_packet(pd, &cgc); 817 if (ret) 818 pkt_dump_sense(pd, &cgc); 819 820 return ret; 821 } 822 823 /* 824 * Queue a bio for processing by the low-level CD device. Must be called 825 * from process context. 826 */ 827 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 828 { 829 /* 830 * Some CDRW drives can not handle writes larger than one packet, 831 * even if the size is a multiple of the packet size. 832 */ 833 bio->bi_opf |= REQ_NOMERGE; 834 835 spin_lock(&pd->iosched.lock); 836 if (bio_data_dir(bio) == READ) 837 bio_list_add(&pd->iosched.read_queue, bio); 838 else 839 bio_list_add(&pd->iosched.write_queue, bio); 840 spin_unlock(&pd->iosched.lock); 841 842 atomic_set(&pd->iosched.attention, 1); 843 wake_up(&pd->wqueue); 844 } 845 846 /* 847 * Process the queued read/write requests. This function handles special 848 * requirements for CDRW drives: 849 * - A cache flush command must be inserted before a read request if the 850 * previous request was a write. 851 * - Switching between reading and writing is slow, so don't do it more often 852 * than necessary. 853 * - Optimize for throughput at the expense of latency. This means that streaming 854 * writes will never be interrupted by a read, but if the drive has to seek 855 * before the next write, switch to reading instead if there are any pending 856 * read requests. 857 * - Set the read speed according to current usage pattern. When only reading 858 * from the device, it's best to use the highest possible read speed, but 859 * when switching often between reading and writing, it's better to have the 860 * same read and write speeds. 861 */ 862 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 863 { 864 struct device *ddev = disk_to_dev(pd->disk); 865 866 if (atomic_read(&pd->iosched.attention) == 0) 867 return; 868 atomic_set(&pd->iosched.attention, 0); 869 870 for (;;) { 871 struct bio *bio; 872 int reads_queued, writes_queued; 873 874 spin_lock(&pd->iosched.lock); 875 reads_queued = !bio_list_empty(&pd->iosched.read_queue); 876 writes_queued = !bio_list_empty(&pd->iosched.write_queue); 877 spin_unlock(&pd->iosched.lock); 878 879 if (!reads_queued && !writes_queued) 880 break; 881 882 if (pd->iosched.writing) { 883 int need_write_seek = 1; 884 spin_lock(&pd->iosched.lock); 885 bio = bio_list_peek(&pd->iosched.write_queue); 886 spin_unlock(&pd->iosched.lock); 887 if (bio && (bio->bi_iter.bi_sector == 888 pd->iosched.last_write)) 889 need_write_seek = 0; 890 if (need_write_seek && reads_queued) { 891 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 892 dev_dbg(ddev, "write, waiting\n"); 893 break; 894 } 895 pkt_flush_cache(pd); 896 pd->iosched.writing = 0; 897 } 898 } else { 899 if (!reads_queued && writes_queued) { 900 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 901 dev_dbg(ddev, "read, waiting\n"); 902 break; 903 } 904 pd->iosched.writing = 1; 905 } 906 } 907 908 spin_lock(&pd->iosched.lock); 909 if (pd->iosched.writing) 910 bio = bio_list_pop(&pd->iosched.write_queue); 911 else 912 bio = bio_list_pop(&pd->iosched.read_queue); 913 spin_unlock(&pd->iosched.lock); 914 915 if (!bio) 916 continue; 917 918 if (bio_data_dir(bio) == READ) 919 pd->iosched.successive_reads += 920 bio->bi_iter.bi_size >> 10; 921 else { 922 pd->iosched.successive_reads = 0; 923 pd->iosched.last_write = bio_end_sector(bio); 924 } 925 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 926 if (pd->read_speed == pd->write_speed) { 927 pd->read_speed = MAX_SPEED; 928 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 929 } 930 } else { 931 if (pd->read_speed != pd->write_speed) { 932 pd->read_speed = pd->write_speed; 933 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 934 } 935 } 936 937 atomic_inc(&pd->cdrw.pending_bios); 938 submit_bio_noacct(bio); 939 } 940 } 941 942 /* 943 * Special care is needed if the underlying block device has a small 944 * max_phys_segments value. 945 */ 946 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 947 { 948 struct device *ddev = disk_to_dev(pd->disk); 949 950 if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) { 951 /* 952 * The cdrom device can handle one segment/frame 953 */ 954 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 955 return 0; 956 } 957 958 if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) { 959 /* 960 * We can handle this case at the expense of some extra memory 961 * copies during write operations 962 */ 963 set_bit(PACKET_MERGE_SEGS, &pd->flags); 964 return 0; 965 } 966 967 dev_err(ddev, "cdrom max_phys_segments too small\n"); 968 return -EIO; 969 } 970 971 static void pkt_end_io_read(struct bio *bio) 972 { 973 struct packet_data *pkt = bio->bi_private; 974 struct pktcdvd_device *pd = pkt->pd; 975 BUG_ON(!pd); 976 977 dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n", 978 bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status); 979 980 if (bio->bi_status) 981 atomic_inc(&pkt->io_errors); 982 bio_uninit(bio); 983 if (atomic_dec_and_test(&pkt->io_wait)) { 984 atomic_inc(&pkt->run_sm); 985 wake_up(&pd->wqueue); 986 } 987 pkt_bio_finished(pd); 988 } 989 990 static void pkt_end_io_packet_write(struct bio *bio) 991 { 992 struct packet_data *pkt = bio->bi_private; 993 struct pktcdvd_device *pd = pkt->pd; 994 BUG_ON(!pd); 995 996 dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status); 997 998 pd->stats.pkt_ended++; 999 1000 bio_uninit(bio); 1001 pkt_bio_finished(pd); 1002 atomic_dec(&pkt->io_wait); 1003 atomic_inc(&pkt->run_sm); 1004 wake_up(&pd->wqueue); 1005 } 1006 1007 /* 1008 * Schedule reads for the holes in a packet 1009 */ 1010 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1011 { 1012 struct device *ddev = disk_to_dev(pd->disk); 1013 int frames_read = 0; 1014 struct bio *bio; 1015 int f; 1016 char written[PACKET_MAX_SIZE]; 1017 1018 BUG_ON(bio_list_empty(&pkt->orig_bios)); 1019 1020 atomic_set(&pkt->io_wait, 0); 1021 atomic_set(&pkt->io_errors, 0); 1022 1023 /* 1024 * Figure out which frames we need to read before we can write. 1025 */ 1026 memset(written, 0, sizeof(written)); 1027 spin_lock(&pkt->lock); 1028 bio_list_for_each(bio, &pkt->orig_bios) { 1029 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) / 1030 (CD_FRAMESIZE >> 9); 1031 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE; 1032 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1033 BUG_ON(first_frame < 0); 1034 BUG_ON(first_frame + num_frames > pkt->frames); 1035 for (f = first_frame; f < first_frame + num_frames; f++) 1036 written[f] = 1; 1037 } 1038 spin_unlock(&pkt->lock); 1039 1040 if (pkt->cache_valid) { 1041 dev_dbg(ddev, "zone %llx cached\n", pkt->sector); 1042 goto out_account; 1043 } 1044 1045 /* 1046 * Schedule reads for missing parts of the packet. 1047 */ 1048 for (f = 0; f < pkt->frames; f++) { 1049 int p, offset; 1050 1051 if (written[f]) 1052 continue; 1053 1054 bio = pkt->r_bios[f]; 1055 bio_init(bio, file_bdev(pd->bdev_file), bio->bi_inline_vecs, 1, 1056 REQ_OP_READ); 1057 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1058 bio->bi_end_io = pkt_end_io_read; 1059 bio->bi_private = pkt; 1060 1061 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1062 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1063 dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f, 1064 pkt->pages[p], offset); 1065 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1066 BUG(); 1067 1068 atomic_inc(&pkt->io_wait); 1069 pkt_queue_bio(pd, bio); 1070 frames_read++; 1071 } 1072 1073 out_account: 1074 dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector); 1075 pd->stats.pkt_started++; 1076 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1077 } 1078 1079 /* 1080 * Find a packet matching zone, or the least recently used packet if 1081 * there is no match. 1082 */ 1083 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1084 { 1085 struct packet_data *pkt; 1086 1087 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1088 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1089 list_del_init(&pkt->list); 1090 if (pkt->sector != zone) 1091 pkt->cache_valid = 0; 1092 return pkt; 1093 } 1094 } 1095 BUG(); 1096 return NULL; 1097 } 1098 1099 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1100 { 1101 if (pkt->cache_valid) { 1102 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1103 } else { 1104 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1105 } 1106 } 1107 1108 static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt, 1109 enum packet_data_state state) 1110 { 1111 static const char *state_name[] = { 1112 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1113 }; 1114 enum packet_data_state old_state = pkt->state; 1115 1116 dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n", 1117 pkt->id, pkt->sector, state_name[old_state], state_name[state]); 1118 1119 pkt->state = state; 1120 } 1121 1122 /* 1123 * Scan the work queue to see if we can start a new packet. 1124 * returns non-zero if any work was done. 1125 */ 1126 static int pkt_handle_queue(struct pktcdvd_device *pd) 1127 { 1128 struct device *ddev = disk_to_dev(pd->disk); 1129 struct packet_data *pkt, *p; 1130 struct bio *bio = NULL; 1131 sector_t zone = 0; /* Suppress gcc warning */ 1132 struct pkt_rb_node *node, *first_node; 1133 struct rb_node *n; 1134 1135 atomic_set(&pd->scan_queue, 0); 1136 1137 if (list_empty(&pd->cdrw.pkt_free_list)) { 1138 dev_dbg(ddev, "no pkt\n"); 1139 return 0; 1140 } 1141 1142 /* 1143 * Try to find a zone we are not already working on. 1144 */ 1145 spin_lock(&pd->lock); 1146 first_node = pkt_rbtree_find(pd, pd->current_sector); 1147 if (!first_node) { 1148 n = rb_first(&pd->bio_queue); 1149 if (n) 1150 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1151 } 1152 node = first_node; 1153 while (node) { 1154 bio = node->bio; 1155 zone = get_zone(bio->bi_iter.bi_sector, pd); 1156 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1157 if (p->sector == zone) { 1158 bio = NULL; 1159 goto try_next_bio; 1160 } 1161 } 1162 break; 1163 try_next_bio: 1164 node = pkt_rbtree_next(node); 1165 if (!node) { 1166 n = rb_first(&pd->bio_queue); 1167 if (n) 1168 node = rb_entry(n, struct pkt_rb_node, rb_node); 1169 } 1170 if (node == first_node) 1171 node = NULL; 1172 } 1173 spin_unlock(&pd->lock); 1174 if (!bio) { 1175 dev_dbg(ddev, "no bio\n"); 1176 return 0; 1177 } 1178 1179 pkt = pkt_get_packet_data(pd, zone); 1180 1181 pd->current_sector = zone + pd->settings.size; 1182 pkt->sector = zone; 1183 BUG_ON(pkt->frames != pd->settings.size >> 2); 1184 pkt->write_size = 0; 1185 1186 /* 1187 * Scan work queue for bios in the same zone and link them 1188 * to this packet. 1189 */ 1190 spin_lock(&pd->lock); 1191 dev_dbg(ddev, "looking for zone %llx\n", zone); 1192 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1193 sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd); 1194 1195 bio = node->bio; 1196 dev_dbg(ddev, "found zone=%llx\n", tmp); 1197 if (tmp != zone) 1198 break; 1199 pkt_rbtree_erase(pd, node); 1200 spin_lock(&pkt->lock); 1201 bio_list_add(&pkt->orig_bios, bio); 1202 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE; 1203 spin_unlock(&pkt->lock); 1204 } 1205 /* check write congestion marks, and if bio_queue_size is 1206 * below, wake up any waiters 1207 */ 1208 if (pd->congested && 1209 pd->bio_queue_size <= pd->write_congestion_off) { 1210 pd->congested = false; 1211 wake_up_var(&pd->congested); 1212 } 1213 spin_unlock(&pd->lock); 1214 1215 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1216 pkt_set_state(ddev, pkt, PACKET_WAITING_STATE); 1217 atomic_set(&pkt->run_sm, 1); 1218 1219 spin_lock(&pd->cdrw.active_list_lock); 1220 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1221 spin_unlock(&pd->cdrw.active_list_lock); 1222 1223 return 1; 1224 } 1225 1226 /** 1227 * bio_list_copy_data - copy contents of data buffers from one chain of bios to 1228 * another 1229 * @src: source bio list 1230 * @dst: destination bio list 1231 * 1232 * Stops when it reaches the end of either the @src list or @dst list - that is, 1233 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of 1234 * bios). 1235 */ 1236 static void bio_list_copy_data(struct bio *dst, struct bio *src) 1237 { 1238 struct bvec_iter src_iter = src->bi_iter; 1239 struct bvec_iter dst_iter = dst->bi_iter; 1240 1241 while (1) { 1242 if (!src_iter.bi_size) { 1243 src = src->bi_next; 1244 if (!src) 1245 break; 1246 1247 src_iter = src->bi_iter; 1248 } 1249 1250 if (!dst_iter.bi_size) { 1251 dst = dst->bi_next; 1252 if (!dst) 1253 break; 1254 1255 dst_iter = dst->bi_iter; 1256 } 1257 1258 bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 1259 } 1260 } 1261 1262 /* 1263 * Assemble a bio to write one packet and queue the bio for processing 1264 * by the underlying block device. 1265 */ 1266 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1267 { 1268 struct device *ddev = disk_to_dev(pd->disk); 1269 int f; 1270 1271 bio_init(pkt->w_bio, file_bdev(pd->bdev_file), pkt->w_bio->bi_inline_vecs, 1272 pkt->frames, REQ_OP_WRITE); 1273 pkt->w_bio->bi_iter.bi_sector = pkt->sector; 1274 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1275 pkt->w_bio->bi_private = pkt; 1276 1277 /* XXX: locking? */ 1278 for (f = 0; f < pkt->frames; f++) { 1279 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1280 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1281 1282 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset)) 1283 BUG(); 1284 } 1285 dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt); 1286 1287 /* 1288 * Fill-in bvec with data from orig_bios. 1289 */ 1290 spin_lock(&pkt->lock); 1291 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head); 1292 1293 pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE); 1294 spin_unlock(&pkt->lock); 1295 1296 dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector); 1297 1298 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) 1299 pkt->cache_valid = 1; 1300 else 1301 pkt->cache_valid = 0; 1302 1303 /* Start the write request */ 1304 atomic_set(&pkt->io_wait, 1); 1305 pkt_queue_bio(pd, pkt->w_bio); 1306 } 1307 1308 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status) 1309 { 1310 struct bio *bio; 1311 1312 if (status) 1313 pkt->cache_valid = 0; 1314 1315 /* Finish all bios corresponding to this packet */ 1316 while ((bio = bio_list_pop(&pkt->orig_bios))) { 1317 bio->bi_status = status; 1318 bio_endio(bio); 1319 } 1320 } 1321 1322 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1323 { 1324 struct device *ddev = disk_to_dev(pd->disk); 1325 1326 dev_dbg(ddev, "pkt %d\n", pkt->id); 1327 1328 for (;;) { 1329 switch (pkt->state) { 1330 case PACKET_WAITING_STATE: 1331 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1332 return; 1333 1334 pkt->sleep_time = 0; 1335 pkt_gather_data(pd, pkt); 1336 pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE); 1337 break; 1338 1339 case PACKET_READ_WAIT_STATE: 1340 if (atomic_read(&pkt->io_wait) > 0) 1341 return; 1342 1343 if (atomic_read(&pkt->io_errors) > 0) { 1344 pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE); 1345 } else { 1346 pkt_start_write(pd, pkt); 1347 } 1348 break; 1349 1350 case PACKET_WRITE_WAIT_STATE: 1351 if (atomic_read(&pkt->io_wait) > 0) 1352 return; 1353 1354 if (!pkt->w_bio->bi_status) { 1355 pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE); 1356 } else { 1357 pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE); 1358 } 1359 break; 1360 1361 case PACKET_RECOVERY_STATE: 1362 dev_dbg(ddev, "No recovery possible\n"); 1363 pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE); 1364 break; 1365 1366 case PACKET_FINISHED_STATE: 1367 pkt_finish_packet(pkt, pkt->w_bio->bi_status); 1368 return; 1369 1370 default: 1371 BUG(); 1372 break; 1373 } 1374 } 1375 } 1376 1377 static void pkt_handle_packets(struct pktcdvd_device *pd) 1378 { 1379 struct device *ddev = disk_to_dev(pd->disk); 1380 struct packet_data *pkt, *next; 1381 1382 /* 1383 * Run state machine for active packets 1384 */ 1385 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1386 if (atomic_read(&pkt->run_sm) > 0) { 1387 atomic_set(&pkt->run_sm, 0); 1388 pkt_run_state_machine(pd, pkt); 1389 } 1390 } 1391 1392 /* 1393 * Move no longer active packets to the free list 1394 */ 1395 spin_lock(&pd->cdrw.active_list_lock); 1396 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1397 if (pkt->state == PACKET_FINISHED_STATE) { 1398 list_del(&pkt->list); 1399 pkt_put_packet_data(pd, pkt); 1400 pkt_set_state(ddev, pkt, PACKET_IDLE_STATE); 1401 atomic_set(&pd->scan_queue, 1); 1402 } 1403 } 1404 spin_unlock(&pd->cdrw.active_list_lock); 1405 } 1406 1407 /* 1408 * kcdrwd is woken up when writes have been queued for one of our 1409 * registered devices 1410 */ 1411 static int kcdrwd(void *foobar) 1412 { 1413 struct pktcdvd_device *pd = foobar; 1414 struct device *ddev = disk_to_dev(pd->disk); 1415 struct packet_data *pkt; 1416 int states[PACKET_NUM_STATES]; 1417 long min_sleep_time, residue; 1418 1419 set_user_nice(current, MIN_NICE); 1420 set_freezable(); 1421 1422 for (;;) { 1423 DECLARE_WAITQUEUE(wait, current); 1424 1425 /* 1426 * Wait until there is something to do 1427 */ 1428 add_wait_queue(&pd->wqueue, &wait); 1429 for (;;) { 1430 set_current_state(TASK_INTERRUPTIBLE); 1431 1432 /* Check if we need to run pkt_handle_queue */ 1433 if (atomic_read(&pd->scan_queue) > 0) 1434 goto work_to_do; 1435 1436 /* Check if we need to run the state machine for some packet */ 1437 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1438 if (atomic_read(&pkt->run_sm) > 0) 1439 goto work_to_do; 1440 } 1441 1442 /* Check if we need to process the iosched queues */ 1443 if (atomic_read(&pd->iosched.attention) != 0) 1444 goto work_to_do; 1445 1446 /* Otherwise, go to sleep */ 1447 pkt_count_states(pd, states); 1448 dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1449 states[0], states[1], states[2], states[3], states[4], states[5]); 1450 1451 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1452 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1453 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1454 min_sleep_time = pkt->sleep_time; 1455 } 1456 1457 dev_dbg(ddev, "sleeping\n"); 1458 residue = schedule_timeout(min_sleep_time); 1459 dev_dbg(ddev, "wake up\n"); 1460 1461 /* make swsusp happy with our thread */ 1462 try_to_freeze(); 1463 1464 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1465 if (!pkt->sleep_time) 1466 continue; 1467 pkt->sleep_time -= min_sleep_time - residue; 1468 if (pkt->sleep_time <= 0) { 1469 pkt->sleep_time = 0; 1470 atomic_inc(&pkt->run_sm); 1471 } 1472 } 1473 1474 if (kthread_should_stop()) 1475 break; 1476 } 1477 work_to_do: 1478 set_current_state(TASK_RUNNING); 1479 remove_wait_queue(&pd->wqueue, &wait); 1480 1481 if (kthread_should_stop()) 1482 break; 1483 1484 /* 1485 * if pkt_handle_queue returns true, we can queue 1486 * another request. 1487 */ 1488 while (pkt_handle_queue(pd)) 1489 ; 1490 1491 /* 1492 * Handle packet state machine 1493 */ 1494 pkt_handle_packets(pd); 1495 1496 /* 1497 * Handle iosched queues 1498 */ 1499 pkt_iosched_process_queue(pd); 1500 } 1501 1502 return 0; 1503 } 1504 1505 static void pkt_print_settings(struct pktcdvd_device *pd) 1506 { 1507 dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n", 1508 pd->settings.fp ? "Fixed" : "Variable", 1509 pd->settings.size >> 2, 1510 pd->settings.block_mode == 8 ? '1' : '2'); 1511 } 1512 1513 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1514 { 1515 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1516 1517 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1518 cgc->cmd[2] = page_code | (page_control << 6); 1519 put_unaligned_be16(cgc->buflen, &cgc->cmd[7]); 1520 cgc->data_direction = CGC_DATA_READ; 1521 return pkt_generic_packet(pd, cgc); 1522 } 1523 1524 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1525 { 1526 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1527 memset(cgc->buffer, 0, 2); 1528 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1529 cgc->cmd[1] = 0x10; /* PF */ 1530 put_unaligned_be16(cgc->buflen, &cgc->cmd[7]); 1531 cgc->data_direction = CGC_DATA_WRITE; 1532 return pkt_generic_packet(pd, cgc); 1533 } 1534 1535 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1536 { 1537 struct packet_command cgc; 1538 int ret; 1539 1540 /* set up command and get the disc info */ 1541 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1542 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1543 cgc.cmd[8] = cgc.buflen = 2; 1544 cgc.quiet = 1; 1545 1546 ret = pkt_generic_packet(pd, &cgc); 1547 if (ret) 1548 return ret; 1549 1550 /* not all drives have the same disc_info length, so requeue 1551 * packet with the length the drive tells us it can supply 1552 */ 1553 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1554 sizeof(di->disc_information_length); 1555 1556 if (cgc.buflen > sizeof(disc_information)) 1557 cgc.buflen = sizeof(disc_information); 1558 1559 cgc.cmd[8] = cgc.buflen; 1560 return pkt_generic_packet(pd, &cgc); 1561 } 1562 1563 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1564 { 1565 struct packet_command cgc; 1566 int ret; 1567 1568 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1569 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1570 cgc.cmd[1] = type & 3; 1571 put_unaligned_be16(track, &cgc.cmd[4]); 1572 cgc.cmd[8] = 8; 1573 cgc.quiet = 1; 1574 1575 ret = pkt_generic_packet(pd, &cgc); 1576 if (ret) 1577 return ret; 1578 1579 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1580 sizeof(ti->track_information_length); 1581 1582 if (cgc.buflen > sizeof(track_information)) 1583 cgc.buflen = sizeof(track_information); 1584 1585 cgc.cmd[8] = cgc.buflen; 1586 return pkt_generic_packet(pd, &cgc); 1587 } 1588 1589 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1590 long *last_written) 1591 { 1592 disc_information di; 1593 track_information ti; 1594 __u32 last_track; 1595 int ret; 1596 1597 ret = pkt_get_disc_info(pd, &di); 1598 if (ret) 1599 return ret; 1600 1601 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1602 ret = pkt_get_track_info(pd, last_track, 1, &ti); 1603 if (ret) 1604 return ret; 1605 1606 /* if this track is blank, try the previous. */ 1607 if (ti.blank) { 1608 last_track--; 1609 ret = pkt_get_track_info(pd, last_track, 1, &ti); 1610 if (ret) 1611 return ret; 1612 } 1613 1614 /* if last recorded field is valid, return it. */ 1615 if (ti.lra_v) { 1616 *last_written = be32_to_cpu(ti.last_rec_address); 1617 } else { 1618 /* make it up instead */ 1619 *last_written = be32_to_cpu(ti.track_start) + 1620 be32_to_cpu(ti.track_size); 1621 if (ti.free_blocks) 1622 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1623 } 1624 return 0; 1625 } 1626 1627 /* 1628 * write mode select package based on pd->settings 1629 */ 1630 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1631 { 1632 struct device *ddev = disk_to_dev(pd->disk); 1633 struct packet_command cgc; 1634 struct scsi_sense_hdr sshdr; 1635 write_param_page *wp; 1636 char buffer[128]; 1637 int ret, size; 1638 1639 /* doesn't apply to DVD+RW or DVD-RAM */ 1640 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1641 return 0; 1642 1643 memset(buffer, 0, sizeof(buffer)); 1644 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1645 cgc.sshdr = &sshdr; 1646 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0); 1647 if (ret) { 1648 pkt_dump_sense(pd, &cgc); 1649 return ret; 1650 } 1651 1652 size = 2 + get_unaligned_be16(&buffer[0]); 1653 pd->mode_offset = get_unaligned_be16(&buffer[6]); 1654 if (size > sizeof(buffer)) 1655 size = sizeof(buffer); 1656 1657 /* 1658 * now get it all 1659 */ 1660 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1661 cgc.sshdr = &sshdr; 1662 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0); 1663 if (ret) { 1664 pkt_dump_sense(pd, &cgc); 1665 return ret; 1666 } 1667 1668 /* 1669 * write page is offset header + block descriptor length 1670 */ 1671 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1672 1673 wp->fp = pd->settings.fp; 1674 wp->track_mode = pd->settings.track_mode; 1675 wp->write_type = pd->settings.write_type; 1676 wp->data_block_type = pd->settings.block_mode; 1677 1678 wp->multi_session = 0; 1679 1680 #ifdef PACKET_USE_LS 1681 wp->link_size = 7; 1682 wp->ls_v = 1; 1683 #endif 1684 1685 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1686 wp->session_format = 0; 1687 wp->subhdr2 = 0x20; 1688 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1689 wp->session_format = 0x20; 1690 wp->subhdr2 = 8; 1691 #if 0 1692 wp->mcn[0] = 0x80; 1693 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1694 #endif 1695 } else { 1696 /* 1697 * paranoia 1698 */ 1699 dev_err(ddev, "write mode wrong %d\n", wp->data_block_type); 1700 return 1; 1701 } 1702 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1703 1704 cgc.buflen = cgc.cmd[8] = size; 1705 ret = pkt_mode_select(pd, &cgc); 1706 if (ret) { 1707 pkt_dump_sense(pd, &cgc); 1708 return ret; 1709 } 1710 1711 pkt_print_settings(pd); 1712 return 0; 1713 } 1714 1715 /* 1716 * 1 -- we can write to this track, 0 -- we can't 1717 */ 1718 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1719 { 1720 struct device *ddev = disk_to_dev(pd->disk); 1721 1722 switch (pd->mmc3_profile) { 1723 case 0x1a: /* DVD+RW */ 1724 case 0x12: /* DVD-RAM */ 1725 /* The track is always writable on DVD+RW/DVD-RAM */ 1726 return 1; 1727 default: 1728 break; 1729 } 1730 1731 if (!ti->packet || !ti->fp) 1732 return 0; 1733 1734 /* 1735 * "good" settings as per Mt Fuji. 1736 */ 1737 if (ti->rt == 0 && ti->blank == 0) 1738 return 1; 1739 1740 if (ti->rt == 0 && ti->blank == 1) 1741 return 1; 1742 1743 if (ti->rt == 1 && ti->blank == 0) 1744 return 1; 1745 1746 dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1747 return 0; 1748 } 1749 1750 /* 1751 * 1 -- we can write to this disc, 0 -- we can't 1752 */ 1753 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1754 { 1755 struct device *ddev = disk_to_dev(pd->disk); 1756 1757 switch (pd->mmc3_profile) { 1758 case 0x0a: /* CD-RW */ 1759 case 0xffff: /* MMC3 not supported */ 1760 break; 1761 case 0x1a: /* DVD+RW */ 1762 case 0x13: /* DVD-RW */ 1763 case 0x12: /* DVD-RAM */ 1764 return 1; 1765 default: 1766 dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile); 1767 return 0; 1768 } 1769 1770 /* 1771 * for disc type 0xff we should probably reserve a new track. 1772 * but i'm not sure, should we leave this to user apps? probably. 1773 */ 1774 if (di->disc_type == 0xff) { 1775 dev_notice(ddev, "unknown disc - no track?\n"); 1776 return 0; 1777 } 1778 1779 if (di->disc_type != 0x20 && di->disc_type != 0) { 1780 dev_err(ddev, "wrong disc type (%x)\n", di->disc_type); 1781 return 0; 1782 } 1783 1784 if (di->erasable == 0) { 1785 dev_err(ddev, "disc not erasable\n"); 1786 return 0; 1787 } 1788 1789 if (di->border_status == PACKET_SESSION_RESERVED) { 1790 dev_err(ddev, "can't write to last track (reserved)\n"); 1791 return 0; 1792 } 1793 1794 return 1; 1795 } 1796 1797 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1798 { 1799 struct device *ddev = disk_to_dev(pd->disk); 1800 struct packet_command cgc; 1801 unsigned char buf[12]; 1802 disc_information di; 1803 track_information ti; 1804 int ret, track; 1805 1806 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1807 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1808 cgc.cmd[8] = 8; 1809 ret = pkt_generic_packet(pd, &cgc); 1810 pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]); 1811 1812 memset(&di, 0, sizeof(disc_information)); 1813 memset(&ti, 0, sizeof(track_information)); 1814 1815 ret = pkt_get_disc_info(pd, &di); 1816 if (ret) { 1817 dev_err(ddev, "failed get_disc\n"); 1818 return ret; 1819 } 1820 1821 if (!pkt_writable_disc(pd, &di)) 1822 return -EROFS; 1823 1824 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1825 1826 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1827 ret = pkt_get_track_info(pd, track, 1, &ti); 1828 if (ret) { 1829 dev_err(ddev, "failed get_track\n"); 1830 return ret; 1831 } 1832 1833 if (!pkt_writable_track(pd, &ti)) { 1834 dev_err(ddev, "can't write to this track\n"); 1835 return -EROFS; 1836 } 1837 1838 /* 1839 * we keep packet size in 512 byte units, makes it easier to 1840 * deal with request calculations. 1841 */ 1842 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1843 if (pd->settings.size == 0) { 1844 dev_notice(ddev, "detected zero packet size!\n"); 1845 return -ENXIO; 1846 } 1847 if (pd->settings.size > PACKET_MAX_SECTORS) { 1848 dev_err(ddev, "packet size is too big\n"); 1849 return -EROFS; 1850 } 1851 pd->settings.fp = ti.fp; 1852 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1853 1854 if (ti.nwa_v) { 1855 pd->nwa = be32_to_cpu(ti.next_writable); 1856 set_bit(PACKET_NWA_VALID, &pd->flags); 1857 } 1858 1859 /* 1860 * in theory we could use lra on -RW media as well and just zero 1861 * blocks that haven't been written yet, but in practice that 1862 * is just a no-go. we'll use that for -R, naturally. 1863 */ 1864 if (ti.lra_v) { 1865 pd->lra = be32_to_cpu(ti.last_rec_address); 1866 set_bit(PACKET_LRA_VALID, &pd->flags); 1867 } else { 1868 pd->lra = 0xffffffff; 1869 set_bit(PACKET_LRA_VALID, &pd->flags); 1870 } 1871 1872 /* 1873 * fine for now 1874 */ 1875 pd->settings.link_loss = 7; 1876 pd->settings.write_type = 0; /* packet */ 1877 pd->settings.track_mode = ti.track_mode; 1878 1879 /* 1880 * mode1 or mode2 disc 1881 */ 1882 switch (ti.data_mode) { 1883 case PACKET_MODE1: 1884 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1885 break; 1886 case PACKET_MODE2: 1887 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1888 break; 1889 default: 1890 dev_err(ddev, "unknown data mode\n"); 1891 return -EROFS; 1892 } 1893 return 0; 1894 } 1895 1896 /* 1897 * enable/disable write caching on drive 1898 */ 1899 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd) 1900 { 1901 struct device *ddev = disk_to_dev(pd->disk); 1902 struct packet_command cgc; 1903 struct scsi_sense_hdr sshdr; 1904 unsigned char buf[64]; 1905 bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE); 1906 int ret; 1907 1908 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1909 cgc.sshdr = &sshdr; 1910 cgc.buflen = pd->mode_offset + 12; 1911 1912 /* 1913 * caching mode page might not be there, so quiet this command 1914 */ 1915 cgc.quiet = 1; 1916 1917 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0); 1918 if (ret) 1919 return ret; 1920 1921 /* 1922 * use drive write caching -- we need deferred error handling to be 1923 * able to successfully recover with this option (drive will return good 1924 * status as soon as the cdb is validated). 1925 */ 1926 buf[pd->mode_offset + 10] |= (set << 2); 1927 1928 cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]); 1929 ret = pkt_mode_select(pd, &cgc); 1930 if (ret) { 1931 dev_err(ddev, "write caching control failed\n"); 1932 pkt_dump_sense(pd, &cgc); 1933 } else if (!ret && set) 1934 dev_notice(ddev, "enabled write caching\n"); 1935 return ret; 1936 } 1937 1938 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1939 { 1940 struct packet_command cgc; 1941 1942 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1943 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1944 cgc.cmd[4] = lockflag ? 1 : 0; 1945 return pkt_generic_packet(pd, &cgc); 1946 } 1947 1948 /* 1949 * Returns drive maximum write speed 1950 */ 1951 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 1952 unsigned *write_speed) 1953 { 1954 struct packet_command cgc; 1955 struct scsi_sense_hdr sshdr; 1956 unsigned char buf[256+18]; 1957 unsigned char *cap_buf; 1958 int ret, offset; 1959 1960 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1961 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1962 cgc.sshdr = &sshdr; 1963 1964 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1965 if (ret) { 1966 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1967 sizeof(struct mode_page_header); 1968 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1969 if (ret) { 1970 pkt_dump_sense(pd, &cgc); 1971 return ret; 1972 } 1973 } 1974 1975 offset = 20; /* Obsoleted field, used by older drives */ 1976 if (cap_buf[1] >= 28) 1977 offset = 28; /* Current write speed selected */ 1978 if (cap_buf[1] >= 30) { 1979 /* If the drive reports at least one "Logical Unit Write 1980 * Speed Performance Descriptor Block", use the information 1981 * in the first block. (contains the highest speed) 1982 */ 1983 int num_spdb = get_unaligned_be16(&cap_buf[30]); 1984 if (num_spdb > 0) 1985 offset = 34; 1986 } 1987 1988 *write_speed = get_unaligned_be16(&cap_buf[offset]); 1989 return 0; 1990 } 1991 1992 /* These tables from cdrecord - I don't have orange book */ 1993 /* standard speed CD-RW (1-4x) */ 1994 static char clv_to_speed[16] = { 1995 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1996 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1997 }; 1998 /* high speed CD-RW (-10x) */ 1999 static char hs_clv_to_speed[16] = { 2000 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2001 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2002 }; 2003 /* ultra high speed CD-RW */ 2004 static char us_clv_to_speed[16] = { 2005 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2006 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2007 }; 2008 2009 /* 2010 * reads the maximum media speed from ATIP 2011 */ 2012 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2013 unsigned *speed) 2014 { 2015 struct device *ddev = disk_to_dev(pd->disk); 2016 struct packet_command cgc; 2017 struct scsi_sense_hdr sshdr; 2018 unsigned char buf[64]; 2019 unsigned int size, st, sp; 2020 int ret; 2021 2022 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2023 cgc.sshdr = &sshdr; 2024 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2025 cgc.cmd[1] = 2; 2026 cgc.cmd[2] = 4; /* READ ATIP */ 2027 cgc.cmd[8] = 2; 2028 ret = pkt_generic_packet(pd, &cgc); 2029 if (ret) { 2030 pkt_dump_sense(pd, &cgc); 2031 return ret; 2032 } 2033 size = 2 + get_unaligned_be16(&buf[0]); 2034 if (size > sizeof(buf)) 2035 size = sizeof(buf); 2036 2037 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2038 cgc.sshdr = &sshdr; 2039 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2040 cgc.cmd[1] = 2; 2041 cgc.cmd[2] = 4; 2042 cgc.cmd[8] = size; 2043 ret = pkt_generic_packet(pd, &cgc); 2044 if (ret) { 2045 pkt_dump_sense(pd, &cgc); 2046 return ret; 2047 } 2048 2049 if (!(buf[6] & 0x40)) { 2050 dev_notice(ddev, "disc type is not CD-RW\n"); 2051 return 1; 2052 } 2053 if (!(buf[6] & 0x4)) { 2054 dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n"); 2055 return 1; 2056 } 2057 2058 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2059 2060 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2061 2062 /* Info from cdrecord */ 2063 switch (st) { 2064 case 0: /* standard speed */ 2065 *speed = clv_to_speed[sp]; 2066 break; 2067 case 1: /* high speed */ 2068 *speed = hs_clv_to_speed[sp]; 2069 break; 2070 case 2: /* ultra high speed */ 2071 *speed = us_clv_to_speed[sp]; 2072 break; 2073 default: 2074 dev_notice(ddev, "unknown disc sub-type %d\n", st); 2075 return 1; 2076 } 2077 if (*speed) { 2078 dev_info(ddev, "maximum media speed: %d\n", *speed); 2079 return 0; 2080 } else { 2081 dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st); 2082 return 1; 2083 } 2084 } 2085 2086 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2087 { 2088 struct device *ddev = disk_to_dev(pd->disk); 2089 struct packet_command cgc; 2090 struct scsi_sense_hdr sshdr; 2091 int ret; 2092 2093 dev_dbg(ddev, "Performing OPC\n"); 2094 2095 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2096 cgc.sshdr = &sshdr; 2097 cgc.timeout = 60*HZ; 2098 cgc.cmd[0] = GPCMD_SEND_OPC; 2099 cgc.cmd[1] = 1; 2100 ret = pkt_generic_packet(pd, &cgc); 2101 if (ret) 2102 pkt_dump_sense(pd, &cgc); 2103 return ret; 2104 } 2105 2106 static int pkt_open_write(struct pktcdvd_device *pd) 2107 { 2108 struct device *ddev = disk_to_dev(pd->disk); 2109 int ret; 2110 unsigned int write_speed, media_write_speed, read_speed; 2111 2112 ret = pkt_probe_settings(pd); 2113 if (ret) { 2114 dev_dbg(ddev, "failed probe\n"); 2115 return ret; 2116 } 2117 2118 ret = pkt_set_write_settings(pd); 2119 if (ret) { 2120 dev_notice(ddev, "failed saving write settings\n"); 2121 return -EIO; 2122 } 2123 2124 pkt_write_caching(pd); 2125 2126 ret = pkt_get_max_speed(pd, &write_speed); 2127 if (ret) 2128 write_speed = 16 * 177; 2129 switch (pd->mmc3_profile) { 2130 case 0x13: /* DVD-RW */ 2131 case 0x1a: /* DVD+RW */ 2132 case 0x12: /* DVD-RAM */ 2133 dev_notice(ddev, "write speed %ukB/s\n", write_speed); 2134 break; 2135 default: 2136 ret = pkt_media_speed(pd, &media_write_speed); 2137 if (ret) 2138 media_write_speed = 16; 2139 write_speed = min(write_speed, media_write_speed * 177); 2140 dev_notice(ddev, "write speed %ux\n", write_speed / 176); 2141 break; 2142 } 2143 read_speed = write_speed; 2144 2145 ret = pkt_set_speed(pd, write_speed, read_speed); 2146 if (ret) { 2147 dev_notice(ddev, "couldn't set write speed\n"); 2148 return -EIO; 2149 } 2150 pd->write_speed = write_speed; 2151 pd->read_speed = read_speed; 2152 2153 ret = pkt_perform_opc(pd); 2154 if (ret) 2155 dev_notice(ddev, "Optimum Power Calibration failed\n"); 2156 2157 return 0; 2158 } 2159 2160 /* 2161 * called at open time. 2162 */ 2163 static int pkt_open_dev(struct pktcdvd_device *pd, bool write) 2164 { 2165 struct device *ddev = disk_to_dev(pd->disk); 2166 int ret; 2167 long lba; 2168 struct request_queue *q; 2169 struct file *bdev_file; 2170 2171 /* 2172 * We need to re-open the cdrom device without O_NONBLOCK to be able 2173 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2174 * so open should not fail. 2175 */ 2176 bdev_file = bdev_file_open_by_dev(file_bdev(pd->bdev_file)->bd_dev, 2177 BLK_OPEN_READ, pd, NULL); 2178 if (IS_ERR(bdev_file)) { 2179 ret = PTR_ERR(bdev_file); 2180 goto out; 2181 } 2182 pd->f_open_bdev = bdev_file; 2183 2184 ret = pkt_get_last_written(pd, &lba); 2185 if (ret) { 2186 dev_err(ddev, "pkt_get_last_written failed\n"); 2187 goto out_putdev; 2188 } 2189 2190 set_capacity(pd->disk, lba << 2); 2191 set_capacity_and_notify(file_bdev(pd->bdev_file)->bd_disk, lba << 2); 2192 2193 q = bdev_get_queue(file_bdev(pd->bdev_file)); 2194 if (write) { 2195 ret = pkt_open_write(pd); 2196 if (ret) 2197 goto out_putdev; 2198 set_bit(PACKET_WRITABLE, &pd->flags); 2199 } else { 2200 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2201 clear_bit(PACKET_WRITABLE, &pd->flags); 2202 } 2203 2204 ret = pkt_set_segment_merging(pd, q); 2205 if (ret) 2206 goto out_putdev; 2207 2208 if (write) { 2209 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2210 dev_err(ddev, "not enough memory for buffers\n"); 2211 ret = -ENOMEM; 2212 goto out_putdev; 2213 } 2214 dev_info(ddev, "%lukB available on disc\n", lba << 1); 2215 } 2216 set_blocksize(bdev_file, CD_FRAMESIZE); 2217 2218 return 0; 2219 2220 out_putdev: 2221 fput(bdev_file); 2222 out: 2223 return ret; 2224 } 2225 2226 /* 2227 * called when the device is closed. makes sure that the device flushes 2228 * the internal cache before we close. 2229 */ 2230 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2231 { 2232 struct device *ddev = disk_to_dev(pd->disk); 2233 2234 if (flush && pkt_flush_cache(pd)) 2235 dev_notice(ddev, "not flushing cache\n"); 2236 2237 pkt_lock_door(pd, 0); 2238 2239 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2240 fput(pd->f_open_bdev); 2241 pd->f_open_bdev = NULL; 2242 2243 pkt_shrink_pktlist(pd); 2244 } 2245 2246 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor) 2247 { 2248 if (dev_minor >= MAX_WRITERS) 2249 return NULL; 2250 2251 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS); 2252 return pkt_devs[dev_minor]; 2253 } 2254 2255 static int pkt_open(struct gendisk *disk, blk_mode_t mode) 2256 { 2257 struct pktcdvd_device *pd = NULL; 2258 int ret; 2259 2260 mutex_lock(&pktcdvd_mutex); 2261 mutex_lock(&ctl_mutex); 2262 pd = pkt_find_dev_from_minor(disk->first_minor); 2263 if (!pd) { 2264 ret = -ENODEV; 2265 goto out; 2266 } 2267 BUG_ON(pd->refcnt < 0); 2268 2269 pd->refcnt++; 2270 if (pd->refcnt > 1) { 2271 if ((mode & BLK_OPEN_WRITE) && 2272 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2273 ret = -EBUSY; 2274 goto out_dec; 2275 } 2276 } else { 2277 ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE); 2278 if (ret) 2279 goto out_dec; 2280 } 2281 mutex_unlock(&ctl_mutex); 2282 mutex_unlock(&pktcdvd_mutex); 2283 return 0; 2284 2285 out_dec: 2286 pd->refcnt--; 2287 out: 2288 mutex_unlock(&ctl_mutex); 2289 mutex_unlock(&pktcdvd_mutex); 2290 return ret; 2291 } 2292 2293 static void pkt_release(struct gendisk *disk) 2294 { 2295 struct pktcdvd_device *pd = disk->private_data; 2296 2297 mutex_lock(&pktcdvd_mutex); 2298 mutex_lock(&ctl_mutex); 2299 pd->refcnt--; 2300 BUG_ON(pd->refcnt < 0); 2301 if (pd->refcnt == 0) { 2302 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2303 pkt_release_dev(pd, flush); 2304 } 2305 mutex_unlock(&ctl_mutex); 2306 mutex_unlock(&pktcdvd_mutex); 2307 } 2308 2309 2310 static void pkt_end_io_read_cloned(struct bio *bio) 2311 { 2312 struct packet_stacked_data *psd = bio->bi_private; 2313 struct pktcdvd_device *pd = psd->pd; 2314 2315 psd->bio->bi_status = bio->bi_status; 2316 bio_put(bio); 2317 bio_endio(psd->bio); 2318 mempool_free(psd, &psd_pool); 2319 pkt_bio_finished(pd); 2320 } 2321 2322 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio) 2323 { 2324 struct bio *cloned_bio = bio_alloc_clone(file_bdev(pd->bdev_file), bio, 2325 GFP_NOIO, &pkt_bio_set); 2326 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO); 2327 2328 psd->pd = pd; 2329 psd->bio = bio; 2330 cloned_bio->bi_private = psd; 2331 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2332 pd->stats.secs_r += bio_sectors(bio); 2333 pkt_queue_bio(pd, cloned_bio); 2334 } 2335 2336 static void pkt_make_request_write(struct bio *bio) 2337 { 2338 struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data; 2339 sector_t zone; 2340 struct packet_data *pkt; 2341 int was_empty, blocked_bio; 2342 struct pkt_rb_node *node; 2343 2344 zone = get_zone(bio->bi_iter.bi_sector, pd); 2345 2346 /* 2347 * If we find a matching packet in state WAITING or READ_WAIT, we can 2348 * just append this bio to that packet. 2349 */ 2350 spin_lock(&pd->cdrw.active_list_lock); 2351 blocked_bio = 0; 2352 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2353 if (pkt->sector == zone) { 2354 spin_lock(&pkt->lock); 2355 if ((pkt->state == PACKET_WAITING_STATE) || 2356 (pkt->state == PACKET_READ_WAIT_STATE)) { 2357 bio_list_add(&pkt->orig_bios, bio); 2358 pkt->write_size += 2359 bio->bi_iter.bi_size / CD_FRAMESIZE; 2360 if ((pkt->write_size >= pkt->frames) && 2361 (pkt->state == PACKET_WAITING_STATE)) { 2362 atomic_inc(&pkt->run_sm); 2363 wake_up(&pd->wqueue); 2364 } 2365 spin_unlock(&pkt->lock); 2366 spin_unlock(&pd->cdrw.active_list_lock); 2367 return; 2368 } else { 2369 blocked_bio = 1; 2370 } 2371 spin_unlock(&pkt->lock); 2372 } 2373 } 2374 spin_unlock(&pd->cdrw.active_list_lock); 2375 2376 /* 2377 * Test if there is enough room left in the bio work queue 2378 * (queue size >= congestion on mark). 2379 * If not, wait till the work queue size is below the congestion off mark. 2380 */ 2381 spin_lock(&pd->lock); 2382 if (pd->write_congestion_on > 0 2383 && pd->bio_queue_size >= pd->write_congestion_on) { 2384 struct wait_bit_queue_entry wqe; 2385 2386 init_wait_var_entry(&wqe, &pd->congested, 0); 2387 for (;;) { 2388 prepare_to_wait_event(__var_waitqueue(&pd->congested), 2389 &wqe.wq_entry, 2390 TASK_UNINTERRUPTIBLE); 2391 if (pd->bio_queue_size <= pd->write_congestion_off) 2392 break; 2393 pd->congested = true; 2394 spin_unlock(&pd->lock); 2395 schedule(); 2396 spin_lock(&pd->lock); 2397 } 2398 } 2399 spin_unlock(&pd->lock); 2400 2401 /* 2402 * No matching packet found. Store the bio in the work queue. 2403 */ 2404 node = mempool_alloc(&pd->rb_pool, GFP_NOIO); 2405 node->bio = bio; 2406 spin_lock(&pd->lock); 2407 BUG_ON(pd->bio_queue_size < 0); 2408 was_empty = (pd->bio_queue_size == 0); 2409 pkt_rbtree_insert(pd, node); 2410 spin_unlock(&pd->lock); 2411 2412 /* 2413 * Wake up the worker thread. 2414 */ 2415 atomic_set(&pd->scan_queue, 1); 2416 if (was_empty) { 2417 /* This wake_up is required for correct operation */ 2418 wake_up(&pd->wqueue); 2419 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2420 /* 2421 * This wake up is not required for correct operation, 2422 * but improves performance in some cases. 2423 */ 2424 wake_up(&pd->wqueue); 2425 } 2426 } 2427 2428 static void pkt_submit_bio(struct bio *bio) 2429 { 2430 struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data; 2431 struct device *ddev = disk_to_dev(pd->disk); 2432 struct bio *split; 2433 2434 bio = bio_split_to_limits(bio); 2435 if (!bio) 2436 return; 2437 2438 dev_dbg(ddev, "start = %6llx stop = %6llx\n", 2439 bio->bi_iter.bi_sector, bio_end_sector(bio)); 2440 2441 /* 2442 * Clone READ bios so we can have our own bi_end_io callback. 2443 */ 2444 if (bio_data_dir(bio) == READ) { 2445 pkt_make_request_read(pd, bio); 2446 return; 2447 } 2448 2449 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2450 dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector); 2451 goto end_io; 2452 } 2453 2454 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) { 2455 dev_err(ddev, "wrong bio size\n"); 2456 goto end_io; 2457 } 2458 2459 do { 2460 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd); 2461 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd); 2462 2463 if (last_zone != zone) { 2464 BUG_ON(last_zone != zone + pd->settings.size); 2465 2466 split = bio_split(bio, last_zone - 2467 bio->bi_iter.bi_sector, 2468 GFP_NOIO, &pkt_bio_set); 2469 bio_chain(split, bio); 2470 } else { 2471 split = bio; 2472 } 2473 2474 pkt_make_request_write(split); 2475 } while (split != bio); 2476 2477 return; 2478 end_io: 2479 bio_io_error(bio); 2480 } 2481 2482 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2483 { 2484 struct device *ddev = disk_to_dev(pd->disk); 2485 int i; 2486 struct file *bdev_file; 2487 struct scsi_device *sdev; 2488 2489 if (pd->pkt_dev == dev) { 2490 dev_err(ddev, "recursive setup not allowed\n"); 2491 return -EBUSY; 2492 } 2493 for (i = 0; i < MAX_WRITERS; i++) { 2494 struct pktcdvd_device *pd2 = pkt_devs[i]; 2495 if (!pd2) 2496 continue; 2497 if (file_bdev(pd2->bdev_file)->bd_dev == dev) { 2498 dev_err(ddev, "%pg already setup\n", 2499 file_bdev(pd2->bdev_file)); 2500 return -EBUSY; 2501 } 2502 if (pd2->pkt_dev == dev) { 2503 dev_err(ddev, "can't chain pktcdvd devices\n"); 2504 return -EBUSY; 2505 } 2506 } 2507 2508 bdev_file = bdev_file_open_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY, 2509 NULL, NULL); 2510 if (IS_ERR(bdev_file)) 2511 return PTR_ERR(bdev_file); 2512 sdev = scsi_device_from_queue(file_bdev(bdev_file)->bd_disk->queue); 2513 if (!sdev) { 2514 fput(bdev_file); 2515 return -EINVAL; 2516 } 2517 put_device(&sdev->sdev_gendev); 2518 2519 /* This is safe, since we have a reference from open(). */ 2520 __module_get(THIS_MODULE); 2521 2522 pd->bdev_file = bdev_file; 2523 2524 atomic_set(&pd->cdrw.pending_bios, 0); 2525 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name); 2526 if (IS_ERR(pd->cdrw.thread)) { 2527 dev_err(ddev, "can't start kernel thread\n"); 2528 goto out_mem; 2529 } 2530 2531 proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd); 2532 dev_notice(ddev, "writer mapped to %pg\n", file_bdev(bdev_file)); 2533 return 0; 2534 2535 out_mem: 2536 fput(bdev_file); 2537 /* This is safe: open() is still holding a reference. */ 2538 module_put(THIS_MODULE); 2539 return -ENOMEM; 2540 } 2541 2542 static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode, 2543 unsigned int cmd, unsigned long arg) 2544 { 2545 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2546 struct device *ddev = disk_to_dev(pd->disk); 2547 int ret; 2548 2549 dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2550 2551 mutex_lock(&pktcdvd_mutex); 2552 switch (cmd) { 2553 case CDROMEJECT: 2554 /* 2555 * The door gets locked when the device is opened, so we 2556 * have to unlock it or else the eject command fails. 2557 */ 2558 if (pd->refcnt == 1) 2559 pkt_lock_door(pd, 0); 2560 fallthrough; 2561 /* 2562 * forward selected CDROM ioctls to CD-ROM, for UDF 2563 */ 2564 case CDROMMULTISESSION: 2565 case CDROMREADTOCENTRY: 2566 case CDROM_LAST_WRITTEN: 2567 case CDROM_SEND_PACKET: 2568 case SCSI_IOCTL_SEND_COMMAND: 2569 if (!bdev->bd_disk->fops->ioctl) 2570 ret = -ENOTTY; 2571 else 2572 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 2573 break; 2574 default: 2575 dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd); 2576 ret = -ENOTTY; 2577 } 2578 mutex_unlock(&pktcdvd_mutex); 2579 2580 return ret; 2581 } 2582 2583 static unsigned int pkt_check_events(struct gendisk *disk, 2584 unsigned int clearing) 2585 { 2586 struct pktcdvd_device *pd = disk->private_data; 2587 struct gendisk *attached_disk; 2588 2589 if (!pd) 2590 return 0; 2591 if (!pd->bdev_file) 2592 return 0; 2593 attached_disk = file_bdev(pd->bdev_file)->bd_disk; 2594 if (!attached_disk || !attached_disk->fops->check_events) 2595 return 0; 2596 return attached_disk->fops->check_events(attached_disk, clearing); 2597 } 2598 2599 static char *pkt_devnode(struct gendisk *disk, umode_t *mode) 2600 { 2601 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name); 2602 } 2603 2604 static const struct block_device_operations pktcdvd_ops = { 2605 .owner = THIS_MODULE, 2606 .submit_bio = pkt_submit_bio, 2607 .open = pkt_open, 2608 .release = pkt_release, 2609 .ioctl = pkt_ioctl, 2610 .compat_ioctl = blkdev_compat_ptr_ioctl, 2611 .check_events = pkt_check_events, 2612 .devnode = pkt_devnode, 2613 }; 2614 2615 /* 2616 * Set up mapping from pktcdvd device to CD-ROM device. 2617 */ 2618 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2619 { 2620 struct queue_limits lim = { 2621 .max_hw_sectors = PACKET_MAX_SECTORS, 2622 .logical_block_size = CD_FRAMESIZE, 2623 .features = BLK_FEAT_ROTATIONAL, 2624 }; 2625 int idx; 2626 int ret = -ENOMEM; 2627 struct pktcdvd_device *pd; 2628 struct gendisk *disk; 2629 2630 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2631 2632 for (idx = 0; idx < MAX_WRITERS; idx++) 2633 if (!pkt_devs[idx]) 2634 break; 2635 if (idx == MAX_WRITERS) { 2636 pr_err("max %d writers supported\n", MAX_WRITERS); 2637 ret = -EBUSY; 2638 goto out_mutex; 2639 } 2640 2641 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2642 if (!pd) 2643 goto out_mutex; 2644 2645 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE, 2646 sizeof(struct pkt_rb_node)); 2647 if (ret) 2648 goto out_mem; 2649 2650 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2651 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2652 spin_lock_init(&pd->cdrw.active_list_lock); 2653 2654 spin_lock_init(&pd->lock); 2655 spin_lock_init(&pd->iosched.lock); 2656 bio_list_init(&pd->iosched.read_queue); 2657 bio_list_init(&pd->iosched.write_queue); 2658 init_waitqueue_head(&pd->wqueue); 2659 pd->bio_queue = RB_ROOT; 2660 2661 pd->write_congestion_on = write_congestion_on; 2662 pd->write_congestion_off = write_congestion_off; 2663 2664 disk = blk_alloc_disk(&lim, NUMA_NO_NODE); 2665 if (IS_ERR(disk)) { 2666 ret = PTR_ERR(disk); 2667 goto out_mem; 2668 } 2669 pd->disk = disk; 2670 disk->major = pktdev_major; 2671 disk->first_minor = idx; 2672 disk->minors = 1; 2673 disk->fops = &pktcdvd_ops; 2674 disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART; 2675 snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx); 2676 disk->private_data = pd; 2677 2678 pd->pkt_dev = MKDEV(pktdev_major, idx); 2679 ret = pkt_new_dev(pd, dev); 2680 if (ret) 2681 goto out_mem2; 2682 2683 /* inherit events of the host device */ 2684 disk->events = file_bdev(pd->bdev_file)->bd_disk->events; 2685 2686 ret = add_disk(disk); 2687 if (ret) 2688 goto out_mem2; 2689 2690 pkt_sysfs_dev_new(pd); 2691 pkt_debugfs_dev_new(pd); 2692 2693 pkt_devs[idx] = pd; 2694 if (pkt_dev) 2695 *pkt_dev = pd->pkt_dev; 2696 2697 mutex_unlock(&ctl_mutex); 2698 return 0; 2699 2700 out_mem2: 2701 put_disk(disk); 2702 out_mem: 2703 mempool_exit(&pd->rb_pool); 2704 kfree(pd); 2705 out_mutex: 2706 mutex_unlock(&ctl_mutex); 2707 pr_err("setup of pktcdvd device failed\n"); 2708 return ret; 2709 } 2710 2711 /* 2712 * Tear down mapping from pktcdvd device to CD-ROM device. 2713 */ 2714 static int pkt_remove_dev(dev_t pkt_dev) 2715 { 2716 struct pktcdvd_device *pd; 2717 struct device *ddev; 2718 int idx; 2719 int ret = 0; 2720 2721 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2722 2723 for (idx = 0; idx < MAX_WRITERS; idx++) { 2724 pd = pkt_devs[idx]; 2725 if (pd && (pd->pkt_dev == pkt_dev)) 2726 break; 2727 } 2728 if (idx == MAX_WRITERS) { 2729 pr_debug("dev not setup\n"); 2730 ret = -ENXIO; 2731 goto out; 2732 } 2733 2734 if (pd->refcnt > 0) { 2735 ret = -EBUSY; 2736 goto out; 2737 } 2738 2739 ddev = disk_to_dev(pd->disk); 2740 2741 if (!IS_ERR(pd->cdrw.thread)) 2742 kthread_stop(pd->cdrw.thread); 2743 2744 pkt_devs[idx] = NULL; 2745 2746 pkt_debugfs_dev_remove(pd); 2747 pkt_sysfs_dev_remove(pd); 2748 2749 fput(pd->bdev_file); 2750 2751 remove_proc_entry(pd->disk->disk_name, pkt_proc); 2752 dev_notice(ddev, "writer unmapped\n"); 2753 2754 del_gendisk(pd->disk); 2755 put_disk(pd->disk); 2756 2757 mempool_exit(&pd->rb_pool); 2758 kfree(pd); 2759 2760 /* This is safe: open() is still holding a reference. */ 2761 module_put(THIS_MODULE); 2762 2763 out: 2764 mutex_unlock(&ctl_mutex); 2765 return ret; 2766 } 2767 2768 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2769 { 2770 struct pktcdvd_device *pd; 2771 2772 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2773 2774 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2775 if (pd) { 2776 ctrl_cmd->dev = new_encode_dev(file_bdev(pd->bdev_file)->bd_dev); 2777 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2778 } else { 2779 ctrl_cmd->dev = 0; 2780 ctrl_cmd->pkt_dev = 0; 2781 } 2782 ctrl_cmd->num_devices = MAX_WRITERS; 2783 2784 mutex_unlock(&ctl_mutex); 2785 } 2786 2787 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2788 { 2789 void __user *argp = (void __user *)arg; 2790 struct pkt_ctrl_command ctrl_cmd; 2791 int ret = 0; 2792 dev_t pkt_dev = 0; 2793 2794 if (cmd != PACKET_CTRL_CMD) 2795 return -ENOTTY; 2796 2797 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2798 return -EFAULT; 2799 2800 switch (ctrl_cmd.command) { 2801 case PKT_CTRL_CMD_SETUP: 2802 if (!capable(CAP_SYS_ADMIN)) 2803 return -EPERM; 2804 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 2805 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 2806 break; 2807 case PKT_CTRL_CMD_TEARDOWN: 2808 if (!capable(CAP_SYS_ADMIN)) 2809 return -EPERM; 2810 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 2811 break; 2812 case PKT_CTRL_CMD_STATUS: 2813 pkt_get_status(&ctrl_cmd); 2814 break; 2815 default: 2816 return -ENOTTY; 2817 } 2818 2819 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2820 return -EFAULT; 2821 return ret; 2822 } 2823 2824 #ifdef CONFIG_COMPAT 2825 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2826 { 2827 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg)); 2828 } 2829 #endif 2830 2831 static const struct file_operations pkt_ctl_fops = { 2832 .open = nonseekable_open, 2833 .unlocked_ioctl = pkt_ctl_ioctl, 2834 #ifdef CONFIG_COMPAT 2835 .compat_ioctl = pkt_ctl_compat_ioctl, 2836 #endif 2837 .owner = THIS_MODULE, 2838 .llseek = no_llseek, 2839 }; 2840 2841 static struct miscdevice pkt_misc = { 2842 .minor = MISC_DYNAMIC_MINOR, 2843 .name = DRIVER_NAME, 2844 .nodename = "pktcdvd/control", 2845 .fops = &pkt_ctl_fops 2846 }; 2847 2848 static int __init pkt_init(void) 2849 { 2850 int ret; 2851 2852 mutex_init(&ctl_mutex); 2853 2854 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE, 2855 sizeof(struct packet_stacked_data)); 2856 if (ret) 2857 return ret; 2858 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0); 2859 if (ret) { 2860 mempool_exit(&psd_pool); 2861 return ret; 2862 } 2863 2864 ret = register_blkdev(pktdev_major, DRIVER_NAME); 2865 if (ret < 0) { 2866 pr_err("unable to register block device\n"); 2867 goto out2; 2868 } 2869 if (!pktdev_major) 2870 pktdev_major = ret; 2871 2872 ret = pkt_sysfs_init(); 2873 if (ret) 2874 goto out; 2875 2876 pkt_debugfs_init(); 2877 2878 ret = misc_register(&pkt_misc); 2879 if (ret) { 2880 pr_err("unable to register misc device\n"); 2881 goto out_misc; 2882 } 2883 2884 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 2885 2886 return 0; 2887 2888 out_misc: 2889 pkt_debugfs_cleanup(); 2890 pkt_sysfs_cleanup(); 2891 out: 2892 unregister_blkdev(pktdev_major, DRIVER_NAME); 2893 out2: 2894 mempool_exit(&psd_pool); 2895 bioset_exit(&pkt_bio_set); 2896 return ret; 2897 } 2898 2899 static void __exit pkt_exit(void) 2900 { 2901 remove_proc_entry("driver/"DRIVER_NAME, NULL); 2902 misc_deregister(&pkt_misc); 2903 2904 pkt_debugfs_cleanup(); 2905 pkt_sysfs_cleanup(); 2906 2907 unregister_blkdev(pktdev_major, DRIVER_NAME); 2908 mempool_exit(&psd_pool); 2909 bioset_exit(&pkt_bio_set); 2910 } 2911 2912 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 2913 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 2914 MODULE_LICENSE("GPL"); 2915 2916 module_init(pkt_init); 2917 module_exit(pkt_exit); 2918