1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de> 5 * 6 * May be copied or modified under the terms of the GNU General Public 7 * License. See linux/COPYING for more information. 8 * 9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 10 * DVD-RAM devices. 11 * 12 * Theory of operation: 13 * 14 * At the lowest level, there is the standard driver for the CD/DVD device, 15 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 16 * but it doesn't know anything about the special restrictions that apply to 17 * packet writing. One restriction is that write requests must be aligned to 18 * packet boundaries on the physical media, and the size of a write request 19 * must be equal to the packet size. Another restriction is that a 20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 21 * command, if the previous command was a write. 22 * 23 * The purpose of the packet writing driver is to hide these restrictions from 24 * higher layers, such as file systems, and present a block device that can be 25 * randomly read and written using 2kB-sized blocks. 26 * 27 * The lowest layer in the packet writing driver is the packet I/O scheduler. 28 * Its data is defined by the struct packet_iosched and includes two bio 29 * queues with pending read and write requests. These queues are processed 30 * by the pkt_iosched_process_queue() function. The write requests in this 31 * queue are already properly aligned and sized. This layer is responsible for 32 * issuing the flush cache commands and scheduling the I/O in a good order. 33 * 34 * The next layer transforms unaligned write requests to aligned writes. This 35 * transformation requires reading missing pieces of data from the underlying 36 * block device, assembling the pieces to full packets and queuing them to the 37 * packet I/O scheduler. 38 * 39 * At the top layer there is a custom make_request_fn function that forwards 40 * read requests directly to the iosched queue and puts write requests in the 41 * unaligned write queue. A kernel thread performs the necessary read 42 * gathering to convert the unaligned writes to aligned writes and then feeds 43 * them to the packet I/O scheduler. 44 * 45 *************************************************************************/ 46 47 #include <linux/pktcdvd.h> 48 #include <linux/module.h> 49 #include <linux/types.h> 50 #include <linux/kernel.h> 51 #include <linux/kthread.h> 52 #include <linux/errno.h> 53 #include <linux/spinlock.h> 54 #include <linux/file.h> 55 #include <linux/proc_fs.h> 56 #include <linux/seq_file.h> 57 #include <linux/miscdevice.h> 58 #include <linux/freezer.h> 59 #include <linux/mutex.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_ioctl.h> 62 #include <scsi/scsi.h> 63 #include <linux/debugfs.h> 64 #include <linux/device.h> 65 66 #include <asm/uaccess.h> 67 68 #define DRIVER_NAME "pktcdvd" 69 70 #if PACKET_DEBUG 71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 72 #else 73 #define DPRINTK(fmt, args...) 74 #endif 75 76 #if PACKET_DEBUG > 1 77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 78 #else 79 #define VPRINTK(fmt, args...) 80 #endif 81 82 #define MAX_SPEED 0xffff 83 84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 85 86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 87 static struct proc_dir_entry *pkt_proc; 88 static int pktdev_major; 89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON; 90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF; 91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 92 static mempool_t *psd_pool; 93 94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */ 95 static struct dentry *pkt_debugfs_root = NULL; /* /debug/pktcdvd */ 96 97 /* forward declaration */ 98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev); 99 static int pkt_remove_dev(dev_t pkt_dev); 100 static int pkt_seq_show(struct seq_file *m, void *p); 101 102 103 104 /* 105 * create and register a pktcdvd kernel object. 106 */ 107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd, 108 const char* name, 109 struct kobject* parent, 110 struct kobj_type* ktype) 111 { 112 struct pktcdvd_kobj *p; 113 int error; 114 115 p = kzalloc(sizeof(*p), GFP_KERNEL); 116 if (!p) 117 return NULL; 118 p->pd = pd; 119 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name); 120 if (error) { 121 kobject_put(&p->kobj); 122 return NULL; 123 } 124 kobject_uevent(&p->kobj, KOBJ_ADD); 125 return p; 126 } 127 /* 128 * remove a pktcdvd kernel object. 129 */ 130 static void pkt_kobj_remove(struct pktcdvd_kobj *p) 131 { 132 if (p) 133 kobject_put(&p->kobj); 134 } 135 /* 136 * default release function for pktcdvd kernel objects. 137 */ 138 static void pkt_kobj_release(struct kobject *kobj) 139 { 140 kfree(to_pktcdvdkobj(kobj)); 141 } 142 143 144 /********************************************************** 145 * 146 * sysfs interface for pktcdvd 147 * by (C) 2006 Thomas Maier <balagi@justmail.de> 148 * 149 **********************************************************/ 150 151 #define DEF_ATTR(_obj,_name,_mode) \ 152 static struct attribute _obj = { .name = _name, .mode = _mode } 153 154 /********************************************************** 155 /sys/class/pktcdvd/pktcdvd[0-7]/ 156 stat/reset 157 stat/packets_started 158 stat/packets_finished 159 stat/kb_written 160 stat/kb_read 161 stat/kb_read_gather 162 write_queue/size 163 write_queue/congestion_off 164 write_queue/congestion_on 165 **********************************************************/ 166 167 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200); 168 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444); 169 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444); 170 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444); 171 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444); 172 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444); 173 174 static struct attribute *kobj_pkt_attrs_stat[] = { 175 &kobj_pkt_attr_st1, 176 &kobj_pkt_attr_st2, 177 &kobj_pkt_attr_st3, 178 &kobj_pkt_attr_st4, 179 &kobj_pkt_attr_st5, 180 &kobj_pkt_attr_st6, 181 NULL 182 }; 183 184 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444); 185 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644); 186 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644); 187 188 static struct attribute *kobj_pkt_attrs_wqueue[] = { 189 &kobj_pkt_attr_wq1, 190 &kobj_pkt_attr_wq2, 191 &kobj_pkt_attr_wq3, 192 NULL 193 }; 194 195 static ssize_t kobj_pkt_show(struct kobject *kobj, 196 struct attribute *attr, char *data) 197 { 198 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 199 int n = 0; 200 int v; 201 if (strcmp(attr->name, "packets_started") == 0) { 202 n = sprintf(data, "%lu\n", pd->stats.pkt_started); 203 204 } else if (strcmp(attr->name, "packets_finished") == 0) { 205 n = sprintf(data, "%lu\n", pd->stats.pkt_ended); 206 207 } else if (strcmp(attr->name, "kb_written") == 0) { 208 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1); 209 210 } else if (strcmp(attr->name, "kb_read") == 0) { 211 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1); 212 213 } else if (strcmp(attr->name, "kb_read_gather") == 0) { 214 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1); 215 216 } else if (strcmp(attr->name, "size") == 0) { 217 spin_lock(&pd->lock); 218 v = pd->bio_queue_size; 219 spin_unlock(&pd->lock); 220 n = sprintf(data, "%d\n", v); 221 222 } else if (strcmp(attr->name, "congestion_off") == 0) { 223 spin_lock(&pd->lock); 224 v = pd->write_congestion_off; 225 spin_unlock(&pd->lock); 226 n = sprintf(data, "%d\n", v); 227 228 } else if (strcmp(attr->name, "congestion_on") == 0) { 229 spin_lock(&pd->lock); 230 v = pd->write_congestion_on; 231 spin_unlock(&pd->lock); 232 n = sprintf(data, "%d\n", v); 233 } 234 return n; 235 } 236 237 static void init_write_congestion_marks(int* lo, int* hi) 238 { 239 if (*hi > 0) { 240 *hi = max(*hi, 500); 241 *hi = min(*hi, 1000000); 242 if (*lo <= 0) 243 *lo = *hi - 100; 244 else { 245 *lo = min(*lo, *hi - 100); 246 *lo = max(*lo, 100); 247 } 248 } else { 249 *hi = -1; 250 *lo = -1; 251 } 252 } 253 254 static ssize_t kobj_pkt_store(struct kobject *kobj, 255 struct attribute *attr, 256 const char *data, size_t len) 257 { 258 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd; 259 int val; 260 261 if (strcmp(attr->name, "reset") == 0 && len > 0) { 262 pd->stats.pkt_started = 0; 263 pd->stats.pkt_ended = 0; 264 pd->stats.secs_w = 0; 265 pd->stats.secs_rg = 0; 266 pd->stats.secs_r = 0; 267 268 } else if (strcmp(attr->name, "congestion_off") == 0 269 && sscanf(data, "%d", &val) == 1) { 270 spin_lock(&pd->lock); 271 pd->write_congestion_off = val; 272 init_write_congestion_marks(&pd->write_congestion_off, 273 &pd->write_congestion_on); 274 spin_unlock(&pd->lock); 275 276 } else if (strcmp(attr->name, "congestion_on") == 0 277 && sscanf(data, "%d", &val) == 1) { 278 spin_lock(&pd->lock); 279 pd->write_congestion_on = val; 280 init_write_congestion_marks(&pd->write_congestion_off, 281 &pd->write_congestion_on); 282 spin_unlock(&pd->lock); 283 } 284 return len; 285 } 286 287 static struct sysfs_ops kobj_pkt_ops = { 288 .show = kobj_pkt_show, 289 .store = kobj_pkt_store 290 }; 291 static struct kobj_type kobj_pkt_type_stat = { 292 .release = pkt_kobj_release, 293 .sysfs_ops = &kobj_pkt_ops, 294 .default_attrs = kobj_pkt_attrs_stat 295 }; 296 static struct kobj_type kobj_pkt_type_wqueue = { 297 .release = pkt_kobj_release, 298 .sysfs_ops = &kobj_pkt_ops, 299 .default_attrs = kobj_pkt_attrs_wqueue 300 }; 301 302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd) 303 { 304 if (class_pktcdvd) { 305 pd->dev = device_create(class_pktcdvd, NULL, pd->pkt_dev, NULL, 306 "%s", pd->name); 307 if (IS_ERR(pd->dev)) 308 pd->dev = NULL; 309 } 310 if (pd->dev) { 311 pd->kobj_stat = pkt_kobj_create(pd, "stat", 312 &pd->dev->kobj, 313 &kobj_pkt_type_stat); 314 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue", 315 &pd->dev->kobj, 316 &kobj_pkt_type_wqueue); 317 } 318 } 319 320 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd) 321 { 322 pkt_kobj_remove(pd->kobj_stat); 323 pkt_kobj_remove(pd->kobj_wqueue); 324 if (class_pktcdvd) 325 device_destroy(class_pktcdvd, pd->pkt_dev); 326 } 327 328 329 /******************************************************************** 330 /sys/class/pktcdvd/ 331 add map block device 332 remove unmap packet dev 333 device_map show mappings 334 *******************************************************************/ 335 336 static void class_pktcdvd_release(struct class *cls) 337 { 338 kfree(cls); 339 } 340 static ssize_t class_pktcdvd_show_map(struct class *c, char *data) 341 { 342 int n = 0; 343 int idx; 344 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 345 for (idx = 0; idx < MAX_WRITERS; idx++) { 346 struct pktcdvd_device *pd = pkt_devs[idx]; 347 if (!pd) 348 continue; 349 n += sprintf(data+n, "%s %u:%u %u:%u\n", 350 pd->name, 351 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev), 352 MAJOR(pd->bdev->bd_dev), 353 MINOR(pd->bdev->bd_dev)); 354 } 355 mutex_unlock(&ctl_mutex); 356 return n; 357 } 358 359 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf, 360 size_t count) 361 { 362 unsigned int major, minor; 363 364 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 365 /* pkt_setup_dev() expects caller to hold reference to self */ 366 if (!try_module_get(THIS_MODULE)) 367 return -ENODEV; 368 369 pkt_setup_dev(MKDEV(major, minor), NULL); 370 371 module_put(THIS_MODULE); 372 373 return count; 374 } 375 376 return -EINVAL; 377 } 378 379 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf, 380 size_t count) 381 { 382 unsigned int major, minor; 383 if (sscanf(buf, "%u:%u", &major, &minor) == 2) { 384 pkt_remove_dev(MKDEV(major, minor)); 385 return count; 386 } 387 return -EINVAL; 388 } 389 390 static struct class_attribute class_pktcdvd_attrs[] = { 391 __ATTR(add, 0200, NULL, class_pktcdvd_store_add), 392 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove), 393 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL), 394 __ATTR_NULL 395 }; 396 397 398 static int pkt_sysfs_init(void) 399 { 400 int ret = 0; 401 402 /* 403 * create control files in sysfs 404 * /sys/class/pktcdvd/... 405 */ 406 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL); 407 if (!class_pktcdvd) 408 return -ENOMEM; 409 class_pktcdvd->name = DRIVER_NAME; 410 class_pktcdvd->owner = THIS_MODULE; 411 class_pktcdvd->class_release = class_pktcdvd_release; 412 class_pktcdvd->class_attrs = class_pktcdvd_attrs; 413 ret = class_register(class_pktcdvd); 414 if (ret) { 415 kfree(class_pktcdvd); 416 class_pktcdvd = NULL; 417 printk(DRIVER_NAME": failed to create class pktcdvd\n"); 418 return ret; 419 } 420 return 0; 421 } 422 423 static void pkt_sysfs_cleanup(void) 424 { 425 if (class_pktcdvd) 426 class_destroy(class_pktcdvd); 427 class_pktcdvd = NULL; 428 } 429 430 /******************************************************************** 431 entries in debugfs 432 433 /debugfs/pktcdvd[0-7]/ 434 info 435 436 *******************************************************************/ 437 438 static int pkt_debugfs_seq_show(struct seq_file *m, void *p) 439 { 440 return pkt_seq_show(m, p); 441 } 442 443 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file) 444 { 445 return single_open(file, pkt_debugfs_seq_show, inode->i_private); 446 } 447 448 static const struct file_operations debug_fops = { 449 .open = pkt_debugfs_fops_open, 450 .read = seq_read, 451 .llseek = seq_lseek, 452 .release = single_release, 453 .owner = THIS_MODULE, 454 }; 455 456 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd) 457 { 458 if (!pkt_debugfs_root) 459 return; 460 pd->dfs_f_info = NULL; 461 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root); 462 if (IS_ERR(pd->dfs_d_root)) { 463 pd->dfs_d_root = NULL; 464 return; 465 } 466 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO, 467 pd->dfs_d_root, pd, &debug_fops); 468 if (IS_ERR(pd->dfs_f_info)) { 469 pd->dfs_f_info = NULL; 470 return; 471 } 472 } 473 474 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd) 475 { 476 if (!pkt_debugfs_root) 477 return; 478 if (pd->dfs_f_info) 479 debugfs_remove(pd->dfs_f_info); 480 pd->dfs_f_info = NULL; 481 if (pd->dfs_d_root) 482 debugfs_remove(pd->dfs_d_root); 483 pd->dfs_d_root = NULL; 484 } 485 486 static void pkt_debugfs_init(void) 487 { 488 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL); 489 if (IS_ERR(pkt_debugfs_root)) { 490 pkt_debugfs_root = NULL; 491 return; 492 } 493 } 494 495 static void pkt_debugfs_cleanup(void) 496 { 497 if (!pkt_debugfs_root) 498 return; 499 debugfs_remove(pkt_debugfs_root); 500 pkt_debugfs_root = NULL; 501 } 502 503 /* ----------------------------------------------------------*/ 504 505 506 static void pkt_bio_finished(struct pktcdvd_device *pd) 507 { 508 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 509 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 510 VPRINTK(DRIVER_NAME": queue empty\n"); 511 atomic_set(&pd->iosched.attention, 1); 512 wake_up(&pd->wqueue); 513 } 514 } 515 516 static void pkt_bio_destructor(struct bio *bio) 517 { 518 kfree(bio->bi_io_vec); 519 kfree(bio); 520 } 521 522 static struct bio *pkt_bio_alloc(int nr_iovecs) 523 { 524 struct bio_vec *bvl = NULL; 525 struct bio *bio; 526 527 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 528 if (!bio) 529 goto no_bio; 530 bio_init(bio); 531 532 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 533 if (!bvl) 534 goto no_bvl; 535 536 bio->bi_max_vecs = nr_iovecs; 537 bio->bi_io_vec = bvl; 538 bio->bi_destructor = pkt_bio_destructor; 539 540 return bio; 541 542 no_bvl: 543 kfree(bio); 544 no_bio: 545 return NULL; 546 } 547 548 /* 549 * Allocate a packet_data struct 550 */ 551 static struct packet_data *pkt_alloc_packet_data(int frames) 552 { 553 int i; 554 struct packet_data *pkt; 555 556 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 557 if (!pkt) 558 goto no_pkt; 559 560 pkt->frames = frames; 561 pkt->w_bio = pkt_bio_alloc(frames); 562 if (!pkt->w_bio) 563 goto no_bio; 564 565 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 566 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 567 if (!pkt->pages[i]) 568 goto no_page; 569 } 570 571 spin_lock_init(&pkt->lock); 572 573 for (i = 0; i < frames; i++) { 574 struct bio *bio = pkt_bio_alloc(1); 575 if (!bio) 576 goto no_rd_bio; 577 pkt->r_bios[i] = bio; 578 } 579 580 return pkt; 581 582 no_rd_bio: 583 for (i = 0; i < frames; i++) { 584 struct bio *bio = pkt->r_bios[i]; 585 if (bio) 586 bio_put(bio); 587 } 588 589 no_page: 590 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 591 if (pkt->pages[i]) 592 __free_page(pkt->pages[i]); 593 bio_put(pkt->w_bio); 594 no_bio: 595 kfree(pkt); 596 no_pkt: 597 return NULL; 598 } 599 600 /* 601 * Free a packet_data struct 602 */ 603 static void pkt_free_packet_data(struct packet_data *pkt) 604 { 605 int i; 606 607 for (i = 0; i < pkt->frames; i++) { 608 struct bio *bio = pkt->r_bios[i]; 609 if (bio) 610 bio_put(bio); 611 } 612 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 613 __free_page(pkt->pages[i]); 614 bio_put(pkt->w_bio); 615 kfree(pkt); 616 } 617 618 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 619 { 620 struct packet_data *pkt, *next; 621 622 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 623 624 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 625 pkt_free_packet_data(pkt); 626 } 627 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 628 } 629 630 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 631 { 632 struct packet_data *pkt; 633 634 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 635 636 while (nr_packets > 0) { 637 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 638 if (!pkt) { 639 pkt_shrink_pktlist(pd); 640 return 0; 641 } 642 pkt->id = nr_packets; 643 pkt->pd = pd; 644 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 645 nr_packets--; 646 } 647 return 1; 648 } 649 650 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 651 { 652 struct rb_node *n = rb_next(&node->rb_node); 653 if (!n) 654 return NULL; 655 return rb_entry(n, struct pkt_rb_node, rb_node); 656 } 657 658 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 659 { 660 rb_erase(&node->rb_node, &pd->bio_queue); 661 mempool_free(node, pd->rb_pool); 662 pd->bio_queue_size--; 663 BUG_ON(pd->bio_queue_size < 0); 664 } 665 666 /* 667 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 668 */ 669 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 670 { 671 struct rb_node *n = pd->bio_queue.rb_node; 672 struct rb_node *next; 673 struct pkt_rb_node *tmp; 674 675 if (!n) { 676 BUG_ON(pd->bio_queue_size > 0); 677 return NULL; 678 } 679 680 for (;;) { 681 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 682 if (s <= tmp->bio->bi_sector) 683 next = n->rb_left; 684 else 685 next = n->rb_right; 686 if (!next) 687 break; 688 n = next; 689 } 690 691 if (s > tmp->bio->bi_sector) { 692 tmp = pkt_rbtree_next(tmp); 693 if (!tmp) 694 return NULL; 695 } 696 BUG_ON(s > tmp->bio->bi_sector); 697 return tmp; 698 } 699 700 /* 701 * Insert a node into the pd->bio_queue rb tree. 702 */ 703 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 704 { 705 struct rb_node **p = &pd->bio_queue.rb_node; 706 struct rb_node *parent = NULL; 707 sector_t s = node->bio->bi_sector; 708 struct pkt_rb_node *tmp; 709 710 while (*p) { 711 parent = *p; 712 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 713 if (s < tmp->bio->bi_sector) 714 p = &(*p)->rb_left; 715 else 716 p = &(*p)->rb_right; 717 } 718 rb_link_node(&node->rb_node, parent, p); 719 rb_insert_color(&node->rb_node, &pd->bio_queue); 720 pd->bio_queue_size++; 721 } 722 723 /* 724 * Add a bio to a single linked list defined by its head and tail pointers. 725 */ 726 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 727 { 728 bio->bi_next = NULL; 729 if (*list_tail) { 730 BUG_ON((*list_head) == NULL); 731 (*list_tail)->bi_next = bio; 732 (*list_tail) = bio; 733 } else { 734 BUG_ON((*list_head) != NULL); 735 (*list_head) = bio; 736 (*list_tail) = bio; 737 } 738 } 739 740 /* 741 * Remove and return the first bio from a single linked list defined by its 742 * head and tail pointers. 743 */ 744 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 745 { 746 struct bio *bio; 747 748 if (*list_head == NULL) 749 return NULL; 750 751 bio = *list_head; 752 *list_head = bio->bi_next; 753 if (*list_head == NULL) 754 *list_tail = NULL; 755 756 bio->bi_next = NULL; 757 return bio; 758 } 759 760 /* 761 * Send a packet_command to the underlying block device and 762 * wait for completion. 763 */ 764 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 765 { 766 struct request_queue *q = bdev_get_queue(pd->bdev); 767 struct request *rq; 768 int ret = 0; 769 770 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? 771 WRITE : READ, __GFP_WAIT); 772 773 if (cgc->buflen) { 774 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT)) 775 goto out; 776 } 777 778 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]); 779 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 780 781 rq->timeout = 60*HZ; 782 rq->cmd_type = REQ_TYPE_BLOCK_PC; 783 rq->cmd_flags |= REQ_HARDBARRIER; 784 if (cgc->quiet) 785 rq->cmd_flags |= REQ_QUIET; 786 787 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0); 788 if (rq->errors) 789 ret = -EIO; 790 out: 791 blk_put_request(rq); 792 return ret; 793 } 794 795 /* 796 * A generic sense dump / resolve mechanism should be implemented across 797 * all ATAPI + SCSI devices. 798 */ 799 static void pkt_dump_sense(struct packet_command *cgc) 800 { 801 static char *info[9] = { "No sense", "Recovered error", "Not ready", 802 "Medium error", "Hardware error", "Illegal request", 803 "Unit attention", "Data protect", "Blank check" }; 804 int i; 805 struct request_sense *sense = cgc->sense; 806 807 printk(DRIVER_NAME":"); 808 for (i = 0; i < CDROM_PACKET_SIZE; i++) 809 printk(" %02x", cgc->cmd[i]); 810 printk(" - "); 811 812 if (sense == NULL) { 813 printk("no sense\n"); 814 return; 815 } 816 817 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 818 819 if (sense->sense_key > 8) { 820 printk(" (INVALID)\n"); 821 return; 822 } 823 824 printk(" (%s)\n", info[sense->sense_key]); 825 } 826 827 /* 828 * flush the drive cache to media 829 */ 830 static int pkt_flush_cache(struct pktcdvd_device *pd) 831 { 832 struct packet_command cgc; 833 834 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 835 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 836 cgc.quiet = 1; 837 838 /* 839 * the IMMED bit -- we default to not setting it, although that 840 * would allow a much faster close, this is safer 841 */ 842 #if 0 843 cgc.cmd[1] = 1 << 1; 844 #endif 845 return pkt_generic_packet(pd, &cgc); 846 } 847 848 /* 849 * speed is given as the normal factor, e.g. 4 for 4x 850 */ 851 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd, 852 unsigned write_speed, unsigned read_speed) 853 { 854 struct packet_command cgc; 855 struct request_sense sense; 856 int ret; 857 858 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 859 cgc.sense = &sense; 860 cgc.cmd[0] = GPCMD_SET_SPEED; 861 cgc.cmd[2] = (read_speed >> 8) & 0xff; 862 cgc.cmd[3] = read_speed & 0xff; 863 cgc.cmd[4] = (write_speed >> 8) & 0xff; 864 cgc.cmd[5] = write_speed & 0xff; 865 866 if ((ret = pkt_generic_packet(pd, &cgc))) 867 pkt_dump_sense(&cgc); 868 869 return ret; 870 } 871 872 /* 873 * Queue a bio for processing by the low-level CD device. Must be called 874 * from process context. 875 */ 876 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 877 { 878 spin_lock(&pd->iosched.lock); 879 if (bio_data_dir(bio) == READ) { 880 pkt_add_list_last(bio, &pd->iosched.read_queue, 881 &pd->iosched.read_queue_tail); 882 } else { 883 pkt_add_list_last(bio, &pd->iosched.write_queue, 884 &pd->iosched.write_queue_tail); 885 } 886 spin_unlock(&pd->iosched.lock); 887 888 atomic_set(&pd->iosched.attention, 1); 889 wake_up(&pd->wqueue); 890 } 891 892 /* 893 * Process the queued read/write requests. This function handles special 894 * requirements for CDRW drives: 895 * - A cache flush command must be inserted before a read request if the 896 * previous request was a write. 897 * - Switching between reading and writing is slow, so don't do it more often 898 * than necessary. 899 * - Optimize for throughput at the expense of latency. This means that streaming 900 * writes will never be interrupted by a read, but if the drive has to seek 901 * before the next write, switch to reading instead if there are any pending 902 * read requests. 903 * - Set the read speed according to current usage pattern. When only reading 904 * from the device, it's best to use the highest possible read speed, but 905 * when switching often between reading and writing, it's better to have the 906 * same read and write speeds. 907 */ 908 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 909 { 910 911 if (atomic_read(&pd->iosched.attention) == 0) 912 return; 913 atomic_set(&pd->iosched.attention, 0); 914 915 for (;;) { 916 struct bio *bio; 917 int reads_queued, writes_queued; 918 919 spin_lock(&pd->iosched.lock); 920 reads_queued = (pd->iosched.read_queue != NULL); 921 writes_queued = (pd->iosched.write_queue != NULL); 922 spin_unlock(&pd->iosched.lock); 923 924 if (!reads_queued && !writes_queued) 925 break; 926 927 if (pd->iosched.writing) { 928 int need_write_seek = 1; 929 spin_lock(&pd->iosched.lock); 930 bio = pd->iosched.write_queue; 931 spin_unlock(&pd->iosched.lock); 932 if (bio && (bio->bi_sector == pd->iosched.last_write)) 933 need_write_seek = 0; 934 if (need_write_seek && reads_queued) { 935 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 936 VPRINTK(DRIVER_NAME": write, waiting\n"); 937 break; 938 } 939 pkt_flush_cache(pd); 940 pd->iosched.writing = 0; 941 } 942 } else { 943 if (!reads_queued && writes_queued) { 944 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 945 VPRINTK(DRIVER_NAME": read, waiting\n"); 946 break; 947 } 948 pd->iosched.writing = 1; 949 } 950 } 951 952 spin_lock(&pd->iosched.lock); 953 if (pd->iosched.writing) { 954 bio = pkt_get_list_first(&pd->iosched.write_queue, 955 &pd->iosched.write_queue_tail); 956 } else { 957 bio = pkt_get_list_first(&pd->iosched.read_queue, 958 &pd->iosched.read_queue_tail); 959 } 960 spin_unlock(&pd->iosched.lock); 961 962 if (!bio) 963 continue; 964 965 if (bio_data_dir(bio) == READ) 966 pd->iosched.successive_reads += bio->bi_size >> 10; 967 else { 968 pd->iosched.successive_reads = 0; 969 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 970 } 971 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 972 if (pd->read_speed == pd->write_speed) { 973 pd->read_speed = MAX_SPEED; 974 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 975 } 976 } else { 977 if (pd->read_speed != pd->write_speed) { 978 pd->read_speed = pd->write_speed; 979 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 980 } 981 } 982 983 atomic_inc(&pd->cdrw.pending_bios); 984 generic_make_request(bio); 985 } 986 } 987 988 /* 989 * Special care is needed if the underlying block device has a small 990 * max_phys_segments value. 991 */ 992 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q) 993 { 994 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 995 /* 996 * The cdrom device can handle one segment/frame 997 */ 998 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 999 return 0; 1000 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 1001 /* 1002 * We can handle this case at the expense of some extra memory 1003 * copies during write operations 1004 */ 1005 set_bit(PACKET_MERGE_SEGS, &pd->flags); 1006 return 0; 1007 } else { 1008 printk(DRIVER_NAME": cdrom max_phys_segments too small\n"); 1009 return -EIO; 1010 } 1011 } 1012 1013 /* 1014 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 1015 */ 1016 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 1017 { 1018 unsigned int copy_size = CD_FRAMESIZE; 1019 1020 while (copy_size > 0) { 1021 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 1022 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 1023 src_bvl->bv_offset + offs; 1024 void *vto = page_address(dst_page) + dst_offs; 1025 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 1026 1027 BUG_ON(len < 0); 1028 memcpy(vto, vfrom, len); 1029 kunmap_atomic(vfrom, KM_USER0); 1030 1031 seg++; 1032 offs = 0; 1033 dst_offs += len; 1034 copy_size -= len; 1035 } 1036 } 1037 1038 /* 1039 * Copy all data for this packet to pkt->pages[], so that 1040 * a) The number of required segments for the write bio is minimized, which 1041 * is necessary for some scsi controllers. 1042 * b) The data can be used as cache to avoid read requests if we receive a 1043 * new write request for the same zone. 1044 */ 1045 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 1046 { 1047 int f, p, offs; 1048 1049 /* Copy all data to pkt->pages[] */ 1050 p = 0; 1051 offs = 0; 1052 for (f = 0; f < pkt->frames; f++) { 1053 if (bvec[f].bv_page != pkt->pages[p]) { 1054 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 1055 void *vto = page_address(pkt->pages[p]) + offs; 1056 memcpy(vto, vfrom, CD_FRAMESIZE); 1057 kunmap_atomic(vfrom, KM_USER0); 1058 bvec[f].bv_page = pkt->pages[p]; 1059 bvec[f].bv_offset = offs; 1060 } else { 1061 BUG_ON(bvec[f].bv_offset != offs); 1062 } 1063 offs += CD_FRAMESIZE; 1064 if (offs >= PAGE_SIZE) { 1065 offs = 0; 1066 p++; 1067 } 1068 } 1069 } 1070 1071 static void pkt_end_io_read(struct bio *bio, int err) 1072 { 1073 struct packet_data *pkt = bio->bi_private; 1074 struct pktcdvd_device *pd = pkt->pd; 1075 BUG_ON(!pd); 1076 1077 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 1078 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 1079 1080 if (err) 1081 atomic_inc(&pkt->io_errors); 1082 if (atomic_dec_and_test(&pkt->io_wait)) { 1083 atomic_inc(&pkt->run_sm); 1084 wake_up(&pd->wqueue); 1085 } 1086 pkt_bio_finished(pd); 1087 } 1088 1089 static void pkt_end_io_packet_write(struct bio *bio, int err) 1090 { 1091 struct packet_data *pkt = bio->bi_private; 1092 struct pktcdvd_device *pd = pkt->pd; 1093 BUG_ON(!pd); 1094 1095 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 1096 1097 pd->stats.pkt_ended++; 1098 1099 pkt_bio_finished(pd); 1100 atomic_dec(&pkt->io_wait); 1101 atomic_inc(&pkt->run_sm); 1102 wake_up(&pd->wqueue); 1103 } 1104 1105 /* 1106 * Schedule reads for the holes in a packet 1107 */ 1108 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1109 { 1110 int frames_read = 0; 1111 struct bio *bio; 1112 int f; 1113 char written[PACKET_MAX_SIZE]; 1114 1115 BUG_ON(!pkt->orig_bios); 1116 1117 atomic_set(&pkt->io_wait, 0); 1118 atomic_set(&pkt->io_errors, 0); 1119 1120 /* 1121 * Figure out which frames we need to read before we can write. 1122 */ 1123 memset(written, 0, sizeof(written)); 1124 spin_lock(&pkt->lock); 1125 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1126 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1127 int num_frames = bio->bi_size / CD_FRAMESIZE; 1128 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 1129 BUG_ON(first_frame < 0); 1130 BUG_ON(first_frame + num_frames > pkt->frames); 1131 for (f = first_frame; f < first_frame + num_frames; f++) 1132 written[f] = 1; 1133 } 1134 spin_unlock(&pkt->lock); 1135 1136 if (pkt->cache_valid) { 1137 VPRINTK("pkt_gather_data: zone %llx cached\n", 1138 (unsigned long long)pkt->sector); 1139 goto out_account; 1140 } 1141 1142 /* 1143 * Schedule reads for missing parts of the packet. 1144 */ 1145 for (f = 0; f < pkt->frames; f++) { 1146 struct bio_vec *vec; 1147 1148 int p, offset; 1149 if (written[f]) 1150 continue; 1151 bio = pkt->r_bios[f]; 1152 vec = bio->bi_io_vec; 1153 bio_init(bio); 1154 bio->bi_max_vecs = 1; 1155 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 1156 bio->bi_bdev = pd->bdev; 1157 bio->bi_end_io = pkt_end_io_read; 1158 bio->bi_private = pkt; 1159 bio->bi_io_vec = vec; 1160 bio->bi_destructor = pkt_bio_destructor; 1161 1162 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 1163 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1164 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 1165 f, pkt->pages[p], offset); 1166 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 1167 BUG(); 1168 1169 atomic_inc(&pkt->io_wait); 1170 bio->bi_rw = READ; 1171 pkt_queue_bio(pd, bio); 1172 frames_read++; 1173 } 1174 1175 out_account: 1176 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 1177 frames_read, (unsigned long long)pkt->sector); 1178 pd->stats.pkt_started++; 1179 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 1180 } 1181 1182 /* 1183 * Find a packet matching zone, or the least recently used packet if 1184 * there is no match. 1185 */ 1186 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 1187 { 1188 struct packet_data *pkt; 1189 1190 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 1191 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 1192 list_del_init(&pkt->list); 1193 if (pkt->sector != zone) 1194 pkt->cache_valid = 0; 1195 return pkt; 1196 } 1197 } 1198 BUG(); 1199 return NULL; 1200 } 1201 1202 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 1203 { 1204 if (pkt->cache_valid) { 1205 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 1206 } else { 1207 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 1208 } 1209 } 1210 1211 /* 1212 * recover a failed write, query for relocation if possible 1213 * 1214 * returns 1 if recovery is possible, or 0 if not 1215 * 1216 */ 1217 static int pkt_start_recovery(struct packet_data *pkt) 1218 { 1219 /* 1220 * FIXME. We need help from the file system to implement 1221 * recovery handling. 1222 */ 1223 return 0; 1224 #if 0 1225 struct request *rq = pkt->rq; 1226 struct pktcdvd_device *pd = rq->rq_disk->private_data; 1227 struct block_device *pkt_bdev; 1228 struct super_block *sb = NULL; 1229 unsigned long old_block, new_block; 1230 sector_t new_sector; 1231 1232 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 1233 if (pkt_bdev) { 1234 sb = get_super(pkt_bdev); 1235 bdput(pkt_bdev); 1236 } 1237 1238 if (!sb) 1239 return 0; 1240 1241 if (!sb->s_op || !sb->s_op->relocate_blocks) 1242 goto out; 1243 1244 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 1245 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 1246 goto out; 1247 1248 new_sector = new_block * (CD_FRAMESIZE >> 9); 1249 pkt->sector = new_sector; 1250 1251 pkt->bio->bi_sector = new_sector; 1252 pkt->bio->bi_next = NULL; 1253 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 1254 pkt->bio->bi_idx = 0; 1255 1256 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 1257 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 1258 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 1259 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 1260 BUG_ON(pkt->bio->bi_private != pkt); 1261 1262 drop_super(sb); 1263 return 1; 1264 1265 out: 1266 drop_super(sb); 1267 return 0; 1268 #endif 1269 } 1270 1271 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 1272 { 1273 #if PACKET_DEBUG > 1 1274 static const char *state_name[] = { 1275 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 1276 }; 1277 enum packet_data_state old_state = pkt->state; 1278 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 1279 state_name[old_state], state_name[state]); 1280 #endif 1281 pkt->state = state; 1282 } 1283 1284 /* 1285 * Scan the work queue to see if we can start a new packet. 1286 * returns non-zero if any work was done. 1287 */ 1288 static int pkt_handle_queue(struct pktcdvd_device *pd) 1289 { 1290 struct packet_data *pkt, *p; 1291 struct bio *bio = NULL; 1292 sector_t zone = 0; /* Suppress gcc warning */ 1293 struct pkt_rb_node *node, *first_node; 1294 struct rb_node *n; 1295 int wakeup; 1296 1297 VPRINTK("handle_queue\n"); 1298 1299 atomic_set(&pd->scan_queue, 0); 1300 1301 if (list_empty(&pd->cdrw.pkt_free_list)) { 1302 VPRINTK("handle_queue: no pkt\n"); 1303 return 0; 1304 } 1305 1306 /* 1307 * Try to find a zone we are not already working on. 1308 */ 1309 spin_lock(&pd->lock); 1310 first_node = pkt_rbtree_find(pd, pd->current_sector); 1311 if (!first_node) { 1312 n = rb_first(&pd->bio_queue); 1313 if (n) 1314 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 1315 } 1316 node = first_node; 1317 while (node) { 1318 bio = node->bio; 1319 zone = ZONE(bio->bi_sector, pd); 1320 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 1321 if (p->sector == zone) { 1322 bio = NULL; 1323 goto try_next_bio; 1324 } 1325 } 1326 break; 1327 try_next_bio: 1328 node = pkt_rbtree_next(node); 1329 if (!node) { 1330 n = rb_first(&pd->bio_queue); 1331 if (n) 1332 node = rb_entry(n, struct pkt_rb_node, rb_node); 1333 } 1334 if (node == first_node) 1335 node = NULL; 1336 } 1337 spin_unlock(&pd->lock); 1338 if (!bio) { 1339 VPRINTK("handle_queue: no bio\n"); 1340 return 0; 1341 } 1342 1343 pkt = pkt_get_packet_data(pd, zone); 1344 1345 pd->current_sector = zone + pd->settings.size; 1346 pkt->sector = zone; 1347 BUG_ON(pkt->frames != pd->settings.size >> 2); 1348 pkt->write_size = 0; 1349 1350 /* 1351 * Scan work queue for bios in the same zone and link them 1352 * to this packet. 1353 */ 1354 spin_lock(&pd->lock); 1355 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 1356 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 1357 bio = node->bio; 1358 VPRINTK("pkt_handle_queue: found zone=%llx\n", 1359 (unsigned long long)ZONE(bio->bi_sector, pd)); 1360 if (ZONE(bio->bi_sector, pd) != zone) 1361 break; 1362 pkt_rbtree_erase(pd, node); 1363 spin_lock(&pkt->lock); 1364 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 1365 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 1366 spin_unlock(&pkt->lock); 1367 } 1368 /* check write congestion marks, and if bio_queue_size is 1369 below, wake up any waiters */ 1370 wakeup = (pd->write_congestion_on > 0 1371 && pd->bio_queue_size <= pd->write_congestion_off); 1372 spin_unlock(&pd->lock); 1373 if (wakeup) 1374 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE); 1375 1376 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 1377 pkt_set_state(pkt, PACKET_WAITING_STATE); 1378 atomic_set(&pkt->run_sm, 1); 1379 1380 spin_lock(&pd->cdrw.active_list_lock); 1381 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 1382 spin_unlock(&pd->cdrw.active_list_lock); 1383 1384 return 1; 1385 } 1386 1387 /* 1388 * Assemble a bio to write one packet and queue the bio for processing 1389 * by the underlying block device. 1390 */ 1391 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 1392 { 1393 struct bio *bio; 1394 int f; 1395 int frames_write; 1396 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 1397 1398 for (f = 0; f < pkt->frames; f++) { 1399 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 1400 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 1401 } 1402 1403 /* 1404 * Fill-in bvec with data from orig_bios. 1405 */ 1406 frames_write = 0; 1407 spin_lock(&pkt->lock); 1408 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1409 int segment = bio->bi_idx; 1410 int src_offs = 0; 1411 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1412 int num_frames = bio->bi_size / CD_FRAMESIZE; 1413 BUG_ON(first_frame < 0); 1414 BUG_ON(first_frame + num_frames > pkt->frames); 1415 for (f = first_frame; f < first_frame + num_frames; f++) { 1416 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1417 1418 while (src_offs >= src_bvl->bv_len) { 1419 src_offs -= src_bvl->bv_len; 1420 segment++; 1421 BUG_ON(segment >= bio->bi_vcnt); 1422 src_bvl = bio_iovec_idx(bio, segment); 1423 } 1424 1425 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1426 bvec[f].bv_page = src_bvl->bv_page; 1427 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1428 } else { 1429 pkt_copy_bio_data(bio, segment, src_offs, 1430 bvec[f].bv_page, bvec[f].bv_offset); 1431 } 1432 src_offs += CD_FRAMESIZE; 1433 frames_write++; 1434 } 1435 } 1436 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1437 spin_unlock(&pkt->lock); 1438 1439 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1440 frames_write, (unsigned long long)pkt->sector); 1441 BUG_ON(frames_write != pkt->write_size); 1442 1443 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1444 pkt_make_local_copy(pkt, bvec); 1445 pkt->cache_valid = 1; 1446 } else { 1447 pkt->cache_valid = 0; 1448 } 1449 1450 /* Start the write request */ 1451 bio_init(pkt->w_bio); 1452 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1453 pkt->w_bio->bi_sector = pkt->sector; 1454 pkt->w_bio->bi_bdev = pd->bdev; 1455 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1456 pkt->w_bio->bi_private = pkt; 1457 pkt->w_bio->bi_io_vec = bvec; 1458 pkt->w_bio->bi_destructor = pkt_bio_destructor; 1459 for (f = 0; f < pkt->frames; f++) 1460 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1461 BUG(); 1462 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt); 1463 1464 atomic_set(&pkt->io_wait, 1); 1465 pkt->w_bio->bi_rw = WRITE; 1466 pkt_queue_bio(pd, pkt->w_bio); 1467 } 1468 1469 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1470 { 1471 struct bio *bio, *next; 1472 1473 if (!uptodate) 1474 pkt->cache_valid = 0; 1475 1476 /* Finish all bios corresponding to this packet */ 1477 bio = pkt->orig_bios; 1478 while (bio) { 1479 next = bio->bi_next; 1480 bio->bi_next = NULL; 1481 bio_endio(bio, uptodate ? 0 : -EIO); 1482 bio = next; 1483 } 1484 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1485 } 1486 1487 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1488 { 1489 int uptodate; 1490 1491 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1492 1493 for (;;) { 1494 switch (pkt->state) { 1495 case PACKET_WAITING_STATE: 1496 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1497 return; 1498 1499 pkt->sleep_time = 0; 1500 pkt_gather_data(pd, pkt); 1501 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1502 break; 1503 1504 case PACKET_READ_WAIT_STATE: 1505 if (atomic_read(&pkt->io_wait) > 0) 1506 return; 1507 1508 if (atomic_read(&pkt->io_errors) > 0) { 1509 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1510 } else { 1511 pkt_start_write(pd, pkt); 1512 } 1513 break; 1514 1515 case PACKET_WRITE_WAIT_STATE: 1516 if (atomic_read(&pkt->io_wait) > 0) 1517 return; 1518 1519 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1520 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1521 } else { 1522 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1523 } 1524 break; 1525 1526 case PACKET_RECOVERY_STATE: 1527 if (pkt_start_recovery(pkt)) { 1528 pkt_start_write(pd, pkt); 1529 } else { 1530 VPRINTK("No recovery possible\n"); 1531 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1532 } 1533 break; 1534 1535 case PACKET_FINISHED_STATE: 1536 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1537 pkt_finish_packet(pkt, uptodate); 1538 return; 1539 1540 default: 1541 BUG(); 1542 break; 1543 } 1544 } 1545 } 1546 1547 static void pkt_handle_packets(struct pktcdvd_device *pd) 1548 { 1549 struct packet_data *pkt, *next; 1550 1551 VPRINTK("pkt_handle_packets\n"); 1552 1553 /* 1554 * Run state machine for active packets 1555 */ 1556 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1557 if (atomic_read(&pkt->run_sm) > 0) { 1558 atomic_set(&pkt->run_sm, 0); 1559 pkt_run_state_machine(pd, pkt); 1560 } 1561 } 1562 1563 /* 1564 * Move no longer active packets to the free list 1565 */ 1566 spin_lock(&pd->cdrw.active_list_lock); 1567 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1568 if (pkt->state == PACKET_FINISHED_STATE) { 1569 list_del(&pkt->list); 1570 pkt_put_packet_data(pd, pkt); 1571 pkt_set_state(pkt, PACKET_IDLE_STATE); 1572 atomic_set(&pd->scan_queue, 1); 1573 } 1574 } 1575 spin_unlock(&pd->cdrw.active_list_lock); 1576 } 1577 1578 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1579 { 1580 struct packet_data *pkt; 1581 int i; 1582 1583 for (i = 0; i < PACKET_NUM_STATES; i++) 1584 states[i] = 0; 1585 1586 spin_lock(&pd->cdrw.active_list_lock); 1587 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1588 states[pkt->state]++; 1589 } 1590 spin_unlock(&pd->cdrw.active_list_lock); 1591 } 1592 1593 /* 1594 * kcdrwd is woken up when writes have been queued for one of our 1595 * registered devices 1596 */ 1597 static int kcdrwd(void *foobar) 1598 { 1599 struct pktcdvd_device *pd = foobar; 1600 struct packet_data *pkt; 1601 long min_sleep_time, residue; 1602 1603 set_user_nice(current, -20); 1604 set_freezable(); 1605 1606 for (;;) { 1607 DECLARE_WAITQUEUE(wait, current); 1608 1609 /* 1610 * Wait until there is something to do 1611 */ 1612 add_wait_queue(&pd->wqueue, &wait); 1613 for (;;) { 1614 set_current_state(TASK_INTERRUPTIBLE); 1615 1616 /* Check if we need to run pkt_handle_queue */ 1617 if (atomic_read(&pd->scan_queue) > 0) 1618 goto work_to_do; 1619 1620 /* Check if we need to run the state machine for some packet */ 1621 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1622 if (atomic_read(&pkt->run_sm) > 0) 1623 goto work_to_do; 1624 } 1625 1626 /* Check if we need to process the iosched queues */ 1627 if (atomic_read(&pd->iosched.attention) != 0) 1628 goto work_to_do; 1629 1630 /* Otherwise, go to sleep */ 1631 if (PACKET_DEBUG > 1) { 1632 int states[PACKET_NUM_STATES]; 1633 pkt_count_states(pd, states); 1634 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1635 states[0], states[1], states[2], states[3], 1636 states[4], states[5]); 1637 } 1638 1639 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1640 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1641 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1642 min_sleep_time = pkt->sleep_time; 1643 } 1644 1645 generic_unplug_device(bdev_get_queue(pd->bdev)); 1646 1647 VPRINTK("kcdrwd: sleeping\n"); 1648 residue = schedule_timeout(min_sleep_time); 1649 VPRINTK("kcdrwd: wake up\n"); 1650 1651 /* make swsusp happy with our thread */ 1652 try_to_freeze(); 1653 1654 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1655 if (!pkt->sleep_time) 1656 continue; 1657 pkt->sleep_time -= min_sleep_time - residue; 1658 if (pkt->sleep_time <= 0) { 1659 pkt->sleep_time = 0; 1660 atomic_inc(&pkt->run_sm); 1661 } 1662 } 1663 1664 if (kthread_should_stop()) 1665 break; 1666 } 1667 work_to_do: 1668 set_current_state(TASK_RUNNING); 1669 remove_wait_queue(&pd->wqueue, &wait); 1670 1671 if (kthread_should_stop()) 1672 break; 1673 1674 /* 1675 * if pkt_handle_queue returns true, we can queue 1676 * another request. 1677 */ 1678 while (pkt_handle_queue(pd)) 1679 ; 1680 1681 /* 1682 * Handle packet state machine 1683 */ 1684 pkt_handle_packets(pd); 1685 1686 /* 1687 * Handle iosched queues 1688 */ 1689 pkt_iosched_process_queue(pd); 1690 } 1691 1692 return 0; 1693 } 1694 1695 static void pkt_print_settings(struct pktcdvd_device *pd) 1696 { 1697 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1698 printk("%u blocks, ", pd->settings.size >> 2); 1699 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1700 } 1701 1702 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1703 { 1704 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1705 1706 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1707 cgc->cmd[2] = page_code | (page_control << 6); 1708 cgc->cmd[7] = cgc->buflen >> 8; 1709 cgc->cmd[8] = cgc->buflen & 0xff; 1710 cgc->data_direction = CGC_DATA_READ; 1711 return pkt_generic_packet(pd, cgc); 1712 } 1713 1714 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1715 { 1716 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1717 memset(cgc->buffer, 0, 2); 1718 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1719 cgc->cmd[1] = 0x10; /* PF */ 1720 cgc->cmd[7] = cgc->buflen >> 8; 1721 cgc->cmd[8] = cgc->buflen & 0xff; 1722 cgc->data_direction = CGC_DATA_WRITE; 1723 return pkt_generic_packet(pd, cgc); 1724 } 1725 1726 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1727 { 1728 struct packet_command cgc; 1729 int ret; 1730 1731 /* set up command and get the disc info */ 1732 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1733 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1734 cgc.cmd[8] = cgc.buflen = 2; 1735 cgc.quiet = 1; 1736 1737 if ((ret = pkt_generic_packet(pd, &cgc))) 1738 return ret; 1739 1740 /* not all drives have the same disc_info length, so requeue 1741 * packet with the length the drive tells us it can supply 1742 */ 1743 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1744 sizeof(di->disc_information_length); 1745 1746 if (cgc.buflen > sizeof(disc_information)) 1747 cgc.buflen = sizeof(disc_information); 1748 1749 cgc.cmd[8] = cgc.buflen; 1750 return pkt_generic_packet(pd, &cgc); 1751 } 1752 1753 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1754 { 1755 struct packet_command cgc; 1756 int ret; 1757 1758 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1759 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1760 cgc.cmd[1] = type & 3; 1761 cgc.cmd[4] = (track & 0xff00) >> 8; 1762 cgc.cmd[5] = track & 0xff; 1763 cgc.cmd[8] = 8; 1764 cgc.quiet = 1; 1765 1766 if ((ret = pkt_generic_packet(pd, &cgc))) 1767 return ret; 1768 1769 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1770 sizeof(ti->track_information_length); 1771 1772 if (cgc.buflen > sizeof(track_information)) 1773 cgc.buflen = sizeof(track_information); 1774 1775 cgc.cmd[8] = cgc.buflen; 1776 return pkt_generic_packet(pd, &cgc); 1777 } 1778 1779 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd, 1780 long *last_written) 1781 { 1782 disc_information di; 1783 track_information ti; 1784 __u32 last_track; 1785 int ret = -1; 1786 1787 if ((ret = pkt_get_disc_info(pd, &di))) 1788 return ret; 1789 1790 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1791 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1792 return ret; 1793 1794 /* if this track is blank, try the previous. */ 1795 if (ti.blank) { 1796 last_track--; 1797 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1798 return ret; 1799 } 1800 1801 /* if last recorded field is valid, return it. */ 1802 if (ti.lra_v) { 1803 *last_written = be32_to_cpu(ti.last_rec_address); 1804 } else { 1805 /* make it up instead */ 1806 *last_written = be32_to_cpu(ti.track_start) + 1807 be32_to_cpu(ti.track_size); 1808 if (ti.free_blocks) 1809 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1810 } 1811 return 0; 1812 } 1813 1814 /* 1815 * write mode select package based on pd->settings 1816 */ 1817 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd) 1818 { 1819 struct packet_command cgc; 1820 struct request_sense sense; 1821 write_param_page *wp; 1822 char buffer[128]; 1823 int ret, size; 1824 1825 /* doesn't apply to DVD+RW or DVD-RAM */ 1826 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1827 return 0; 1828 1829 memset(buffer, 0, sizeof(buffer)); 1830 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1831 cgc.sense = &sense; 1832 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1833 pkt_dump_sense(&cgc); 1834 return ret; 1835 } 1836 1837 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1838 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1839 if (size > sizeof(buffer)) 1840 size = sizeof(buffer); 1841 1842 /* 1843 * now get it all 1844 */ 1845 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1846 cgc.sense = &sense; 1847 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1848 pkt_dump_sense(&cgc); 1849 return ret; 1850 } 1851 1852 /* 1853 * write page is offset header + block descriptor length 1854 */ 1855 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1856 1857 wp->fp = pd->settings.fp; 1858 wp->track_mode = pd->settings.track_mode; 1859 wp->write_type = pd->settings.write_type; 1860 wp->data_block_type = pd->settings.block_mode; 1861 1862 wp->multi_session = 0; 1863 1864 #ifdef PACKET_USE_LS 1865 wp->link_size = 7; 1866 wp->ls_v = 1; 1867 #endif 1868 1869 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1870 wp->session_format = 0; 1871 wp->subhdr2 = 0x20; 1872 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1873 wp->session_format = 0x20; 1874 wp->subhdr2 = 8; 1875 #if 0 1876 wp->mcn[0] = 0x80; 1877 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1878 #endif 1879 } else { 1880 /* 1881 * paranoia 1882 */ 1883 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type); 1884 return 1; 1885 } 1886 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1887 1888 cgc.buflen = cgc.cmd[8] = size; 1889 if ((ret = pkt_mode_select(pd, &cgc))) { 1890 pkt_dump_sense(&cgc); 1891 return ret; 1892 } 1893 1894 pkt_print_settings(pd); 1895 return 0; 1896 } 1897 1898 /* 1899 * 1 -- we can write to this track, 0 -- we can't 1900 */ 1901 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1902 { 1903 switch (pd->mmc3_profile) { 1904 case 0x1a: /* DVD+RW */ 1905 case 0x12: /* DVD-RAM */ 1906 /* The track is always writable on DVD+RW/DVD-RAM */ 1907 return 1; 1908 default: 1909 break; 1910 } 1911 1912 if (!ti->packet || !ti->fp) 1913 return 0; 1914 1915 /* 1916 * "good" settings as per Mt Fuji. 1917 */ 1918 if (ti->rt == 0 && ti->blank == 0) 1919 return 1; 1920 1921 if (ti->rt == 0 && ti->blank == 1) 1922 return 1; 1923 1924 if (ti->rt == 1 && ti->blank == 0) 1925 return 1; 1926 1927 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1928 return 0; 1929 } 1930 1931 /* 1932 * 1 -- we can write to this disc, 0 -- we can't 1933 */ 1934 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1935 { 1936 switch (pd->mmc3_profile) { 1937 case 0x0a: /* CD-RW */ 1938 case 0xffff: /* MMC3 not supported */ 1939 break; 1940 case 0x1a: /* DVD+RW */ 1941 case 0x13: /* DVD-RW */ 1942 case 0x12: /* DVD-RAM */ 1943 return 1; 1944 default: 1945 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile); 1946 return 0; 1947 } 1948 1949 /* 1950 * for disc type 0xff we should probably reserve a new track. 1951 * but i'm not sure, should we leave this to user apps? probably. 1952 */ 1953 if (di->disc_type == 0xff) { 1954 printk(DRIVER_NAME": Unknown disc. No track?\n"); 1955 return 0; 1956 } 1957 1958 if (di->disc_type != 0x20 && di->disc_type != 0) { 1959 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type); 1960 return 0; 1961 } 1962 1963 if (di->erasable == 0) { 1964 printk(DRIVER_NAME": Disc not erasable\n"); 1965 return 0; 1966 } 1967 1968 if (di->border_status == PACKET_SESSION_RESERVED) { 1969 printk(DRIVER_NAME": Can't write to last track (reserved)\n"); 1970 return 0; 1971 } 1972 1973 return 1; 1974 } 1975 1976 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd) 1977 { 1978 struct packet_command cgc; 1979 unsigned char buf[12]; 1980 disc_information di; 1981 track_information ti; 1982 int ret, track; 1983 1984 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1985 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1986 cgc.cmd[8] = 8; 1987 ret = pkt_generic_packet(pd, &cgc); 1988 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1989 1990 memset(&di, 0, sizeof(disc_information)); 1991 memset(&ti, 0, sizeof(track_information)); 1992 1993 if ((ret = pkt_get_disc_info(pd, &di))) { 1994 printk("failed get_disc\n"); 1995 return ret; 1996 } 1997 1998 if (!pkt_writable_disc(pd, &di)) 1999 return -EROFS; 2000 2001 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 2002 2003 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 2004 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 2005 printk(DRIVER_NAME": failed get_track\n"); 2006 return ret; 2007 } 2008 2009 if (!pkt_writable_track(pd, &ti)) { 2010 printk(DRIVER_NAME": can't write to this track\n"); 2011 return -EROFS; 2012 } 2013 2014 /* 2015 * we keep packet size in 512 byte units, makes it easier to 2016 * deal with request calculations. 2017 */ 2018 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 2019 if (pd->settings.size == 0) { 2020 printk(DRIVER_NAME": detected zero packet size!\n"); 2021 return -ENXIO; 2022 } 2023 if (pd->settings.size > PACKET_MAX_SECTORS) { 2024 printk(DRIVER_NAME": packet size is too big\n"); 2025 return -EROFS; 2026 } 2027 pd->settings.fp = ti.fp; 2028 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 2029 2030 if (ti.nwa_v) { 2031 pd->nwa = be32_to_cpu(ti.next_writable); 2032 set_bit(PACKET_NWA_VALID, &pd->flags); 2033 } 2034 2035 /* 2036 * in theory we could use lra on -RW media as well and just zero 2037 * blocks that haven't been written yet, but in practice that 2038 * is just a no-go. we'll use that for -R, naturally. 2039 */ 2040 if (ti.lra_v) { 2041 pd->lra = be32_to_cpu(ti.last_rec_address); 2042 set_bit(PACKET_LRA_VALID, &pd->flags); 2043 } else { 2044 pd->lra = 0xffffffff; 2045 set_bit(PACKET_LRA_VALID, &pd->flags); 2046 } 2047 2048 /* 2049 * fine for now 2050 */ 2051 pd->settings.link_loss = 7; 2052 pd->settings.write_type = 0; /* packet */ 2053 pd->settings.track_mode = ti.track_mode; 2054 2055 /* 2056 * mode1 or mode2 disc 2057 */ 2058 switch (ti.data_mode) { 2059 case PACKET_MODE1: 2060 pd->settings.block_mode = PACKET_BLOCK_MODE1; 2061 break; 2062 case PACKET_MODE2: 2063 pd->settings.block_mode = PACKET_BLOCK_MODE2; 2064 break; 2065 default: 2066 printk(DRIVER_NAME": unknown data mode\n"); 2067 return -EROFS; 2068 } 2069 return 0; 2070 } 2071 2072 /* 2073 * enable/disable write caching on drive 2074 */ 2075 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd, 2076 int set) 2077 { 2078 struct packet_command cgc; 2079 struct request_sense sense; 2080 unsigned char buf[64]; 2081 int ret; 2082 2083 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 2084 cgc.sense = &sense; 2085 cgc.buflen = pd->mode_offset + 12; 2086 2087 /* 2088 * caching mode page might not be there, so quiet this command 2089 */ 2090 cgc.quiet = 1; 2091 2092 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 2093 return ret; 2094 2095 buf[pd->mode_offset + 10] |= (!!set << 2); 2096 2097 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 2098 ret = pkt_mode_select(pd, &cgc); 2099 if (ret) { 2100 printk(DRIVER_NAME": write caching control failed\n"); 2101 pkt_dump_sense(&cgc); 2102 } else if (!ret && set) 2103 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name); 2104 return ret; 2105 } 2106 2107 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 2108 { 2109 struct packet_command cgc; 2110 2111 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2112 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 2113 cgc.cmd[4] = lockflag ? 1 : 0; 2114 return pkt_generic_packet(pd, &cgc); 2115 } 2116 2117 /* 2118 * Returns drive maximum write speed 2119 */ 2120 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd, 2121 unsigned *write_speed) 2122 { 2123 struct packet_command cgc; 2124 struct request_sense sense; 2125 unsigned char buf[256+18]; 2126 unsigned char *cap_buf; 2127 int ret, offset; 2128 2129 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 2130 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 2131 cgc.sense = &sense; 2132 2133 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2134 if (ret) { 2135 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 2136 sizeof(struct mode_page_header); 2137 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 2138 if (ret) { 2139 pkt_dump_sense(&cgc); 2140 return ret; 2141 } 2142 } 2143 2144 offset = 20; /* Obsoleted field, used by older drives */ 2145 if (cap_buf[1] >= 28) 2146 offset = 28; /* Current write speed selected */ 2147 if (cap_buf[1] >= 30) { 2148 /* If the drive reports at least one "Logical Unit Write 2149 * Speed Performance Descriptor Block", use the information 2150 * in the first block. (contains the highest speed) 2151 */ 2152 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 2153 if (num_spdb > 0) 2154 offset = 34; 2155 } 2156 2157 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 2158 return 0; 2159 } 2160 2161 /* These tables from cdrecord - I don't have orange book */ 2162 /* standard speed CD-RW (1-4x) */ 2163 static char clv_to_speed[16] = { 2164 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2165 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2166 }; 2167 /* high speed CD-RW (-10x) */ 2168 static char hs_clv_to_speed[16] = { 2169 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2170 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 2171 }; 2172 /* ultra high speed CD-RW */ 2173 static char us_clv_to_speed[16] = { 2174 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 2175 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 2176 }; 2177 2178 /* 2179 * reads the maximum media speed from ATIP 2180 */ 2181 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd, 2182 unsigned *speed) 2183 { 2184 struct packet_command cgc; 2185 struct request_sense sense; 2186 unsigned char buf[64]; 2187 unsigned int size, st, sp; 2188 int ret; 2189 2190 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 2191 cgc.sense = &sense; 2192 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2193 cgc.cmd[1] = 2; 2194 cgc.cmd[2] = 4; /* READ ATIP */ 2195 cgc.cmd[8] = 2; 2196 ret = pkt_generic_packet(pd, &cgc); 2197 if (ret) { 2198 pkt_dump_sense(&cgc); 2199 return ret; 2200 } 2201 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 2202 if (size > sizeof(buf)) 2203 size = sizeof(buf); 2204 2205 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 2206 cgc.sense = &sense; 2207 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 2208 cgc.cmd[1] = 2; 2209 cgc.cmd[2] = 4; 2210 cgc.cmd[8] = size; 2211 ret = pkt_generic_packet(pd, &cgc); 2212 if (ret) { 2213 pkt_dump_sense(&cgc); 2214 return ret; 2215 } 2216 2217 if (!(buf[6] & 0x40)) { 2218 printk(DRIVER_NAME": Disc type is not CD-RW\n"); 2219 return 1; 2220 } 2221 if (!(buf[6] & 0x4)) { 2222 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n"); 2223 return 1; 2224 } 2225 2226 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 2227 2228 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 2229 2230 /* Info from cdrecord */ 2231 switch (st) { 2232 case 0: /* standard speed */ 2233 *speed = clv_to_speed[sp]; 2234 break; 2235 case 1: /* high speed */ 2236 *speed = hs_clv_to_speed[sp]; 2237 break; 2238 case 2: /* ultra high speed */ 2239 *speed = us_clv_to_speed[sp]; 2240 break; 2241 default: 2242 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st); 2243 return 1; 2244 } 2245 if (*speed) { 2246 printk(DRIVER_NAME": Max. media speed: %d\n",*speed); 2247 return 0; 2248 } else { 2249 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st); 2250 return 1; 2251 } 2252 } 2253 2254 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd) 2255 { 2256 struct packet_command cgc; 2257 struct request_sense sense; 2258 int ret; 2259 2260 VPRINTK(DRIVER_NAME": Performing OPC\n"); 2261 2262 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 2263 cgc.sense = &sense; 2264 cgc.timeout = 60*HZ; 2265 cgc.cmd[0] = GPCMD_SEND_OPC; 2266 cgc.cmd[1] = 1; 2267 if ((ret = pkt_generic_packet(pd, &cgc))) 2268 pkt_dump_sense(&cgc); 2269 return ret; 2270 } 2271 2272 static int pkt_open_write(struct pktcdvd_device *pd) 2273 { 2274 int ret; 2275 unsigned int write_speed, media_write_speed, read_speed; 2276 2277 if ((ret = pkt_probe_settings(pd))) { 2278 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name); 2279 return ret; 2280 } 2281 2282 if ((ret = pkt_set_write_settings(pd))) { 2283 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name); 2284 return -EIO; 2285 } 2286 2287 pkt_write_caching(pd, USE_WCACHING); 2288 2289 if ((ret = pkt_get_max_speed(pd, &write_speed))) 2290 write_speed = 16 * 177; 2291 switch (pd->mmc3_profile) { 2292 case 0x13: /* DVD-RW */ 2293 case 0x1a: /* DVD+RW */ 2294 case 0x12: /* DVD-RAM */ 2295 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed); 2296 break; 2297 default: 2298 if ((ret = pkt_media_speed(pd, &media_write_speed))) 2299 media_write_speed = 16; 2300 write_speed = min(write_speed, media_write_speed * 177); 2301 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176); 2302 break; 2303 } 2304 read_speed = write_speed; 2305 2306 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 2307 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name); 2308 return -EIO; 2309 } 2310 pd->write_speed = write_speed; 2311 pd->read_speed = read_speed; 2312 2313 if ((ret = pkt_perform_opc(pd))) { 2314 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name); 2315 } 2316 2317 return 0; 2318 } 2319 2320 /* 2321 * called at open time. 2322 */ 2323 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write) 2324 { 2325 int ret; 2326 long lba; 2327 struct request_queue *q; 2328 2329 /* 2330 * We need to re-open the cdrom device without O_NONBLOCK to be able 2331 * to read/write from/to it. It is already opened in O_NONBLOCK mode 2332 * so bdget() can't fail. 2333 */ 2334 bdget(pd->bdev->bd_dev); 2335 if ((ret = blkdev_get(pd->bdev, FMODE_READ))) 2336 goto out; 2337 2338 if ((ret = bd_claim(pd->bdev, pd))) 2339 goto out_putdev; 2340 2341 if ((ret = pkt_get_last_written(pd, &lba))) { 2342 printk(DRIVER_NAME": pkt_get_last_written failed\n"); 2343 goto out_unclaim; 2344 } 2345 2346 set_capacity(pd->disk, lba << 2); 2347 set_capacity(pd->bdev->bd_disk, lba << 2); 2348 bd_set_size(pd->bdev, (loff_t)lba << 11); 2349 2350 q = bdev_get_queue(pd->bdev); 2351 if (write) { 2352 if ((ret = pkt_open_write(pd))) 2353 goto out_unclaim; 2354 /* 2355 * Some CDRW drives can not handle writes larger than one packet, 2356 * even if the size is a multiple of the packet size. 2357 */ 2358 spin_lock_irq(q->queue_lock); 2359 blk_queue_max_sectors(q, pd->settings.size); 2360 spin_unlock_irq(q->queue_lock); 2361 set_bit(PACKET_WRITABLE, &pd->flags); 2362 } else { 2363 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2364 clear_bit(PACKET_WRITABLE, &pd->flags); 2365 } 2366 2367 if ((ret = pkt_set_segment_merging(pd, q))) 2368 goto out_unclaim; 2369 2370 if (write) { 2371 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 2372 printk(DRIVER_NAME": not enough memory for buffers\n"); 2373 ret = -ENOMEM; 2374 goto out_unclaim; 2375 } 2376 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1); 2377 } 2378 2379 return 0; 2380 2381 out_unclaim: 2382 bd_release(pd->bdev); 2383 out_putdev: 2384 blkdev_put(pd->bdev, FMODE_READ); 2385 out: 2386 return ret; 2387 } 2388 2389 /* 2390 * called when the device is closed. makes sure that the device flushes 2391 * the internal cache before we close. 2392 */ 2393 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 2394 { 2395 if (flush && pkt_flush_cache(pd)) 2396 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name); 2397 2398 pkt_lock_door(pd, 0); 2399 2400 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 2401 bd_release(pd->bdev); 2402 blkdev_put(pd->bdev, FMODE_READ); 2403 2404 pkt_shrink_pktlist(pd); 2405 } 2406 2407 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 2408 { 2409 if (dev_minor >= MAX_WRITERS) 2410 return NULL; 2411 return pkt_devs[dev_minor]; 2412 } 2413 2414 static int pkt_open(struct block_device *bdev, fmode_t mode) 2415 { 2416 struct pktcdvd_device *pd = NULL; 2417 int ret; 2418 2419 VPRINTK(DRIVER_NAME": entering open\n"); 2420 2421 mutex_lock(&ctl_mutex); 2422 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev)); 2423 if (!pd) { 2424 ret = -ENODEV; 2425 goto out; 2426 } 2427 BUG_ON(pd->refcnt < 0); 2428 2429 pd->refcnt++; 2430 if (pd->refcnt > 1) { 2431 if ((mode & FMODE_WRITE) && 2432 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2433 ret = -EBUSY; 2434 goto out_dec; 2435 } 2436 } else { 2437 ret = pkt_open_dev(pd, mode & FMODE_WRITE); 2438 if (ret) 2439 goto out_dec; 2440 /* 2441 * needed here as well, since ext2 (among others) may change 2442 * the blocksize at mount time 2443 */ 2444 set_blocksize(bdev, CD_FRAMESIZE); 2445 } 2446 2447 mutex_unlock(&ctl_mutex); 2448 return 0; 2449 2450 out_dec: 2451 pd->refcnt--; 2452 out: 2453 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret); 2454 mutex_unlock(&ctl_mutex); 2455 return ret; 2456 } 2457 2458 static int pkt_close(struct gendisk *disk, fmode_t mode) 2459 { 2460 struct pktcdvd_device *pd = disk->private_data; 2461 int ret = 0; 2462 2463 mutex_lock(&ctl_mutex); 2464 pd->refcnt--; 2465 BUG_ON(pd->refcnt < 0); 2466 if (pd->refcnt == 0) { 2467 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2468 pkt_release_dev(pd, flush); 2469 } 2470 mutex_unlock(&ctl_mutex); 2471 return ret; 2472 } 2473 2474 2475 static void pkt_end_io_read_cloned(struct bio *bio, int err) 2476 { 2477 struct packet_stacked_data *psd = bio->bi_private; 2478 struct pktcdvd_device *pd = psd->pd; 2479 2480 bio_put(bio); 2481 bio_endio(psd->bio, err); 2482 mempool_free(psd, psd_pool); 2483 pkt_bio_finished(pd); 2484 } 2485 2486 static int pkt_make_request(struct request_queue *q, struct bio *bio) 2487 { 2488 struct pktcdvd_device *pd; 2489 char b[BDEVNAME_SIZE]; 2490 sector_t zone; 2491 struct packet_data *pkt; 2492 int was_empty, blocked_bio; 2493 struct pkt_rb_node *node; 2494 2495 pd = q->queuedata; 2496 if (!pd) { 2497 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2498 goto end_io; 2499 } 2500 2501 /* 2502 * Clone READ bios so we can have our own bi_end_io callback. 2503 */ 2504 if (bio_data_dir(bio) == READ) { 2505 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2506 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2507 2508 psd->pd = pd; 2509 psd->bio = bio; 2510 cloned_bio->bi_bdev = pd->bdev; 2511 cloned_bio->bi_private = psd; 2512 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2513 pd->stats.secs_r += bio->bi_size >> 9; 2514 pkt_queue_bio(pd, cloned_bio); 2515 return 0; 2516 } 2517 2518 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2519 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n", 2520 pd->name, (unsigned long long)bio->bi_sector); 2521 goto end_io; 2522 } 2523 2524 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2525 printk(DRIVER_NAME": wrong bio size\n"); 2526 goto end_io; 2527 } 2528 2529 blk_queue_bounce(q, &bio); 2530 2531 zone = ZONE(bio->bi_sector, pd); 2532 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2533 (unsigned long long)bio->bi_sector, 2534 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2535 2536 /* Check if we have to split the bio */ 2537 { 2538 struct bio_pair *bp; 2539 sector_t last_zone; 2540 int first_sectors; 2541 2542 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2543 if (last_zone != zone) { 2544 BUG_ON(last_zone != zone + pd->settings.size); 2545 first_sectors = last_zone - bio->bi_sector; 2546 bp = bio_split(bio, first_sectors); 2547 BUG_ON(!bp); 2548 pkt_make_request(q, &bp->bio1); 2549 pkt_make_request(q, &bp->bio2); 2550 bio_pair_release(bp); 2551 return 0; 2552 } 2553 } 2554 2555 /* 2556 * If we find a matching packet in state WAITING or READ_WAIT, we can 2557 * just append this bio to that packet. 2558 */ 2559 spin_lock(&pd->cdrw.active_list_lock); 2560 blocked_bio = 0; 2561 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2562 if (pkt->sector == zone) { 2563 spin_lock(&pkt->lock); 2564 if ((pkt->state == PACKET_WAITING_STATE) || 2565 (pkt->state == PACKET_READ_WAIT_STATE)) { 2566 pkt_add_list_last(bio, &pkt->orig_bios, 2567 &pkt->orig_bios_tail); 2568 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2569 if ((pkt->write_size >= pkt->frames) && 2570 (pkt->state == PACKET_WAITING_STATE)) { 2571 atomic_inc(&pkt->run_sm); 2572 wake_up(&pd->wqueue); 2573 } 2574 spin_unlock(&pkt->lock); 2575 spin_unlock(&pd->cdrw.active_list_lock); 2576 return 0; 2577 } else { 2578 blocked_bio = 1; 2579 } 2580 spin_unlock(&pkt->lock); 2581 } 2582 } 2583 spin_unlock(&pd->cdrw.active_list_lock); 2584 2585 /* 2586 * Test if there is enough room left in the bio work queue 2587 * (queue size >= congestion on mark). 2588 * If not, wait till the work queue size is below the congestion off mark. 2589 */ 2590 spin_lock(&pd->lock); 2591 if (pd->write_congestion_on > 0 2592 && pd->bio_queue_size >= pd->write_congestion_on) { 2593 set_bdi_congested(&q->backing_dev_info, WRITE); 2594 do { 2595 spin_unlock(&pd->lock); 2596 congestion_wait(WRITE, HZ); 2597 spin_lock(&pd->lock); 2598 } while(pd->bio_queue_size > pd->write_congestion_off); 2599 } 2600 spin_unlock(&pd->lock); 2601 2602 /* 2603 * No matching packet found. Store the bio in the work queue. 2604 */ 2605 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2606 node->bio = bio; 2607 spin_lock(&pd->lock); 2608 BUG_ON(pd->bio_queue_size < 0); 2609 was_empty = (pd->bio_queue_size == 0); 2610 pkt_rbtree_insert(pd, node); 2611 spin_unlock(&pd->lock); 2612 2613 /* 2614 * Wake up the worker thread. 2615 */ 2616 atomic_set(&pd->scan_queue, 1); 2617 if (was_empty) { 2618 /* This wake_up is required for correct operation */ 2619 wake_up(&pd->wqueue); 2620 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2621 /* 2622 * This wake up is not required for correct operation, 2623 * but improves performance in some cases. 2624 */ 2625 wake_up(&pd->wqueue); 2626 } 2627 return 0; 2628 end_io: 2629 bio_io_error(bio); 2630 return 0; 2631 } 2632 2633 2634 2635 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd, 2636 struct bio_vec *bvec) 2637 { 2638 struct pktcdvd_device *pd = q->queuedata; 2639 sector_t zone = ZONE(bmd->bi_sector, pd); 2640 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size; 2641 int remaining = (pd->settings.size << 9) - used; 2642 int remaining2; 2643 2644 /* 2645 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2646 * boundary, pkt_make_request() will split the bio. 2647 */ 2648 remaining2 = PAGE_SIZE - bmd->bi_size; 2649 remaining = max(remaining, remaining2); 2650 2651 BUG_ON(remaining < 0); 2652 return remaining; 2653 } 2654 2655 static void pkt_init_queue(struct pktcdvd_device *pd) 2656 { 2657 struct request_queue *q = pd->disk->queue; 2658 2659 blk_queue_make_request(q, pkt_make_request); 2660 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2661 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2662 blk_queue_merge_bvec(q, pkt_merge_bvec); 2663 q->queuedata = pd; 2664 } 2665 2666 static int pkt_seq_show(struct seq_file *m, void *p) 2667 { 2668 struct pktcdvd_device *pd = m->private; 2669 char *msg; 2670 char bdev_buf[BDEVNAME_SIZE]; 2671 int states[PACKET_NUM_STATES]; 2672 2673 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2674 bdevname(pd->bdev, bdev_buf)); 2675 2676 seq_printf(m, "\nSettings:\n"); 2677 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2678 2679 if (pd->settings.write_type == 0) 2680 msg = "Packet"; 2681 else 2682 msg = "Unknown"; 2683 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2684 2685 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2686 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2687 2688 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2689 2690 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2691 msg = "Mode 1"; 2692 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2693 msg = "Mode 2"; 2694 else 2695 msg = "Unknown"; 2696 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2697 2698 seq_printf(m, "\nStatistics:\n"); 2699 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2700 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2701 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2702 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2703 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2704 2705 seq_printf(m, "\nMisc:\n"); 2706 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2707 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2708 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2709 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2710 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2711 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2712 2713 seq_printf(m, "\nQueue state:\n"); 2714 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2715 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2716 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2717 2718 pkt_count_states(pd, states); 2719 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2720 states[0], states[1], states[2], states[3], states[4], states[5]); 2721 2722 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n", 2723 pd->write_congestion_off, 2724 pd->write_congestion_on); 2725 return 0; 2726 } 2727 2728 static int pkt_seq_open(struct inode *inode, struct file *file) 2729 { 2730 return single_open(file, pkt_seq_show, PDE(inode)->data); 2731 } 2732 2733 static const struct file_operations pkt_proc_fops = { 2734 .open = pkt_seq_open, 2735 .read = seq_read, 2736 .llseek = seq_lseek, 2737 .release = single_release 2738 }; 2739 2740 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2741 { 2742 int i; 2743 int ret = 0; 2744 char b[BDEVNAME_SIZE]; 2745 struct block_device *bdev; 2746 2747 if (pd->pkt_dev == dev) { 2748 printk(DRIVER_NAME": Recursive setup not allowed\n"); 2749 return -EBUSY; 2750 } 2751 for (i = 0; i < MAX_WRITERS; i++) { 2752 struct pktcdvd_device *pd2 = pkt_devs[i]; 2753 if (!pd2) 2754 continue; 2755 if (pd2->bdev->bd_dev == dev) { 2756 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b)); 2757 return -EBUSY; 2758 } 2759 if (pd2->pkt_dev == dev) { 2760 printk(DRIVER_NAME": Can't chain pktcdvd devices\n"); 2761 return -EBUSY; 2762 } 2763 } 2764 2765 bdev = bdget(dev); 2766 if (!bdev) 2767 return -ENOMEM; 2768 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY); 2769 if (ret) 2770 return ret; 2771 2772 /* This is safe, since we have a reference from open(). */ 2773 __module_get(THIS_MODULE); 2774 2775 pd->bdev = bdev; 2776 set_blocksize(bdev, CD_FRAMESIZE); 2777 2778 pkt_init_queue(pd); 2779 2780 atomic_set(&pd->cdrw.pending_bios, 0); 2781 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2782 if (IS_ERR(pd->cdrw.thread)) { 2783 printk(DRIVER_NAME": can't start kernel thread\n"); 2784 ret = -ENOMEM; 2785 goto out_mem; 2786 } 2787 2788 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd); 2789 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2790 return 0; 2791 2792 out_mem: 2793 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 2794 /* This is safe: open() is still holding a reference. */ 2795 module_put(THIS_MODULE); 2796 return ret; 2797 } 2798 2799 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) 2800 { 2801 struct pktcdvd_device *pd = bdev->bd_disk->private_data; 2802 2803 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, 2804 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev)); 2805 2806 switch (cmd) { 2807 case CDROMEJECT: 2808 /* 2809 * The door gets locked when the device is opened, so we 2810 * have to unlock it or else the eject command fails. 2811 */ 2812 if (pd->refcnt == 1) 2813 pkt_lock_door(pd, 0); 2814 /* fallthru */ 2815 /* 2816 * forward selected CDROM ioctls to CD-ROM, for UDF 2817 */ 2818 case CDROMMULTISESSION: 2819 case CDROMREADTOCENTRY: 2820 case CDROM_LAST_WRITTEN: 2821 case CDROM_SEND_PACKET: 2822 case SCSI_IOCTL_SEND_COMMAND: 2823 return __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg); 2824 2825 default: 2826 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd); 2827 return -ENOTTY; 2828 } 2829 2830 return 0; 2831 } 2832 2833 static int pkt_media_changed(struct gendisk *disk) 2834 { 2835 struct pktcdvd_device *pd = disk->private_data; 2836 struct gendisk *attached_disk; 2837 2838 if (!pd) 2839 return 0; 2840 if (!pd->bdev) 2841 return 0; 2842 attached_disk = pd->bdev->bd_disk; 2843 if (!attached_disk) 2844 return 0; 2845 return attached_disk->fops->media_changed(attached_disk); 2846 } 2847 2848 static struct block_device_operations pktcdvd_ops = { 2849 .owner = THIS_MODULE, 2850 .open = pkt_open, 2851 .release = pkt_close, 2852 .locked_ioctl = pkt_ioctl, 2853 .media_changed = pkt_media_changed, 2854 }; 2855 2856 /* 2857 * Set up mapping from pktcdvd device to CD-ROM device. 2858 */ 2859 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev) 2860 { 2861 int idx; 2862 int ret = -ENOMEM; 2863 struct pktcdvd_device *pd; 2864 struct gendisk *disk; 2865 2866 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2867 2868 for (idx = 0; idx < MAX_WRITERS; idx++) 2869 if (!pkt_devs[idx]) 2870 break; 2871 if (idx == MAX_WRITERS) { 2872 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS); 2873 ret = -EBUSY; 2874 goto out_mutex; 2875 } 2876 2877 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2878 if (!pd) 2879 goto out_mutex; 2880 2881 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2882 sizeof(struct pkt_rb_node)); 2883 if (!pd->rb_pool) 2884 goto out_mem; 2885 2886 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2887 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2888 spin_lock_init(&pd->cdrw.active_list_lock); 2889 2890 spin_lock_init(&pd->lock); 2891 spin_lock_init(&pd->iosched.lock); 2892 sprintf(pd->name, DRIVER_NAME"%d", idx); 2893 init_waitqueue_head(&pd->wqueue); 2894 pd->bio_queue = RB_ROOT; 2895 2896 pd->write_congestion_on = write_congestion_on; 2897 pd->write_congestion_off = write_congestion_off; 2898 2899 disk = alloc_disk(1); 2900 if (!disk) 2901 goto out_mem; 2902 pd->disk = disk; 2903 disk->major = pktdev_major; 2904 disk->first_minor = idx; 2905 disk->fops = &pktcdvd_ops; 2906 disk->flags = GENHD_FL_REMOVABLE; 2907 strcpy(disk->disk_name, pd->name); 2908 disk->private_data = pd; 2909 disk->queue = blk_alloc_queue(GFP_KERNEL); 2910 if (!disk->queue) 2911 goto out_mem2; 2912 2913 pd->pkt_dev = MKDEV(pktdev_major, idx); 2914 ret = pkt_new_dev(pd, dev); 2915 if (ret) 2916 goto out_new_dev; 2917 2918 add_disk(disk); 2919 2920 pkt_sysfs_dev_new(pd); 2921 pkt_debugfs_dev_new(pd); 2922 2923 pkt_devs[idx] = pd; 2924 if (pkt_dev) 2925 *pkt_dev = pd->pkt_dev; 2926 2927 mutex_unlock(&ctl_mutex); 2928 return 0; 2929 2930 out_new_dev: 2931 blk_cleanup_queue(disk->queue); 2932 out_mem2: 2933 put_disk(disk); 2934 out_mem: 2935 if (pd->rb_pool) 2936 mempool_destroy(pd->rb_pool); 2937 kfree(pd); 2938 out_mutex: 2939 mutex_unlock(&ctl_mutex); 2940 printk(DRIVER_NAME": setup of pktcdvd device failed\n"); 2941 return ret; 2942 } 2943 2944 /* 2945 * Tear down mapping from pktcdvd device to CD-ROM device. 2946 */ 2947 static int pkt_remove_dev(dev_t pkt_dev) 2948 { 2949 struct pktcdvd_device *pd; 2950 int idx; 2951 int ret = 0; 2952 2953 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 2954 2955 for (idx = 0; idx < MAX_WRITERS; idx++) { 2956 pd = pkt_devs[idx]; 2957 if (pd && (pd->pkt_dev == pkt_dev)) 2958 break; 2959 } 2960 if (idx == MAX_WRITERS) { 2961 DPRINTK(DRIVER_NAME": dev not setup\n"); 2962 ret = -ENXIO; 2963 goto out; 2964 } 2965 2966 if (pd->refcnt > 0) { 2967 ret = -EBUSY; 2968 goto out; 2969 } 2970 if (!IS_ERR(pd->cdrw.thread)) 2971 kthread_stop(pd->cdrw.thread); 2972 2973 pkt_devs[idx] = NULL; 2974 2975 pkt_debugfs_dev_remove(pd); 2976 pkt_sysfs_dev_remove(pd); 2977 2978 blkdev_put(pd->bdev, FMODE_READ|FMODE_WRITE); 2979 2980 remove_proc_entry(pd->name, pkt_proc); 2981 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name); 2982 2983 del_gendisk(pd->disk); 2984 blk_cleanup_queue(pd->disk->queue); 2985 put_disk(pd->disk); 2986 2987 mempool_destroy(pd->rb_pool); 2988 kfree(pd); 2989 2990 /* This is safe: open() is still holding a reference. */ 2991 module_put(THIS_MODULE); 2992 2993 out: 2994 mutex_unlock(&ctl_mutex); 2995 return ret; 2996 } 2997 2998 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2999 { 3000 struct pktcdvd_device *pd; 3001 3002 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING); 3003 3004 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 3005 if (pd) { 3006 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 3007 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 3008 } else { 3009 ctrl_cmd->dev = 0; 3010 ctrl_cmd->pkt_dev = 0; 3011 } 3012 ctrl_cmd->num_devices = MAX_WRITERS; 3013 3014 mutex_unlock(&ctl_mutex); 3015 } 3016 3017 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 3018 { 3019 void __user *argp = (void __user *)arg; 3020 struct pkt_ctrl_command ctrl_cmd; 3021 int ret = 0; 3022 dev_t pkt_dev = 0; 3023 3024 if (cmd != PACKET_CTRL_CMD) 3025 return -ENOTTY; 3026 3027 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 3028 return -EFAULT; 3029 3030 switch (ctrl_cmd.command) { 3031 case PKT_CTRL_CMD_SETUP: 3032 if (!capable(CAP_SYS_ADMIN)) 3033 return -EPERM; 3034 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev); 3035 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev); 3036 break; 3037 case PKT_CTRL_CMD_TEARDOWN: 3038 if (!capable(CAP_SYS_ADMIN)) 3039 return -EPERM; 3040 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev)); 3041 break; 3042 case PKT_CTRL_CMD_STATUS: 3043 pkt_get_status(&ctrl_cmd); 3044 break; 3045 default: 3046 return -ENOTTY; 3047 } 3048 3049 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 3050 return -EFAULT; 3051 return ret; 3052 } 3053 3054 3055 static const struct file_operations pkt_ctl_fops = { 3056 .ioctl = pkt_ctl_ioctl, 3057 .owner = THIS_MODULE, 3058 }; 3059 3060 static struct miscdevice pkt_misc = { 3061 .minor = MISC_DYNAMIC_MINOR, 3062 .name = DRIVER_NAME, 3063 .fops = &pkt_ctl_fops 3064 }; 3065 3066 static int __init pkt_init(void) 3067 { 3068 int ret; 3069 3070 mutex_init(&ctl_mutex); 3071 3072 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 3073 sizeof(struct packet_stacked_data)); 3074 if (!psd_pool) 3075 return -ENOMEM; 3076 3077 ret = register_blkdev(pktdev_major, DRIVER_NAME); 3078 if (ret < 0) { 3079 printk(DRIVER_NAME": Unable to register block device\n"); 3080 goto out2; 3081 } 3082 if (!pktdev_major) 3083 pktdev_major = ret; 3084 3085 ret = pkt_sysfs_init(); 3086 if (ret) 3087 goto out; 3088 3089 pkt_debugfs_init(); 3090 3091 ret = misc_register(&pkt_misc); 3092 if (ret) { 3093 printk(DRIVER_NAME": Unable to register misc device\n"); 3094 goto out_misc; 3095 } 3096 3097 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL); 3098 3099 return 0; 3100 3101 out_misc: 3102 pkt_debugfs_cleanup(); 3103 pkt_sysfs_cleanup(); 3104 out: 3105 unregister_blkdev(pktdev_major, DRIVER_NAME); 3106 out2: 3107 mempool_destroy(psd_pool); 3108 return ret; 3109 } 3110 3111 static void __exit pkt_exit(void) 3112 { 3113 remove_proc_entry("driver/"DRIVER_NAME, NULL); 3114 misc_deregister(&pkt_misc); 3115 3116 pkt_debugfs_cleanup(); 3117 pkt_sysfs_cleanup(); 3118 3119 unregister_blkdev(pktdev_major, DRIVER_NAME); 3120 mempool_destroy(psd_pool); 3121 } 3122 3123 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 3124 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 3125 MODULE_LICENSE("GPL"); 3126 3127 module_init(pkt_init); 3128 module_exit(pkt_exit); 3129