xref: /linux/drivers/block/pktcdvd.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom ->submit_bio function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #include <linux/backing-dev.h>
50 #include <linux/compat.h>
51 #include <linux/debugfs.h>
52 #include <linux/device.h>
53 #include <linux/errno.h>
54 #include <linux/file.h>
55 #include <linux/freezer.h>
56 #include <linux/kernel.h>
57 #include <linux/kthread.h>
58 #include <linux/miscdevice.h>
59 #include <linux/module.h>
60 #include <linux/mutex.h>
61 #include <linux/nospec.h>
62 #include <linux/pktcdvd.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/slab.h>
66 #include <linux/spinlock.h>
67 #include <linux/types.h>
68 #include <linux/uaccess.h>
69 
70 #include <scsi/scsi.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <scsi/scsi_ioctl.h>
73 
74 #include <asm/unaligned.h>
75 
76 #define DRIVER_NAME	"pktcdvd"
77 
78 #define MAX_SPEED 0xffff
79 
80 static DEFINE_MUTEX(pktcdvd_mutex);
81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82 static struct proc_dir_entry *pkt_proc;
83 static int pktdev_major;
84 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
85 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
86 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
87 static mempool_t psd_pool;
88 static struct bio_set pkt_bio_set;
89 
90 /* /sys/class/pktcdvd */
91 static struct class	class_pktcdvd;
92 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
93 
94 /* forward declaration */
95 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
96 static int pkt_remove_dev(dev_t pkt_dev);
97 
98 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
99 {
100 	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
101 }
102 
103 /**********************************************************
104  * sysfs interface for pktcdvd
105  * by (C) 2006  Thomas Maier <balagi@justmail.de>
106 
107   /sys/class/pktcdvd/pktcdvd[0-7]/
108                      stat/reset
109                      stat/packets_started
110                      stat/packets_finished
111                      stat/kb_written
112                      stat/kb_read
113                      stat/kb_read_gather
114                      write_queue/size
115                      write_queue/congestion_off
116                      write_queue/congestion_on
117  **********************************************************/
118 
119 static ssize_t packets_started_show(struct device *dev,
120 				    struct device_attribute *attr, char *buf)
121 {
122 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
123 
124 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
125 }
126 static DEVICE_ATTR_RO(packets_started);
127 
128 static ssize_t packets_finished_show(struct device *dev,
129 				     struct device_attribute *attr, char *buf)
130 {
131 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
132 
133 	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
134 }
135 static DEVICE_ATTR_RO(packets_finished);
136 
137 static ssize_t kb_written_show(struct device *dev,
138 			       struct device_attribute *attr, char *buf)
139 {
140 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
141 
142 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
143 }
144 static DEVICE_ATTR_RO(kb_written);
145 
146 static ssize_t kb_read_show(struct device *dev,
147 			    struct device_attribute *attr, char *buf)
148 {
149 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
150 
151 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
152 }
153 static DEVICE_ATTR_RO(kb_read);
154 
155 static ssize_t kb_read_gather_show(struct device *dev,
156 				   struct device_attribute *attr, char *buf)
157 {
158 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
159 
160 	return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
161 }
162 static DEVICE_ATTR_RO(kb_read_gather);
163 
164 static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
165 			   const char *buf, size_t len)
166 {
167 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
168 
169 	if (len > 0) {
170 		pd->stats.pkt_started = 0;
171 		pd->stats.pkt_ended = 0;
172 		pd->stats.secs_w = 0;
173 		pd->stats.secs_rg = 0;
174 		pd->stats.secs_r = 0;
175 	}
176 	return len;
177 }
178 static DEVICE_ATTR_WO(reset);
179 
180 static struct attribute *pkt_stat_attrs[] = {
181 	&dev_attr_packets_finished.attr,
182 	&dev_attr_packets_started.attr,
183 	&dev_attr_kb_read.attr,
184 	&dev_attr_kb_written.attr,
185 	&dev_attr_kb_read_gather.attr,
186 	&dev_attr_reset.attr,
187 	NULL,
188 };
189 
190 static const struct attribute_group pkt_stat_group = {
191 	.name = "stat",
192 	.attrs = pkt_stat_attrs,
193 };
194 
195 static ssize_t size_show(struct device *dev,
196 			 struct device_attribute *attr, char *buf)
197 {
198 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
199 	int n;
200 
201 	spin_lock(&pd->lock);
202 	n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
203 	spin_unlock(&pd->lock);
204 	return n;
205 }
206 static DEVICE_ATTR_RO(size);
207 
208 static void init_write_congestion_marks(int* lo, int* hi)
209 {
210 	if (*hi > 0) {
211 		*hi = max(*hi, 500);
212 		*hi = min(*hi, 1000000);
213 		if (*lo <= 0)
214 			*lo = *hi - 100;
215 		else {
216 			*lo = min(*lo, *hi - 100);
217 			*lo = max(*lo, 100);
218 		}
219 	} else {
220 		*hi = -1;
221 		*lo = -1;
222 	}
223 }
224 
225 static ssize_t congestion_off_show(struct device *dev,
226 				   struct device_attribute *attr, char *buf)
227 {
228 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
229 	int n;
230 
231 	spin_lock(&pd->lock);
232 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
233 	spin_unlock(&pd->lock);
234 	return n;
235 }
236 
237 static ssize_t congestion_off_store(struct device *dev,
238 				    struct device_attribute *attr,
239 				    const char *buf, size_t len)
240 {
241 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
242 	int val, ret;
243 
244 	ret = kstrtoint(buf, 10, &val);
245 	if (ret)
246 		return ret;
247 
248 	spin_lock(&pd->lock);
249 	pd->write_congestion_off = val;
250 	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
251 	spin_unlock(&pd->lock);
252 	return len;
253 }
254 static DEVICE_ATTR_RW(congestion_off);
255 
256 static ssize_t congestion_on_show(struct device *dev,
257 				  struct device_attribute *attr, char *buf)
258 {
259 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
260 	int n;
261 
262 	spin_lock(&pd->lock);
263 	n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
264 	spin_unlock(&pd->lock);
265 	return n;
266 }
267 
268 static ssize_t congestion_on_store(struct device *dev,
269 				   struct device_attribute *attr,
270 				   const char *buf, size_t len)
271 {
272 	struct pktcdvd_device *pd = dev_get_drvdata(dev);
273 	int val, ret;
274 
275 	ret = kstrtoint(buf, 10, &val);
276 	if (ret)
277 		return ret;
278 
279 	spin_lock(&pd->lock);
280 	pd->write_congestion_on = val;
281 	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
282 	spin_unlock(&pd->lock);
283 	return len;
284 }
285 static DEVICE_ATTR_RW(congestion_on);
286 
287 static struct attribute *pkt_wq_attrs[] = {
288 	&dev_attr_congestion_on.attr,
289 	&dev_attr_congestion_off.attr,
290 	&dev_attr_size.attr,
291 	NULL,
292 };
293 
294 static const struct attribute_group pkt_wq_group = {
295 	.name = "write_queue",
296 	.attrs = pkt_wq_attrs,
297 };
298 
299 static const struct attribute_group *pkt_groups[] = {
300 	&pkt_stat_group,
301 	&pkt_wq_group,
302 	NULL,
303 };
304 
305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306 {
307 	if (class_is_registered(&class_pktcdvd)) {
308 		pd->dev = device_create_with_groups(&class_pktcdvd, NULL,
309 						    MKDEV(0, 0), pd, pkt_groups,
310 						    "%s", pd->disk->disk_name);
311 		if (IS_ERR(pd->dev))
312 			pd->dev = NULL;
313 	}
314 }
315 
316 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
317 {
318 	if (class_is_registered(&class_pktcdvd))
319 		device_unregister(pd->dev);
320 }
321 
322 
323 /********************************************************************
324   /sys/class/pktcdvd/
325                      add            map block device
326                      remove         unmap packet dev
327                      device_map     show mappings
328  *******************************************************************/
329 
330 static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr,
331 			       char *data)
332 {
333 	int n = 0;
334 	int idx;
335 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
336 	for (idx = 0; idx < MAX_WRITERS; idx++) {
337 		struct pktcdvd_device *pd = pkt_devs[idx];
338 		if (!pd)
339 			continue;
340 		n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n",
341 			pd->disk->disk_name,
342 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
343 			MAJOR(pd->bdev_handle->bdev->bd_dev),
344 			MINOR(pd->bdev_handle->bdev->bd_dev));
345 	}
346 	mutex_unlock(&ctl_mutex);
347 	return n;
348 }
349 static CLASS_ATTR_RO(device_map);
350 
351 static ssize_t add_store(const struct class *c, const struct class_attribute *attr,
352 			 const char *buf, size_t count)
353 {
354 	unsigned int major, minor;
355 
356 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
357 		/* pkt_setup_dev() expects caller to hold reference to self */
358 		if (!try_module_get(THIS_MODULE))
359 			return -ENODEV;
360 
361 		pkt_setup_dev(MKDEV(major, minor), NULL);
362 
363 		module_put(THIS_MODULE);
364 
365 		return count;
366 	}
367 
368 	return -EINVAL;
369 }
370 static CLASS_ATTR_WO(add);
371 
372 static ssize_t remove_store(const struct class *c, const struct class_attribute *attr,
373 			    const char *buf, size_t count)
374 {
375 	unsigned int major, minor;
376 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
377 		pkt_remove_dev(MKDEV(major, minor));
378 		return count;
379 	}
380 	return -EINVAL;
381 }
382 static CLASS_ATTR_WO(remove);
383 
384 static struct attribute *class_pktcdvd_attrs[] = {
385 	&class_attr_add.attr,
386 	&class_attr_remove.attr,
387 	&class_attr_device_map.attr,
388 	NULL,
389 };
390 ATTRIBUTE_GROUPS(class_pktcdvd);
391 
392 static struct class class_pktcdvd = {
393 	.name		= DRIVER_NAME,
394 	.class_groups	= class_pktcdvd_groups,
395 };
396 
397 static int pkt_sysfs_init(void)
398 {
399 	/*
400 	 * create control files in sysfs
401 	 * /sys/class/pktcdvd/...
402 	 */
403 	return class_register(&class_pktcdvd);
404 }
405 
406 static void pkt_sysfs_cleanup(void)
407 {
408 	class_unregister(&class_pktcdvd);
409 }
410 
411 /********************************************************************
412   entries in debugfs
413 
414   /sys/kernel/debug/pktcdvd[0-7]/
415 			info
416 
417  *******************************************************************/
418 
419 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
420 {
421 	struct packet_data *pkt;
422 	int i;
423 
424 	for (i = 0; i < PACKET_NUM_STATES; i++)
425 		states[i] = 0;
426 
427 	spin_lock(&pd->cdrw.active_list_lock);
428 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
429 		states[pkt->state]++;
430 	}
431 	spin_unlock(&pd->cdrw.active_list_lock);
432 }
433 
434 static int pkt_seq_show(struct seq_file *m, void *p)
435 {
436 	struct pktcdvd_device *pd = m->private;
437 	char *msg;
438 	int states[PACKET_NUM_STATES];
439 
440 	seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name,
441 		   pd->bdev_handle->bdev);
442 
443 	seq_printf(m, "\nSettings:\n");
444 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
445 
446 	if (pd->settings.write_type == 0)
447 		msg = "Packet";
448 	else
449 		msg = "Unknown";
450 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
451 
452 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
453 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
454 
455 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
456 
457 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
458 		msg = "Mode 1";
459 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
460 		msg = "Mode 2";
461 	else
462 		msg = "Unknown";
463 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
464 
465 	seq_printf(m, "\nStatistics:\n");
466 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
467 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
468 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
469 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
470 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
471 
472 	seq_printf(m, "\nMisc:\n");
473 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
474 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
475 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
476 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
477 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
478 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
479 
480 	seq_printf(m, "\nQueue state:\n");
481 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
482 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
483 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector);
484 
485 	pkt_count_states(pd, states);
486 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
487 		   states[0], states[1], states[2], states[3], states[4], states[5]);
488 
489 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
490 			pd->write_congestion_off,
491 			pd->write_congestion_on);
492 	return 0;
493 }
494 DEFINE_SHOW_ATTRIBUTE(pkt_seq);
495 
496 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
497 {
498 	if (!pkt_debugfs_root)
499 		return;
500 	pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
501 	if (!pd->dfs_d_root)
502 		return;
503 
504 	pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root,
505 					     pd, &pkt_seq_fops);
506 }
507 
508 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
509 {
510 	if (!pkt_debugfs_root)
511 		return;
512 	debugfs_remove(pd->dfs_f_info);
513 	debugfs_remove(pd->dfs_d_root);
514 	pd->dfs_f_info = NULL;
515 	pd->dfs_d_root = NULL;
516 }
517 
518 static void pkt_debugfs_init(void)
519 {
520 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
521 }
522 
523 static void pkt_debugfs_cleanup(void)
524 {
525 	debugfs_remove(pkt_debugfs_root);
526 	pkt_debugfs_root = NULL;
527 }
528 
529 /* ----------------------------------------------------------*/
530 
531 
532 static void pkt_bio_finished(struct pktcdvd_device *pd)
533 {
534 	struct device *ddev = disk_to_dev(pd->disk);
535 
536 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
537 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
538 		dev_dbg(ddev, "queue empty\n");
539 		atomic_set(&pd->iosched.attention, 1);
540 		wake_up(&pd->wqueue);
541 	}
542 }
543 
544 /*
545  * Allocate a packet_data struct
546  */
547 static struct packet_data *pkt_alloc_packet_data(int frames)
548 {
549 	int i;
550 	struct packet_data *pkt;
551 
552 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
553 	if (!pkt)
554 		goto no_pkt;
555 
556 	pkt->frames = frames;
557 	pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
558 	if (!pkt->w_bio)
559 		goto no_bio;
560 
561 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
562 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
563 		if (!pkt->pages[i])
564 			goto no_page;
565 	}
566 
567 	spin_lock_init(&pkt->lock);
568 	bio_list_init(&pkt->orig_bios);
569 
570 	for (i = 0; i < frames; i++) {
571 		pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
572 		if (!pkt->r_bios[i])
573 			goto no_rd_bio;
574 	}
575 
576 	return pkt;
577 
578 no_rd_bio:
579 	for (i = 0; i < frames; i++)
580 		kfree(pkt->r_bios[i]);
581 no_page:
582 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
583 		if (pkt->pages[i])
584 			__free_page(pkt->pages[i]);
585 	kfree(pkt->w_bio);
586 no_bio:
587 	kfree(pkt);
588 no_pkt:
589 	return NULL;
590 }
591 
592 /*
593  * Free a packet_data struct
594  */
595 static void pkt_free_packet_data(struct packet_data *pkt)
596 {
597 	int i;
598 
599 	for (i = 0; i < pkt->frames; i++)
600 		kfree(pkt->r_bios[i]);
601 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
602 		__free_page(pkt->pages[i]);
603 	kfree(pkt->w_bio);
604 	kfree(pkt);
605 }
606 
607 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
608 {
609 	struct packet_data *pkt, *next;
610 
611 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
612 
613 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
614 		pkt_free_packet_data(pkt);
615 	}
616 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
617 }
618 
619 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
620 {
621 	struct packet_data *pkt;
622 
623 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
624 
625 	while (nr_packets > 0) {
626 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
627 		if (!pkt) {
628 			pkt_shrink_pktlist(pd);
629 			return 0;
630 		}
631 		pkt->id = nr_packets;
632 		pkt->pd = pd;
633 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
634 		nr_packets--;
635 	}
636 	return 1;
637 }
638 
639 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
640 {
641 	struct rb_node *n = rb_next(&node->rb_node);
642 	if (!n)
643 		return NULL;
644 	return rb_entry(n, struct pkt_rb_node, rb_node);
645 }
646 
647 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
648 {
649 	rb_erase(&node->rb_node, &pd->bio_queue);
650 	mempool_free(node, &pd->rb_pool);
651 	pd->bio_queue_size--;
652 	BUG_ON(pd->bio_queue_size < 0);
653 }
654 
655 /*
656  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
657  */
658 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
659 {
660 	struct rb_node *n = pd->bio_queue.rb_node;
661 	struct rb_node *next;
662 	struct pkt_rb_node *tmp;
663 
664 	if (!n) {
665 		BUG_ON(pd->bio_queue_size > 0);
666 		return NULL;
667 	}
668 
669 	for (;;) {
670 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
671 		if (s <= tmp->bio->bi_iter.bi_sector)
672 			next = n->rb_left;
673 		else
674 			next = n->rb_right;
675 		if (!next)
676 			break;
677 		n = next;
678 	}
679 
680 	if (s > tmp->bio->bi_iter.bi_sector) {
681 		tmp = pkt_rbtree_next(tmp);
682 		if (!tmp)
683 			return NULL;
684 	}
685 	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
686 	return tmp;
687 }
688 
689 /*
690  * Insert a node into the pd->bio_queue rb tree.
691  */
692 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
693 {
694 	struct rb_node **p = &pd->bio_queue.rb_node;
695 	struct rb_node *parent = NULL;
696 	sector_t s = node->bio->bi_iter.bi_sector;
697 	struct pkt_rb_node *tmp;
698 
699 	while (*p) {
700 		parent = *p;
701 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
702 		if (s < tmp->bio->bi_iter.bi_sector)
703 			p = &(*p)->rb_left;
704 		else
705 			p = &(*p)->rb_right;
706 	}
707 	rb_link_node(&node->rb_node, parent, p);
708 	rb_insert_color(&node->rb_node, &pd->bio_queue);
709 	pd->bio_queue_size++;
710 }
711 
712 /*
713  * Send a packet_command to the underlying block device and
714  * wait for completion.
715  */
716 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
717 {
718 	struct request_queue *q = bdev_get_queue(pd->bdev_handle->bdev);
719 	struct scsi_cmnd *scmd;
720 	struct request *rq;
721 	int ret = 0;
722 
723 	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
724 			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
725 	if (IS_ERR(rq))
726 		return PTR_ERR(rq);
727 	scmd = blk_mq_rq_to_pdu(rq);
728 
729 	if (cgc->buflen) {
730 		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
731 				      GFP_NOIO);
732 		if (ret)
733 			goto out;
734 	}
735 
736 	scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
737 	memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
738 
739 	rq->timeout = 60*HZ;
740 	if (cgc->quiet)
741 		rq->rq_flags |= RQF_QUIET;
742 
743 	blk_execute_rq(rq, false);
744 	if (scmd->result)
745 		ret = -EIO;
746 out:
747 	blk_mq_free_request(rq);
748 	return ret;
749 }
750 
751 static const char *sense_key_string(__u8 index)
752 {
753 	static const char * const info[] = {
754 		"No sense", "Recovered error", "Not ready",
755 		"Medium error", "Hardware error", "Illegal request",
756 		"Unit attention", "Data protect", "Blank check",
757 	};
758 
759 	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
760 }
761 
762 /*
763  * A generic sense dump / resolve mechanism should be implemented across
764  * all ATAPI + SCSI devices.
765  */
766 static void pkt_dump_sense(struct pktcdvd_device *pd,
767 			   struct packet_command *cgc)
768 {
769 	struct device *ddev = disk_to_dev(pd->disk);
770 	struct scsi_sense_hdr *sshdr = cgc->sshdr;
771 
772 	if (sshdr)
773 		dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n",
774 			CDROM_PACKET_SIZE, cgc->cmd,
775 			sshdr->sense_key, sshdr->asc, sshdr->ascq,
776 			sense_key_string(sshdr->sense_key));
777 	else
778 		dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
779 }
780 
781 /*
782  * flush the drive cache to media
783  */
784 static int pkt_flush_cache(struct pktcdvd_device *pd)
785 {
786 	struct packet_command cgc;
787 
788 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
789 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
790 	cgc.quiet = 1;
791 
792 	/*
793 	 * the IMMED bit -- we default to not setting it, although that
794 	 * would allow a much faster close, this is safer
795 	 */
796 #if 0
797 	cgc.cmd[1] = 1 << 1;
798 #endif
799 	return pkt_generic_packet(pd, &cgc);
800 }
801 
802 /*
803  * speed is given as the normal factor, e.g. 4 for 4x
804  */
805 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
806 				unsigned write_speed, unsigned read_speed)
807 {
808 	struct packet_command cgc;
809 	struct scsi_sense_hdr sshdr;
810 	int ret;
811 
812 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
813 	cgc.sshdr = &sshdr;
814 	cgc.cmd[0] = GPCMD_SET_SPEED;
815 	put_unaligned_be16(read_speed, &cgc.cmd[2]);
816 	put_unaligned_be16(write_speed, &cgc.cmd[4]);
817 
818 	ret = pkt_generic_packet(pd, &cgc);
819 	if (ret)
820 		pkt_dump_sense(pd, &cgc);
821 
822 	return ret;
823 }
824 
825 /*
826  * Queue a bio for processing by the low-level CD device. Must be called
827  * from process context.
828  */
829 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
830 {
831 	spin_lock(&pd->iosched.lock);
832 	if (bio_data_dir(bio) == READ)
833 		bio_list_add(&pd->iosched.read_queue, bio);
834 	else
835 		bio_list_add(&pd->iosched.write_queue, bio);
836 	spin_unlock(&pd->iosched.lock);
837 
838 	atomic_set(&pd->iosched.attention, 1);
839 	wake_up(&pd->wqueue);
840 }
841 
842 /*
843  * Process the queued read/write requests. This function handles special
844  * requirements for CDRW drives:
845  * - A cache flush command must be inserted before a read request if the
846  *   previous request was a write.
847  * - Switching between reading and writing is slow, so don't do it more often
848  *   than necessary.
849  * - Optimize for throughput at the expense of latency. This means that streaming
850  *   writes will never be interrupted by a read, but if the drive has to seek
851  *   before the next write, switch to reading instead if there are any pending
852  *   read requests.
853  * - Set the read speed according to current usage pattern. When only reading
854  *   from the device, it's best to use the highest possible read speed, but
855  *   when switching often between reading and writing, it's better to have the
856  *   same read and write speeds.
857  */
858 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
859 {
860 	struct device *ddev = disk_to_dev(pd->disk);
861 
862 	if (atomic_read(&pd->iosched.attention) == 0)
863 		return;
864 	atomic_set(&pd->iosched.attention, 0);
865 
866 	for (;;) {
867 		struct bio *bio;
868 		int reads_queued, writes_queued;
869 
870 		spin_lock(&pd->iosched.lock);
871 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
872 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
873 		spin_unlock(&pd->iosched.lock);
874 
875 		if (!reads_queued && !writes_queued)
876 			break;
877 
878 		if (pd->iosched.writing) {
879 			int need_write_seek = 1;
880 			spin_lock(&pd->iosched.lock);
881 			bio = bio_list_peek(&pd->iosched.write_queue);
882 			spin_unlock(&pd->iosched.lock);
883 			if (bio && (bio->bi_iter.bi_sector ==
884 				    pd->iosched.last_write))
885 				need_write_seek = 0;
886 			if (need_write_seek && reads_queued) {
887 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
888 					dev_dbg(ddev, "write, waiting\n");
889 					break;
890 				}
891 				pkt_flush_cache(pd);
892 				pd->iosched.writing = 0;
893 			}
894 		} else {
895 			if (!reads_queued && writes_queued) {
896 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
897 					dev_dbg(ddev, "read, waiting\n");
898 					break;
899 				}
900 				pd->iosched.writing = 1;
901 			}
902 		}
903 
904 		spin_lock(&pd->iosched.lock);
905 		if (pd->iosched.writing)
906 			bio = bio_list_pop(&pd->iosched.write_queue);
907 		else
908 			bio = bio_list_pop(&pd->iosched.read_queue);
909 		spin_unlock(&pd->iosched.lock);
910 
911 		if (!bio)
912 			continue;
913 
914 		if (bio_data_dir(bio) == READ)
915 			pd->iosched.successive_reads +=
916 				bio->bi_iter.bi_size >> 10;
917 		else {
918 			pd->iosched.successive_reads = 0;
919 			pd->iosched.last_write = bio_end_sector(bio);
920 		}
921 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
922 			if (pd->read_speed == pd->write_speed) {
923 				pd->read_speed = MAX_SPEED;
924 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
925 			}
926 		} else {
927 			if (pd->read_speed != pd->write_speed) {
928 				pd->read_speed = pd->write_speed;
929 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
930 			}
931 		}
932 
933 		atomic_inc(&pd->cdrw.pending_bios);
934 		submit_bio_noacct(bio);
935 	}
936 }
937 
938 /*
939  * Special care is needed if the underlying block device has a small
940  * max_phys_segments value.
941  */
942 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
943 {
944 	struct device *ddev = disk_to_dev(pd->disk);
945 
946 	if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) {
947 		/*
948 		 * The cdrom device can handle one segment/frame
949 		 */
950 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
951 		return 0;
952 	}
953 
954 	if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) {
955 		/*
956 		 * We can handle this case at the expense of some extra memory
957 		 * copies during write operations
958 		 */
959 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
960 		return 0;
961 	}
962 
963 	dev_err(ddev, "cdrom max_phys_segments too small\n");
964 	return -EIO;
965 }
966 
967 static void pkt_end_io_read(struct bio *bio)
968 {
969 	struct packet_data *pkt = bio->bi_private;
970 	struct pktcdvd_device *pd = pkt->pd;
971 	BUG_ON(!pd);
972 
973 	dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n",
974 		bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status);
975 
976 	if (bio->bi_status)
977 		atomic_inc(&pkt->io_errors);
978 	bio_uninit(bio);
979 	if (atomic_dec_and_test(&pkt->io_wait)) {
980 		atomic_inc(&pkt->run_sm);
981 		wake_up(&pd->wqueue);
982 	}
983 	pkt_bio_finished(pd);
984 }
985 
986 static void pkt_end_io_packet_write(struct bio *bio)
987 {
988 	struct packet_data *pkt = bio->bi_private;
989 	struct pktcdvd_device *pd = pkt->pd;
990 	BUG_ON(!pd);
991 
992 	dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status);
993 
994 	pd->stats.pkt_ended++;
995 
996 	bio_uninit(bio);
997 	pkt_bio_finished(pd);
998 	atomic_dec(&pkt->io_wait);
999 	atomic_inc(&pkt->run_sm);
1000 	wake_up(&pd->wqueue);
1001 }
1002 
1003 /*
1004  * Schedule reads for the holes in a packet
1005  */
1006 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1007 {
1008 	struct device *ddev = disk_to_dev(pd->disk);
1009 	int frames_read = 0;
1010 	struct bio *bio;
1011 	int f;
1012 	char written[PACKET_MAX_SIZE];
1013 
1014 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1015 
1016 	atomic_set(&pkt->io_wait, 0);
1017 	atomic_set(&pkt->io_errors, 0);
1018 
1019 	/*
1020 	 * Figure out which frames we need to read before we can write.
1021 	 */
1022 	memset(written, 0, sizeof(written));
1023 	spin_lock(&pkt->lock);
1024 	bio_list_for_each(bio, &pkt->orig_bios) {
1025 		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1026 			(CD_FRAMESIZE >> 9);
1027 		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1028 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1029 		BUG_ON(first_frame < 0);
1030 		BUG_ON(first_frame + num_frames > pkt->frames);
1031 		for (f = first_frame; f < first_frame + num_frames; f++)
1032 			written[f] = 1;
1033 	}
1034 	spin_unlock(&pkt->lock);
1035 
1036 	if (pkt->cache_valid) {
1037 		dev_dbg(ddev, "zone %llx cached\n", pkt->sector);
1038 		goto out_account;
1039 	}
1040 
1041 	/*
1042 	 * Schedule reads for missing parts of the packet.
1043 	 */
1044 	for (f = 0; f < pkt->frames; f++) {
1045 		int p, offset;
1046 
1047 		if (written[f])
1048 			continue;
1049 
1050 		bio = pkt->r_bios[f];
1051 		bio_init(bio, pd->bdev_handle->bdev, bio->bi_inline_vecs, 1,
1052 			 REQ_OP_READ);
1053 		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1054 		bio->bi_end_io = pkt_end_io_read;
1055 		bio->bi_private = pkt;
1056 
1057 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1058 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1059 		dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f,
1060 			pkt->pages[p], offset);
1061 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1062 			BUG();
1063 
1064 		atomic_inc(&pkt->io_wait);
1065 		pkt_queue_bio(pd, bio);
1066 		frames_read++;
1067 	}
1068 
1069 out_account:
1070 	dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector);
1071 	pd->stats.pkt_started++;
1072 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1073 }
1074 
1075 /*
1076  * Find a packet matching zone, or the least recently used packet if
1077  * there is no match.
1078  */
1079 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1080 {
1081 	struct packet_data *pkt;
1082 
1083 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1084 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1085 			list_del_init(&pkt->list);
1086 			if (pkt->sector != zone)
1087 				pkt->cache_valid = 0;
1088 			return pkt;
1089 		}
1090 	}
1091 	BUG();
1092 	return NULL;
1093 }
1094 
1095 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1096 {
1097 	if (pkt->cache_valid) {
1098 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1099 	} else {
1100 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1101 	}
1102 }
1103 
1104 static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt,
1105 				 enum packet_data_state state)
1106 {
1107 	static const char *state_name[] = {
1108 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1109 	};
1110 	enum packet_data_state old_state = pkt->state;
1111 
1112 	dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n",
1113 		pkt->id, pkt->sector, state_name[old_state], state_name[state]);
1114 
1115 	pkt->state = state;
1116 }
1117 
1118 /*
1119  * Scan the work queue to see if we can start a new packet.
1120  * returns non-zero if any work was done.
1121  */
1122 static int pkt_handle_queue(struct pktcdvd_device *pd)
1123 {
1124 	struct device *ddev = disk_to_dev(pd->disk);
1125 	struct packet_data *pkt, *p;
1126 	struct bio *bio = NULL;
1127 	sector_t zone = 0; /* Suppress gcc warning */
1128 	struct pkt_rb_node *node, *first_node;
1129 	struct rb_node *n;
1130 
1131 	atomic_set(&pd->scan_queue, 0);
1132 
1133 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1134 		dev_dbg(ddev, "no pkt\n");
1135 		return 0;
1136 	}
1137 
1138 	/*
1139 	 * Try to find a zone we are not already working on.
1140 	 */
1141 	spin_lock(&pd->lock);
1142 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1143 	if (!first_node) {
1144 		n = rb_first(&pd->bio_queue);
1145 		if (n)
1146 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1147 	}
1148 	node = first_node;
1149 	while (node) {
1150 		bio = node->bio;
1151 		zone = get_zone(bio->bi_iter.bi_sector, pd);
1152 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1153 			if (p->sector == zone) {
1154 				bio = NULL;
1155 				goto try_next_bio;
1156 			}
1157 		}
1158 		break;
1159 try_next_bio:
1160 		node = pkt_rbtree_next(node);
1161 		if (!node) {
1162 			n = rb_first(&pd->bio_queue);
1163 			if (n)
1164 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1165 		}
1166 		if (node == first_node)
1167 			node = NULL;
1168 	}
1169 	spin_unlock(&pd->lock);
1170 	if (!bio) {
1171 		dev_dbg(ddev, "no bio\n");
1172 		return 0;
1173 	}
1174 
1175 	pkt = pkt_get_packet_data(pd, zone);
1176 
1177 	pd->current_sector = zone + pd->settings.size;
1178 	pkt->sector = zone;
1179 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1180 	pkt->write_size = 0;
1181 
1182 	/*
1183 	 * Scan work queue for bios in the same zone and link them
1184 	 * to this packet.
1185 	 */
1186 	spin_lock(&pd->lock);
1187 	dev_dbg(ddev, "looking for zone %llx\n", zone);
1188 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1189 		sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd);
1190 
1191 		bio = node->bio;
1192 		dev_dbg(ddev, "found zone=%llx\n", tmp);
1193 		if (tmp != zone)
1194 			break;
1195 		pkt_rbtree_erase(pd, node);
1196 		spin_lock(&pkt->lock);
1197 		bio_list_add(&pkt->orig_bios, bio);
1198 		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1199 		spin_unlock(&pkt->lock);
1200 	}
1201 	/* check write congestion marks, and if bio_queue_size is
1202 	 * below, wake up any waiters
1203 	 */
1204 	if (pd->congested &&
1205 	    pd->bio_queue_size <= pd->write_congestion_off) {
1206 		pd->congested = false;
1207 		wake_up_var(&pd->congested);
1208 	}
1209 	spin_unlock(&pd->lock);
1210 
1211 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1212 	pkt_set_state(ddev, pkt, PACKET_WAITING_STATE);
1213 	atomic_set(&pkt->run_sm, 1);
1214 
1215 	spin_lock(&pd->cdrw.active_list_lock);
1216 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1217 	spin_unlock(&pd->cdrw.active_list_lock);
1218 
1219 	return 1;
1220 }
1221 
1222 /**
1223  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1224  * another
1225  * @src: source bio list
1226  * @dst: destination bio list
1227  *
1228  * Stops when it reaches the end of either the @src list or @dst list - that is,
1229  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1230  * bios).
1231  */
1232 static void bio_list_copy_data(struct bio *dst, struct bio *src)
1233 {
1234 	struct bvec_iter src_iter = src->bi_iter;
1235 	struct bvec_iter dst_iter = dst->bi_iter;
1236 
1237 	while (1) {
1238 		if (!src_iter.bi_size) {
1239 			src = src->bi_next;
1240 			if (!src)
1241 				break;
1242 
1243 			src_iter = src->bi_iter;
1244 		}
1245 
1246 		if (!dst_iter.bi_size) {
1247 			dst = dst->bi_next;
1248 			if (!dst)
1249 				break;
1250 
1251 			dst_iter = dst->bi_iter;
1252 		}
1253 
1254 		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1255 	}
1256 }
1257 
1258 /*
1259  * Assemble a bio to write one packet and queue the bio for processing
1260  * by the underlying block device.
1261  */
1262 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1263 {
1264 	struct device *ddev = disk_to_dev(pd->disk);
1265 	int f;
1266 
1267 	bio_init(pkt->w_bio, pd->bdev_handle->bdev, pkt->w_bio->bi_inline_vecs,
1268 		 pkt->frames, REQ_OP_WRITE);
1269 	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1270 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1271 	pkt->w_bio->bi_private = pkt;
1272 
1273 	/* XXX: locking? */
1274 	for (f = 0; f < pkt->frames; f++) {
1275 		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1276 		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1277 
1278 		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1279 			BUG();
1280 	}
1281 	dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1282 
1283 	/*
1284 	 * Fill-in bvec with data from orig_bios.
1285 	 */
1286 	spin_lock(&pkt->lock);
1287 	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1288 
1289 	pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE);
1290 	spin_unlock(&pkt->lock);
1291 
1292 	dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector);
1293 
1294 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1295 		pkt->cache_valid = 1;
1296 	else
1297 		pkt->cache_valid = 0;
1298 
1299 	/* Start the write request */
1300 	atomic_set(&pkt->io_wait, 1);
1301 	pkt_queue_bio(pd, pkt->w_bio);
1302 }
1303 
1304 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1305 {
1306 	struct bio *bio;
1307 
1308 	if (status)
1309 		pkt->cache_valid = 0;
1310 
1311 	/* Finish all bios corresponding to this packet */
1312 	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1313 		bio->bi_status = status;
1314 		bio_endio(bio);
1315 	}
1316 }
1317 
1318 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1319 {
1320 	struct device *ddev = disk_to_dev(pd->disk);
1321 
1322 	dev_dbg(ddev, "pkt %d\n", pkt->id);
1323 
1324 	for (;;) {
1325 		switch (pkt->state) {
1326 		case PACKET_WAITING_STATE:
1327 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1328 				return;
1329 
1330 			pkt->sleep_time = 0;
1331 			pkt_gather_data(pd, pkt);
1332 			pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE);
1333 			break;
1334 
1335 		case PACKET_READ_WAIT_STATE:
1336 			if (atomic_read(&pkt->io_wait) > 0)
1337 				return;
1338 
1339 			if (atomic_read(&pkt->io_errors) > 0) {
1340 				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1341 			} else {
1342 				pkt_start_write(pd, pkt);
1343 			}
1344 			break;
1345 
1346 		case PACKET_WRITE_WAIT_STATE:
1347 			if (atomic_read(&pkt->io_wait) > 0)
1348 				return;
1349 
1350 			if (!pkt->w_bio->bi_status) {
1351 				pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1352 			} else {
1353 				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1354 			}
1355 			break;
1356 
1357 		case PACKET_RECOVERY_STATE:
1358 			dev_dbg(ddev, "No recovery possible\n");
1359 			pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1360 			break;
1361 
1362 		case PACKET_FINISHED_STATE:
1363 			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1364 			return;
1365 
1366 		default:
1367 			BUG();
1368 			break;
1369 		}
1370 	}
1371 }
1372 
1373 static void pkt_handle_packets(struct pktcdvd_device *pd)
1374 {
1375 	struct device *ddev = disk_to_dev(pd->disk);
1376 	struct packet_data *pkt, *next;
1377 
1378 	/*
1379 	 * Run state machine for active packets
1380 	 */
1381 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1382 		if (atomic_read(&pkt->run_sm) > 0) {
1383 			atomic_set(&pkt->run_sm, 0);
1384 			pkt_run_state_machine(pd, pkt);
1385 		}
1386 	}
1387 
1388 	/*
1389 	 * Move no longer active packets to the free list
1390 	 */
1391 	spin_lock(&pd->cdrw.active_list_lock);
1392 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1393 		if (pkt->state == PACKET_FINISHED_STATE) {
1394 			list_del(&pkt->list);
1395 			pkt_put_packet_data(pd, pkt);
1396 			pkt_set_state(ddev, pkt, PACKET_IDLE_STATE);
1397 			atomic_set(&pd->scan_queue, 1);
1398 		}
1399 	}
1400 	spin_unlock(&pd->cdrw.active_list_lock);
1401 }
1402 
1403 /*
1404  * kcdrwd is woken up when writes have been queued for one of our
1405  * registered devices
1406  */
1407 static int kcdrwd(void *foobar)
1408 {
1409 	struct pktcdvd_device *pd = foobar;
1410 	struct device *ddev = disk_to_dev(pd->disk);
1411 	struct packet_data *pkt;
1412 	int states[PACKET_NUM_STATES];
1413 	long min_sleep_time, residue;
1414 
1415 	set_user_nice(current, MIN_NICE);
1416 	set_freezable();
1417 
1418 	for (;;) {
1419 		DECLARE_WAITQUEUE(wait, current);
1420 
1421 		/*
1422 		 * Wait until there is something to do
1423 		 */
1424 		add_wait_queue(&pd->wqueue, &wait);
1425 		for (;;) {
1426 			set_current_state(TASK_INTERRUPTIBLE);
1427 
1428 			/* Check if we need to run pkt_handle_queue */
1429 			if (atomic_read(&pd->scan_queue) > 0)
1430 				goto work_to_do;
1431 
1432 			/* Check if we need to run the state machine for some packet */
1433 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1434 				if (atomic_read(&pkt->run_sm) > 0)
1435 					goto work_to_do;
1436 			}
1437 
1438 			/* Check if we need to process the iosched queues */
1439 			if (atomic_read(&pd->iosched.attention) != 0)
1440 				goto work_to_do;
1441 
1442 			/* Otherwise, go to sleep */
1443 			pkt_count_states(pd, states);
1444 			dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1445 				states[0], states[1], states[2], states[3], states[4], states[5]);
1446 
1447 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1448 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1449 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1450 					min_sleep_time = pkt->sleep_time;
1451 			}
1452 
1453 			dev_dbg(ddev, "sleeping\n");
1454 			residue = schedule_timeout(min_sleep_time);
1455 			dev_dbg(ddev, "wake up\n");
1456 
1457 			/* make swsusp happy with our thread */
1458 			try_to_freeze();
1459 
1460 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1461 				if (!pkt->sleep_time)
1462 					continue;
1463 				pkt->sleep_time -= min_sleep_time - residue;
1464 				if (pkt->sleep_time <= 0) {
1465 					pkt->sleep_time = 0;
1466 					atomic_inc(&pkt->run_sm);
1467 				}
1468 			}
1469 
1470 			if (kthread_should_stop())
1471 				break;
1472 		}
1473 work_to_do:
1474 		set_current_state(TASK_RUNNING);
1475 		remove_wait_queue(&pd->wqueue, &wait);
1476 
1477 		if (kthread_should_stop())
1478 			break;
1479 
1480 		/*
1481 		 * if pkt_handle_queue returns true, we can queue
1482 		 * another request.
1483 		 */
1484 		while (pkt_handle_queue(pd))
1485 			;
1486 
1487 		/*
1488 		 * Handle packet state machine
1489 		 */
1490 		pkt_handle_packets(pd);
1491 
1492 		/*
1493 		 * Handle iosched queues
1494 		 */
1495 		pkt_iosched_process_queue(pd);
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static void pkt_print_settings(struct pktcdvd_device *pd)
1502 {
1503 	dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n",
1504 		 pd->settings.fp ? "Fixed" : "Variable",
1505 		 pd->settings.size >> 2,
1506 		 pd->settings.block_mode == 8 ? '1' : '2');
1507 }
1508 
1509 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1510 {
1511 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1512 
1513 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1514 	cgc->cmd[2] = page_code | (page_control << 6);
1515 	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1516 	cgc->data_direction = CGC_DATA_READ;
1517 	return pkt_generic_packet(pd, cgc);
1518 }
1519 
1520 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1521 {
1522 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1523 	memset(cgc->buffer, 0, 2);
1524 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1525 	cgc->cmd[1] = 0x10;		/* PF */
1526 	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1527 	cgc->data_direction = CGC_DATA_WRITE;
1528 	return pkt_generic_packet(pd, cgc);
1529 }
1530 
1531 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1532 {
1533 	struct packet_command cgc;
1534 	int ret;
1535 
1536 	/* set up command and get the disc info */
1537 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1538 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1539 	cgc.cmd[8] = cgc.buflen = 2;
1540 	cgc.quiet = 1;
1541 
1542 	ret = pkt_generic_packet(pd, &cgc);
1543 	if (ret)
1544 		return ret;
1545 
1546 	/* not all drives have the same disc_info length, so requeue
1547 	 * packet with the length the drive tells us it can supply
1548 	 */
1549 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1550 		     sizeof(di->disc_information_length);
1551 
1552 	if (cgc.buflen > sizeof(disc_information))
1553 		cgc.buflen = sizeof(disc_information);
1554 
1555 	cgc.cmd[8] = cgc.buflen;
1556 	return pkt_generic_packet(pd, &cgc);
1557 }
1558 
1559 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1560 {
1561 	struct packet_command cgc;
1562 	int ret;
1563 
1564 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1565 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1566 	cgc.cmd[1] = type & 3;
1567 	put_unaligned_be16(track, &cgc.cmd[4]);
1568 	cgc.cmd[8] = 8;
1569 	cgc.quiet = 1;
1570 
1571 	ret = pkt_generic_packet(pd, &cgc);
1572 	if (ret)
1573 		return ret;
1574 
1575 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1576 		     sizeof(ti->track_information_length);
1577 
1578 	if (cgc.buflen > sizeof(track_information))
1579 		cgc.buflen = sizeof(track_information);
1580 
1581 	cgc.cmd[8] = cgc.buflen;
1582 	return pkt_generic_packet(pd, &cgc);
1583 }
1584 
1585 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1586 						long *last_written)
1587 {
1588 	disc_information di;
1589 	track_information ti;
1590 	__u32 last_track;
1591 	int ret;
1592 
1593 	ret = pkt_get_disc_info(pd, &di);
1594 	if (ret)
1595 		return ret;
1596 
1597 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1598 	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1599 	if (ret)
1600 		return ret;
1601 
1602 	/* if this track is blank, try the previous. */
1603 	if (ti.blank) {
1604 		last_track--;
1605 		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1606 		if (ret)
1607 			return ret;
1608 	}
1609 
1610 	/* if last recorded field is valid, return it. */
1611 	if (ti.lra_v) {
1612 		*last_written = be32_to_cpu(ti.last_rec_address);
1613 	} else {
1614 		/* make it up instead */
1615 		*last_written = be32_to_cpu(ti.track_start) +
1616 				be32_to_cpu(ti.track_size);
1617 		if (ti.free_blocks)
1618 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1619 	}
1620 	return 0;
1621 }
1622 
1623 /*
1624  * write mode select package based on pd->settings
1625  */
1626 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1627 {
1628 	struct device *ddev = disk_to_dev(pd->disk);
1629 	struct packet_command cgc;
1630 	struct scsi_sense_hdr sshdr;
1631 	write_param_page *wp;
1632 	char buffer[128];
1633 	int ret, size;
1634 
1635 	/* doesn't apply to DVD+RW or DVD-RAM */
1636 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1637 		return 0;
1638 
1639 	memset(buffer, 0, sizeof(buffer));
1640 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1641 	cgc.sshdr = &sshdr;
1642 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1643 	if (ret) {
1644 		pkt_dump_sense(pd, &cgc);
1645 		return ret;
1646 	}
1647 
1648 	size = 2 + get_unaligned_be16(&buffer[0]);
1649 	pd->mode_offset = get_unaligned_be16(&buffer[6]);
1650 	if (size > sizeof(buffer))
1651 		size = sizeof(buffer);
1652 
1653 	/*
1654 	 * now get it all
1655 	 */
1656 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1657 	cgc.sshdr = &sshdr;
1658 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1659 	if (ret) {
1660 		pkt_dump_sense(pd, &cgc);
1661 		return ret;
1662 	}
1663 
1664 	/*
1665 	 * write page is offset header + block descriptor length
1666 	 */
1667 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1668 
1669 	wp->fp = pd->settings.fp;
1670 	wp->track_mode = pd->settings.track_mode;
1671 	wp->write_type = pd->settings.write_type;
1672 	wp->data_block_type = pd->settings.block_mode;
1673 
1674 	wp->multi_session = 0;
1675 
1676 #ifdef PACKET_USE_LS
1677 	wp->link_size = 7;
1678 	wp->ls_v = 1;
1679 #endif
1680 
1681 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1682 		wp->session_format = 0;
1683 		wp->subhdr2 = 0x20;
1684 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1685 		wp->session_format = 0x20;
1686 		wp->subhdr2 = 8;
1687 #if 0
1688 		wp->mcn[0] = 0x80;
1689 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1690 #endif
1691 	} else {
1692 		/*
1693 		 * paranoia
1694 		 */
1695 		dev_err(ddev, "write mode wrong %d\n", wp->data_block_type);
1696 		return 1;
1697 	}
1698 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1699 
1700 	cgc.buflen = cgc.cmd[8] = size;
1701 	ret = pkt_mode_select(pd, &cgc);
1702 	if (ret) {
1703 		pkt_dump_sense(pd, &cgc);
1704 		return ret;
1705 	}
1706 
1707 	pkt_print_settings(pd);
1708 	return 0;
1709 }
1710 
1711 /*
1712  * 1 -- we can write to this track, 0 -- we can't
1713  */
1714 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1715 {
1716 	struct device *ddev = disk_to_dev(pd->disk);
1717 
1718 	switch (pd->mmc3_profile) {
1719 		case 0x1a: /* DVD+RW */
1720 		case 0x12: /* DVD-RAM */
1721 			/* The track is always writable on DVD+RW/DVD-RAM */
1722 			return 1;
1723 		default:
1724 			break;
1725 	}
1726 
1727 	if (!ti->packet || !ti->fp)
1728 		return 0;
1729 
1730 	/*
1731 	 * "good" settings as per Mt Fuji.
1732 	 */
1733 	if (ti->rt == 0 && ti->blank == 0)
1734 		return 1;
1735 
1736 	if (ti->rt == 0 && ti->blank == 1)
1737 		return 1;
1738 
1739 	if (ti->rt == 1 && ti->blank == 0)
1740 		return 1;
1741 
1742 	dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1743 	return 0;
1744 }
1745 
1746 /*
1747  * 1 -- we can write to this disc, 0 -- we can't
1748  */
1749 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1750 {
1751 	struct device *ddev = disk_to_dev(pd->disk);
1752 
1753 	switch (pd->mmc3_profile) {
1754 		case 0x0a: /* CD-RW */
1755 		case 0xffff: /* MMC3 not supported */
1756 			break;
1757 		case 0x1a: /* DVD+RW */
1758 		case 0x13: /* DVD-RW */
1759 		case 0x12: /* DVD-RAM */
1760 			return 1;
1761 		default:
1762 			dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile);
1763 			return 0;
1764 	}
1765 
1766 	/*
1767 	 * for disc type 0xff we should probably reserve a new track.
1768 	 * but i'm not sure, should we leave this to user apps? probably.
1769 	 */
1770 	if (di->disc_type == 0xff) {
1771 		dev_notice(ddev, "unknown disc - no track?\n");
1772 		return 0;
1773 	}
1774 
1775 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1776 		dev_err(ddev, "wrong disc type (%x)\n", di->disc_type);
1777 		return 0;
1778 	}
1779 
1780 	if (di->erasable == 0) {
1781 		dev_err(ddev, "disc not erasable\n");
1782 		return 0;
1783 	}
1784 
1785 	if (di->border_status == PACKET_SESSION_RESERVED) {
1786 		dev_err(ddev, "can't write to last track (reserved)\n");
1787 		return 0;
1788 	}
1789 
1790 	return 1;
1791 }
1792 
1793 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1794 {
1795 	struct device *ddev = disk_to_dev(pd->disk);
1796 	struct packet_command cgc;
1797 	unsigned char buf[12];
1798 	disc_information di;
1799 	track_information ti;
1800 	int ret, track;
1801 
1802 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1803 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1804 	cgc.cmd[8] = 8;
1805 	ret = pkt_generic_packet(pd, &cgc);
1806 	pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]);
1807 
1808 	memset(&di, 0, sizeof(disc_information));
1809 	memset(&ti, 0, sizeof(track_information));
1810 
1811 	ret = pkt_get_disc_info(pd, &di);
1812 	if (ret) {
1813 		dev_err(ddev, "failed get_disc\n");
1814 		return ret;
1815 	}
1816 
1817 	if (!pkt_writable_disc(pd, &di))
1818 		return -EROFS;
1819 
1820 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1821 
1822 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1823 	ret = pkt_get_track_info(pd, track, 1, &ti);
1824 	if (ret) {
1825 		dev_err(ddev, "failed get_track\n");
1826 		return ret;
1827 	}
1828 
1829 	if (!pkt_writable_track(pd, &ti)) {
1830 		dev_err(ddev, "can't write to this track\n");
1831 		return -EROFS;
1832 	}
1833 
1834 	/*
1835 	 * we keep packet size in 512 byte units, makes it easier to
1836 	 * deal with request calculations.
1837 	 */
1838 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1839 	if (pd->settings.size == 0) {
1840 		dev_notice(ddev, "detected zero packet size!\n");
1841 		return -ENXIO;
1842 	}
1843 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1844 		dev_err(ddev, "packet size is too big\n");
1845 		return -EROFS;
1846 	}
1847 	pd->settings.fp = ti.fp;
1848 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1849 
1850 	if (ti.nwa_v) {
1851 		pd->nwa = be32_to_cpu(ti.next_writable);
1852 		set_bit(PACKET_NWA_VALID, &pd->flags);
1853 	}
1854 
1855 	/*
1856 	 * in theory we could use lra on -RW media as well and just zero
1857 	 * blocks that haven't been written yet, but in practice that
1858 	 * is just a no-go. we'll use that for -R, naturally.
1859 	 */
1860 	if (ti.lra_v) {
1861 		pd->lra = be32_to_cpu(ti.last_rec_address);
1862 		set_bit(PACKET_LRA_VALID, &pd->flags);
1863 	} else {
1864 		pd->lra = 0xffffffff;
1865 		set_bit(PACKET_LRA_VALID, &pd->flags);
1866 	}
1867 
1868 	/*
1869 	 * fine for now
1870 	 */
1871 	pd->settings.link_loss = 7;
1872 	pd->settings.write_type = 0;	/* packet */
1873 	pd->settings.track_mode = ti.track_mode;
1874 
1875 	/*
1876 	 * mode1 or mode2 disc
1877 	 */
1878 	switch (ti.data_mode) {
1879 		case PACKET_MODE1:
1880 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1881 			break;
1882 		case PACKET_MODE2:
1883 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1884 			break;
1885 		default:
1886 			dev_err(ddev, "unknown data mode\n");
1887 			return -EROFS;
1888 	}
1889 	return 0;
1890 }
1891 
1892 /*
1893  * enable/disable write caching on drive
1894  */
1895 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd)
1896 {
1897 	struct device *ddev = disk_to_dev(pd->disk);
1898 	struct packet_command cgc;
1899 	struct scsi_sense_hdr sshdr;
1900 	unsigned char buf[64];
1901 	bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE);
1902 	int ret;
1903 
1904 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1905 	cgc.sshdr = &sshdr;
1906 	cgc.buflen = pd->mode_offset + 12;
1907 
1908 	/*
1909 	 * caching mode page might not be there, so quiet this command
1910 	 */
1911 	cgc.quiet = 1;
1912 
1913 	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1914 	if (ret)
1915 		return ret;
1916 
1917 	/*
1918 	 * use drive write caching -- we need deferred error handling to be
1919 	 * able to successfully recover with this option (drive will return good
1920 	 * status as soon as the cdb is validated).
1921 	 */
1922 	buf[pd->mode_offset + 10] |= (set << 2);
1923 
1924 	cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]);
1925 	ret = pkt_mode_select(pd, &cgc);
1926 	if (ret) {
1927 		dev_err(ddev, "write caching control failed\n");
1928 		pkt_dump_sense(pd, &cgc);
1929 	} else if (!ret && set)
1930 		dev_notice(ddev, "enabled write caching\n");
1931 	return ret;
1932 }
1933 
1934 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1935 {
1936 	struct packet_command cgc;
1937 
1938 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1939 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1940 	cgc.cmd[4] = lockflag ? 1 : 0;
1941 	return pkt_generic_packet(pd, &cgc);
1942 }
1943 
1944 /*
1945  * Returns drive maximum write speed
1946  */
1947 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1948 						unsigned *write_speed)
1949 {
1950 	struct packet_command cgc;
1951 	struct scsi_sense_hdr sshdr;
1952 	unsigned char buf[256+18];
1953 	unsigned char *cap_buf;
1954 	int ret, offset;
1955 
1956 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1957 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1958 	cgc.sshdr = &sshdr;
1959 
1960 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1961 	if (ret) {
1962 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1963 			     sizeof(struct mode_page_header);
1964 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1965 		if (ret) {
1966 			pkt_dump_sense(pd, &cgc);
1967 			return ret;
1968 		}
1969 	}
1970 
1971 	offset = 20;			    /* Obsoleted field, used by older drives */
1972 	if (cap_buf[1] >= 28)
1973 		offset = 28;		    /* Current write speed selected */
1974 	if (cap_buf[1] >= 30) {
1975 		/* If the drive reports at least one "Logical Unit Write
1976 		 * Speed Performance Descriptor Block", use the information
1977 		 * in the first block. (contains the highest speed)
1978 		 */
1979 		int num_spdb = get_unaligned_be16(&cap_buf[30]);
1980 		if (num_spdb > 0)
1981 			offset = 34;
1982 	}
1983 
1984 	*write_speed = get_unaligned_be16(&cap_buf[offset]);
1985 	return 0;
1986 }
1987 
1988 /* These tables from cdrecord - I don't have orange book */
1989 /* standard speed CD-RW (1-4x) */
1990 static char clv_to_speed[16] = {
1991 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1992 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1993 };
1994 /* high speed CD-RW (-10x) */
1995 static char hs_clv_to_speed[16] = {
1996 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1997 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1998 };
1999 /* ultra high speed CD-RW */
2000 static char us_clv_to_speed[16] = {
2001 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2002 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2003 };
2004 
2005 /*
2006  * reads the maximum media speed from ATIP
2007  */
2008 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2009 						unsigned *speed)
2010 {
2011 	struct device *ddev = disk_to_dev(pd->disk);
2012 	struct packet_command cgc;
2013 	struct scsi_sense_hdr sshdr;
2014 	unsigned char buf[64];
2015 	unsigned int size, st, sp;
2016 	int ret;
2017 
2018 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2019 	cgc.sshdr = &sshdr;
2020 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2021 	cgc.cmd[1] = 2;
2022 	cgc.cmd[2] = 4; /* READ ATIP */
2023 	cgc.cmd[8] = 2;
2024 	ret = pkt_generic_packet(pd, &cgc);
2025 	if (ret) {
2026 		pkt_dump_sense(pd, &cgc);
2027 		return ret;
2028 	}
2029 	size = 2 + get_unaligned_be16(&buf[0]);
2030 	if (size > sizeof(buf))
2031 		size = sizeof(buf);
2032 
2033 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2034 	cgc.sshdr = &sshdr;
2035 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2036 	cgc.cmd[1] = 2;
2037 	cgc.cmd[2] = 4;
2038 	cgc.cmd[8] = size;
2039 	ret = pkt_generic_packet(pd, &cgc);
2040 	if (ret) {
2041 		pkt_dump_sense(pd, &cgc);
2042 		return ret;
2043 	}
2044 
2045 	if (!(buf[6] & 0x40)) {
2046 		dev_notice(ddev, "disc type is not CD-RW\n");
2047 		return 1;
2048 	}
2049 	if (!(buf[6] & 0x4)) {
2050 		dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n");
2051 		return 1;
2052 	}
2053 
2054 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2055 
2056 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2057 
2058 	/* Info from cdrecord */
2059 	switch (st) {
2060 		case 0: /* standard speed */
2061 			*speed = clv_to_speed[sp];
2062 			break;
2063 		case 1: /* high speed */
2064 			*speed = hs_clv_to_speed[sp];
2065 			break;
2066 		case 2: /* ultra high speed */
2067 			*speed = us_clv_to_speed[sp];
2068 			break;
2069 		default:
2070 			dev_notice(ddev, "unknown disc sub-type %d\n", st);
2071 			return 1;
2072 	}
2073 	if (*speed) {
2074 		dev_info(ddev, "maximum media speed: %d\n", *speed);
2075 		return 0;
2076 	} else {
2077 		dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st);
2078 		return 1;
2079 	}
2080 }
2081 
2082 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2083 {
2084 	struct device *ddev = disk_to_dev(pd->disk);
2085 	struct packet_command cgc;
2086 	struct scsi_sense_hdr sshdr;
2087 	int ret;
2088 
2089 	dev_dbg(ddev, "Performing OPC\n");
2090 
2091 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2092 	cgc.sshdr = &sshdr;
2093 	cgc.timeout = 60*HZ;
2094 	cgc.cmd[0] = GPCMD_SEND_OPC;
2095 	cgc.cmd[1] = 1;
2096 	ret = pkt_generic_packet(pd, &cgc);
2097 	if (ret)
2098 		pkt_dump_sense(pd, &cgc);
2099 	return ret;
2100 }
2101 
2102 static int pkt_open_write(struct pktcdvd_device *pd)
2103 {
2104 	struct device *ddev = disk_to_dev(pd->disk);
2105 	int ret;
2106 	unsigned int write_speed, media_write_speed, read_speed;
2107 
2108 	ret = pkt_probe_settings(pd);
2109 	if (ret) {
2110 		dev_dbg(ddev, "failed probe\n");
2111 		return ret;
2112 	}
2113 
2114 	ret = pkt_set_write_settings(pd);
2115 	if (ret) {
2116 		dev_notice(ddev, "failed saving write settings\n");
2117 		return -EIO;
2118 	}
2119 
2120 	pkt_write_caching(pd);
2121 
2122 	ret = pkt_get_max_speed(pd, &write_speed);
2123 	if (ret)
2124 		write_speed = 16 * 177;
2125 	switch (pd->mmc3_profile) {
2126 		case 0x13: /* DVD-RW */
2127 		case 0x1a: /* DVD+RW */
2128 		case 0x12: /* DVD-RAM */
2129 			dev_notice(ddev, "write speed %ukB/s\n", write_speed);
2130 			break;
2131 		default:
2132 			ret = pkt_media_speed(pd, &media_write_speed);
2133 			if (ret)
2134 				media_write_speed = 16;
2135 			write_speed = min(write_speed, media_write_speed * 177);
2136 			dev_notice(ddev, "write speed %ux\n", write_speed / 176);
2137 			break;
2138 	}
2139 	read_speed = write_speed;
2140 
2141 	ret = pkt_set_speed(pd, write_speed, read_speed);
2142 	if (ret) {
2143 		dev_notice(ddev, "couldn't set write speed\n");
2144 		return -EIO;
2145 	}
2146 	pd->write_speed = write_speed;
2147 	pd->read_speed = read_speed;
2148 
2149 	ret = pkt_perform_opc(pd);
2150 	if (ret)
2151 		dev_notice(ddev, "Optimum Power Calibration failed\n");
2152 
2153 	return 0;
2154 }
2155 
2156 /*
2157  * called at open time.
2158  */
2159 static int pkt_open_dev(struct pktcdvd_device *pd, bool write)
2160 {
2161 	struct device *ddev = disk_to_dev(pd->disk);
2162 	int ret;
2163 	long lba;
2164 	struct request_queue *q;
2165 	struct bdev_handle *bdev_handle;
2166 
2167 	/*
2168 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2169 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2170 	 * so open should not fail.
2171 	 */
2172 	bdev_handle = bdev_open_by_dev(pd->bdev_handle->bdev->bd_dev,
2173 				       BLK_OPEN_READ, pd, NULL);
2174 	if (IS_ERR(bdev_handle)) {
2175 		ret = PTR_ERR(bdev_handle);
2176 		goto out;
2177 	}
2178 	pd->open_bdev_handle = bdev_handle;
2179 
2180 	ret = pkt_get_last_written(pd, &lba);
2181 	if (ret) {
2182 		dev_err(ddev, "pkt_get_last_written failed\n");
2183 		goto out_putdev;
2184 	}
2185 
2186 	set_capacity(pd->disk, lba << 2);
2187 	set_capacity_and_notify(pd->bdev_handle->bdev->bd_disk, lba << 2);
2188 
2189 	q = bdev_get_queue(pd->bdev_handle->bdev);
2190 	if (write) {
2191 		ret = pkt_open_write(pd);
2192 		if (ret)
2193 			goto out_putdev;
2194 		/*
2195 		 * Some CDRW drives can not handle writes larger than one packet,
2196 		 * even if the size is a multiple of the packet size.
2197 		 */
2198 		blk_queue_max_hw_sectors(q, pd->settings.size);
2199 		set_bit(PACKET_WRITABLE, &pd->flags);
2200 	} else {
2201 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2202 		clear_bit(PACKET_WRITABLE, &pd->flags);
2203 	}
2204 
2205 	ret = pkt_set_segment_merging(pd, q);
2206 	if (ret)
2207 		goto out_putdev;
2208 
2209 	if (write) {
2210 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2211 			dev_err(ddev, "not enough memory for buffers\n");
2212 			ret = -ENOMEM;
2213 			goto out_putdev;
2214 		}
2215 		dev_info(ddev, "%lukB available on disc\n", lba << 1);
2216 	}
2217 
2218 	return 0;
2219 
2220 out_putdev:
2221 	bdev_release(bdev_handle);
2222 out:
2223 	return ret;
2224 }
2225 
2226 /*
2227  * called when the device is closed. makes sure that the device flushes
2228  * the internal cache before we close.
2229  */
2230 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2231 {
2232 	struct device *ddev = disk_to_dev(pd->disk);
2233 
2234 	if (flush && pkt_flush_cache(pd))
2235 		dev_notice(ddev, "not flushing cache\n");
2236 
2237 	pkt_lock_door(pd, 0);
2238 
2239 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2240 	bdev_release(pd->open_bdev_handle);
2241 	pd->open_bdev_handle = NULL;
2242 
2243 	pkt_shrink_pktlist(pd);
2244 }
2245 
2246 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2247 {
2248 	if (dev_minor >= MAX_WRITERS)
2249 		return NULL;
2250 
2251 	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2252 	return pkt_devs[dev_minor];
2253 }
2254 
2255 static int pkt_open(struct gendisk *disk, blk_mode_t mode)
2256 {
2257 	struct pktcdvd_device *pd = NULL;
2258 	int ret;
2259 
2260 	mutex_lock(&pktcdvd_mutex);
2261 	mutex_lock(&ctl_mutex);
2262 	pd = pkt_find_dev_from_minor(disk->first_minor);
2263 	if (!pd) {
2264 		ret = -ENODEV;
2265 		goto out;
2266 	}
2267 	BUG_ON(pd->refcnt < 0);
2268 
2269 	pd->refcnt++;
2270 	if (pd->refcnt > 1) {
2271 		if ((mode & BLK_OPEN_WRITE) &&
2272 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2273 			ret = -EBUSY;
2274 			goto out_dec;
2275 		}
2276 	} else {
2277 		ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE);
2278 		if (ret)
2279 			goto out_dec;
2280 		/*
2281 		 * needed here as well, since ext2 (among others) may change
2282 		 * the blocksize at mount time
2283 		 */
2284 		set_blocksize(disk->part0, CD_FRAMESIZE);
2285 	}
2286 	mutex_unlock(&ctl_mutex);
2287 	mutex_unlock(&pktcdvd_mutex);
2288 	return 0;
2289 
2290 out_dec:
2291 	pd->refcnt--;
2292 out:
2293 	mutex_unlock(&ctl_mutex);
2294 	mutex_unlock(&pktcdvd_mutex);
2295 	return ret;
2296 }
2297 
2298 static void pkt_release(struct gendisk *disk)
2299 {
2300 	struct pktcdvd_device *pd = disk->private_data;
2301 
2302 	mutex_lock(&pktcdvd_mutex);
2303 	mutex_lock(&ctl_mutex);
2304 	pd->refcnt--;
2305 	BUG_ON(pd->refcnt < 0);
2306 	if (pd->refcnt == 0) {
2307 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2308 		pkt_release_dev(pd, flush);
2309 	}
2310 	mutex_unlock(&ctl_mutex);
2311 	mutex_unlock(&pktcdvd_mutex);
2312 }
2313 
2314 
2315 static void pkt_end_io_read_cloned(struct bio *bio)
2316 {
2317 	struct packet_stacked_data *psd = bio->bi_private;
2318 	struct pktcdvd_device *pd = psd->pd;
2319 
2320 	psd->bio->bi_status = bio->bi_status;
2321 	bio_put(bio);
2322 	bio_endio(psd->bio);
2323 	mempool_free(psd, &psd_pool);
2324 	pkt_bio_finished(pd);
2325 }
2326 
2327 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2328 {
2329 	struct bio *cloned_bio = bio_alloc_clone(pd->bdev_handle->bdev, bio,
2330 		GFP_NOIO, &pkt_bio_set);
2331 	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2332 
2333 	psd->pd = pd;
2334 	psd->bio = bio;
2335 	cloned_bio->bi_private = psd;
2336 	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2337 	pd->stats.secs_r += bio_sectors(bio);
2338 	pkt_queue_bio(pd, cloned_bio);
2339 }
2340 
2341 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2342 {
2343 	struct pktcdvd_device *pd = q->queuedata;
2344 	sector_t zone;
2345 	struct packet_data *pkt;
2346 	int was_empty, blocked_bio;
2347 	struct pkt_rb_node *node;
2348 
2349 	zone = get_zone(bio->bi_iter.bi_sector, pd);
2350 
2351 	/*
2352 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2353 	 * just append this bio to that packet.
2354 	 */
2355 	spin_lock(&pd->cdrw.active_list_lock);
2356 	blocked_bio = 0;
2357 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2358 		if (pkt->sector == zone) {
2359 			spin_lock(&pkt->lock);
2360 			if ((pkt->state == PACKET_WAITING_STATE) ||
2361 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2362 				bio_list_add(&pkt->orig_bios, bio);
2363 				pkt->write_size +=
2364 					bio->bi_iter.bi_size / CD_FRAMESIZE;
2365 				if ((pkt->write_size >= pkt->frames) &&
2366 				    (pkt->state == PACKET_WAITING_STATE)) {
2367 					atomic_inc(&pkt->run_sm);
2368 					wake_up(&pd->wqueue);
2369 				}
2370 				spin_unlock(&pkt->lock);
2371 				spin_unlock(&pd->cdrw.active_list_lock);
2372 				return;
2373 			} else {
2374 				blocked_bio = 1;
2375 			}
2376 			spin_unlock(&pkt->lock);
2377 		}
2378 	}
2379 	spin_unlock(&pd->cdrw.active_list_lock);
2380 
2381 	/*
2382 	 * Test if there is enough room left in the bio work queue
2383 	 * (queue size >= congestion on mark).
2384 	 * If not, wait till the work queue size is below the congestion off mark.
2385 	 */
2386 	spin_lock(&pd->lock);
2387 	if (pd->write_congestion_on > 0
2388 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2389 		struct wait_bit_queue_entry wqe;
2390 
2391 		init_wait_var_entry(&wqe, &pd->congested, 0);
2392 		for (;;) {
2393 			prepare_to_wait_event(__var_waitqueue(&pd->congested),
2394 					      &wqe.wq_entry,
2395 					      TASK_UNINTERRUPTIBLE);
2396 			if (pd->bio_queue_size <= pd->write_congestion_off)
2397 				break;
2398 			pd->congested = true;
2399 			spin_unlock(&pd->lock);
2400 			schedule();
2401 			spin_lock(&pd->lock);
2402 		}
2403 	}
2404 	spin_unlock(&pd->lock);
2405 
2406 	/*
2407 	 * No matching packet found. Store the bio in the work queue.
2408 	 */
2409 	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2410 	node->bio = bio;
2411 	spin_lock(&pd->lock);
2412 	BUG_ON(pd->bio_queue_size < 0);
2413 	was_empty = (pd->bio_queue_size == 0);
2414 	pkt_rbtree_insert(pd, node);
2415 	spin_unlock(&pd->lock);
2416 
2417 	/*
2418 	 * Wake up the worker thread.
2419 	 */
2420 	atomic_set(&pd->scan_queue, 1);
2421 	if (was_empty) {
2422 		/* This wake_up is required for correct operation */
2423 		wake_up(&pd->wqueue);
2424 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2425 		/*
2426 		 * This wake up is not required for correct operation,
2427 		 * but improves performance in some cases.
2428 		 */
2429 		wake_up(&pd->wqueue);
2430 	}
2431 }
2432 
2433 static void pkt_submit_bio(struct bio *bio)
2434 {
2435 	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata;
2436 	struct device *ddev = disk_to_dev(pd->disk);
2437 	struct bio *split;
2438 
2439 	bio = bio_split_to_limits(bio);
2440 	if (!bio)
2441 		return;
2442 
2443 	dev_dbg(ddev, "start = %6llx stop = %6llx\n",
2444 		bio->bi_iter.bi_sector, bio_end_sector(bio));
2445 
2446 	/*
2447 	 * Clone READ bios so we can have our own bi_end_io callback.
2448 	 */
2449 	if (bio_data_dir(bio) == READ) {
2450 		pkt_make_request_read(pd, bio);
2451 		return;
2452 	}
2453 
2454 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2455 		dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector);
2456 		goto end_io;
2457 	}
2458 
2459 	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2460 		dev_err(ddev, "wrong bio size\n");
2461 		goto end_io;
2462 	}
2463 
2464 	do {
2465 		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2466 		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2467 
2468 		if (last_zone != zone) {
2469 			BUG_ON(last_zone != zone + pd->settings.size);
2470 
2471 			split = bio_split(bio, last_zone -
2472 					  bio->bi_iter.bi_sector,
2473 					  GFP_NOIO, &pkt_bio_set);
2474 			bio_chain(split, bio);
2475 		} else {
2476 			split = bio;
2477 		}
2478 
2479 		pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2480 	} while (split != bio);
2481 
2482 	return;
2483 end_io:
2484 	bio_io_error(bio);
2485 }
2486 
2487 static void pkt_init_queue(struct pktcdvd_device *pd)
2488 {
2489 	struct request_queue *q = pd->disk->queue;
2490 
2491 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2492 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2493 	q->queuedata = pd;
2494 }
2495 
2496 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2497 {
2498 	struct device *ddev = disk_to_dev(pd->disk);
2499 	int i;
2500 	struct bdev_handle *bdev_handle;
2501 	struct scsi_device *sdev;
2502 
2503 	if (pd->pkt_dev == dev) {
2504 		dev_err(ddev, "recursive setup not allowed\n");
2505 		return -EBUSY;
2506 	}
2507 	for (i = 0; i < MAX_WRITERS; i++) {
2508 		struct pktcdvd_device *pd2 = pkt_devs[i];
2509 		if (!pd2)
2510 			continue;
2511 		if (pd2->bdev_handle->bdev->bd_dev == dev) {
2512 			dev_err(ddev, "%pg already setup\n",
2513 				pd2->bdev_handle->bdev);
2514 			return -EBUSY;
2515 		}
2516 		if (pd2->pkt_dev == dev) {
2517 			dev_err(ddev, "can't chain pktcdvd devices\n");
2518 			return -EBUSY;
2519 		}
2520 	}
2521 
2522 	bdev_handle = bdev_open_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY,
2523 				       NULL, NULL);
2524 	if (IS_ERR(bdev_handle))
2525 		return PTR_ERR(bdev_handle);
2526 	sdev = scsi_device_from_queue(bdev_handle->bdev->bd_disk->queue);
2527 	if (!sdev) {
2528 		bdev_release(bdev_handle);
2529 		return -EINVAL;
2530 	}
2531 	put_device(&sdev->sdev_gendev);
2532 
2533 	/* This is safe, since we have a reference from open(). */
2534 	__module_get(THIS_MODULE);
2535 
2536 	pd->bdev_handle = bdev_handle;
2537 	set_blocksize(bdev_handle->bdev, CD_FRAMESIZE);
2538 
2539 	pkt_init_queue(pd);
2540 
2541 	atomic_set(&pd->cdrw.pending_bios, 0);
2542 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name);
2543 	if (IS_ERR(pd->cdrw.thread)) {
2544 		dev_err(ddev, "can't start kernel thread\n");
2545 		goto out_mem;
2546 	}
2547 
2548 	proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd);
2549 	dev_notice(ddev, "writer mapped to %pg\n", bdev_handle->bdev);
2550 	return 0;
2551 
2552 out_mem:
2553 	bdev_release(bdev_handle);
2554 	/* This is safe: open() is still holding a reference. */
2555 	module_put(THIS_MODULE);
2556 	return -ENOMEM;
2557 }
2558 
2559 static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode,
2560 		unsigned int cmd, unsigned long arg)
2561 {
2562 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2563 	struct device *ddev = disk_to_dev(pd->disk);
2564 	int ret;
2565 
2566 	dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2567 
2568 	mutex_lock(&pktcdvd_mutex);
2569 	switch (cmd) {
2570 	case CDROMEJECT:
2571 		/*
2572 		 * The door gets locked when the device is opened, so we
2573 		 * have to unlock it or else the eject command fails.
2574 		 */
2575 		if (pd->refcnt == 1)
2576 			pkt_lock_door(pd, 0);
2577 		fallthrough;
2578 	/*
2579 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2580 	 */
2581 	case CDROMMULTISESSION:
2582 	case CDROMREADTOCENTRY:
2583 	case CDROM_LAST_WRITTEN:
2584 	case CDROM_SEND_PACKET:
2585 	case SCSI_IOCTL_SEND_COMMAND:
2586 		if (!bdev->bd_disk->fops->ioctl)
2587 			ret = -ENOTTY;
2588 		else
2589 			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2590 		break;
2591 	default:
2592 		dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd);
2593 		ret = -ENOTTY;
2594 	}
2595 	mutex_unlock(&pktcdvd_mutex);
2596 
2597 	return ret;
2598 }
2599 
2600 static unsigned int pkt_check_events(struct gendisk *disk,
2601 				     unsigned int clearing)
2602 {
2603 	struct pktcdvd_device *pd = disk->private_data;
2604 	struct gendisk *attached_disk;
2605 
2606 	if (!pd)
2607 		return 0;
2608 	if (!pd->bdev_handle)
2609 		return 0;
2610 	attached_disk = pd->bdev_handle->bdev->bd_disk;
2611 	if (!attached_disk || !attached_disk->fops->check_events)
2612 		return 0;
2613 	return attached_disk->fops->check_events(attached_disk, clearing);
2614 }
2615 
2616 static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2617 {
2618 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2619 }
2620 
2621 static const struct block_device_operations pktcdvd_ops = {
2622 	.owner =		THIS_MODULE,
2623 	.submit_bio =		pkt_submit_bio,
2624 	.open =			pkt_open,
2625 	.release =		pkt_release,
2626 	.ioctl =		pkt_ioctl,
2627 	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2628 	.check_events =		pkt_check_events,
2629 	.devnode =		pkt_devnode,
2630 };
2631 
2632 /*
2633  * Set up mapping from pktcdvd device to CD-ROM device.
2634  */
2635 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2636 {
2637 	int idx;
2638 	int ret = -ENOMEM;
2639 	struct pktcdvd_device *pd;
2640 	struct gendisk *disk;
2641 
2642 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2643 
2644 	for (idx = 0; idx < MAX_WRITERS; idx++)
2645 		if (!pkt_devs[idx])
2646 			break;
2647 	if (idx == MAX_WRITERS) {
2648 		pr_err("max %d writers supported\n", MAX_WRITERS);
2649 		ret = -EBUSY;
2650 		goto out_mutex;
2651 	}
2652 
2653 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2654 	if (!pd)
2655 		goto out_mutex;
2656 
2657 	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2658 					sizeof(struct pkt_rb_node));
2659 	if (ret)
2660 		goto out_mem;
2661 
2662 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2663 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2664 	spin_lock_init(&pd->cdrw.active_list_lock);
2665 
2666 	spin_lock_init(&pd->lock);
2667 	spin_lock_init(&pd->iosched.lock);
2668 	bio_list_init(&pd->iosched.read_queue);
2669 	bio_list_init(&pd->iosched.write_queue);
2670 	init_waitqueue_head(&pd->wqueue);
2671 	pd->bio_queue = RB_ROOT;
2672 
2673 	pd->write_congestion_on  = write_congestion_on;
2674 	pd->write_congestion_off = write_congestion_off;
2675 
2676 	ret = -ENOMEM;
2677 	disk = blk_alloc_disk(NUMA_NO_NODE);
2678 	if (!disk)
2679 		goto out_mem;
2680 	pd->disk = disk;
2681 	disk->major = pktdev_major;
2682 	disk->first_minor = idx;
2683 	disk->minors = 1;
2684 	disk->fops = &pktcdvd_ops;
2685 	disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2686 	snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx);
2687 	disk->private_data = pd;
2688 
2689 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2690 	ret = pkt_new_dev(pd, dev);
2691 	if (ret)
2692 		goto out_mem2;
2693 
2694 	/* inherit events of the host device */
2695 	disk->events = pd->bdev_handle->bdev->bd_disk->events;
2696 
2697 	ret = add_disk(disk);
2698 	if (ret)
2699 		goto out_mem2;
2700 
2701 	pkt_sysfs_dev_new(pd);
2702 	pkt_debugfs_dev_new(pd);
2703 
2704 	pkt_devs[idx] = pd;
2705 	if (pkt_dev)
2706 		*pkt_dev = pd->pkt_dev;
2707 
2708 	mutex_unlock(&ctl_mutex);
2709 	return 0;
2710 
2711 out_mem2:
2712 	put_disk(disk);
2713 out_mem:
2714 	mempool_exit(&pd->rb_pool);
2715 	kfree(pd);
2716 out_mutex:
2717 	mutex_unlock(&ctl_mutex);
2718 	pr_err("setup of pktcdvd device failed\n");
2719 	return ret;
2720 }
2721 
2722 /*
2723  * Tear down mapping from pktcdvd device to CD-ROM device.
2724  */
2725 static int pkt_remove_dev(dev_t pkt_dev)
2726 {
2727 	struct pktcdvd_device *pd;
2728 	struct device *ddev;
2729 	int idx;
2730 	int ret = 0;
2731 
2732 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2733 
2734 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2735 		pd = pkt_devs[idx];
2736 		if (pd && (pd->pkt_dev == pkt_dev))
2737 			break;
2738 	}
2739 	if (idx == MAX_WRITERS) {
2740 		pr_debug("dev not setup\n");
2741 		ret = -ENXIO;
2742 		goto out;
2743 	}
2744 
2745 	if (pd->refcnt > 0) {
2746 		ret = -EBUSY;
2747 		goto out;
2748 	}
2749 
2750 	ddev = disk_to_dev(pd->disk);
2751 
2752 	if (!IS_ERR(pd->cdrw.thread))
2753 		kthread_stop(pd->cdrw.thread);
2754 
2755 	pkt_devs[idx] = NULL;
2756 
2757 	pkt_debugfs_dev_remove(pd);
2758 	pkt_sysfs_dev_remove(pd);
2759 
2760 	bdev_release(pd->bdev_handle);
2761 
2762 	remove_proc_entry(pd->disk->disk_name, pkt_proc);
2763 	dev_notice(ddev, "writer unmapped\n");
2764 
2765 	del_gendisk(pd->disk);
2766 	put_disk(pd->disk);
2767 
2768 	mempool_exit(&pd->rb_pool);
2769 	kfree(pd);
2770 
2771 	/* This is safe: open() is still holding a reference. */
2772 	module_put(THIS_MODULE);
2773 
2774 out:
2775 	mutex_unlock(&ctl_mutex);
2776 	return ret;
2777 }
2778 
2779 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2780 {
2781 	struct pktcdvd_device *pd;
2782 
2783 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2784 
2785 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2786 	if (pd) {
2787 		ctrl_cmd->dev = new_encode_dev(pd->bdev_handle->bdev->bd_dev);
2788 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2789 	} else {
2790 		ctrl_cmd->dev = 0;
2791 		ctrl_cmd->pkt_dev = 0;
2792 	}
2793 	ctrl_cmd->num_devices = MAX_WRITERS;
2794 
2795 	mutex_unlock(&ctl_mutex);
2796 }
2797 
2798 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2799 {
2800 	void __user *argp = (void __user *)arg;
2801 	struct pkt_ctrl_command ctrl_cmd;
2802 	int ret = 0;
2803 	dev_t pkt_dev = 0;
2804 
2805 	if (cmd != PACKET_CTRL_CMD)
2806 		return -ENOTTY;
2807 
2808 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2809 		return -EFAULT;
2810 
2811 	switch (ctrl_cmd.command) {
2812 	case PKT_CTRL_CMD_SETUP:
2813 		if (!capable(CAP_SYS_ADMIN))
2814 			return -EPERM;
2815 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2816 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2817 		break;
2818 	case PKT_CTRL_CMD_TEARDOWN:
2819 		if (!capable(CAP_SYS_ADMIN))
2820 			return -EPERM;
2821 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2822 		break;
2823 	case PKT_CTRL_CMD_STATUS:
2824 		pkt_get_status(&ctrl_cmd);
2825 		break;
2826 	default:
2827 		return -ENOTTY;
2828 	}
2829 
2830 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2831 		return -EFAULT;
2832 	return ret;
2833 }
2834 
2835 #ifdef CONFIG_COMPAT
2836 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2837 {
2838 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2839 }
2840 #endif
2841 
2842 static const struct file_operations pkt_ctl_fops = {
2843 	.open		= nonseekable_open,
2844 	.unlocked_ioctl	= pkt_ctl_ioctl,
2845 #ifdef CONFIG_COMPAT
2846 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2847 #endif
2848 	.owner		= THIS_MODULE,
2849 	.llseek		= no_llseek,
2850 };
2851 
2852 static struct miscdevice pkt_misc = {
2853 	.minor 		= MISC_DYNAMIC_MINOR,
2854 	.name  		= DRIVER_NAME,
2855 	.nodename	= "pktcdvd/control",
2856 	.fops  		= &pkt_ctl_fops
2857 };
2858 
2859 static int __init pkt_init(void)
2860 {
2861 	int ret;
2862 
2863 	mutex_init(&ctl_mutex);
2864 
2865 	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2866 				    sizeof(struct packet_stacked_data));
2867 	if (ret)
2868 		return ret;
2869 	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2870 	if (ret) {
2871 		mempool_exit(&psd_pool);
2872 		return ret;
2873 	}
2874 
2875 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2876 	if (ret < 0) {
2877 		pr_err("unable to register block device\n");
2878 		goto out2;
2879 	}
2880 	if (!pktdev_major)
2881 		pktdev_major = ret;
2882 
2883 	ret = pkt_sysfs_init();
2884 	if (ret)
2885 		goto out;
2886 
2887 	pkt_debugfs_init();
2888 
2889 	ret = misc_register(&pkt_misc);
2890 	if (ret) {
2891 		pr_err("unable to register misc device\n");
2892 		goto out_misc;
2893 	}
2894 
2895 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2896 
2897 	return 0;
2898 
2899 out_misc:
2900 	pkt_debugfs_cleanup();
2901 	pkt_sysfs_cleanup();
2902 out:
2903 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2904 out2:
2905 	mempool_exit(&psd_pool);
2906 	bioset_exit(&pkt_bio_set);
2907 	return ret;
2908 }
2909 
2910 static void __exit pkt_exit(void)
2911 {
2912 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2913 	misc_deregister(&pkt_misc);
2914 
2915 	pkt_debugfs_cleanup();
2916 	pkt_sysfs_cleanup();
2917 
2918 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2919 	mempool_exit(&psd_pool);
2920 	bioset_exit(&pkt_bio_set);
2921 }
2922 
2923 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2924 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2925 MODULE_LICENSE("GPL");
2926 
2927 module_init(pkt_init);
2928 module_exit(pkt_exit);
2929