1 /* 2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de> 3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com> 4 * 5 * May be copied or modified under the terms of the GNU General Public 6 * License. See linux/COPYING for more information. 7 * 8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and 9 * DVD-RAM devices. 10 * 11 * Theory of operation: 12 * 13 * At the lowest level, there is the standard driver for the CD/DVD device, 14 * typically ide-cd.c or sr.c. This driver can handle read and write requests, 15 * but it doesn't know anything about the special restrictions that apply to 16 * packet writing. One restriction is that write requests must be aligned to 17 * packet boundaries on the physical media, and the size of a write request 18 * must be equal to the packet size. Another restriction is that a 19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read 20 * command, if the previous command was a write. 21 * 22 * The purpose of the packet writing driver is to hide these restrictions from 23 * higher layers, such as file systems, and present a block device that can be 24 * randomly read and written using 2kB-sized blocks. 25 * 26 * The lowest layer in the packet writing driver is the packet I/O scheduler. 27 * Its data is defined by the struct packet_iosched and includes two bio 28 * queues with pending read and write requests. These queues are processed 29 * by the pkt_iosched_process_queue() function. The write requests in this 30 * queue are already properly aligned and sized. This layer is responsible for 31 * issuing the flush cache commands and scheduling the I/O in a good order. 32 * 33 * The next layer transforms unaligned write requests to aligned writes. This 34 * transformation requires reading missing pieces of data from the underlying 35 * block device, assembling the pieces to full packets and queuing them to the 36 * packet I/O scheduler. 37 * 38 * At the top layer there is a custom make_request_fn function that forwards 39 * read requests directly to the iosched queue and puts write requests in the 40 * unaligned write queue. A kernel thread performs the necessary read 41 * gathering to convert the unaligned writes to aligned writes and then feeds 42 * them to the packet I/O scheduler. 43 * 44 *************************************************************************/ 45 46 #include <linux/pktcdvd.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/kthread.h> 51 #include <linux/errno.h> 52 #include <linux/spinlock.h> 53 #include <linux/file.h> 54 #include <linux/proc_fs.h> 55 #include <linux/seq_file.h> 56 #include <linux/miscdevice.h> 57 #include <linux/suspend.h> 58 #include <linux/mutex.h> 59 #include <scsi/scsi_cmnd.h> 60 #include <scsi/scsi_ioctl.h> 61 #include <scsi/scsi.h> 62 63 #include <asm/uaccess.h> 64 65 #if PACKET_DEBUG 66 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 67 #else 68 #define DPRINTK(fmt, args...) 69 #endif 70 71 #if PACKET_DEBUG > 1 72 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args) 73 #else 74 #define VPRINTK(fmt, args...) 75 #endif 76 77 #define MAX_SPEED 0xffff 78 79 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1)) 80 81 static struct pktcdvd_device *pkt_devs[MAX_WRITERS]; 82 static struct proc_dir_entry *pkt_proc; 83 static int pkt_major; 84 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */ 85 static mempool_t *psd_pool; 86 87 88 static void pkt_bio_finished(struct pktcdvd_device *pd) 89 { 90 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0); 91 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) { 92 VPRINTK("pktcdvd: queue empty\n"); 93 atomic_set(&pd->iosched.attention, 1); 94 wake_up(&pd->wqueue); 95 } 96 } 97 98 static void pkt_bio_destructor(struct bio *bio) 99 { 100 kfree(bio->bi_io_vec); 101 kfree(bio); 102 } 103 104 static struct bio *pkt_bio_alloc(int nr_iovecs) 105 { 106 struct bio_vec *bvl = NULL; 107 struct bio *bio; 108 109 bio = kmalloc(sizeof(struct bio), GFP_KERNEL); 110 if (!bio) 111 goto no_bio; 112 bio_init(bio); 113 114 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL); 115 if (!bvl) 116 goto no_bvl; 117 118 bio->bi_max_vecs = nr_iovecs; 119 bio->bi_io_vec = bvl; 120 bio->bi_destructor = pkt_bio_destructor; 121 122 return bio; 123 124 no_bvl: 125 kfree(bio); 126 no_bio: 127 return NULL; 128 } 129 130 /* 131 * Allocate a packet_data struct 132 */ 133 static struct packet_data *pkt_alloc_packet_data(int frames) 134 { 135 int i; 136 struct packet_data *pkt; 137 138 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL); 139 if (!pkt) 140 goto no_pkt; 141 142 pkt->frames = frames; 143 pkt->w_bio = pkt_bio_alloc(frames); 144 if (!pkt->w_bio) 145 goto no_bio; 146 147 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) { 148 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 149 if (!pkt->pages[i]) 150 goto no_page; 151 } 152 153 spin_lock_init(&pkt->lock); 154 155 for (i = 0; i < frames; i++) { 156 struct bio *bio = pkt_bio_alloc(1); 157 if (!bio) 158 goto no_rd_bio; 159 pkt->r_bios[i] = bio; 160 } 161 162 return pkt; 163 164 no_rd_bio: 165 for (i = 0; i < frames; i++) { 166 struct bio *bio = pkt->r_bios[i]; 167 if (bio) 168 bio_put(bio); 169 } 170 171 no_page: 172 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) 173 if (pkt->pages[i]) 174 __free_page(pkt->pages[i]); 175 bio_put(pkt->w_bio); 176 no_bio: 177 kfree(pkt); 178 no_pkt: 179 return NULL; 180 } 181 182 /* 183 * Free a packet_data struct 184 */ 185 static void pkt_free_packet_data(struct packet_data *pkt) 186 { 187 int i; 188 189 for (i = 0; i < pkt->frames; i++) { 190 struct bio *bio = pkt->r_bios[i]; 191 if (bio) 192 bio_put(bio); 193 } 194 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++) 195 __free_page(pkt->pages[i]); 196 bio_put(pkt->w_bio); 197 kfree(pkt); 198 } 199 200 static void pkt_shrink_pktlist(struct pktcdvd_device *pd) 201 { 202 struct packet_data *pkt, *next; 203 204 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list)); 205 206 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) { 207 pkt_free_packet_data(pkt); 208 } 209 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 210 } 211 212 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets) 213 { 214 struct packet_data *pkt; 215 216 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list)); 217 218 while (nr_packets > 0) { 219 pkt = pkt_alloc_packet_data(pd->settings.size >> 2); 220 if (!pkt) { 221 pkt_shrink_pktlist(pd); 222 return 0; 223 } 224 pkt->id = nr_packets; 225 pkt->pd = pd; 226 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 227 nr_packets--; 228 } 229 return 1; 230 } 231 232 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node) 233 { 234 struct rb_node *n = rb_next(&node->rb_node); 235 if (!n) 236 return NULL; 237 return rb_entry(n, struct pkt_rb_node, rb_node); 238 } 239 240 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node) 241 { 242 rb_erase(&node->rb_node, &pd->bio_queue); 243 mempool_free(node, pd->rb_pool); 244 pd->bio_queue_size--; 245 BUG_ON(pd->bio_queue_size < 0); 246 } 247 248 /* 249 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s. 250 */ 251 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s) 252 { 253 struct rb_node *n = pd->bio_queue.rb_node; 254 struct rb_node *next; 255 struct pkt_rb_node *tmp; 256 257 if (!n) { 258 BUG_ON(pd->bio_queue_size > 0); 259 return NULL; 260 } 261 262 for (;;) { 263 tmp = rb_entry(n, struct pkt_rb_node, rb_node); 264 if (s <= tmp->bio->bi_sector) 265 next = n->rb_left; 266 else 267 next = n->rb_right; 268 if (!next) 269 break; 270 n = next; 271 } 272 273 if (s > tmp->bio->bi_sector) { 274 tmp = pkt_rbtree_next(tmp); 275 if (!tmp) 276 return NULL; 277 } 278 BUG_ON(s > tmp->bio->bi_sector); 279 return tmp; 280 } 281 282 /* 283 * Insert a node into the pd->bio_queue rb tree. 284 */ 285 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node) 286 { 287 struct rb_node **p = &pd->bio_queue.rb_node; 288 struct rb_node *parent = NULL; 289 sector_t s = node->bio->bi_sector; 290 struct pkt_rb_node *tmp; 291 292 while (*p) { 293 parent = *p; 294 tmp = rb_entry(parent, struct pkt_rb_node, rb_node); 295 if (s < tmp->bio->bi_sector) 296 p = &(*p)->rb_left; 297 else 298 p = &(*p)->rb_right; 299 } 300 rb_link_node(&node->rb_node, parent, p); 301 rb_insert_color(&node->rb_node, &pd->bio_queue); 302 pd->bio_queue_size++; 303 } 304 305 /* 306 * Add a bio to a single linked list defined by its head and tail pointers. 307 */ 308 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail) 309 { 310 bio->bi_next = NULL; 311 if (*list_tail) { 312 BUG_ON((*list_head) == NULL); 313 (*list_tail)->bi_next = bio; 314 (*list_tail) = bio; 315 } else { 316 BUG_ON((*list_head) != NULL); 317 (*list_head) = bio; 318 (*list_tail) = bio; 319 } 320 } 321 322 /* 323 * Remove and return the first bio from a single linked list defined by its 324 * head and tail pointers. 325 */ 326 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail) 327 { 328 struct bio *bio; 329 330 if (*list_head == NULL) 331 return NULL; 332 333 bio = *list_head; 334 *list_head = bio->bi_next; 335 if (*list_head == NULL) 336 *list_tail = NULL; 337 338 bio->bi_next = NULL; 339 return bio; 340 } 341 342 /* 343 * Send a packet_command to the underlying block device and 344 * wait for completion. 345 */ 346 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc) 347 { 348 char sense[SCSI_SENSE_BUFFERSIZE]; 349 request_queue_t *q; 350 struct request *rq; 351 DECLARE_COMPLETION(wait); 352 int err = 0; 353 354 q = bdev_get_queue(pd->bdev); 355 356 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ, 357 __GFP_WAIT); 358 rq->errors = 0; 359 rq->rq_disk = pd->bdev->bd_disk; 360 rq->bio = NULL; 361 rq->buffer = NULL; 362 rq->timeout = 60*HZ; 363 rq->data = cgc->buffer; 364 rq->data_len = cgc->buflen; 365 rq->sense = sense; 366 memset(sense, 0, sizeof(sense)); 367 rq->sense_len = 0; 368 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER; 369 if (cgc->quiet) 370 rq->flags |= REQ_QUIET; 371 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE); 372 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE) 373 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE); 374 rq->cmd_len = COMMAND_SIZE(rq->cmd[0]); 375 376 rq->ref_count++; 377 rq->flags |= REQ_NOMERGE; 378 rq->waiting = &wait; 379 rq->end_io = blk_end_sync_rq; 380 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1); 381 generic_unplug_device(q); 382 wait_for_completion(&wait); 383 384 if (rq->errors) 385 err = -EIO; 386 387 blk_put_request(rq); 388 return err; 389 } 390 391 /* 392 * A generic sense dump / resolve mechanism should be implemented across 393 * all ATAPI + SCSI devices. 394 */ 395 static void pkt_dump_sense(struct packet_command *cgc) 396 { 397 static char *info[9] = { "No sense", "Recovered error", "Not ready", 398 "Medium error", "Hardware error", "Illegal request", 399 "Unit attention", "Data protect", "Blank check" }; 400 int i; 401 struct request_sense *sense = cgc->sense; 402 403 printk("pktcdvd:"); 404 for (i = 0; i < CDROM_PACKET_SIZE; i++) 405 printk(" %02x", cgc->cmd[i]); 406 printk(" - "); 407 408 if (sense == NULL) { 409 printk("no sense\n"); 410 return; 411 } 412 413 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq); 414 415 if (sense->sense_key > 8) { 416 printk(" (INVALID)\n"); 417 return; 418 } 419 420 printk(" (%s)\n", info[sense->sense_key]); 421 } 422 423 /* 424 * flush the drive cache to media 425 */ 426 static int pkt_flush_cache(struct pktcdvd_device *pd) 427 { 428 struct packet_command cgc; 429 430 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 431 cgc.cmd[0] = GPCMD_FLUSH_CACHE; 432 cgc.quiet = 1; 433 434 /* 435 * the IMMED bit -- we default to not setting it, although that 436 * would allow a much faster close, this is safer 437 */ 438 #if 0 439 cgc.cmd[1] = 1 << 1; 440 #endif 441 return pkt_generic_packet(pd, &cgc); 442 } 443 444 /* 445 * speed is given as the normal factor, e.g. 4 for 4x 446 */ 447 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed) 448 { 449 struct packet_command cgc; 450 struct request_sense sense; 451 int ret; 452 453 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 454 cgc.sense = &sense; 455 cgc.cmd[0] = GPCMD_SET_SPEED; 456 cgc.cmd[2] = (read_speed >> 8) & 0xff; 457 cgc.cmd[3] = read_speed & 0xff; 458 cgc.cmd[4] = (write_speed >> 8) & 0xff; 459 cgc.cmd[5] = write_speed & 0xff; 460 461 if ((ret = pkt_generic_packet(pd, &cgc))) 462 pkt_dump_sense(&cgc); 463 464 return ret; 465 } 466 467 /* 468 * Queue a bio for processing by the low-level CD device. Must be called 469 * from process context. 470 */ 471 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio) 472 { 473 spin_lock(&pd->iosched.lock); 474 if (bio_data_dir(bio) == READ) { 475 pkt_add_list_last(bio, &pd->iosched.read_queue, 476 &pd->iosched.read_queue_tail); 477 } else { 478 pkt_add_list_last(bio, &pd->iosched.write_queue, 479 &pd->iosched.write_queue_tail); 480 } 481 spin_unlock(&pd->iosched.lock); 482 483 atomic_set(&pd->iosched.attention, 1); 484 wake_up(&pd->wqueue); 485 } 486 487 /* 488 * Process the queued read/write requests. This function handles special 489 * requirements for CDRW drives: 490 * - A cache flush command must be inserted before a read request if the 491 * previous request was a write. 492 * - Switching between reading and writing is slow, so don't do it more often 493 * than necessary. 494 * - Optimize for throughput at the expense of latency. This means that streaming 495 * writes will never be interrupted by a read, but if the drive has to seek 496 * before the next write, switch to reading instead if there are any pending 497 * read requests. 498 * - Set the read speed according to current usage pattern. When only reading 499 * from the device, it's best to use the highest possible read speed, but 500 * when switching often between reading and writing, it's better to have the 501 * same read and write speeds. 502 */ 503 static void pkt_iosched_process_queue(struct pktcdvd_device *pd) 504 { 505 506 if (atomic_read(&pd->iosched.attention) == 0) 507 return; 508 atomic_set(&pd->iosched.attention, 0); 509 510 for (;;) { 511 struct bio *bio; 512 int reads_queued, writes_queued; 513 514 spin_lock(&pd->iosched.lock); 515 reads_queued = (pd->iosched.read_queue != NULL); 516 writes_queued = (pd->iosched.write_queue != NULL); 517 spin_unlock(&pd->iosched.lock); 518 519 if (!reads_queued && !writes_queued) 520 break; 521 522 if (pd->iosched.writing) { 523 int need_write_seek = 1; 524 spin_lock(&pd->iosched.lock); 525 bio = pd->iosched.write_queue; 526 spin_unlock(&pd->iosched.lock); 527 if (bio && (bio->bi_sector == pd->iosched.last_write)) 528 need_write_seek = 0; 529 if (need_write_seek && reads_queued) { 530 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 531 VPRINTK("pktcdvd: write, waiting\n"); 532 break; 533 } 534 pkt_flush_cache(pd); 535 pd->iosched.writing = 0; 536 } 537 } else { 538 if (!reads_queued && writes_queued) { 539 if (atomic_read(&pd->cdrw.pending_bios) > 0) { 540 VPRINTK("pktcdvd: read, waiting\n"); 541 break; 542 } 543 pd->iosched.writing = 1; 544 } 545 } 546 547 spin_lock(&pd->iosched.lock); 548 if (pd->iosched.writing) { 549 bio = pkt_get_list_first(&pd->iosched.write_queue, 550 &pd->iosched.write_queue_tail); 551 } else { 552 bio = pkt_get_list_first(&pd->iosched.read_queue, 553 &pd->iosched.read_queue_tail); 554 } 555 spin_unlock(&pd->iosched.lock); 556 557 if (!bio) 558 continue; 559 560 if (bio_data_dir(bio) == READ) 561 pd->iosched.successive_reads += bio->bi_size >> 10; 562 else { 563 pd->iosched.successive_reads = 0; 564 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio); 565 } 566 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) { 567 if (pd->read_speed == pd->write_speed) { 568 pd->read_speed = MAX_SPEED; 569 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 570 } 571 } else { 572 if (pd->read_speed != pd->write_speed) { 573 pd->read_speed = pd->write_speed; 574 pkt_set_speed(pd, pd->write_speed, pd->read_speed); 575 } 576 } 577 578 atomic_inc(&pd->cdrw.pending_bios); 579 generic_make_request(bio); 580 } 581 } 582 583 /* 584 * Special care is needed if the underlying block device has a small 585 * max_phys_segments value. 586 */ 587 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q) 588 { 589 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) { 590 /* 591 * The cdrom device can handle one segment/frame 592 */ 593 clear_bit(PACKET_MERGE_SEGS, &pd->flags); 594 return 0; 595 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) { 596 /* 597 * We can handle this case at the expense of some extra memory 598 * copies during write operations 599 */ 600 set_bit(PACKET_MERGE_SEGS, &pd->flags); 601 return 0; 602 } else { 603 printk("pktcdvd: cdrom max_phys_segments too small\n"); 604 return -EIO; 605 } 606 } 607 608 /* 609 * Copy CD_FRAMESIZE bytes from src_bio into a destination page 610 */ 611 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs) 612 { 613 unsigned int copy_size = CD_FRAMESIZE; 614 615 while (copy_size > 0) { 616 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg); 617 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) + 618 src_bvl->bv_offset + offs; 619 void *vto = page_address(dst_page) + dst_offs; 620 int len = min_t(int, copy_size, src_bvl->bv_len - offs); 621 622 BUG_ON(len < 0); 623 memcpy(vto, vfrom, len); 624 kunmap_atomic(vfrom, KM_USER0); 625 626 seg++; 627 offs = 0; 628 dst_offs += len; 629 copy_size -= len; 630 } 631 } 632 633 /* 634 * Copy all data for this packet to pkt->pages[], so that 635 * a) The number of required segments for the write bio is minimized, which 636 * is necessary for some scsi controllers. 637 * b) The data can be used as cache to avoid read requests if we receive a 638 * new write request for the same zone. 639 */ 640 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec) 641 { 642 int f, p, offs; 643 644 /* Copy all data to pkt->pages[] */ 645 p = 0; 646 offs = 0; 647 for (f = 0; f < pkt->frames; f++) { 648 if (bvec[f].bv_page != pkt->pages[p]) { 649 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset; 650 void *vto = page_address(pkt->pages[p]) + offs; 651 memcpy(vto, vfrom, CD_FRAMESIZE); 652 kunmap_atomic(vfrom, KM_USER0); 653 bvec[f].bv_page = pkt->pages[p]; 654 bvec[f].bv_offset = offs; 655 } else { 656 BUG_ON(bvec[f].bv_offset != offs); 657 } 658 offs += CD_FRAMESIZE; 659 if (offs >= PAGE_SIZE) { 660 offs = 0; 661 p++; 662 } 663 } 664 } 665 666 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err) 667 { 668 struct packet_data *pkt = bio->bi_private; 669 struct pktcdvd_device *pd = pkt->pd; 670 BUG_ON(!pd); 671 672 if (bio->bi_size) 673 return 1; 674 675 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio, 676 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err); 677 678 if (err) 679 atomic_inc(&pkt->io_errors); 680 if (atomic_dec_and_test(&pkt->io_wait)) { 681 atomic_inc(&pkt->run_sm); 682 wake_up(&pd->wqueue); 683 } 684 pkt_bio_finished(pd); 685 686 return 0; 687 } 688 689 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err) 690 { 691 struct packet_data *pkt = bio->bi_private; 692 struct pktcdvd_device *pd = pkt->pd; 693 BUG_ON(!pd); 694 695 if (bio->bi_size) 696 return 1; 697 698 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err); 699 700 pd->stats.pkt_ended++; 701 702 pkt_bio_finished(pd); 703 atomic_dec(&pkt->io_wait); 704 atomic_inc(&pkt->run_sm); 705 wake_up(&pd->wqueue); 706 return 0; 707 } 708 709 /* 710 * Schedule reads for the holes in a packet 711 */ 712 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt) 713 { 714 int frames_read = 0; 715 struct bio *bio; 716 int f; 717 char written[PACKET_MAX_SIZE]; 718 719 BUG_ON(!pkt->orig_bios); 720 721 atomic_set(&pkt->io_wait, 0); 722 atomic_set(&pkt->io_errors, 0); 723 724 /* 725 * Figure out which frames we need to read before we can write. 726 */ 727 memset(written, 0, sizeof(written)); 728 spin_lock(&pkt->lock); 729 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 730 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 731 int num_frames = bio->bi_size / CD_FRAMESIZE; 732 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9); 733 BUG_ON(first_frame < 0); 734 BUG_ON(first_frame + num_frames > pkt->frames); 735 for (f = first_frame; f < first_frame + num_frames; f++) 736 written[f] = 1; 737 } 738 spin_unlock(&pkt->lock); 739 740 if (pkt->cache_valid) { 741 VPRINTK("pkt_gather_data: zone %llx cached\n", 742 (unsigned long long)pkt->sector); 743 goto out_account; 744 } 745 746 /* 747 * Schedule reads for missing parts of the packet. 748 */ 749 for (f = 0; f < pkt->frames; f++) { 750 int p, offset; 751 if (written[f]) 752 continue; 753 bio = pkt->r_bios[f]; 754 bio_init(bio); 755 bio->bi_max_vecs = 1; 756 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9); 757 bio->bi_bdev = pd->bdev; 758 bio->bi_end_io = pkt_end_io_read; 759 bio->bi_private = pkt; 760 761 p = (f * CD_FRAMESIZE) / PAGE_SIZE; 762 offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 763 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n", 764 f, pkt->pages[p], offset); 765 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset)) 766 BUG(); 767 768 atomic_inc(&pkt->io_wait); 769 bio->bi_rw = READ; 770 pkt_queue_bio(pd, bio); 771 frames_read++; 772 } 773 774 out_account: 775 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n", 776 frames_read, (unsigned long long)pkt->sector); 777 pd->stats.pkt_started++; 778 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9); 779 } 780 781 /* 782 * Find a packet matching zone, or the least recently used packet if 783 * there is no match. 784 */ 785 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone) 786 { 787 struct packet_data *pkt; 788 789 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) { 790 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) { 791 list_del_init(&pkt->list); 792 if (pkt->sector != zone) 793 pkt->cache_valid = 0; 794 return pkt; 795 } 796 } 797 BUG(); 798 return NULL; 799 } 800 801 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt) 802 { 803 if (pkt->cache_valid) { 804 list_add(&pkt->list, &pd->cdrw.pkt_free_list); 805 } else { 806 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list); 807 } 808 } 809 810 /* 811 * recover a failed write, query for relocation if possible 812 * 813 * returns 1 if recovery is possible, or 0 if not 814 * 815 */ 816 static int pkt_start_recovery(struct packet_data *pkt) 817 { 818 /* 819 * FIXME. We need help from the file system to implement 820 * recovery handling. 821 */ 822 return 0; 823 #if 0 824 struct request *rq = pkt->rq; 825 struct pktcdvd_device *pd = rq->rq_disk->private_data; 826 struct block_device *pkt_bdev; 827 struct super_block *sb = NULL; 828 unsigned long old_block, new_block; 829 sector_t new_sector; 830 831 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev)); 832 if (pkt_bdev) { 833 sb = get_super(pkt_bdev); 834 bdput(pkt_bdev); 835 } 836 837 if (!sb) 838 return 0; 839 840 if (!sb->s_op || !sb->s_op->relocate_blocks) 841 goto out; 842 843 old_block = pkt->sector / (CD_FRAMESIZE >> 9); 844 if (sb->s_op->relocate_blocks(sb, old_block, &new_block)) 845 goto out; 846 847 new_sector = new_block * (CD_FRAMESIZE >> 9); 848 pkt->sector = new_sector; 849 850 pkt->bio->bi_sector = new_sector; 851 pkt->bio->bi_next = NULL; 852 pkt->bio->bi_flags = 1 << BIO_UPTODATE; 853 pkt->bio->bi_idx = 0; 854 855 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW)); 856 BUG_ON(pkt->bio->bi_vcnt != pkt->frames); 857 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE); 858 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write); 859 BUG_ON(pkt->bio->bi_private != pkt); 860 861 drop_super(sb); 862 return 1; 863 864 out: 865 drop_super(sb); 866 return 0; 867 #endif 868 } 869 870 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state) 871 { 872 #if PACKET_DEBUG > 1 873 static const char *state_name[] = { 874 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED" 875 }; 876 enum packet_data_state old_state = pkt->state; 877 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector, 878 state_name[old_state], state_name[state]); 879 #endif 880 pkt->state = state; 881 } 882 883 /* 884 * Scan the work queue to see if we can start a new packet. 885 * returns non-zero if any work was done. 886 */ 887 static int pkt_handle_queue(struct pktcdvd_device *pd) 888 { 889 struct packet_data *pkt, *p; 890 struct bio *bio = NULL; 891 sector_t zone = 0; /* Suppress gcc warning */ 892 struct pkt_rb_node *node, *first_node; 893 struct rb_node *n; 894 895 VPRINTK("handle_queue\n"); 896 897 atomic_set(&pd->scan_queue, 0); 898 899 if (list_empty(&pd->cdrw.pkt_free_list)) { 900 VPRINTK("handle_queue: no pkt\n"); 901 return 0; 902 } 903 904 /* 905 * Try to find a zone we are not already working on. 906 */ 907 spin_lock(&pd->lock); 908 first_node = pkt_rbtree_find(pd, pd->current_sector); 909 if (!first_node) { 910 n = rb_first(&pd->bio_queue); 911 if (n) 912 first_node = rb_entry(n, struct pkt_rb_node, rb_node); 913 } 914 node = first_node; 915 while (node) { 916 bio = node->bio; 917 zone = ZONE(bio->bi_sector, pd); 918 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) { 919 if (p->sector == zone) { 920 bio = NULL; 921 goto try_next_bio; 922 } 923 } 924 break; 925 try_next_bio: 926 node = pkt_rbtree_next(node); 927 if (!node) { 928 n = rb_first(&pd->bio_queue); 929 if (n) 930 node = rb_entry(n, struct pkt_rb_node, rb_node); 931 } 932 if (node == first_node) 933 node = NULL; 934 } 935 spin_unlock(&pd->lock); 936 if (!bio) { 937 VPRINTK("handle_queue: no bio\n"); 938 return 0; 939 } 940 941 pkt = pkt_get_packet_data(pd, zone); 942 943 pd->current_sector = zone + pd->settings.size; 944 pkt->sector = zone; 945 BUG_ON(pkt->frames != pd->settings.size >> 2); 946 pkt->write_size = 0; 947 948 /* 949 * Scan work queue for bios in the same zone and link them 950 * to this packet. 951 */ 952 spin_lock(&pd->lock); 953 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone); 954 while ((node = pkt_rbtree_find(pd, zone)) != NULL) { 955 bio = node->bio; 956 VPRINTK("pkt_handle_queue: found zone=%llx\n", 957 (unsigned long long)ZONE(bio->bi_sector, pd)); 958 if (ZONE(bio->bi_sector, pd) != zone) 959 break; 960 pkt_rbtree_erase(pd, node); 961 spin_lock(&pkt->lock); 962 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail); 963 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 964 spin_unlock(&pkt->lock); 965 } 966 spin_unlock(&pd->lock); 967 968 pkt->sleep_time = max(PACKET_WAIT_TIME, 1); 969 pkt_set_state(pkt, PACKET_WAITING_STATE); 970 atomic_set(&pkt->run_sm, 1); 971 972 spin_lock(&pd->cdrw.active_list_lock); 973 list_add(&pkt->list, &pd->cdrw.pkt_active_list); 974 spin_unlock(&pd->cdrw.active_list_lock); 975 976 return 1; 977 } 978 979 /* 980 * Assemble a bio to write one packet and queue the bio for processing 981 * by the underlying block device. 982 */ 983 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt) 984 { 985 struct bio *bio; 986 int f; 987 int frames_write; 988 struct bio_vec *bvec = pkt->w_bio->bi_io_vec; 989 990 for (f = 0; f < pkt->frames; f++) { 991 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE]; 992 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE; 993 } 994 995 /* 996 * Fill-in bvec with data from orig_bios. 997 */ 998 frames_write = 0; 999 spin_lock(&pkt->lock); 1000 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) { 1001 int segment = bio->bi_idx; 1002 int src_offs = 0; 1003 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9); 1004 int num_frames = bio->bi_size / CD_FRAMESIZE; 1005 BUG_ON(first_frame < 0); 1006 BUG_ON(first_frame + num_frames > pkt->frames); 1007 for (f = first_frame; f < first_frame + num_frames; f++) { 1008 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment); 1009 1010 while (src_offs >= src_bvl->bv_len) { 1011 src_offs -= src_bvl->bv_len; 1012 segment++; 1013 BUG_ON(segment >= bio->bi_vcnt); 1014 src_bvl = bio_iovec_idx(bio, segment); 1015 } 1016 1017 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) { 1018 bvec[f].bv_page = src_bvl->bv_page; 1019 bvec[f].bv_offset = src_bvl->bv_offset + src_offs; 1020 } else { 1021 pkt_copy_bio_data(bio, segment, src_offs, 1022 bvec[f].bv_page, bvec[f].bv_offset); 1023 } 1024 src_offs += CD_FRAMESIZE; 1025 frames_write++; 1026 } 1027 } 1028 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE); 1029 spin_unlock(&pkt->lock); 1030 1031 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n", 1032 frames_write, (unsigned long long)pkt->sector); 1033 BUG_ON(frames_write != pkt->write_size); 1034 1035 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) { 1036 pkt_make_local_copy(pkt, bvec); 1037 pkt->cache_valid = 1; 1038 } else { 1039 pkt->cache_valid = 0; 1040 } 1041 1042 /* Start the write request */ 1043 bio_init(pkt->w_bio); 1044 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE; 1045 pkt->w_bio->bi_sector = pkt->sector; 1046 pkt->w_bio->bi_bdev = pd->bdev; 1047 pkt->w_bio->bi_end_io = pkt_end_io_packet_write; 1048 pkt->w_bio->bi_private = pkt; 1049 for (f = 0; f < pkt->frames; f++) 1050 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset)) 1051 BUG(); 1052 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt); 1053 1054 atomic_set(&pkt->io_wait, 1); 1055 pkt->w_bio->bi_rw = WRITE; 1056 pkt_queue_bio(pd, pkt->w_bio); 1057 } 1058 1059 static void pkt_finish_packet(struct packet_data *pkt, int uptodate) 1060 { 1061 struct bio *bio, *next; 1062 1063 if (!uptodate) 1064 pkt->cache_valid = 0; 1065 1066 /* Finish all bios corresponding to this packet */ 1067 bio = pkt->orig_bios; 1068 while (bio) { 1069 next = bio->bi_next; 1070 bio->bi_next = NULL; 1071 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO); 1072 bio = next; 1073 } 1074 pkt->orig_bios = pkt->orig_bios_tail = NULL; 1075 } 1076 1077 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt) 1078 { 1079 int uptodate; 1080 1081 VPRINTK("run_state_machine: pkt %d\n", pkt->id); 1082 1083 for (;;) { 1084 switch (pkt->state) { 1085 case PACKET_WAITING_STATE: 1086 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0)) 1087 return; 1088 1089 pkt->sleep_time = 0; 1090 pkt_gather_data(pd, pkt); 1091 pkt_set_state(pkt, PACKET_READ_WAIT_STATE); 1092 break; 1093 1094 case PACKET_READ_WAIT_STATE: 1095 if (atomic_read(&pkt->io_wait) > 0) 1096 return; 1097 1098 if (atomic_read(&pkt->io_errors) > 0) { 1099 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1100 } else { 1101 pkt_start_write(pd, pkt); 1102 } 1103 break; 1104 1105 case PACKET_WRITE_WAIT_STATE: 1106 if (atomic_read(&pkt->io_wait) > 0) 1107 return; 1108 1109 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) { 1110 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1111 } else { 1112 pkt_set_state(pkt, PACKET_RECOVERY_STATE); 1113 } 1114 break; 1115 1116 case PACKET_RECOVERY_STATE: 1117 if (pkt_start_recovery(pkt)) { 1118 pkt_start_write(pd, pkt); 1119 } else { 1120 VPRINTK("No recovery possible\n"); 1121 pkt_set_state(pkt, PACKET_FINISHED_STATE); 1122 } 1123 break; 1124 1125 case PACKET_FINISHED_STATE: 1126 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags); 1127 pkt_finish_packet(pkt, uptodate); 1128 return; 1129 1130 default: 1131 BUG(); 1132 break; 1133 } 1134 } 1135 } 1136 1137 static void pkt_handle_packets(struct pktcdvd_device *pd) 1138 { 1139 struct packet_data *pkt, *next; 1140 1141 VPRINTK("pkt_handle_packets\n"); 1142 1143 /* 1144 * Run state machine for active packets 1145 */ 1146 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1147 if (atomic_read(&pkt->run_sm) > 0) { 1148 atomic_set(&pkt->run_sm, 0); 1149 pkt_run_state_machine(pd, pkt); 1150 } 1151 } 1152 1153 /* 1154 * Move no longer active packets to the free list 1155 */ 1156 spin_lock(&pd->cdrw.active_list_lock); 1157 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) { 1158 if (pkt->state == PACKET_FINISHED_STATE) { 1159 list_del(&pkt->list); 1160 pkt_put_packet_data(pd, pkt); 1161 pkt_set_state(pkt, PACKET_IDLE_STATE); 1162 atomic_set(&pd->scan_queue, 1); 1163 } 1164 } 1165 spin_unlock(&pd->cdrw.active_list_lock); 1166 } 1167 1168 static void pkt_count_states(struct pktcdvd_device *pd, int *states) 1169 { 1170 struct packet_data *pkt; 1171 int i; 1172 1173 for (i = 0; i < PACKET_NUM_STATES; i++) 1174 states[i] = 0; 1175 1176 spin_lock(&pd->cdrw.active_list_lock); 1177 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1178 states[pkt->state]++; 1179 } 1180 spin_unlock(&pd->cdrw.active_list_lock); 1181 } 1182 1183 /* 1184 * kcdrwd is woken up when writes have been queued for one of our 1185 * registered devices 1186 */ 1187 static int kcdrwd(void *foobar) 1188 { 1189 struct pktcdvd_device *pd = foobar; 1190 struct packet_data *pkt; 1191 long min_sleep_time, residue; 1192 1193 set_user_nice(current, -20); 1194 1195 for (;;) { 1196 DECLARE_WAITQUEUE(wait, current); 1197 1198 /* 1199 * Wait until there is something to do 1200 */ 1201 add_wait_queue(&pd->wqueue, &wait); 1202 for (;;) { 1203 set_current_state(TASK_INTERRUPTIBLE); 1204 1205 /* Check if we need to run pkt_handle_queue */ 1206 if (atomic_read(&pd->scan_queue) > 0) 1207 goto work_to_do; 1208 1209 /* Check if we need to run the state machine for some packet */ 1210 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1211 if (atomic_read(&pkt->run_sm) > 0) 1212 goto work_to_do; 1213 } 1214 1215 /* Check if we need to process the iosched queues */ 1216 if (atomic_read(&pd->iosched.attention) != 0) 1217 goto work_to_do; 1218 1219 /* Otherwise, go to sleep */ 1220 if (PACKET_DEBUG > 1) { 1221 int states[PACKET_NUM_STATES]; 1222 pkt_count_states(pd, states); 1223 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 1224 states[0], states[1], states[2], states[3], 1225 states[4], states[5]); 1226 } 1227 1228 min_sleep_time = MAX_SCHEDULE_TIMEOUT; 1229 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1230 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time) 1231 min_sleep_time = pkt->sleep_time; 1232 } 1233 1234 generic_unplug_device(bdev_get_queue(pd->bdev)); 1235 1236 VPRINTK("kcdrwd: sleeping\n"); 1237 residue = schedule_timeout(min_sleep_time); 1238 VPRINTK("kcdrwd: wake up\n"); 1239 1240 /* make swsusp happy with our thread */ 1241 try_to_freeze(); 1242 1243 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 1244 if (!pkt->sleep_time) 1245 continue; 1246 pkt->sleep_time -= min_sleep_time - residue; 1247 if (pkt->sleep_time <= 0) { 1248 pkt->sleep_time = 0; 1249 atomic_inc(&pkt->run_sm); 1250 } 1251 } 1252 1253 if (signal_pending(current)) { 1254 flush_signals(current); 1255 } 1256 if (kthread_should_stop()) 1257 break; 1258 } 1259 work_to_do: 1260 set_current_state(TASK_RUNNING); 1261 remove_wait_queue(&pd->wqueue, &wait); 1262 1263 if (kthread_should_stop()) 1264 break; 1265 1266 /* 1267 * if pkt_handle_queue returns true, we can queue 1268 * another request. 1269 */ 1270 while (pkt_handle_queue(pd)) 1271 ; 1272 1273 /* 1274 * Handle packet state machine 1275 */ 1276 pkt_handle_packets(pd); 1277 1278 /* 1279 * Handle iosched queues 1280 */ 1281 pkt_iosched_process_queue(pd); 1282 } 1283 1284 return 0; 1285 } 1286 1287 static void pkt_print_settings(struct pktcdvd_device *pd) 1288 { 1289 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable"); 1290 printk("%u blocks, ", pd->settings.size >> 2); 1291 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2'); 1292 } 1293 1294 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control) 1295 { 1296 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1297 1298 cgc->cmd[0] = GPCMD_MODE_SENSE_10; 1299 cgc->cmd[2] = page_code | (page_control << 6); 1300 cgc->cmd[7] = cgc->buflen >> 8; 1301 cgc->cmd[8] = cgc->buflen & 0xff; 1302 cgc->data_direction = CGC_DATA_READ; 1303 return pkt_generic_packet(pd, cgc); 1304 } 1305 1306 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc) 1307 { 1308 memset(cgc->cmd, 0, sizeof(cgc->cmd)); 1309 memset(cgc->buffer, 0, 2); 1310 cgc->cmd[0] = GPCMD_MODE_SELECT_10; 1311 cgc->cmd[1] = 0x10; /* PF */ 1312 cgc->cmd[7] = cgc->buflen >> 8; 1313 cgc->cmd[8] = cgc->buflen & 0xff; 1314 cgc->data_direction = CGC_DATA_WRITE; 1315 return pkt_generic_packet(pd, cgc); 1316 } 1317 1318 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di) 1319 { 1320 struct packet_command cgc; 1321 int ret; 1322 1323 /* set up command and get the disc info */ 1324 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ); 1325 cgc.cmd[0] = GPCMD_READ_DISC_INFO; 1326 cgc.cmd[8] = cgc.buflen = 2; 1327 cgc.quiet = 1; 1328 1329 if ((ret = pkt_generic_packet(pd, &cgc))) 1330 return ret; 1331 1332 /* not all drives have the same disc_info length, so requeue 1333 * packet with the length the drive tells us it can supply 1334 */ 1335 cgc.buflen = be16_to_cpu(di->disc_information_length) + 1336 sizeof(di->disc_information_length); 1337 1338 if (cgc.buflen > sizeof(disc_information)) 1339 cgc.buflen = sizeof(disc_information); 1340 1341 cgc.cmd[8] = cgc.buflen; 1342 return pkt_generic_packet(pd, &cgc); 1343 } 1344 1345 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti) 1346 { 1347 struct packet_command cgc; 1348 int ret; 1349 1350 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ); 1351 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO; 1352 cgc.cmd[1] = type & 3; 1353 cgc.cmd[4] = (track & 0xff00) >> 8; 1354 cgc.cmd[5] = track & 0xff; 1355 cgc.cmd[8] = 8; 1356 cgc.quiet = 1; 1357 1358 if ((ret = pkt_generic_packet(pd, &cgc))) 1359 return ret; 1360 1361 cgc.buflen = be16_to_cpu(ti->track_information_length) + 1362 sizeof(ti->track_information_length); 1363 1364 if (cgc.buflen > sizeof(track_information)) 1365 cgc.buflen = sizeof(track_information); 1366 1367 cgc.cmd[8] = cgc.buflen; 1368 return pkt_generic_packet(pd, &cgc); 1369 } 1370 1371 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written) 1372 { 1373 disc_information di; 1374 track_information ti; 1375 __u32 last_track; 1376 int ret = -1; 1377 1378 if ((ret = pkt_get_disc_info(pd, &di))) 1379 return ret; 1380 1381 last_track = (di.last_track_msb << 8) | di.last_track_lsb; 1382 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1383 return ret; 1384 1385 /* if this track is blank, try the previous. */ 1386 if (ti.blank) { 1387 last_track--; 1388 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti))) 1389 return ret; 1390 } 1391 1392 /* if last recorded field is valid, return it. */ 1393 if (ti.lra_v) { 1394 *last_written = be32_to_cpu(ti.last_rec_address); 1395 } else { 1396 /* make it up instead */ 1397 *last_written = be32_to_cpu(ti.track_start) + 1398 be32_to_cpu(ti.track_size); 1399 if (ti.free_blocks) 1400 *last_written -= (be32_to_cpu(ti.free_blocks) + 7); 1401 } 1402 return 0; 1403 } 1404 1405 /* 1406 * write mode select package based on pd->settings 1407 */ 1408 static int pkt_set_write_settings(struct pktcdvd_device *pd) 1409 { 1410 struct packet_command cgc; 1411 struct request_sense sense; 1412 write_param_page *wp; 1413 char buffer[128]; 1414 int ret, size; 1415 1416 /* doesn't apply to DVD+RW or DVD-RAM */ 1417 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12)) 1418 return 0; 1419 1420 memset(buffer, 0, sizeof(buffer)); 1421 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ); 1422 cgc.sense = &sense; 1423 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1424 pkt_dump_sense(&cgc); 1425 return ret; 1426 } 1427 1428 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff)); 1429 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff); 1430 if (size > sizeof(buffer)) 1431 size = sizeof(buffer); 1432 1433 /* 1434 * now get it all 1435 */ 1436 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ); 1437 cgc.sense = &sense; 1438 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) { 1439 pkt_dump_sense(&cgc); 1440 return ret; 1441 } 1442 1443 /* 1444 * write page is offset header + block descriptor length 1445 */ 1446 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset]; 1447 1448 wp->fp = pd->settings.fp; 1449 wp->track_mode = pd->settings.track_mode; 1450 wp->write_type = pd->settings.write_type; 1451 wp->data_block_type = pd->settings.block_mode; 1452 1453 wp->multi_session = 0; 1454 1455 #ifdef PACKET_USE_LS 1456 wp->link_size = 7; 1457 wp->ls_v = 1; 1458 #endif 1459 1460 if (wp->data_block_type == PACKET_BLOCK_MODE1) { 1461 wp->session_format = 0; 1462 wp->subhdr2 = 0x20; 1463 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) { 1464 wp->session_format = 0x20; 1465 wp->subhdr2 = 8; 1466 #if 0 1467 wp->mcn[0] = 0x80; 1468 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1); 1469 #endif 1470 } else { 1471 /* 1472 * paranoia 1473 */ 1474 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type); 1475 return 1; 1476 } 1477 wp->packet_size = cpu_to_be32(pd->settings.size >> 2); 1478 1479 cgc.buflen = cgc.cmd[8] = size; 1480 if ((ret = pkt_mode_select(pd, &cgc))) { 1481 pkt_dump_sense(&cgc); 1482 return ret; 1483 } 1484 1485 pkt_print_settings(pd); 1486 return 0; 1487 } 1488 1489 /* 1490 * 1 -- we can write to this track, 0 -- we can't 1491 */ 1492 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti) 1493 { 1494 switch (pd->mmc3_profile) { 1495 case 0x1a: /* DVD+RW */ 1496 case 0x12: /* DVD-RAM */ 1497 /* The track is always writable on DVD+RW/DVD-RAM */ 1498 return 1; 1499 default: 1500 break; 1501 } 1502 1503 if (!ti->packet || !ti->fp) 1504 return 0; 1505 1506 /* 1507 * "good" settings as per Mt Fuji. 1508 */ 1509 if (ti->rt == 0 && ti->blank == 0) 1510 return 1; 1511 1512 if (ti->rt == 0 && ti->blank == 1) 1513 return 1; 1514 1515 if (ti->rt == 1 && ti->blank == 0) 1516 return 1; 1517 1518 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet); 1519 return 0; 1520 } 1521 1522 /* 1523 * 1 -- we can write to this disc, 0 -- we can't 1524 */ 1525 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di) 1526 { 1527 switch (pd->mmc3_profile) { 1528 case 0x0a: /* CD-RW */ 1529 case 0xffff: /* MMC3 not supported */ 1530 break; 1531 case 0x1a: /* DVD+RW */ 1532 case 0x13: /* DVD-RW */ 1533 case 0x12: /* DVD-RAM */ 1534 return 1; 1535 default: 1536 VPRINTK("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile); 1537 return 0; 1538 } 1539 1540 /* 1541 * for disc type 0xff we should probably reserve a new track. 1542 * but i'm not sure, should we leave this to user apps? probably. 1543 */ 1544 if (di->disc_type == 0xff) { 1545 printk("pktcdvd: Unknown disc. No track?\n"); 1546 return 0; 1547 } 1548 1549 if (di->disc_type != 0x20 && di->disc_type != 0) { 1550 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type); 1551 return 0; 1552 } 1553 1554 if (di->erasable == 0) { 1555 printk("pktcdvd: Disc not erasable\n"); 1556 return 0; 1557 } 1558 1559 if (di->border_status == PACKET_SESSION_RESERVED) { 1560 printk("pktcdvd: Can't write to last track (reserved)\n"); 1561 return 0; 1562 } 1563 1564 return 1; 1565 } 1566 1567 static int pkt_probe_settings(struct pktcdvd_device *pd) 1568 { 1569 struct packet_command cgc; 1570 unsigned char buf[12]; 1571 disc_information di; 1572 track_information ti; 1573 int ret, track; 1574 1575 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1576 cgc.cmd[0] = GPCMD_GET_CONFIGURATION; 1577 cgc.cmd[8] = 8; 1578 ret = pkt_generic_packet(pd, &cgc); 1579 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7]; 1580 1581 memset(&di, 0, sizeof(disc_information)); 1582 memset(&ti, 0, sizeof(track_information)); 1583 1584 if ((ret = pkt_get_disc_info(pd, &di))) { 1585 printk("failed get_disc\n"); 1586 return ret; 1587 } 1588 1589 if (!pkt_writable_disc(pd, &di)) 1590 return -EROFS; 1591 1592 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR; 1593 1594 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */ 1595 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) { 1596 printk("pktcdvd: failed get_track\n"); 1597 return ret; 1598 } 1599 1600 if (!pkt_writable_track(pd, &ti)) { 1601 printk("pktcdvd: can't write to this track\n"); 1602 return -EROFS; 1603 } 1604 1605 /* 1606 * we keep packet size in 512 byte units, makes it easier to 1607 * deal with request calculations. 1608 */ 1609 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2; 1610 if (pd->settings.size == 0) { 1611 printk("pktcdvd: detected zero packet size!\n"); 1612 return -ENXIO; 1613 } 1614 if (pd->settings.size > PACKET_MAX_SECTORS) { 1615 printk("pktcdvd: packet size is too big\n"); 1616 return -EROFS; 1617 } 1618 pd->settings.fp = ti.fp; 1619 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1); 1620 1621 if (ti.nwa_v) { 1622 pd->nwa = be32_to_cpu(ti.next_writable); 1623 set_bit(PACKET_NWA_VALID, &pd->flags); 1624 } 1625 1626 /* 1627 * in theory we could use lra on -RW media as well and just zero 1628 * blocks that haven't been written yet, but in practice that 1629 * is just a no-go. we'll use that for -R, naturally. 1630 */ 1631 if (ti.lra_v) { 1632 pd->lra = be32_to_cpu(ti.last_rec_address); 1633 set_bit(PACKET_LRA_VALID, &pd->flags); 1634 } else { 1635 pd->lra = 0xffffffff; 1636 set_bit(PACKET_LRA_VALID, &pd->flags); 1637 } 1638 1639 /* 1640 * fine for now 1641 */ 1642 pd->settings.link_loss = 7; 1643 pd->settings.write_type = 0; /* packet */ 1644 pd->settings.track_mode = ti.track_mode; 1645 1646 /* 1647 * mode1 or mode2 disc 1648 */ 1649 switch (ti.data_mode) { 1650 case PACKET_MODE1: 1651 pd->settings.block_mode = PACKET_BLOCK_MODE1; 1652 break; 1653 case PACKET_MODE2: 1654 pd->settings.block_mode = PACKET_BLOCK_MODE2; 1655 break; 1656 default: 1657 printk("pktcdvd: unknown data mode\n"); 1658 return -EROFS; 1659 } 1660 return 0; 1661 } 1662 1663 /* 1664 * enable/disable write caching on drive 1665 */ 1666 static int pkt_write_caching(struct pktcdvd_device *pd, int set) 1667 { 1668 struct packet_command cgc; 1669 struct request_sense sense; 1670 unsigned char buf[64]; 1671 int ret; 1672 1673 memset(buf, 0, sizeof(buf)); 1674 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ); 1675 cgc.sense = &sense; 1676 cgc.buflen = pd->mode_offset + 12; 1677 1678 /* 1679 * caching mode page might not be there, so quiet this command 1680 */ 1681 cgc.quiet = 1; 1682 1683 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0))) 1684 return ret; 1685 1686 buf[pd->mode_offset + 10] |= (!!set << 2); 1687 1688 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff)); 1689 ret = pkt_mode_select(pd, &cgc); 1690 if (ret) { 1691 printk("pktcdvd: write caching control failed\n"); 1692 pkt_dump_sense(&cgc); 1693 } else if (!ret && set) 1694 printk("pktcdvd: enabled write caching on %s\n", pd->name); 1695 return ret; 1696 } 1697 1698 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag) 1699 { 1700 struct packet_command cgc; 1701 1702 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1703 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL; 1704 cgc.cmd[4] = lockflag ? 1 : 0; 1705 return pkt_generic_packet(pd, &cgc); 1706 } 1707 1708 /* 1709 * Returns drive maximum write speed 1710 */ 1711 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed) 1712 { 1713 struct packet_command cgc; 1714 struct request_sense sense; 1715 unsigned char buf[256+18]; 1716 unsigned char *cap_buf; 1717 int ret, offset; 1718 1719 memset(buf, 0, sizeof(buf)); 1720 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset]; 1721 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN); 1722 cgc.sense = &sense; 1723 1724 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1725 if (ret) { 1726 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 + 1727 sizeof(struct mode_page_header); 1728 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0); 1729 if (ret) { 1730 pkt_dump_sense(&cgc); 1731 return ret; 1732 } 1733 } 1734 1735 offset = 20; /* Obsoleted field, used by older drives */ 1736 if (cap_buf[1] >= 28) 1737 offset = 28; /* Current write speed selected */ 1738 if (cap_buf[1] >= 30) { 1739 /* If the drive reports at least one "Logical Unit Write 1740 * Speed Performance Descriptor Block", use the information 1741 * in the first block. (contains the highest speed) 1742 */ 1743 int num_spdb = (cap_buf[30] << 8) + cap_buf[31]; 1744 if (num_spdb > 0) 1745 offset = 34; 1746 } 1747 1748 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1]; 1749 return 0; 1750 } 1751 1752 /* These tables from cdrecord - I don't have orange book */ 1753 /* standard speed CD-RW (1-4x) */ 1754 static char clv_to_speed[16] = { 1755 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1756 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1757 }; 1758 /* high speed CD-RW (-10x) */ 1759 static char hs_clv_to_speed[16] = { 1760 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1761 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1762 }; 1763 /* ultra high speed CD-RW */ 1764 static char us_clv_to_speed[16] = { 1765 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ 1766 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0 1767 }; 1768 1769 /* 1770 * reads the maximum media speed from ATIP 1771 */ 1772 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed) 1773 { 1774 struct packet_command cgc; 1775 struct request_sense sense; 1776 unsigned char buf[64]; 1777 unsigned int size, st, sp; 1778 int ret; 1779 1780 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ); 1781 cgc.sense = &sense; 1782 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 1783 cgc.cmd[1] = 2; 1784 cgc.cmd[2] = 4; /* READ ATIP */ 1785 cgc.cmd[8] = 2; 1786 ret = pkt_generic_packet(pd, &cgc); 1787 if (ret) { 1788 pkt_dump_sense(&cgc); 1789 return ret; 1790 } 1791 size = ((unsigned int) buf[0]<<8) + buf[1] + 2; 1792 if (size > sizeof(buf)) 1793 size = sizeof(buf); 1794 1795 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ); 1796 cgc.sense = &sense; 1797 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP; 1798 cgc.cmd[1] = 2; 1799 cgc.cmd[2] = 4; 1800 cgc.cmd[8] = size; 1801 ret = pkt_generic_packet(pd, &cgc); 1802 if (ret) { 1803 pkt_dump_sense(&cgc); 1804 return ret; 1805 } 1806 1807 if (!buf[6] & 0x40) { 1808 printk("pktcdvd: Disc type is not CD-RW\n"); 1809 return 1; 1810 } 1811 if (!buf[6] & 0x4) { 1812 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n"); 1813 return 1; 1814 } 1815 1816 st = (buf[6] >> 3) & 0x7; /* disc sub-type */ 1817 1818 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */ 1819 1820 /* Info from cdrecord */ 1821 switch (st) { 1822 case 0: /* standard speed */ 1823 *speed = clv_to_speed[sp]; 1824 break; 1825 case 1: /* high speed */ 1826 *speed = hs_clv_to_speed[sp]; 1827 break; 1828 case 2: /* ultra high speed */ 1829 *speed = us_clv_to_speed[sp]; 1830 break; 1831 default: 1832 printk("pktcdvd: Unknown disc sub-type %d\n",st); 1833 return 1; 1834 } 1835 if (*speed) { 1836 printk("pktcdvd: Max. media speed: %d\n",*speed); 1837 return 0; 1838 } else { 1839 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st); 1840 return 1; 1841 } 1842 } 1843 1844 static int pkt_perform_opc(struct pktcdvd_device *pd) 1845 { 1846 struct packet_command cgc; 1847 struct request_sense sense; 1848 int ret; 1849 1850 VPRINTK("pktcdvd: Performing OPC\n"); 1851 1852 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE); 1853 cgc.sense = &sense; 1854 cgc.timeout = 60*HZ; 1855 cgc.cmd[0] = GPCMD_SEND_OPC; 1856 cgc.cmd[1] = 1; 1857 if ((ret = pkt_generic_packet(pd, &cgc))) 1858 pkt_dump_sense(&cgc); 1859 return ret; 1860 } 1861 1862 static int pkt_open_write(struct pktcdvd_device *pd) 1863 { 1864 int ret; 1865 unsigned int write_speed, media_write_speed, read_speed; 1866 1867 if ((ret = pkt_probe_settings(pd))) { 1868 VPRINTK("pktcdvd: %s failed probe\n", pd->name); 1869 return ret; 1870 } 1871 1872 if ((ret = pkt_set_write_settings(pd))) { 1873 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name); 1874 return -EIO; 1875 } 1876 1877 pkt_write_caching(pd, USE_WCACHING); 1878 1879 if ((ret = pkt_get_max_speed(pd, &write_speed))) 1880 write_speed = 16 * 177; 1881 switch (pd->mmc3_profile) { 1882 case 0x13: /* DVD-RW */ 1883 case 0x1a: /* DVD+RW */ 1884 case 0x12: /* DVD-RAM */ 1885 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed); 1886 break; 1887 default: 1888 if ((ret = pkt_media_speed(pd, &media_write_speed))) 1889 media_write_speed = 16; 1890 write_speed = min(write_speed, media_write_speed * 177); 1891 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176); 1892 break; 1893 } 1894 read_speed = write_speed; 1895 1896 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) { 1897 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name); 1898 return -EIO; 1899 } 1900 pd->write_speed = write_speed; 1901 pd->read_speed = read_speed; 1902 1903 if ((ret = pkt_perform_opc(pd))) { 1904 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name); 1905 } 1906 1907 return 0; 1908 } 1909 1910 /* 1911 * called at open time. 1912 */ 1913 static int pkt_open_dev(struct pktcdvd_device *pd, int write) 1914 { 1915 int ret; 1916 long lba; 1917 request_queue_t *q; 1918 1919 /* 1920 * We need to re-open the cdrom device without O_NONBLOCK to be able 1921 * to read/write from/to it. It is already opened in O_NONBLOCK mode 1922 * so bdget() can't fail. 1923 */ 1924 bdget(pd->bdev->bd_dev); 1925 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY))) 1926 goto out; 1927 1928 if ((ret = bd_claim(pd->bdev, pd))) 1929 goto out_putdev; 1930 1931 if ((ret = pkt_get_last_written(pd, &lba))) { 1932 printk("pktcdvd: pkt_get_last_written failed\n"); 1933 goto out_unclaim; 1934 } 1935 1936 set_capacity(pd->disk, lba << 2); 1937 set_capacity(pd->bdev->bd_disk, lba << 2); 1938 bd_set_size(pd->bdev, (loff_t)lba << 11); 1939 1940 q = bdev_get_queue(pd->bdev); 1941 if (write) { 1942 if ((ret = pkt_open_write(pd))) 1943 goto out_unclaim; 1944 /* 1945 * Some CDRW drives can not handle writes larger than one packet, 1946 * even if the size is a multiple of the packet size. 1947 */ 1948 spin_lock_irq(q->queue_lock); 1949 blk_queue_max_sectors(q, pd->settings.size); 1950 spin_unlock_irq(q->queue_lock); 1951 set_bit(PACKET_WRITABLE, &pd->flags); 1952 } else { 1953 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 1954 clear_bit(PACKET_WRITABLE, &pd->flags); 1955 } 1956 1957 if ((ret = pkt_set_segment_merging(pd, q))) 1958 goto out_unclaim; 1959 1960 if (write) { 1961 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) { 1962 printk("pktcdvd: not enough memory for buffers\n"); 1963 ret = -ENOMEM; 1964 goto out_unclaim; 1965 } 1966 printk("pktcdvd: %lukB available on disc\n", lba << 1); 1967 } 1968 1969 return 0; 1970 1971 out_unclaim: 1972 bd_release(pd->bdev); 1973 out_putdev: 1974 blkdev_put(pd->bdev); 1975 out: 1976 return ret; 1977 } 1978 1979 /* 1980 * called when the device is closed. makes sure that the device flushes 1981 * the internal cache before we close. 1982 */ 1983 static void pkt_release_dev(struct pktcdvd_device *pd, int flush) 1984 { 1985 if (flush && pkt_flush_cache(pd)) 1986 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name); 1987 1988 pkt_lock_door(pd, 0); 1989 1990 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED); 1991 bd_release(pd->bdev); 1992 blkdev_put(pd->bdev); 1993 1994 pkt_shrink_pktlist(pd); 1995 } 1996 1997 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor) 1998 { 1999 if (dev_minor >= MAX_WRITERS) 2000 return NULL; 2001 return pkt_devs[dev_minor]; 2002 } 2003 2004 static int pkt_open(struct inode *inode, struct file *file) 2005 { 2006 struct pktcdvd_device *pd = NULL; 2007 int ret; 2008 2009 VPRINTK("pktcdvd: entering open\n"); 2010 2011 mutex_lock(&ctl_mutex); 2012 pd = pkt_find_dev_from_minor(iminor(inode)); 2013 if (!pd) { 2014 ret = -ENODEV; 2015 goto out; 2016 } 2017 BUG_ON(pd->refcnt < 0); 2018 2019 pd->refcnt++; 2020 if (pd->refcnt > 1) { 2021 if ((file->f_mode & FMODE_WRITE) && 2022 !test_bit(PACKET_WRITABLE, &pd->flags)) { 2023 ret = -EBUSY; 2024 goto out_dec; 2025 } 2026 } else { 2027 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE); 2028 if (ret) 2029 goto out_dec; 2030 /* 2031 * needed here as well, since ext2 (among others) may change 2032 * the blocksize at mount time 2033 */ 2034 set_blocksize(inode->i_bdev, CD_FRAMESIZE); 2035 } 2036 2037 mutex_unlock(&ctl_mutex); 2038 return 0; 2039 2040 out_dec: 2041 pd->refcnt--; 2042 out: 2043 VPRINTK("pktcdvd: failed open (%d)\n", ret); 2044 mutex_unlock(&ctl_mutex); 2045 return ret; 2046 } 2047 2048 static int pkt_close(struct inode *inode, struct file *file) 2049 { 2050 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2051 int ret = 0; 2052 2053 mutex_lock(&ctl_mutex); 2054 pd->refcnt--; 2055 BUG_ON(pd->refcnt < 0); 2056 if (pd->refcnt == 0) { 2057 int flush = test_bit(PACKET_WRITABLE, &pd->flags); 2058 pkt_release_dev(pd, flush); 2059 } 2060 mutex_unlock(&ctl_mutex); 2061 return ret; 2062 } 2063 2064 2065 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err) 2066 { 2067 struct packet_stacked_data *psd = bio->bi_private; 2068 struct pktcdvd_device *pd = psd->pd; 2069 2070 if (bio->bi_size) 2071 return 1; 2072 2073 bio_put(bio); 2074 bio_endio(psd->bio, psd->bio->bi_size, err); 2075 mempool_free(psd, psd_pool); 2076 pkt_bio_finished(pd); 2077 return 0; 2078 } 2079 2080 static int pkt_make_request(request_queue_t *q, struct bio *bio) 2081 { 2082 struct pktcdvd_device *pd; 2083 char b[BDEVNAME_SIZE]; 2084 sector_t zone; 2085 struct packet_data *pkt; 2086 int was_empty, blocked_bio; 2087 struct pkt_rb_node *node; 2088 2089 pd = q->queuedata; 2090 if (!pd) { 2091 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b)); 2092 goto end_io; 2093 } 2094 2095 /* 2096 * Clone READ bios so we can have our own bi_end_io callback. 2097 */ 2098 if (bio_data_dir(bio) == READ) { 2099 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO); 2100 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO); 2101 2102 psd->pd = pd; 2103 psd->bio = bio; 2104 cloned_bio->bi_bdev = pd->bdev; 2105 cloned_bio->bi_private = psd; 2106 cloned_bio->bi_end_io = pkt_end_io_read_cloned; 2107 pd->stats.secs_r += bio->bi_size >> 9; 2108 pkt_queue_bio(pd, cloned_bio); 2109 return 0; 2110 } 2111 2112 if (!test_bit(PACKET_WRITABLE, &pd->flags)) { 2113 printk("pktcdvd: WRITE for ro device %s (%llu)\n", 2114 pd->name, (unsigned long long)bio->bi_sector); 2115 goto end_io; 2116 } 2117 2118 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) { 2119 printk("pktcdvd: wrong bio size\n"); 2120 goto end_io; 2121 } 2122 2123 blk_queue_bounce(q, &bio); 2124 2125 zone = ZONE(bio->bi_sector, pd); 2126 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n", 2127 (unsigned long long)bio->bi_sector, 2128 (unsigned long long)(bio->bi_sector + bio_sectors(bio))); 2129 2130 /* Check if we have to split the bio */ 2131 { 2132 struct bio_pair *bp; 2133 sector_t last_zone; 2134 int first_sectors; 2135 2136 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd); 2137 if (last_zone != zone) { 2138 BUG_ON(last_zone != zone + pd->settings.size); 2139 first_sectors = last_zone - bio->bi_sector; 2140 bp = bio_split(bio, bio_split_pool, first_sectors); 2141 BUG_ON(!bp); 2142 pkt_make_request(q, &bp->bio1); 2143 pkt_make_request(q, &bp->bio2); 2144 bio_pair_release(bp); 2145 return 0; 2146 } 2147 } 2148 2149 /* 2150 * If we find a matching packet in state WAITING or READ_WAIT, we can 2151 * just append this bio to that packet. 2152 */ 2153 spin_lock(&pd->cdrw.active_list_lock); 2154 blocked_bio = 0; 2155 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) { 2156 if (pkt->sector == zone) { 2157 spin_lock(&pkt->lock); 2158 if ((pkt->state == PACKET_WAITING_STATE) || 2159 (pkt->state == PACKET_READ_WAIT_STATE)) { 2160 pkt_add_list_last(bio, &pkt->orig_bios, 2161 &pkt->orig_bios_tail); 2162 pkt->write_size += bio->bi_size / CD_FRAMESIZE; 2163 if ((pkt->write_size >= pkt->frames) && 2164 (pkt->state == PACKET_WAITING_STATE)) { 2165 atomic_inc(&pkt->run_sm); 2166 wake_up(&pd->wqueue); 2167 } 2168 spin_unlock(&pkt->lock); 2169 spin_unlock(&pd->cdrw.active_list_lock); 2170 return 0; 2171 } else { 2172 blocked_bio = 1; 2173 } 2174 spin_unlock(&pkt->lock); 2175 } 2176 } 2177 spin_unlock(&pd->cdrw.active_list_lock); 2178 2179 /* 2180 * No matching packet found. Store the bio in the work queue. 2181 */ 2182 node = mempool_alloc(pd->rb_pool, GFP_NOIO); 2183 node->bio = bio; 2184 spin_lock(&pd->lock); 2185 BUG_ON(pd->bio_queue_size < 0); 2186 was_empty = (pd->bio_queue_size == 0); 2187 pkt_rbtree_insert(pd, node); 2188 spin_unlock(&pd->lock); 2189 2190 /* 2191 * Wake up the worker thread. 2192 */ 2193 atomic_set(&pd->scan_queue, 1); 2194 if (was_empty) { 2195 /* This wake_up is required for correct operation */ 2196 wake_up(&pd->wqueue); 2197 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) { 2198 /* 2199 * This wake up is not required for correct operation, 2200 * but improves performance in some cases. 2201 */ 2202 wake_up(&pd->wqueue); 2203 } 2204 return 0; 2205 end_io: 2206 bio_io_error(bio, bio->bi_size); 2207 return 0; 2208 } 2209 2210 2211 2212 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec) 2213 { 2214 struct pktcdvd_device *pd = q->queuedata; 2215 sector_t zone = ZONE(bio->bi_sector, pd); 2216 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size; 2217 int remaining = (pd->settings.size << 9) - used; 2218 int remaining2; 2219 2220 /* 2221 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet 2222 * boundary, pkt_make_request() will split the bio. 2223 */ 2224 remaining2 = PAGE_SIZE - bio->bi_size; 2225 remaining = max(remaining, remaining2); 2226 2227 BUG_ON(remaining < 0); 2228 return remaining; 2229 } 2230 2231 static void pkt_init_queue(struct pktcdvd_device *pd) 2232 { 2233 request_queue_t *q = pd->disk->queue; 2234 2235 blk_queue_make_request(q, pkt_make_request); 2236 blk_queue_hardsect_size(q, CD_FRAMESIZE); 2237 blk_queue_max_sectors(q, PACKET_MAX_SECTORS); 2238 blk_queue_merge_bvec(q, pkt_merge_bvec); 2239 q->queuedata = pd; 2240 } 2241 2242 static int pkt_seq_show(struct seq_file *m, void *p) 2243 { 2244 struct pktcdvd_device *pd = m->private; 2245 char *msg; 2246 char bdev_buf[BDEVNAME_SIZE]; 2247 int states[PACKET_NUM_STATES]; 2248 2249 seq_printf(m, "Writer %s mapped to %s:\n", pd->name, 2250 bdevname(pd->bdev, bdev_buf)); 2251 2252 seq_printf(m, "\nSettings:\n"); 2253 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2); 2254 2255 if (pd->settings.write_type == 0) 2256 msg = "Packet"; 2257 else 2258 msg = "Unknown"; 2259 seq_printf(m, "\twrite type:\t\t%s\n", msg); 2260 2261 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable"); 2262 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss); 2263 2264 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode); 2265 2266 if (pd->settings.block_mode == PACKET_BLOCK_MODE1) 2267 msg = "Mode 1"; 2268 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2) 2269 msg = "Mode 2"; 2270 else 2271 msg = "Unknown"; 2272 seq_printf(m, "\tblock mode:\t\t%s\n", msg); 2273 2274 seq_printf(m, "\nStatistics:\n"); 2275 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started); 2276 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended); 2277 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1); 2278 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1); 2279 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1); 2280 2281 seq_printf(m, "\nMisc:\n"); 2282 seq_printf(m, "\treference count:\t%d\n", pd->refcnt); 2283 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags); 2284 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed); 2285 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed); 2286 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset); 2287 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset); 2288 2289 seq_printf(m, "\nQueue state:\n"); 2290 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size); 2291 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios)); 2292 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector); 2293 2294 pkt_count_states(pd, states); 2295 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n", 2296 states[0], states[1], states[2], states[3], states[4], states[5]); 2297 2298 return 0; 2299 } 2300 2301 static int pkt_seq_open(struct inode *inode, struct file *file) 2302 { 2303 return single_open(file, pkt_seq_show, PDE(inode)->data); 2304 } 2305 2306 static struct file_operations pkt_proc_fops = { 2307 .open = pkt_seq_open, 2308 .read = seq_read, 2309 .llseek = seq_lseek, 2310 .release = single_release 2311 }; 2312 2313 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev) 2314 { 2315 int i; 2316 int ret = 0; 2317 char b[BDEVNAME_SIZE]; 2318 struct proc_dir_entry *proc; 2319 struct block_device *bdev; 2320 2321 if (pd->pkt_dev == dev) { 2322 printk("pktcdvd: Recursive setup not allowed\n"); 2323 return -EBUSY; 2324 } 2325 for (i = 0; i < MAX_WRITERS; i++) { 2326 struct pktcdvd_device *pd2 = pkt_devs[i]; 2327 if (!pd2) 2328 continue; 2329 if (pd2->bdev->bd_dev == dev) { 2330 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b)); 2331 return -EBUSY; 2332 } 2333 if (pd2->pkt_dev == dev) { 2334 printk("pktcdvd: Can't chain pktcdvd devices\n"); 2335 return -EBUSY; 2336 } 2337 } 2338 2339 bdev = bdget(dev); 2340 if (!bdev) 2341 return -ENOMEM; 2342 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK); 2343 if (ret) 2344 return ret; 2345 2346 /* This is safe, since we have a reference from open(). */ 2347 __module_get(THIS_MODULE); 2348 2349 pd->bdev = bdev; 2350 set_blocksize(bdev, CD_FRAMESIZE); 2351 2352 pkt_init_queue(pd); 2353 2354 atomic_set(&pd->cdrw.pending_bios, 0); 2355 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name); 2356 if (IS_ERR(pd->cdrw.thread)) { 2357 printk("pktcdvd: can't start kernel thread\n"); 2358 ret = -ENOMEM; 2359 goto out_mem; 2360 } 2361 2362 proc = create_proc_entry(pd->name, 0, pkt_proc); 2363 if (proc) { 2364 proc->data = pd; 2365 proc->proc_fops = &pkt_proc_fops; 2366 } 2367 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b)); 2368 return 0; 2369 2370 out_mem: 2371 blkdev_put(bdev); 2372 /* This is safe: open() is still holding a reference. */ 2373 module_put(THIS_MODULE); 2374 return ret; 2375 } 2376 2377 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2378 { 2379 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data; 2380 2381 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode)); 2382 2383 switch (cmd) { 2384 /* 2385 * forward selected CDROM ioctls to CD-ROM, for UDF 2386 */ 2387 case CDROMMULTISESSION: 2388 case CDROMREADTOCENTRY: 2389 case CDROM_LAST_WRITTEN: 2390 case CDROM_SEND_PACKET: 2391 case SCSI_IOCTL_SEND_COMMAND: 2392 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2393 2394 case CDROMEJECT: 2395 /* 2396 * The door gets locked when the device is opened, so we 2397 * have to unlock it or else the eject command fails. 2398 */ 2399 if (pd->refcnt == 1) 2400 pkt_lock_door(pd, 0); 2401 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg); 2402 2403 default: 2404 VPRINTK("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd); 2405 return -ENOTTY; 2406 } 2407 2408 return 0; 2409 } 2410 2411 static int pkt_media_changed(struct gendisk *disk) 2412 { 2413 struct pktcdvd_device *pd = disk->private_data; 2414 struct gendisk *attached_disk; 2415 2416 if (!pd) 2417 return 0; 2418 if (!pd->bdev) 2419 return 0; 2420 attached_disk = pd->bdev->bd_disk; 2421 if (!attached_disk) 2422 return 0; 2423 return attached_disk->fops->media_changed(attached_disk); 2424 } 2425 2426 static struct block_device_operations pktcdvd_ops = { 2427 .owner = THIS_MODULE, 2428 .open = pkt_open, 2429 .release = pkt_close, 2430 .ioctl = pkt_ioctl, 2431 .media_changed = pkt_media_changed, 2432 }; 2433 2434 /* 2435 * Set up mapping from pktcdvd device to CD-ROM device. 2436 */ 2437 static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd) 2438 { 2439 int idx; 2440 int ret = -ENOMEM; 2441 struct pktcdvd_device *pd; 2442 struct gendisk *disk; 2443 dev_t dev = new_decode_dev(ctrl_cmd->dev); 2444 2445 for (idx = 0; idx < MAX_WRITERS; idx++) 2446 if (!pkt_devs[idx]) 2447 break; 2448 if (idx == MAX_WRITERS) { 2449 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS); 2450 return -EBUSY; 2451 } 2452 2453 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL); 2454 if (!pd) 2455 return ret; 2456 2457 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE, 2458 sizeof(struct pkt_rb_node)); 2459 if (!pd->rb_pool) 2460 goto out_mem; 2461 2462 disk = alloc_disk(1); 2463 if (!disk) 2464 goto out_mem; 2465 pd->disk = disk; 2466 2467 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list); 2468 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list); 2469 spin_lock_init(&pd->cdrw.active_list_lock); 2470 2471 spin_lock_init(&pd->lock); 2472 spin_lock_init(&pd->iosched.lock); 2473 sprintf(pd->name, "pktcdvd%d", idx); 2474 init_waitqueue_head(&pd->wqueue); 2475 pd->bio_queue = RB_ROOT; 2476 2477 disk->major = pkt_major; 2478 disk->first_minor = idx; 2479 disk->fops = &pktcdvd_ops; 2480 disk->flags = GENHD_FL_REMOVABLE; 2481 sprintf(disk->disk_name, "pktcdvd%d", idx); 2482 disk->private_data = pd; 2483 disk->queue = blk_alloc_queue(GFP_KERNEL); 2484 if (!disk->queue) 2485 goto out_mem2; 2486 2487 pd->pkt_dev = MKDEV(disk->major, disk->first_minor); 2488 ret = pkt_new_dev(pd, dev); 2489 if (ret) 2490 goto out_new_dev; 2491 2492 add_disk(disk); 2493 pkt_devs[idx] = pd; 2494 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2495 return 0; 2496 2497 out_new_dev: 2498 blk_cleanup_queue(disk->queue); 2499 out_mem2: 2500 put_disk(disk); 2501 out_mem: 2502 if (pd->rb_pool) 2503 mempool_destroy(pd->rb_pool); 2504 kfree(pd); 2505 return ret; 2506 } 2507 2508 /* 2509 * Tear down mapping from pktcdvd device to CD-ROM device. 2510 */ 2511 static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd) 2512 { 2513 struct pktcdvd_device *pd; 2514 int idx; 2515 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev); 2516 2517 for (idx = 0; idx < MAX_WRITERS; idx++) { 2518 pd = pkt_devs[idx]; 2519 if (pd && (pd->pkt_dev == pkt_dev)) 2520 break; 2521 } 2522 if (idx == MAX_WRITERS) { 2523 DPRINTK("pktcdvd: dev not setup\n"); 2524 return -ENXIO; 2525 } 2526 2527 if (pd->refcnt > 0) 2528 return -EBUSY; 2529 2530 if (!IS_ERR(pd->cdrw.thread)) 2531 kthread_stop(pd->cdrw.thread); 2532 2533 blkdev_put(pd->bdev); 2534 2535 remove_proc_entry(pd->name, pkt_proc); 2536 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name); 2537 2538 del_gendisk(pd->disk); 2539 blk_cleanup_queue(pd->disk->queue); 2540 put_disk(pd->disk); 2541 2542 pkt_devs[idx] = NULL; 2543 mempool_destroy(pd->rb_pool); 2544 kfree(pd); 2545 2546 /* This is safe: open() is still holding a reference. */ 2547 module_put(THIS_MODULE); 2548 return 0; 2549 } 2550 2551 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd) 2552 { 2553 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index); 2554 if (pd) { 2555 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev); 2556 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev); 2557 } else { 2558 ctrl_cmd->dev = 0; 2559 ctrl_cmd->pkt_dev = 0; 2560 } 2561 ctrl_cmd->num_devices = MAX_WRITERS; 2562 } 2563 2564 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) 2565 { 2566 void __user *argp = (void __user *)arg; 2567 struct pkt_ctrl_command ctrl_cmd; 2568 int ret = 0; 2569 2570 if (cmd != PACKET_CTRL_CMD) 2571 return -ENOTTY; 2572 2573 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command))) 2574 return -EFAULT; 2575 2576 switch (ctrl_cmd.command) { 2577 case PKT_CTRL_CMD_SETUP: 2578 if (!capable(CAP_SYS_ADMIN)) 2579 return -EPERM; 2580 mutex_lock(&ctl_mutex); 2581 ret = pkt_setup_dev(&ctrl_cmd); 2582 mutex_unlock(&ctl_mutex); 2583 break; 2584 case PKT_CTRL_CMD_TEARDOWN: 2585 if (!capable(CAP_SYS_ADMIN)) 2586 return -EPERM; 2587 mutex_lock(&ctl_mutex); 2588 ret = pkt_remove_dev(&ctrl_cmd); 2589 mutex_unlock(&ctl_mutex); 2590 break; 2591 case PKT_CTRL_CMD_STATUS: 2592 mutex_lock(&ctl_mutex); 2593 pkt_get_status(&ctrl_cmd); 2594 mutex_unlock(&ctl_mutex); 2595 break; 2596 default: 2597 return -ENOTTY; 2598 } 2599 2600 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command))) 2601 return -EFAULT; 2602 return ret; 2603 } 2604 2605 2606 static struct file_operations pkt_ctl_fops = { 2607 .ioctl = pkt_ctl_ioctl, 2608 .owner = THIS_MODULE, 2609 }; 2610 2611 static struct miscdevice pkt_misc = { 2612 .minor = MISC_DYNAMIC_MINOR, 2613 .name = "pktcdvd", 2614 .fops = &pkt_ctl_fops 2615 }; 2616 2617 static int __init pkt_init(void) 2618 { 2619 int ret; 2620 2621 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE, 2622 sizeof(struct packet_stacked_data)); 2623 if (!psd_pool) 2624 return -ENOMEM; 2625 2626 ret = register_blkdev(pkt_major, "pktcdvd"); 2627 if (ret < 0) { 2628 printk("pktcdvd: Unable to register block device\n"); 2629 goto out2; 2630 } 2631 if (!pkt_major) 2632 pkt_major = ret; 2633 2634 ret = misc_register(&pkt_misc); 2635 if (ret) { 2636 printk("pktcdvd: Unable to register misc device\n"); 2637 goto out; 2638 } 2639 2640 mutex_init(&ctl_mutex); 2641 2642 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver); 2643 2644 return 0; 2645 2646 out: 2647 unregister_blkdev(pkt_major, "pktcdvd"); 2648 out2: 2649 mempool_destroy(psd_pool); 2650 return ret; 2651 } 2652 2653 static void __exit pkt_exit(void) 2654 { 2655 remove_proc_entry("pktcdvd", proc_root_driver); 2656 misc_deregister(&pkt_misc); 2657 unregister_blkdev(pkt_major, "pktcdvd"); 2658 mempool_destroy(psd_pool); 2659 } 2660 2661 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives"); 2662 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>"); 2663 MODULE_LICENSE("GPL"); 2664 2665 module_init(pkt_init); 2666 module_exit(pkt_exit); 2667