xref: /linux/drivers/block/pktcdvd.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46 
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/mutex.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_ioctl.h>
64 #include <scsi/scsi.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
67 
68 #include <asm/uaccess.h>
69 
70 #define DRIVER_NAME	"pktcdvd"
71 
72 #if PACKET_DEBUG
73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define DPRINTK(fmt, args...)
76 #endif
77 
78 #if PACKET_DEBUG > 1
79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80 #else
81 #define VPRINTK(fmt, args...)
82 #endif
83 
84 #define MAX_SPEED 0xffff
85 
86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & \
87 			~(sector_t)((pd)->settings.size - 1))
88 
89 static DEFINE_MUTEX(pktcdvd_mutex);
90 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
91 static struct proc_dir_entry *pkt_proc;
92 static int pktdev_major;
93 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
94 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
95 static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
96 static mempool_t *psd_pool;
97 
98 static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
99 static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
100 
101 /* forward declaration */
102 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
103 static int pkt_remove_dev(dev_t pkt_dev);
104 static int pkt_seq_show(struct seq_file *m, void *p);
105 
106 
107 
108 /*
109  * create and register a pktcdvd kernel object.
110  */
111 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
112 					const char* name,
113 					struct kobject* parent,
114 					struct kobj_type* ktype)
115 {
116 	struct pktcdvd_kobj *p;
117 	int error;
118 
119 	p = kzalloc(sizeof(*p), GFP_KERNEL);
120 	if (!p)
121 		return NULL;
122 	p->pd = pd;
123 	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
124 	if (error) {
125 		kobject_put(&p->kobj);
126 		return NULL;
127 	}
128 	kobject_uevent(&p->kobj, KOBJ_ADD);
129 	return p;
130 }
131 /*
132  * remove a pktcdvd kernel object.
133  */
134 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
135 {
136 	if (p)
137 		kobject_put(&p->kobj);
138 }
139 /*
140  * default release function for pktcdvd kernel objects.
141  */
142 static void pkt_kobj_release(struct kobject *kobj)
143 {
144 	kfree(to_pktcdvdkobj(kobj));
145 }
146 
147 
148 /**********************************************************
149  *
150  * sysfs interface for pktcdvd
151  * by (C) 2006  Thomas Maier <balagi@justmail.de>
152  *
153  **********************************************************/
154 
155 #define DEF_ATTR(_obj,_name,_mode) \
156 	static struct attribute _obj = { .name = _name, .mode = _mode }
157 
158 /**********************************************************
159   /sys/class/pktcdvd/pktcdvd[0-7]/
160                      stat/reset
161                      stat/packets_started
162                      stat/packets_finished
163                      stat/kb_written
164                      stat/kb_read
165                      stat/kb_read_gather
166                      write_queue/size
167                      write_queue/congestion_off
168                      write_queue/congestion_on
169  **********************************************************/
170 
171 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
172 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
173 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
174 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
175 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
176 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
177 
178 static struct attribute *kobj_pkt_attrs_stat[] = {
179 	&kobj_pkt_attr_st1,
180 	&kobj_pkt_attr_st2,
181 	&kobj_pkt_attr_st3,
182 	&kobj_pkt_attr_st4,
183 	&kobj_pkt_attr_st5,
184 	&kobj_pkt_attr_st6,
185 	NULL
186 };
187 
188 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
189 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
190 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
191 
192 static struct attribute *kobj_pkt_attrs_wqueue[] = {
193 	&kobj_pkt_attr_wq1,
194 	&kobj_pkt_attr_wq2,
195 	&kobj_pkt_attr_wq3,
196 	NULL
197 };
198 
199 static ssize_t kobj_pkt_show(struct kobject *kobj,
200 			struct attribute *attr, char *data)
201 {
202 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
203 	int n = 0;
204 	int v;
205 	if (strcmp(attr->name, "packets_started") == 0) {
206 		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
207 
208 	} else if (strcmp(attr->name, "packets_finished") == 0) {
209 		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
210 
211 	} else if (strcmp(attr->name, "kb_written") == 0) {
212 		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
213 
214 	} else if (strcmp(attr->name, "kb_read") == 0) {
215 		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
216 
217 	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
218 		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
219 
220 	} else if (strcmp(attr->name, "size") == 0) {
221 		spin_lock(&pd->lock);
222 		v = pd->bio_queue_size;
223 		spin_unlock(&pd->lock);
224 		n = sprintf(data, "%d\n", v);
225 
226 	} else if (strcmp(attr->name, "congestion_off") == 0) {
227 		spin_lock(&pd->lock);
228 		v = pd->write_congestion_off;
229 		spin_unlock(&pd->lock);
230 		n = sprintf(data, "%d\n", v);
231 
232 	} else if (strcmp(attr->name, "congestion_on") == 0) {
233 		spin_lock(&pd->lock);
234 		v = pd->write_congestion_on;
235 		spin_unlock(&pd->lock);
236 		n = sprintf(data, "%d\n", v);
237 	}
238 	return n;
239 }
240 
241 static void init_write_congestion_marks(int* lo, int* hi)
242 {
243 	if (*hi > 0) {
244 		*hi = max(*hi, 500);
245 		*hi = min(*hi, 1000000);
246 		if (*lo <= 0)
247 			*lo = *hi - 100;
248 		else {
249 			*lo = min(*lo, *hi - 100);
250 			*lo = max(*lo, 100);
251 		}
252 	} else {
253 		*hi = -1;
254 		*lo = -1;
255 	}
256 }
257 
258 static ssize_t kobj_pkt_store(struct kobject *kobj,
259 			struct attribute *attr,
260 			const char *data, size_t len)
261 {
262 	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
263 	int val;
264 
265 	if (strcmp(attr->name, "reset") == 0 && len > 0) {
266 		pd->stats.pkt_started = 0;
267 		pd->stats.pkt_ended = 0;
268 		pd->stats.secs_w = 0;
269 		pd->stats.secs_rg = 0;
270 		pd->stats.secs_r = 0;
271 
272 	} else if (strcmp(attr->name, "congestion_off") == 0
273 		   && sscanf(data, "%d", &val) == 1) {
274 		spin_lock(&pd->lock);
275 		pd->write_congestion_off = val;
276 		init_write_congestion_marks(&pd->write_congestion_off,
277 					&pd->write_congestion_on);
278 		spin_unlock(&pd->lock);
279 
280 	} else if (strcmp(attr->name, "congestion_on") == 0
281 		   && sscanf(data, "%d", &val) == 1) {
282 		spin_lock(&pd->lock);
283 		pd->write_congestion_on = val;
284 		init_write_congestion_marks(&pd->write_congestion_off,
285 					&pd->write_congestion_on);
286 		spin_unlock(&pd->lock);
287 	}
288 	return len;
289 }
290 
291 static const struct sysfs_ops kobj_pkt_ops = {
292 	.show = kobj_pkt_show,
293 	.store = kobj_pkt_store
294 };
295 static struct kobj_type kobj_pkt_type_stat = {
296 	.release = pkt_kobj_release,
297 	.sysfs_ops = &kobj_pkt_ops,
298 	.default_attrs = kobj_pkt_attrs_stat
299 };
300 static struct kobj_type kobj_pkt_type_wqueue = {
301 	.release = pkt_kobj_release,
302 	.sysfs_ops = &kobj_pkt_ops,
303 	.default_attrs = kobj_pkt_attrs_wqueue
304 };
305 
306 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
307 {
308 	if (class_pktcdvd) {
309 		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
310 					"%s", pd->name);
311 		if (IS_ERR(pd->dev))
312 			pd->dev = NULL;
313 	}
314 	if (pd->dev) {
315 		pd->kobj_stat = pkt_kobj_create(pd, "stat",
316 					&pd->dev->kobj,
317 					&kobj_pkt_type_stat);
318 		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
319 					&pd->dev->kobj,
320 					&kobj_pkt_type_wqueue);
321 	}
322 }
323 
324 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
325 {
326 	pkt_kobj_remove(pd->kobj_stat);
327 	pkt_kobj_remove(pd->kobj_wqueue);
328 	if (class_pktcdvd)
329 		device_unregister(pd->dev);
330 }
331 
332 
333 /********************************************************************
334   /sys/class/pktcdvd/
335                      add            map block device
336                      remove         unmap packet dev
337                      device_map     show mappings
338  *******************************************************************/
339 
340 static void class_pktcdvd_release(struct class *cls)
341 {
342 	kfree(cls);
343 }
344 static ssize_t class_pktcdvd_show_map(struct class *c,
345 					struct class_attribute *attr,
346 					char *data)
347 {
348 	int n = 0;
349 	int idx;
350 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
351 	for (idx = 0; idx < MAX_WRITERS; idx++) {
352 		struct pktcdvd_device *pd = pkt_devs[idx];
353 		if (!pd)
354 			continue;
355 		n += sprintf(data+n, "%s %u:%u %u:%u\n",
356 			pd->name,
357 			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
358 			MAJOR(pd->bdev->bd_dev),
359 			MINOR(pd->bdev->bd_dev));
360 	}
361 	mutex_unlock(&ctl_mutex);
362 	return n;
363 }
364 
365 static ssize_t class_pktcdvd_store_add(struct class *c,
366 					struct class_attribute *attr,
367 					const char *buf,
368 					size_t count)
369 {
370 	unsigned int major, minor;
371 
372 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
373 		/* pkt_setup_dev() expects caller to hold reference to self */
374 		if (!try_module_get(THIS_MODULE))
375 			return -ENODEV;
376 
377 		pkt_setup_dev(MKDEV(major, minor), NULL);
378 
379 		module_put(THIS_MODULE);
380 
381 		return count;
382 	}
383 
384 	return -EINVAL;
385 }
386 
387 static ssize_t class_pktcdvd_store_remove(struct class *c,
388 					  struct class_attribute *attr,
389 					  const char *buf,
390 					size_t count)
391 {
392 	unsigned int major, minor;
393 	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
394 		pkt_remove_dev(MKDEV(major, minor));
395 		return count;
396 	}
397 	return -EINVAL;
398 }
399 
400 static struct class_attribute class_pktcdvd_attrs[] = {
401  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
402  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
403  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
404  __ATTR_NULL
405 };
406 
407 
408 static int pkt_sysfs_init(void)
409 {
410 	int ret = 0;
411 
412 	/*
413 	 * create control files in sysfs
414 	 * /sys/class/pktcdvd/...
415 	 */
416 	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
417 	if (!class_pktcdvd)
418 		return -ENOMEM;
419 	class_pktcdvd->name = DRIVER_NAME;
420 	class_pktcdvd->owner = THIS_MODULE;
421 	class_pktcdvd->class_release = class_pktcdvd_release;
422 	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
423 	ret = class_register(class_pktcdvd);
424 	if (ret) {
425 		kfree(class_pktcdvd);
426 		class_pktcdvd = NULL;
427 		printk(DRIVER_NAME": failed to create class pktcdvd\n");
428 		return ret;
429 	}
430 	return 0;
431 }
432 
433 static void pkt_sysfs_cleanup(void)
434 {
435 	if (class_pktcdvd)
436 		class_destroy(class_pktcdvd);
437 	class_pktcdvd = NULL;
438 }
439 
440 /********************************************************************
441   entries in debugfs
442 
443   /sys/kernel/debug/pktcdvd[0-7]/
444 			info
445 
446  *******************************************************************/
447 
448 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
449 {
450 	return pkt_seq_show(m, p);
451 }
452 
453 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
454 {
455 	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
456 }
457 
458 static const struct file_operations debug_fops = {
459 	.open		= pkt_debugfs_fops_open,
460 	.read		= seq_read,
461 	.llseek		= seq_lseek,
462 	.release	= single_release,
463 	.owner		= THIS_MODULE,
464 };
465 
466 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
467 {
468 	if (!pkt_debugfs_root)
469 		return;
470 	pd->dfs_f_info = NULL;
471 	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
472 	if (IS_ERR(pd->dfs_d_root)) {
473 		pd->dfs_d_root = NULL;
474 		return;
475 	}
476 	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
477 				pd->dfs_d_root, pd, &debug_fops);
478 	if (IS_ERR(pd->dfs_f_info)) {
479 		pd->dfs_f_info = NULL;
480 		return;
481 	}
482 }
483 
484 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
485 {
486 	if (!pkt_debugfs_root)
487 		return;
488 	if (pd->dfs_f_info)
489 		debugfs_remove(pd->dfs_f_info);
490 	pd->dfs_f_info = NULL;
491 	if (pd->dfs_d_root)
492 		debugfs_remove(pd->dfs_d_root);
493 	pd->dfs_d_root = NULL;
494 }
495 
496 static void pkt_debugfs_init(void)
497 {
498 	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
499 	if (IS_ERR(pkt_debugfs_root)) {
500 		pkt_debugfs_root = NULL;
501 		return;
502 	}
503 }
504 
505 static void pkt_debugfs_cleanup(void)
506 {
507 	if (!pkt_debugfs_root)
508 		return;
509 	debugfs_remove(pkt_debugfs_root);
510 	pkt_debugfs_root = NULL;
511 }
512 
513 /* ----------------------------------------------------------*/
514 
515 
516 static void pkt_bio_finished(struct pktcdvd_device *pd)
517 {
518 	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
519 	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
520 		VPRINTK(DRIVER_NAME": queue empty\n");
521 		atomic_set(&pd->iosched.attention, 1);
522 		wake_up(&pd->wqueue);
523 	}
524 }
525 
526 /*
527  * Allocate a packet_data struct
528  */
529 static struct packet_data *pkt_alloc_packet_data(int frames)
530 {
531 	int i;
532 	struct packet_data *pkt;
533 
534 	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
535 	if (!pkt)
536 		goto no_pkt;
537 
538 	pkt->frames = frames;
539 	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
540 	if (!pkt->w_bio)
541 		goto no_bio;
542 
543 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
544 		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
545 		if (!pkt->pages[i])
546 			goto no_page;
547 	}
548 
549 	spin_lock_init(&pkt->lock);
550 	bio_list_init(&pkt->orig_bios);
551 
552 	for (i = 0; i < frames; i++) {
553 		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
554 		if (!bio)
555 			goto no_rd_bio;
556 
557 		pkt->r_bios[i] = bio;
558 	}
559 
560 	return pkt;
561 
562 no_rd_bio:
563 	for (i = 0; i < frames; i++) {
564 		struct bio *bio = pkt->r_bios[i];
565 		if (bio)
566 			bio_put(bio);
567 	}
568 
569 no_page:
570 	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
571 		if (pkt->pages[i])
572 			__free_page(pkt->pages[i]);
573 	bio_put(pkt->w_bio);
574 no_bio:
575 	kfree(pkt);
576 no_pkt:
577 	return NULL;
578 }
579 
580 /*
581  * Free a packet_data struct
582  */
583 static void pkt_free_packet_data(struct packet_data *pkt)
584 {
585 	int i;
586 
587 	for (i = 0; i < pkt->frames; i++) {
588 		struct bio *bio = pkt->r_bios[i];
589 		if (bio)
590 			bio_put(bio);
591 	}
592 	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
593 		__free_page(pkt->pages[i]);
594 	bio_put(pkt->w_bio);
595 	kfree(pkt);
596 }
597 
598 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
599 {
600 	struct packet_data *pkt, *next;
601 
602 	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
603 
604 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
605 		pkt_free_packet_data(pkt);
606 	}
607 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
608 }
609 
610 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
611 {
612 	struct packet_data *pkt;
613 
614 	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
615 
616 	while (nr_packets > 0) {
617 		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
618 		if (!pkt) {
619 			pkt_shrink_pktlist(pd);
620 			return 0;
621 		}
622 		pkt->id = nr_packets;
623 		pkt->pd = pd;
624 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
625 		nr_packets--;
626 	}
627 	return 1;
628 }
629 
630 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
631 {
632 	struct rb_node *n = rb_next(&node->rb_node);
633 	if (!n)
634 		return NULL;
635 	return rb_entry(n, struct pkt_rb_node, rb_node);
636 }
637 
638 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
639 {
640 	rb_erase(&node->rb_node, &pd->bio_queue);
641 	mempool_free(node, pd->rb_pool);
642 	pd->bio_queue_size--;
643 	BUG_ON(pd->bio_queue_size < 0);
644 }
645 
646 /*
647  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
648  */
649 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
650 {
651 	struct rb_node *n = pd->bio_queue.rb_node;
652 	struct rb_node *next;
653 	struct pkt_rb_node *tmp;
654 
655 	if (!n) {
656 		BUG_ON(pd->bio_queue_size > 0);
657 		return NULL;
658 	}
659 
660 	for (;;) {
661 		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
662 		if (s <= tmp->bio->bi_sector)
663 			next = n->rb_left;
664 		else
665 			next = n->rb_right;
666 		if (!next)
667 			break;
668 		n = next;
669 	}
670 
671 	if (s > tmp->bio->bi_sector) {
672 		tmp = pkt_rbtree_next(tmp);
673 		if (!tmp)
674 			return NULL;
675 	}
676 	BUG_ON(s > tmp->bio->bi_sector);
677 	return tmp;
678 }
679 
680 /*
681  * Insert a node into the pd->bio_queue rb tree.
682  */
683 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
684 {
685 	struct rb_node **p = &pd->bio_queue.rb_node;
686 	struct rb_node *parent = NULL;
687 	sector_t s = node->bio->bi_sector;
688 	struct pkt_rb_node *tmp;
689 
690 	while (*p) {
691 		parent = *p;
692 		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
693 		if (s < tmp->bio->bi_sector)
694 			p = &(*p)->rb_left;
695 		else
696 			p = &(*p)->rb_right;
697 	}
698 	rb_link_node(&node->rb_node, parent, p);
699 	rb_insert_color(&node->rb_node, &pd->bio_queue);
700 	pd->bio_queue_size++;
701 }
702 
703 /*
704  * Send a packet_command to the underlying block device and
705  * wait for completion.
706  */
707 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
708 {
709 	struct request_queue *q = bdev_get_queue(pd->bdev);
710 	struct request *rq;
711 	int ret = 0;
712 
713 	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
714 			     WRITE : READ, __GFP_WAIT);
715 
716 	if (cgc->buflen) {
717 		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
718 			goto out;
719 	}
720 
721 	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
722 	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
723 
724 	rq->timeout = 60*HZ;
725 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
726 	if (cgc->quiet)
727 		rq->cmd_flags |= REQ_QUIET;
728 
729 	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
730 	if (rq->errors)
731 		ret = -EIO;
732 out:
733 	blk_put_request(rq);
734 	return ret;
735 }
736 
737 /*
738  * A generic sense dump / resolve mechanism should be implemented across
739  * all ATAPI + SCSI devices.
740  */
741 static void pkt_dump_sense(struct packet_command *cgc)
742 {
743 	static char *info[9] = { "No sense", "Recovered error", "Not ready",
744 				 "Medium error", "Hardware error", "Illegal request",
745 				 "Unit attention", "Data protect", "Blank check" };
746 	int i;
747 	struct request_sense *sense = cgc->sense;
748 
749 	printk(DRIVER_NAME":");
750 	for (i = 0; i < CDROM_PACKET_SIZE; i++)
751 		printk(" %02x", cgc->cmd[i]);
752 	printk(" - ");
753 
754 	if (sense == NULL) {
755 		printk("no sense\n");
756 		return;
757 	}
758 
759 	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
760 
761 	if (sense->sense_key > 8) {
762 		printk(" (INVALID)\n");
763 		return;
764 	}
765 
766 	printk(" (%s)\n", info[sense->sense_key]);
767 }
768 
769 /*
770  * flush the drive cache to media
771  */
772 static int pkt_flush_cache(struct pktcdvd_device *pd)
773 {
774 	struct packet_command cgc;
775 
776 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
777 	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
778 	cgc.quiet = 1;
779 
780 	/*
781 	 * the IMMED bit -- we default to not setting it, although that
782 	 * would allow a much faster close, this is safer
783 	 */
784 #if 0
785 	cgc.cmd[1] = 1 << 1;
786 #endif
787 	return pkt_generic_packet(pd, &cgc);
788 }
789 
790 /*
791  * speed is given as the normal factor, e.g. 4 for 4x
792  */
793 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
794 				unsigned write_speed, unsigned read_speed)
795 {
796 	struct packet_command cgc;
797 	struct request_sense sense;
798 	int ret;
799 
800 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
801 	cgc.sense = &sense;
802 	cgc.cmd[0] = GPCMD_SET_SPEED;
803 	cgc.cmd[2] = (read_speed >> 8) & 0xff;
804 	cgc.cmd[3] = read_speed & 0xff;
805 	cgc.cmd[4] = (write_speed >> 8) & 0xff;
806 	cgc.cmd[5] = write_speed & 0xff;
807 
808 	if ((ret = pkt_generic_packet(pd, &cgc)))
809 		pkt_dump_sense(&cgc);
810 
811 	return ret;
812 }
813 
814 /*
815  * Queue a bio for processing by the low-level CD device. Must be called
816  * from process context.
817  */
818 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
819 {
820 	spin_lock(&pd->iosched.lock);
821 	if (bio_data_dir(bio) == READ)
822 		bio_list_add(&pd->iosched.read_queue, bio);
823 	else
824 		bio_list_add(&pd->iosched.write_queue, bio);
825 	spin_unlock(&pd->iosched.lock);
826 
827 	atomic_set(&pd->iosched.attention, 1);
828 	wake_up(&pd->wqueue);
829 }
830 
831 /*
832  * Process the queued read/write requests. This function handles special
833  * requirements for CDRW drives:
834  * - A cache flush command must be inserted before a read request if the
835  *   previous request was a write.
836  * - Switching between reading and writing is slow, so don't do it more often
837  *   than necessary.
838  * - Optimize for throughput at the expense of latency. This means that streaming
839  *   writes will never be interrupted by a read, but if the drive has to seek
840  *   before the next write, switch to reading instead if there are any pending
841  *   read requests.
842  * - Set the read speed according to current usage pattern. When only reading
843  *   from the device, it's best to use the highest possible read speed, but
844  *   when switching often between reading and writing, it's better to have the
845  *   same read and write speeds.
846  */
847 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
848 {
849 
850 	if (atomic_read(&pd->iosched.attention) == 0)
851 		return;
852 	atomic_set(&pd->iosched.attention, 0);
853 
854 	for (;;) {
855 		struct bio *bio;
856 		int reads_queued, writes_queued;
857 
858 		spin_lock(&pd->iosched.lock);
859 		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
860 		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
861 		spin_unlock(&pd->iosched.lock);
862 
863 		if (!reads_queued && !writes_queued)
864 			break;
865 
866 		if (pd->iosched.writing) {
867 			int need_write_seek = 1;
868 			spin_lock(&pd->iosched.lock);
869 			bio = bio_list_peek(&pd->iosched.write_queue);
870 			spin_unlock(&pd->iosched.lock);
871 			if (bio && (bio->bi_sector == pd->iosched.last_write))
872 				need_write_seek = 0;
873 			if (need_write_seek && reads_queued) {
874 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
875 					VPRINTK(DRIVER_NAME": write, waiting\n");
876 					break;
877 				}
878 				pkt_flush_cache(pd);
879 				pd->iosched.writing = 0;
880 			}
881 		} else {
882 			if (!reads_queued && writes_queued) {
883 				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
884 					VPRINTK(DRIVER_NAME": read, waiting\n");
885 					break;
886 				}
887 				pd->iosched.writing = 1;
888 			}
889 		}
890 
891 		spin_lock(&pd->iosched.lock);
892 		if (pd->iosched.writing)
893 			bio = bio_list_pop(&pd->iosched.write_queue);
894 		else
895 			bio = bio_list_pop(&pd->iosched.read_queue);
896 		spin_unlock(&pd->iosched.lock);
897 
898 		if (!bio)
899 			continue;
900 
901 		if (bio_data_dir(bio) == READ)
902 			pd->iosched.successive_reads += bio->bi_size >> 10;
903 		else {
904 			pd->iosched.successive_reads = 0;
905 			pd->iosched.last_write = bio_end_sector(bio);
906 		}
907 		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
908 			if (pd->read_speed == pd->write_speed) {
909 				pd->read_speed = MAX_SPEED;
910 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
911 			}
912 		} else {
913 			if (pd->read_speed != pd->write_speed) {
914 				pd->read_speed = pd->write_speed;
915 				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
916 			}
917 		}
918 
919 		atomic_inc(&pd->cdrw.pending_bios);
920 		generic_make_request(bio);
921 	}
922 }
923 
924 /*
925  * Special care is needed if the underlying block device has a small
926  * max_phys_segments value.
927  */
928 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
929 {
930 	if ((pd->settings.size << 9) / CD_FRAMESIZE
931 	    <= queue_max_segments(q)) {
932 		/*
933 		 * The cdrom device can handle one segment/frame
934 		 */
935 		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
936 		return 0;
937 	} else if ((pd->settings.size << 9) / PAGE_SIZE
938 		   <= queue_max_segments(q)) {
939 		/*
940 		 * We can handle this case at the expense of some extra memory
941 		 * copies during write operations
942 		 */
943 		set_bit(PACKET_MERGE_SEGS, &pd->flags);
944 		return 0;
945 	} else {
946 		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
947 		return -EIO;
948 	}
949 }
950 
951 /*
952  * Copy all data for this packet to pkt->pages[], so that
953  * a) The number of required segments for the write bio is minimized, which
954  *    is necessary for some scsi controllers.
955  * b) The data can be used as cache to avoid read requests if we receive a
956  *    new write request for the same zone.
957  */
958 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
959 {
960 	int f, p, offs;
961 
962 	/* Copy all data to pkt->pages[] */
963 	p = 0;
964 	offs = 0;
965 	for (f = 0; f < pkt->frames; f++) {
966 		if (bvec[f].bv_page != pkt->pages[p]) {
967 			void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
968 			void *vto = page_address(pkt->pages[p]) + offs;
969 			memcpy(vto, vfrom, CD_FRAMESIZE);
970 			kunmap_atomic(vfrom);
971 			bvec[f].bv_page = pkt->pages[p];
972 			bvec[f].bv_offset = offs;
973 		} else {
974 			BUG_ON(bvec[f].bv_offset != offs);
975 		}
976 		offs += CD_FRAMESIZE;
977 		if (offs >= PAGE_SIZE) {
978 			offs = 0;
979 			p++;
980 		}
981 	}
982 }
983 
984 static void pkt_end_io_read(struct bio *bio, int err)
985 {
986 	struct packet_data *pkt = bio->bi_private;
987 	struct pktcdvd_device *pd = pkt->pd;
988 	BUG_ON(!pd);
989 
990 	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
991 		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
992 
993 	if (err)
994 		atomic_inc(&pkt->io_errors);
995 	if (atomic_dec_and_test(&pkt->io_wait)) {
996 		atomic_inc(&pkt->run_sm);
997 		wake_up(&pd->wqueue);
998 	}
999 	pkt_bio_finished(pd);
1000 }
1001 
1002 static void pkt_end_io_packet_write(struct bio *bio, int err)
1003 {
1004 	struct packet_data *pkt = bio->bi_private;
1005 	struct pktcdvd_device *pd = pkt->pd;
1006 	BUG_ON(!pd);
1007 
1008 	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1009 
1010 	pd->stats.pkt_ended++;
1011 
1012 	pkt_bio_finished(pd);
1013 	atomic_dec(&pkt->io_wait);
1014 	atomic_inc(&pkt->run_sm);
1015 	wake_up(&pd->wqueue);
1016 }
1017 
1018 /*
1019  * Schedule reads for the holes in a packet
1020  */
1021 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1022 {
1023 	int frames_read = 0;
1024 	struct bio *bio;
1025 	int f;
1026 	char written[PACKET_MAX_SIZE];
1027 
1028 	BUG_ON(bio_list_empty(&pkt->orig_bios));
1029 
1030 	atomic_set(&pkt->io_wait, 0);
1031 	atomic_set(&pkt->io_errors, 0);
1032 
1033 	/*
1034 	 * Figure out which frames we need to read before we can write.
1035 	 */
1036 	memset(written, 0, sizeof(written));
1037 	spin_lock(&pkt->lock);
1038 	bio_list_for_each(bio, &pkt->orig_bios) {
1039 		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1040 		int num_frames = bio->bi_size / CD_FRAMESIZE;
1041 		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1042 		BUG_ON(first_frame < 0);
1043 		BUG_ON(first_frame + num_frames > pkt->frames);
1044 		for (f = first_frame; f < first_frame + num_frames; f++)
1045 			written[f] = 1;
1046 	}
1047 	spin_unlock(&pkt->lock);
1048 
1049 	if (pkt->cache_valid) {
1050 		VPRINTK("pkt_gather_data: zone %llx cached\n",
1051 			(unsigned long long)pkt->sector);
1052 		goto out_account;
1053 	}
1054 
1055 	/*
1056 	 * Schedule reads for missing parts of the packet.
1057 	 */
1058 	for (f = 0; f < pkt->frames; f++) {
1059 		int p, offset;
1060 
1061 		if (written[f])
1062 			continue;
1063 
1064 		bio = pkt->r_bios[f];
1065 		bio_reset(bio);
1066 		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1067 		bio->bi_bdev = pd->bdev;
1068 		bio->bi_end_io = pkt_end_io_read;
1069 		bio->bi_private = pkt;
1070 
1071 		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1072 		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1073 		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1074 			f, pkt->pages[p], offset);
1075 		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1076 			BUG();
1077 
1078 		atomic_inc(&pkt->io_wait);
1079 		bio->bi_rw = READ;
1080 		pkt_queue_bio(pd, bio);
1081 		frames_read++;
1082 	}
1083 
1084 out_account:
1085 	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1086 		frames_read, (unsigned long long)pkt->sector);
1087 	pd->stats.pkt_started++;
1088 	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1089 }
1090 
1091 /*
1092  * Find a packet matching zone, or the least recently used packet if
1093  * there is no match.
1094  */
1095 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1096 {
1097 	struct packet_data *pkt;
1098 
1099 	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1100 		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1101 			list_del_init(&pkt->list);
1102 			if (pkt->sector != zone)
1103 				pkt->cache_valid = 0;
1104 			return pkt;
1105 		}
1106 	}
1107 	BUG();
1108 	return NULL;
1109 }
1110 
1111 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1112 {
1113 	if (pkt->cache_valid) {
1114 		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1115 	} else {
1116 		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1117 	}
1118 }
1119 
1120 /*
1121  * recover a failed write, query for relocation if possible
1122  *
1123  * returns 1 if recovery is possible, or 0 if not
1124  *
1125  */
1126 static int pkt_start_recovery(struct packet_data *pkt)
1127 {
1128 	/*
1129 	 * FIXME. We need help from the file system to implement
1130 	 * recovery handling.
1131 	 */
1132 	return 0;
1133 #if 0
1134 	struct request *rq = pkt->rq;
1135 	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1136 	struct block_device *pkt_bdev;
1137 	struct super_block *sb = NULL;
1138 	unsigned long old_block, new_block;
1139 	sector_t new_sector;
1140 
1141 	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1142 	if (pkt_bdev) {
1143 		sb = get_super(pkt_bdev);
1144 		bdput(pkt_bdev);
1145 	}
1146 
1147 	if (!sb)
1148 		return 0;
1149 
1150 	if (!sb->s_op->relocate_blocks)
1151 		goto out;
1152 
1153 	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1154 	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1155 		goto out;
1156 
1157 	new_sector = new_block * (CD_FRAMESIZE >> 9);
1158 	pkt->sector = new_sector;
1159 
1160 	bio_reset(pkt->bio);
1161 	pkt->bio->bi_bdev = pd->bdev;
1162 	pkt->bio->bi_rw = REQ_WRITE;
1163 	pkt->bio->bi_sector = new_sector;
1164 	pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE;
1165 	pkt->bio->bi_vcnt = pkt->frames;
1166 
1167 	pkt->bio->bi_end_io = pkt_end_io_packet_write;
1168 	pkt->bio->bi_private = pkt;
1169 
1170 	drop_super(sb);
1171 	return 1;
1172 
1173 out:
1174 	drop_super(sb);
1175 	return 0;
1176 #endif
1177 }
1178 
1179 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1180 {
1181 #if PACKET_DEBUG > 1
1182 	static const char *state_name[] = {
1183 		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1184 	};
1185 	enum packet_data_state old_state = pkt->state;
1186 	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1187 		state_name[old_state], state_name[state]);
1188 #endif
1189 	pkt->state = state;
1190 }
1191 
1192 /*
1193  * Scan the work queue to see if we can start a new packet.
1194  * returns non-zero if any work was done.
1195  */
1196 static int pkt_handle_queue(struct pktcdvd_device *pd)
1197 {
1198 	struct packet_data *pkt, *p;
1199 	struct bio *bio = NULL;
1200 	sector_t zone = 0; /* Suppress gcc warning */
1201 	struct pkt_rb_node *node, *first_node;
1202 	struct rb_node *n;
1203 	int wakeup;
1204 
1205 	VPRINTK("handle_queue\n");
1206 
1207 	atomic_set(&pd->scan_queue, 0);
1208 
1209 	if (list_empty(&pd->cdrw.pkt_free_list)) {
1210 		VPRINTK("handle_queue: no pkt\n");
1211 		return 0;
1212 	}
1213 
1214 	/*
1215 	 * Try to find a zone we are not already working on.
1216 	 */
1217 	spin_lock(&pd->lock);
1218 	first_node = pkt_rbtree_find(pd, pd->current_sector);
1219 	if (!first_node) {
1220 		n = rb_first(&pd->bio_queue);
1221 		if (n)
1222 			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1223 	}
1224 	node = first_node;
1225 	while (node) {
1226 		bio = node->bio;
1227 		zone = ZONE(bio->bi_sector, pd);
1228 		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1229 			if (p->sector == zone) {
1230 				bio = NULL;
1231 				goto try_next_bio;
1232 			}
1233 		}
1234 		break;
1235 try_next_bio:
1236 		node = pkt_rbtree_next(node);
1237 		if (!node) {
1238 			n = rb_first(&pd->bio_queue);
1239 			if (n)
1240 				node = rb_entry(n, struct pkt_rb_node, rb_node);
1241 		}
1242 		if (node == first_node)
1243 			node = NULL;
1244 	}
1245 	spin_unlock(&pd->lock);
1246 	if (!bio) {
1247 		VPRINTK("handle_queue: no bio\n");
1248 		return 0;
1249 	}
1250 
1251 	pkt = pkt_get_packet_data(pd, zone);
1252 
1253 	pd->current_sector = zone + pd->settings.size;
1254 	pkt->sector = zone;
1255 	BUG_ON(pkt->frames != pd->settings.size >> 2);
1256 	pkt->write_size = 0;
1257 
1258 	/*
1259 	 * Scan work queue for bios in the same zone and link them
1260 	 * to this packet.
1261 	 */
1262 	spin_lock(&pd->lock);
1263 	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1264 	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1265 		bio = node->bio;
1266 		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1267 			(unsigned long long)ZONE(bio->bi_sector, pd));
1268 		if (ZONE(bio->bi_sector, pd) != zone)
1269 			break;
1270 		pkt_rbtree_erase(pd, node);
1271 		spin_lock(&pkt->lock);
1272 		bio_list_add(&pkt->orig_bios, bio);
1273 		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1274 		spin_unlock(&pkt->lock);
1275 	}
1276 	/* check write congestion marks, and if bio_queue_size is
1277 	   below, wake up any waiters */
1278 	wakeup = (pd->write_congestion_on > 0
1279 	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1280 	spin_unlock(&pd->lock);
1281 	if (wakeup) {
1282 		clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1283 					BLK_RW_ASYNC);
1284 	}
1285 
1286 	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1287 	pkt_set_state(pkt, PACKET_WAITING_STATE);
1288 	atomic_set(&pkt->run_sm, 1);
1289 
1290 	spin_lock(&pd->cdrw.active_list_lock);
1291 	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1292 	spin_unlock(&pd->cdrw.active_list_lock);
1293 
1294 	return 1;
1295 }
1296 
1297 /*
1298  * Assemble a bio to write one packet and queue the bio for processing
1299  * by the underlying block device.
1300  */
1301 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1302 {
1303 	int f;
1304 	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1305 
1306 	bio_reset(pkt->w_bio);
1307 	pkt->w_bio->bi_sector = pkt->sector;
1308 	pkt->w_bio->bi_bdev = pd->bdev;
1309 	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1310 	pkt->w_bio->bi_private = pkt;
1311 
1312 	/* XXX: locking? */
1313 	for (f = 0; f < pkt->frames; f++) {
1314 		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1315 		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1316 		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1317 			BUG();
1318 	}
1319 	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1320 
1321 	/*
1322 	 * Fill-in bvec with data from orig_bios.
1323 	 */
1324 	spin_lock(&pkt->lock);
1325 	bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1326 
1327 	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1328 	spin_unlock(&pkt->lock);
1329 
1330 	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1331 		pkt->write_size, (unsigned long long)pkt->sector);
1332 
1333 	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1334 		pkt_make_local_copy(pkt, bvec);
1335 		pkt->cache_valid = 1;
1336 	} else {
1337 		pkt->cache_valid = 0;
1338 	}
1339 
1340 	/* Start the write request */
1341 	atomic_set(&pkt->io_wait, 1);
1342 	pkt->w_bio->bi_rw = WRITE;
1343 	pkt_queue_bio(pd, pkt->w_bio);
1344 }
1345 
1346 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1347 {
1348 	struct bio *bio;
1349 
1350 	if (!uptodate)
1351 		pkt->cache_valid = 0;
1352 
1353 	/* Finish all bios corresponding to this packet */
1354 	while ((bio = bio_list_pop(&pkt->orig_bios)))
1355 		bio_endio(bio, uptodate ? 0 : -EIO);
1356 }
1357 
1358 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1359 {
1360 	int uptodate;
1361 
1362 	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1363 
1364 	for (;;) {
1365 		switch (pkt->state) {
1366 		case PACKET_WAITING_STATE:
1367 			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1368 				return;
1369 
1370 			pkt->sleep_time = 0;
1371 			pkt_gather_data(pd, pkt);
1372 			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1373 			break;
1374 
1375 		case PACKET_READ_WAIT_STATE:
1376 			if (atomic_read(&pkt->io_wait) > 0)
1377 				return;
1378 
1379 			if (atomic_read(&pkt->io_errors) > 0) {
1380 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1381 			} else {
1382 				pkt_start_write(pd, pkt);
1383 			}
1384 			break;
1385 
1386 		case PACKET_WRITE_WAIT_STATE:
1387 			if (atomic_read(&pkt->io_wait) > 0)
1388 				return;
1389 
1390 			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1391 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1392 			} else {
1393 				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1394 			}
1395 			break;
1396 
1397 		case PACKET_RECOVERY_STATE:
1398 			if (pkt_start_recovery(pkt)) {
1399 				pkt_start_write(pd, pkt);
1400 			} else {
1401 				VPRINTK("No recovery possible\n");
1402 				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1403 			}
1404 			break;
1405 
1406 		case PACKET_FINISHED_STATE:
1407 			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1408 			pkt_finish_packet(pkt, uptodate);
1409 			return;
1410 
1411 		default:
1412 			BUG();
1413 			break;
1414 		}
1415 	}
1416 }
1417 
1418 static void pkt_handle_packets(struct pktcdvd_device *pd)
1419 {
1420 	struct packet_data *pkt, *next;
1421 
1422 	VPRINTK("pkt_handle_packets\n");
1423 
1424 	/*
1425 	 * Run state machine for active packets
1426 	 */
1427 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1428 		if (atomic_read(&pkt->run_sm) > 0) {
1429 			atomic_set(&pkt->run_sm, 0);
1430 			pkt_run_state_machine(pd, pkt);
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * Move no longer active packets to the free list
1436 	 */
1437 	spin_lock(&pd->cdrw.active_list_lock);
1438 	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1439 		if (pkt->state == PACKET_FINISHED_STATE) {
1440 			list_del(&pkt->list);
1441 			pkt_put_packet_data(pd, pkt);
1442 			pkt_set_state(pkt, PACKET_IDLE_STATE);
1443 			atomic_set(&pd->scan_queue, 1);
1444 		}
1445 	}
1446 	spin_unlock(&pd->cdrw.active_list_lock);
1447 }
1448 
1449 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1450 {
1451 	struct packet_data *pkt;
1452 	int i;
1453 
1454 	for (i = 0; i < PACKET_NUM_STATES; i++)
1455 		states[i] = 0;
1456 
1457 	spin_lock(&pd->cdrw.active_list_lock);
1458 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1459 		states[pkt->state]++;
1460 	}
1461 	spin_unlock(&pd->cdrw.active_list_lock);
1462 }
1463 
1464 /*
1465  * kcdrwd is woken up when writes have been queued for one of our
1466  * registered devices
1467  */
1468 static int kcdrwd(void *foobar)
1469 {
1470 	struct pktcdvd_device *pd = foobar;
1471 	struct packet_data *pkt;
1472 	long min_sleep_time, residue;
1473 
1474 	set_user_nice(current, -20);
1475 	set_freezable();
1476 
1477 	for (;;) {
1478 		DECLARE_WAITQUEUE(wait, current);
1479 
1480 		/*
1481 		 * Wait until there is something to do
1482 		 */
1483 		add_wait_queue(&pd->wqueue, &wait);
1484 		for (;;) {
1485 			set_current_state(TASK_INTERRUPTIBLE);
1486 
1487 			/* Check if we need to run pkt_handle_queue */
1488 			if (atomic_read(&pd->scan_queue) > 0)
1489 				goto work_to_do;
1490 
1491 			/* Check if we need to run the state machine for some packet */
1492 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1493 				if (atomic_read(&pkt->run_sm) > 0)
1494 					goto work_to_do;
1495 			}
1496 
1497 			/* Check if we need to process the iosched queues */
1498 			if (atomic_read(&pd->iosched.attention) != 0)
1499 				goto work_to_do;
1500 
1501 			/* Otherwise, go to sleep */
1502 			if (PACKET_DEBUG > 1) {
1503 				int states[PACKET_NUM_STATES];
1504 				pkt_count_states(pd, states);
1505 				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1506 					states[0], states[1], states[2], states[3],
1507 					states[4], states[5]);
1508 			}
1509 
1510 			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1511 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1512 				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1513 					min_sleep_time = pkt->sleep_time;
1514 			}
1515 
1516 			VPRINTK("kcdrwd: sleeping\n");
1517 			residue = schedule_timeout(min_sleep_time);
1518 			VPRINTK("kcdrwd: wake up\n");
1519 
1520 			/* make swsusp happy with our thread */
1521 			try_to_freeze();
1522 
1523 			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1524 				if (!pkt->sleep_time)
1525 					continue;
1526 				pkt->sleep_time -= min_sleep_time - residue;
1527 				if (pkt->sleep_time <= 0) {
1528 					pkt->sleep_time = 0;
1529 					atomic_inc(&pkt->run_sm);
1530 				}
1531 			}
1532 
1533 			if (kthread_should_stop())
1534 				break;
1535 		}
1536 work_to_do:
1537 		set_current_state(TASK_RUNNING);
1538 		remove_wait_queue(&pd->wqueue, &wait);
1539 
1540 		if (kthread_should_stop())
1541 			break;
1542 
1543 		/*
1544 		 * if pkt_handle_queue returns true, we can queue
1545 		 * another request.
1546 		 */
1547 		while (pkt_handle_queue(pd))
1548 			;
1549 
1550 		/*
1551 		 * Handle packet state machine
1552 		 */
1553 		pkt_handle_packets(pd);
1554 
1555 		/*
1556 		 * Handle iosched queues
1557 		 */
1558 		pkt_iosched_process_queue(pd);
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 static void pkt_print_settings(struct pktcdvd_device *pd)
1565 {
1566 	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1567 	printk("%u blocks, ", pd->settings.size >> 2);
1568 	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1569 }
1570 
1571 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1572 {
1573 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1574 
1575 	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1576 	cgc->cmd[2] = page_code | (page_control << 6);
1577 	cgc->cmd[7] = cgc->buflen >> 8;
1578 	cgc->cmd[8] = cgc->buflen & 0xff;
1579 	cgc->data_direction = CGC_DATA_READ;
1580 	return pkt_generic_packet(pd, cgc);
1581 }
1582 
1583 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1584 {
1585 	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1586 	memset(cgc->buffer, 0, 2);
1587 	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1588 	cgc->cmd[1] = 0x10;		/* PF */
1589 	cgc->cmd[7] = cgc->buflen >> 8;
1590 	cgc->cmd[8] = cgc->buflen & 0xff;
1591 	cgc->data_direction = CGC_DATA_WRITE;
1592 	return pkt_generic_packet(pd, cgc);
1593 }
1594 
1595 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1596 {
1597 	struct packet_command cgc;
1598 	int ret;
1599 
1600 	/* set up command and get the disc info */
1601 	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1602 	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1603 	cgc.cmd[8] = cgc.buflen = 2;
1604 	cgc.quiet = 1;
1605 
1606 	if ((ret = pkt_generic_packet(pd, &cgc)))
1607 		return ret;
1608 
1609 	/* not all drives have the same disc_info length, so requeue
1610 	 * packet with the length the drive tells us it can supply
1611 	 */
1612 	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1613 		     sizeof(di->disc_information_length);
1614 
1615 	if (cgc.buflen > sizeof(disc_information))
1616 		cgc.buflen = sizeof(disc_information);
1617 
1618 	cgc.cmd[8] = cgc.buflen;
1619 	return pkt_generic_packet(pd, &cgc);
1620 }
1621 
1622 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1623 {
1624 	struct packet_command cgc;
1625 	int ret;
1626 
1627 	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1628 	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1629 	cgc.cmd[1] = type & 3;
1630 	cgc.cmd[4] = (track & 0xff00) >> 8;
1631 	cgc.cmd[5] = track & 0xff;
1632 	cgc.cmd[8] = 8;
1633 	cgc.quiet = 1;
1634 
1635 	if ((ret = pkt_generic_packet(pd, &cgc)))
1636 		return ret;
1637 
1638 	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1639 		     sizeof(ti->track_information_length);
1640 
1641 	if (cgc.buflen > sizeof(track_information))
1642 		cgc.buflen = sizeof(track_information);
1643 
1644 	cgc.cmd[8] = cgc.buflen;
1645 	return pkt_generic_packet(pd, &cgc);
1646 }
1647 
1648 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1649 						long *last_written)
1650 {
1651 	disc_information di;
1652 	track_information ti;
1653 	__u32 last_track;
1654 	int ret = -1;
1655 
1656 	if ((ret = pkt_get_disc_info(pd, &di)))
1657 		return ret;
1658 
1659 	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1660 	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1661 		return ret;
1662 
1663 	/* if this track is blank, try the previous. */
1664 	if (ti.blank) {
1665 		last_track--;
1666 		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1667 			return ret;
1668 	}
1669 
1670 	/* if last recorded field is valid, return it. */
1671 	if (ti.lra_v) {
1672 		*last_written = be32_to_cpu(ti.last_rec_address);
1673 	} else {
1674 		/* make it up instead */
1675 		*last_written = be32_to_cpu(ti.track_start) +
1676 				be32_to_cpu(ti.track_size);
1677 		if (ti.free_blocks)
1678 			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1679 	}
1680 	return 0;
1681 }
1682 
1683 /*
1684  * write mode select package based on pd->settings
1685  */
1686 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1687 {
1688 	struct packet_command cgc;
1689 	struct request_sense sense;
1690 	write_param_page *wp;
1691 	char buffer[128];
1692 	int ret, size;
1693 
1694 	/* doesn't apply to DVD+RW or DVD-RAM */
1695 	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1696 		return 0;
1697 
1698 	memset(buffer, 0, sizeof(buffer));
1699 	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1700 	cgc.sense = &sense;
1701 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1702 		pkt_dump_sense(&cgc);
1703 		return ret;
1704 	}
1705 
1706 	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1707 	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1708 	if (size > sizeof(buffer))
1709 		size = sizeof(buffer);
1710 
1711 	/*
1712 	 * now get it all
1713 	 */
1714 	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1715 	cgc.sense = &sense;
1716 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1717 		pkt_dump_sense(&cgc);
1718 		return ret;
1719 	}
1720 
1721 	/*
1722 	 * write page is offset header + block descriptor length
1723 	 */
1724 	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1725 
1726 	wp->fp = pd->settings.fp;
1727 	wp->track_mode = pd->settings.track_mode;
1728 	wp->write_type = pd->settings.write_type;
1729 	wp->data_block_type = pd->settings.block_mode;
1730 
1731 	wp->multi_session = 0;
1732 
1733 #ifdef PACKET_USE_LS
1734 	wp->link_size = 7;
1735 	wp->ls_v = 1;
1736 #endif
1737 
1738 	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1739 		wp->session_format = 0;
1740 		wp->subhdr2 = 0x20;
1741 	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1742 		wp->session_format = 0x20;
1743 		wp->subhdr2 = 8;
1744 #if 0
1745 		wp->mcn[0] = 0x80;
1746 		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1747 #endif
1748 	} else {
1749 		/*
1750 		 * paranoia
1751 		 */
1752 		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1753 		return 1;
1754 	}
1755 	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1756 
1757 	cgc.buflen = cgc.cmd[8] = size;
1758 	if ((ret = pkt_mode_select(pd, &cgc))) {
1759 		pkt_dump_sense(&cgc);
1760 		return ret;
1761 	}
1762 
1763 	pkt_print_settings(pd);
1764 	return 0;
1765 }
1766 
1767 /*
1768  * 1 -- we can write to this track, 0 -- we can't
1769  */
1770 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1771 {
1772 	switch (pd->mmc3_profile) {
1773 		case 0x1a: /* DVD+RW */
1774 		case 0x12: /* DVD-RAM */
1775 			/* The track is always writable on DVD+RW/DVD-RAM */
1776 			return 1;
1777 		default:
1778 			break;
1779 	}
1780 
1781 	if (!ti->packet || !ti->fp)
1782 		return 0;
1783 
1784 	/*
1785 	 * "good" settings as per Mt Fuji.
1786 	 */
1787 	if (ti->rt == 0 && ti->blank == 0)
1788 		return 1;
1789 
1790 	if (ti->rt == 0 && ti->blank == 1)
1791 		return 1;
1792 
1793 	if (ti->rt == 1 && ti->blank == 0)
1794 		return 1;
1795 
1796 	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1797 	return 0;
1798 }
1799 
1800 /*
1801  * 1 -- we can write to this disc, 0 -- we can't
1802  */
1803 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1804 {
1805 	switch (pd->mmc3_profile) {
1806 		case 0x0a: /* CD-RW */
1807 		case 0xffff: /* MMC3 not supported */
1808 			break;
1809 		case 0x1a: /* DVD+RW */
1810 		case 0x13: /* DVD-RW */
1811 		case 0x12: /* DVD-RAM */
1812 			return 1;
1813 		default:
1814 			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1815 			return 0;
1816 	}
1817 
1818 	/*
1819 	 * for disc type 0xff we should probably reserve a new track.
1820 	 * but i'm not sure, should we leave this to user apps? probably.
1821 	 */
1822 	if (di->disc_type == 0xff) {
1823 		printk(DRIVER_NAME": Unknown disc. No track?\n");
1824 		return 0;
1825 	}
1826 
1827 	if (di->disc_type != 0x20 && di->disc_type != 0) {
1828 		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1829 		return 0;
1830 	}
1831 
1832 	if (di->erasable == 0) {
1833 		printk(DRIVER_NAME": Disc not erasable\n");
1834 		return 0;
1835 	}
1836 
1837 	if (di->border_status == PACKET_SESSION_RESERVED) {
1838 		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1839 		return 0;
1840 	}
1841 
1842 	return 1;
1843 }
1844 
1845 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1846 {
1847 	struct packet_command cgc;
1848 	unsigned char buf[12];
1849 	disc_information di;
1850 	track_information ti;
1851 	int ret, track;
1852 
1853 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1854 	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1855 	cgc.cmd[8] = 8;
1856 	ret = pkt_generic_packet(pd, &cgc);
1857 	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1858 
1859 	memset(&di, 0, sizeof(disc_information));
1860 	memset(&ti, 0, sizeof(track_information));
1861 
1862 	if ((ret = pkt_get_disc_info(pd, &di))) {
1863 		printk("failed get_disc\n");
1864 		return ret;
1865 	}
1866 
1867 	if (!pkt_writable_disc(pd, &di))
1868 		return -EROFS;
1869 
1870 	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1871 
1872 	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1873 	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1874 		printk(DRIVER_NAME": failed get_track\n");
1875 		return ret;
1876 	}
1877 
1878 	if (!pkt_writable_track(pd, &ti)) {
1879 		printk(DRIVER_NAME": can't write to this track\n");
1880 		return -EROFS;
1881 	}
1882 
1883 	/*
1884 	 * we keep packet size in 512 byte units, makes it easier to
1885 	 * deal with request calculations.
1886 	 */
1887 	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1888 	if (pd->settings.size == 0) {
1889 		printk(DRIVER_NAME": detected zero packet size!\n");
1890 		return -ENXIO;
1891 	}
1892 	if (pd->settings.size > PACKET_MAX_SECTORS) {
1893 		printk(DRIVER_NAME": packet size is too big\n");
1894 		return -EROFS;
1895 	}
1896 	pd->settings.fp = ti.fp;
1897 	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1898 
1899 	if (ti.nwa_v) {
1900 		pd->nwa = be32_to_cpu(ti.next_writable);
1901 		set_bit(PACKET_NWA_VALID, &pd->flags);
1902 	}
1903 
1904 	/*
1905 	 * in theory we could use lra on -RW media as well and just zero
1906 	 * blocks that haven't been written yet, but in practice that
1907 	 * is just a no-go. we'll use that for -R, naturally.
1908 	 */
1909 	if (ti.lra_v) {
1910 		pd->lra = be32_to_cpu(ti.last_rec_address);
1911 		set_bit(PACKET_LRA_VALID, &pd->flags);
1912 	} else {
1913 		pd->lra = 0xffffffff;
1914 		set_bit(PACKET_LRA_VALID, &pd->flags);
1915 	}
1916 
1917 	/*
1918 	 * fine for now
1919 	 */
1920 	pd->settings.link_loss = 7;
1921 	pd->settings.write_type = 0;	/* packet */
1922 	pd->settings.track_mode = ti.track_mode;
1923 
1924 	/*
1925 	 * mode1 or mode2 disc
1926 	 */
1927 	switch (ti.data_mode) {
1928 		case PACKET_MODE1:
1929 			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1930 			break;
1931 		case PACKET_MODE2:
1932 			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1933 			break;
1934 		default:
1935 			printk(DRIVER_NAME": unknown data mode\n");
1936 			return -EROFS;
1937 	}
1938 	return 0;
1939 }
1940 
1941 /*
1942  * enable/disable write caching on drive
1943  */
1944 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1945 						int set)
1946 {
1947 	struct packet_command cgc;
1948 	struct request_sense sense;
1949 	unsigned char buf[64];
1950 	int ret;
1951 
1952 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1953 	cgc.sense = &sense;
1954 	cgc.buflen = pd->mode_offset + 12;
1955 
1956 	/*
1957 	 * caching mode page might not be there, so quiet this command
1958 	 */
1959 	cgc.quiet = 1;
1960 
1961 	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1962 		return ret;
1963 
1964 	buf[pd->mode_offset + 10] |= (!!set << 2);
1965 
1966 	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1967 	ret = pkt_mode_select(pd, &cgc);
1968 	if (ret) {
1969 		printk(DRIVER_NAME": write caching control failed\n");
1970 		pkt_dump_sense(&cgc);
1971 	} else if (!ret && set)
1972 		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
1973 	return ret;
1974 }
1975 
1976 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1977 {
1978 	struct packet_command cgc;
1979 
1980 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1981 	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1982 	cgc.cmd[4] = lockflag ? 1 : 0;
1983 	return pkt_generic_packet(pd, &cgc);
1984 }
1985 
1986 /*
1987  * Returns drive maximum write speed
1988  */
1989 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1990 						unsigned *write_speed)
1991 {
1992 	struct packet_command cgc;
1993 	struct request_sense sense;
1994 	unsigned char buf[256+18];
1995 	unsigned char *cap_buf;
1996 	int ret, offset;
1997 
1998 	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1999 	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2000 	cgc.sense = &sense;
2001 
2002 	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2003 	if (ret) {
2004 		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2005 			     sizeof(struct mode_page_header);
2006 		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2007 		if (ret) {
2008 			pkt_dump_sense(&cgc);
2009 			return ret;
2010 		}
2011 	}
2012 
2013 	offset = 20;			    /* Obsoleted field, used by older drives */
2014 	if (cap_buf[1] >= 28)
2015 		offset = 28;		    /* Current write speed selected */
2016 	if (cap_buf[1] >= 30) {
2017 		/* If the drive reports at least one "Logical Unit Write
2018 		 * Speed Performance Descriptor Block", use the information
2019 		 * in the first block. (contains the highest speed)
2020 		 */
2021 		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2022 		if (num_spdb > 0)
2023 			offset = 34;
2024 	}
2025 
2026 	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2027 	return 0;
2028 }
2029 
2030 /* These tables from cdrecord - I don't have orange book */
2031 /* standard speed CD-RW (1-4x) */
2032 static char clv_to_speed[16] = {
2033 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2034 	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2035 };
2036 /* high speed CD-RW (-10x) */
2037 static char hs_clv_to_speed[16] = {
2038 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2039 	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2040 };
2041 /* ultra high speed CD-RW */
2042 static char us_clv_to_speed[16] = {
2043 	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2044 	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2045 };
2046 
2047 /*
2048  * reads the maximum media speed from ATIP
2049  */
2050 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2051 						unsigned *speed)
2052 {
2053 	struct packet_command cgc;
2054 	struct request_sense sense;
2055 	unsigned char buf[64];
2056 	unsigned int size, st, sp;
2057 	int ret;
2058 
2059 	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2060 	cgc.sense = &sense;
2061 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2062 	cgc.cmd[1] = 2;
2063 	cgc.cmd[2] = 4; /* READ ATIP */
2064 	cgc.cmd[8] = 2;
2065 	ret = pkt_generic_packet(pd, &cgc);
2066 	if (ret) {
2067 		pkt_dump_sense(&cgc);
2068 		return ret;
2069 	}
2070 	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2071 	if (size > sizeof(buf))
2072 		size = sizeof(buf);
2073 
2074 	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2075 	cgc.sense = &sense;
2076 	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2077 	cgc.cmd[1] = 2;
2078 	cgc.cmd[2] = 4;
2079 	cgc.cmd[8] = size;
2080 	ret = pkt_generic_packet(pd, &cgc);
2081 	if (ret) {
2082 		pkt_dump_sense(&cgc);
2083 		return ret;
2084 	}
2085 
2086 	if (!(buf[6] & 0x40)) {
2087 		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2088 		return 1;
2089 	}
2090 	if (!(buf[6] & 0x4)) {
2091 		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2092 		return 1;
2093 	}
2094 
2095 	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2096 
2097 	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2098 
2099 	/* Info from cdrecord */
2100 	switch (st) {
2101 		case 0: /* standard speed */
2102 			*speed = clv_to_speed[sp];
2103 			break;
2104 		case 1: /* high speed */
2105 			*speed = hs_clv_to_speed[sp];
2106 			break;
2107 		case 2: /* ultra high speed */
2108 			*speed = us_clv_to_speed[sp];
2109 			break;
2110 		default:
2111 			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2112 			return 1;
2113 	}
2114 	if (*speed) {
2115 		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2116 		return 0;
2117 	} else {
2118 		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2119 		return 1;
2120 	}
2121 }
2122 
2123 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2124 {
2125 	struct packet_command cgc;
2126 	struct request_sense sense;
2127 	int ret;
2128 
2129 	VPRINTK(DRIVER_NAME": Performing OPC\n");
2130 
2131 	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2132 	cgc.sense = &sense;
2133 	cgc.timeout = 60*HZ;
2134 	cgc.cmd[0] = GPCMD_SEND_OPC;
2135 	cgc.cmd[1] = 1;
2136 	if ((ret = pkt_generic_packet(pd, &cgc)))
2137 		pkt_dump_sense(&cgc);
2138 	return ret;
2139 }
2140 
2141 static int pkt_open_write(struct pktcdvd_device *pd)
2142 {
2143 	int ret;
2144 	unsigned int write_speed, media_write_speed, read_speed;
2145 
2146 	if ((ret = pkt_probe_settings(pd))) {
2147 		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2148 		return ret;
2149 	}
2150 
2151 	if ((ret = pkt_set_write_settings(pd))) {
2152 		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2153 		return -EIO;
2154 	}
2155 
2156 	pkt_write_caching(pd, USE_WCACHING);
2157 
2158 	if ((ret = pkt_get_max_speed(pd, &write_speed)))
2159 		write_speed = 16 * 177;
2160 	switch (pd->mmc3_profile) {
2161 		case 0x13: /* DVD-RW */
2162 		case 0x1a: /* DVD+RW */
2163 		case 0x12: /* DVD-RAM */
2164 			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2165 			break;
2166 		default:
2167 			if ((ret = pkt_media_speed(pd, &media_write_speed)))
2168 				media_write_speed = 16;
2169 			write_speed = min(write_speed, media_write_speed * 177);
2170 			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2171 			break;
2172 	}
2173 	read_speed = write_speed;
2174 
2175 	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2176 		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2177 		return -EIO;
2178 	}
2179 	pd->write_speed = write_speed;
2180 	pd->read_speed = read_speed;
2181 
2182 	if ((ret = pkt_perform_opc(pd))) {
2183 		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 /*
2190  * called at open time.
2191  */
2192 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2193 {
2194 	int ret;
2195 	long lba;
2196 	struct request_queue *q;
2197 
2198 	/*
2199 	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2200 	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2201 	 * so bdget() can't fail.
2202 	 */
2203 	bdget(pd->bdev->bd_dev);
2204 	if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2205 		goto out;
2206 
2207 	if ((ret = pkt_get_last_written(pd, &lba))) {
2208 		printk(DRIVER_NAME": pkt_get_last_written failed\n");
2209 		goto out_putdev;
2210 	}
2211 
2212 	set_capacity(pd->disk, lba << 2);
2213 	set_capacity(pd->bdev->bd_disk, lba << 2);
2214 	bd_set_size(pd->bdev, (loff_t)lba << 11);
2215 
2216 	q = bdev_get_queue(pd->bdev);
2217 	if (write) {
2218 		if ((ret = pkt_open_write(pd)))
2219 			goto out_putdev;
2220 		/*
2221 		 * Some CDRW drives can not handle writes larger than one packet,
2222 		 * even if the size is a multiple of the packet size.
2223 		 */
2224 		spin_lock_irq(q->queue_lock);
2225 		blk_queue_max_hw_sectors(q, pd->settings.size);
2226 		spin_unlock_irq(q->queue_lock);
2227 		set_bit(PACKET_WRITABLE, &pd->flags);
2228 	} else {
2229 		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2230 		clear_bit(PACKET_WRITABLE, &pd->flags);
2231 	}
2232 
2233 	if ((ret = pkt_set_segment_merging(pd, q)))
2234 		goto out_putdev;
2235 
2236 	if (write) {
2237 		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2238 			printk(DRIVER_NAME": not enough memory for buffers\n");
2239 			ret = -ENOMEM;
2240 			goto out_putdev;
2241 		}
2242 		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2243 	}
2244 
2245 	return 0;
2246 
2247 out_putdev:
2248 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2249 out:
2250 	return ret;
2251 }
2252 
2253 /*
2254  * called when the device is closed. makes sure that the device flushes
2255  * the internal cache before we close.
2256  */
2257 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2258 {
2259 	if (flush && pkt_flush_cache(pd))
2260 		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2261 
2262 	pkt_lock_door(pd, 0);
2263 
2264 	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2265 	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2266 
2267 	pkt_shrink_pktlist(pd);
2268 }
2269 
2270 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2271 {
2272 	if (dev_minor >= MAX_WRITERS)
2273 		return NULL;
2274 	return pkt_devs[dev_minor];
2275 }
2276 
2277 static int pkt_open(struct block_device *bdev, fmode_t mode)
2278 {
2279 	struct pktcdvd_device *pd = NULL;
2280 	int ret;
2281 
2282 	VPRINTK(DRIVER_NAME": entering open\n");
2283 
2284 	mutex_lock(&pktcdvd_mutex);
2285 	mutex_lock(&ctl_mutex);
2286 	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2287 	if (!pd) {
2288 		ret = -ENODEV;
2289 		goto out;
2290 	}
2291 	BUG_ON(pd->refcnt < 0);
2292 
2293 	pd->refcnt++;
2294 	if (pd->refcnt > 1) {
2295 		if ((mode & FMODE_WRITE) &&
2296 		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2297 			ret = -EBUSY;
2298 			goto out_dec;
2299 		}
2300 	} else {
2301 		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2302 		if (ret)
2303 			goto out_dec;
2304 		/*
2305 		 * needed here as well, since ext2 (among others) may change
2306 		 * the blocksize at mount time
2307 		 */
2308 		set_blocksize(bdev, CD_FRAMESIZE);
2309 	}
2310 
2311 	mutex_unlock(&ctl_mutex);
2312 	mutex_unlock(&pktcdvd_mutex);
2313 	return 0;
2314 
2315 out_dec:
2316 	pd->refcnt--;
2317 out:
2318 	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2319 	mutex_unlock(&ctl_mutex);
2320 	mutex_unlock(&pktcdvd_mutex);
2321 	return ret;
2322 }
2323 
2324 static void pkt_close(struct gendisk *disk, fmode_t mode)
2325 {
2326 	struct pktcdvd_device *pd = disk->private_data;
2327 
2328 	mutex_lock(&pktcdvd_mutex);
2329 	mutex_lock(&ctl_mutex);
2330 	pd->refcnt--;
2331 	BUG_ON(pd->refcnt < 0);
2332 	if (pd->refcnt == 0) {
2333 		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2334 		pkt_release_dev(pd, flush);
2335 	}
2336 	mutex_unlock(&ctl_mutex);
2337 	mutex_unlock(&pktcdvd_mutex);
2338 }
2339 
2340 
2341 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2342 {
2343 	struct packet_stacked_data *psd = bio->bi_private;
2344 	struct pktcdvd_device *pd = psd->pd;
2345 
2346 	bio_put(bio);
2347 	bio_endio(psd->bio, err);
2348 	mempool_free(psd, psd_pool);
2349 	pkt_bio_finished(pd);
2350 }
2351 
2352 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2353 {
2354 	struct pktcdvd_device *pd;
2355 	char b[BDEVNAME_SIZE];
2356 	sector_t zone;
2357 	struct packet_data *pkt;
2358 	int was_empty, blocked_bio;
2359 	struct pkt_rb_node *node;
2360 
2361 	pd = q->queuedata;
2362 	if (!pd) {
2363 		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2364 		goto end_io;
2365 	}
2366 
2367 	/*
2368 	 * Clone READ bios so we can have our own bi_end_io callback.
2369 	 */
2370 	if (bio_data_dir(bio) == READ) {
2371 		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2372 		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2373 
2374 		psd->pd = pd;
2375 		psd->bio = bio;
2376 		cloned_bio->bi_bdev = pd->bdev;
2377 		cloned_bio->bi_private = psd;
2378 		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2379 		pd->stats.secs_r += bio_sectors(bio);
2380 		pkt_queue_bio(pd, cloned_bio);
2381 		return;
2382 	}
2383 
2384 	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2385 		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2386 			pd->name, (unsigned long long)bio->bi_sector);
2387 		goto end_io;
2388 	}
2389 
2390 	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2391 		printk(DRIVER_NAME": wrong bio size\n");
2392 		goto end_io;
2393 	}
2394 
2395 	blk_queue_bounce(q, &bio);
2396 
2397 	zone = ZONE(bio->bi_sector, pd);
2398 	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2399 		(unsigned long long)bio->bi_sector,
2400 		(unsigned long long)bio_end_sector(bio));
2401 
2402 	/* Check if we have to split the bio */
2403 	{
2404 		struct bio_pair *bp;
2405 		sector_t last_zone;
2406 		int first_sectors;
2407 
2408 		last_zone = ZONE(bio_end_sector(bio) - 1, pd);
2409 		if (last_zone != zone) {
2410 			BUG_ON(last_zone != zone + pd->settings.size);
2411 			first_sectors = last_zone - bio->bi_sector;
2412 			bp = bio_split(bio, first_sectors);
2413 			BUG_ON(!bp);
2414 			pkt_make_request(q, &bp->bio1);
2415 			pkt_make_request(q, &bp->bio2);
2416 			bio_pair_release(bp);
2417 			return;
2418 		}
2419 	}
2420 
2421 	/*
2422 	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2423 	 * just append this bio to that packet.
2424 	 */
2425 	spin_lock(&pd->cdrw.active_list_lock);
2426 	blocked_bio = 0;
2427 	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2428 		if (pkt->sector == zone) {
2429 			spin_lock(&pkt->lock);
2430 			if ((pkt->state == PACKET_WAITING_STATE) ||
2431 			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2432 				bio_list_add(&pkt->orig_bios, bio);
2433 				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2434 				if ((pkt->write_size >= pkt->frames) &&
2435 				    (pkt->state == PACKET_WAITING_STATE)) {
2436 					atomic_inc(&pkt->run_sm);
2437 					wake_up(&pd->wqueue);
2438 				}
2439 				spin_unlock(&pkt->lock);
2440 				spin_unlock(&pd->cdrw.active_list_lock);
2441 				return;
2442 			} else {
2443 				blocked_bio = 1;
2444 			}
2445 			spin_unlock(&pkt->lock);
2446 		}
2447 	}
2448 	spin_unlock(&pd->cdrw.active_list_lock);
2449 
2450  	/*
2451 	 * Test if there is enough room left in the bio work queue
2452 	 * (queue size >= congestion on mark).
2453 	 * If not, wait till the work queue size is below the congestion off mark.
2454 	 */
2455 	spin_lock(&pd->lock);
2456 	if (pd->write_congestion_on > 0
2457 	    && pd->bio_queue_size >= pd->write_congestion_on) {
2458 		set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2459 		do {
2460 			spin_unlock(&pd->lock);
2461 			congestion_wait(BLK_RW_ASYNC, HZ);
2462 			spin_lock(&pd->lock);
2463 		} while(pd->bio_queue_size > pd->write_congestion_off);
2464 	}
2465 	spin_unlock(&pd->lock);
2466 
2467 	/*
2468 	 * No matching packet found. Store the bio in the work queue.
2469 	 */
2470 	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2471 	node->bio = bio;
2472 	spin_lock(&pd->lock);
2473 	BUG_ON(pd->bio_queue_size < 0);
2474 	was_empty = (pd->bio_queue_size == 0);
2475 	pkt_rbtree_insert(pd, node);
2476 	spin_unlock(&pd->lock);
2477 
2478 	/*
2479 	 * Wake up the worker thread.
2480 	 */
2481 	atomic_set(&pd->scan_queue, 1);
2482 	if (was_empty) {
2483 		/* This wake_up is required for correct operation */
2484 		wake_up(&pd->wqueue);
2485 	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2486 		/*
2487 		 * This wake up is not required for correct operation,
2488 		 * but improves performance in some cases.
2489 		 */
2490 		wake_up(&pd->wqueue);
2491 	}
2492 	return;
2493 end_io:
2494 	bio_io_error(bio);
2495 }
2496 
2497 
2498 
2499 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2500 			  struct bio_vec *bvec)
2501 {
2502 	struct pktcdvd_device *pd = q->queuedata;
2503 	sector_t zone = ZONE(bmd->bi_sector, pd);
2504 	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2505 	int remaining = (pd->settings.size << 9) - used;
2506 	int remaining2;
2507 
2508 	/*
2509 	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2510 	 * boundary, pkt_make_request() will split the bio.
2511 	 */
2512 	remaining2 = PAGE_SIZE - bmd->bi_size;
2513 	remaining = max(remaining, remaining2);
2514 
2515 	BUG_ON(remaining < 0);
2516 	return remaining;
2517 }
2518 
2519 static void pkt_init_queue(struct pktcdvd_device *pd)
2520 {
2521 	struct request_queue *q = pd->disk->queue;
2522 
2523 	blk_queue_make_request(q, pkt_make_request);
2524 	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2525 	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2526 	blk_queue_merge_bvec(q, pkt_merge_bvec);
2527 	q->queuedata = pd;
2528 }
2529 
2530 static int pkt_seq_show(struct seq_file *m, void *p)
2531 {
2532 	struct pktcdvd_device *pd = m->private;
2533 	char *msg;
2534 	char bdev_buf[BDEVNAME_SIZE];
2535 	int states[PACKET_NUM_STATES];
2536 
2537 	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2538 		   bdevname(pd->bdev, bdev_buf));
2539 
2540 	seq_printf(m, "\nSettings:\n");
2541 	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2542 
2543 	if (pd->settings.write_type == 0)
2544 		msg = "Packet";
2545 	else
2546 		msg = "Unknown";
2547 	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2548 
2549 	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2550 	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2551 
2552 	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2553 
2554 	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2555 		msg = "Mode 1";
2556 	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2557 		msg = "Mode 2";
2558 	else
2559 		msg = "Unknown";
2560 	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2561 
2562 	seq_printf(m, "\nStatistics:\n");
2563 	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2564 	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2565 	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2566 	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2567 	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2568 
2569 	seq_printf(m, "\nMisc:\n");
2570 	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2571 	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2572 	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2573 	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2574 	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2575 	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2576 
2577 	seq_printf(m, "\nQueue state:\n");
2578 	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2579 	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2580 	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2581 
2582 	pkt_count_states(pd, states);
2583 	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2584 		   states[0], states[1], states[2], states[3], states[4], states[5]);
2585 
2586 	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2587 			pd->write_congestion_off,
2588 			pd->write_congestion_on);
2589 	return 0;
2590 }
2591 
2592 static int pkt_seq_open(struct inode *inode, struct file *file)
2593 {
2594 	return single_open(file, pkt_seq_show, PDE_DATA(inode));
2595 }
2596 
2597 static const struct file_operations pkt_proc_fops = {
2598 	.open	= pkt_seq_open,
2599 	.read	= seq_read,
2600 	.llseek	= seq_lseek,
2601 	.release = single_release
2602 };
2603 
2604 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2605 {
2606 	int i;
2607 	int ret = 0;
2608 	char b[BDEVNAME_SIZE];
2609 	struct block_device *bdev;
2610 
2611 	if (pd->pkt_dev == dev) {
2612 		printk(DRIVER_NAME": Recursive setup not allowed\n");
2613 		return -EBUSY;
2614 	}
2615 	for (i = 0; i < MAX_WRITERS; i++) {
2616 		struct pktcdvd_device *pd2 = pkt_devs[i];
2617 		if (!pd2)
2618 			continue;
2619 		if (pd2->bdev->bd_dev == dev) {
2620 			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2621 			return -EBUSY;
2622 		}
2623 		if (pd2->pkt_dev == dev) {
2624 			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2625 			return -EBUSY;
2626 		}
2627 	}
2628 
2629 	bdev = bdget(dev);
2630 	if (!bdev)
2631 		return -ENOMEM;
2632 	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2633 	if (ret)
2634 		return ret;
2635 
2636 	/* This is safe, since we have a reference from open(). */
2637 	__module_get(THIS_MODULE);
2638 
2639 	pd->bdev = bdev;
2640 	set_blocksize(bdev, CD_FRAMESIZE);
2641 
2642 	pkt_init_queue(pd);
2643 
2644 	atomic_set(&pd->cdrw.pending_bios, 0);
2645 	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2646 	if (IS_ERR(pd->cdrw.thread)) {
2647 		printk(DRIVER_NAME": can't start kernel thread\n");
2648 		ret = -ENOMEM;
2649 		goto out_mem;
2650 	}
2651 
2652 	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2653 	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2654 	return 0;
2655 
2656 out_mem:
2657 	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2658 	/* This is safe: open() is still holding a reference. */
2659 	module_put(THIS_MODULE);
2660 	return ret;
2661 }
2662 
2663 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2664 {
2665 	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2666 	int ret;
2667 
2668 	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2669 		MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2670 
2671 	mutex_lock(&pktcdvd_mutex);
2672 	switch (cmd) {
2673 	case CDROMEJECT:
2674 		/*
2675 		 * The door gets locked when the device is opened, so we
2676 		 * have to unlock it or else the eject command fails.
2677 		 */
2678 		if (pd->refcnt == 1)
2679 			pkt_lock_door(pd, 0);
2680 		/* fallthru */
2681 	/*
2682 	 * forward selected CDROM ioctls to CD-ROM, for UDF
2683 	 */
2684 	case CDROMMULTISESSION:
2685 	case CDROMREADTOCENTRY:
2686 	case CDROM_LAST_WRITTEN:
2687 	case CDROM_SEND_PACKET:
2688 	case SCSI_IOCTL_SEND_COMMAND:
2689 		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2690 		break;
2691 
2692 	default:
2693 		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2694 		ret = -ENOTTY;
2695 	}
2696 	mutex_unlock(&pktcdvd_mutex);
2697 
2698 	return ret;
2699 }
2700 
2701 static unsigned int pkt_check_events(struct gendisk *disk,
2702 				     unsigned int clearing)
2703 {
2704 	struct pktcdvd_device *pd = disk->private_data;
2705 	struct gendisk *attached_disk;
2706 
2707 	if (!pd)
2708 		return 0;
2709 	if (!pd->bdev)
2710 		return 0;
2711 	attached_disk = pd->bdev->bd_disk;
2712 	if (!attached_disk || !attached_disk->fops->check_events)
2713 		return 0;
2714 	return attached_disk->fops->check_events(attached_disk, clearing);
2715 }
2716 
2717 static const struct block_device_operations pktcdvd_ops = {
2718 	.owner =		THIS_MODULE,
2719 	.open =			pkt_open,
2720 	.release =		pkt_close,
2721 	.ioctl =		pkt_ioctl,
2722 	.check_events =		pkt_check_events,
2723 };
2724 
2725 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2726 {
2727 	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2728 }
2729 
2730 /*
2731  * Set up mapping from pktcdvd device to CD-ROM device.
2732  */
2733 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2734 {
2735 	int idx;
2736 	int ret = -ENOMEM;
2737 	struct pktcdvd_device *pd;
2738 	struct gendisk *disk;
2739 
2740 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2741 
2742 	for (idx = 0; idx < MAX_WRITERS; idx++)
2743 		if (!pkt_devs[idx])
2744 			break;
2745 	if (idx == MAX_WRITERS) {
2746 		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2747 		ret = -EBUSY;
2748 		goto out_mutex;
2749 	}
2750 
2751 	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2752 	if (!pd)
2753 		goto out_mutex;
2754 
2755 	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2756 						  sizeof(struct pkt_rb_node));
2757 	if (!pd->rb_pool)
2758 		goto out_mem;
2759 
2760 	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2761 	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2762 	spin_lock_init(&pd->cdrw.active_list_lock);
2763 
2764 	spin_lock_init(&pd->lock);
2765 	spin_lock_init(&pd->iosched.lock);
2766 	bio_list_init(&pd->iosched.read_queue);
2767 	bio_list_init(&pd->iosched.write_queue);
2768 	sprintf(pd->name, DRIVER_NAME"%d", idx);
2769 	init_waitqueue_head(&pd->wqueue);
2770 	pd->bio_queue = RB_ROOT;
2771 
2772 	pd->write_congestion_on  = write_congestion_on;
2773 	pd->write_congestion_off = write_congestion_off;
2774 
2775 	disk = alloc_disk(1);
2776 	if (!disk)
2777 		goto out_mem;
2778 	pd->disk = disk;
2779 	disk->major = pktdev_major;
2780 	disk->first_minor = idx;
2781 	disk->fops = &pktcdvd_ops;
2782 	disk->flags = GENHD_FL_REMOVABLE;
2783 	strcpy(disk->disk_name, pd->name);
2784 	disk->devnode = pktcdvd_devnode;
2785 	disk->private_data = pd;
2786 	disk->queue = blk_alloc_queue(GFP_KERNEL);
2787 	if (!disk->queue)
2788 		goto out_mem2;
2789 
2790 	pd->pkt_dev = MKDEV(pktdev_major, idx);
2791 	ret = pkt_new_dev(pd, dev);
2792 	if (ret)
2793 		goto out_new_dev;
2794 
2795 	/* inherit events of the host device */
2796 	disk->events = pd->bdev->bd_disk->events;
2797 	disk->async_events = pd->bdev->bd_disk->async_events;
2798 
2799 	add_disk(disk);
2800 
2801 	pkt_sysfs_dev_new(pd);
2802 	pkt_debugfs_dev_new(pd);
2803 
2804 	pkt_devs[idx] = pd;
2805 	if (pkt_dev)
2806 		*pkt_dev = pd->pkt_dev;
2807 
2808 	mutex_unlock(&ctl_mutex);
2809 	return 0;
2810 
2811 out_new_dev:
2812 	blk_cleanup_queue(disk->queue);
2813 out_mem2:
2814 	put_disk(disk);
2815 out_mem:
2816 	if (pd->rb_pool)
2817 		mempool_destroy(pd->rb_pool);
2818 	kfree(pd);
2819 out_mutex:
2820 	mutex_unlock(&ctl_mutex);
2821 	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2822 	return ret;
2823 }
2824 
2825 /*
2826  * Tear down mapping from pktcdvd device to CD-ROM device.
2827  */
2828 static int pkt_remove_dev(dev_t pkt_dev)
2829 {
2830 	struct pktcdvd_device *pd;
2831 	int idx;
2832 	int ret = 0;
2833 
2834 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2835 
2836 	for (idx = 0; idx < MAX_WRITERS; idx++) {
2837 		pd = pkt_devs[idx];
2838 		if (pd && (pd->pkt_dev == pkt_dev))
2839 			break;
2840 	}
2841 	if (idx == MAX_WRITERS) {
2842 		DPRINTK(DRIVER_NAME": dev not setup\n");
2843 		ret = -ENXIO;
2844 		goto out;
2845 	}
2846 
2847 	if (pd->refcnt > 0) {
2848 		ret = -EBUSY;
2849 		goto out;
2850 	}
2851 	if (!IS_ERR(pd->cdrw.thread))
2852 		kthread_stop(pd->cdrw.thread);
2853 
2854 	pkt_devs[idx] = NULL;
2855 
2856 	pkt_debugfs_dev_remove(pd);
2857 	pkt_sysfs_dev_remove(pd);
2858 
2859 	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2860 
2861 	remove_proc_entry(pd->name, pkt_proc);
2862 	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2863 
2864 	del_gendisk(pd->disk);
2865 	blk_cleanup_queue(pd->disk->queue);
2866 	put_disk(pd->disk);
2867 
2868 	mempool_destroy(pd->rb_pool);
2869 	kfree(pd);
2870 
2871 	/* This is safe: open() is still holding a reference. */
2872 	module_put(THIS_MODULE);
2873 
2874 out:
2875 	mutex_unlock(&ctl_mutex);
2876 	return ret;
2877 }
2878 
2879 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2880 {
2881 	struct pktcdvd_device *pd;
2882 
2883 	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2884 
2885 	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2886 	if (pd) {
2887 		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2888 		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2889 	} else {
2890 		ctrl_cmd->dev = 0;
2891 		ctrl_cmd->pkt_dev = 0;
2892 	}
2893 	ctrl_cmd->num_devices = MAX_WRITERS;
2894 
2895 	mutex_unlock(&ctl_mutex);
2896 }
2897 
2898 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2899 {
2900 	void __user *argp = (void __user *)arg;
2901 	struct pkt_ctrl_command ctrl_cmd;
2902 	int ret = 0;
2903 	dev_t pkt_dev = 0;
2904 
2905 	if (cmd != PACKET_CTRL_CMD)
2906 		return -ENOTTY;
2907 
2908 	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2909 		return -EFAULT;
2910 
2911 	switch (ctrl_cmd.command) {
2912 	case PKT_CTRL_CMD_SETUP:
2913 		if (!capable(CAP_SYS_ADMIN))
2914 			return -EPERM;
2915 		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2916 		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2917 		break;
2918 	case PKT_CTRL_CMD_TEARDOWN:
2919 		if (!capable(CAP_SYS_ADMIN))
2920 			return -EPERM;
2921 		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2922 		break;
2923 	case PKT_CTRL_CMD_STATUS:
2924 		pkt_get_status(&ctrl_cmd);
2925 		break;
2926 	default:
2927 		return -ENOTTY;
2928 	}
2929 
2930 	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2931 		return -EFAULT;
2932 	return ret;
2933 }
2934 
2935 #ifdef CONFIG_COMPAT
2936 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2937 {
2938 	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2939 }
2940 #endif
2941 
2942 static const struct file_operations pkt_ctl_fops = {
2943 	.open		= nonseekable_open,
2944 	.unlocked_ioctl	= pkt_ctl_ioctl,
2945 #ifdef CONFIG_COMPAT
2946 	.compat_ioctl	= pkt_ctl_compat_ioctl,
2947 #endif
2948 	.owner		= THIS_MODULE,
2949 	.llseek		= no_llseek,
2950 };
2951 
2952 static struct miscdevice pkt_misc = {
2953 	.minor 		= MISC_DYNAMIC_MINOR,
2954 	.name  		= DRIVER_NAME,
2955 	.nodename	= "pktcdvd/control",
2956 	.fops  		= &pkt_ctl_fops
2957 };
2958 
2959 static int __init pkt_init(void)
2960 {
2961 	int ret;
2962 
2963 	mutex_init(&ctl_mutex);
2964 
2965 	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2966 					sizeof(struct packet_stacked_data));
2967 	if (!psd_pool)
2968 		return -ENOMEM;
2969 
2970 	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2971 	if (ret < 0) {
2972 		printk(DRIVER_NAME": Unable to register block device\n");
2973 		goto out2;
2974 	}
2975 	if (!pktdev_major)
2976 		pktdev_major = ret;
2977 
2978 	ret = pkt_sysfs_init();
2979 	if (ret)
2980 		goto out;
2981 
2982 	pkt_debugfs_init();
2983 
2984 	ret = misc_register(&pkt_misc);
2985 	if (ret) {
2986 		printk(DRIVER_NAME": Unable to register misc device\n");
2987 		goto out_misc;
2988 	}
2989 
2990 	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2991 
2992 	return 0;
2993 
2994 out_misc:
2995 	pkt_debugfs_cleanup();
2996 	pkt_sysfs_cleanup();
2997 out:
2998 	unregister_blkdev(pktdev_major, DRIVER_NAME);
2999 out2:
3000 	mempool_destroy(psd_pool);
3001 	return ret;
3002 }
3003 
3004 static void __exit pkt_exit(void)
3005 {
3006 	remove_proc_entry("driver/"DRIVER_NAME, NULL);
3007 	misc_deregister(&pkt_misc);
3008 
3009 	pkt_debugfs_cleanup();
3010 	pkt_sysfs_cleanup();
3011 
3012 	unregister_blkdev(pktdev_major, DRIVER_NAME);
3013 	mempool_destroy(psd_pool);
3014 }
3015 
3016 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3017 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3018 MODULE_LICENSE("GPL");
3019 
3020 module_init(pkt_init);
3021 module_exit(pkt_exit);
3022