xref: /linux/drivers/block/null_blk/main.c (revision ed0c31ae11732c177e9644b2026c32bfe2aa0f38)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7 
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13 
14 #undef pr_fmt
15 #define pr_fmt(fmt)	"null_blk: " fmt
16 
17 #define FREE_BATCH		16
18 
19 #define TICKS_PER_SEC		50ULL
20 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
21 
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27 
28 static inline u64 mb_per_tick(int mbps)
29 {
30 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32 
33 /*
34  * Status flags for nullb_device.
35  *
36  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
37  * UP:		Device is currently on and visible in userspace.
38  * THROTTLED:	Device is being throttled.
39  * CACHE:	Device is using a write-back cache.
40  */
41 enum nullb_device_flags {
42 	NULLB_DEV_FL_CONFIGURED	= 0,
43 	NULLB_DEV_FL_UP		= 1,
44 	NULLB_DEV_FL_THROTTLED	= 2,
45 	NULLB_DEV_FL_CACHE	= 3,
46 };
47 
48 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50  * nullb_page is a page in memory for nullb devices.
51  *
52  * @page:	The page holding the data.
53  * @bitmap:	The bitmap represents which sector in the page has data.
54  *		Each bit represents one block size. For example, sector 8
55  *		will use the 7th bit
56  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57  * page is being flushing to storage. FREE means the cache page is freed and
58  * should be skipped from flushing to storage. Please see
59  * null_make_cache_space
60  */
61 struct nullb_page {
62 	struct page *page;
63 	DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67 
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73 
74 enum {
75 	NULL_IRQ_NONE		= 0,
76 	NULL_IRQ_SOFTIRQ	= 1,
77 	NULL_IRQ_TIMER		= 2,
78 };
79 
80 static bool g_virt_boundary;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83 
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87 
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91 
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95 
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99 
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102  * For more details about fault injection, please refer to
103  * Documentation/fault-injection/fault-injection.rst.
104  */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108 
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112 
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117 
118 /*
119  * Historic queue modes.
120  *
121  * These days nothing but NULL_Q_MQ is actually supported, but we keep it the
122  * enum for error reporting.
123  */
124 enum {
125 	NULL_Q_BIO	= 0,
126 	NULL_Q_RQ	= 1,
127 	NULL_Q_MQ	= 2,
128 };
129 
130 static int g_queue_mode = NULL_Q_MQ;
131 
132 static int null_param_store_val(const char *str, int *val, int min, int max)
133 {
134 	int ret, new_val;
135 
136 	ret = kstrtoint(str, 10, &new_val);
137 	if (ret)
138 		return -EINVAL;
139 
140 	if (new_val < min || new_val > max)
141 		return -EINVAL;
142 
143 	*val = new_val;
144 	return 0;
145 }
146 
147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
148 {
149 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
150 }
151 
152 static const struct kernel_param_ops null_queue_mode_param_ops = {
153 	.set	= null_set_queue_mode,
154 	.get	= param_get_int,
155 };
156 
157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
159 
160 static int g_gb = 250;
161 module_param_named(gb, g_gb, int, 0444);
162 MODULE_PARM_DESC(gb, "Size in GB");
163 
164 static int g_bs = 512;
165 module_param_named(bs, g_bs, int, 0444);
166 MODULE_PARM_DESC(bs, "Block size (in bytes)");
167 
168 static int g_max_sectors;
169 module_param_named(max_sectors, g_max_sectors, int, 0444);
170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
171 
172 static unsigned int nr_devices = 1;
173 module_param(nr_devices, uint, 0444);
174 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
175 
176 static bool g_blocking;
177 module_param_named(blocking, g_blocking, bool, 0444);
178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
179 
180 static bool g_shared_tags;
181 module_param_named(shared_tags, g_shared_tags, bool, 0444);
182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
183 
184 static bool g_shared_tag_bitmap;
185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
187 
188 static int g_irqmode = NULL_IRQ_SOFTIRQ;
189 
190 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
191 {
192 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
193 					NULL_IRQ_TIMER);
194 }
195 
196 static const struct kernel_param_ops null_irqmode_param_ops = {
197 	.set	= null_set_irqmode,
198 	.get	= param_get_int,
199 };
200 
201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
203 
204 static unsigned long g_completion_nsec = 10000;
205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
207 
208 static int g_hw_queue_depth = 64;
209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
211 
212 static bool g_use_per_node_hctx;
213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
215 
216 static bool g_memory_backed;
217 module_param_named(memory_backed, g_memory_backed, bool, 0444);
218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
219 
220 static bool g_discard;
221 module_param_named(discard, g_discard, bool, 0444);
222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
223 
224 static unsigned long g_cache_size;
225 module_param_named(cache_size, g_cache_size, ulong, 0444);
226 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
227 
228 static bool g_fua = true;
229 module_param_named(fua, g_fua, bool, 0444);
230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true");
231 
232 static unsigned int g_mbps;
233 module_param_named(mbps, g_mbps, uint, 0444);
234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
235 
236 static bool g_zoned;
237 module_param_named(zoned, g_zoned, bool, S_IRUGO);
238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
239 
240 static unsigned long g_zone_size = 256;
241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
243 
244 static unsigned long g_zone_capacity;
245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
247 
248 static unsigned int g_zone_nr_conv;
249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
251 
252 static unsigned int g_zone_max_open;
253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
255 
256 static unsigned int g_zone_max_active;
257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
259 
260 static int g_zone_append_max_sectors = INT_MAX;
261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444);
262 MODULE_PARM_DESC(zone_append_max_sectors,
263 		 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation");
264 
265 static bool g_zone_full;
266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO);
267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false");
268 
269 static bool g_rotational;
270 module_param_named(rotational, g_rotational, bool, S_IRUGO);
271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false");
272 
273 static struct nullb_device *null_alloc_dev(void);
274 static void null_free_dev(struct nullb_device *dev);
275 static void null_del_dev(struct nullb *nullb);
276 static int null_add_dev(struct nullb_device *dev);
277 static struct nullb *null_find_dev_by_name(const char *name);
278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
279 
280 static inline struct nullb_device *to_nullb_device(struct config_item *item)
281 {
282 	return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
283 }
284 
285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
286 {
287 	return snprintf(page, PAGE_SIZE, "%u\n", val);
288 }
289 
290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
291 	char *page)
292 {
293 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
294 }
295 
296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
297 {
298 	return snprintf(page, PAGE_SIZE, "%u\n", val);
299 }
300 
301 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
302 	const char *page, size_t count)
303 {
304 	unsigned int tmp;
305 	int result;
306 
307 	result = kstrtouint(page, 0, &tmp);
308 	if (result < 0)
309 		return result;
310 
311 	*val = tmp;
312 	return count;
313 }
314 
315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
316 	const char *page, size_t count)
317 {
318 	int result;
319 	unsigned long tmp;
320 
321 	result = kstrtoul(page, 0, &tmp);
322 	if (result < 0)
323 		return result;
324 
325 	*val = tmp;
326 	return count;
327 }
328 
329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
330 	size_t count)
331 {
332 	bool tmp;
333 	int result;
334 
335 	result = kstrtobool(page,  &tmp);
336 	if (result < 0)
337 		return result;
338 
339 	*val = tmp;
340 	return count;
341 }
342 
343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
345 static ssize_t								\
346 nullb_device_##NAME##_show(struct config_item *item, char *page)	\
347 {									\
348 	return nullb_device_##TYPE##_attr_show(				\
349 				to_nullb_device(item)->NAME, page);	\
350 }									\
351 static ssize_t								\
352 nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
353 			    size_t count)				\
354 {									\
355 	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
356 	struct nullb_device *dev = to_nullb_device(item);		\
357 	TYPE new_value = 0;						\
358 	int ret;							\
359 									\
360 	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
361 	if (ret < 0)							\
362 		return ret;						\
363 	if (apply_fn)							\
364 		ret = apply_fn(dev, new_value);				\
365 	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
366 		ret = -EBUSY;						\
367 	if (ret < 0)							\
368 		return ret;						\
369 	dev->NAME = new_value;						\
370 	return count;							\
371 }									\
372 CONFIGFS_ATTR(nullb_device_, NAME);
373 
374 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
375 				     unsigned int submit_queues,
376 				     unsigned int poll_queues)
377 
378 {
379 	struct blk_mq_tag_set *set;
380 	int ret, nr_hw_queues;
381 
382 	if (!dev->nullb)
383 		return 0;
384 
385 	/*
386 	 * Make sure at least one submit queue exists.
387 	 */
388 	if (!submit_queues)
389 		return -EINVAL;
390 
391 	/*
392 	 * Make sure that null_init_hctx() does not access nullb->queues[] past
393 	 * the end of that array.
394 	 */
395 	if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
396 		return -EINVAL;
397 
398 	/*
399 	 * Keep previous and new queue numbers in nullb_device for reference in
400 	 * the call back function null_map_queues().
401 	 */
402 	dev->prev_submit_queues = dev->submit_queues;
403 	dev->prev_poll_queues = dev->poll_queues;
404 	dev->submit_queues = submit_queues;
405 	dev->poll_queues = poll_queues;
406 
407 	set = dev->nullb->tag_set;
408 	nr_hw_queues = submit_queues + poll_queues;
409 	blk_mq_update_nr_hw_queues(set, nr_hw_queues);
410 	ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
411 
412 	if (ret) {
413 		/* on error, revert the queue numbers */
414 		dev->submit_queues = dev->prev_submit_queues;
415 		dev->poll_queues = dev->prev_poll_queues;
416 	}
417 
418 	return ret;
419 }
420 
421 static int nullb_apply_submit_queues(struct nullb_device *dev,
422 				     unsigned int submit_queues)
423 {
424 	int ret;
425 
426 	mutex_lock(&lock);
427 	ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
428 	mutex_unlock(&lock);
429 
430 	return ret;
431 }
432 
433 static int nullb_apply_poll_queues(struct nullb_device *dev,
434 				   unsigned int poll_queues)
435 {
436 	int ret;
437 
438 	mutex_lock(&lock);
439 	ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
440 	mutex_unlock(&lock);
441 
442 	return ret;
443 }
444 
445 NULLB_DEVICE_ATTR(size, ulong, NULL);
446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
449 NULLB_DEVICE_ATTR(home_node, uint, NULL);
450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
451 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
453 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
455 NULLB_DEVICE_ATTR(index, uint, NULL);
456 NULLB_DEVICE_ATTR(blocking, bool, NULL);
457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
459 NULLB_DEVICE_ATTR(discard, bool, NULL);
460 NULLB_DEVICE_ATTR(mbps, uint, NULL);
461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
462 NULLB_DEVICE_ATTR(zoned, bool, NULL);
463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL);
469 NULLB_DEVICE_ATTR(zone_full, bool, NULL);
470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
471 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL);
473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
474 NULLB_DEVICE_ATTR(fua, bool, NULL);
475 NULLB_DEVICE_ATTR(rotational, bool, NULL);
476 NULLB_DEVICE_ATTR(badblocks_once, bool, NULL);
477 
478 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
479 {
480 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
481 }
482 
483 static ssize_t nullb_device_power_store(struct config_item *item,
484 				     const char *page, size_t count)
485 {
486 	struct nullb_device *dev = to_nullb_device(item);
487 	bool newp = false;
488 	ssize_t ret;
489 
490 	ret = nullb_device_bool_attr_store(&newp, page, count);
491 	if (ret < 0)
492 		return ret;
493 
494 	ret = count;
495 	mutex_lock(&lock);
496 	if (!dev->power && newp) {
497 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
498 			goto out;
499 
500 		ret = null_add_dev(dev);
501 		if (ret) {
502 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
503 			goto out;
504 		}
505 
506 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
507 		dev->power = newp;
508 		ret = count;
509 	} else if (dev->power && !newp) {
510 		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
511 			dev->power = newp;
512 			null_del_dev(dev->nullb);
513 		}
514 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
515 	}
516 
517 out:
518 	mutex_unlock(&lock);
519 	return ret;
520 }
521 
522 CONFIGFS_ATTR(nullb_device_, power);
523 
524 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
525 {
526 	struct nullb_device *t_dev = to_nullb_device(item);
527 
528 	return badblocks_show(&t_dev->badblocks, page, 0);
529 }
530 
531 static ssize_t nullb_device_badblocks_store(struct config_item *item,
532 				     const char *page, size_t count)
533 {
534 	struct nullb_device *t_dev = to_nullb_device(item);
535 	char *orig, *buf, *tmp;
536 	u64 start, end;
537 	int ret;
538 
539 	orig = kstrndup(page, count, GFP_KERNEL);
540 	if (!orig)
541 		return -ENOMEM;
542 
543 	buf = strstrip(orig);
544 
545 	ret = -EINVAL;
546 	if (buf[0] != '+' && buf[0] != '-')
547 		goto out;
548 	tmp = strchr(&buf[1], '-');
549 	if (!tmp)
550 		goto out;
551 	*tmp = '\0';
552 	ret = kstrtoull(buf + 1, 0, &start);
553 	if (ret)
554 		goto out;
555 	ret = kstrtoull(tmp + 1, 0, &end);
556 	if (ret)
557 		goto out;
558 	ret = -EINVAL;
559 	if (start > end)
560 		goto out;
561 	/* enable badblocks */
562 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
563 	if (buf[0] == '+')
564 		ret = badblocks_set(&t_dev->badblocks, start,
565 			end - start + 1, 1);
566 	else
567 		ret = badblocks_clear(&t_dev->badblocks, start,
568 			end - start + 1);
569 	if (ret == 0)
570 		ret = count;
571 out:
572 	kfree(orig);
573 	return ret;
574 }
575 CONFIGFS_ATTR(nullb_device_, badblocks);
576 
577 static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
578 						const char *page, size_t count)
579 {
580 	struct nullb_device *dev = to_nullb_device(item);
581 
582 	return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
583 }
584 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
585 
586 static ssize_t nullb_device_zone_offline_store(struct config_item *item,
587 					       const char *page, size_t count)
588 {
589 	struct nullb_device *dev = to_nullb_device(item);
590 
591 	return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
592 }
593 CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
594 
595 static struct configfs_attribute *nullb_device_attrs[] = {
596 	&nullb_device_attr_badblocks,
597 	&nullb_device_attr_badblocks_once,
598 	&nullb_device_attr_blocking,
599 	&nullb_device_attr_blocksize,
600 	&nullb_device_attr_cache_size,
601 	&nullb_device_attr_completion_nsec,
602 	&nullb_device_attr_discard,
603 	&nullb_device_attr_fua,
604 	&nullb_device_attr_home_node,
605 	&nullb_device_attr_hw_queue_depth,
606 	&nullb_device_attr_index,
607 	&nullb_device_attr_irqmode,
608 	&nullb_device_attr_max_sectors,
609 	&nullb_device_attr_mbps,
610 	&nullb_device_attr_memory_backed,
611 	&nullb_device_attr_no_sched,
612 	&nullb_device_attr_poll_queues,
613 	&nullb_device_attr_power,
614 	&nullb_device_attr_queue_mode,
615 	&nullb_device_attr_rotational,
616 	&nullb_device_attr_shared_tag_bitmap,
617 	&nullb_device_attr_shared_tags,
618 	&nullb_device_attr_size,
619 	&nullb_device_attr_submit_queues,
620 	&nullb_device_attr_use_per_node_hctx,
621 	&nullb_device_attr_virt_boundary,
622 	&nullb_device_attr_zone_append_max_sectors,
623 	&nullb_device_attr_zone_capacity,
624 	&nullb_device_attr_zone_full,
625 	&nullb_device_attr_zone_max_active,
626 	&nullb_device_attr_zone_max_open,
627 	&nullb_device_attr_zone_nr_conv,
628 	&nullb_device_attr_zone_offline,
629 	&nullb_device_attr_zone_readonly,
630 	&nullb_device_attr_zone_size,
631 	&nullb_device_attr_zoned,
632 	NULL,
633 };
634 
635 static void nullb_device_release(struct config_item *item)
636 {
637 	struct nullb_device *dev = to_nullb_device(item);
638 
639 	null_free_device_storage(dev, false);
640 	null_free_dev(dev);
641 }
642 
643 static struct configfs_item_operations nullb_device_ops = {
644 	.release	= nullb_device_release,
645 };
646 
647 static const struct config_item_type nullb_device_type = {
648 	.ct_item_ops	= &nullb_device_ops,
649 	.ct_attrs	= nullb_device_attrs,
650 	.ct_owner	= THIS_MODULE,
651 };
652 
653 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
654 
655 static void nullb_add_fault_config(struct nullb_device *dev)
656 {
657 	fault_config_init(&dev->timeout_config, "timeout_inject");
658 	fault_config_init(&dev->requeue_config, "requeue_inject");
659 	fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
660 
661 	configfs_add_default_group(&dev->timeout_config.group, &dev->group);
662 	configfs_add_default_group(&dev->requeue_config.group, &dev->group);
663 	configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
664 }
665 
666 #else
667 
668 static void nullb_add_fault_config(struct nullb_device *dev)
669 {
670 }
671 
672 #endif
673 
674 static struct
675 config_group *nullb_group_make_group(struct config_group *group, const char *name)
676 {
677 	struct nullb_device *dev;
678 
679 	if (null_find_dev_by_name(name))
680 		return ERR_PTR(-EEXIST);
681 
682 	dev = null_alloc_dev();
683 	if (!dev)
684 		return ERR_PTR(-ENOMEM);
685 
686 	config_group_init_type_name(&dev->group, name, &nullb_device_type);
687 	nullb_add_fault_config(dev);
688 
689 	return &dev->group;
690 }
691 
692 static void
693 nullb_group_drop_item(struct config_group *group, struct config_item *item)
694 {
695 	struct nullb_device *dev = to_nullb_device(item);
696 
697 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
698 		mutex_lock(&lock);
699 		dev->power = false;
700 		null_del_dev(dev->nullb);
701 		mutex_unlock(&lock);
702 	}
703 
704 	config_item_put(item);
705 }
706 
707 static ssize_t memb_group_features_show(struct config_item *item, char *page)
708 {
709 
710 	struct configfs_attribute **entry;
711 	char delimiter = ',';
712 	size_t left = PAGE_SIZE;
713 	size_t written = 0;
714 	int ret;
715 
716 	for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) {
717 		if (!*(entry + 1))
718 			delimiter = '\n';
719 		ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name,
720 			       delimiter);
721 		if (ret >= left) {
722 			WARN_ONCE(1, "Too many null_blk features to print\n");
723 			memzero_explicit(page, PAGE_SIZE);
724 			return -ENOBUFS;
725 		}
726 		left -= ret;
727 		written += ret;
728 	}
729 
730 	return written;
731 }
732 
733 CONFIGFS_ATTR_RO(memb_group_, features);
734 
735 static struct configfs_attribute *nullb_group_attrs[] = {
736 	&memb_group_attr_features,
737 	NULL,
738 };
739 
740 static struct configfs_group_operations nullb_group_ops = {
741 	.make_group	= nullb_group_make_group,
742 	.drop_item	= nullb_group_drop_item,
743 };
744 
745 static const struct config_item_type nullb_group_type = {
746 	.ct_group_ops	= &nullb_group_ops,
747 	.ct_attrs	= nullb_group_attrs,
748 	.ct_owner	= THIS_MODULE,
749 };
750 
751 static struct configfs_subsystem nullb_subsys = {
752 	.su_group = {
753 		.cg_item = {
754 			.ci_namebuf = "nullb",
755 			.ci_type = &nullb_group_type,
756 		},
757 	},
758 };
759 
760 static inline int null_cache_active(struct nullb *nullb)
761 {
762 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
763 }
764 
765 static struct nullb_device *null_alloc_dev(void)
766 {
767 	struct nullb_device *dev;
768 
769 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
770 	if (!dev)
771 		return NULL;
772 
773 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
774 	dev->timeout_config.attr = null_timeout_attr;
775 	dev->requeue_config.attr = null_requeue_attr;
776 	dev->init_hctx_fault_config.attr = null_init_hctx_attr;
777 #endif
778 
779 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
780 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
781 	if (badblocks_init(&dev->badblocks, 0)) {
782 		kfree(dev);
783 		return NULL;
784 	}
785 
786 	dev->size = g_gb * 1024;
787 	dev->completion_nsec = g_completion_nsec;
788 	dev->submit_queues = g_submit_queues;
789 	dev->prev_submit_queues = g_submit_queues;
790 	dev->poll_queues = g_poll_queues;
791 	dev->prev_poll_queues = g_poll_queues;
792 	dev->home_node = g_home_node;
793 	dev->queue_mode = g_queue_mode;
794 	dev->blocksize = g_bs;
795 	dev->max_sectors = g_max_sectors;
796 	dev->irqmode = g_irqmode;
797 	dev->hw_queue_depth = g_hw_queue_depth;
798 	dev->blocking = g_blocking;
799 	dev->memory_backed = g_memory_backed;
800 	dev->discard = g_discard;
801 	dev->cache_size = g_cache_size;
802 	dev->mbps = g_mbps;
803 	dev->use_per_node_hctx = g_use_per_node_hctx;
804 	dev->zoned = g_zoned;
805 	dev->zone_size = g_zone_size;
806 	dev->zone_capacity = g_zone_capacity;
807 	dev->zone_nr_conv = g_zone_nr_conv;
808 	dev->zone_max_open = g_zone_max_open;
809 	dev->zone_max_active = g_zone_max_active;
810 	dev->zone_append_max_sectors = g_zone_append_max_sectors;
811 	dev->zone_full = g_zone_full;
812 	dev->virt_boundary = g_virt_boundary;
813 	dev->no_sched = g_no_sched;
814 	dev->shared_tags = g_shared_tags;
815 	dev->shared_tag_bitmap = g_shared_tag_bitmap;
816 	dev->fua = g_fua;
817 	dev->rotational = g_rotational;
818 
819 	return dev;
820 }
821 
822 static void null_free_dev(struct nullb_device *dev)
823 {
824 	if (!dev)
825 		return;
826 
827 	null_free_zoned_dev(dev);
828 	badblocks_exit(&dev->badblocks);
829 	kfree(dev);
830 }
831 
832 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
833 {
834 	struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer);
835 
836 	blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error);
837 	return HRTIMER_NORESTART;
838 }
839 
840 static void null_cmd_end_timer(struct nullb_cmd *cmd)
841 {
842 	ktime_t kt = cmd->nq->dev->completion_nsec;
843 
844 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
845 }
846 
847 static void null_complete_rq(struct request *rq)
848 {
849 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
850 
851 	blk_mq_end_request(rq, cmd->error);
852 }
853 
854 static struct nullb_page *null_alloc_page(void)
855 {
856 	struct nullb_page *t_page;
857 
858 	t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
859 	if (!t_page)
860 		return NULL;
861 
862 	t_page->page = alloc_pages(GFP_NOIO, 0);
863 	if (!t_page->page) {
864 		kfree(t_page);
865 		return NULL;
866 	}
867 
868 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
869 	return t_page;
870 }
871 
872 static void null_free_page(struct nullb_page *t_page)
873 {
874 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
875 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
876 		return;
877 	__free_page(t_page->page);
878 	kfree(t_page);
879 }
880 
881 static bool null_page_empty(struct nullb_page *page)
882 {
883 	int size = MAP_SZ - 2;
884 
885 	return find_first_bit(page->bitmap, size) == size;
886 }
887 
888 static void null_free_sector(struct nullb *nullb, sector_t sector,
889 	bool is_cache)
890 {
891 	unsigned int sector_bit;
892 	u64 idx;
893 	struct nullb_page *t_page, *ret;
894 	struct radix_tree_root *root;
895 
896 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
897 	idx = sector >> PAGE_SECTORS_SHIFT;
898 	sector_bit = (sector & SECTOR_MASK);
899 
900 	t_page = radix_tree_lookup(root, idx);
901 	if (t_page) {
902 		__clear_bit(sector_bit, t_page->bitmap);
903 
904 		if (null_page_empty(t_page)) {
905 			ret = radix_tree_delete_item(root, idx, t_page);
906 			WARN_ON(ret != t_page);
907 			null_free_page(ret);
908 			if (is_cache)
909 				nullb->dev->curr_cache -= PAGE_SIZE;
910 		}
911 	}
912 }
913 
914 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
915 	struct nullb_page *t_page, bool is_cache)
916 {
917 	struct radix_tree_root *root;
918 
919 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
920 
921 	if (radix_tree_insert(root, idx, t_page)) {
922 		null_free_page(t_page);
923 		t_page = radix_tree_lookup(root, idx);
924 		WARN_ON(!t_page || t_page->page->private != idx);
925 	} else if (is_cache)
926 		nullb->dev->curr_cache += PAGE_SIZE;
927 
928 	return t_page;
929 }
930 
931 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
932 {
933 	unsigned long pos = 0;
934 	int nr_pages;
935 	struct nullb_page *ret, *t_pages[FREE_BATCH];
936 	struct radix_tree_root *root;
937 
938 	root = is_cache ? &dev->cache : &dev->data;
939 
940 	do {
941 		int i;
942 
943 		nr_pages = radix_tree_gang_lookup(root,
944 				(void **)t_pages, pos, FREE_BATCH);
945 
946 		for (i = 0; i < nr_pages; i++) {
947 			pos = t_pages[i]->page->private;
948 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
949 			WARN_ON(ret != t_pages[i]);
950 			null_free_page(ret);
951 		}
952 
953 		pos++;
954 	} while (nr_pages == FREE_BATCH);
955 
956 	if (is_cache)
957 		dev->curr_cache = 0;
958 }
959 
960 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
961 	sector_t sector, bool for_write, bool is_cache)
962 {
963 	unsigned int sector_bit;
964 	u64 idx;
965 	struct nullb_page *t_page;
966 	struct radix_tree_root *root;
967 
968 	idx = sector >> PAGE_SECTORS_SHIFT;
969 	sector_bit = (sector & SECTOR_MASK);
970 
971 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
972 	t_page = radix_tree_lookup(root, idx);
973 	WARN_ON(t_page && t_page->page->private != idx);
974 
975 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
976 		return t_page;
977 
978 	return NULL;
979 }
980 
981 static struct nullb_page *null_lookup_page(struct nullb *nullb,
982 	sector_t sector, bool for_write, bool ignore_cache)
983 {
984 	struct nullb_page *page = NULL;
985 
986 	if (!ignore_cache)
987 		page = __null_lookup_page(nullb, sector, for_write, true);
988 	if (page)
989 		return page;
990 	return __null_lookup_page(nullb, sector, for_write, false);
991 }
992 
993 static struct nullb_page *null_insert_page(struct nullb *nullb,
994 					   sector_t sector, bool ignore_cache)
995 	__releases(&nullb->lock)
996 	__acquires(&nullb->lock)
997 {
998 	u64 idx;
999 	struct nullb_page *t_page;
1000 
1001 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
1002 	if (t_page)
1003 		return t_page;
1004 
1005 	spin_unlock_irq(&nullb->lock);
1006 
1007 	t_page = null_alloc_page();
1008 	if (!t_page)
1009 		goto out_lock;
1010 
1011 	if (radix_tree_preload(GFP_NOIO))
1012 		goto out_freepage;
1013 
1014 	spin_lock_irq(&nullb->lock);
1015 	idx = sector >> PAGE_SECTORS_SHIFT;
1016 	t_page->page->private = idx;
1017 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
1018 	radix_tree_preload_end();
1019 
1020 	return t_page;
1021 out_freepage:
1022 	null_free_page(t_page);
1023 out_lock:
1024 	spin_lock_irq(&nullb->lock);
1025 	return null_lookup_page(nullb, sector, true, ignore_cache);
1026 }
1027 
1028 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1029 {
1030 	int i;
1031 	unsigned int offset;
1032 	u64 idx;
1033 	struct nullb_page *t_page, *ret;
1034 	void *dst, *src;
1035 
1036 	idx = c_page->page->private;
1037 
1038 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1039 
1040 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1041 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1042 		null_free_page(c_page);
1043 		if (t_page && null_page_empty(t_page)) {
1044 			ret = radix_tree_delete_item(&nullb->dev->data,
1045 				idx, t_page);
1046 			null_free_page(t_page);
1047 		}
1048 		return 0;
1049 	}
1050 
1051 	if (!t_page)
1052 		return -ENOMEM;
1053 
1054 	src = kmap_local_page(c_page->page);
1055 	dst = kmap_local_page(t_page->page);
1056 
1057 	for (i = 0; i < PAGE_SECTORS;
1058 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1059 		if (test_bit(i, c_page->bitmap)) {
1060 			offset = (i << SECTOR_SHIFT);
1061 			memcpy(dst + offset, src + offset,
1062 				nullb->dev->blocksize);
1063 			__set_bit(i, t_page->bitmap);
1064 		}
1065 	}
1066 
1067 	kunmap_local(dst);
1068 	kunmap_local(src);
1069 
1070 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1071 	null_free_page(ret);
1072 	nullb->dev->curr_cache -= PAGE_SIZE;
1073 
1074 	return 0;
1075 }
1076 
1077 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1078 {
1079 	int i, err, nr_pages;
1080 	struct nullb_page *c_pages[FREE_BATCH];
1081 	unsigned long flushed = 0, one_round;
1082 
1083 again:
1084 	if ((nullb->dev->cache_size * 1024 * 1024) >
1085 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1086 		return 0;
1087 
1088 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1089 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1090 	/*
1091 	 * nullb_flush_cache_page could unlock before using the c_pages. To
1092 	 * avoid race, we don't allow page free
1093 	 */
1094 	for (i = 0; i < nr_pages; i++) {
1095 		nullb->cache_flush_pos = c_pages[i]->page->private;
1096 		/*
1097 		 * We found the page which is being flushed to disk by other
1098 		 * threads
1099 		 */
1100 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1101 			c_pages[i] = NULL;
1102 		else
1103 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1104 	}
1105 
1106 	one_round = 0;
1107 	for (i = 0; i < nr_pages; i++) {
1108 		if (c_pages[i] == NULL)
1109 			continue;
1110 		err = null_flush_cache_page(nullb, c_pages[i]);
1111 		if (err)
1112 			return err;
1113 		one_round++;
1114 	}
1115 	flushed += one_round << PAGE_SHIFT;
1116 
1117 	if (n > flushed) {
1118 		if (nr_pages == 0)
1119 			nullb->cache_flush_pos = 0;
1120 		if (one_round == 0) {
1121 			/* give other threads a chance */
1122 			spin_unlock_irq(&nullb->lock);
1123 			spin_lock_irq(&nullb->lock);
1124 		}
1125 		goto again;
1126 	}
1127 	return 0;
1128 }
1129 
1130 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1131 	unsigned int off, sector_t sector, size_t n, bool is_fua)
1132 {
1133 	size_t temp, count = 0;
1134 	unsigned int offset;
1135 	struct nullb_page *t_page;
1136 
1137 	while (count < n) {
1138 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1139 
1140 		if (null_cache_active(nullb) && !is_fua)
1141 			null_make_cache_space(nullb, PAGE_SIZE);
1142 
1143 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1144 		t_page = null_insert_page(nullb, sector,
1145 			!null_cache_active(nullb) || is_fua);
1146 		if (!t_page)
1147 			return -ENOSPC;
1148 
1149 		memcpy_page(t_page->page, offset, source, off + count, temp);
1150 
1151 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1152 
1153 		if (is_fua)
1154 			null_free_sector(nullb, sector, true);
1155 
1156 		count += temp;
1157 		sector += temp >> SECTOR_SHIFT;
1158 	}
1159 	return 0;
1160 }
1161 
1162 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1163 	unsigned int off, sector_t sector, size_t n)
1164 {
1165 	size_t temp, count = 0;
1166 	unsigned int offset;
1167 	struct nullb_page *t_page;
1168 
1169 	while (count < n) {
1170 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1171 
1172 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1173 		t_page = null_lookup_page(nullb, sector, false,
1174 			!null_cache_active(nullb));
1175 
1176 		if (t_page)
1177 			memcpy_page(dest, off + count, t_page->page, offset,
1178 				    temp);
1179 		else
1180 			zero_user(dest, off + count, temp);
1181 
1182 		count += temp;
1183 		sector += temp >> SECTOR_SHIFT;
1184 	}
1185 	return 0;
1186 }
1187 
1188 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1189 			       unsigned int len, unsigned int off)
1190 {
1191 	memset_page(page, off, 0xff, len);
1192 }
1193 
1194 blk_status_t null_handle_discard(struct nullb_device *dev,
1195 				 sector_t sector, sector_t nr_sectors)
1196 {
1197 	struct nullb *nullb = dev->nullb;
1198 	size_t n = nr_sectors << SECTOR_SHIFT;
1199 	size_t temp;
1200 
1201 	spin_lock_irq(&nullb->lock);
1202 	while (n > 0) {
1203 		temp = min_t(size_t, n, dev->blocksize);
1204 		null_free_sector(nullb, sector, false);
1205 		if (null_cache_active(nullb))
1206 			null_free_sector(nullb, sector, true);
1207 		sector += temp >> SECTOR_SHIFT;
1208 		n -= temp;
1209 	}
1210 	spin_unlock_irq(&nullb->lock);
1211 
1212 	return BLK_STS_OK;
1213 }
1214 
1215 static blk_status_t null_handle_flush(struct nullb *nullb)
1216 {
1217 	int err;
1218 
1219 	if (!null_cache_active(nullb))
1220 		return 0;
1221 
1222 	spin_lock_irq(&nullb->lock);
1223 	while (true) {
1224 		err = null_make_cache_space(nullb,
1225 			nullb->dev->cache_size * 1024 * 1024);
1226 		if (err || nullb->dev->curr_cache == 0)
1227 			break;
1228 	}
1229 
1230 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1231 	spin_unlock_irq(&nullb->lock);
1232 	return errno_to_blk_status(err);
1233 }
1234 
1235 static int null_transfer(struct nullb *nullb, struct page *page,
1236 	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1237 	bool is_fua)
1238 {
1239 	struct nullb_device *dev = nullb->dev;
1240 	unsigned int valid_len = len;
1241 	int err = 0;
1242 
1243 	if (!is_write) {
1244 		if (dev->zoned)
1245 			valid_len = null_zone_valid_read_len(nullb,
1246 				sector, len);
1247 
1248 		if (valid_len) {
1249 			err = copy_from_nullb(nullb, page, off,
1250 				sector, valid_len);
1251 			off += valid_len;
1252 			len -= valid_len;
1253 		}
1254 
1255 		if (len)
1256 			nullb_fill_pattern(nullb, page, len, off);
1257 		flush_dcache_page(page);
1258 	} else {
1259 		flush_dcache_page(page);
1260 		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1261 	}
1262 
1263 	return err;
1264 }
1265 
1266 /*
1267  * Transfer data for the given request. The transfer size is capped with the
1268  * nr_sectors argument.
1269  */
1270 static blk_status_t null_handle_data_transfer(struct nullb_cmd *cmd,
1271 					      sector_t nr_sectors)
1272 {
1273 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1274 	struct nullb *nullb = cmd->nq->dev->nullb;
1275 	int err = 0;
1276 	unsigned int len;
1277 	sector_t sector = blk_rq_pos(rq);
1278 	unsigned int max_bytes = nr_sectors << SECTOR_SHIFT;
1279 	unsigned int transferred_bytes = 0;
1280 	struct req_iterator iter;
1281 	struct bio_vec bvec;
1282 
1283 	spin_lock_irq(&nullb->lock);
1284 	rq_for_each_segment(bvec, rq, iter) {
1285 		len = bvec.bv_len;
1286 		if (transferred_bytes + len > max_bytes)
1287 			len = max_bytes - transferred_bytes;
1288 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1289 				     op_is_write(req_op(rq)), sector,
1290 				     rq->cmd_flags & REQ_FUA);
1291 		if (err)
1292 			break;
1293 		sector += len >> SECTOR_SHIFT;
1294 		transferred_bytes += len;
1295 		if (transferred_bytes >= max_bytes)
1296 			break;
1297 	}
1298 	spin_unlock_irq(&nullb->lock);
1299 
1300 	return errno_to_blk_status(err);
1301 }
1302 
1303 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1304 {
1305 	struct nullb_device *dev = cmd->nq->dev;
1306 	struct nullb *nullb = dev->nullb;
1307 	blk_status_t sts = BLK_STS_OK;
1308 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1309 
1310 	if (!hrtimer_active(&nullb->bw_timer))
1311 		hrtimer_restart(&nullb->bw_timer);
1312 
1313 	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1314 		blk_mq_stop_hw_queues(nullb->q);
1315 		/* race with timer */
1316 		if (atomic_long_read(&nullb->cur_bytes) > 0)
1317 			blk_mq_start_stopped_hw_queues(nullb->q, true);
1318 		/* requeue request */
1319 		sts = BLK_STS_DEV_RESOURCE;
1320 	}
1321 	return sts;
1322 }
1323 
1324 blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, sector_t sector,
1325 				   sector_t nr_sectors)
1326 {
1327 	struct badblocks *bb = &cmd->nq->dev->badblocks;
1328 	sector_t first_bad;
1329 	int bad_sectors;
1330 
1331 	if (!badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1332 		return BLK_STS_OK;
1333 
1334 	if (cmd->nq->dev->badblocks_once)
1335 		badblocks_clear(bb, first_bad, bad_sectors);
1336 
1337 	return BLK_STS_IOERR;
1338 }
1339 
1340 blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, enum req_op op,
1341 				       sector_t sector, sector_t nr_sectors)
1342 {
1343 	struct nullb_device *dev = cmd->nq->dev;
1344 
1345 	if (op == REQ_OP_DISCARD)
1346 		return null_handle_discard(dev, sector, nr_sectors);
1347 
1348 	return null_handle_data_transfer(cmd, nr_sectors);
1349 }
1350 
1351 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1352 {
1353 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1354 	struct nullb_device *dev = cmd->nq->dev;
1355 	struct bio *bio;
1356 
1357 	if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) {
1358 		__rq_for_each_bio(bio, rq)
1359 			zero_fill_bio(bio);
1360 	}
1361 }
1362 
1363 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1364 {
1365 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1366 
1367 	/*
1368 	 * Since root privileges are required to configure the null_blk
1369 	 * driver, it is fine that this driver does not initialize the
1370 	 * data buffers of read commands. Zero-initialize these buffers
1371 	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1372 	 * about null_blk not initializing read data buffers.
1373 	 */
1374 	if (IS_ENABLED(CONFIG_KMSAN))
1375 		nullb_zero_read_cmd_buffer(cmd);
1376 
1377 	/* Complete IO by inline, softirq or timer */
1378 	switch (cmd->nq->dev->irqmode) {
1379 	case NULL_IRQ_SOFTIRQ:
1380 		blk_mq_complete_request(rq);
1381 		break;
1382 	case NULL_IRQ_NONE:
1383 		blk_mq_end_request(rq, cmd->error);
1384 		break;
1385 	case NULL_IRQ_TIMER:
1386 		null_cmd_end_timer(cmd);
1387 		break;
1388 	}
1389 }
1390 
1391 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1392 			      sector_t sector, unsigned int nr_sectors)
1393 {
1394 	struct nullb_device *dev = cmd->nq->dev;
1395 	blk_status_t ret;
1396 
1397 	if (dev->badblocks.shift != -1) {
1398 		ret = null_handle_badblocks(cmd, sector, nr_sectors);
1399 		if (ret != BLK_STS_OK)
1400 			return ret;
1401 	}
1402 
1403 	if (dev->memory_backed)
1404 		return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1405 
1406 	return BLK_STS_OK;
1407 }
1408 
1409 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1410 			    sector_t nr_sectors, enum req_op op)
1411 {
1412 	struct nullb_device *dev = cmd->nq->dev;
1413 	struct nullb *nullb = dev->nullb;
1414 	blk_status_t sts;
1415 
1416 	if (op == REQ_OP_FLUSH) {
1417 		cmd->error = null_handle_flush(nullb);
1418 		goto out;
1419 	}
1420 
1421 	if (dev->zoned)
1422 		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1423 	else
1424 		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1425 
1426 	/* Do not overwrite errors (e.g. timeout errors) */
1427 	if (cmd->error == BLK_STS_OK)
1428 		cmd->error = sts;
1429 
1430 out:
1431 	nullb_complete_cmd(cmd);
1432 }
1433 
1434 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1435 {
1436 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1437 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1438 	unsigned int mbps = nullb->dev->mbps;
1439 
1440 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1441 		return HRTIMER_NORESTART;
1442 
1443 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1444 	blk_mq_start_stopped_hw_queues(nullb->q, true);
1445 
1446 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1447 
1448 	return HRTIMER_RESTART;
1449 }
1450 
1451 static void nullb_setup_bwtimer(struct nullb *nullb)
1452 {
1453 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1454 
1455 	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1456 	nullb->bw_timer.function = nullb_bwtimer_fn;
1457 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1458 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1459 }
1460 
1461 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1462 
1463 static bool should_timeout_request(struct request *rq)
1464 {
1465 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1466 	struct nullb_device *dev = cmd->nq->dev;
1467 
1468 	return should_fail(&dev->timeout_config.attr, 1);
1469 }
1470 
1471 static bool should_requeue_request(struct request *rq)
1472 {
1473 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1474 	struct nullb_device *dev = cmd->nq->dev;
1475 
1476 	return should_fail(&dev->requeue_config.attr, 1);
1477 }
1478 
1479 static bool should_init_hctx_fail(struct nullb_device *dev)
1480 {
1481 	return should_fail(&dev->init_hctx_fault_config.attr, 1);
1482 }
1483 
1484 #else
1485 
1486 static bool should_timeout_request(struct request *rq)
1487 {
1488 	return false;
1489 }
1490 
1491 static bool should_requeue_request(struct request *rq)
1492 {
1493 	return false;
1494 }
1495 
1496 static bool should_init_hctx_fail(struct nullb_device *dev)
1497 {
1498 	return false;
1499 }
1500 
1501 #endif
1502 
1503 static void null_map_queues(struct blk_mq_tag_set *set)
1504 {
1505 	struct nullb *nullb = set->driver_data;
1506 	int i, qoff;
1507 	unsigned int submit_queues = g_submit_queues;
1508 	unsigned int poll_queues = g_poll_queues;
1509 
1510 	if (nullb) {
1511 		struct nullb_device *dev = nullb->dev;
1512 
1513 		/*
1514 		 * Refer nr_hw_queues of the tag set to check if the expected
1515 		 * number of hardware queues are prepared. If block layer failed
1516 		 * to prepare them, use previous numbers of submit queues and
1517 		 * poll queues to map queues.
1518 		 */
1519 		if (set->nr_hw_queues ==
1520 		    dev->submit_queues + dev->poll_queues) {
1521 			submit_queues = dev->submit_queues;
1522 			poll_queues = dev->poll_queues;
1523 		} else if (set->nr_hw_queues ==
1524 			   dev->prev_submit_queues + dev->prev_poll_queues) {
1525 			submit_queues = dev->prev_submit_queues;
1526 			poll_queues = dev->prev_poll_queues;
1527 		} else {
1528 			pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1529 				set->nr_hw_queues);
1530 			WARN_ON_ONCE(true);
1531 			submit_queues = 1;
1532 			poll_queues = 0;
1533 		}
1534 	}
1535 
1536 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1537 		struct blk_mq_queue_map *map = &set->map[i];
1538 
1539 		switch (i) {
1540 		case HCTX_TYPE_DEFAULT:
1541 			map->nr_queues = submit_queues;
1542 			break;
1543 		case HCTX_TYPE_READ:
1544 			map->nr_queues = 0;
1545 			continue;
1546 		case HCTX_TYPE_POLL:
1547 			map->nr_queues = poll_queues;
1548 			break;
1549 		}
1550 		map->queue_offset = qoff;
1551 		qoff += map->nr_queues;
1552 		blk_mq_map_queues(map);
1553 	}
1554 }
1555 
1556 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1557 {
1558 	struct nullb_queue *nq = hctx->driver_data;
1559 	LIST_HEAD(list);
1560 	int nr = 0;
1561 	struct request *rq;
1562 
1563 	spin_lock(&nq->poll_lock);
1564 	list_splice_init(&nq->poll_list, &list);
1565 	list_for_each_entry(rq, &list, queuelist)
1566 		blk_mq_set_request_complete(rq);
1567 	spin_unlock(&nq->poll_lock);
1568 
1569 	while (!list_empty(&list)) {
1570 		struct nullb_cmd *cmd;
1571 		struct request *req;
1572 
1573 		req = list_first_entry(&list, struct request, queuelist);
1574 		list_del_init(&req->queuelist);
1575 		cmd = blk_mq_rq_to_pdu(req);
1576 		cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1577 						blk_rq_sectors(req));
1578 		if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1579 					blk_mq_end_request_batch))
1580 			blk_mq_end_request(req, cmd->error);
1581 		nr++;
1582 	}
1583 
1584 	return nr;
1585 }
1586 
1587 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1588 {
1589 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1590 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1591 
1592 	if (hctx->type == HCTX_TYPE_POLL) {
1593 		struct nullb_queue *nq = hctx->driver_data;
1594 
1595 		spin_lock(&nq->poll_lock);
1596 		/* The request may have completed meanwhile. */
1597 		if (blk_mq_request_completed(rq)) {
1598 			spin_unlock(&nq->poll_lock);
1599 			return BLK_EH_DONE;
1600 		}
1601 		list_del_init(&rq->queuelist);
1602 		spin_unlock(&nq->poll_lock);
1603 	}
1604 
1605 	pr_info("rq %p timed out\n", rq);
1606 
1607 	/*
1608 	 * If the device is marked as blocking (i.e. memory backed or zoned
1609 	 * device), the submission path may be blocked waiting for resources
1610 	 * and cause real timeouts. For these real timeouts, the submission
1611 	 * path will complete the request using blk_mq_complete_request().
1612 	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1613 	 */
1614 	cmd->error = BLK_STS_TIMEOUT;
1615 	if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1616 		blk_mq_complete_request(rq);
1617 	return BLK_EH_DONE;
1618 }
1619 
1620 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1621 				  const struct blk_mq_queue_data *bd)
1622 {
1623 	struct request *rq = bd->rq;
1624 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1625 	struct nullb_queue *nq = hctx->driver_data;
1626 	sector_t nr_sectors = blk_rq_sectors(rq);
1627 	sector_t sector = blk_rq_pos(rq);
1628 	const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1629 
1630 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1631 
1632 	if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1633 		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1634 		cmd->timer.function = null_cmd_timer_expired;
1635 	}
1636 	cmd->error = BLK_STS_OK;
1637 	cmd->nq = nq;
1638 	cmd->fake_timeout = should_timeout_request(rq) ||
1639 		blk_should_fake_timeout(rq->q);
1640 
1641 	if (should_requeue_request(rq)) {
1642 		/*
1643 		 * Alternate between hitting the core BUSY path, and the
1644 		 * driver driven requeue path
1645 		 */
1646 		nq->requeue_selection++;
1647 		if (nq->requeue_selection & 1)
1648 			return BLK_STS_RESOURCE;
1649 		blk_mq_requeue_request(rq, true);
1650 		return BLK_STS_OK;
1651 	}
1652 
1653 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) {
1654 		blk_status_t sts = null_handle_throttled(cmd);
1655 
1656 		if (sts != BLK_STS_OK)
1657 			return sts;
1658 	}
1659 
1660 	blk_mq_start_request(rq);
1661 
1662 	if (is_poll) {
1663 		spin_lock(&nq->poll_lock);
1664 		list_add_tail(&rq->queuelist, &nq->poll_list);
1665 		spin_unlock(&nq->poll_lock);
1666 		return BLK_STS_OK;
1667 	}
1668 	if (cmd->fake_timeout)
1669 		return BLK_STS_OK;
1670 
1671 	null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1672 	return BLK_STS_OK;
1673 }
1674 
1675 static void null_queue_rqs(struct rq_list *rqlist)
1676 {
1677 	struct rq_list requeue_list = {};
1678 	struct blk_mq_queue_data bd = { };
1679 	blk_status_t ret;
1680 
1681 	do {
1682 		struct request *rq = rq_list_pop(rqlist);
1683 
1684 		bd.rq = rq;
1685 		ret = null_queue_rq(rq->mq_hctx, &bd);
1686 		if (ret != BLK_STS_OK)
1687 			rq_list_add_tail(&requeue_list, rq);
1688 	} while (!rq_list_empty(rqlist));
1689 
1690 	*rqlist = requeue_list;
1691 }
1692 
1693 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1694 {
1695 	nq->dev = nullb->dev;
1696 	INIT_LIST_HEAD(&nq->poll_list);
1697 	spin_lock_init(&nq->poll_lock);
1698 }
1699 
1700 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1701 			  unsigned int hctx_idx)
1702 {
1703 	struct nullb *nullb = hctx->queue->queuedata;
1704 	struct nullb_queue *nq;
1705 
1706 	if (should_init_hctx_fail(nullb->dev))
1707 		return -EFAULT;
1708 
1709 	nq = &nullb->queues[hctx_idx];
1710 	hctx->driver_data = nq;
1711 	null_init_queue(nullb, nq);
1712 
1713 	return 0;
1714 }
1715 
1716 static const struct blk_mq_ops null_mq_ops = {
1717 	.queue_rq       = null_queue_rq,
1718 	.queue_rqs	= null_queue_rqs,
1719 	.complete	= null_complete_rq,
1720 	.timeout	= null_timeout_rq,
1721 	.poll		= null_poll,
1722 	.map_queues	= null_map_queues,
1723 	.init_hctx	= null_init_hctx,
1724 };
1725 
1726 static void null_del_dev(struct nullb *nullb)
1727 {
1728 	struct nullb_device *dev;
1729 
1730 	if (!nullb)
1731 		return;
1732 
1733 	dev = nullb->dev;
1734 
1735 	ida_free(&nullb_indexes, nullb->index);
1736 
1737 	list_del_init(&nullb->list);
1738 
1739 	del_gendisk(nullb->disk);
1740 
1741 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1742 		hrtimer_cancel(&nullb->bw_timer);
1743 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1744 		blk_mq_start_stopped_hw_queues(nullb->q, true);
1745 	}
1746 
1747 	put_disk(nullb->disk);
1748 	if (nullb->tag_set == &nullb->__tag_set)
1749 		blk_mq_free_tag_set(nullb->tag_set);
1750 	kfree(nullb->queues);
1751 	if (null_cache_active(nullb))
1752 		null_free_device_storage(nullb->dev, true);
1753 	kfree(nullb);
1754 	dev->nullb = NULL;
1755 }
1756 
1757 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim)
1758 {
1759 	if (nullb->dev->discard == false)
1760 		return;
1761 
1762 	if (!nullb->dev->memory_backed) {
1763 		nullb->dev->discard = false;
1764 		pr_info("discard option is ignored without memory backing\n");
1765 		return;
1766 	}
1767 
1768 	if (nullb->dev->zoned) {
1769 		nullb->dev->discard = false;
1770 		pr_info("discard option is ignored in zoned mode\n");
1771 		return;
1772 	}
1773 
1774 	lim->max_hw_discard_sectors = UINT_MAX >> 9;
1775 }
1776 
1777 static const struct block_device_operations null_ops = {
1778 	.owner		= THIS_MODULE,
1779 	.report_zones	= null_report_zones,
1780 };
1781 
1782 static int setup_queues(struct nullb *nullb)
1783 {
1784 	int nqueues = nr_cpu_ids;
1785 
1786 	if (g_poll_queues)
1787 		nqueues += g_poll_queues;
1788 
1789 	nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1790 				GFP_KERNEL);
1791 	if (!nullb->queues)
1792 		return -ENOMEM;
1793 
1794 	return 0;
1795 }
1796 
1797 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues)
1798 {
1799 	set->ops = &null_mq_ops;
1800 	set->cmd_size = sizeof(struct nullb_cmd);
1801 	set->timeout = 5 * HZ;
1802 	set->nr_maps = 1;
1803 	if (poll_queues) {
1804 		set->nr_hw_queues += poll_queues;
1805 		set->nr_maps += 2;
1806 	}
1807 	return blk_mq_alloc_tag_set(set);
1808 }
1809 
1810 static int null_init_global_tag_set(void)
1811 {
1812 	int error;
1813 
1814 	if (tag_set.ops)
1815 		return 0;
1816 
1817 	tag_set.nr_hw_queues = g_submit_queues;
1818 	tag_set.queue_depth = g_hw_queue_depth;
1819 	tag_set.numa_node = g_home_node;
1820 	if (g_no_sched)
1821 		tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1822 	if (g_shared_tag_bitmap)
1823 		tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1824 	if (g_blocking)
1825 		tag_set.flags |= BLK_MQ_F_BLOCKING;
1826 
1827 	error = null_init_tag_set(&tag_set, g_poll_queues);
1828 	if (error)
1829 		tag_set.ops = NULL;
1830 	return error;
1831 }
1832 
1833 static int null_setup_tagset(struct nullb *nullb)
1834 {
1835 	if (nullb->dev->shared_tags) {
1836 		nullb->tag_set = &tag_set;
1837 		return null_init_global_tag_set();
1838 	}
1839 
1840 	nullb->tag_set = &nullb->__tag_set;
1841 	nullb->tag_set->driver_data = nullb;
1842 	nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues;
1843 	nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth;
1844 	nullb->tag_set->numa_node = nullb->dev->home_node;
1845 	if (nullb->dev->no_sched)
1846 		nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1847 	if (nullb->dev->shared_tag_bitmap)
1848 		nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1849 	if (nullb->dev->blocking)
1850 		nullb->tag_set->flags |= BLK_MQ_F_BLOCKING;
1851 	return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues);
1852 }
1853 
1854 static int null_validate_conf(struct nullb_device *dev)
1855 {
1856 	if (dev->queue_mode == NULL_Q_RQ) {
1857 		pr_err("legacy IO path is no longer available\n");
1858 		return -EINVAL;
1859 	}
1860 	if (dev->queue_mode == NULL_Q_BIO) {
1861 		pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n");
1862 		dev->queue_mode = NULL_Q_MQ;
1863 	}
1864 
1865 	if (dev->use_per_node_hctx) {
1866 		if (dev->submit_queues != nr_online_nodes)
1867 			dev->submit_queues = nr_online_nodes;
1868 	} else if (dev->submit_queues > nr_cpu_ids)
1869 		dev->submit_queues = nr_cpu_ids;
1870 	else if (dev->submit_queues == 0)
1871 		dev->submit_queues = 1;
1872 	dev->prev_submit_queues = dev->submit_queues;
1873 
1874 	if (dev->poll_queues > g_poll_queues)
1875 		dev->poll_queues = g_poll_queues;
1876 	dev->prev_poll_queues = dev->poll_queues;
1877 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1878 
1879 	/* Do memory allocation, so set blocking */
1880 	if (dev->memory_backed)
1881 		dev->blocking = true;
1882 	else /* cache is meaningless */
1883 		dev->cache_size = 0;
1884 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1885 						dev->cache_size);
1886 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1887 
1888 	if (dev->zoned &&
1889 	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1890 		pr_err("zone_size must be power-of-two\n");
1891 		return -EINVAL;
1892 	}
1893 
1894 	return 0;
1895 }
1896 
1897 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1898 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1899 {
1900 	if (!str[0])
1901 		return true;
1902 
1903 	if (!setup_fault_attr(attr, str))
1904 		return false;
1905 
1906 	attr->verbose = 0;
1907 	return true;
1908 }
1909 #endif
1910 
1911 static bool null_setup_fault(void)
1912 {
1913 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1914 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1915 		return false;
1916 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1917 		return false;
1918 	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1919 		return false;
1920 #endif
1921 	return true;
1922 }
1923 
1924 static int null_add_dev(struct nullb_device *dev)
1925 {
1926 	struct queue_limits lim = {
1927 		.logical_block_size	= dev->blocksize,
1928 		.physical_block_size	= dev->blocksize,
1929 		.max_hw_sectors		= dev->max_sectors,
1930 	};
1931 
1932 	struct nullb *nullb;
1933 	int rv;
1934 
1935 	rv = null_validate_conf(dev);
1936 	if (rv)
1937 		return rv;
1938 
1939 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1940 	if (!nullb) {
1941 		rv = -ENOMEM;
1942 		goto out;
1943 	}
1944 	nullb->dev = dev;
1945 	dev->nullb = nullb;
1946 
1947 	spin_lock_init(&nullb->lock);
1948 
1949 	rv = setup_queues(nullb);
1950 	if (rv)
1951 		goto out_free_nullb;
1952 
1953 	rv = null_setup_tagset(nullb);
1954 	if (rv)
1955 		goto out_cleanup_queues;
1956 
1957 	if (dev->virt_boundary)
1958 		lim.virt_boundary_mask = PAGE_SIZE - 1;
1959 	null_config_discard(nullb, &lim);
1960 	if (dev->zoned) {
1961 		rv = null_init_zoned_dev(dev, &lim);
1962 		if (rv)
1963 			goto out_cleanup_tags;
1964 	}
1965 
1966 	if (dev->cache_size > 0) {
1967 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1968 		lim.features |= BLK_FEAT_WRITE_CACHE;
1969 		if (dev->fua)
1970 			lim.features |= BLK_FEAT_FUA;
1971 	}
1972 
1973 	if (dev->rotational)
1974 		lim.features |= BLK_FEAT_ROTATIONAL;
1975 
1976 	nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb);
1977 	if (IS_ERR(nullb->disk)) {
1978 		rv = PTR_ERR(nullb->disk);
1979 		goto out_cleanup_zone;
1980 	}
1981 	nullb->q = nullb->disk->queue;
1982 
1983 	if (dev->mbps) {
1984 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1985 		nullb_setup_bwtimer(nullb);
1986 	}
1987 
1988 	nullb->q->queuedata = nullb;
1989 
1990 	rv = ida_alloc(&nullb_indexes, GFP_KERNEL);
1991 	if (rv < 0)
1992 		goto out_cleanup_disk;
1993 
1994 	nullb->index = rv;
1995 	dev->index = rv;
1996 
1997 	if (config_item_name(&dev->group.cg_item)) {
1998 		/* Use configfs dir name as the device name */
1999 		snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2000 			 "%s", config_item_name(&dev->group.cg_item));
2001 	} else {
2002 		sprintf(nullb->disk_name, "nullb%d", nullb->index);
2003 	}
2004 
2005 	set_capacity(nullb->disk,
2006 		((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT);
2007 	nullb->disk->major = null_major;
2008 	nullb->disk->first_minor = nullb->index;
2009 	nullb->disk->minors = 1;
2010 	nullb->disk->fops = &null_ops;
2011 	nullb->disk->private_data = nullb;
2012 	strscpy_pad(nullb->disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
2013 
2014 	if (nullb->dev->zoned) {
2015 		rv = null_register_zoned_dev(nullb);
2016 		if (rv)
2017 			goto out_ida_free;
2018 	}
2019 
2020 	rv = add_disk(nullb->disk);
2021 	if (rv)
2022 		goto out_ida_free;
2023 
2024 	list_add_tail(&nullb->list, &nullb_list);
2025 
2026 	pr_info("disk %s created\n", nullb->disk_name);
2027 
2028 	return 0;
2029 
2030 out_ida_free:
2031 	ida_free(&nullb_indexes, nullb->index);
2032 out_cleanup_disk:
2033 	put_disk(nullb->disk);
2034 out_cleanup_zone:
2035 	null_free_zoned_dev(dev);
2036 out_cleanup_tags:
2037 	if (nullb->tag_set == &nullb->__tag_set)
2038 		blk_mq_free_tag_set(nullb->tag_set);
2039 out_cleanup_queues:
2040 	kfree(nullb->queues);
2041 out_free_nullb:
2042 	kfree(nullb);
2043 	dev->nullb = NULL;
2044 out:
2045 	return rv;
2046 }
2047 
2048 static struct nullb *null_find_dev_by_name(const char *name)
2049 {
2050 	struct nullb *nullb = NULL, *nb;
2051 
2052 	mutex_lock(&lock);
2053 	list_for_each_entry(nb, &nullb_list, list) {
2054 		if (strcmp(nb->disk_name, name) == 0) {
2055 			nullb = nb;
2056 			break;
2057 		}
2058 	}
2059 	mutex_unlock(&lock);
2060 
2061 	return nullb;
2062 }
2063 
2064 static int null_create_dev(void)
2065 {
2066 	struct nullb_device *dev;
2067 	int ret;
2068 
2069 	dev = null_alloc_dev();
2070 	if (!dev)
2071 		return -ENOMEM;
2072 
2073 	mutex_lock(&lock);
2074 	ret = null_add_dev(dev);
2075 	mutex_unlock(&lock);
2076 	if (ret) {
2077 		null_free_dev(dev);
2078 		return ret;
2079 	}
2080 
2081 	return 0;
2082 }
2083 
2084 static void null_destroy_dev(struct nullb *nullb)
2085 {
2086 	struct nullb_device *dev = nullb->dev;
2087 
2088 	null_del_dev(nullb);
2089 	null_free_device_storage(dev, false);
2090 	null_free_dev(dev);
2091 }
2092 
2093 static int __init null_init(void)
2094 {
2095 	int ret = 0;
2096 	unsigned int i;
2097 	struct nullb *nullb;
2098 
2099 	if (g_bs > PAGE_SIZE) {
2100 		pr_warn("invalid block size\n");
2101 		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2102 		g_bs = PAGE_SIZE;
2103 	}
2104 
2105 	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2106 		pr_err("invalid home_node value\n");
2107 		g_home_node = NUMA_NO_NODE;
2108 	}
2109 
2110 	if (!null_setup_fault())
2111 		return -EINVAL;
2112 
2113 	if (g_queue_mode == NULL_Q_RQ) {
2114 		pr_err("legacy IO path is no longer available\n");
2115 		return -EINVAL;
2116 	}
2117 
2118 	if (g_use_per_node_hctx) {
2119 		if (g_submit_queues != nr_online_nodes) {
2120 			pr_warn("submit_queues param is set to %u.\n",
2121 				nr_online_nodes);
2122 			g_submit_queues = nr_online_nodes;
2123 		}
2124 	} else if (g_submit_queues > nr_cpu_ids) {
2125 		g_submit_queues = nr_cpu_ids;
2126 	} else if (g_submit_queues <= 0) {
2127 		g_submit_queues = 1;
2128 	}
2129 
2130 	config_group_init(&nullb_subsys.su_group);
2131 	mutex_init(&nullb_subsys.su_mutex);
2132 
2133 	ret = configfs_register_subsystem(&nullb_subsys);
2134 	if (ret)
2135 		return ret;
2136 
2137 	mutex_init(&lock);
2138 
2139 	null_major = register_blkdev(0, "nullb");
2140 	if (null_major < 0) {
2141 		ret = null_major;
2142 		goto err_conf;
2143 	}
2144 
2145 	for (i = 0; i < nr_devices; i++) {
2146 		ret = null_create_dev();
2147 		if (ret)
2148 			goto err_dev;
2149 	}
2150 
2151 	pr_info("module loaded\n");
2152 	return 0;
2153 
2154 err_dev:
2155 	while (!list_empty(&nullb_list)) {
2156 		nullb = list_entry(nullb_list.next, struct nullb, list);
2157 		null_destroy_dev(nullb);
2158 	}
2159 	unregister_blkdev(null_major, "nullb");
2160 err_conf:
2161 	configfs_unregister_subsystem(&nullb_subsys);
2162 	return ret;
2163 }
2164 
2165 static void __exit null_exit(void)
2166 {
2167 	struct nullb *nullb;
2168 
2169 	configfs_unregister_subsystem(&nullb_subsys);
2170 
2171 	unregister_blkdev(null_major, "nullb");
2172 
2173 	mutex_lock(&lock);
2174 	while (!list_empty(&nullb_list)) {
2175 		nullb = list_entry(nullb_list.next, struct nullb, list);
2176 		null_destroy_dev(nullb);
2177 	}
2178 	mutex_unlock(&lock);
2179 
2180 	if (tag_set.ops)
2181 		blk_mq_free_tag_set(&tag_set);
2182 
2183 	mutex_destroy(&lock);
2184 }
2185 
2186 module_init(null_init);
2187 module_exit(null_exit);
2188 
2189 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2190 MODULE_DESCRIPTION("multi queue aware block test driver");
2191 MODULE_LICENSE("GPL");
2192