1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and 4 * Shaohua Li <shli@fb.com> 5 */ 6 #include <linux/module.h> 7 8 #include <linux/moduleparam.h> 9 #include <linux/sched.h> 10 #include <linux/fs.h> 11 #include <linux/init.h> 12 #include "null_blk.h" 13 14 #undef pr_fmt 15 #define pr_fmt(fmt) "null_blk: " fmt 16 17 #define FREE_BATCH 16 18 19 #define TICKS_PER_SEC 50ULL 20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC) 21 22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 23 static DECLARE_FAULT_ATTR(null_timeout_attr); 24 static DECLARE_FAULT_ATTR(null_requeue_attr); 25 static DECLARE_FAULT_ATTR(null_init_hctx_attr); 26 #endif 27 28 static inline u64 mb_per_tick(int mbps) 29 { 30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps); 31 } 32 33 /* 34 * Status flags for nullb_device. 35 * 36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure. 37 * UP: Device is currently on and visible in userspace. 38 * THROTTLED: Device is being throttled. 39 * CACHE: Device is using a write-back cache. 40 */ 41 enum nullb_device_flags { 42 NULLB_DEV_FL_CONFIGURED = 0, 43 NULLB_DEV_FL_UP = 1, 44 NULLB_DEV_FL_THROTTLED = 2, 45 NULLB_DEV_FL_CACHE = 3, 46 }; 47 48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2) 49 /* 50 * nullb_page is a page in memory for nullb devices. 51 * 52 * @page: The page holding the data. 53 * @bitmap: The bitmap represents which sector in the page has data. 54 * Each bit represents one block size. For example, sector 8 55 * will use the 7th bit 56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache 57 * page is being flushing to storage. FREE means the cache page is freed and 58 * should be skipped from flushing to storage. Please see 59 * null_make_cache_space 60 */ 61 struct nullb_page { 62 struct page *page; 63 DECLARE_BITMAP(bitmap, MAP_SZ); 64 }; 65 #define NULLB_PAGE_LOCK (MAP_SZ - 1) 66 #define NULLB_PAGE_FREE (MAP_SZ - 2) 67 68 static LIST_HEAD(nullb_list); 69 static struct mutex lock; 70 static int null_major; 71 static DEFINE_IDA(nullb_indexes); 72 static struct blk_mq_tag_set tag_set; 73 74 enum { 75 NULL_IRQ_NONE = 0, 76 NULL_IRQ_SOFTIRQ = 1, 77 NULL_IRQ_TIMER = 2, 78 }; 79 80 static bool g_virt_boundary; 81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444); 82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False"); 83 84 static int g_no_sched; 85 module_param_named(no_sched, g_no_sched, int, 0444); 86 MODULE_PARM_DESC(no_sched, "No io scheduler"); 87 88 static int g_submit_queues = 1; 89 module_param_named(submit_queues, g_submit_queues, int, 0444); 90 MODULE_PARM_DESC(submit_queues, "Number of submission queues"); 91 92 static int g_poll_queues = 1; 93 module_param_named(poll_queues, g_poll_queues, int, 0444); 94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues"); 95 96 static int g_home_node = NUMA_NO_NODE; 97 module_param_named(home_node, g_home_node, int, 0444); 98 MODULE_PARM_DESC(home_node, "Home node for the device"); 99 100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 101 /* 102 * For more details about fault injection, please refer to 103 * Documentation/fault-injection/fault-injection.rst. 104 */ 105 static char g_timeout_str[80]; 106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444); 107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>"); 108 109 static char g_requeue_str[80]; 110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444); 111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>"); 112 113 static char g_init_hctx_str[80]; 114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444); 115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>"); 116 #endif 117 118 /* 119 * Historic queue modes. 120 * 121 * These days nothing but NULL_Q_MQ is actually supported, but we keep it the 122 * enum for error reporting. 123 */ 124 enum { 125 NULL_Q_BIO = 0, 126 NULL_Q_RQ = 1, 127 NULL_Q_MQ = 2, 128 }; 129 130 static int g_queue_mode = NULL_Q_MQ; 131 132 static int null_param_store_val(const char *str, int *val, int min, int max) 133 { 134 int ret, new_val; 135 136 ret = kstrtoint(str, 10, &new_val); 137 if (ret) 138 return -EINVAL; 139 140 if (new_val < min || new_val > max) 141 return -EINVAL; 142 143 *val = new_val; 144 return 0; 145 } 146 147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp) 148 { 149 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ); 150 } 151 152 static const struct kernel_param_ops null_queue_mode_param_ops = { 153 .set = null_set_queue_mode, 154 .get = param_get_int, 155 }; 156 157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444); 158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)"); 159 160 static int g_gb = 250; 161 module_param_named(gb, g_gb, int, 0444); 162 MODULE_PARM_DESC(gb, "Size in GB"); 163 164 static int g_bs = 512; 165 module_param_named(bs, g_bs, int, 0444); 166 MODULE_PARM_DESC(bs, "Block size (in bytes)"); 167 168 static int g_max_sectors; 169 module_param_named(max_sectors, g_max_sectors, int, 0444); 170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)"); 171 172 static unsigned int nr_devices = 1; 173 module_param(nr_devices, uint, 0444); 174 MODULE_PARM_DESC(nr_devices, "Number of devices to register"); 175 176 static bool g_blocking; 177 module_param_named(blocking, g_blocking, bool, 0444); 178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device"); 179 180 static bool g_shared_tags; 181 module_param_named(shared_tags, g_shared_tags, bool, 0444); 182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq"); 183 184 static bool g_shared_tag_bitmap; 185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444); 186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq"); 187 188 static int g_irqmode = NULL_IRQ_SOFTIRQ; 189 190 static int null_set_irqmode(const char *str, const struct kernel_param *kp) 191 { 192 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE, 193 NULL_IRQ_TIMER); 194 } 195 196 static const struct kernel_param_ops null_irqmode_param_ops = { 197 .set = null_set_irqmode, 198 .get = param_get_int, 199 }; 200 201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444); 202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer"); 203 204 static unsigned long g_completion_nsec = 10000; 205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444); 206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns"); 207 208 static int g_hw_queue_depth = 64; 209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444); 210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64"); 211 212 static bool g_use_per_node_hctx; 213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444); 214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false"); 215 216 static bool g_memory_backed; 217 module_param_named(memory_backed, g_memory_backed, bool, 0444); 218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false"); 219 220 static bool g_discard; 221 module_param_named(discard, g_discard, bool, 0444); 222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false"); 223 224 static unsigned long g_cache_size; 225 module_param_named(cache_size, g_cache_size, ulong, 0444); 226 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)"); 227 228 static bool g_fua = true; 229 module_param_named(fua, g_fua, bool, 0444); 230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true"); 231 232 static unsigned int g_mbps; 233 module_param_named(mbps, g_mbps, uint, 0444); 234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)"); 235 236 static bool g_zoned; 237 module_param_named(zoned, g_zoned, bool, S_IRUGO); 238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false"); 239 240 static unsigned long g_zone_size = 256; 241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO); 242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256"); 243 244 static unsigned long g_zone_capacity; 245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444); 246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size"); 247 248 static unsigned int g_zone_nr_conv; 249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444); 250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0"); 251 252 static unsigned int g_zone_max_open; 253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444); 254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)"); 255 256 static unsigned int g_zone_max_active; 257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444); 258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)"); 259 260 static int g_zone_append_max_sectors = INT_MAX; 261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444); 262 MODULE_PARM_DESC(zone_append_max_sectors, 263 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation"); 264 265 static bool g_zone_full; 266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO); 267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false"); 268 269 static bool g_rotational; 270 module_param_named(rotational, g_rotational, bool, S_IRUGO); 271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false"); 272 273 static struct nullb_device *null_alloc_dev(void); 274 static void null_free_dev(struct nullb_device *dev); 275 static void null_del_dev(struct nullb *nullb); 276 static int null_add_dev(struct nullb_device *dev); 277 static struct nullb *null_find_dev_by_name(const char *name); 278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache); 279 280 static inline struct nullb_device *to_nullb_device(struct config_item *item) 281 { 282 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL; 283 } 284 285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page) 286 { 287 return snprintf(page, PAGE_SIZE, "%u\n", val); 288 } 289 290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val, 291 char *page) 292 { 293 return snprintf(page, PAGE_SIZE, "%lu\n", val); 294 } 295 296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page) 297 { 298 return snprintf(page, PAGE_SIZE, "%u\n", val); 299 } 300 301 static ssize_t nullb_device_uint_attr_store(unsigned int *val, 302 const char *page, size_t count) 303 { 304 unsigned int tmp; 305 int result; 306 307 result = kstrtouint(page, 0, &tmp); 308 if (result < 0) 309 return result; 310 311 *val = tmp; 312 return count; 313 } 314 315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val, 316 const char *page, size_t count) 317 { 318 int result; 319 unsigned long tmp; 320 321 result = kstrtoul(page, 0, &tmp); 322 if (result < 0) 323 return result; 324 325 *val = tmp; 326 return count; 327 } 328 329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page, 330 size_t count) 331 { 332 bool tmp; 333 int result; 334 335 result = kstrtobool(page, &tmp); 336 if (result < 0) 337 return result; 338 339 *val = tmp; 340 return count; 341 } 342 343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */ 344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \ 345 static ssize_t \ 346 nullb_device_##NAME##_show(struct config_item *item, char *page) \ 347 { \ 348 return nullb_device_##TYPE##_attr_show( \ 349 to_nullb_device(item)->NAME, page); \ 350 } \ 351 static ssize_t \ 352 nullb_device_##NAME##_store(struct config_item *item, const char *page, \ 353 size_t count) \ 354 { \ 355 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\ 356 struct nullb_device *dev = to_nullb_device(item); \ 357 TYPE new_value = 0; \ 358 int ret; \ 359 \ 360 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\ 361 if (ret < 0) \ 362 return ret; \ 363 if (apply_fn) \ 364 ret = apply_fn(dev, new_value); \ 365 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \ 366 ret = -EBUSY; \ 367 if (ret < 0) \ 368 return ret; \ 369 dev->NAME = new_value; \ 370 return count; \ 371 } \ 372 CONFIGFS_ATTR(nullb_device_, NAME); 373 374 static int nullb_update_nr_hw_queues(struct nullb_device *dev, 375 unsigned int submit_queues, 376 unsigned int poll_queues) 377 378 { 379 struct blk_mq_tag_set *set; 380 int ret, nr_hw_queues; 381 382 if (!dev->nullb) 383 return 0; 384 385 /* 386 * Make sure at least one submit queue exists. 387 */ 388 if (!submit_queues) 389 return -EINVAL; 390 391 /* 392 * Make sure that null_init_hctx() does not access nullb->queues[] past 393 * the end of that array. 394 */ 395 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues) 396 return -EINVAL; 397 398 /* 399 * Keep previous and new queue numbers in nullb_device for reference in 400 * the call back function null_map_queues(). 401 */ 402 dev->prev_submit_queues = dev->submit_queues; 403 dev->prev_poll_queues = dev->poll_queues; 404 dev->submit_queues = submit_queues; 405 dev->poll_queues = poll_queues; 406 407 set = dev->nullb->tag_set; 408 nr_hw_queues = submit_queues + poll_queues; 409 blk_mq_update_nr_hw_queues(set, nr_hw_queues); 410 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM; 411 412 if (ret) { 413 /* on error, revert the queue numbers */ 414 dev->submit_queues = dev->prev_submit_queues; 415 dev->poll_queues = dev->prev_poll_queues; 416 } 417 418 return ret; 419 } 420 421 static int nullb_apply_submit_queues(struct nullb_device *dev, 422 unsigned int submit_queues) 423 { 424 int ret; 425 426 mutex_lock(&lock); 427 ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues); 428 mutex_unlock(&lock); 429 430 return ret; 431 } 432 433 static int nullb_apply_poll_queues(struct nullb_device *dev, 434 unsigned int poll_queues) 435 { 436 int ret; 437 438 mutex_lock(&lock); 439 ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues); 440 mutex_unlock(&lock); 441 442 return ret; 443 } 444 445 NULLB_DEVICE_ATTR(size, ulong, NULL); 446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL); 447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues); 448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues); 449 NULLB_DEVICE_ATTR(home_node, uint, NULL); 450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL); 451 NULLB_DEVICE_ATTR(blocksize, uint, NULL); 452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL); 453 NULLB_DEVICE_ATTR(irqmode, uint, NULL); 454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL); 455 NULLB_DEVICE_ATTR(index, uint, NULL); 456 NULLB_DEVICE_ATTR(blocking, bool, NULL); 457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL); 458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL); 459 NULLB_DEVICE_ATTR(discard, bool, NULL); 460 NULLB_DEVICE_ATTR(mbps, uint, NULL); 461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL); 462 NULLB_DEVICE_ATTR(zoned, bool, NULL); 463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL); 464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL); 465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL); 466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL); 467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL); 468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL); 469 NULLB_DEVICE_ATTR(zone_full, bool, NULL); 470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL); 471 NULLB_DEVICE_ATTR(no_sched, bool, NULL); 472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL); 473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL); 474 NULLB_DEVICE_ATTR(fua, bool, NULL); 475 NULLB_DEVICE_ATTR(rotational, bool, NULL); 476 477 static ssize_t nullb_device_power_show(struct config_item *item, char *page) 478 { 479 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page); 480 } 481 482 static ssize_t nullb_device_power_store(struct config_item *item, 483 const char *page, size_t count) 484 { 485 struct nullb_device *dev = to_nullb_device(item); 486 bool newp = false; 487 ssize_t ret; 488 489 ret = nullb_device_bool_attr_store(&newp, page, count); 490 if (ret < 0) 491 return ret; 492 493 ret = count; 494 mutex_lock(&lock); 495 if (!dev->power && newp) { 496 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags)) 497 goto out; 498 499 ret = null_add_dev(dev); 500 if (ret) { 501 clear_bit(NULLB_DEV_FL_UP, &dev->flags); 502 goto out; 503 } 504 505 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 506 dev->power = newp; 507 ret = count; 508 } else if (dev->power && !newp) { 509 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 510 dev->power = newp; 511 null_del_dev(dev->nullb); 512 } 513 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 514 } 515 516 out: 517 mutex_unlock(&lock); 518 return ret; 519 } 520 521 CONFIGFS_ATTR(nullb_device_, power); 522 523 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page) 524 { 525 struct nullb_device *t_dev = to_nullb_device(item); 526 527 return badblocks_show(&t_dev->badblocks, page, 0); 528 } 529 530 static ssize_t nullb_device_badblocks_store(struct config_item *item, 531 const char *page, size_t count) 532 { 533 struct nullb_device *t_dev = to_nullb_device(item); 534 char *orig, *buf, *tmp; 535 u64 start, end; 536 int ret; 537 538 orig = kstrndup(page, count, GFP_KERNEL); 539 if (!orig) 540 return -ENOMEM; 541 542 buf = strstrip(orig); 543 544 ret = -EINVAL; 545 if (buf[0] != '+' && buf[0] != '-') 546 goto out; 547 tmp = strchr(&buf[1], '-'); 548 if (!tmp) 549 goto out; 550 *tmp = '\0'; 551 ret = kstrtoull(buf + 1, 0, &start); 552 if (ret) 553 goto out; 554 ret = kstrtoull(tmp + 1, 0, &end); 555 if (ret) 556 goto out; 557 ret = -EINVAL; 558 if (start > end) 559 goto out; 560 /* enable badblocks */ 561 cmpxchg(&t_dev->badblocks.shift, -1, 0); 562 if (buf[0] == '+') 563 ret = badblocks_set(&t_dev->badblocks, start, 564 end - start + 1, 1); 565 else 566 ret = badblocks_clear(&t_dev->badblocks, start, 567 end - start + 1); 568 if (ret == 0) 569 ret = count; 570 out: 571 kfree(orig); 572 return ret; 573 } 574 CONFIGFS_ATTR(nullb_device_, badblocks); 575 576 static ssize_t nullb_device_zone_readonly_store(struct config_item *item, 577 const char *page, size_t count) 578 { 579 struct nullb_device *dev = to_nullb_device(item); 580 581 return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY); 582 } 583 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly); 584 585 static ssize_t nullb_device_zone_offline_store(struct config_item *item, 586 const char *page, size_t count) 587 { 588 struct nullb_device *dev = to_nullb_device(item); 589 590 return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE); 591 } 592 CONFIGFS_ATTR_WO(nullb_device_, zone_offline); 593 594 static struct configfs_attribute *nullb_device_attrs[] = { 595 &nullb_device_attr_size, 596 &nullb_device_attr_completion_nsec, 597 &nullb_device_attr_submit_queues, 598 &nullb_device_attr_poll_queues, 599 &nullb_device_attr_home_node, 600 &nullb_device_attr_queue_mode, 601 &nullb_device_attr_blocksize, 602 &nullb_device_attr_max_sectors, 603 &nullb_device_attr_irqmode, 604 &nullb_device_attr_hw_queue_depth, 605 &nullb_device_attr_index, 606 &nullb_device_attr_blocking, 607 &nullb_device_attr_use_per_node_hctx, 608 &nullb_device_attr_power, 609 &nullb_device_attr_memory_backed, 610 &nullb_device_attr_discard, 611 &nullb_device_attr_mbps, 612 &nullb_device_attr_cache_size, 613 &nullb_device_attr_badblocks, 614 &nullb_device_attr_zoned, 615 &nullb_device_attr_zone_size, 616 &nullb_device_attr_zone_capacity, 617 &nullb_device_attr_zone_nr_conv, 618 &nullb_device_attr_zone_max_open, 619 &nullb_device_attr_zone_max_active, 620 &nullb_device_attr_zone_append_max_sectors, 621 &nullb_device_attr_zone_readonly, 622 &nullb_device_attr_zone_offline, 623 &nullb_device_attr_zone_full, 624 &nullb_device_attr_virt_boundary, 625 &nullb_device_attr_no_sched, 626 &nullb_device_attr_shared_tags, 627 &nullb_device_attr_shared_tag_bitmap, 628 &nullb_device_attr_fua, 629 &nullb_device_attr_rotational, 630 NULL, 631 }; 632 633 static void nullb_device_release(struct config_item *item) 634 { 635 struct nullb_device *dev = to_nullb_device(item); 636 637 null_free_device_storage(dev, false); 638 null_free_dev(dev); 639 } 640 641 static struct configfs_item_operations nullb_device_ops = { 642 .release = nullb_device_release, 643 }; 644 645 static const struct config_item_type nullb_device_type = { 646 .ct_item_ops = &nullb_device_ops, 647 .ct_attrs = nullb_device_attrs, 648 .ct_owner = THIS_MODULE, 649 }; 650 651 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 652 653 static void nullb_add_fault_config(struct nullb_device *dev) 654 { 655 fault_config_init(&dev->timeout_config, "timeout_inject"); 656 fault_config_init(&dev->requeue_config, "requeue_inject"); 657 fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject"); 658 659 configfs_add_default_group(&dev->timeout_config.group, &dev->group); 660 configfs_add_default_group(&dev->requeue_config.group, &dev->group); 661 configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group); 662 } 663 664 #else 665 666 static void nullb_add_fault_config(struct nullb_device *dev) 667 { 668 } 669 670 #endif 671 672 static struct 673 config_group *nullb_group_make_group(struct config_group *group, const char *name) 674 { 675 struct nullb_device *dev; 676 677 if (null_find_dev_by_name(name)) 678 return ERR_PTR(-EEXIST); 679 680 dev = null_alloc_dev(); 681 if (!dev) 682 return ERR_PTR(-ENOMEM); 683 684 config_group_init_type_name(&dev->group, name, &nullb_device_type); 685 nullb_add_fault_config(dev); 686 687 return &dev->group; 688 } 689 690 static void 691 nullb_group_drop_item(struct config_group *group, struct config_item *item) 692 { 693 struct nullb_device *dev = to_nullb_device(item); 694 695 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 696 mutex_lock(&lock); 697 dev->power = false; 698 null_del_dev(dev->nullb); 699 mutex_unlock(&lock); 700 } 701 702 config_item_put(item); 703 } 704 705 static ssize_t memb_group_features_show(struct config_item *item, char *page) 706 { 707 return snprintf(page, PAGE_SIZE, 708 "badblocks,blocking,blocksize,cache_size,fua," 709 "completion_nsec,discard,home_node,hw_queue_depth," 710 "irqmode,max_sectors,mbps,memory_backed,no_sched," 711 "poll_queues,power,queue_mode,shared_tag_bitmap," 712 "shared_tags,size,submit_queues,use_per_node_hctx," 713 "virt_boundary,zoned,zone_capacity,zone_max_active," 714 "zone_max_open,zone_nr_conv,zone_offline,zone_readonly," 715 "zone_size,zone_append_max_sectors,zone_full," 716 "rotational\n"); 717 } 718 719 CONFIGFS_ATTR_RO(memb_group_, features); 720 721 static struct configfs_attribute *nullb_group_attrs[] = { 722 &memb_group_attr_features, 723 NULL, 724 }; 725 726 static struct configfs_group_operations nullb_group_ops = { 727 .make_group = nullb_group_make_group, 728 .drop_item = nullb_group_drop_item, 729 }; 730 731 static const struct config_item_type nullb_group_type = { 732 .ct_group_ops = &nullb_group_ops, 733 .ct_attrs = nullb_group_attrs, 734 .ct_owner = THIS_MODULE, 735 }; 736 737 static struct configfs_subsystem nullb_subsys = { 738 .su_group = { 739 .cg_item = { 740 .ci_namebuf = "nullb", 741 .ci_type = &nullb_group_type, 742 }, 743 }, 744 }; 745 746 static inline int null_cache_active(struct nullb *nullb) 747 { 748 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 749 } 750 751 static struct nullb_device *null_alloc_dev(void) 752 { 753 struct nullb_device *dev; 754 755 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 756 if (!dev) 757 return NULL; 758 759 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 760 dev->timeout_config.attr = null_timeout_attr; 761 dev->requeue_config.attr = null_requeue_attr; 762 dev->init_hctx_fault_config.attr = null_init_hctx_attr; 763 #endif 764 765 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC); 766 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC); 767 if (badblocks_init(&dev->badblocks, 0)) { 768 kfree(dev); 769 return NULL; 770 } 771 772 dev->size = g_gb * 1024; 773 dev->completion_nsec = g_completion_nsec; 774 dev->submit_queues = g_submit_queues; 775 dev->prev_submit_queues = g_submit_queues; 776 dev->poll_queues = g_poll_queues; 777 dev->prev_poll_queues = g_poll_queues; 778 dev->home_node = g_home_node; 779 dev->queue_mode = g_queue_mode; 780 dev->blocksize = g_bs; 781 dev->max_sectors = g_max_sectors; 782 dev->irqmode = g_irqmode; 783 dev->hw_queue_depth = g_hw_queue_depth; 784 dev->blocking = g_blocking; 785 dev->memory_backed = g_memory_backed; 786 dev->discard = g_discard; 787 dev->cache_size = g_cache_size; 788 dev->mbps = g_mbps; 789 dev->use_per_node_hctx = g_use_per_node_hctx; 790 dev->zoned = g_zoned; 791 dev->zone_size = g_zone_size; 792 dev->zone_capacity = g_zone_capacity; 793 dev->zone_nr_conv = g_zone_nr_conv; 794 dev->zone_max_open = g_zone_max_open; 795 dev->zone_max_active = g_zone_max_active; 796 dev->zone_append_max_sectors = g_zone_append_max_sectors; 797 dev->zone_full = g_zone_full; 798 dev->virt_boundary = g_virt_boundary; 799 dev->no_sched = g_no_sched; 800 dev->shared_tags = g_shared_tags; 801 dev->shared_tag_bitmap = g_shared_tag_bitmap; 802 dev->fua = g_fua; 803 dev->rotational = g_rotational; 804 805 return dev; 806 } 807 808 static void null_free_dev(struct nullb_device *dev) 809 { 810 if (!dev) 811 return; 812 813 null_free_zoned_dev(dev); 814 badblocks_exit(&dev->badblocks); 815 kfree(dev); 816 } 817 818 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer) 819 { 820 struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer); 821 822 blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error); 823 return HRTIMER_NORESTART; 824 } 825 826 static void null_cmd_end_timer(struct nullb_cmd *cmd) 827 { 828 ktime_t kt = cmd->nq->dev->completion_nsec; 829 830 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL); 831 } 832 833 static void null_complete_rq(struct request *rq) 834 { 835 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 836 837 blk_mq_end_request(rq, cmd->error); 838 } 839 840 static struct nullb_page *null_alloc_page(void) 841 { 842 struct nullb_page *t_page; 843 844 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO); 845 if (!t_page) 846 return NULL; 847 848 t_page->page = alloc_pages(GFP_NOIO, 0); 849 if (!t_page->page) { 850 kfree(t_page); 851 return NULL; 852 } 853 854 memset(t_page->bitmap, 0, sizeof(t_page->bitmap)); 855 return t_page; 856 } 857 858 static void null_free_page(struct nullb_page *t_page) 859 { 860 __set_bit(NULLB_PAGE_FREE, t_page->bitmap); 861 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap)) 862 return; 863 __free_page(t_page->page); 864 kfree(t_page); 865 } 866 867 static bool null_page_empty(struct nullb_page *page) 868 { 869 int size = MAP_SZ - 2; 870 871 return find_first_bit(page->bitmap, size) == size; 872 } 873 874 static void null_free_sector(struct nullb *nullb, sector_t sector, 875 bool is_cache) 876 { 877 unsigned int sector_bit; 878 u64 idx; 879 struct nullb_page *t_page, *ret; 880 struct radix_tree_root *root; 881 882 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 883 idx = sector >> PAGE_SECTORS_SHIFT; 884 sector_bit = (sector & SECTOR_MASK); 885 886 t_page = radix_tree_lookup(root, idx); 887 if (t_page) { 888 __clear_bit(sector_bit, t_page->bitmap); 889 890 if (null_page_empty(t_page)) { 891 ret = radix_tree_delete_item(root, idx, t_page); 892 WARN_ON(ret != t_page); 893 null_free_page(ret); 894 if (is_cache) 895 nullb->dev->curr_cache -= PAGE_SIZE; 896 } 897 } 898 } 899 900 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx, 901 struct nullb_page *t_page, bool is_cache) 902 { 903 struct radix_tree_root *root; 904 905 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 906 907 if (radix_tree_insert(root, idx, t_page)) { 908 null_free_page(t_page); 909 t_page = radix_tree_lookup(root, idx); 910 WARN_ON(!t_page || t_page->page->private != idx); 911 } else if (is_cache) 912 nullb->dev->curr_cache += PAGE_SIZE; 913 914 return t_page; 915 } 916 917 static void null_free_device_storage(struct nullb_device *dev, bool is_cache) 918 { 919 unsigned long pos = 0; 920 int nr_pages; 921 struct nullb_page *ret, *t_pages[FREE_BATCH]; 922 struct radix_tree_root *root; 923 924 root = is_cache ? &dev->cache : &dev->data; 925 926 do { 927 int i; 928 929 nr_pages = radix_tree_gang_lookup(root, 930 (void **)t_pages, pos, FREE_BATCH); 931 932 for (i = 0; i < nr_pages; i++) { 933 pos = t_pages[i]->page->private; 934 ret = radix_tree_delete_item(root, pos, t_pages[i]); 935 WARN_ON(ret != t_pages[i]); 936 null_free_page(ret); 937 } 938 939 pos++; 940 } while (nr_pages == FREE_BATCH); 941 942 if (is_cache) 943 dev->curr_cache = 0; 944 } 945 946 static struct nullb_page *__null_lookup_page(struct nullb *nullb, 947 sector_t sector, bool for_write, bool is_cache) 948 { 949 unsigned int sector_bit; 950 u64 idx; 951 struct nullb_page *t_page; 952 struct radix_tree_root *root; 953 954 idx = sector >> PAGE_SECTORS_SHIFT; 955 sector_bit = (sector & SECTOR_MASK); 956 957 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 958 t_page = radix_tree_lookup(root, idx); 959 WARN_ON(t_page && t_page->page->private != idx); 960 961 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap))) 962 return t_page; 963 964 return NULL; 965 } 966 967 static struct nullb_page *null_lookup_page(struct nullb *nullb, 968 sector_t sector, bool for_write, bool ignore_cache) 969 { 970 struct nullb_page *page = NULL; 971 972 if (!ignore_cache) 973 page = __null_lookup_page(nullb, sector, for_write, true); 974 if (page) 975 return page; 976 return __null_lookup_page(nullb, sector, for_write, false); 977 } 978 979 static struct nullb_page *null_insert_page(struct nullb *nullb, 980 sector_t sector, bool ignore_cache) 981 __releases(&nullb->lock) 982 __acquires(&nullb->lock) 983 { 984 u64 idx; 985 struct nullb_page *t_page; 986 987 t_page = null_lookup_page(nullb, sector, true, ignore_cache); 988 if (t_page) 989 return t_page; 990 991 spin_unlock_irq(&nullb->lock); 992 993 t_page = null_alloc_page(); 994 if (!t_page) 995 goto out_lock; 996 997 if (radix_tree_preload(GFP_NOIO)) 998 goto out_freepage; 999 1000 spin_lock_irq(&nullb->lock); 1001 idx = sector >> PAGE_SECTORS_SHIFT; 1002 t_page->page->private = idx; 1003 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache); 1004 radix_tree_preload_end(); 1005 1006 return t_page; 1007 out_freepage: 1008 null_free_page(t_page); 1009 out_lock: 1010 spin_lock_irq(&nullb->lock); 1011 return null_lookup_page(nullb, sector, true, ignore_cache); 1012 } 1013 1014 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page) 1015 { 1016 int i; 1017 unsigned int offset; 1018 u64 idx; 1019 struct nullb_page *t_page, *ret; 1020 void *dst, *src; 1021 1022 idx = c_page->page->private; 1023 1024 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true); 1025 1026 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap); 1027 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) { 1028 null_free_page(c_page); 1029 if (t_page && null_page_empty(t_page)) { 1030 ret = radix_tree_delete_item(&nullb->dev->data, 1031 idx, t_page); 1032 null_free_page(t_page); 1033 } 1034 return 0; 1035 } 1036 1037 if (!t_page) 1038 return -ENOMEM; 1039 1040 src = kmap_local_page(c_page->page); 1041 dst = kmap_local_page(t_page->page); 1042 1043 for (i = 0; i < PAGE_SECTORS; 1044 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) { 1045 if (test_bit(i, c_page->bitmap)) { 1046 offset = (i << SECTOR_SHIFT); 1047 memcpy(dst + offset, src + offset, 1048 nullb->dev->blocksize); 1049 __set_bit(i, t_page->bitmap); 1050 } 1051 } 1052 1053 kunmap_local(dst); 1054 kunmap_local(src); 1055 1056 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page); 1057 null_free_page(ret); 1058 nullb->dev->curr_cache -= PAGE_SIZE; 1059 1060 return 0; 1061 } 1062 1063 static int null_make_cache_space(struct nullb *nullb, unsigned long n) 1064 { 1065 int i, err, nr_pages; 1066 struct nullb_page *c_pages[FREE_BATCH]; 1067 unsigned long flushed = 0, one_round; 1068 1069 again: 1070 if ((nullb->dev->cache_size * 1024 * 1024) > 1071 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0) 1072 return 0; 1073 1074 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache, 1075 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH); 1076 /* 1077 * nullb_flush_cache_page could unlock before using the c_pages. To 1078 * avoid race, we don't allow page free 1079 */ 1080 for (i = 0; i < nr_pages; i++) { 1081 nullb->cache_flush_pos = c_pages[i]->page->private; 1082 /* 1083 * We found the page which is being flushed to disk by other 1084 * threads 1085 */ 1086 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap)) 1087 c_pages[i] = NULL; 1088 else 1089 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap); 1090 } 1091 1092 one_round = 0; 1093 for (i = 0; i < nr_pages; i++) { 1094 if (c_pages[i] == NULL) 1095 continue; 1096 err = null_flush_cache_page(nullb, c_pages[i]); 1097 if (err) 1098 return err; 1099 one_round++; 1100 } 1101 flushed += one_round << PAGE_SHIFT; 1102 1103 if (n > flushed) { 1104 if (nr_pages == 0) 1105 nullb->cache_flush_pos = 0; 1106 if (one_round == 0) { 1107 /* give other threads a chance */ 1108 spin_unlock_irq(&nullb->lock); 1109 spin_lock_irq(&nullb->lock); 1110 } 1111 goto again; 1112 } 1113 return 0; 1114 } 1115 1116 static int copy_to_nullb(struct nullb *nullb, struct page *source, 1117 unsigned int off, sector_t sector, size_t n, bool is_fua) 1118 { 1119 size_t temp, count = 0; 1120 unsigned int offset; 1121 struct nullb_page *t_page; 1122 1123 while (count < n) { 1124 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1125 1126 if (null_cache_active(nullb) && !is_fua) 1127 null_make_cache_space(nullb, PAGE_SIZE); 1128 1129 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1130 t_page = null_insert_page(nullb, sector, 1131 !null_cache_active(nullb) || is_fua); 1132 if (!t_page) 1133 return -ENOSPC; 1134 1135 memcpy_page(t_page->page, offset, source, off + count, temp); 1136 1137 __set_bit(sector & SECTOR_MASK, t_page->bitmap); 1138 1139 if (is_fua) 1140 null_free_sector(nullb, sector, true); 1141 1142 count += temp; 1143 sector += temp >> SECTOR_SHIFT; 1144 } 1145 return 0; 1146 } 1147 1148 static int copy_from_nullb(struct nullb *nullb, struct page *dest, 1149 unsigned int off, sector_t sector, size_t n) 1150 { 1151 size_t temp, count = 0; 1152 unsigned int offset; 1153 struct nullb_page *t_page; 1154 1155 while (count < n) { 1156 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1157 1158 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1159 t_page = null_lookup_page(nullb, sector, false, 1160 !null_cache_active(nullb)); 1161 1162 if (t_page) 1163 memcpy_page(dest, off + count, t_page->page, offset, 1164 temp); 1165 else 1166 zero_user(dest, off + count, temp); 1167 1168 count += temp; 1169 sector += temp >> SECTOR_SHIFT; 1170 } 1171 return 0; 1172 } 1173 1174 static void nullb_fill_pattern(struct nullb *nullb, struct page *page, 1175 unsigned int len, unsigned int off) 1176 { 1177 memset_page(page, off, 0xff, len); 1178 } 1179 1180 blk_status_t null_handle_discard(struct nullb_device *dev, 1181 sector_t sector, sector_t nr_sectors) 1182 { 1183 struct nullb *nullb = dev->nullb; 1184 size_t n = nr_sectors << SECTOR_SHIFT; 1185 size_t temp; 1186 1187 spin_lock_irq(&nullb->lock); 1188 while (n > 0) { 1189 temp = min_t(size_t, n, dev->blocksize); 1190 null_free_sector(nullb, sector, false); 1191 if (null_cache_active(nullb)) 1192 null_free_sector(nullb, sector, true); 1193 sector += temp >> SECTOR_SHIFT; 1194 n -= temp; 1195 } 1196 spin_unlock_irq(&nullb->lock); 1197 1198 return BLK_STS_OK; 1199 } 1200 1201 static blk_status_t null_handle_flush(struct nullb *nullb) 1202 { 1203 int err; 1204 1205 if (!null_cache_active(nullb)) 1206 return 0; 1207 1208 spin_lock_irq(&nullb->lock); 1209 while (true) { 1210 err = null_make_cache_space(nullb, 1211 nullb->dev->cache_size * 1024 * 1024); 1212 if (err || nullb->dev->curr_cache == 0) 1213 break; 1214 } 1215 1216 WARN_ON(!radix_tree_empty(&nullb->dev->cache)); 1217 spin_unlock_irq(&nullb->lock); 1218 return errno_to_blk_status(err); 1219 } 1220 1221 static int null_transfer(struct nullb *nullb, struct page *page, 1222 unsigned int len, unsigned int off, bool is_write, sector_t sector, 1223 bool is_fua) 1224 { 1225 struct nullb_device *dev = nullb->dev; 1226 unsigned int valid_len = len; 1227 int err = 0; 1228 1229 if (!is_write) { 1230 if (dev->zoned) 1231 valid_len = null_zone_valid_read_len(nullb, 1232 sector, len); 1233 1234 if (valid_len) { 1235 err = copy_from_nullb(nullb, page, off, 1236 sector, valid_len); 1237 off += valid_len; 1238 len -= valid_len; 1239 } 1240 1241 if (len) 1242 nullb_fill_pattern(nullb, page, len, off); 1243 flush_dcache_page(page); 1244 } else { 1245 flush_dcache_page(page); 1246 err = copy_to_nullb(nullb, page, off, sector, len, is_fua); 1247 } 1248 1249 return err; 1250 } 1251 1252 static blk_status_t null_handle_rq(struct nullb_cmd *cmd) 1253 { 1254 struct request *rq = blk_mq_rq_from_pdu(cmd); 1255 struct nullb *nullb = cmd->nq->dev->nullb; 1256 int err = 0; 1257 unsigned int len; 1258 sector_t sector = blk_rq_pos(rq); 1259 struct req_iterator iter; 1260 struct bio_vec bvec; 1261 1262 spin_lock_irq(&nullb->lock); 1263 rq_for_each_segment(bvec, rq, iter) { 1264 len = bvec.bv_len; 1265 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, 1266 op_is_write(req_op(rq)), sector, 1267 rq->cmd_flags & REQ_FUA); 1268 if (err) 1269 break; 1270 sector += len >> SECTOR_SHIFT; 1271 } 1272 spin_unlock_irq(&nullb->lock); 1273 1274 return errno_to_blk_status(err); 1275 } 1276 1277 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd) 1278 { 1279 struct nullb_device *dev = cmd->nq->dev; 1280 struct nullb *nullb = dev->nullb; 1281 blk_status_t sts = BLK_STS_OK; 1282 struct request *rq = blk_mq_rq_from_pdu(cmd); 1283 1284 if (!hrtimer_active(&nullb->bw_timer)) 1285 hrtimer_restart(&nullb->bw_timer); 1286 1287 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) { 1288 blk_mq_stop_hw_queues(nullb->q); 1289 /* race with timer */ 1290 if (atomic_long_read(&nullb->cur_bytes) > 0) 1291 blk_mq_start_stopped_hw_queues(nullb->q, true); 1292 /* requeue request */ 1293 sts = BLK_STS_DEV_RESOURCE; 1294 } 1295 return sts; 1296 } 1297 1298 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, 1299 sector_t sector, 1300 sector_t nr_sectors) 1301 { 1302 struct badblocks *bb = &cmd->nq->dev->badblocks; 1303 sector_t first_bad; 1304 int bad_sectors; 1305 1306 if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors)) 1307 return BLK_STS_IOERR; 1308 1309 return BLK_STS_OK; 1310 } 1311 1312 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, 1313 enum req_op op, 1314 sector_t sector, 1315 sector_t nr_sectors) 1316 { 1317 struct nullb_device *dev = cmd->nq->dev; 1318 1319 if (op == REQ_OP_DISCARD) 1320 return null_handle_discard(dev, sector, nr_sectors); 1321 1322 return null_handle_rq(cmd); 1323 } 1324 1325 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd) 1326 { 1327 struct request *rq = blk_mq_rq_from_pdu(cmd); 1328 struct nullb_device *dev = cmd->nq->dev; 1329 struct bio *bio; 1330 1331 if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) { 1332 __rq_for_each_bio(bio, rq) 1333 zero_fill_bio(bio); 1334 } 1335 } 1336 1337 static inline void nullb_complete_cmd(struct nullb_cmd *cmd) 1338 { 1339 struct request *rq = blk_mq_rq_from_pdu(cmd); 1340 1341 /* 1342 * Since root privileges are required to configure the null_blk 1343 * driver, it is fine that this driver does not initialize the 1344 * data buffers of read commands. Zero-initialize these buffers 1345 * anyway if KMSAN is enabled to prevent that KMSAN complains 1346 * about null_blk not initializing read data buffers. 1347 */ 1348 if (IS_ENABLED(CONFIG_KMSAN)) 1349 nullb_zero_read_cmd_buffer(cmd); 1350 1351 /* Complete IO by inline, softirq or timer */ 1352 switch (cmd->nq->dev->irqmode) { 1353 case NULL_IRQ_SOFTIRQ: 1354 blk_mq_complete_request(rq); 1355 break; 1356 case NULL_IRQ_NONE: 1357 blk_mq_end_request(rq, cmd->error); 1358 break; 1359 case NULL_IRQ_TIMER: 1360 null_cmd_end_timer(cmd); 1361 break; 1362 } 1363 } 1364 1365 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op, 1366 sector_t sector, unsigned int nr_sectors) 1367 { 1368 struct nullb_device *dev = cmd->nq->dev; 1369 blk_status_t ret; 1370 1371 if (dev->badblocks.shift != -1) { 1372 ret = null_handle_badblocks(cmd, sector, nr_sectors); 1373 if (ret != BLK_STS_OK) 1374 return ret; 1375 } 1376 1377 if (dev->memory_backed) 1378 return null_handle_memory_backed(cmd, op, sector, nr_sectors); 1379 1380 return BLK_STS_OK; 1381 } 1382 1383 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector, 1384 sector_t nr_sectors, enum req_op op) 1385 { 1386 struct nullb_device *dev = cmd->nq->dev; 1387 struct nullb *nullb = dev->nullb; 1388 blk_status_t sts; 1389 1390 if (op == REQ_OP_FLUSH) { 1391 cmd->error = null_handle_flush(nullb); 1392 goto out; 1393 } 1394 1395 if (dev->zoned) 1396 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors); 1397 else 1398 sts = null_process_cmd(cmd, op, sector, nr_sectors); 1399 1400 /* Do not overwrite errors (e.g. timeout errors) */ 1401 if (cmd->error == BLK_STS_OK) 1402 cmd->error = sts; 1403 1404 out: 1405 nullb_complete_cmd(cmd); 1406 } 1407 1408 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer) 1409 { 1410 struct nullb *nullb = container_of(timer, struct nullb, bw_timer); 1411 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1412 unsigned int mbps = nullb->dev->mbps; 1413 1414 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps)) 1415 return HRTIMER_NORESTART; 1416 1417 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps)); 1418 blk_mq_start_stopped_hw_queues(nullb->q, true); 1419 1420 hrtimer_forward_now(&nullb->bw_timer, timer_interval); 1421 1422 return HRTIMER_RESTART; 1423 } 1424 1425 static void nullb_setup_bwtimer(struct nullb *nullb) 1426 { 1427 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1428 1429 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1430 nullb->bw_timer.function = nullb_bwtimer_fn; 1431 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps)); 1432 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL); 1433 } 1434 1435 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1436 1437 static bool should_timeout_request(struct request *rq) 1438 { 1439 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1440 struct nullb_device *dev = cmd->nq->dev; 1441 1442 return should_fail(&dev->timeout_config.attr, 1); 1443 } 1444 1445 static bool should_requeue_request(struct request *rq) 1446 { 1447 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1448 struct nullb_device *dev = cmd->nq->dev; 1449 1450 return should_fail(&dev->requeue_config.attr, 1); 1451 } 1452 1453 static bool should_init_hctx_fail(struct nullb_device *dev) 1454 { 1455 return should_fail(&dev->init_hctx_fault_config.attr, 1); 1456 } 1457 1458 #else 1459 1460 static bool should_timeout_request(struct request *rq) 1461 { 1462 return false; 1463 } 1464 1465 static bool should_requeue_request(struct request *rq) 1466 { 1467 return false; 1468 } 1469 1470 static bool should_init_hctx_fail(struct nullb_device *dev) 1471 { 1472 return false; 1473 } 1474 1475 #endif 1476 1477 static void null_map_queues(struct blk_mq_tag_set *set) 1478 { 1479 struct nullb *nullb = set->driver_data; 1480 int i, qoff; 1481 unsigned int submit_queues = g_submit_queues; 1482 unsigned int poll_queues = g_poll_queues; 1483 1484 if (nullb) { 1485 struct nullb_device *dev = nullb->dev; 1486 1487 /* 1488 * Refer nr_hw_queues of the tag set to check if the expected 1489 * number of hardware queues are prepared. If block layer failed 1490 * to prepare them, use previous numbers of submit queues and 1491 * poll queues to map queues. 1492 */ 1493 if (set->nr_hw_queues == 1494 dev->submit_queues + dev->poll_queues) { 1495 submit_queues = dev->submit_queues; 1496 poll_queues = dev->poll_queues; 1497 } else if (set->nr_hw_queues == 1498 dev->prev_submit_queues + dev->prev_poll_queues) { 1499 submit_queues = dev->prev_submit_queues; 1500 poll_queues = dev->prev_poll_queues; 1501 } else { 1502 pr_warn("tag set has unexpected nr_hw_queues: %d\n", 1503 set->nr_hw_queues); 1504 WARN_ON_ONCE(true); 1505 submit_queues = 1; 1506 poll_queues = 0; 1507 } 1508 } 1509 1510 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 1511 struct blk_mq_queue_map *map = &set->map[i]; 1512 1513 switch (i) { 1514 case HCTX_TYPE_DEFAULT: 1515 map->nr_queues = submit_queues; 1516 break; 1517 case HCTX_TYPE_READ: 1518 map->nr_queues = 0; 1519 continue; 1520 case HCTX_TYPE_POLL: 1521 map->nr_queues = poll_queues; 1522 break; 1523 } 1524 map->queue_offset = qoff; 1525 qoff += map->nr_queues; 1526 blk_mq_map_queues(map); 1527 } 1528 } 1529 1530 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1531 { 1532 struct nullb_queue *nq = hctx->driver_data; 1533 LIST_HEAD(list); 1534 int nr = 0; 1535 struct request *rq; 1536 1537 spin_lock(&nq->poll_lock); 1538 list_splice_init(&nq->poll_list, &list); 1539 list_for_each_entry(rq, &list, queuelist) 1540 blk_mq_set_request_complete(rq); 1541 spin_unlock(&nq->poll_lock); 1542 1543 while (!list_empty(&list)) { 1544 struct nullb_cmd *cmd; 1545 struct request *req; 1546 1547 req = list_first_entry(&list, struct request, queuelist); 1548 list_del_init(&req->queuelist); 1549 cmd = blk_mq_rq_to_pdu(req); 1550 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req), 1551 blk_rq_sectors(req)); 1552 if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error, 1553 blk_mq_end_request_batch)) 1554 blk_mq_end_request(req, cmd->error); 1555 nr++; 1556 } 1557 1558 return nr; 1559 } 1560 1561 static enum blk_eh_timer_return null_timeout_rq(struct request *rq) 1562 { 1563 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1564 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1565 1566 if (hctx->type == HCTX_TYPE_POLL) { 1567 struct nullb_queue *nq = hctx->driver_data; 1568 1569 spin_lock(&nq->poll_lock); 1570 /* The request may have completed meanwhile. */ 1571 if (blk_mq_request_completed(rq)) { 1572 spin_unlock(&nq->poll_lock); 1573 return BLK_EH_DONE; 1574 } 1575 list_del_init(&rq->queuelist); 1576 spin_unlock(&nq->poll_lock); 1577 } 1578 1579 pr_info("rq %p timed out\n", rq); 1580 1581 /* 1582 * If the device is marked as blocking (i.e. memory backed or zoned 1583 * device), the submission path may be blocked waiting for resources 1584 * and cause real timeouts. For these real timeouts, the submission 1585 * path will complete the request using blk_mq_complete_request(). 1586 * Only fake timeouts need to execute blk_mq_complete_request() here. 1587 */ 1588 cmd->error = BLK_STS_TIMEOUT; 1589 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL) 1590 blk_mq_complete_request(rq); 1591 return BLK_EH_DONE; 1592 } 1593 1594 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx, 1595 const struct blk_mq_queue_data *bd) 1596 { 1597 struct request *rq = bd->rq; 1598 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1599 struct nullb_queue *nq = hctx->driver_data; 1600 sector_t nr_sectors = blk_rq_sectors(rq); 1601 sector_t sector = blk_rq_pos(rq); 1602 const bool is_poll = hctx->type == HCTX_TYPE_POLL; 1603 1604 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1605 1606 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) { 1607 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1608 cmd->timer.function = null_cmd_timer_expired; 1609 } 1610 cmd->error = BLK_STS_OK; 1611 cmd->nq = nq; 1612 cmd->fake_timeout = should_timeout_request(rq) || 1613 blk_should_fake_timeout(rq->q); 1614 1615 if (should_requeue_request(rq)) { 1616 /* 1617 * Alternate between hitting the core BUSY path, and the 1618 * driver driven requeue path 1619 */ 1620 nq->requeue_selection++; 1621 if (nq->requeue_selection & 1) 1622 return BLK_STS_RESOURCE; 1623 blk_mq_requeue_request(rq, true); 1624 return BLK_STS_OK; 1625 } 1626 1627 if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) { 1628 blk_status_t sts = null_handle_throttled(cmd); 1629 1630 if (sts != BLK_STS_OK) 1631 return sts; 1632 } 1633 1634 blk_mq_start_request(rq); 1635 1636 if (is_poll) { 1637 spin_lock(&nq->poll_lock); 1638 list_add_tail(&rq->queuelist, &nq->poll_list); 1639 spin_unlock(&nq->poll_lock); 1640 return BLK_STS_OK; 1641 } 1642 if (cmd->fake_timeout) 1643 return BLK_STS_OK; 1644 1645 null_handle_cmd(cmd, sector, nr_sectors, req_op(rq)); 1646 return BLK_STS_OK; 1647 } 1648 1649 static void null_queue_rqs(struct rq_list *rqlist) 1650 { 1651 struct rq_list requeue_list = {}; 1652 struct blk_mq_queue_data bd = { }; 1653 blk_status_t ret; 1654 1655 do { 1656 struct request *rq = rq_list_pop(rqlist); 1657 1658 bd.rq = rq; 1659 ret = null_queue_rq(rq->mq_hctx, &bd); 1660 if (ret != BLK_STS_OK) 1661 rq_list_add_tail(&requeue_list, rq); 1662 } while (!rq_list_empty(rqlist)); 1663 1664 *rqlist = requeue_list; 1665 } 1666 1667 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq) 1668 { 1669 nq->dev = nullb->dev; 1670 INIT_LIST_HEAD(&nq->poll_list); 1671 spin_lock_init(&nq->poll_lock); 1672 } 1673 1674 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data, 1675 unsigned int hctx_idx) 1676 { 1677 struct nullb *nullb = hctx->queue->queuedata; 1678 struct nullb_queue *nq; 1679 1680 if (should_init_hctx_fail(nullb->dev)) 1681 return -EFAULT; 1682 1683 nq = &nullb->queues[hctx_idx]; 1684 hctx->driver_data = nq; 1685 null_init_queue(nullb, nq); 1686 1687 return 0; 1688 } 1689 1690 static const struct blk_mq_ops null_mq_ops = { 1691 .queue_rq = null_queue_rq, 1692 .queue_rqs = null_queue_rqs, 1693 .complete = null_complete_rq, 1694 .timeout = null_timeout_rq, 1695 .poll = null_poll, 1696 .map_queues = null_map_queues, 1697 .init_hctx = null_init_hctx, 1698 }; 1699 1700 static void null_del_dev(struct nullb *nullb) 1701 { 1702 struct nullb_device *dev; 1703 1704 if (!nullb) 1705 return; 1706 1707 dev = nullb->dev; 1708 1709 ida_free(&nullb_indexes, nullb->index); 1710 1711 list_del_init(&nullb->list); 1712 1713 del_gendisk(nullb->disk); 1714 1715 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) { 1716 hrtimer_cancel(&nullb->bw_timer); 1717 atomic_long_set(&nullb->cur_bytes, LONG_MAX); 1718 blk_mq_start_stopped_hw_queues(nullb->q, true); 1719 } 1720 1721 put_disk(nullb->disk); 1722 if (nullb->tag_set == &nullb->__tag_set) 1723 blk_mq_free_tag_set(nullb->tag_set); 1724 kfree(nullb->queues); 1725 if (null_cache_active(nullb)) 1726 null_free_device_storage(nullb->dev, true); 1727 kfree(nullb); 1728 dev->nullb = NULL; 1729 } 1730 1731 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim) 1732 { 1733 if (nullb->dev->discard == false) 1734 return; 1735 1736 if (!nullb->dev->memory_backed) { 1737 nullb->dev->discard = false; 1738 pr_info("discard option is ignored without memory backing\n"); 1739 return; 1740 } 1741 1742 if (nullb->dev->zoned) { 1743 nullb->dev->discard = false; 1744 pr_info("discard option is ignored in zoned mode\n"); 1745 return; 1746 } 1747 1748 lim->max_hw_discard_sectors = UINT_MAX >> 9; 1749 } 1750 1751 static const struct block_device_operations null_ops = { 1752 .owner = THIS_MODULE, 1753 .report_zones = null_report_zones, 1754 }; 1755 1756 static int setup_queues(struct nullb *nullb) 1757 { 1758 int nqueues = nr_cpu_ids; 1759 1760 if (g_poll_queues) 1761 nqueues += g_poll_queues; 1762 1763 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue), 1764 GFP_KERNEL); 1765 if (!nullb->queues) 1766 return -ENOMEM; 1767 1768 return 0; 1769 } 1770 1771 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues) 1772 { 1773 set->ops = &null_mq_ops; 1774 set->cmd_size = sizeof(struct nullb_cmd); 1775 set->timeout = 5 * HZ; 1776 set->nr_maps = 1; 1777 if (poll_queues) { 1778 set->nr_hw_queues += poll_queues; 1779 set->nr_maps += 2; 1780 } 1781 return blk_mq_alloc_tag_set(set); 1782 } 1783 1784 static int null_init_global_tag_set(void) 1785 { 1786 int error; 1787 1788 if (tag_set.ops) 1789 return 0; 1790 1791 tag_set.nr_hw_queues = g_submit_queues; 1792 tag_set.queue_depth = g_hw_queue_depth; 1793 tag_set.numa_node = g_home_node; 1794 if (g_no_sched) 1795 tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1796 if (g_shared_tag_bitmap) 1797 tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1798 if (g_blocking) 1799 tag_set.flags |= BLK_MQ_F_BLOCKING; 1800 1801 error = null_init_tag_set(&tag_set, g_poll_queues); 1802 if (error) 1803 tag_set.ops = NULL; 1804 return error; 1805 } 1806 1807 static int null_setup_tagset(struct nullb *nullb) 1808 { 1809 if (nullb->dev->shared_tags) { 1810 nullb->tag_set = &tag_set; 1811 return null_init_global_tag_set(); 1812 } 1813 1814 nullb->tag_set = &nullb->__tag_set; 1815 nullb->tag_set->driver_data = nullb; 1816 nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues; 1817 nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth; 1818 nullb->tag_set->numa_node = nullb->dev->home_node; 1819 if (nullb->dev->no_sched) 1820 nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1821 if (nullb->dev->shared_tag_bitmap) 1822 nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1823 if (nullb->dev->blocking) 1824 nullb->tag_set->flags |= BLK_MQ_F_BLOCKING; 1825 return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues); 1826 } 1827 1828 static int null_validate_conf(struct nullb_device *dev) 1829 { 1830 if (dev->queue_mode == NULL_Q_RQ) { 1831 pr_err("legacy IO path is no longer available\n"); 1832 return -EINVAL; 1833 } 1834 if (dev->queue_mode == NULL_Q_BIO) { 1835 pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n"); 1836 dev->queue_mode = NULL_Q_MQ; 1837 } 1838 1839 if (dev->use_per_node_hctx) { 1840 if (dev->submit_queues != nr_online_nodes) 1841 dev->submit_queues = nr_online_nodes; 1842 } else if (dev->submit_queues > nr_cpu_ids) 1843 dev->submit_queues = nr_cpu_ids; 1844 else if (dev->submit_queues == 0) 1845 dev->submit_queues = 1; 1846 dev->prev_submit_queues = dev->submit_queues; 1847 1848 if (dev->poll_queues > g_poll_queues) 1849 dev->poll_queues = g_poll_queues; 1850 dev->prev_poll_queues = dev->poll_queues; 1851 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER); 1852 1853 /* Do memory allocation, so set blocking */ 1854 if (dev->memory_backed) 1855 dev->blocking = true; 1856 else /* cache is meaningless */ 1857 dev->cache_size = 0; 1858 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024, 1859 dev->cache_size); 1860 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps); 1861 1862 if (dev->zoned && 1863 (!dev->zone_size || !is_power_of_2(dev->zone_size))) { 1864 pr_err("zone_size must be power-of-two\n"); 1865 return -EINVAL; 1866 } 1867 1868 return 0; 1869 } 1870 1871 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1872 static bool __null_setup_fault(struct fault_attr *attr, char *str) 1873 { 1874 if (!str[0]) 1875 return true; 1876 1877 if (!setup_fault_attr(attr, str)) 1878 return false; 1879 1880 attr->verbose = 0; 1881 return true; 1882 } 1883 #endif 1884 1885 static bool null_setup_fault(void) 1886 { 1887 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1888 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str)) 1889 return false; 1890 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str)) 1891 return false; 1892 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str)) 1893 return false; 1894 #endif 1895 return true; 1896 } 1897 1898 static int null_add_dev(struct nullb_device *dev) 1899 { 1900 struct queue_limits lim = { 1901 .logical_block_size = dev->blocksize, 1902 .physical_block_size = dev->blocksize, 1903 .max_hw_sectors = dev->max_sectors, 1904 }; 1905 1906 struct nullb *nullb; 1907 int rv; 1908 1909 rv = null_validate_conf(dev); 1910 if (rv) 1911 return rv; 1912 1913 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node); 1914 if (!nullb) { 1915 rv = -ENOMEM; 1916 goto out; 1917 } 1918 nullb->dev = dev; 1919 dev->nullb = nullb; 1920 1921 spin_lock_init(&nullb->lock); 1922 1923 rv = setup_queues(nullb); 1924 if (rv) 1925 goto out_free_nullb; 1926 1927 rv = null_setup_tagset(nullb); 1928 if (rv) 1929 goto out_cleanup_queues; 1930 1931 if (dev->virt_boundary) 1932 lim.virt_boundary_mask = PAGE_SIZE - 1; 1933 null_config_discard(nullb, &lim); 1934 if (dev->zoned) { 1935 rv = null_init_zoned_dev(dev, &lim); 1936 if (rv) 1937 goto out_cleanup_tags; 1938 } 1939 1940 if (dev->cache_size > 0) { 1941 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 1942 lim.features |= BLK_FEAT_WRITE_CACHE; 1943 if (dev->fua) 1944 lim.features |= BLK_FEAT_FUA; 1945 } 1946 1947 if (dev->rotational) 1948 lim.features |= BLK_FEAT_ROTATIONAL; 1949 1950 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb); 1951 if (IS_ERR(nullb->disk)) { 1952 rv = PTR_ERR(nullb->disk); 1953 goto out_cleanup_zone; 1954 } 1955 nullb->q = nullb->disk->queue; 1956 1957 if (dev->mbps) { 1958 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags); 1959 nullb_setup_bwtimer(nullb); 1960 } 1961 1962 nullb->q->queuedata = nullb; 1963 1964 rv = ida_alloc(&nullb_indexes, GFP_KERNEL); 1965 if (rv < 0) 1966 goto out_cleanup_disk; 1967 1968 nullb->index = rv; 1969 dev->index = rv; 1970 1971 if (config_item_name(&dev->group.cg_item)) { 1972 /* Use configfs dir name as the device name */ 1973 snprintf(nullb->disk_name, sizeof(nullb->disk_name), 1974 "%s", config_item_name(&dev->group.cg_item)); 1975 } else { 1976 sprintf(nullb->disk_name, "nullb%d", nullb->index); 1977 } 1978 1979 set_capacity(nullb->disk, 1980 ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT); 1981 nullb->disk->major = null_major; 1982 nullb->disk->first_minor = nullb->index; 1983 nullb->disk->minors = 1; 1984 nullb->disk->fops = &null_ops; 1985 nullb->disk->private_data = nullb; 1986 strscpy_pad(nullb->disk->disk_name, nullb->disk_name, DISK_NAME_LEN); 1987 1988 if (nullb->dev->zoned) { 1989 rv = null_register_zoned_dev(nullb); 1990 if (rv) 1991 goto out_ida_free; 1992 } 1993 1994 rv = add_disk(nullb->disk); 1995 if (rv) 1996 goto out_ida_free; 1997 1998 list_add_tail(&nullb->list, &nullb_list); 1999 2000 pr_info("disk %s created\n", nullb->disk_name); 2001 2002 return 0; 2003 2004 out_ida_free: 2005 ida_free(&nullb_indexes, nullb->index); 2006 out_cleanup_disk: 2007 put_disk(nullb->disk); 2008 out_cleanup_zone: 2009 null_free_zoned_dev(dev); 2010 out_cleanup_tags: 2011 if (nullb->tag_set == &nullb->__tag_set) 2012 blk_mq_free_tag_set(nullb->tag_set); 2013 out_cleanup_queues: 2014 kfree(nullb->queues); 2015 out_free_nullb: 2016 kfree(nullb); 2017 dev->nullb = NULL; 2018 out: 2019 return rv; 2020 } 2021 2022 static struct nullb *null_find_dev_by_name(const char *name) 2023 { 2024 struct nullb *nullb = NULL, *nb; 2025 2026 mutex_lock(&lock); 2027 list_for_each_entry(nb, &nullb_list, list) { 2028 if (strcmp(nb->disk_name, name) == 0) { 2029 nullb = nb; 2030 break; 2031 } 2032 } 2033 mutex_unlock(&lock); 2034 2035 return nullb; 2036 } 2037 2038 static int null_create_dev(void) 2039 { 2040 struct nullb_device *dev; 2041 int ret; 2042 2043 dev = null_alloc_dev(); 2044 if (!dev) 2045 return -ENOMEM; 2046 2047 mutex_lock(&lock); 2048 ret = null_add_dev(dev); 2049 mutex_unlock(&lock); 2050 if (ret) { 2051 null_free_dev(dev); 2052 return ret; 2053 } 2054 2055 return 0; 2056 } 2057 2058 static void null_destroy_dev(struct nullb *nullb) 2059 { 2060 struct nullb_device *dev = nullb->dev; 2061 2062 null_del_dev(nullb); 2063 null_free_device_storage(dev, false); 2064 null_free_dev(dev); 2065 } 2066 2067 static int __init null_init(void) 2068 { 2069 int ret = 0; 2070 unsigned int i; 2071 struct nullb *nullb; 2072 2073 if (g_bs > PAGE_SIZE) { 2074 pr_warn("invalid block size\n"); 2075 pr_warn("defaults block size to %lu\n", PAGE_SIZE); 2076 g_bs = PAGE_SIZE; 2077 } 2078 2079 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) { 2080 pr_err("invalid home_node value\n"); 2081 g_home_node = NUMA_NO_NODE; 2082 } 2083 2084 if (!null_setup_fault()) 2085 return -EINVAL; 2086 2087 if (g_queue_mode == NULL_Q_RQ) { 2088 pr_err("legacy IO path is no longer available\n"); 2089 return -EINVAL; 2090 } 2091 2092 if (g_use_per_node_hctx) { 2093 if (g_submit_queues != nr_online_nodes) { 2094 pr_warn("submit_queues param is set to %u.\n", 2095 nr_online_nodes); 2096 g_submit_queues = nr_online_nodes; 2097 } 2098 } else if (g_submit_queues > nr_cpu_ids) { 2099 g_submit_queues = nr_cpu_ids; 2100 } else if (g_submit_queues <= 0) { 2101 g_submit_queues = 1; 2102 } 2103 2104 config_group_init(&nullb_subsys.su_group); 2105 mutex_init(&nullb_subsys.su_mutex); 2106 2107 ret = configfs_register_subsystem(&nullb_subsys); 2108 if (ret) 2109 return ret; 2110 2111 mutex_init(&lock); 2112 2113 null_major = register_blkdev(0, "nullb"); 2114 if (null_major < 0) { 2115 ret = null_major; 2116 goto err_conf; 2117 } 2118 2119 for (i = 0; i < nr_devices; i++) { 2120 ret = null_create_dev(); 2121 if (ret) 2122 goto err_dev; 2123 } 2124 2125 pr_info("module loaded\n"); 2126 return 0; 2127 2128 err_dev: 2129 while (!list_empty(&nullb_list)) { 2130 nullb = list_entry(nullb_list.next, struct nullb, list); 2131 null_destroy_dev(nullb); 2132 } 2133 unregister_blkdev(null_major, "nullb"); 2134 err_conf: 2135 configfs_unregister_subsystem(&nullb_subsys); 2136 return ret; 2137 } 2138 2139 static void __exit null_exit(void) 2140 { 2141 struct nullb *nullb; 2142 2143 configfs_unregister_subsystem(&nullb_subsys); 2144 2145 unregister_blkdev(null_major, "nullb"); 2146 2147 mutex_lock(&lock); 2148 while (!list_empty(&nullb_list)) { 2149 nullb = list_entry(nullb_list.next, struct nullb, list); 2150 null_destroy_dev(nullb); 2151 } 2152 mutex_unlock(&lock); 2153 2154 if (tag_set.ops) 2155 blk_mq_free_tag_set(&tag_set); 2156 2157 mutex_destroy(&lock); 2158 } 2159 2160 module_init(null_init); 2161 module_exit(null_exit); 2162 2163 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>"); 2164 MODULE_DESCRIPTION("multi queue aware block test driver"); 2165 MODULE_LICENSE("GPL"); 2166