1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and 4 * Shaohua Li <shli@fb.com> 5 */ 6 #include <linux/module.h> 7 8 #include <linux/moduleparam.h> 9 #include <linux/sched.h> 10 #include <linux/fs.h> 11 #include <linux/init.h> 12 #include "null_blk.h" 13 14 #undef pr_fmt 15 #define pr_fmt(fmt) "null_blk: " fmt 16 17 #define FREE_BATCH 16 18 19 #define TICKS_PER_SEC 50ULL 20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC) 21 22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 23 static DECLARE_FAULT_ATTR(null_timeout_attr); 24 static DECLARE_FAULT_ATTR(null_requeue_attr); 25 static DECLARE_FAULT_ATTR(null_init_hctx_attr); 26 #endif 27 28 static inline u64 mb_per_tick(int mbps) 29 { 30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps); 31 } 32 33 /* 34 * Status flags for nullb_device. 35 * 36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure. 37 * UP: Device is currently on and visible in userspace. 38 * THROTTLED: Device is being throttled. 39 * CACHE: Device is using a write-back cache. 40 */ 41 enum nullb_device_flags { 42 NULLB_DEV_FL_CONFIGURED = 0, 43 NULLB_DEV_FL_UP = 1, 44 NULLB_DEV_FL_THROTTLED = 2, 45 NULLB_DEV_FL_CACHE = 3, 46 }; 47 48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2) 49 /* 50 * nullb_page is a page in memory for nullb devices. 51 * 52 * @page: The page holding the data. 53 * @bitmap: The bitmap represents which sector in the page has data. 54 * Each bit represents one block size. For example, sector 8 55 * will use the 7th bit 56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache 57 * page is being flushing to storage. FREE means the cache page is freed and 58 * should be skipped from flushing to storage. Please see 59 * null_make_cache_space 60 */ 61 struct nullb_page { 62 struct page *page; 63 DECLARE_BITMAP(bitmap, MAP_SZ); 64 }; 65 #define NULLB_PAGE_LOCK (MAP_SZ - 1) 66 #define NULLB_PAGE_FREE (MAP_SZ - 2) 67 68 static LIST_HEAD(nullb_list); 69 static struct mutex lock; 70 static int null_major; 71 static DEFINE_IDA(nullb_indexes); 72 static struct blk_mq_tag_set tag_set; 73 74 enum { 75 NULL_IRQ_NONE = 0, 76 NULL_IRQ_SOFTIRQ = 1, 77 NULL_IRQ_TIMER = 2, 78 }; 79 80 static bool g_virt_boundary = false; 81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444); 82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False"); 83 84 static int g_no_sched; 85 module_param_named(no_sched, g_no_sched, int, 0444); 86 MODULE_PARM_DESC(no_sched, "No io scheduler"); 87 88 static int g_submit_queues = 1; 89 module_param_named(submit_queues, g_submit_queues, int, 0444); 90 MODULE_PARM_DESC(submit_queues, "Number of submission queues"); 91 92 static int g_poll_queues = 1; 93 module_param_named(poll_queues, g_poll_queues, int, 0444); 94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues"); 95 96 static int g_home_node = NUMA_NO_NODE; 97 module_param_named(home_node, g_home_node, int, 0444); 98 MODULE_PARM_DESC(home_node, "Home node for the device"); 99 100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 101 /* 102 * For more details about fault injection, please refer to 103 * Documentation/fault-injection/fault-injection.rst. 104 */ 105 static char g_timeout_str[80]; 106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444); 107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>"); 108 109 static char g_requeue_str[80]; 110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444); 111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>"); 112 113 static char g_init_hctx_str[80]; 114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444); 115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>"); 116 #endif 117 118 /* 119 * Historic queue modes. 120 * 121 * These days nothing but NULL_Q_MQ is actually supported, but we keep it the 122 * enum for error reporting. 123 */ 124 enum { 125 NULL_Q_BIO = 0, 126 NULL_Q_RQ = 1, 127 NULL_Q_MQ = 2, 128 }; 129 130 static int g_queue_mode = NULL_Q_MQ; 131 132 static int null_param_store_val(const char *str, int *val, int min, int max) 133 { 134 int ret, new_val; 135 136 ret = kstrtoint(str, 10, &new_val); 137 if (ret) 138 return -EINVAL; 139 140 if (new_val < min || new_val > max) 141 return -EINVAL; 142 143 *val = new_val; 144 return 0; 145 } 146 147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp) 148 { 149 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ); 150 } 151 152 static const struct kernel_param_ops null_queue_mode_param_ops = { 153 .set = null_set_queue_mode, 154 .get = param_get_int, 155 }; 156 157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444); 158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)"); 159 160 static int g_gb = 250; 161 module_param_named(gb, g_gb, int, 0444); 162 MODULE_PARM_DESC(gb, "Size in GB"); 163 164 static int g_bs = 512; 165 module_param_named(bs, g_bs, int, 0444); 166 MODULE_PARM_DESC(bs, "Block size (in bytes)"); 167 168 static int g_max_sectors; 169 module_param_named(max_sectors, g_max_sectors, int, 0444); 170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)"); 171 172 static unsigned int nr_devices = 1; 173 module_param(nr_devices, uint, 0444); 174 MODULE_PARM_DESC(nr_devices, "Number of devices to register"); 175 176 static bool g_blocking; 177 module_param_named(blocking, g_blocking, bool, 0444); 178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device"); 179 180 static bool g_shared_tags; 181 module_param_named(shared_tags, g_shared_tags, bool, 0444); 182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq"); 183 184 static bool g_shared_tag_bitmap; 185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444); 186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq"); 187 188 static int g_irqmode = NULL_IRQ_SOFTIRQ; 189 190 static int null_set_irqmode(const char *str, const struct kernel_param *kp) 191 { 192 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE, 193 NULL_IRQ_TIMER); 194 } 195 196 static const struct kernel_param_ops null_irqmode_param_ops = { 197 .set = null_set_irqmode, 198 .get = param_get_int, 199 }; 200 201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444); 202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer"); 203 204 static unsigned long g_completion_nsec = 10000; 205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444); 206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns"); 207 208 static int g_hw_queue_depth = 64; 209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444); 210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64"); 211 212 static bool g_use_per_node_hctx; 213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444); 214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false"); 215 216 static bool g_memory_backed; 217 module_param_named(memory_backed, g_memory_backed, bool, 0444); 218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false"); 219 220 static bool g_discard; 221 module_param_named(discard, g_discard, bool, 0444); 222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false"); 223 224 static unsigned long g_cache_size; 225 module_param_named(cache_size, g_cache_size, ulong, 0444); 226 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)"); 227 228 static unsigned int g_mbps; 229 module_param_named(mbps, g_mbps, uint, 0444); 230 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)"); 231 232 static bool g_zoned; 233 module_param_named(zoned, g_zoned, bool, S_IRUGO); 234 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false"); 235 236 static unsigned long g_zone_size = 256; 237 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO); 238 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256"); 239 240 static unsigned long g_zone_capacity; 241 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444); 242 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size"); 243 244 static unsigned int g_zone_nr_conv; 245 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444); 246 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0"); 247 248 static unsigned int g_zone_max_open; 249 module_param_named(zone_max_open, g_zone_max_open, uint, 0444); 250 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)"); 251 252 static unsigned int g_zone_max_active; 253 module_param_named(zone_max_active, g_zone_max_active, uint, 0444); 254 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)"); 255 256 static struct nullb_device *null_alloc_dev(void); 257 static void null_free_dev(struct nullb_device *dev); 258 static void null_del_dev(struct nullb *nullb); 259 static int null_add_dev(struct nullb_device *dev); 260 static struct nullb *null_find_dev_by_name(const char *name); 261 static void null_free_device_storage(struct nullb_device *dev, bool is_cache); 262 263 static inline struct nullb_device *to_nullb_device(struct config_item *item) 264 { 265 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL; 266 } 267 268 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page) 269 { 270 return snprintf(page, PAGE_SIZE, "%u\n", val); 271 } 272 273 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val, 274 char *page) 275 { 276 return snprintf(page, PAGE_SIZE, "%lu\n", val); 277 } 278 279 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page) 280 { 281 return snprintf(page, PAGE_SIZE, "%u\n", val); 282 } 283 284 static ssize_t nullb_device_uint_attr_store(unsigned int *val, 285 const char *page, size_t count) 286 { 287 unsigned int tmp; 288 int result; 289 290 result = kstrtouint(page, 0, &tmp); 291 if (result < 0) 292 return result; 293 294 *val = tmp; 295 return count; 296 } 297 298 static ssize_t nullb_device_ulong_attr_store(unsigned long *val, 299 const char *page, size_t count) 300 { 301 int result; 302 unsigned long tmp; 303 304 result = kstrtoul(page, 0, &tmp); 305 if (result < 0) 306 return result; 307 308 *val = tmp; 309 return count; 310 } 311 312 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page, 313 size_t count) 314 { 315 bool tmp; 316 int result; 317 318 result = kstrtobool(page, &tmp); 319 if (result < 0) 320 return result; 321 322 *val = tmp; 323 return count; 324 } 325 326 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */ 327 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \ 328 static ssize_t \ 329 nullb_device_##NAME##_show(struct config_item *item, char *page) \ 330 { \ 331 return nullb_device_##TYPE##_attr_show( \ 332 to_nullb_device(item)->NAME, page); \ 333 } \ 334 static ssize_t \ 335 nullb_device_##NAME##_store(struct config_item *item, const char *page, \ 336 size_t count) \ 337 { \ 338 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\ 339 struct nullb_device *dev = to_nullb_device(item); \ 340 TYPE new_value = 0; \ 341 int ret; \ 342 \ 343 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\ 344 if (ret < 0) \ 345 return ret; \ 346 if (apply_fn) \ 347 ret = apply_fn(dev, new_value); \ 348 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \ 349 ret = -EBUSY; \ 350 if (ret < 0) \ 351 return ret; \ 352 dev->NAME = new_value; \ 353 return count; \ 354 } \ 355 CONFIGFS_ATTR(nullb_device_, NAME); 356 357 static int nullb_update_nr_hw_queues(struct nullb_device *dev, 358 unsigned int submit_queues, 359 unsigned int poll_queues) 360 361 { 362 struct blk_mq_tag_set *set; 363 int ret, nr_hw_queues; 364 365 if (!dev->nullb) 366 return 0; 367 368 /* 369 * Make sure at least one submit queue exists. 370 */ 371 if (!submit_queues) 372 return -EINVAL; 373 374 /* 375 * Make sure that null_init_hctx() does not access nullb->queues[] past 376 * the end of that array. 377 */ 378 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues) 379 return -EINVAL; 380 381 /* 382 * Keep previous and new queue numbers in nullb_device for reference in 383 * the call back function null_map_queues(). 384 */ 385 dev->prev_submit_queues = dev->submit_queues; 386 dev->prev_poll_queues = dev->poll_queues; 387 dev->submit_queues = submit_queues; 388 dev->poll_queues = poll_queues; 389 390 set = dev->nullb->tag_set; 391 nr_hw_queues = submit_queues + poll_queues; 392 blk_mq_update_nr_hw_queues(set, nr_hw_queues); 393 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM; 394 395 if (ret) { 396 /* on error, revert the queue numbers */ 397 dev->submit_queues = dev->prev_submit_queues; 398 dev->poll_queues = dev->prev_poll_queues; 399 } 400 401 return ret; 402 } 403 404 static int nullb_apply_submit_queues(struct nullb_device *dev, 405 unsigned int submit_queues) 406 { 407 return nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues); 408 } 409 410 static int nullb_apply_poll_queues(struct nullb_device *dev, 411 unsigned int poll_queues) 412 { 413 return nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues); 414 } 415 416 NULLB_DEVICE_ATTR(size, ulong, NULL); 417 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL); 418 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues); 419 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues); 420 NULLB_DEVICE_ATTR(home_node, uint, NULL); 421 NULLB_DEVICE_ATTR(queue_mode, uint, NULL); 422 NULLB_DEVICE_ATTR(blocksize, uint, NULL); 423 NULLB_DEVICE_ATTR(max_sectors, uint, NULL); 424 NULLB_DEVICE_ATTR(irqmode, uint, NULL); 425 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL); 426 NULLB_DEVICE_ATTR(index, uint, NULL); 427 NULLB_DEVICE_ATTR(blocking, bool, NULL); 428 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL); 429 NULLB_DEVICE_ATTR(memory_backed, bool, NULL); 430 NULLB_DEVICE_ATTR(discard, bool, NULL); 431 NULLB_DEVICE_ATTR(mbps, uint, NULL); 432 NULLB_DEVICE_ATTR(cache_size, ulong, NULL); 433 NULLB_DEVICE_ATTR(zoned, bool, NULL); 434 NULLB_DEVICE_ATTR(zone_size, ulong, NULL); 435 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL); 436 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL); 437 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL); 438 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL); 439 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL); 440 NULLB_DEVICE_ATTR(no_sched, bool, NULL); 441 NULLB_DEVICE_ATTR(shared_tags, bool, NULL); 442 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL); 443 444 static ssize_t nullb_device_power_show(struct config_item *item, char *page) 445 { 446 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page); 447 } 448 449 static ssize_t nullb_device_power_store(struct config_item *item, 450 const char *page, size_t count) 451 { 452 struct nullb_device *dev = to_nullb_device(item); 453 bool newp = false; 454 ssize_t ret; 455 456 ret = nullb_device_bool_attr_store(&newp, page, count); 457 if (ret < 0) 458 return ret; 459 460 if (!dev->power && newp) { 461 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags)) 462 return count; 463 ret = null_add_dev(dev); 464 if (ret) { 465 clear_bit(NULLB_DEV_FL_UP, &dev->flags); 466 return ret; 467 } 468 469 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 470 dev->power = newp; 471 } else if (dev->power && !newp) { 472 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 473 mutex_lock(&lock); 474 dev->power = newp; 475 null_del_dev(dev->nullb); 476 mutex_unlock(&lock); 477 } 478 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 479 } 480 481 return count; 482 } 483 484 CONFIGFS_ATTR(nullb_device_, power); 485 486 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page) 487 { 488 struct nullb_device *t_dev = to_nullb_device(item); 489 490 return badblocks_show(&t_dev->badblocks, page, 0); 491 } 492 493 static ssize_t nullb_device_badblocks_store(struct config_item *item, 494 const char *page, size_t count) 495 { 496 struct nullb_device *t_dev = to_nullb_device(item); 497 char *orig, *buf, *tmp; 498 u64 start, end; 499 int ret; 500 501 orig = kstrndup(page, count, GFP_KERNEL); 502 if (!orig) 503 return -ENOMEM; 504 505 buf = strstrip(orig); 506 507 ret = -EINVAL; 508 if (buf[0] != '+' && buf[0] != '-') 509 goto out; 510 tmp = strchr(&buf[1], '-'); 511 if (!tmp) 512 goto out; 513 *tmp = '\0'; 514 ret = kstrtoull(buf + 1, 0, &start); 515 if (ret) 516 goto out; 517 ret = kstrtoull(tmp + 1, 0, &end); 518 if (ret) 519 goto out; 520 ret = -EINVAL; 521 if (start > end) 522 goto out; 523 /* enable badblocks */ 524 cmpxchg(&t_dev->badblocks.shift, -1, 0); 525 if (buf[0] == '+') 526 ret = badblocks_set(&t_dev->badblocks, start, 527 end - start + 1, 1); 528 else 529 ret = badblocks_clear(&t_dev->badblocks, start, 530 end - start + 1); 531 if (ret == 0) 532 ret = count; 533 out: 534 kfree(orig); 535 return ret; 536 } 537 CONFIGFS_ATTR(nullb_device_, badblocks); 538 539 static ssize_t nullb_device_zone_readonly_store(struct config_item *item, 540 const char *page, size_t count) 541 { 542 struct nullb_device *dev = to_nullb_device(item); 543 544 return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY); 545 } 546 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly); 547 548 static ssize_t nullb_device_zone_offline_store(struct config_item *item, 549 const char *page, size_t count) 550 { 551 struct nullb_device *dev = to_nullb_device(item); 552 553 return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE); 554 } 555 CONFIGFS_ATTR_WO(nullb_device_, zone_offline); 556 557 static struct configfs_attribute *nullb_device_attrs[] = { 558 &nullb_device_attr_size, 559 &nullb_device_attr_completion_nsec, 560 &nullb_device_attr_submit_queues, 561 &nullb_device_attr_poll_queues, 562 &nullb_device_attr_home_node, 563 &nullb_device_attr_queue_mode, 564 &nullb_device_attr_blocksize, 565 &nullb_device_attr_max_sectors, 566 &nullb_device_attr_irqmode, 567 &nullb_device_attr_hw_queue_depth, 568 &nullb_device_attr_index, 569 &nullb_device_attr_blocking, 570 &nullb_device_attr_use_per_node_hctx, 571 &nullb_device_attr_power, 572 &nullb_device_attr_memory_backed, 573 &nullb_device_attr_discard, 574 &nullb_device_attr_mbps, 575 &nullb_device_attr_cache_size, 576 &nullb_device_attr_badblocks, 577 &nullb_device_attr_zoned, 578 &nullb_device_attr_zone_size, 579 &nullb_device_attr_zone_capacity, 580 &nullb_device_attr_zone_nr_conv, 581 &nullb_device_attr_zone_max_open, 582 &nullb_device_attr_zone_max_active, 583 &nullb_device_attr_zone_readonly, 584 &nullb_device_attr_zone_offline, 585 &nullb_device_attr_virt_boundary, 586 &nullb_device_attr_no_sched, 587 &nullb_device_attr_shared_tags, 588 &nullb_device_attr_shared_tag_bitmap, 589 NULL, 590 }; 591 592 static void nullb_device_release(struct config_item *item) 593 { 594 struct nullb_device *dev = to_nullb_device(item); 595 596 null_free_device_storage(dev, false); 597 null_free_dev(dev); 598 } 599 600 static struct configfs_item_operations nullb_device_ops = { 601 .release = nullb_device_release, 602 }; 603 604 static const struct config_item_type nullb_device_type = { 605 .ct_item_ops = &nullb_device_ops, 606 .ct_attrs = nullb_device_attrs, 607 .ct_owner = THIS_MODULE, 608 }; 609 610 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 611 612 static void nullb_add_fault_config(struct nullb_device *dev) 613 { 614 fault_config_init(&dev->timeout_config, "timeout_inject"); 615 fault_config_init(&dev->requeue_config, "requeue_inject"); 616 fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject"); 617 618 configfs_add_default_group(&dev->timeout_config.group, &dev->group); 619 configfs_add_default_group(&dev->requeue_config.group, &dev->group); 620 configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group); 621 } 622 623 #else 624 625 static void nullb_add_fault_config(struct nullb_device *dev) 626 { 627 } 628 629 #endif 630 631 static struct 632 config_group *nullb_group_make_group(struct config_group *group, const char *name) 633 { 634 struct nullb_device *dev; 635 636 if (null_find_dev_by_name(name)) 637 return ERR_PTR(-EEXIST); 638 639 dev = null_alloc_dev(); 640 if (!dev) 641 return ERR_PTR(-ENOMEM); 642 643 config_group_init_type_name(&dev->group, name, &nullb_device_type); 644 nullb_add_fault_config(dev); 645 646 return &dev->group; 647 } 648 649 static void 650 nullb_group_drop_item(struct config_group *group, struct config_item *item) 651 { 652 struct nullb_device *dev = to_nullb_device(item); 653 654 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 655 mutex_lock(&lock); 656 dev->power = false; 657 null_del_dev(dev->nullb); 658 mutex_unlock(&lock); 659 } 660 661 config_item_put(item); 662 } 663 664 static ssize_t memb_group_features_show(struct config_item *item, char *page) 665 { 666 return snprintf(page, PAGE_SIZE, 667 "badblocks,blocking,blocksize,cache_size," 668 "completion_nsec,discard,home_node,hw_queue_depth," 669 "irqmode,max_sectors,mbps,memory_backed,no_sched," 670 "poll_queues,power,queue_mode,shared_tag_bitmap," 671 "shared_tags,size,submit_queues,use_per_node_hctx," 672 "virt_boundary,zoned,zone_capacity,zone_max_active," 673 "zone_max_open,zone_nr_conv,zone_offline,zone_readonly," 674 "zone_size\n"); 675 } 676 677 CONFIGFS_ATTR_RO(memb_group_, features); 678 679 static struct configfs_attribute *nullb_group_attrs[] = { 680 &memb_group_attr_features, 681 NULL, 682 }; 683 684 static struct configfs_group_operations nullb_group_ops = { 685 .make_group = nullb_group_make_group, 686 .drop_item = nullb_group_drop_item, 687 }; 688 689 static const struct config_item_type nullb_group_type = { 690 .ct_group_ops = &nullb_group_ops, 691 .ct_attrs = nullb_group_attrs, 692 .ct_owner = THIS_MODULE, 693 }; 694 695 static struct configfs_subsystem nullb_subsys = { 696 .su_group = { 697 .cg_item = { 698 .ci_namebuf = "nullb", 699 .ci_type = &nullb_group_type, 700 }, 701 }, 702 }; 703 704 static inline int null_cache_active(struct nullb *nullb) 705 { 706 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 707 } 708 709 static struct nullb_device *null_alloc_dev(void) 710 { 711 struct nullb_device *dev; 712 713 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 714 if (!dev) 715 return NULL; 716 717 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 718 dev->timeout_config.attr = null_timeout_attr; 719 dev->requeue_config.attr = null_requeue_attr; 720 dev->init_hctx_fault_config.attr = null_init_hctx_attr; 721 #endif 722 723 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC); 724 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC); 725 if (badblocks_init(&dev->badblocks, 0)) { 726 kfree(dev); 727 return NULL; 728 } 729 730 dev->size = g_gb * 1024; 731 dev->completion_nsec = g_completion_nsec; 732 dev->submit_queues = g_submit_queues; 733 dev->prev_submit_queues = g_submit_queues; 734 dev->poll_queues = g_poll_queues; 735 dev->prev_poll_queues = g_poll_queues; 736 dev->home_node = g_home_node; 737 dev->queue_mode = g_queue_mode; 738 dev->blocksize = g_bs; 739 dev->max_sectors = g_max_sectors; 740 dev->irqmode = g_irqmode; 741 dev->hw_queue_depth = g_hw_queue_depth; 742 dev->blocking = g_blocking; 743 dev->memory_backed = g_memory_backed; 744 dev->discard = g_discard; 745 dev->cache_size = g_cache_size; 746 dev->mbps = g_mbps; 747 dev->use_per_node_hctx = g_use_per_node_hctx; 748 dev->zoned = g_zoned; 749 dev->zone_size = g_zone_size; 750 dev->zone_capacity = g_zone_capacity; 751 dev->zone_nr_conv = g_zone_nr_conv; 752 dev->zone_max_open = g_zone_max_open; 753 dev->zone_max_active = g_zone_max_active; 754 dev->virt_boundary = g_virt_boundary; 755 dev->no_sched = g_no_sched; 756 dev->shared_tags = g_shared_tags; 757 dev->shared_tag_bitmap = g_shared_tag_bitmap; 758 return dev; 759 } 760 761 static void null_free_dev(struct nullb_device *dev) 762 { 763 if (!dev) 764 return; 765 766 null_free_zoned_dev(dev); 767 badblocks_exit(&dev->badblocks); 768 kfree(dev); 769 } 770 771 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer) 772 { 773 struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer); 774 775 blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error); 776 return HRTIMER_NORESTART; 777 } 778 779 static void null_cmd_end_timer(struct nullb_cmd *cmd) 780 { 781 ktime_t kt = cmd->nq->dev->completion_nsec; 782 783 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL); 784 } 785 786 static void null_complete_rq(struct request *rq) 787 { 788 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 789 790 blk_mq_end_request(rq, cmd->error); 791 } 792 793 static struct nullb_page *null_alloc_page(void) 794 { 795 struct nullb_page *t_page; 796 797 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO); 798 if (!t_page) 799 return NULL; 800 801 t_page->page = alloc_pages(GFP_NOIO, 0); 802 if (!t_page->page) { 803 kfree(t_page); 804 return NULL; 805 } 806 807 memset(t_page->bitmap, 0, sizeof(t_page->bitmap)); 808 return t_page; 809 } 810 811 static void null_free_page(struct nullb_page *t_page) 812 { 813 __set_bit(NULLB_PAGE_FREE, t_page->bitmap); 814 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap)) 815 return; 816 __free_page(t_page->page); 817 kfree(t_page); 818 } 819 820 static bool null_page_empty(struct nullb_page *page) 821 { 822 int size = MAP_SZ - 2; 823 824 return find_first_bit(page->bitmap, size) == size; 825 } 826 827 static void null_free_sector(struct nullb *nullb, sector_t sector, 828 bool is_cache) 829 { 830 unsigned int sector_bit; 831 u64 idx; 832 struct nullb_page *t_page, *ret; 833 struct radix_tree_root *root; 834 835 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 836 idx = sector >> PAGE_SECTORS_SHIFT; 837 sector_bit = (sector & SECTOR_MASK); 838 839 t_page = radix_tree_lookup(root, idx); 840 if (t_page) { 841 __clear_bit(sector_bit, t_page->bitmap); 842 843 if (null_page_empty(t_page)) { 844 ret = radix_tree_delete_item(root, idx, t_page); 845 WARN_ON(ret != t_page); 846 null_free_page(ret); 847 if (is_cache) 848 nullb->dev->curr_cache -= PAGE_SIZE; 849 } 850 } 851 } 852 853 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx, 854 struct nullb_page *t_page, bool is_cache) 855 { 856 struct radix_tree_root *root; 857 858 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 859 860 if (radix_tree_insert(root, idx, t_page)) { 861 null_free_page(t_page); 862 t_page = radix_tree_lookup(root, idx); 863 WARN_ON(!t_page || t_page->page->index != idx); 864 } else if (is_cache) 865 nullb->dev->curr_cache += PAGE_SIZE; 866 867 return t_page; 868 } 869 870 static void null_free_device_storage(struct nullb_device *dev, bool is_cache) 871 { 872 unsigned long pos = 0; 873 int nr_pages; 874 struct nullb_page *ret, *t_pages[FREE_BATCH]; 875 struct radix_tree_root *root; 876 877 root = is_cache ? &dev->cache : &dev->data; 878 879 do { 880 int i; 881 882 nr_pages = radix_tree_gang_lookup(root, 883 (void **)t_pages, pos, FREE_BATCH); 884 885 for (i = 0; i < nr_pages; i++) { 886 pos = t_pages[i]->page->index; 887 ret = radix_tree_delete_item(root, pos, t_pages[i]); 888 WARN_ON(ret != t_pages[i]); 889 null_free_page(ret); 890 } 891 892 pos++; 893 } while (nr_pages == FREE_BATCH); 894 895 if (is_cache) 896 dev->curr_cache = 0; 897 } 898 899 static struct nullb_page *__null_lookup_page(struct nullb *nullb, 900 sector_t sector, bool for_write, bool is_cache) 901 { 902 unsigned int sector_bit; 903 u64 idx; 904 struct nullb_page *t_page; 905 struct radix_tree_root *root; 906 907 idx = sector >> PAGE_SECTORS_SHIFT; 908 sector_bit = (sector & SECTOR_MASK); 909 910 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 911 t_page = radix_tree_lookup(root, idx); 912 WARN_ON(t_page && t_page->page->index != idx); 913 914 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap))) 915 return t_page; 916 917 return NULL; 918 } 919 920 static struct nullb_page *null_lookup_page(struct nullb *nullb, 921 sector_t sector, bool for_write, bool ignore_cache) 922 { 923 struct nullb_page *page = NULL; 924 925 if (!ignore_cache) 926 page = __null_lookup_page(nullb, sector, for_write, true); 927 if (page) 928 return page; 929 return __null_lookup_page(nullb, sector, for_write, false); 930 } 931 932 static struct nullb_page *null_insert_page(struct nullb *nullb, 933 sector_t sector, bool ignore_cache) 934 __releases(&nullb->lock) 935 __acquires(&nullb->lock) 936 { 937 u64 idx; 938 struct nullb_page *t_page; 939 940 t_page = null_lookup_page(nullb, sector, true, ignore_cache); 941 if (t_page) 942 return t_page; 943 944 spin_unlock_irq(&nullb->lock); 945 946 t_page = null_alloc_page(); 947 if (!t_page) 948 goto out_lock; 949 950 if (radix_tree_preload(GFP_NOIO)) 951 goto out_freepage; 952 953 spin_lock_irq(&nullb->lock); 954 idx = sector >> PAGE_SECTORS_SHIFT; 955 t_page->page->index = idx; 956 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache); 957 radix_tree_preload_end(); 958 959 return t_page; 960 out_freepage: 961 null_free_page(t_page); 962 out_lock: 963 spin_lock_irq(&nullb->lock); 964 return null_lookup_page(nullb, sector, true, ignore_cache); 965 } 966 967 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page) 968 { 969 int i; 970 unsigned int offset; 971 u64 idx; 972 struct nullb_page *t_page, *ret; 973 void *dst, *src; 974 975 idx = c_page->page->index; 976 977 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true); 978 979 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap); 980 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) { 981 null_free_page(c_page); 982 if (t_page && null_page_empty(t_page)) { 983 ret = radix_tree_delete_item(&nullb->dev->data, 984 idx, t_page); 985 null_free_page(t_page); 986 } 987 return 0; 988 } 989 990 if (!t_page) 991 return -ENOMEM; 992 993 src = kmap_local_page(c_page->page); 994 dst = kmap_local_page(t_page->page); 995 996 for (i = 0; i < PAGE_SECTORS; 997 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) { 998 if (test_bit(i, c_page->bitmap)) { 999 offset = (i << SECTOR_SHIFT); 1000 memcpy(dst + offset, src + offset, 1001 nullb->dev->blocksize); 1002 __set_bit(i, t_page->bitmap); 1003 } 1004 } 1005 1006 kunmap_local(dst); 1007 kunmap_local(src); 1008 1009 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page); 1010 null_free_page(ret); 1011 nullb->dev->curr_cache -= PAGE_SIZE; 1012 1013 return 0; 1014 } 1015 1016 static int null_make_cache_space(struct nullb *nullb, unsigned long n) 1017 { 1018 int i, err, nr_pages; 1019 struct nullb_page *c_pages[FREE_BATCH]; 1020 unsigned long flushed = 0, one_round; 1021 1022 again: 1023 if ((nullb->dev->cache_size * 1024 * 1024) > 1024 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0) 1025 return 0; 1026 1027 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache, 1028 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH); 1029 /* 1030 * nullb_flush_cache_page could unlock before using the c_pages. To 1031 * avoid race, we don't allow page free 1032 */ 1033 for (i = 0; i < nr_pages; i++) { 1034 nullb->cache_flush_pos = c_pages[i]->page->index; 1035 /* 1036 * We found the page which is being flushed to disk by other 1037 * threads 1038 */ 1039 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap)) 1040 c_pages[i] = NULL; 1041 else 1042 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap); 1043 } 1044 1045 one_round = 0; 1046 for (i = 0; i < nr_pages; i++) { 1047 if (c_pages[i] == NULL) 1048 continue; 1049 err = null_flush_cache_page(nullb, c_pages[i]); 1050 if (err) 1051 return err; 1052 one_round++; 1053 } 1054 flushed += one_round << PAGE_SHIFT; 1055 1056 if (n > flushed) { 1057 if (nr_pages == 0) 1058 nullb->cache_flush_pos = 0; 1059 if (one_round == 0) { 1060 /* give other threads a chance */ 1061 spin_unlock_irq(&nullb->lock); 1062 spin_lock_irq(&nullb->lock); 1063 } 1064 goto again; 1065 } 1066 return 0; 1067 } 1068 1069 static int copy_to_nullb(struct nullb *nullb, struct page *source, 1070 unsigned int off, sector_t sector, size_t n, bool is_fua) 1071 { 1072 size_t temp, count = 0; 1073 unsigned int offset; 1074 struct nullb_page *t_page; 1075 1076 while (count < n) { 1077 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1078 1079 if (null_cache_active(nullb) && !is_fua) 1080 null_make_cache_space(nullb, PAGE_SIZE); 1081 1082 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1083 t_page = null_insert_page(nullb, sector, 1084 !null_cache_active(nullb) || is_fua); 1085 if (!t_page) 1086 return -ENOSPC; 1087 1088 memcpy_page(t_page->page, offset, source, off + count, temp); 1089 1090 __set_bit(sector & SECTOR_MASK, t_page->bitmap); 1091 1092 if (is_fua) 1093 null_free_sector(nullb, sector, true); 1094 1095 count += temp; 1096 sector += temp >> SECTOR_SHIFT; 1097 } 1098 return 0; 1099 } 1100 1101 static int copy_from_nullb(struct nullb *nullb, struct page *dest, 1102 unsigned int off, sector_t sector, size_t n) 1103 { 1104 size_t temp, count = 0; 1105 unsigned int offset; 1106 struct nullb_page *t_page; 1107 1108 while (count < n) { 1109 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1110 1111 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1112 t_page = null_lookup_page(nullb, sector, false, 1113 !null_cache_active(nullb)); 1114 1115 if (t_page) 1116 memcpy_page(dest, off + count, t_page->page, offset, 1117 temp); 1118 else 1119 zero_user(dest, off + count, temp); 1120 1121 count += temp; 1122 sector += temp >> SECTOR_SHIFT; 1123 } 1124 return 0; 1125 } 1126 1127 static void nullb_fill_pattern(struct nullb *nullb, struct page *page, 1128 unsigned int len, unsigned int off) 1129 { 1130 memset_page(page, off, 0xff, len); 1131 } 1132 1133 blk_status_t null_handle_discard(struct nullb_device *dev, 1134 sector_t sector, sector_t nr_sectors) 1135 { 1136 struct nullb *nullb = dev->nullb; 1137 size_t n = nr_sectors << SECTOR_SHIFT; 1138 size_t temp; 1139 1140 spin_lock_irq(&nullb->lock); 1141 while (n > 0) { 1142 temp = min_t(size_t, n, dev->blocksize); 1143 null_free_sector(nullb, sector, false); 1144 if (null_cache_active(nullb)) 1145 null_free_sector(nullb, sector, true); 1146 sector += temp >> SECTOR_SHIFT; 1147 n -= temp; 1148 } 1149 spin_unlock_irq(&nullb->lock); 1150 1151 return BLK_STS_OK; 1152 } 1153 1154 static int null_handle_flush(struct nullb *nullb) 1155 { 1156 int err; 1157 1158 if (!null_cache_active(nullb)) 1159 return 0; 1160 1161 spin_lock_irq(&nullb->lock); 1162 while (true) { 1163 err = null_make_cache_space(nullb, 1164 nullb->dev->cache_size * 1024 * 1024); 1165 if (err || nullb->dev->curr_cache == 0) 1166 break; 1167 } 1168 1169 WARN_ON(!radix_tree_empty(&nullb->dev->cache)); 1170 spin_unlock_irq(&nullb->lock); 1171 return err; 1172 } 1173 1174 static int null_transfer(struct nullb *nullb, struct page *page, 1175 unsigned int len, unsigned int off, bool is_write, sector_t sector, 1176 bool is_fua) 1177 { 1178 struct nullb_device *dev = nullb->dev; 1179 unsigned int valid_len = len; 1180 int err = 0; 1181 1182 if (!is_write) { 1183 if (dev->zoned) 1184 valid_len = null_zone_valid_read_len(nullb, 1185 sector, len); 1186 1187 if (valid_len) { 1188 err = copy_from_nullb(nullb, page, off, 1189 sector, valid_len); 1190 off += valid_len; 1191 len -= valid_len; 1192 } 1193 1194 if (len) 1195 nullb_fill_pattern(nullb, page, len, off); 1196 flush_dcache_page(page); 1197 } else { 1198 flush_dcache_page(page); 1199 err = copy_to_nullb(nullb, page, off, sector, len, is_fua); 1200 } 1201 1202 return err; 1203 } 1204 1205 static int null_handle_rq(struct nullb_cmd *cmd) 1206 { 1207 struct request *rq = blk_mq_rq_from_pdu(cmd); 1208 struct nullb *nullb = cmd->nq->dev->nullb; 1209 int err; 1210 unsigned int len; 1211 sector_t sector = blk_rq_pos(rq); 1212 struct req_iterator iter; 1213 struct bio_vec bvec; 1214 1215 spin_lock_irq(&nullb->lock); 1216 rq_for_each_segment(bvec, rq, iter) { 1217 len = bvec.bv_len; 1218 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, 1219 op_is_write(req_op(rq)), sector, 1220 rq->cmd_flags & REQ_FUA); 1221 if (err) { 1222 spin_unlock_irq(&nullb->lock); 1223 return err; 1224 } 1225 sector += len >> SECTOR_SHIFT; 1226 } 1227 spin_unlock_irq(&nullb->lock); 1228 1229 return 0; 1230 } 1231 1232 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd) 1233 { 1234 struct nullb_device *dev = cmd->nq->dev; 1235 struct nullb *nullb = dev->nullb; 1236 blk_status_t sts = BLK_STS_OK; 1237 struct request *rq = blk_mq_rq_from_pdu(cmd); 1238 1239 if (!hrtimer_active(&nullb->bw_timer)) 1240 hrtimer_restart(&nullb->bw_timer); 1241 1242 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) { 1243 blk_mq_stop_hw_queues(nullb->q); 1244 /* race with timer */ 1245 if (atomic_long_read(&nullb->cur_bytes) > 0) 1246 blk_mq_start_stopped_hw_queues(nullb->q, true); 1247 /* requeue request */ 1248 sts = BLK_STS_DEV_RESOURCE; 1249 } 1250 return sts; 1251 } 1252 1253 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, 1254 sector_t sector, 1255 sector_t nr_sectors) 1256 { 1257 struct badblocks *bb = &cmd->nq->dev->badblocks; 1258 sector_t first_bad; 1259 int bad_sectors; 1260 1261 if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors)) 1262 return BLK_STS_IOERR; 1263 1264 return BLK_STS_OK; 1265 } 1266 1267 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, 1268 enum req_op op, 1269 sector_t sector, 1270 sector_t nr_sectors) 1271 { 1272 struct nullb_device *dev = cmd->nq->dev; 1273 1274 if (op == REQ_OP_DISCARD) 1275 return null_handle_discard(dev, sector, nr_sectors); 1276 return errno_to_blk_status(null_handle_rq(cmd)); 1277 1278 } 1279 1280 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd) 1281 { 1282 struct request *rq = blk_mq_rq_from_pdu(cmd); 1283 struct nullb_device *dev = cmd->nq->dev; 1284 struct bio *bio; 1285 1286 if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) { 1287 __rq_for_each_bio(bio, rq) 1288 zero_fill_bio(bio); 1289 } 1290 } 1291 1292 static inline void nullb_complete_cmd(struct nullb_cmd *cmd) 1293 { 1294 struct request *rq = blk_mq_rq_from_pdu(cmd); 1295 1296 /* 1297 * Since root privileges are required to configure the null_blk 1298 * driver, it is fine that this driver does not initialize the 1299 * data buffers of read commands. Zero-initialize these buffers 1300 * anyway if KMSAN is enabled to prevent that KMSAN complains 1301 * about null_blk not initializing read data buffers. 1302 */ 1303 if (IS_ENABLED(CONFIG_KMSAN)) 1304 nullb_zero_read_cmd_buffer(cmd); 1305 1306 /* Complete IO by inline, softirq or timer */ 1307 switch (cmd->nq->dev->irqmode) { 1308 case NULL_IRQ_SOFTIRQ: 1309 blk_mq_complete_request(rq); 1310 break; 1311 case NULL_IRQ_NONE: 1312 blk_mq_end_request(rq, cmd->error); 1313 break; 1314 case NULL_IRQ_TIMER: 1315 null_cmd_end_timer(cmd); 1316 break; 1317 } 1318 } 1319 1320 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op, 1321 sector_t sector, unsigned int nr_sectors) 1322 { 1323 struct nullb_device *dev = cmd->nq->dev; 1324 blk_status_t ret; 1325 1326 if (dev->badblocks.shift != -1) { 1327 ret = null_handle_badblocks(cmd, sector, nr_sectors); 1328 if (ret != BLK_STS_OK) 1329 return ret; 1330 } 1331 1332 if (dev->memory_backed) 1333 return null_handle_memory_backed(cmd, op, sector, nr_sectors); 1334 1335 return BLK_STS_OK; 1336 } 1337 1338 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector, 1339 sector_t nr_sectors, enum req_op op) 1340 { 1341 struct nullb_device *dev = cmd->nq->dev; 1342 struct nullb *nullb = dev->nullb; 1343 blk_status_t sts; 1344 1345 if (op == REQ_OP_FLUSH) { 1346 cmd->error = errno_to_blk_status(null_handle_flush(nullb)); 1347 goto out; 1348 } 1349 1350 if (dev->zoned) 1351 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors); 1352 else 1353 sts = null_process_cmd(cmd, op, sector, nr_sectors); 1354 1355 /* Do not overwrite errors (e.g. timeout errors) */ 1356 if (cmd->error == BLK_STS_OK) 1357 cmd->error = sts; 1358 1359 out: 1360 nullb_complete_cmd(cmd); 1361 } 1362 1363 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer) 1364 { 1365 struct nullb *nullb = container_of(timer, struct nullb, bw_timer); 1366 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1367 unsigned int mbps = nullb->dev->mbps; 1368 1369 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps)) 1370 return HRTIMER_NORESTART; 1371 1372 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps)); 1373 blk_mq_start_stopped_hw_queues(nullb->q, true); 1374 1375 hrtimer_forward_now(&nullb->bw_timer, timer_interval); 1376 1377 return HRTIMER_RESTART; 1378 } 1379 1380 static void nullb_setup_bwtimer(struct nullb *nullb) 1381 { 1382 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1383 1384 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1385 nullb->bw_timer.function = nullb_bwtimer_fn; 1386 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps)); 1387 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL); 1388 } 1389 1390 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1391 1392 static bool should_timeout_request(struct request *rq) 1393 { 1394 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1395 struct nullb_device *dev = cmd->nq->dev; 1396 1397 return should_fail(&dev->timeout_config.attr, 1); 1398 } 1399 1400 static bool should_requeue_request(struct request *rq) 1401 { 1402 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1403 struct nullb_device *dev = cmd->nq->dev; 1404 1405 return should_fail(&dev->requeue_config.attr, 1); 1406 } 1407 1408 static bool should_init_hctx_fail(struct nullb_device *dev) 1409 { 1410 return should_fail(&dev->init_hctx_fault_config.attr, 1); 1411 } 1412 1413 #else 1414 1415 static bool should_timeout_request(struct request *rq) 1416 { 1417 return false; 1418 } 1419 1420 static bool should_requeue_request(struct request *rq) 1421 { 1422 return false; 1423 } 1424 1425 static bool should_init_hctx_fail(struct nullb_device *dev) 1426 { 1427 return false; 1428 } 1429 1430 #endif 1431 1432 static void null_map_queues(struct blk_mq_tag_set *set) 1433 { 1434 struct nullb *nullb = set->driver_data; 1435 int i, qoff; 1436 unsigned int submit_queues = g_submit_queues; 1437 unsigned int poll_queues = g_poll_queues; 1438 1439 if (nullb) { 1440 struct nullb_device *dev = nullb->dev; 1441 1442 /* 1443 * Refer nr_hw_queues of the tag set to check if the expected 1444 * number of hardware queues are prepared. If block layer failed 1445 * to prepare them, use previous numbers of submit queues and 1446 * poll queues to map queues. 1447 */ 1448 if (set->nr_hw_queues == 1449 dev->submit_queues + dev->poll_queues) { 1450 submit_queues = dev->submit_queues; 1451 poll_queues = dev->poll_queues; 1452 } else if (set->nr_hw_queues == 1453 dev->prev_submit_queues + dev->prev_poll_queues) { 1454 submit_queues = dev->prev_submit_queues; 1455 poll_queues = dev->prev_poll_queues; 1456 } else { 1457 pr_warn("tag set has unexpected nr_hw_queues: %d\n", 1458 set->nr_hw_queues); 1459 WARN_ON_ONCE(true); 1460 submit_queues = 1; 1461 poll_queues = 0; 1462 } 1463 } 1464 1465 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 1466 struct blk_mq_queue_map *map = &set->map[i]; 1467 1468 switch (i) { 1469 case HCTX_TYPE_DEFAULT: 1470 map->nr_queues = submit_queues; 1471 break; 1472 case HCTX_TYPE_READ: 1473 map->nr_queues = 0; 1474 continue; 1475 case HCTX_TYPE_POLL: 1476 map->nr_queues = poll_queues; 1477 break; 1478 } 1479 map->queue_offset = qoff; 1480 qoff += map->nr_queues; 1481 blk_mq_map_queues(map); 1482 } 1483 } 1484 1485 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1486 { 1487 struct nullb_queue *nq = hctx->driver_data; 1488 LIST_HEAD(list); 1489 int nr = 0; 1490 struct request *rq; 1491 1492 spin_lock(&nq->poll_lock); 1493 list_splice_init(&nq->poll_list, &list); 1494 list_for_each_entry(rq, &list, queuelist) 1495 blk_mq_set_request_complete(rq); 1496 spin_unlock(&nq->poll_lock); 1497 1498 while (!list_empty(&list)) { 1499 struct nullb_cmd *cmd; 1500 struct request *req; 1501 1502 req = list_first_entry(&list, struct request, queuelist); 1503 list_del_init(&req->queuelist); 1504 cmd = blk_mq_rq_to_pdu(req); 1505 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req), 1506 blk_rq_sectors(req)); 1507 if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error, 1508 blk_mq_end_request_batch)) 1509 blk_mq_end_request(req, cmd->error); 1510 nr++; 1511 } 1512 1513 return nr; 1514 } 1515 1516 static enum blk_eh_timer_return null_timeout_rq(struct request *rq) 1517 { 1518 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1519 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1520 1521 if (hctx->type == HCTX_TYPE_POLL) { 1522 struct nullb_queue *nq = hctx->driver_data; 1523 1524 spin_lock(&nq->poll_lock); 1525 /* The request may have completed meanwhile. */ 1526 if (blk_mq_request_completed(rq)) { 1527 spin_unlock(&nq->poll_lock); 1528 return BLK_EH_DONE; 1529 } 1530 list_del_init(&rq->queuelist); 1531 spin_unlock(&nq->poll_lock); 1532 } 1533 1534 pr_info("rq %p timed out\n", rq); 1535 1536 /* 1537 * If the device is marked as blocking (i.e. memory backed or zoned 1538 * device), the submission path may be blocked waiting for resources 1539 * and cause real timeouts. For these real timeouts, the submission 1540 * path will complete the request using blk_mq_complete_request(). 1541 * Only fake timeouts need to execute blk_mq_complete_request() here. 1542 */ 1543 cmd->error = BLK_STS_TIMEOUT; 1544 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL) 1545 blk_mq_complete_request(rq); 1546 return BLK_EH_DONE; 1547 } 1548 1549 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx, 1550 const struct blk_mq_queue_data *bd) 1551 { 1552 struct request *rq = bd->rq; 1553 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1554 struct nullb_queue *nq = hctx->driver_data; 1555 sector_t nr_sectors = blk_rq_sectors(rq); 1556 sector_t sector = blk_rq_pos(rq); 1557 const bool is_poll = hctx->type == HCTX_TYPE_POLL; 1558 1559 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1560 1561 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) { 1562 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1563 cmd->timer.function = null_cmd_timer_expired; 1564 } 1565 cmd->error = BLK_STS_OK; 1566 cmd->nq = nq; 1567 cmd->fake_timeout = should_timeout_request(rq) || 1568 blk_should_fake_timeout(rq->q); 1569 1570 if (should_requeue_request(rq)) { 1571 /* 1572 * Alternate between hitting the core BUSY path, and the 1573 * driver driven requeue path 1574 */ 1575 nq->requeue_selection++; 1576 if (nq->requeue_selection & 1) 1577 return BLK_STS_RESOURCE; 1578 blk_mq_requeue_request(rq, true); 1579 return BLK_STS_OK; 1580 } 1581 1582 if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) { 1583 blk_status_t sts = null_handle_throttled(cmd); 1584 1585 if (sts != BLK_STS_OK) 1586 return sts; 1587 } 1588 1589 blk_mq_start_request(rq); 1590 1591 if (is_poll) { 1592 spin_lock(&nq->poll_lock); 1593 list_add_tail(&rq->queuelist, &nq->poll_list); 1594 spin_unlock(&nq->poll_lock); 1595 return BLK_STS_OK; 1596 } 1597 if (cmd->fake_timeout) 1598 return BLK_STS_OK; 1599 1600 null_handle_cmd(cmd, sector, nr_sectors, req_op(rq)); 1601 return BLK_STS_OK; 1602 } 1603 1604 static void null_queue_rqs(struct request **rqlist) 1605 { 1606 struct request *requeue_list = NULL; 1607 struct request **requeue_lastp = &requeue_list; 1608 struct blk_mq_queue_data bd = { }; 1609 blk_status_t ret; 1610 1611 do { 1612 struct request *rq = rq_list_pop(rqlist); 1613 1614 bd.rq = rq; 1615 ret = null_queue_rq(rq->mq_hctx, &bd); 1616 if (ret != BLK_STS_OK) 1617 rq_list_add_tail(&requeue_lastp, rq); 1618 } while (!rq_list_empty(*rqlist)); 1619 1620 *rqlist = requeue_list; 1621 } 1622 1623 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq) 1624 { 1625 nq->dev = nullb->dev; 1626 INIT_LIST_HEAD(&nq->poll_list); 1627 spin_lock_init(&nq->poll_lock); 1628 } 1629 1630 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data, 1631 unsigned int hctx_idx) 1632 { 1633 struct nullb *nullb = hctx->queue->queuedata; 1634 struct nullb_queue *nq; 1635 1636 if (should_init_hctx_fail(nullb->dev)) 1637 return -EFAULT; 1638 1639 nq = &nullb->queues[hctx_idx]; 1640 hctx->driver_data = nq; 1641 null_init_queue(nullb, nq); 1642 1643 return 0; 1644 } 1645 1646 static const struct blk_mq_ops null_mq_ops = { 1647 .queue_rq = null_queue_rq, 1648 .queue_rqs = null_queue_rqs, 1649 .complete = null_complete_rq, 1650 .timeout = null_timeout_rq, 1651 .poll = null_poll, 1652 .map_queues = null_map_queues, 1653 .init_hctx = null_init_hctx, 1654 }; 1655 1656 static void null_del_dev(struct nullb *nullb) 1657 { 1658 struct nullb_device *dev; 1659 1660 if (!nullb) 1661 return; 1662 1663 dev = nullb->dev; 1664 1665 ida_free(&nullb_indexes, nullb->index); 1666 1667 list_del_init(&nullb->list); 1668 1669 del_gendisk(nullb->disk); 1670 1671 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) { 1672 hrtimer_cancel(&nullb->bw_timer); 1673 atomic_long_set(&nullb->cur_bytes, LONG_MAX); 1674 blk_mq_start_stopped_hw_queues(nullb->q, true); 1675 } 1676 1677 put_disk(nullb->disk); 1678 if (nullb->tag_set == &nullb->__tag_set) 1679 blk_mq_free_tag_set(nullb->tag_set); 1680 kfree(nullb->queues); 1681 if (null_cache_active(nullb)) 1682 null_free_device_storage(nullb->dev, true); 1683 kfree(nullb); 1684 dev->nullb = NULL; 1685 } 1686 1687 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim) 1688 { 1689 if (nullb->dev->discard == false) 1690 return; 1691 1692 if (!nullb->dev->memory_backed) { 1693 nullb->dev->discard = false; 1694 pr_info("discard option is ignored without memory backing\n"); 1695 return; 1696 } 1697 1698 if (nullb->dev->zoned) { 1699 nullb->dev->discard = false; 1700 pr_info("discard option is ignored in zoned mode\n"); 1701 return; 1702 } 1703 1704 lim->max_hw_discard_sectors = UINT_MAX >> 9; 1705 } 1706 1707 static const struct block_device_operations null_ops = { 1708 .owner = THIS_MODULE, 1709 .report_zones = null_report_zones, 1710 }; 1711 1712 static int setup_queues(struct nullb *nullb) 1713 { 1714 int nqueues = nr_cpu_ids; 1715 1716 if (g_poll_queues) 1717 nqueues += g_poll_queues; 1718 1719 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue), 1720 GFP_KERNEL); 1721 if (!nullb->queues) 1722 return -ENOMEM; 1723 1724 return 0; 1725 } 1726 1727 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues) 1728 { 1729 set->ops = &null_mq_ops; 1730 set->cmd_size = sizeof(struct nullb_cmd); 1731 set->timeout = 5 * HZ; 1732 set->nr_maps = 1; 1733 if (poll_queues) { 1734 set->nr_hw_queues += poll_queues; 1735 set->nr_maps += 2; 1736 } 1737 return blk_mq_alloc_tag_set(set); 1738 } 1739 1740 static int null_init_global_tag_set(void) 1741 { 1742 int error; 1743 1744 if (tag_set.ops) 1745 return 0; 1746 1747 tag_set.nr_hw_queues = g_submit_queues; 1748 tag_set.queue_depth = g_hw_queue_depth; 1749 tag_set.numa_node = g_home_node; 1750 tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 1751 if (g_no_sched) 1752 tag_set.flags |= BLK_MQ_F_NO_SCHED; 1753 if (g_shared_tag_bitmap) 1754 tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1755 if (g_blocking) 1756 tag_set.flags |= BLK_MQ_F_BLOCKING; 1757 1758 error = null_init_tag_set(&tag_set, g_poll_queues); 1759 if (error) 1760 tag_set.ops = NULL; 1761 return error; 1762 } 1763 1764 static int null_setup_tagset(struct nullb *nullb) 1765 { 1766 if (nullb->dev->shared_tags) { 1767 nullb->tag_set = &tag_set; 1768 return null_init_global_tag_set(); 1769 } 1770 1771 nullb->tag_set = &nullb->__tag_set; 1772 nullb->tag_set->driver_data = nullb; 1773 nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues; 1774 nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth; 1775 nullb->tag_set->numa_node = nullb->dev->home_node; 1776 nullb->tag_set->flags = BLK_MQ_F_SHOULD_MERGE; 1777 if (nullb->dev->no_sched) 1778 nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED; 1779 if (nullb->dev->shared_tag_bitmap) 1780 nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1781 if (nullb->dev->blocking) 1782 nullb->tag_set->flags |= BLK_MQ_F_BLOCKING; 1783 return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues); 1784 } 1785 1786 static int null_validate_conf(struct nullb_device *dev) 1787 { 1788 if (dev->queue_mode == NULL_Q_RQ) { 1789 pr_err("legacy IO path is no longer available\n"); 1790 return -EINVAL; 1791 } 1792 if (dev->queue_mode == NULL_Q_BIO) { 1793 pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n"); 1794 dev->queue_mode = NULL_Q_MQ; 1795 } 1796 1797 dev->blocksize = round_down(dev->blocksize, 512); 1798 dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096); 1799 1800 if (dev->use_per_node_hctx) { 1801 if (dev->submit_queues != nr_online_nodes) 1802 dev->submit_queues = nr_online_nodes; 1803 } else if (dev->submit_queues > nr_cpu_ids) 1804 dev->submit_queues = nr_cpu_ids; 1805 else if (dev->submit_queues == 0) 1806 dev->submit_queues = 1; 1807 dev->prev_submit_queues = dev->submit_queues; 1808 1809 if (dev->poll_queues > g_poll_queues) 1810 dev->poll_queues = g_poll_queues; 1811 dev->prev_poll_queues = dev->poll_queues; 1812 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER); 1813 1814 /* Do memory allocation, so set blocking */ 1815 if (dev->memory_backed) 1816 dev->blocking = true; 1817 else /* cache is meaningless */ 1818 dev->cache_size = 0; 1819 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024, 1820 dev->cache_size); 1821 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps); 1822 1823 if (dev->zoned && 1824 (!dev->zone_size || !is_power_of_2(dev->zone_size))) { 1825 pr_err("zone_size must be power-of-two\n"); 1826 return -EINVAL; 1827 } 1828 1829 return 0; 1830 } 1831 1832 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1833 static bool __null_setup_fault(struct fault_attr *attr, char *str) 1834 { 1835 if (!str[0]) 1836 return true; 1837 1838 if (!setup_fault_attr(attr, str)) 1839 return false; 1840 1841 attr->verbose = 0; 1842 return true; 1843 } 1844 #endif 1845 1846 static bool null_setup_fault(void) 1847 { 1848 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1849 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str)) 1850 return false; 1851 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str)) 1852 return false; 1853 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str)) 1854 return false; 1855 #endif 1856 return true; 1857 } 1858 1859 static int null_add_dev(struct nullb_device *dev) 1860 { 1861 struct queue_limits lim = { 1862 .logical_block_size = dev->blocksize, 1863 .physical_block_size = dev->blocksize, 1864 .max_hw_sectors = dev->max_sectors, 1865 }; 1866 1867 struct nullb *nullb; 1868 int rv; 1869 1870 rv = null_validate_conf(dev); 1871 if (rv) 1872 return rv; 1873 1874 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node); 1875 if (!nullb) { 1876 rv = -ENOMEM; 1877 goto out; 1878 } 1879 nullb->dev = dev; 1880 dev->nullb = nullb; 1881 1882 spin_lock_init(&nullb->lock); 1883 1884 rv = setup_queues(nullb); 1885 if (rv) 1886 goto out_free_nullb; 1887 1888 rv = null_setup_tagset(nullb); 1889 if (rv) 1890 goto out_cleanup_queues; 1891 1892 if (dev->virt_boundary) 1893 lim.virt_boundary_mask = PAGE_SIZE - 1; 1894 null_config_discard(nullb, &lim); 1895 if (dev->zoned) { 1896 rv = null_init_zoned_dev(dev, &lim); 1897 if (rv) 1898 goto out_cleanup_tags; 1899 } 1900 1901 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb); 1902 if (IS_ERR(nullb->disk)) { 1903 rv = PTR_ERR(nullb->disk); 1904 goto out_cleanup_zone; 1905 } 1906 nullb->q = nullb->disk->queue; 1907 1908 if (dev->mbps) { 1909 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags); 1910 nullb_setup_bwtimer(nullb); 1911 } 1912 1913 if (dev->cache_size > 0) { 1914 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 1915 blk_queue_write_cache(nullb->q, true, true); 1916 } 1917 1918 nullb->q->queuedata = nullb; 1919 blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q); 1920 1921 mutex_lock(&lock); 1922 rv = ida_alloc(&nullb_indexes, GFP_KERNEL); 1923 if (rv < 0) { 1924 mutex_unlock(&lock); 1925 goto out_cleanup_disk; 1926 } 1927 nullb->index = rv; 1928 dev->index = rv; 1929 mutex_unlock(&lock); 1930 1931 if (config_item_name(&dev->group.cg_item)) { 1932 /* Use configfs dir name as the device name */ 1933 snprintf(nullb->disk_name, sizeof(nullb->disk_name), 1934 "%s", config_item_name(&dev->group.cg_item)); 1935 } else { 1936 sprintf(nullb->disk_name, "nullb%d", nullb->index); 1937 } 1938 1939 set_capacity(nullb->disk, 1940 ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT); 1941 nullb->disk->major = null_major; 1942 nullb->disk->first_minor = nullb->index; 1943 nullb->disk->minors = 1; 1944 nullb->disk->fops = &null_ops; 1945 nullb->disk->private_data = nullb; 1946 strscpy_pad(nullb->disk->disk_name, nullb->disk_name, DISK_NAME_LEN); 1947 1948 if (nullb->dev->zoned) { 1949 rv = null_register_zoned_dev(nullb); 1950 if (rv) 1951 goto out_ida_free; 1952 } 1953 1954 rv = add_disk(nullb->disk); 1955 if (rv) 1956 goto out_ida_free; 1957 1958 mutex_lock(&lock); 1959 list_add_tail(&nullb->list, &nullb_list); 1960 mutex_unlock(&lock); 1961 1962 pr_info("disk %s created\n", nullb->disk_name); 1963 1964 return 0; 1965 1966 out_ida_free: 1967 ida_free(&nullb_indexes, nullb->index); 1968 out_cleanup_disk: 1969 put_disk(nullb->disk); 1970 out_cleanup_zone: 1971 null_free_zoned_dev(dev); 1972 out_cleanup_tags: 1973 if (nullb->tag_set == &nullb->__tag_set) 1974 blk_mq_free_tag_set(nullb->tag_set); 1975 out_cleanup_queues: 1976 kfree(nullb->queues); 1977 out_free_nullb: 1978 kfree(nullb); 1979 dev->nullb = NULL; 1980 out: 1981 return rv; 1982 } 1983 1984 static struct nullb *null_find_dev_by_name(const char *name) 1985 { 1986 struct nullb *nullb = NULL, *nb; 1987 1988 mutex_lock(&lock); 1989 list_for_each_entry(nb, &nullb_list, list) { 1990 if (strcmp(nb->disk_name, name) == 0) { 1991 nullb = nb; 1992 break; 1993 } 1994 } 1995 mutex_unlock(&lock); 1996 1997 return nullb; 1998 } 1999 2000 static int null_create_dev(void) 2001 { 2002 struct nullb_device *dev; 2003 int ret; 2004 2005 dev = null_alloc_dev(); 2006 if (!dev) 2007 return -ENOMEM; 2008 2009 ret = null_add_dev(dev); 2010 if (ret) { 2011 null_free_dev(dev); 2012 return ret; 2013 } 2014 2015 return 0; 2016 } 2017 2018 static void null_destroy_dev(struct nullb *nullb) 2019 { 2020 struct nullb_device *dev = nullb->dev; 2021 2022 null_del_dev(nullb); 2023 null_free_device_storage(dev, false); 2024 null_free_dev(dev); 2025 } 2026 2027 static int __init null_init(void) 2028 { 2029 int ret = 0; 2030 unsigned int i; 2031 struct nullb *nullb; 2032 2033 if (g_bs > PAGE_SIZE) { 2034 pr_warn("invalid block size\n"); 2035 pr_warn("defaults block size to %lu\n", PAGE_SIZE); 2036 g_bs = PAGE_SIZE; 2037 } 2038 2039 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) { 2040 pr_err("invalid home_node value\n"); 2041 g_home_node = NUMA_NO_NODE; 2042 } 2043 2044 if (!null_setup_fault()) 2045 return -EINVAL; 2046 2047 if (g_queue_mode == NULL_Q_RQ) { 2048 pr_err("legacy IO path is no longer available\n"); 2049 return -EINVAL; 2050 } 2051 2052 if (g_use_per_node_hctx) { 2053 if (g_submit_queues != nr_online_nodes) { 2054 pr_warn("submit_queues param is set to %u.\n", 2055 nr_online_nodes); 2056 g_submit_queues = nr_online_nodes; 2057 } 2058 } else if (g_submit_queues > nr_cpu_ids) { 2059 g_submit_queues = nr_cpu_ids; 2060 } else if (g_submit_queues <= 0) { 2061 g_submit_queues = 1; 2062 } 2063 2064 config_group_init(&nullb_subsys.su_group); 2065 mutex_init(&nullb_subsys.su_mutex); 2066 2067 ret = configfs_register_subsystem(&nullb_subsys); 2068 if (ret) 2069 return ret; 2070 2071 mutex_init(&lock); 2072 2073 null_major = register_blkdev(0, "nullb"); 2074 if (null_major < 0) { 2075 ret = null_major; 2076 goto err_conf; 2077 } 2078 2079 for (i = 0; i < nr_devices; i++) { 2080 ret = null_create_dev(); 2081 if (ret) 2082 goto err_dev; 2083 } 2084 2085 pr_info("module loaded\n"); 2086 return 0; 2087 2088 err_dev: 2089 while (!list_empty(&nullb_list)) { 2090 nullb = list_entry(nullb_list.next, struct nullb, list); 2091 null_destroy_dev(nullb); 2092 } 2093 unregister_blkdev(null_major, "nullb"); 2094 err_conf: 2095 configfs_unregister_subsystem(&nullb_subsys); 2096 return ret; 2097 } 2098 2099 static void __exit null_exit(void) 2100 { 2101 struct nullb *nullb; 2102 2103 configfs_unregister_subsystem(&nullb_subsys); 2104 2105 unregister_blkdev(null_major, "nullb"); 2106 2107 mutex_lock(&lock); 2108 while (!list_empty(&nullb_list)) { 2109 nullb = list_entry(nullb_list.next, struct nullb, list); 2110 null_destroy_dev(nullb); 2111 } 2112 mutex_unlock(&lock); 2113 2114 if (tag_set.ops) 2115 blk_mq_free_tag_set(&tag_set); 2116 } 2117 2118 module_init(null_init); 2119 module_exit(null_exit); 2120 2121 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>"); 2122 MODULE_LICENSE("GPL"); 2123