xref: /linux/drivers/block/null_blk/main.c (revision 673f816b9e1e92d1f70e1bf5f21b531e0ff9ad6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7 
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13 
14 #undef pr_fmt
15 #define pr_fmt(fmt)	"null_blk: " fmt
16 
17 #define FREE_BATCH		16
18 
19 #define TICKS_PER_SEC		50ULL
20 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
21 
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27 
28 static inline u64 mb_per_tick(int mbps)
29 {
30 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32 
33 /*
34  * Status flags for nullb_device.
35  *
36  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
37  * UP:		Device is currently on and visible in userspace.
38  * THROTTLED:	Device is being throttled.
39  * CACHE:	Device is using a write-back cache.
40  */
41 enum nullb_device_flags {
42 	NULLB_DEV_FL_CONFIGURED	= 0,
43 	NULLB_DEV_FL_UP		= 1,
44 	NULLB_DEV_FL_THROTTLED	= 2,
45 	NULLB_DEV_FL_CACHE	= 3,
46 };
47 
48 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50  * nullb_page is a page in memory for nullb devices.
51  *
52  * @page:	The page holding the data.
53  * @bitmap:	The bitmap represents which sector in the page has data.
54  *		Each bit represents one block size. For example, sector 8
55  *		will use the 7th bit
56  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57  * page is being flushing to storage. FREE means the cache page is freed and
58  * should be skipped from flushing to storage. Please see
59  * null_make_cache_space
60  */
61 struct nullb_page {
62 	struct page *page;
63 	DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67 
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73 
74 enum {
75 	NULL_IRQ_NONE		= 0,
76 	NULL_IRQ_SOFTIRQ	= 1,
77 	NULL_IRQ_TIMER		= 2,
78 };
79 
80 static bool g_virt_boundary = false;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83 
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87 
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91 
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95 
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99 
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102  * For more details about fault injection, please refer to
103  * Documentation/fault-injection/fault-injection.rst.
104  */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108 
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112 
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117 
118 /*
119  * Historic queue modes.
120  *
121  * These days nothing but NULL_Q_MQ is actually supported, but we keep it the
122  * enum for error reporting.
123  */
124 enum {
125 	NULL_Q_BIO	= 0,
126 	NULL_Q_RQ	= 1,
127 	NULL_Q_MQ	= 2,
128 };
129 
130 static int g_queue_mode = NULL_Q_MQ;
131 
132 static int null_param_store_val(const char *str, int *val, int min, int max)
133 {
134 	int ret, new_val;
135 
136 	ret = kstrtoint(str, 10, &new_val);
137 	if (ret)
138 		return -EINVAL;
139 
140 	if (new_val < min || new_val > max)
141 		return -EINVAL;
142 
143 	*val = new_val;
144 	return 0;
145 }
146 
147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
148 {
149 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
150 }
151 
152 static const struct kernel_param_ops null_queue_mode_param_ops = {
153 	.set	= null_set_queue_mode,
154 	.get	= param_get_int,
155 };
156 
157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
159 
160 static int g_gb = 250;
161 module_param_named(gb, g_gb, int, 0444);
162 MODULE_PARM_DESC(gb, "Size in GB");
163 
164 static int g_bs = 512;
165 module_param_named(bs, g_bs, int, 0444);
166 MODULE_PARM_DESC(bs, "Block size (in bytes)");
167 
168 static int g_max_sectors;
169 module_param_named(max_sectors, g_max_sectors, int, 0444);
170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
171 
172 static unsigned int nr_devices = 1;
173 module_param(nr_devices, uint, 0444);
174 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
175 
176 static bool g_blocking;
177 module_param_named(blocking, g_blocking, bool, 0444);
178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
179 
180 static bool g_shared_tags;
181 module_param_named(shared_tags, g_shared_tags, bool, 0444);
182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
183 
184 static bool g_shared_tag_bitmap;
185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
187 
188 static int g_irqmode = NULL_IRQ_SOFTIRQ;
189 
190 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
191 {
192 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
193 					NULL_IRQ_TIMER);
194 }
195 
196 static const struct kernel_param_ops null_irqmode_param_ops = {
197 	.set	= null_set_irqmode,
198 	.get	= param_get_int,
199 };
200 
201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
203 
204 static unsigned long g_completion_nsec = 10000;
205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
207 
208 static int g_hw_queue_depth = 64;
209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
211 
212 static bool g_use_per_node_hctx;
213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
215 
216 static bool g_memory_backed;
217 module_param_named(memory_backed, g_memory_backed, bool, 0444);
218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
219 
220 static bool g_discard;
221 module_param_named(discard, g_discard, bool, 0444);
222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
223 
224 static unsigned long g_cache_size;
225 module_param_named(cache_size, g_cache_size, ulong, 0444);
226 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
227 
228 static bool g_fua = true;
229 module_param_named(fua, g_fua, bool, 0444);
230 MODULE_PARM_DESC(zoned, "Enable/disable FUA support when cache_size is used. Default: true");
231 
232 static unsigned int g_mbps;
233 module_param_named(mbps, g_mbps, uint, 0444);
234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
235 
236 static bool g_zoned;
237 module_param_named(zoned, g_zoned, bool, S_IRUGO);
238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
239 
240 static unsigned long g_zone_size = 256;
241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
243 
244 static unsigned long g_zone_capacity;
245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
247 
248 static unsigned int g_zone_nr_conv;
249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
251 
252 static unsigned int g_zone_max_open;
253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
255 
256 static unsigned int g_zone_max_active;
257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
259 
260 static int g_zone_append_max_sectors = INT_MAX;
261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444);
262 MODULE_PARM_DESC(zone_append_max_sectors,
263 		 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation");
264 
265 static struct nullb_device *null_alloc_dev(void);
266 static void null_free_dev(struct nullb_device *dev);
267 static void null_del_dev(struct nullb *nullb);
268 static int null_add_dev(struct nullb_device *dev);
269 static struct nullb *null_find_dev_by_name(const char *name);
270 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
271 
272 static inline struct nullb_device *to_nullb_device(struct config_item *item)
273 {
274 	return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
275 }
276 
277 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
278 {
279 	return snprintf(page, PAGE_SIZE, "%u\n", val);
280 }
281 
282 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
283 	char *page)
284 {
285 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
286 }
287 
288 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
289 {
290 	return snprintf(page, PAGE_SIZE, "%u\n", val);
291 }
292 
293 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
294 	const char *page, size_t count)
295 {
296 	unsigned int tmp;
297 	int result;
298 
299 	result = kstrtouint(page, 0, &tmp);
300 	if (result < 0)
301 		return result;
302 
303 	*val = tmp;
304 	return count;
305 }
306 
307 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
308 	const char *page, size_t count)
309 {
310 	int result;
311 	unsigned long tmp;
312 
313 	result = kstrtoul(page, 0, &tmp);
314 	if (result < 0)
315 		return result;
316 
317 	*val = tmp;
318 	return count;
319 }
320 
321 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
322 	size_t count)
323 {
324 	bool tmp;
325 	int result;
326 
327 	result = kstrtobool(page,  &tmp);
328 	if (result < 0)
329 		return result;
330 
331 	*val = tmp;
332 	return count;
333 }
334 
335 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
336 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
337 static ssize_t								\
338 nullb_device_##NAME##_show(struct config_item *item, char *page)	\
339 {									\
340 	return nullb_device_##TYPE##_attr_show(				\
341 				to_nullb_device(item)->NAME, page);	\
342 }									\
343 static ssize_t								\
344 nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
345 			    size_t count)				\
346 {									\
347 	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
348 	struct nullb_device *dev = to_nullb_device(item);		\
349 	TYPE new_value = 0;						\
350 	int ret;							\
351 									\
352 	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
353 	if (ret < 0)							\
354 		return ret;						\
355 	if (apply_fn)							\
356 		ret = apply_fn(dev, new_value);				\
357 	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
358 		ret = -EBUSY;						\
359 	if (ret < 0)							\
360 		return ret;						\
361 	dev->NAME = new_value;						\
362 	return count;							\
363 }									\
364 CONFIGFS_ATTR(nullb_device_, NAME);
365 
366 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
367 				     unsigned int submit_queues,
368 				     unsigned int poll_queues)
369 
370 {
371 	struct blk_mq_tag_set *set;
372 	int ret, nr_hw_queues;
373 
374 	if (!dev->nullb)
375 		return 0;
376 
377 	/*
378 	 * Make sure at least one submit queue exists.
379 	 */
380 	if (!submit_queues)
381 		return -EINVAL;
382 
383 	/*
384 	 * Make sure that null_init_hctx() does not access nullb->queues[] past
385 	 * the end of that array.
386 	 */
387 	if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
388 		return -EINVAL;
389 
390 	/*
391 	 * Keep previous and new queue numbers in nullb_device for reference in
392 	 * the call back function null_map_queues().
393 	 */
394 	dev->prev_submit_queues = dev->submit_queues;
395 	dev->prev_poll_queues = dev->poll_queues;
396 	dev->submit_queues = submit_queues;
397 	dev->poll_queues = poll_queues;
398 
399 	set = dev->nullb->tag_set;
400 	nr_hw_queues = submit_queues + poll_queues;
401 	blk_mq_update_nr_hw_queues(set, nr_hw_queues);
402 	ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
403 
404 	if (ret) {
405 		/* on error, revert the queue numbers */
406 		dev->submit_queues = dev->prev_submit_queues;
407 		dev->poll_queues = dev->prev_poll_queues;
408 	}
409 
410 	return ret;
411 }
412 
413 static int nullb_apply_submit_queues(struct nullb_device *dev,
414 				     unsigned int submit_queues)
415 {
416 	int ret;
417 
418 	mutex_lock(&lock);
419 	ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
420 	mutex_unlock(&lock);
421 
422 	return ret;
423 }
424 
425 static int nullb_apply_poll_queues(struct nullb_device *dev,
426 				   unsigned int poll_queues)
427 {
428 	int ret;
429 
430 	mutex_lock(&lock);
431 	ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
432 	mutex_unlock(&lock);
433 
434 	return ret;
435 }
436 
437 NULLB_DEVICE_ATTR(size, ulong, NULL);
438 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
439 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
440 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
441 NULLB_DEVICE_ATTR(home_node, uint, NULL);
442 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
443 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
444 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
445 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
446 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
447 NULLB_DEVICE_ATTR(index, uint, NULL);
448 NULLB_DEVICE_ATTR(blocking, bool, NULL);
449 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
450 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
451 NULLB_DEVICE_ATTR(discard, bool, NULL);
452 NULLB_DEVICE_ATTR(mbps, uint, NULL);
453 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
454 NULLB_DEVICE_ATTR(zoned, bool, NULL);
455 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
456 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
457 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
458 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
459 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
460 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL);
461 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
462 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
463 NULLB_DEVICE_ATTR(shared_tags, bool, NULL);
464 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
465 NULLB_DEVICE_ATTR(fua, bool, NULL);
466 
467 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
468 {
469 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
470 }
471 
472 static ssize_t nullb_device_power_store(struct config_item *item,
473 				     const char *page, size_t count)
474 {
475 	struct nullb_device *dev = to_nullb_device(item);
476 	bool newp = false;
477 	ssize_t ret;
478 
479 	ret = nullb_device_bool_attr_store(&newp, page, count);
480 	if (ret < 0)
481 		return ret;
482 
483 	ret = count;
484 	mutex_lock(&lock);
485 	if (!dev->power && newp) {
486 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
487 			goto out;
488 
489 		ret = null_add_dev(dev);
490 		if (ret) {
491 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
492 			goto out;
493 		}
494 
495 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
496 		dev->power = newp;
497 		ret = count;
498 	} else if (dev->power && !newp) {
499 		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
500 			dev->power = newp;
501 			null_del_dev(dev->nullb);
502 		}
503 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
504 	}
505 
506 out:
507 	mutex_unlock(&lock);
508 	return ret;
509 }
510 
511 CONFIGFS_ATTR(nullb_device_, power);
512 
513 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
514 {
515 	struct nullb_device *t_dev = to_nullb_device(item);
516 
517 	return badblocks_show(&t_dev->badblocks, page, 0);
518 }
519 
520 static ssize_t nullb_device_badblocks_store(struct config_item *item,
521 				     const char *page, size_t count)
522 {
523 	struct nullb_device *t_dev = to_nullb_device(item);
524 	char *orig, *buf, *tmp;
525 	u64 start, end;
526 	int ret;
527 
528 	orig = kstrndup(page, count, GFP_KERNEL);
529 	if (!orig)
530 		return -ENOMEM;
531 
532 	buf = strstrip(orig);
533 
534 	ret = -EINVAL;
535 	if (buf[0] != '+' && buf[0] != '-')
536 		goto out;
537 	tmp = strchr(&buf[1], '-');
538 	if (!tmp)
539 		goto out;
540 	*tmp = '\0';
541 	ret = kstrtoull(buf + 1, 0, &start);
542 	if (ret)
543 		goto out;
544 	ret = kstrtoull(tmp + 1, 0, &end);
545 	if (ret)
546 		goto out;
547 	ret = -EINVAL;
548 	if (start > end)
549 		goto out;
550 	/* enable badblocks */
551 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
552 	if (buf[0] == '+')
553 		ret = badblocks_set(&t_dev->badblocks, start,
554 			end - start + 1, 1);
555 	else
556 		ret = badblocks_clear(&t_dev->badblocks, start,
557 			end - start + 1);
558 	if (ret == 0)
559 		ret = count;
560 out:
561 	kfree(orig);
562 	return ret;
563 }
564 CONFIGFS_ATTR(nullb_device_, badblocks);
565 
566 static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
567 						const char *page, size_t count)
568 {
569 	struct nullb_device *dev = to_nullb_device(item);
570 
571 	return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
572 }
573 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
574 
575 static ssize_t nullb_device_zone_offline_store(struct config_item *item,
576 					       const char *page, size_t count)
577 {
578 	struct nullb_device *dev = to_nullb_device(item);
579 
580 	return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
581 }
582 CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
583 
584 static struct configfs_attribute *nullb_device_attrs[] = {
585 	&nullb_device_attr_size,
586 	&nullb_device_attr_completion_nsec,
587 	&nullb_device_attr_submit_queues,
588 	&nullb_device_attr_poll_queues,
589 	&nullb_device_attr_home_node,
590 	&nullb_device_attr_queue_mode,
591 	&nullb_device_attr_blocksize,
592 	&nullb_device_attr_max_sectors,
593 	&nullb_device_attr_irqmode,
594 	&nullb_device_attr_hw_queue_depth,
595 	&nullb_device_attr_index,
596 	&nullb_device_attr_blocking,
597 	&nullb_device_attr_use_per_node_hctx,
598 	&nullb_device_attr_power,
599 	&nullb_device_attr_memory_backed,
600 	&nullb_device_attr_discard,
601 	&nullb_device_attr_mbps,
602 	&nullb_device_attr_cache_size,
603 	&nullb_device_attr_badblocks,
604 	&nullb_device_attr_zoned,
605 	&nullb_device_attr_zone_size,
606 	&nullb_device_attr_zone_capacity,
607 	&nullb_device_attr_zone_nr_conv,
608 	&nullb_device_attr_zone_max_open,
609 	&nullb_device_attr_zone_max_active,
610 	&nullb_device_attr_zone_append_max_sectors,
611 	&nullb_device_attr_zone_readonly,
612 	&nullb_device_attr_zone_offline,
613 	&nullb_device_attr_virt_boundary,
614 	&nullb_device_attr_no_sched,
615 	&nullb_device_attr_shared_tags,
616 	&nullb_device_attr_shared_tag_bitmap,
617 	&nullb_device_attr_fua,
618 	NULL,
619 };
620 
621 static void nullb_device_release(struct config_item *item)
622 {
623 	struct nullb_device *dev = to_nullb_device(item);
624 
625 	null_free_device_storage(dev, false);
626 	null_free_dev(dev);
627 }
628 
629 static struct configfs_item_operations nullb_device_ops = {
630 	.release	= nullb_device_release,
631 };
632 
633 static const struct config_item_type nullb_device_type = {
634 	.ct_item_ops	= &nullb_device_ops,
635 	.ct_attrs	= nullb_device_attrs,
636 	.ct_owner	= THIS_MODULE,
637 };
638 
639 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
640 
641 static void nullb_add_fault_config(struct nullb_device *dev)
642 {
643 	fault_config_init(&dev->timeout_config, "timeout_inject");
644 	fault_config_init(&dev->requeue_config, "requeue_inject");
645 	fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
646 
647 	configfs_add_default_group(&dev->timeout_config.group, &dev->group);
648 	configfs_add_default_group(&dev->requeue_config.group, &dev->group);
649 	configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
650 }
651 
652 #else
653 
654 static void nullb_add_fault_config(struct nullb_device *dev)
655 {
656 }
657 
658 #endif
659 
660 static struct
661 config_group *nullb_group_make_group(struct config_group *group, const char *name)
662 {
663 	struct nullb_device *dev;
664 
665 	if (null_find_dev_by_name(name))
666 		return ERR_PTR(-EEXIST);
667 
668 	dev = null_alloc_dev();
669 	if (!dev)
670 		return ERR_PTR(-ENOMEM);
671 
672 	config_group_init_type_name(&dev->group, name, &nullb_device_type);
673 	nullb_add_fault_config(dev);
674 
675 	return &dev->group;
676 }
677 
678 static void
679 nullb_group_drop_item(struct config_group *group, struct config_item *item)
680 {
681 	struct nullb_device *dev = to_nullb_device(item);
682 
683 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
684 		mutex_lock(&lock);
685 		dev->power = false;
686 		null_del_dev(dev->nullb);
687 		mutex_unlock(&lock);
688 	}
689 
690 	config_item_put(item);
691 }
692 
693 static ssize_t memb_group_features_show(struct config_item *item, char *page)
694 {
695 	return snprintf(page, PAGE_SIZE,
696 			"badblocks,blocking,blocksize,cache_size,fua,"
697 			"completion_nsec,discard,home_node,hw_queue_depth,"
698 			"irqmode,max_sectors,mbps,memory_backed,no_sched,"
699 			"poll_queues,power,queue_mode,shared_tag_bitmap,"
700 			"shared_tags,size,submit_queues,use_per_node_hctx,"
701 			"virt_boundary,zoned,zone_capacity,zone_max_active,"
702 			"zone_max_open,zone_nr_conv,zone_offline,zone_readonly,"
703 			"zone_size,zone_append_max_sectors\n");
704 }
705 
706 CONFIGFS_ATTR_RO(memb_group_, features);
707 
708 static struct configfs_attribute *nullb_group_attrs[] = {
709 	&memb_group_attr_features,
710 	NULL,
711 };
712 
713 static struct configfs_group_operations nullb_group_ops = {
714 	.make_group	= nullb_group_make_group,
715 	.drop_item	= nullb_group_drop_item,
716 };
717 
718 static const struct config_item_type nullb_group_type = {
719 	.ct_group_ops	= &nullb_group_ops,
720 	.ct_attrs	= nullb_group_attrs,
721 	.ct_owner	= THIS_MODULE,
722 };
723 
724 static struct configfs_subsystem nullb_subsys = {
725 	.su_group = {
726 		.cg_item = {
727 			.ci_namebuf = "nullb",
728 			.ci_type = &nullb_group_type,
729 		},
730 	},
731 };
732 
733 static inline int null_cache_active(struct nullb *nullb)
734 {
735 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
736 }
737 
738 static struct nullb_device *null_alloc_dev(void)
739 {
740 	struct nullb_device *dev;
741 
742 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
743 	if (!dev)
744 		return NULL;
745 
746 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
747 	dev->timeout_config.attr = null_timeout_attr;
748 	dev->requeue_config.attr = null_requeue_attr;
749 	dev->init_hctx_fault_config.attr = null_init_hctx_attr;
750 #endif
751 
752 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
753 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
754 	if (badblocks_init(&dev->badblocks, 0)) {
755 		kfree(dev);
756 		return NULL;
757 	}
758 
759 	dev->size = g_gb * 1024;
760 	dev->completion_nsec = g_completion_nsec;
761 	dev->submit_queues = g_submit_queues;
762 	dev->prev_submit_queues = g_submit_queues;
763 	dev->poll_queues = g_poll_queues;
764 	dev->prev_poll_queues = g_poll_queues;
765 	dev->home_node = g_home_node;
766 	dev->queue_mode = g_queue_mode;
767 	dev->blocksize = g_bs;
768 	dev->max_sectors = g_max_sectors;
769 	dev->irqmode = g_irqmode;
770 	dev->hw_queue_depth = g_hw_queue_depth;
771 	dev->blocking = g_blocking;
772 	dev->memory_backed = g_memory_backed;
773 	dev->discard = g_discard;
774 	dev->cache_size = g_cache_size;
775 	dev->mbps = g_mbps;
776 	dev->use_per_node_hctx = g_use_per_node_hctx;
777 	dev->zoned = g_zoned;
778 	dev->zone_size = g_zone_size;
779 	dev->zone_capacity = g_zone_capacity;
780 	dev->zone_nr_conv = g_zone_nr_conv;
781 	dev->zone_max_open = g_zone_max_open;
782 	dev->zone_max_active = g_zone_max_active;
783 	dev->zone_append_max_sectors = g_zone_append_max_sectors;
784 	dev->virt_boundary = g_virt_boundary;
785 	dev->no_sched = g_no_sched;
786 	dev->shared_tags = g_shared_tags;
787 	dev->shared_tag_bitmap = g_shared_tag_bitmap;
788 	dev->fua = g_fua;
789 
790 	return dev;
791 }
792 
793 static void null_free_dev(struct nullb_device *dev)
794 {
795 	if (!dev)
796 		return;
797 
798 	null_free_zoned_dev(dev);
799 	badblocks_exit(&dev->badblocks);
800 	kfree(dev);
801 }
802 
803 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
804 {
805 	struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer);
806 
807 	blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error);
808 	return HRTIMER_NORESTART;
809 }
810 
811 static void null_cmd_end_timer(struct nullb_cmd *cmd)
812 {
813 	ktime_t kt = cmd->nq->dev->completion_nsec;
814 
815 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
816 }
817 
818 static void null_complete_rq(struct request *rq)
819 {
820 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
821 
822 	blk_mq_end_request(rq, cmd->error);
823 }
824 
825 static struct nullb_page *null_alloc_page(void)
826 {
827 	struct nullb_page *t_page;
828 
829 	t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
830 	if (!t_page)
831 		return NULL;
832 
833 	t_page->page = alloc_pages(GFP_NOIO, 0);
834 	if (!t_page->page) {
835 		kfree(t_page);
836 		return NULL;
837 	}
838 
839 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
840 	return t_page;
841 }
842 
843 static void null_free_page(struct nullb_page *t_page)
844 {
845 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
846 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
847 		return;
848 	__free_page(t_page->page);
849 	kfree(t_page);
850 }
851 
852 static bool null_page_empty(struct nullb_page *page)
853 {
854 	int size = MAP_SZ - 2;
855 
856 	return find_first_bit(page->bitmap, size) == size;
857 }
858 
859 static void null_free_sector(struct nullb *nullb, sector_t sector,
860 	bool is_cache)
861 {
862 	unsigned int sector_bit;
863 	u64 idx;
864 	struct nullb_page *t_page, *ret;
865 	struct radix_tree_root *root;
866 
867 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
868 	idx = sector >> PAGE_SECTORS_SHIFT;
869 	sector_bit = (sector & SECTOR_MASK);
870 
871 	t_page = radix_tree_lookup(root, idx);
872 	if (t_page) {
873 		__clear_bit(sector_bit, t_page->bitmap);
874 
875 		if (null_page_empty(t_page)) {
876 			ret = radix_tree_delete_item(root, idx, t_page);
877 			WARN_ON(ret != t_page);
878 			null_free_page(ret);
879 			if (is_cache)
880 				nullb->dev->curr_cache -= PAGE_SIZE;
881 		}
882 	}
883 }
884 
885 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
886 	struct nullb_page *t_page, bool is_cache)
887 {
888 	struct radix_tree_root *root;
889 
890 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
891 
892 	if (radix_tree_insert(root, idx, t_page)) {
893 		null_free_page(t_page);
894 		t_page = radix_tree_lookup(root, idx);
895 		WARN_ON(!t_page || t_page->page->index != idx);
896 	} else if (is_cache)
897 		nullb->dev->curr_cache += PAGE_SIZE;
898 
899 	return t_page;
900 }
901 
902 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
903 {
904 	unsigned long pos = 0;
905 	int nr_pages;
906 	struct nullb_page *ret, *t_pages[FREE_BATCH];
907 	struct radix_tree_root *root;
908 
909 	root = is_cache ? &dev->cache : &dev->data;
910 
911 	do {
912 		int i;
913 
914 		nr_pages = radix_tree_gang_lookup(root,
915 				(void **)t_pages, pos, FREE_BATCH);
916 
917 		for (i = 0; i < nr_pages; i++) {
918 			pos = t_pages[i]->page->index;
919 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
920 			WARN_ON(ret != t_pages[i]);
921 			null_free_page(ret);
922 		}
923 
924 		pos++;
925 	} while (nr_pages == FREE_BATCH);
926 
927 	if (is_cache)
928 		dev->curr_cache = 0;
929 }
930 
931 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
932 	sector_t sector, bool for_write, bool is_cache)
933 {
934 	unsigned int sector_bit;
935 	u64 idx;
936 	struct nullb_page *t_page;
937 	struct radix_tree_root *root;
938 
939 	idx = sector >> PAGE_SECTORS_SHIFT;
940 	sector_bit = (sector & SECTOR_MASK);
941 
942 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
943 	t_page = radix_tree_lookup(root, idx);
944 	WARN_ON(t_page && t_page->page->index != idx);
945 
946 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
947 		return t_page;
948 
949 	return NULL;
950 }
951 
952 static struct nullb_page *null_lookup_page(struct nullb *nullb,
953 	sector_t sector, bool for_write, bool ignore_cache)
954 {
955 	struct nullb_page *page = NULL;
956 
957 	if (!ignore_cache)
958 		page = __null_lookup_page(nullb, sector, for_write, true);
959 	if (page)
960 		return page;
961 	return __null_lookup_page(nullb, sector, for_write, false);
962 }
963 
964 static struct nullb_page *null_insert_page(struct nullb *nullb,
965 					   sector_t sector, bool ignore_cache)
966 	__releases(&nullb->lock)
967 	__acquires(&nullb->lock)
968 {
969 	u64 idx;
970 	struct nullb_page *t_page;
971 
972 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
973 	if (t_page)
974 		return t_page;
975 
976 	spin_unlock_irq(&nullb->lock);
977 
978 	t_page = null_alloc_page();
979 	if (!t_page)
980 		goto out_lock;
981 
982 	if (radix_tree_preload(GFP_NOIO))
983 		goto out_freepage;
984 
985 	spin_lock_irq(&nullb->lock);
986 	idx = sector >> PAGE_SECTORS_SHIFT;
987 	t_page->page->index = idx;
988 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
989 	radix_tree_preload_end();
990 
991 	return t_page;
992 out_freepage:
993 	null_free_page(t_page);
994 out_lock:
995 	spin_lock_irq(&nullb->lock);
996 	return null_lookup_page(nullb, sector, true, ignore_cache);
997 }
998 
999 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1000 {
1001 	int i;
1002 	unsigned int offset;
1003 	u64 idx;
1004 	struct nullb_page *t_page, *ret;
1005 	void *dst, *src;
1006 
1007 	idx = c_page->page->index;
1008 
1009 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1010 
1011 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1012 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1013 		null_free_page(c_page);
1014 		if (t_page && null_page_empty(t_page)) {
1015 			ret = radix_tree_delete_item(&nullb->dev->data,
1016 				idx, t_page);
1017 			null_free_page(t_page);
1018 		}
1019 		return 0;
1020 	}
1021 
1022 	if (!t_page)
1023 		return -ENOMEM;
1024 
1025 	src = kmap_local_page(c_page->page);
1026 	dst = kmap_local_page(t_page->page);
1027 
1028 	for (i = 0; i < PAGE_SECTORS;
1029 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1030 		if (test_bit(i, c_page->bitmap)) {
1031 			offset = (i << SECTOR_SHIFT);
1032 			memcpy(dst + offset, src + offset,
1033 				nullb->dev->blocksize);
1034 			__set_bit(i, t_page->bitmap);
1035 		}
1036 	}
1037 
1038 	kunmap_local(dst);
1039 	kunmap_local(src);
1040 
1041 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1042 	null_free_page(ret);
1043 	nullb->dev->curr_cache -= PAGE_SIZE;
1044 
1045 	return 0;
1046 }
1047 
1048 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1049 {
1050 	int i, err, nr_pages;
1051 	struct nullb_page *c_pages[FREE_BATCH];
1052 	unsigned long flushed = 0, one_round;
1053 
1054 again:
1055 	if ((nullb->dev->cache_size * 1024 * 1024) >
1056 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1057 		return 0;
1058 
1059 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1060 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1061 	/*
1062 	 * nullb_flush_cache_page could unlock before using the c_pages. To
1063 	 * avoid race, we don't allow page free
1064 	 */
1065 	for (i = 0; i < nr_pages; i++) {
1066 		nullb->cache_flush_pos = c_pages[i]->page->index;
1067 		/*
1068 		 * We found the page which is being flushed to disk by other
1069 		 * threads
1070 		 */
1071 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1072 			c_pages[i] = NULL;
1073 		else
1074 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1075 	}
1076 
1077 	one_round = 0;
1078 	for (i = 0; i < nr_pages; i++) {
1079 		if (c_pages[i] == NULL)
1080 			continue;
1081 		err = null_flush_cache_page(nullb, c_pages[i]);
1082 		if (err)
1083 			return err;
1084 		one_round++;
1085 	}
1086 	flushed += one_round << PAGE_SHIFT;
1087 
1088 	if (n > flushed) {
1089 		if (nr_pages == 0)
1090 			nullb->cache_flush_pos = 0;
1091 		if (one_round == 0) {
1092 			/* give other threads a chance */
1093 			spin_unlock_irq(&nullb->lock);
1094 			spin_lock_irq(&nullb->lock);
1095 		}
1096 		goto again;
1097 	}
1098 	return 0;
1099 }
1100 
1101 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1102 	unsigned int off, sector_t sector, size_t n, bool is_fua)
1103 {
1104 	size_t temp, count = 0;
1105 	unsigned int offset;
1106 	struct nullb_page *t_page;
1107 
1108 	while (count < n) {
1109 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1110 
1111 		if (null_cache_active(nullb) && !is_fua)
1112 			null_make_cache_space(nullb, PAGE_SIZE);
1113 
1114 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1115 		t_page = null_insert_page(nullb, sector,
1116 			!null_cache_active(nullb) || is_fua);
1117 		if (!t_page)
1118 			return -ENOSPC;
1119 
1120 		memcpy_page(t_page->page, offset, source, off + count, temp);
1121 
1122 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1123 
1124 		if (is_fua)
1125 			null_free_sector(nullb, sector, true);
1126 
1127 		count += temp;
1128 		sector += temp >> SECTOR_SHIFT;
1129 	}
1130 	return 0;
1131 }
1132 
1133 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1134 	unsigned int off, sector_t sector, size_t n)
1135 {
1136 	size_t temp, count = 0;
1137 	unsigned int offset;
1138 	struct nullb_page *t_page;
1139 
1140 	while (count < n) {
1141 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1142 
1143 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1144 		t_page = null_lookup_page(nullb, sector, false,
1145 			!null_cache_active(nullb));
1146 
1147 		if (t_page)
1148 			memcpy_page(dest, off + count, t_page->page, offset,
1149 				    temp);
1150 		else
1151 			zero_user(dest, off + count, temp);
1152 
1153 		count += temp;
1154 		sector += temp >> SECTOR_SHIFT;
1155 	}
1156 	return 0;
1157 }
1158 
1159 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1160 			       unsigned int len, unsigned int off)
1161 {
1162 	memset_page(page, off, 0xff, len);
1163 }
1164 
1165 blk_status_t null_handle_discard(struct nullb_device *dev,
1166 				 sector_t sector, sector_t nr_sectors)
1167 {
1168 	struct nullb *nullb = dev->nullb;
1169 	size_t n = nr_sectors << SECTOR_SHIFT;
1170 	size_t temp;
1171 
1172 	spin_lock_irq(&nullb->lock);
1173 	while (n > 0) {
1174 		temp = min_t(size_t, n, dev->blocksize);
1175 		null_free_sector(nullb, sector, false);
1176 		if (null_cache_active(nullb))
1177 			null_free_sector(nullb, sector, true);
1178 		sector += temp >> SECTOR_SHIFT;
1179 		n -= temp;
1180 	}
1181 	spin_unlock_irq(&nullb->lock);
1182 
1183 	return BLK_STS_OK;
1184 }
1185 
1186 static blk_status_t null_handle_flush(struct nullb *nullb)
1187 {
1188 	int err;
1189 
1190 	if (!null_cache_active(nullb))
1191 		return 0;
1192 
1193 	spin_lock_irq(&nullb->lock);
1194 	while (true) {
1195 		err = null_make_cache_space(nullb,
1196 			nullb->dev->cache_size * 1024 * 1024);
1197 		if (err || nullb->dev->curr_cache == 0)
1198 			break;
1199 	}
1200 
1201 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1202 	spin_unlock_irq(&nullb->lock);
1203 	return errno_to_blk_status(err);
1204 }
1205 
1206 static int null_transfer(struct nullb *nullb, struct page *page,
1207 	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1208 	bool is_fua)
1209 {
1210 	struct nullb_device *dev = nullb->dev;
1211 	unsigned int valid_len = len;
1212 	int err = 0;
1213 
1214 	if (!is_write) {
1215 		if (dev->zoned)
1216 			valid_len = null_zone_valid_read_len(nullb,
1217 				sector, len);
1218 
1219 		if (valid_len) {
1220 			err = copy_from_nullb(nullb, page, off,
1221 				sector, valid_len);
1222 			off += valid_len;
1223 			len -= valid_len;
1224 		}
1225 
1226 		if (len)
1227 			nullb_fill_pattern(nullb, page, len, off);
1228 		flush_dcache_page(page);
1229 	} else {
1230 		flush_dcache_page(page);
1231 		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1232 	}
1233 
1234 	return err;
1235 }
1236 
1237 static blk_status_t null_handle_rq(struct nullb_cmd *cmd)
1238 {
1239 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1240 	struct nullb *nullb = cmd->nq->dev->nullb;
1241 	int err = 0;
1242 	unsigned int len;
1243 	sector_t sector = blk_rq_pos(rq);
1244 	struct req_iterator iter;
1245 	struct bio_vec bvec;
1246 
1247 	spin_lock_irq(&nullb->lock);
1248 	rq_for_each_segment(bvec, rq, iter) {
1249 		len = bvec.bv_len;
1250 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1251 				     op_is_write(req_op(rq)), sector,
1252 				     rq->cmd_flags & REQ_FUA);
1253 		if (err)
1254 			break;
1255 		sector += len >> SECTOR_SHIFT;
1256 	}
1257 	spin_unlock_irq(&nullb->lock);
1258 
1259 	return errno_to_blk_status(err);
1260 }
1261 
1262 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1263 {
1264 	struct nullb_device *dev = cmd->nq->dev;
1265 	struct nullb *nullb = dev->nullb;
1266 	blk_status_t sts = BLK_STS_OK;
1267 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1268 
1269 	if (!hrtimer_active(&nullb->bw_timer))
1270 		hrtimer_restart(&nullb->bw_timer);
1271 
1272 	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1273 		blk_mq_stop_hw_queues(nullb->q);
1274 		/* race with timer */
1275 		if (atomic_long_read(&nullb->cur_bytes) > 0)
1276 			blk_mq_start_stopped_hw_queues(nullb->q, true);
1277 		/* requeue request */
1278 		sts = BLK_STS_DEV_RESOURCE;
1279 	}
1280 	return sts;
1281 }
1282 
1283 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1284 						 sector_t sector,
1285 						 sector_t nr_sectors)
1286 {
1287 	struct badblocks *bb = &cmd->nq->dev->badblocks;
1288 	sector_t first_bad;
1289 	int bad_sectors;
1290 
1291 	if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1292 		return BLK_STS_IOERR;
1293 
1294 	return BLK_STS_OK;
1295 }
1296 
1297 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1298 						     enum req_op op,
1299 						     sector_t sector,
1300 						     sector_t nr_sectors)
1301 {
1302 	struct nullb_device *dev = cmd->nq->dev;
1303 
1304 	if (op == REQ_OP_DISCARD)
1305 		return null_handle_discard(dev, sector, nr_sectors);
1306 
1307 	return null_handle_rq(cmd);
1308 }
1309 
1310 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1311 {
1312 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1313 	struct nullb_device *dev = cmd->nq->dev;
1314 	struct bio *bio;
1315 
1316 	if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) {
1317 		__rq_for_each_bio(bio, rq)
1318 			zero_fill_bio(bio);
1319 	}
1320 }
1321 
1322 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1323 {
1324 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1325 
1326 	/*
1327 	 * Since root privileges are required to configure the null_blk
1328 	 * driver, it is fine that this driver does not initialize the
1329 	 * data buffers of read commands. Zero-initialize these buffers
1330 	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1331 	 * about null_blk not initializing read data buffers.
1332 	 */
1333 	if (IS_ENABLED(CONFIG_KMSAN))
1334 		nullb_zero_read_cmd_buffer(cmd);
1335 
1336 	/* Complete IO by inline, softirq or timer */
1337 	switch (cmd->nq->dev->irqmode) {
1338 	case NULL_IRQ_SOFTIRQ:
1339 		blk_mq_complete_request(rq);
1340 		break;
1341 	case NULL_IRQ_NONE:
1342 		blk_mq_end_request(rq, cmd->error);
1343 		break;
1344 	case NULL_IRQ_TIMER:
1345 		null_cmd_end_timer(cmd);
1346 		break;
1347 	}
1348 }
1349 
1350 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1351 			      sector_t sector, unsigned int nr_sectors)
1352 {
1353 	struct nullb_device *dev = cmd->nq->dev;
1354 	blk_status_t ret;
1355 
1356 	if (dev->badblocks.shift != -1) {
1357 		ret = null_handle_badblocks(cmd, sector, nr_sectors);
1358 		if (ret != BLK_STS_OK)
1359 			return ret;
1360 	}
1361 
1362 	if (dev->memory_backed)
1363 		return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1364 
1365 	return BLK_STS_OK;
1366 }
1367 
1368 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1369 			    sector_t nr_sectors, enum req_op op)
1370 {
1371 	struct nullb_device *dev = cmd->nq->dev;
1372 	struct nullb *nullb = dev->nullb;
1373 	blk_status_t sts;
1374 
1375 	if (op == REQ_OP_FLUSH) {
1376 		cmd->error = null_handle_flush(nullb);
1377 		goto out;
1378 	}
1379 
1380 	if (dev->zoned)
1381 		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1382 	else
1383 		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1384 
1385 	/* Do not overwrite errors (e.g. timeout errors) */
1386 	if (cmd->error == BLK_STS_OK)
1387 		cmd->error = sts;
1388 
1389 out:
1390 	nullb_complete_cmd(cmd);
1391 }
1392 
1393 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1394 {
1395 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1396 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1397 	unsigned int mbps = nullb->dev->mbps;
1398 
1399 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1400 		return HRTIMER_NORESTART;
1401 
1402 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1403 	blk_mq_start_stopped_hw_queues(nullb->q, true);
1404 
1405 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1406 
1407 	return HRTIMER_RESTART;
1408 }
1409 
1410 static void nullb_setup_bwtimer(struct nullb *nullb)
1411 {
1412 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1413 
1414 	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1415 	nullb->bw_timer.function = nullb_bwtimer_fn;
1416 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1417 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1418 }
1419 
1420 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1421 
1422 static bool should_timeout_request(struct request *rq)
1423 {
1424 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1425 	struct nullb_device *dev = cmd->nq->dev;
1426 
1427 	return should_fail(&dev->timeout_config.attr, 1);
1428 }
1429 
1430 static bool should_requeue_request(struct request *rq)
1431 {
1432 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1433 	struct nullb_device *dev = cmd->nq->dev;
1434 
1435 	return should_fail(&dev->requeue_config.attr, 1);
1436 }
1437 
1438 static bool should_init_hctx_fail(struct nullb_device *dev)
1439 {
1440 	return should_fail(&dev->init_hctx_fault_config.attr, 1);
1441 }
1442 
1443 #else
1444 
1445 static bool should_timeout_request(struct request *rq)
1446 {
1447 	return false;
1448 }
1449 
1450 static bool should_requeue_request(struct request *rq)
1451 {
1452 	return false;
1453 }
1454 
1455 static bool should_init_hctx_fail(struct nullb_device *dev)
1456 {
1457 	return false;
1458 }
1459 
1460 #endif
1461 
1462 static void null_map_queues(struct blk_mq_tag_set *set)
1463 {
1464 	struct nullb *nullb = set->driver_data;
1465 	int i, qoff;
1466 	unsigned int submit_queues = g_submit_queues;
1467 	unsigned int poll_queues = g_poll_queues;
1468 
1469 	if (nullb) {
1470 		struct nullb_device *dev = nullb->dev;
1471 
1472 		/*
1473 		 * Refer nr_hw_queues of the tag set to check if the expected
1474 		 * number of hardware queues are prepared. If block layer failed
1475 		 * to prepare them, use previous numbers of submit queues and
1476 		 * poll queues to map queues.
1477 		 */
1478 		if (set->nr_hw_queues ==
1479 		    dev->submit_queues + dev->poll_queues) {
1480 			submit_queues = dev->submit_queues;
1481 			poll_queues = dev->poll_queues;
1482 		} else if (set->nr_hw_queues ==
1483 			   dev->prev_submit_queues + dev->prev_poll_queues) {
1484 			submit_queues = dev->prev_submit_queues;
1485 			poll_queues = dev->prev_poll_queues;
1486 		} else {
1487 			pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1488 				set->nr_hw_queues);
1489 			WARN_ON_ONCE(true);
1490 			submit_queues = 1;
1491 			poll_queues = 0;
1492 		}
1493 	}
1494 
1495 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1496 		struct blk_mq_queue_map *map = &set->map[i];
1497 
1498 		switch (i) {
1499 		case HCTX_TYPE_DEFAULT:
1500 			map->nr_queues = submit_queues;
1501 			break;
1502 		case HCTX_TYPE_READ:
1503 			map->nr_queues = 0;
1504 			continue;
1505 		case HCTX_TYPE_POLL:
1506 			map->nr_queues = poll_queues;
1507 			break;
1508 		}
1509 		map->queue_offset = qoff;
1510 		qoff += map->nr_queues;
1511 		blk_mq_map_queues(map);
1512 	}
1513 }
1514 
1515 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1516 {
1517 	struct nullb_queue *nq = hctx->driver_data;
1518 	LIST_HEAD(list);
1519 	int nr = 0;
1520 	struct request *rq;
1521 
1522 	spin_lock(&nq->poll_lock);
1523 	list_splice_init(&nq->poll_list, &list);
1524 	list_for_each_entry(rq, &list, queuelist)
1525 		blk_mq_set_request_complete(rq);
1526 	spin_unlock(&nq->poll_lock);
1527 
1528 	while (!list_empty(&list)) {
1529 		struct nullb_cmd *cmd;
1530 		struct request *req;
1531 
1532 		req = list_first_entry(&list, struct request, queuelist);
1533 		list_del_init(&req->queuelist);
1534 		cmd = blk_mq_rq_to_pdu(req);
1535 		cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1536 						blk_rq_sectors(req));
1537 		if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1538 					blk_mq_end_request_batch))
1539 			blk_mq_end_request(req, cmd->error);
1540 		nr++;
1541 	}
1542 
1543 	return nr;
1544 }
1545 
1546 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1547 {
1548 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1549 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1550 
1551 	if (hctx->type == HCTX_TYPE_POLL) {
1552 		struct nullb_queue *nq = hctx->driver_data;
1553 
1554 		spin_lock(&nq->poll_lock);
1555 		/* The request may have completed meanwhile. */
1556 		if (blk_mq_request_completed(rq)) {
1557 			spin_unlock(&nq->poll_lock);
1558 			return BLK_EH_DONE;
1559 		}
1560 		list_del_init(&rq->queuelist);
1561 		spin_unlock(&nq->poll_lock);
1562 	}
1563 
1564 	pr_info("rq %p timed out\n", rq);
1565 
1566 	/*
1567 	 * If the device is marked as blocking (i.e. memory backed or zoned
1568 	 * device), the submission path may be blocked waiting for resources
1569 	 * and cause real timeouts. For these real timeouts, the submission
1570 	 * path will complete the request using blk_mq_complete_request().
1571 	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1572 	 */
1573 	cmd->error = BLK_STS_TIMEOUT;
1574 	if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1575 		blk_mq_complete_request(rq);
1576 	return BLK_EH_DONE;
1577 }
1578 
1579 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1580 				  const struct blk_mq_queue_data *bd)
1581 {
1582 	struct request *rq = bd->rq;
1583 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1584 	struct nullb_queue *nq = hctx->driver_data;
1585 	sector_t nr_sectors = blk_rq_sectors(rq);
1586 	sector_t sector = blk_rq_pos(rq);
1587 	const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1588 
1589 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1590 
1591 	if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1592 		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1593 		cmd->timer.function = null_cmd_timer_expired;
1594 	}
1595 	cmd->error = BLK_STS_OK;
1596 	cmd->nq = nq;
1597 	cmd->fake_timeout = should_timeout_request(rq) ||
1598 		blk_should_fake_timeout(rq->q);
1599 
1600 	if (should_requeue_request(rq)) {
1601 		/*
1602 		 * Alternate between hitting the core BUSY path, and the
1603 		 * driver driven requeue path
1604 		 */
1605 		nq->requeue_selection++;
1606 		if (nq->requeue_selection & 1)
1607 			return BLK_STS_RESOURCE;
1608 		blk_mq_requeue_request(rq, true);
1609 		return BLK_STS_OK;
1610 	}
1611 
1612 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) {
1613 		blk_status_t sts = null_handle_throttled(cmd);
1614 
1615 		if (sts != BLK_STS_OK)
1616 			return sts;
1617 	}
1618 
1619 	blk_mq_start_request(rq);
1620 
1621 	if (is_poll) {
1622 		spin_lock(&nq->poll_lock);
1623 		list_add_tail(&rq->queuelist, &nq->poll_list);
1624 		spin_unlock(&nq->poll_lock);
1625 		return BLK_STS_OK;
1626 	}
1627 	if (cmd->fake_timeout)
1628 		return BLK_STS_OK;
1629 
1630 	null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1631 	return BLK_STS_OK;
1632 }
1633 
1634 static void null_queue_rqs(struct request **rqlist)
1635 {
1636 	struct request *requeue_list = NULL;
1637 	struct request **requeue_lastp = &requeue_list;
1638 	struct blk_mq_queue_data bd = { };
1639 	blk_status_t ret;
1640 
1641 	do {
1642 		struct request *rq = rq_list_pop(rqlist);
1643 
1644 		bd.rq = rq;
1645 		ret = null_queue_rq(rq->mq_hctx, &bd);
1646 		if (ret != BLK_STS_OK)
1647 			rq_list_add_tail(&requeue_lastp, rq);
1648 	} while (!rq_list_empty(*rqlist));
1649 
1650 	*rqlist = requeue_list;
1651 }
1652 
1653 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1654 {
1655 	nq->dev = nullb->dev;
1656 	INIT_LIST_HEAD(&nq->poll_list);
1657 	spin_lock_init(&nq->poll_lock);
1658 }
1659 
1660 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1661 			  unsigned int hctx_idx)
1662 {
1663 	struct nullb *nullb = hctx->queue->queuedata;
1664 	struct nullb_queue *nq;
1665 
1666 	if (should_init_hctx_fail(nullb->dev))
1667 		return -EFAULT;
1668 
1669 	nq = &nullb->queues[hctx_idx];
1670 	hctx->driver_data = nq;
1671 	null_init_queue(nullb, nq);
1672 
1673 	return 0;
1674 }
1675 
1676 static const struct blk_mq_ops null_mq_ops = {
1677 	.queue_rq       = null_queue_rq,
1678 	.queue_rqs	= null_queue_rqs,
1679 	.complete	= null_complete_rq,
1680 	.timeout	= null_timeout_rq,
1681 	.poll		= null_poll,
1682 	.map_queues	= null_map_queues,
1683 	.init_hctx	= null_init_hctx,
1684 };
1685 
1686 static void null_del_dev(struct nullb *nullb)
1687 {
1688 	struct nullb_device *dev;
1689 
1690 	if (!nullb)
1691 		return;
1692 
1693 	dev = nullb->dev;
1694 
1695 	ida_free(&nullb_indexes, nullb->index);
1696 
1697 	list_del_init(&nullb->list);
1698 
1699 	del_gendisk(nullb->disk);
1700 
1701 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1702 		hrtimer_cancel(&nullb->bw_timer);
1703 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1704 		blk_mq_start_stopped_hw_queues(nullb->q, true);
1705 	}
1706 
1707 	put_disk(nullb->disk);
1708 	if (nullb->tag_set == &nullb->__tag_set)
1709 		blk_mq_free_tag_set(nullb->tag_set);
1710 	kfree(nullb->queues);
1711 	if (null_cache_active(nullb))
1712 		null_free_device_storage(nullb->dev, true);
1713 	kfree(nullb);
1714 	dev->nullb = NULL;
1715 }
1716 
1717 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim)
1718 {
1719 	if (nullb->dev->discard == false)
1720 		return;
1721 
1722 	if (!nullb->dev->memory_backed) {
1723 		nullb->dev->discard = false;
1724 		pr_info("discard option is ignored without memory backing\n");
1725 		return;
1726 	}
1727 
1728 	if (nullb->dev->zoned) {
1729 		nullb->dev->discard = false;
1730 		pr_info("discard option is ignored in zoned mode\n");
1731 		return;
1732 	}
1733 
1734 	lim->max_hw_discard_sectors = UINT_MAX >> 9;
1735 }
1736 
1737 static const struct block_device_operations null_ops = {
1738 	.owner		= THIS_MODULE,
1739 	.report_zones	= null_report_zones,
1740 };
1741 
1742 static int setup_queues(struct nullb *nullb)
1743 {
1744 	int nqueues = nr_cpu_ids;
1745 
1746 	if (g_poll_queues)
1747 		nqueues += g_poll_queues;
1748 
1749 	nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1750 				GFP_KERNEL);
1751 	if (!nullb->queues)
1752 		return -ENOMEM;
1753 
1754 	return 0;
1755 }
1756 
1757 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues)
1758 {
1759 	set->ops = &null_mq_ops;
1760 	set->cmd_size = sizeof(struct nullb_cmd);
1761 	set->timeout = 5 * HZ;
1762 	set->nr_maps = 1;
1763 	if (poll_queues) {
1764 		set->nr_hw_queues += poll_queues;
1765 		set->nr_maps += 2;
1766 	}
1767 	return blk_mq_alloc_tag_set(set);
1768 }
1769 
1770 static int null_init_global_tag_set(void)
1771 {
1772 	int error;
1773 
1774 	if (tag_set.ops)
1775 		return 0;
1776 
1777 	tag_set.nr_hw_queues = g_submit_queues;
1778 	tag_set.queue_depth = g_hw_queue_depth;
1779 	tag_set.numa_node = g_home_node;
1780 	tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1781 	if (g_no_sched)
1782 		tag_set.flags |= BLK_MQ_F_NO_SCHED;
1783 	if (g_shared_tag_bitmap)
1784 		tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1785 	if (g_blocking)
1786 		tag_set.flags |= BLK_MQ_F_BLOCKING;
1787 
1788 	error = null_init_tag_set(&tag_set, g_poll_queues);
1789 	if (error)
1790 		tag_set.ops = NULL;
1791 	return error;
1792 }
1793 
1794 static int null_setup_tagset(struct nullb *nullb)
1795 {
1796 	if (nullb->dev->shared_tags) {
1797 		nullb->tag_set = &tag_set;
1798 		return null_init_global_tag_set();
1799 	}
1800 
1801 	nullb->tag_set = &nullb->__tag_set;
1802 	nullb->tag_set->driver_data = nullb;
1803 	nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues;
1804 	nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth;
1805 	nullb->tag_set->numa_node = nullb->dev->home_node;
1806 	nullb->tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1807 	if (nullb->dev->no_sched)
1808 		nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED;
1809 	if (nullb->dev->shared_tag_bitmap)
1810 		nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1811 	if (nullb->dev->blocking)
1812 		nullb->tag_set->flags |= BLK_MQ_F_BLOCKING;
1813 	return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues);
1814 }
1815 
1816 static int null_validate_conf(struct nullb_device *dev)
1817 {
1818 	if (dev->queue_mode == NULL_Q_RQ) {
1819 		pr_err("legacy IO path is no longer available\n");
1820 		return -EINVAL;
1821 	}
1822 	if (dev->queue_mode == NULL_Q_BIO) {
1823 		pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n");
1824 		dev->queue_mode = NULL_Q_MQ;
1825 	}
1826 
1827 	if (blk_validate_block_size(dev->blocksize))
1828 		return -EINVAL;
1829 
1830 	if (dev->use_per_node_hctx) {
1831 		if (dev->submit_queues != nr_online_nodes)
1832 			dev->submit_queues = nr_online_nodes;
1833 	} else if (dev->submit_queues > nr_cpu_ids)
1834 		dev->submit_queues = nr_cpu_ids;
1835 	else if (dev->submit_queues == 0)
1836 		dev->submit_queues = 1;
1837 	dev->prev_submit_queues = dev->submit_queues;
1838 
1839 	if (dev->poll_queues > g_poll_queues)
1840 		dev->poll_queues = g_poll_queues;
1841 	dev->prev_poll_queues = dev->poll_queues;
1842 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1843 
1844 	/* Do memory allocation, so set blocking */
1845 	if (dev->memory_backed)
1846 		dev->blocking = true;
1847 	else /* cache is meaningless */
1848 		dev->cache_size = 0;
1849 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1850 						dev->cache_size);
1851 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1852 
1853 	if (dev->zoned &&
1854 	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1855 		pr_err("zone_size must be power-of-two\n");
1856 		return -EINVAL;
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1863 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1864 {
1865 	if (!str[0])
1866 		return true;
1867 
1868 	if (!setup_fault_attr(attr, str))
1869 		return false;
1870 
1871 	attr->verbose = 0;
1872 	return true;
1873 }
1874 #endif
1875 
1876 static bool null_setup_fault(void)
1877 {
1878 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1879 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1880 		return false;
1881 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1882 		return false;
1883 	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1884 		return false;
1885 #endif
1886 	return true;
1887 }
1888 
1889 static int null_add_dev(struct nullb_device *dev)
1890 {
1891 	struct queue_limits lim = {
1892 		.logical_block_size	= dev->blocksize,
1893 		.physical_block_size	= dev->blocksize,
1894 		.max_hw_sectors		= dev->max_sectors,
1895 	};
1896 
1897 	struct nullb *nullb;
1898 	int rv;
1899 
1900 	rv = null_validate_conf(dev);
1901 	if (rv)
1902 		return rv;
1903 
1904 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1905 	if (!nullb) {
1906 		rv = -ENOMEM;
1907 		goto out;
1908 	}
1909 	nullb->dev = dev;
1910 	dev->nullb = nullb;
1911 
1912 	spin_lock_init(&nullb->lock);
1913 
1914 	rv = setup_queues(nullb);
1915 	if (rv)
1916 		goto out_free_nullb;
1917 
1918 	rv = null_setup_tagset(nullb);
1919 	if (rv)
1920 		goto out_cleanup_queues;
1921 
1922 	if (dev->virt_boundary)
1923 		lim.virt_boundary_mask = PAGE_SIZE - 1;
1924 	null_config_discard(nullb, &lim);
1925 	if (dev->zoned) {
1926 		rv = null_init_zoned_dev(dev, &lim);
1927 		if (rv)
1928 			goto out_cleanup_tags;
1929 	}
1930 
1931 	nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb);
1932 	if (IS_ERR(nullb->disk)) {
1933 		rv = PTR_ERR(nullb->disk);
1934 		goto out_cleanup_zone;
1935 	}
1936 	nullb->q = nullb->disk->queue;
1937 
1938 	if (dev->mbps) {
1939 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1940 		nullb_setup_bwtimer(nullb);
1941 	}
1942 
1943 	if (dev->cache_size > 0) {
1944 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1945 		blk_queue_write_cache(nullb->q, true, dev->fua);
1946 	}
1947 
1948 	nullb->q->queuedata = nullb;
1949 	blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
1950 
1951 	rv = ida_alloc(&nullb_indexes, GFP_KERNEL);
1952 	if (rv < 0)
1953 		goto out_cleanup_disk;
1954 
1955 	nullb->index = rv;
1956 	dev->index = rv;
1957 
1958 	if (config_item_name(&dev->group.cg_item)) {
1959 		/* Use configfs dir name as the device name */
1960 		snprintf(nullb->disk_name, sizeof(nullb->disk_name),
1961 			 "%s", config_item_name(&dev->group.cg_item));
1962 	} else {
1963 		sprintf(nullb->disk_name, "nullb%d", nullb->index);
1964 	}
1965 
1966 	set_capacity(nullb->disk,
1967 		((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT);
1968 	nullb->disk->major = null_major;
1969 	nullb->disk->first_minor = nullb->index;
1970 	nullb->disk->minors = 1;
1971 	nullb->disk->fops = &null_ops;
1972 	nullb->disk->private_data = nullb;
1973 	strscpy_pad(nullb->disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1974 
1975 	if (nullb->dev->zoned) {
1976 		rv = null_register_zoned_dev(nullb);
1977 		if (rv)
1978 			goto out_ida_free;
1979 	}
1980 
1981 	rv = add_disk(nullb->disk);
1982 	if (rv)
1983 		goto out_ida_free;
1984 
1985 	list_add_tail(&nullb->list, &nullb_list);
1986 
1987 	pr_info("disk %s created\n", nullb->disk_name);
1988 
1989 	return 0;
1990 
1991 out_ida_free:
1992 	ida_free(&nullb_indexes, nullb->index);
1993 out_cleanup_disk:
1994 	put_disk(nullb->disk);
1995 out_cleanup_zone:
1996 	null_free_zoned_dev(dev);
1997 out_cleanup_tags:
1998 	if (nullb->tag_set == &nullb->__tag_set)
1999 		blk_mq_free_tag_set(nullb->tag_set);
2000 out_cleanup_queues:
2001 	kfree(nullb->queues);
2002 out_free_nullb:
2003 	kfree(nullb);
2004 	dev->nullb = NULL;
2005 out:
2006 	return rv;
2007 }
2008 
2009 static struct nullb *null_find_dev_by_name(const char *name)
2010 {
2011 	struct nullb *nullb = NULL, *nb;
2012 
2013 	mutex_lock(&lock);
2014 	list_for_each_entry(nb, &nullb_list, list) {
2015 		if (strcmp(nb->disk_name, name) == 0) {
2016 			nullb = nb;
2017 			break;
2018 		}
2019 	}
2020 	mutex_unlock(&lock);
2021 
2022 	return nullb;
2023 }
2024 
2025 static int null_create_dev(void)
2026 {
2027 	struct nullb_device *dev;
2028 	int ret;
2029 
2030 	dev = null_alloc_dev();
2031 	if (!dev)
2032 		return -ENOMEM;
2033 
2034 	mutex_lock(&lock);
2035 	ret = null_add_dev(dev);
2036 	mutex_unlock(&lock);
2037 	if (ret) {
2038 		null_free_dev(dev);
2039 		return ret;
2040 	}
2041 
2042 	return 0;
2043 }
2044 
2045 static void null_destroy_dev(struct nullb *nullb)
2046 {
2047 	struct nullb_device *dev = nullb->dev;
2048 
2049 	null_del_dev(nullb);
2050 	null_free_device_storage(dev, false);
2051 	null_free_dev(dev);
2052 }
2053 
2054 static int __init null_init(void)
2055 {
2056 	int ret = 0;
2057 	unsigned int i;
2058 	struct nullb *nullb;
2059 
2060 	if (g_bs > PAGE_SIZE) {
2061 		pr_warn("invalid block size\n");
2062 		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2063 		g_bs = PAGE_SIZE;
2064 	}
2065 
2066 	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2067 		pr_err("invalid home_node value\n");
2068 		g_home_node = NUMA_NO_NODE;
2069 	}
2070 
2071 	if (!null_setup_fault())
2072 		return -EINVAL;
2073 
2074 	if (g_queue_mode == NULL_Q_RQ) {
2075 		pr_err("legacy IO path is no longer available\n");
2076 		return -EINVAL;
2077 	}
2078 
2079 	if (g_use_per_node_hctx) {
2080 		if (g_submit_queues != nr_online_nodes) {
2081 			pr_warn("submit_queues param is set to %u.\n",
2082 				nr_online_nodes);
2083 			g_submit_queues = nr_online_nodes;
2084 		}
2085 	} else if (g_submit_queues > nr_cpu_ids) {
2086 		g_submit_queues = nr_cpu_ids;
2087 	} else if (g_submit_queues <= 0) {
2088 		g_submit_queues = 1;
2089 	}
2090 
2091 	config_group_init(&nullb_subsys.su_group);
2092 	mutex_init(&nullb_subsys.su_mutex);
2093 
2094 	ret = configfs_register_subsystem(&nullb_subsys);
2095 	if (ret)
2096 		return ret;
2097 
2098 	mutex_init(&lock);
2099 
2100 	null_major = register_blkdev(0, "nullb");
2101 	if (null_major < 0) {
2102 		ret = null_major;
2103 		goto err_conf;
2104 	}
2105 
2106 	for (i = 0; i < nr_devices; i++) {
2107 		ret = null_create_dev();
2108 		if (ret)
2109 			goto err_dev;
2110 	}
2111 
2112 	pr_info("module loaded\n");
2113 	return 0;
2114 
2115 err_dev:
2116 	while (!list_empty(&nullb_list)) {
2117 		nullb = list_entry(nullb_list.next, struct nullb, list);
2118 		null_destroy_dev(nullb);
2119 	}
2120 	unregister_blkdev(null_major, "nullb");
2121 err_conf:
2122 	configfs_unregister_subsystem(&nullb_subsys);
2123 	return ret;
2124 }
2125 
2126 static void __exit null_exit(void)
2127 {
2128 	struct nullb *nullb;
2129 
2130 	configfs_unregister_subsystem(&nullb_subsys);
2131 
2132 	unregister_blkdev(null_major, "nullb");
2133 
2134 	mutex_lock(&lock);
2135 	while (!list_empty(&nullb_list)) {
2136 		nullb = list_entry(nullb_list.next, struct nullb, list);
2137 		null_destroy_dev(nullb);
2138 	}
2139 	mutex_unlock(&lock);
2140 
2141 	if (tag_set.ops)
2142 		blk_mq_free_tag_set(&tag_set);
2143 
2144 	mutex_destroy(&lock);
2145 }
2146 
2147 module_init(null_init);
2148 module_exit(null_exit);
2149 
2150 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2151 MODULE_DESCRIPTION("multi queue aware block test driver");
2152 MODULE_LICENSE("GPL");
2153