1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and 4 * Shaohua Li <shli@fb.com> 5 */ 6 #include <linux/module.h> 7 8 #include <linux/moduleparam.h> 9 #include <linux/sched.h> 10 #include <linux/fs.h> 11 #include <linux/init.h> 12 #include "null_blk.h" 13 14 #undef pr_fmt 15 #define pr_fmt(fmt) "null_blk: " fmt 16 17 #define FREE_BATCH 16 18 19 #define TICKS_PER_SEC 50ULL 20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC) 21 22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 23 static DECLARE_FAULT_ATTR(null_timeout_attr); 24 static DECLARE_FAULT_ATTR(null_requeue_attr); 25 static DECLARE_FAULT_ATTR(null_init_hctx_attr); 26 #endif 27 28 static inline u64 mb_per_tick(int mbps) 29 { 30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps); 31 } 32 33 /* 34 * Status flags for nullb_device. 35 * 36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure. 37 * UP: Device is currently on and visible in userspace. 38 * THROTTLED: Device is being throttled. 39 * CACHE: Device is using a write-back cache. 40 */ 41 enum nullb_device_flags { 42 NULLB_DEV_FL_CONFIGURED = 0, 43 NULLB_DEV_FL_UP = 1, 44 NULLB_DEV_FL_THROTTLED = 2, 45 NULLB_DEV_FL_CACHE = 3, 46 }; 47 48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2) 49 /* 50 * nullb_page is a page in memory for nullb devices. 51 * 52 * @page: The page holding the data. 53 * @bitmap: The bitmap represents which sector in the page has data. 54 * Each bit represents one block size. For example, sector 8 55 * will use the 7th bit 56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache 57 * page is being flushing to storage. FREE means the cache page is freed and 58 * should be skipped from flushing to storage. Please see 59 * null_make_cache_space 60 */ 61 struct nullb_page { 62 struct page *page; 63 DECLARE_BITMAP(bitmap, MAP_SZ); 64 }; 65 #define NULLB_PAGE_LOCK (MAP_SZ - 1) 66 #define NULLB_PAGE_FREE (MAP_SZ - 2) 67 68 static LIST_HEAD(nullb_list); 69 static struct mutex lock; 70 static int null_major; 71 static DEFINE_IDA(nullb_indexes); 72 static struct blk_mq_tag_set tag_set; 73 74 enum { 75 NULL_IRQ_NONE = 0, 76 NULL_IRQ_SOFTIRQ = 1, 77 NULL_IRQ_TIMER = 2, 78 }; 79 80 static bool g_virt_boundary; 81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444); 82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False"); 83 84 static int g_no_sched; 85 module_param_named(no_sched, g_no_sched, int, 0444); 86 MODULE_PARM_DESC(no_sched, "No io scheduler"); 87 88 static int g_submit_queues = 1; 89 module_param_named(submit_queues, g_submit_queues, int, 0444); 90 MODULE_PARM_DESC(submit_queues, "Number of submission queues"); 91 92 static int g_poll_queues = 1; 93 module_param_named(poll_queues, g_poll_queues, int, 0444); 94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues"); 95 96 static int g_home_node = NUMA_NO_NODE; 97 module_param_named(home_node, g_home_node, int, 0444); 98 MODULE_PARM_DESC(home_node, "Home node for the device"); 99 100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 101 /* 102 * For more details about fault injection, please refer to 103 * Documentation/fault-injection/fault-injection.rst. 104 */ 105 static char g_timeout_str[80]; 106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444); 107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>"); 108 109 static char g_requeue_str[80]; 110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444); 111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>"); 112 113 static char g_init_hctx_str[80]; 114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444); 115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>"); 116 #endif 117 118 /* 119 * Historic queue modes. 120 * 121 * These days nothing but NULL_Q_MQ is actually supported, but we keep it the 122 * enum for error reporting. 123 */ 124 enum { 125 NULL_Q_BIO = 0, 126 NULL_Q_RQ = 1, 127 NULL_Q_MQ = 2, 128 }; 129 130 static int g_queue_mode = NULL_Q_MQ; 131 132 static int null_param_store_val(const char *str, int *val, int min, int max) 133 { 134 int ret, new_val; 135 136 ret = kstrtoint(str, 10, &new_val); 137 if (ret) 138 return -EINVAL; 139 140 if (new_val < min || new_val > max) 141 return -EINVAL; 142 143 *val = new_val; 144 return 0; 145 } 146 147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp) 148 { 149 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ); 150 } 151 152 static const struct kernel_param_ops null_queue_mode_param_ops = { 153 .set = null_set_queue_mode, 154 .get = param_get_int, 155 }; 156 157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444); 158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)"); 159 160 static int g_gb = 250; 161 module_param_named(gb, g_gb, int, 0444); 162 MODULE_PARM_DESC(gb, "Size in GB"); 163 164 static int g_bs = 512; 165 module_param_named(bs, g_bs, int, 0444); 166 MODULE_PARM_DESC(bs, "Block size (in bytes)"); 167 168 static int g_max_sectors; 169 module_param_named(max_sectors, g_max_sectors, int, 0444); 170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)"); 171 172 static unsigned int nr_devices = 1; 173 module_param(nr_devices, uint, 0444); 174 MODULE_PARM_DESC(nr_devices, "Number of devices to register"); 175 176 static bool g_blocking; 177 module_param_named(blocking, g_blocking, bool, 0444); 178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device"); 179 180 static bool g_shared_tags; 181 module_param_named(shared_tags, g_shared_tags, bool, 0444); 182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq"); 183 184 static bool g_shared_tag_bitmap; 185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444); 186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq"); 187 188 static int g_irqmode = NULL_IRQ_SOFTIRQ; 189 190 static int null_set_irqmode(const char *str, const struct kernel_param *kp) 191 { 192 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE, 193 NULL_IRQ_TIMER); 194 } 195 196 static const struct kernel_param_ops null_irqmode_param_ops = { 197 .set = null_set_irqmode, 198 .get = param_get_int, 199 }; 200 201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444); 202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer"); 203 204 static unsigned long g_completion_nsec = 10000; 205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444); 206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns"); 207 208 static int g_hw_queue_depth = 64; 209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444); 210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64"); 211 212 static bool g_use_per_node_hctx; 213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444); 214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false"); 215 216 static bool g_memory_backed; 217 module_param_named(memory_backed, g_memory_backed, bool, 0444); 218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false"); 219 220 static bool g_discard; 221 module_param_named(discard, g_discard, bool, 0444); 222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false"); 223 224 static unsigned long g_cache_size; 225 module_param_named(cache_size, g_cache_size, ulong, 0444); 226 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)"); 227 228 static bool g_fua = true; 229 module_param_named(fua, g_fua, bool, 0444); 230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true"); 231 232 static unsigned int g_mbps; 233 module_param_named(mbps, g_mbps, uint, 0444); 234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)"); 235 236 static bool g_zoned; 237 module_param_named(zoned, g_zoned, bool, S_IRUGO); 238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false"); 239 240 static unsigned long g_zone_size = 256; 241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO); 242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256"); 243 244 static unsigned long g_zone_capacity; 245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444); 246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size"); 247 248 static unsigned int g_zone_nr_conv; 249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444); 250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0"); 251 252 static unsigned int g_zone_max_open; 253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444); 254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)"); 255 256 static unsigned int g_zone_max_active; 257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444); 258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)"); 259 260 static int g_zone_append_max_sectors = INT_MAX; 261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444); 262 MODULE_PARM_DESC(zone_append_max_sectors, 263 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation"); 264 265 static bool g_zone_full; 266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO); 267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false"); 268 269 static bool g_rotational; 270 module_param_named(rotational, g_rotational, bool, S_IRUGO); 271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false"); 272 273 static struct nullb_device *null_alloc_dev(void); 274 static void null_free_dev(struct nullb_device *dev); 275 static void null_del_dev(struct nullb *nullb); 276 static int null_add_dev(struct nullb_device *dev); 277 static struct nullb *null_find_dev_by_name(const char *name); 278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache); 279 280 static inline struct nullb_device *to_nullb_device(struct config_item *item) 281 { 282 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL; 283 } 284 285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page) 286 { 287 return snprintf(page, PAGE_SIZE, "%u\n", val); 288 } 289 290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val, 291 char *page) 292 { 293 return snprintf(page, PAGE_SIZE, "%lu\n", val); 294 } 295 296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page) 297 { 298 return snprintf(page, PAGE_SIZE, "%u\n", val); 299 } 300 301 static ssize_t nullb_device_uint_attr_store(unsigned int *val, 302 const char *page, size_t count) 303 { 304 unsigned int tmp; 305 int result; 306 307 result = kstrtouint(page, 0, &tmp); 308 if (result < 0) 309 return result; 310 311 *val = tmp; 312 return count; 313 } 314 315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val, 316 const char *page, size_t count) 317 { 318 int result; 319 unsigned long tmp; 320 321 result = kstrtoul(page, 0, &tmp); 322 if (result < 0) 323 return result; 324 325 *val = tmp; 326 return count; 327 } 328 329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page, 330 size_t count) 331 { 332 bool tmp; 333 int result; 334 335 result = kstrtobool(page, &tmp); 336 if (result < 0) 337 return result; 338 339 *val = tmp; 340 return count; 341 } 342 343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */ 344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \ 345 static ssize_t \ 346 nullb_device_##NAME##_show(struct config_item *item, char *page) \ 347 { \ 348 return nullb_device_##TYPE##_attr_show( \ 349 to_nullb_device(item)->NAME, page); \ 350 } \ 351 static ssize_t \ 352 nullb_device_##NAME##_store(struct config_item *item, const char *page, \ 353 size_t count) \ 354 { \ 355 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\ 356 struct nullb_device *dev = to_nullb_device(item); \ 357 TYPE new_value = 0; \ 358 int ret; \ 359 \ 360 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\ 361 if (ret < 0) \ 362 return ret; \ 363 if (apply_fn) \ 364 ret = apply_fn(dev, new_value); \ 365 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \ 366 ret = -EBUSY; \ 367 if (ret < 0) \ 368 return ret; \ 369 dev->NAME = new_value; \ 370 return count; \ 371 } \ 372 CONFIGFS_ATTR(nullb_device_, NAME); 373 374 static int nullb_update_nr_hw_queues(struct nullb_device *dev, 375 unsigned int submit_queues, 376 unsigned int poll_queues) 377 378 { 379 struct blk_mq_tag_set *set; 380 int ret, nr_hw_queues; 381 382 if (!dev->nullb) 383 return 0; 384 385 /* 386 * Make sure at least one submit queue exists. 387 */ 388 if (!submit_queues) 389 return -EINVAL; 390 391 /* 392 * Make sure that null_init_hctx() does not access nullb->queues[] past 393 * the end of that array. 394 */ 395 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues) 396 return -EINVAL; 397 398 /* 399 * Keep previous and new queue numbers in nullb_device for reference in 400 * the call back function null_map_queues(). 401 */ 402 dev->prev_submit_queues = dev->submit_queues; 403 dev->prev_poll_queues = dev->poll_queues; 404 dev->submit_queues = submit_queues; 405 dev->poll_queues = poll_queues; 406 407 set = dev->nullb->tag_set; 408 nr_hw_queues = submit_queues + poll_queues; 409 blk_mq_update_nr_hw_queues(set, nr_hw_queues); 410 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM; 411 412 if (ret) { 413 /* on error, revert the queue numbers */ 414 dev->submit_queues = dev->prev_submit_queues; 415 dev->poll_queues = dev->prev_poll_queues; 416 } 417 418 return ret; 419 } 420 421 static int nullb_apply_submit_queues(struct nullb_device *dev, 422 unsigned int submit_queues) 423 { 424 int ret; 425 426 mutex_lock(&lock); 427 ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues); 428 mutex_unlock(&lock); 429 430 return ret; 431 } 432 433 static int nullb_apply_poll_queues(struct nullb_device *dev, 434 unsigned int poll_queues) 435 { 436 int ret; 437 438 mutex_lock(&lock); 439 ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues); 440 mutex_unlock(&lock); 441 442 return ret; 443 } 444 445 NULLB_DEVICE_ATTR(size, ulong, NULL); 446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL); 447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues); 448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues); 449 NULLB_DEVICE_ATTR(home_node, uint, NULL); 450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL); 451 NULLB_DEVICE_ATTR(blocksize, uint, NULL); 452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL); 453 NULLB_DEVICE_ATTR(irqmode, uint, NULL); 454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL); 455 NULLB_DEVICE_ATTR(index, uint, NULL); 456 NULLB_DEVICE_ATTR(blocking, bool, NULL); 457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL); 458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL); 459 NULLB_DEVICE_ATTR(discard, bool, NULL); 460 NULLB_DEVICE_ATTR(mbps, uint, NULL); 461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL); 462 NULLB_DEVICE_ATTR(zoned, bool, NULL); 463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL); 464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL); 465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL); 466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL); 467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL); 468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL); 469 NULLB_DEVICE_ATTR(zone_full, bool, NULL); 470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL); 471 NULLB_DEVICE_ATTR(no_sched, bool, NULL); 472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL); 473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL); 474 NULLB_DEVICE_ATTR(fua, bool, NULL); 475 NULLB_DEVICE_ATTR(rotational, bool, NULL); 476 NULLB_DEVICE_ATTR(badblocks_once, bool, NULL); 477 478 static ssize_t nullb_device_power_show(struct config_item *item, char *page) 479 { 480 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page); 481 } 482 483 static ssize_t nullb_device_power_store(struct config_item *item, 484 const char *page, size_t count) 485 { 486 struct nullb_device *dev = to_nullb_device(item); 487 bool newp = false; 488 ssize_t ret; 489 490 ret = nullb_device_bool_attr_store(&newp, page, count); 491 if (ret < 0) 492 return ret; 493 494 ret = count; 495 mutex_lock(&lock); 496 if (!dev->power && newp) { 497 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags)) 498 goto out; 499 500 ret = null_add_dev(dev); 501 if (ret) { 502 clear_bit(NULLB_DEV_FL_UP, &dev->flags); 503 goto out; 504 } 505 506 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 507 dev->power = newp; 508 ret = count; 509 } else if (dev->power && !newp) { 510 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 511 dev->power = newp; 512 null_del_dev(dev->nullb); 513 } 514 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 515 } 516 517 out: 518 mutex_unlock(&lock); 519 return ret; 520 } 521 522 CONFIGFS_ATTR(nullb_device_, power); 523 524 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page) 525 { 526 struct nullb_device *t_dev = to_nullb_device(item); 527 528 return badblocks_show(&t_dev->badblocks, page, 0); 529 } 530 531 static ssize_t nullb_device_badblocks_store(struct config_item *item, 532 const char *page, size_t count) 533 { 534 struct nullb_device *t_dev = to_nullb_device(item); 535 char *orig, *buf, *tmp; 536 u64 start, end; 537 int ret; 538 539 orig = kstrndup(page, count, GFP_KERNEL); 540 if (!orig) 541 return -ENOMEM; 542 543 buf = strstrip(orig); 544 545 ret = -EINVAL; 546 if (buf[0] != '+' && buf[0] != '-') 547 goto out; 548 tmp = strchr(&buf[1], '-'); 549 if (!tmp) 550 goto out; 551 *tmp = '\0'; 552 ret = kstrtoull(buf + 1, 0, &start); 553 if (ret) 554 goto out; 555 ret = kstrtoull(tmp + 1, 0, &end); 556 if (ret) 557 goto out; 558 ret = -EINVAL; 559 if (start > end) 560 goto out; 561 /* enable badblocks */ 562 cmpxchg(&t_dev->badblocks.shift, -1, 0); 563 if (buf[0] == '+') 564 ret = badblocks_set(&t_dev->badblocks, start, 565 end - start + 1, 1); 566 else 567 ret = badblocks_clear(&t_dev->badblocks, start, 568 end - start + 1); 569 if (ret == 0) 570 ret = count; 571 out: 572 kfree(orig); 573 return ret; 574 } 575 CONFIGFS_ATTR(nullb_device_, badblocks); 576 577 static ssize_t nullb_device_zone_readonly_store(struct config_item *item, 578 const char *page, size_t count) 579 { 580 struct nullb_device *dev = to_nullb_device(item); 581 582 return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY); 583 } 584 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly); 585 586 static ssize_t nullb_device_zone_offline_store(struct config_item *item, 587 const char *page, size_t count) 588 { 589 struct nullb_device *dev = to_nullb_device(item); 590 591 return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE); 592 } 593 CONFIGFS_ATTR_WO(nullb_device_, zone_offline); 594 595 static struct configfs_attribute *nullb_device_attrs[] = { 596 &nullb_device_attr_badblocks, 597 &nullb_device_attr_badblocks_once, 598 &nullb_device_attr_blocking, 599 &nullb_device_attr_blocksize, 600 &nullb_device_attr_cache_size, 601 &nullb_device_attr_completion_nsec, 602 &nullb_device_attr_discard, 603 &nullb_device_attr_fua, 604 &nullb_device_attr_home_node, 605 &nullb_device_attr_hw_queue_depth, 606 &nullb_device_attr_index, 607 &nullb_device_attr_irqmode, 608 &nullb_device_attr_max_sectors, 609 &nullb_device_attr_mbps, 610 &nullb_device_attr_memory_backed, 611 &nullb_device_attr_no_sched, 612 &nullb_device_attr_poll_queues, 613 &nullb_device_attr_power, 614 &nullb_device_attr_queue_mode, 615 &nullb_device_attr_rotational, 616 &nullb_device_attr_shared_tag_bitmap, 617 &nullb_device_attr_shared_tags, 618 &nullb_device_attr_size, 619 &nullb_device_attr_submit_queues, 620 &nullb_device_attr_use_per_node_hctx, 621 &nullb_device_attr_virt_boundary, 622 &nullb_device_attr_zone_append_max_sectors, 623 &nullb_device_attr_zone_capacity, 624 &nullb_device_attr_zone_full, 625 &nullb_device_attr_zone_max_active, 626 &nullb_device_attr_zone_max_open, 627 &nullb_device_attr_zone_nr_conv, 628 &nullb_device_attr_zone_offline, 629 &nullb_device_attr_zone_readonly, 630 &nullb_device_attr_zone_size, 631 &nullb_device_attr_zoned, 632 NULL, 633 }; 634 635 static void nullb_device_release(struct config_item *item) 636 { 637 struct nullb_device *dev = to_nullb_device(item); 638 639 null_free_device_storage(dev, false); 640 null_free_dev(dev); 641 } 642 643 static struct configfs_item_operations nullb_device_ops = { 644 .release = nullb_device_release, 645 }; 646 647 static const struct config_item_type nullb_device_type = { 648 .ct_item_ops = &nullb_device_ops, 649 .ct_attrs = nullb_device_attrs, 650 .ct_owner = THIS_MODULE, 651 }; 652 653 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 654 655 static void nullb_add_fault_config(struct nullb_device *dev) 656 { 657 fault_config_init(&dev->timeout_config, "timeout_inject"); 658 fault_config_init(&dev->requeue_config, "requeue_inject"); 659 fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject"); 660 661 configfs_add_default_group(&dev->timeout_config.group, &dev->group); 662 configfs_add_default_group(&dev->requeue_config.group, &dev->group); 663 configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group); 664 } 665 666 #else 667 668 static void nullb_add_fault_config(struct nullb_device *dev) 669 { 670 } 671 672 #endif 673 674 static struct 675 config_group *nullb_group_make_group(struct config_group *group, const char *name) 676 { 677 struct nullb_device *dev; 678 679 if (null_find_dev_by_name(name)) 680 return ERR_PTR(-EEXIST); 681 682 dev = null_alloc_dev(); 683 if (!dev) 684 return ERR_PTR(-ENOMEM); 685 686 config_group_init_type_name(&dev->group, name, &nullb_device_type); 687 nullb_add_fault_config(dev); 688 689 return &dev->group; 690 } 691 692 static void 693 nullb_group_drop_item(struct config_group *group, struct config_item *item) 694 { 695 struct nullb_device *dev = to_nullb_device(item); 696 697 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 698 mutex_lock(&lock); 699 dev->power = false; 700 null_del_dev(dev->nullb); 701 mutex_unlock(&lock); 702 } 703 704 config_item_put(item); 705 } 706 707 static ssize_t memb_group_features_show(struct config_item *item, char *page) 708 { 709 710 struct configfs_attribute **entry; 711 char delimiter = ','; 712 size_t left = PAGE_SIZE; 713 size_t written = 0; 714 int ret; 715 716 for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) { 717 if (!*(entry + 1)) 718 delimiter = '\n'; 719 ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name, 720 delimiter); 721 if (ret >= left) { 722 WARN_ONCE(1, "Too many null_blk features to print\n"); 723 memzero_explicit(page, PAGE_SIZE); 724 return -ENOBUFS; 725 } 726 left -= ret; 727 written += ret; 728 } 729 730 return written; 731 } 732 733 CONFIGFS_ATTR_RO(memb_group_, features); 734 735 static struct configfs_attribute *nullb_group_attrs[] = { 736 &memb_group_attr_features, 737 NULL, 738 }; 739 740 static struct configfs_group_operations nullb_group_ops = { 741 .make_group = nullb_group_make_group, 742 .drop_item = nullb_group_drop_item, 743 }; 744 745 static const struct config_item_type nullb_group_type = { 746 .ct_group_ops = &nullb_group_ops, 747 .ct_attrs = nullb_group_attrs, 748 .ct_owner = THIS_MODULE, 749 }; 750 751 static struct configfs_subsystem nullb_subsys = { 752 .su_group = { 753 .cg_item = { 754 .ci_namebuf = "nullb", 755 .ci_type = &nullb_group_type, 756 }, 757 }, 758 }; 759 760 static inline int null_cache_active(struct nullb *nullb) 761 { 762 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 763 } 764 765 static struct nullb_device *null_alloc_dev(void) 766 { 767 struct nullb_device *dev; 768 769 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 770 if (!dev) 771 return NULL; 772 773 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 774 dev->timeout_config.attr = null_timeout_attr; 775 dev->requeue_config.attr = null_requeue_attr; 776 dev->init_hctx_fault_config.attr = null_init_hctx_attr; 777 #endif 778 779 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC); 780 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC); 781 if (badblocks_init(&dev->badblocks, 0)) { 782 kfree(dev); 783 return NULL; 784 } 785 786 dev->size = g_gb * 1024; 787 dev->completion_nsec = g_completion_nsec; 788 dev->submit_queues = g_submit_queues; 789 dev->prev_submit_queues = g_submit_queues; 790 dev->poll_queues = g_poll_queues; 791 dev->prev_poll_queues = g_poll_queues; 792 dev->home_node = g_home_node; 793 dev->queue_mode = g_queue_mode; 794 dev->blocksize = g_bs; 795 dev->max_sectors = g_max_sectors; 796 dev->irqmode = g_irqmode; 797 dev->hw_queue_depth = g_hw_queue_depth; 798 dev->blocking = g_blocking; 799 dev->memory_backed = g_memory_backed; 800 dev->discard = g_discard; 801 dev->cache_size = g_cache_size; 802 dev->mbps = g_mbps; 803 dev->use_per_node_hctx = g_use_per_node_hctx; 804 dev->zoned = g_zoned; 805 dev->zone_size = g_zone_size; 806 dev->zone_capacity = g_zone_capacity; 807 dev->zone_nr_conv = g_zone_nr_conv; 808 dev->zone_max_open = g_zone_max_open; 809 dev->zone_max_active = g_zone_max_active; 810 dev->zone_append_max_sectors = g_zone_append_max_sectors; 811 dev->zone_full = g_zone_full; 812 dev->virt_boundary = g_virt_boundary; 813 dev->no_sched = g_no_sched; 814 dev->shared_tags = g_shared_tags; 815 dev->shared_tag_bitmap = g_shared_tag_bitmap; 816 dev->fua = g_fua; 817 dev->rotational = g_rotational; 818 819 return dev; 820 } 821 822 static void null_free_dev(struct nullb_device *dev) 823 { 824 if (!dev) 825 return; 826 827 null_free_zoned_dev(dev); 828 badblocks_exit(&dev->badblocks); 829 kfree(dev); 830 } 831 832 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer) 833 { 834 struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer); 835 836 blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error); 837 return HRTIMER_NORESTART; 838 } 839 840 static void null_cmd_end_timer(struct nullb_cmd *cmd) 841 { 842 ktime_t kt = cmd->nq->dev->completion_nsec; 843 844 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL); 845 } 846 847 static void null_complete_rq(struct request *rq) 848 { 849 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 850 851 blk_mq_end_request(rq, cmd->error); 852 } 853 854 static struct nullb_page *null_alloc_page(void) 855 { 856 struct nullb_page *t_page; 857 858 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO); 859 if (!t_page) 860 return NULL; 861 862 t_page->page = alloc_pages(GFP_NOIO, 0); 863 if (!t_page->page) { 864 kfree(t_page); 865 return NULL; 866 } 867 868 memset(t_page->bitmap, 0, sizeof(t_page->bitmap)); 869 return t_page; 870 } 871 872 static void null_free_page(struct nullb_page *t_page) 873 { 874 __set_bit(NULLB_PAGE_FREE, t_page->bitmap); 875 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap)) 876 return; 877 __free_page(t_page->page); 878 kfree(t_page); 879 } 880 881 static bool null_page_empty(struct nullb_page *page) 882 { 883 int size = MAP_SZ - 2; 884 885 return find_first_bit(page->bitmap, size) == size; 886 } 887 888 static void null_free_sector(struct nullb *nullb, sector_t sector, 889 bool is_cache) 890 { 891 unsigned int sector_bit; 892 u64 idx; 893 struct nullb_page *t_page, *ret; 894 struct radix_tree_root *root; 895 896 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 897 idx = sector >> PAGE_SECTORS_SHIFT; 898 sector_bit = (sector & SECTOR_MASK); 899 900 t_page = radix_tree_lookup(root, idx); 901 if (t_page) { 902 __clear_bit(sector_bit, t_page->bitmap); 903 904 if (null_page_empty(t_page)) { 905 ret = radix_tree_delete_item(root, idx, t_page); 906 WARN_ON(ret != t_page); 907 null_free_page(ret); 908 if (is_cache) 909 nullb->dev->curr_cache -= PAGE_SIZE; 910 } 911 } 912 } 913 914 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx, 915 struct nullb_page *t_page, bool is_cache) 916 { 917 struct radix_tree_root *root; 918 919 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 920 921 if (radix_tree_insert(root, idx, t_page)) { 922 null_free_page(t_page); 923 t_page = radix_tree_lookup(root, idx); 924 WARN_ON(!t_page || t_page->page->private != idx); 925 } else if (is_cache) 926 nullb->dev->curr_cache += PAGE_SIZE; 927 928 return t_page; 929 } 930 931 static void null_free_device_storage(struct nullb_device *dev, bool is_cache) 932 { 933 unsigned long pos = 0; 934 int nr_pages; 935 struct nullb_page *ret, *t_pages[FREE_BATCH]; 936 struct radix_tree_root *root; 937 938 root = is_cache ? &dev->cache : &dev->data; 939 940 do { 941 int i; 942 943 nr_pages = radix_tree_gang_lookup(root, 944 (void **)t_pages, pos, FREE_BATCH); 945 946 for (i = 0; i < nr_pages; i++) { 947 pos = t_pages[i]->page->private; 948 ret = radix_tree_delete_item(root, pos, t_pages[i]); 949 WARN_ON(ret != t_pages[i]); 950 null_free_page(ret); 951 } 952 953 pos++; 954 } while (nr_pages == FREE_BATCH); 955 956 if (is_cache) 957 dev->curr_cache = 0; 958 } 959 960 static struct nullb_page *__null_lookup_page(struct nullb *nullb, 961 sector_t sector, bool for_write, bool is_cache) 962 { 963 unsigned int sector_bit; 964 u64 idx; 965 struct nullb_page *t_page; 966 struct radix_tree_root *root; 967 968 idx = sector >> PAGE_SECTORS_SHIFT; 969 sector_bit = (sector & SECTOR_MASK); 970 971 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 972 t_page = radix_tree_lookup(root, idx); 973 WARN_ON(t_page && t_page->page->private != idx); 974 975 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap))) 976 return t_page; 977 978 return NULL; 979 } 980 981 static struct nullb_page *null_lookup_page(struct nullb *nullb, 982 sector_t sector, bool for_write, bool ignore_cache) 983 { 984 struct nullb_page *page = NULL; 985 986 if (!ignore_cache) 987 page = __null_lookup_page(nullb, sector, for_write, true); 988 if (page) 989 return page; 990 return __null_lookup_page(nullb, sector, for_write, false); 991 } 992 993 static struct nullb_page *null_insert_page(struct nullb *nullb, 994 sector_t sector, bool ignore_cache) 995 __releases(&nullb->lock) 996 __acquires(&nullb->lock) 997 { 998 u64 idx; 999 struct nullb_page *t_page; 1000 1001 t_page = null_lookup_page(nullb, sector, true, ignore_cache); 1002 if (t_page) 1003 return t_page; 1004 1005 spin_unlock_irq(&nullb->lock); 1006 1007 t_page = null_alloc_page(); 1008 if (!t_page) 1009 goto out_lock; 1010 1011 if (radix_tree_preload(GFP_NOIO)) 1012 goto out_freepage; 1013 1014 spin_lock_irq(&nullb->lock); 1015 idx = sector >> PAGE_SECTORS_SHIFT; 1016 t_page->page->private = idx; 1017 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache); 1018 radix_tree_preload_end(); 1019 1020 return t_page; 1021 out_freepage: 1022 null_free_page(t_page); 1023 out_lock: 1024 spin_lock_irq(&nullb->lock); 1025 return null_lookup_page(nullb, sector, true, ignore_cache); 1026 } 1027 1028 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page) 1029 { 1030 int i; 1031 unsigned int offset; 1032 u64 idx; 1033 struct nullb_page *t_page, *ret; 1034 void *dst, *src; 1035 1036 idx = c_page->page->private; 1037 1038 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true); 1039 1040 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap); 1041 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) { 1042 null_free_page(c_page); 1043 if (t_page && null_page_empty(t_page)) { 1044 ret = radix_tree_delete_item(&nullb->dev->data, 1045 idx, t_page); 1046 null_free_page(t_page); 1047 } 1048 return 0; 1049 } 1050 1051 if (!t_page) 1052 return -ENOMEM; 1053 1054 src = kmap_local_page(c_page->page); 1055 dst = kmap_local_page(t_page->page); 1056 1057 for (i = 0; i < PAGE_SECTORS; 1058 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) { 1059 if (test_bit(i, c_page->bitmap)) { 1060 offset = (i << SECTOR_SHIFT); 1061 memcpy(dst + offset, src + offset, 1062 nullb->dev->blocksize); 1063 __set_bit(i, t_page->bitmap); 1064 } 1065 } 1066 1067 kunmap_local(dst); 1068 kunmap_local(src); 1069 1070 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page); 1071 null_free_page(ret); 1072 nullb->dev->curr_cache -= PAGE_SIZE; 1073 1074 return 0; 1075 } 1076 1077 static int null_make_cache_space(struct nullb *nullb, unsigned long n) 1078 { 1079 int i, err, nr_pages; 1080 struct nullb_page *c_pages[FREE_BATCH]; 1081 unsigned long flushed = 0, one_round; 1082 1083 again: 1084 if ((nullb->dev->cache_size * 1024 * 1024) > 1085 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0) 1086 return 0; 1087 1088 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache, 1089 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH); 1090 /* 1091 * nullb_flush_cache_page could unlock before using the c_pages. To 1092 * avoid race, we don't allow page free 1093 */ 1094 for (i = 0; i < nr_pages; i++) { 1095 nullb->cache_flush_pos = c_pages[i]->page->private; 1096 /* 1097 * We found the page which is being flushed to disk by other 1098 * threads 1099 */ 1100 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap)) 1101 c_pages[i] = NULL; 1102 else 1103 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap); 1104 } 1105 1106 one_round = 0; 1107 for (i = 0; i < nr_pages; i++) { 1108 if (c_pages[i] == NULL) 1109 continue; 1110 err = null_flush_cache_page(nullb, c_pages[i]); 1111 if (err) 1112 return err; 1113 one_round++; 1114 } 1115 flushed += one_round << PAGE_SHIFT; 1116 1117 if (n > flushed) { 1118 if (nr_pages == 0) 1119 nullb->cache_flush_pos = 0; 1120 if (one_round == 0) { 1121 /* give other threads a chance */ 1122 spin_unlock_irq(&nullb->lock); 1123 spin_lock_irq(&nullb->lock); 1124 } 1125 goto again; 1126 } 1127 return 0; 1128 } 1129 1130 static int copy_to_nullb(struct nullb *nullb, struct page *source, 1131 unsigned int off, sector_t sector, size_t n, bool is_fua) 1132 { 1133 size_t temp, count = 0; 1134 unsigned int offset; 1135 struct nullb_page *t_page; 1136 1137 while (count < n) { 1138 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1139 1140 if (null_cache_active(nullb) && !is_fua) 1141 null_make_cache_space(nullb, PAGE_SIZE); 1142 1143 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1144 t_page = null_insert_page(nullb, sector, 1145 !null_cache_active(nullb) || is_fua); 1146 if (!t_page) 1147 return -ENOSPC; 1148 1149 memcpy_page(t_page->page, offset, source, off + count, temp); 1150 1151 __set_bit(sector & SECTOR_MASK, t_page->bitmap); 1152 1153 if (is_fua) 1154 null_free_sector(nullb, sector, true); 1155 1156 count += temp; 1157 sector += temp >> SECTOR_SHIFT; 1158 } 1159 return 0; 1160 } 1161 1162 static int copy_from_nullb(struct nullb *nullb, struct page *dest, 1163 unsigned int off, sector_t sector, size_t n) 1164 { 1165 size_t temp, count = 0; 1166 unsigned int offset; 1167 struct nullb_page *t_page; 1168 1169 while (count < n) { 1170 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1171 1172 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1173 t_page = null_lookup_page(nullb, sector, false, 1174 !null_cache_active(nullb)); 1175 1176 if (t_page) 1177 memcpy_page(dest, off + count, t_page->page, offset, 1178 temp); 1179 else 1180 zero_user(dest, off + count, temp); 1181 1182 count += temp; 1183 sector += temp >> SECTOR_SHIFT; 1184 } 1185 return 0; 1186 } 1187 1188 static void nullb_fill_pattern(struct nullb *nullb, struct page *page, 1189 unsigned int len, unsigned int off) 1190 { 1191 memset_page(page, off, 0xff, len); 1192 } 1193 1194 blk_status_t null_handle_discard(struct nullb_device *dev, 1195 sector_t sector, sector_t nr_sectors) 1196 { 1197 struct nullb *nullb = dev->nullb; 1198 size_t n = nr_sectors << SECTOR_SHIFT; 1199 size_t temp; 1200 1201 spin_lock_irq(&nullb->lock); 1202 while (n > 0) { 1203 temp = min_t(size_t, n, dev->blocksize); 1204 null_free_sector(nullb, sector, false); 1205 if (null_cache_active(nullb)) 1206 null_free_sector(nullb, sector, true); 1207 sector += temp >> SECTOR_SHIFT; 1208 n -= temp; 1209 } 1210 spin_unlock_irq(&nullb->lock); 1211 1212 return BLK_STS_OK; 1213 } 1214 1215 static blk_status_t null_handle_flush(struct nullb *nullb) 1216 { 1217 int err; 1218 1219 if (!null_cache_active(nullb)) 1220 return 0; 1221 1222 spin_lock_irq(&nullb->lock); 1223 while (true) { 1224 err = null_make_cache_space(nullb, 1225 nullb->dev->cache_size * 1024 * 1024); 1226 if (err || nullb->dev->curr_cache == 0) 1227 break; 1228 } 1229 1230 WARN_ON(!radix_tree_empty(&nullb->dev->cache)); 1231 spin_unlock_irq(&nullb->lock); 1232 return errno_to_blk_status(err); 1233 } 1234 1235 static int null_transfer(struct nullb *nullb, struct page *page, 1236 unsigned int len, unsigned int off, bool is_write, sector_t sector, 1237 bool is_fua) 1238 { 1239 struct nullb_device *dev = nullb->dev; 1240 unsigned int valid_len = len; 1241 int err = 0; 1242 1243 if (!is_write) { 1244 if (dev->zoned) 1245 valid_len = null_zone_valid_read_len(nullb, 1246 sector, len); 1247 1248 if (valid_len) { 1249 err = copy_from_nullb(nullb, page, off, 1250 sector, valid_len); 1251 off += valid_len; 1252 len -= valid_len; 1253 } 1254 1255 if (len) 1256 nullb_fill_pattern(nullb, page, len, off); 1257 flush_dcache_page(page); 1258 } else { 1259 flush_dcache_page(page); 1260 err = copy_to_nullb(nullb, page, off, sector, len, is_fua); 1261 } 1262 1263 return err; 1264 } 1265 1266 static blk_status_t null_handle_rq(struct nullb_cmd *cmd) 1267 { 1268 struct request *rq = blk_mq_rq_from_pdu(cmd); 1269 struct nullb *nullb = cmd->nq->dev->nullb; 1270 int err = 0; 1271 unsigned int len; 1272 sector_t sector = blk_rq_pos(rq); 1273 struct req_iterator iter; 1274 struct bio_vec bvec; 1275 1276 spin_lock_irq(&nullb->lock); 1277 rq_for_each_segment(bvec, rq, iter) { 1278 len = bvec.bv_len; 1279 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, 1280 op_is_write(req_op(rq)), sector, 1281 rq->cmd_flags & REQ_FUA); 1282 if (err) 1283 break; 1284 sector += len >> SECTOR_SHIFT; 1285 } 1286 spin_unlock_irq(&nullb->lock); 1287 1288 return errno_to_blk_status(err); 1289 } 1290 1291 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd) 1292 { 1293 struct nullb_device *dev = cmd->nq->dev; 1294 struct nullb *nullb = dev->nullb; 1295 blk_status_t sts = BLK_STS_OK; 1296 struct request *rq = blk_mq_rq_from_pdu(cmd); 1297 1298 if (!hrtimer_active(&nullb->bw_timer)) 1299 hrtimer_restart(&nullb->bw_timer); 1300 1301 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) { 1302 blk_mq_stop_hw_queues(nullb->q); 1303 /* race with timer */ 1304 if (atomic_long_read(&nullb->cur_bytes) > 0) 1305 blk_mq_start_stopped_hw_queues(nullb->q, true); 1306 /* requeue request */ 1307 sts = BLK_STS_DEV_RESOURCE; 1308 } 1309 return sts; 1310 } 1311 1312 blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, sector_t sector, 1313 sector_t nr_sectors) 1314 { 1315 struct badblocks *bb = &cmd->nq->dev->badblocks; 1316 sector_t first_bad; 1317 int bad_sectors; 1318 1319 if (!badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors)) 1320 return BLK_STS_OK; 1321 1322 if (cmd->nq->dev->badblocks_once) 1323 badblocks_clear(bb, first_bad, bad_sectors); 1324 1325 return BLK_STS_IOERR; 1326 } 1327 1328 blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, enum req_op op, 1329 sector_t sector, sector_t nr_sectors) 1330 { 1331 struct nullb_device *dev = cmd->nq->dev; 1332 1333 if (op == REQ_OP_DISCARD) 1334 return null_handle_discard(dev, sector, nr_sectors); 1335 1336 return null_handle_rq(cmd); 1337 } 1338 1339 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd) 1340 { 1341 struct request *rq = blk_mq_rq_from_pdu(cmd); 1342 struct nullb_device *dev = cmd->nq->dev; 1343 struct bio *bio; 1344 1345 if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) { 1346 __rq_for_each_bio(bio, rq) 1347 zero_fill_bio(bio); 1348 } 1349 } 1350 1351 static inline void nullb_complete_cmd(struct nullb_cmd *cmd) 1352 { 1353 struct request *rq = blk_mq_rq_from_pdu(cmd); 1354 1355 /* 1356 * Since root privileges are required to configure the null_blk 1357 * driver, it is fine that this driver does not initialize the 1358 * data buffers of read commands. Zero-initialize these buffers 1359 * anyway if KMSAN is enabled to prevent that KMSAN complains 1360 * about null_blk not initializing read data buffers. 1361 */ 1362 if (IS_ENABLED(CONFIG_KMSAN)) 1363 nullb_zero_read_cmd_buffer(cmd); 1364 1365 /* Complete IO by inline, softirq or timer */ 1366 switch (cmd->nq->dev->irqmode) { 1367 case NULL_IRQ_SOFTIRQ: 1368 blk_mq_complete_request(rq); 1369 break; 1370 case NULL_IRQ_NONE: 1371 blk_mq_end_request(rq, cmd->error); 1372 break; 1373 case NULL_IRQ_TIMER: 1374 null_cmd_end_timer(cmd); 1375 break; 1376 } 1377 } 1378 1379 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op, 1380 sector_t sector, unsigned int nr_sectors) 1381 { 1382 struct nullb_device *dev = cmd->nq->dev; 1383 blk_status_t ret; 1384 1385 if (dev->badblocks.shift != -1) { 1386 ret = null_handle_badblocks(cmd, sector, nr_sectors); 1387 if (ret != BLK_STS_OK) 1388 return ret; 1389 } 1390 1391 if (dev->memory_backed) 1392 return null_handle_memory_backed(cmd, op, sector, nr_sectors); 1393 1394 return BLK_STS_OK; 1395 } 1396 1397 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector, 1398 sector_t nr_sectors, enum req_op op) 1399 { 1400 struct nullb_device *dev = cmd->nq->dev; 1401 struct nullb *nullb = dev->nullb; 1402 blk_status_t sts; 1403 1404 if (op == REQ_OP_FLUSH) { 1405 cmd->error = null_handle_flush(nullb); 1406 goto out; 1407 } 1408 1409 if (dev->zoned) 1410 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors); 1411 else 1412 sts = null_process_cmd(cmd, op, sector, nr_sectors); 1413 1414 /* Do not overwrite errors (e.g. timeout errors) */ 1415 if (cmd->error == BLK_STS_OK) 1416 cmd->error = sts; 1417 1418 out: 1419 nullb_complete_cmd(cmd); 1420 } 1421 1422 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer) 1423 { 1424 struct nullb *nullb = container_of(timer, struct nullb, bw_timer); 1425 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1426 unsigned int mbps = nullb->dev->mbps; 1427 1428 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps)) 1429 return HRTIMER_NORESTART; 1430 1431 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps)); 1432 blk_mq_start_stopped_hw_queues(nullb->q, true); 1433 1434 hrtimer_forward_now(&nullb->bw_timer, timer_interval); 1435 1436 return HRTIMER_RESTART; 1437 } 1438 1439 static void nullb_setup_bwtimer(struct nullb *nullb) 1440 { 1441 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1442 1443 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1444 nullb->bw_timer.function = nullb_bwtimer_fn; 1445 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps)); 1446 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL); 1447 } 1448 1449 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1450 1451 static bool should_timeout_request(struct request *rq) 1452 { 1453 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1454 struct nullb_device *dev = cmd->nq->dev; 1455 1456 return should_fail(&dev->timeout_config.attr, 1); 1457 } 1458 1459 static bool should_requeue_request(struct request *rq) 1460 { 1461 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1462 struct nullb_device *dev = cmd->nq->dev; 1463 1464 return should_fail(&dev->requeue_config.attr, 1); 1465 } 1466 1467 static bool should_init_hctx_fail(struct nullb_device *dev) 1468 { 1469 return should_fail(&dev->init_hctx_fault_config.attr, 1); 1470 } 1471 1472 #else 1473 1474 static bool should_timeout_request(struct request *rq) 1475 { 1476 return false; 1477 } 1478 1479 static bool should_requeue_request(struct request *rq) 1480 { 1481 return false; 1482 } 1483 1484 static bool should_init_hctx_fail(struct nullb_device *dev) 1485 { 1486 return false; 1487 } 1488 1489 #endif 1490 1491 static void null_map_queues(struct blk_mq_tag_set *set) 1492 { 1493 struct nullb *nullb = set->driver_data; 1494 int i, qoff; 1495 unsigned int submit_queues = g_submit_queues; 1496 unsigned int poll_queues = g_poll_queues; 1497 1498 if (nullb) { 1499 struct nullb_device *dev = nullb->dev; 1500 1501 /* 1502 * Refer nr_hw_queues of the tag set to check if the expected 1503 * number of hardware queues are prepared. If block layer failed 1504 * to prepare them, use previous numbers of submit queues and 1505 * poll queues to map queues. 1506 */ 1507 if (set->nr_hw_queues == 1508 dev->submit_queues + dev->poll_queues) { 1509 submit_queues = dev->submit_queues; 1510 poll_queues = dev->poll_queues; 1511 } else if (set->nr_hw_queues == 1512 dev->prev_submit_queues + dev->prev_poll_queues) { 1513 submit_queues = dev->prev_submit_queues; 1514 poll_queues = dev->prev_poll_queues; 1515 } else { 1516 pr_warn("tag set has unexpected nr_hw_queues: %d\n", 1517 set->nr_hw_queues); 1518 WARN_ON_ONCE(true); 1519 submit_queues = 1; 1520 poll_queues = 0; 1521 } 1522 } 1523 1524 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 1525 struct blk_mq_queue_map *map = &set->map[i]; 1526 1527 switch (i) { 1528 case HCTX_TYPE_DEFAULT: 1529 map->nr_queues = submit_queues; 1530 break; 1531 case HCTX_TYPE_READ: 1532 map->nr_queues = 0; 1533 continue; 1534 case HCTX_TYPE_POLL: 1535 map->nr_queues = poll_queues; 1536 break; 1537 } 1538 map->queue_offset = qoff; 1539 qoff += map->nr_queues; 1540 blk_mq_map_queues(map); 1541 } 1542 } 1543 1544 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1545 { 1546 struct nullb_queue *nq = hctx->driver_data; 1547 LIST_HEAD(list); 1548 int nr = 0; 1549 struct request *rq; 1550 1551 spin_lock(&nq->poll_lock); 1552 list_splice_init(&nq->poll_list, &list); 1553 list_for_each_entry(rq, &list, queuelist) 1554 blk_mq_set_request_complete(rq); 1555 spin_unlock(&nq->poll_lock); 1556 1557 while (!list_empty(&list)) { 1558 struct nullb_cmd *cmd; 1559 struct request *req; 1560 1561 req = list_first_entry(&list, struct request, queuelist); 1562 list_del_init(&req->queuelist); 1563 cmd = blk_mq_rq_to_pdu(req); 1564 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req), 1565 blk_rq_sectors(req)); 1566 if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error, 1567 blk_mq_end_request_batch)) 1568 blk_mq_end_request(req, cmd->error); 1569 nr++; 1570 } 1571 1572 return nr; 1573 } 1574 1575 static enum blk_eh_timer_return null_timeout_rq(struct request *rq) 1576 { 1577 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1578 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1579 1580 if (hctx->type == HCTX_TYPE_POLL) { 1581 struct nullb_queue *nq = hctx->driver_data; 1582 1583 spin_lock(&nq->poll_lock); 1584 /* The request may have completed meanwhile. */ 1585 if (blk_mq_request_completed(rq)) { 1586 spin_unlock(&nq->poll_lock); 1587 return BLK_EH_DONE; 1588 } 1589 list_del_init(&rq->queuelist); 1590 spin_unlock(&nq->poll_lock); 1591 } 1592 1593 pr_info("rq %p timed out\n", rq); 1594 1595 /* 1596 * If the device is marked as blocking (i.e. memory backed or zoned 1597 * device), the submission path may be blocked waiting for resources 1598 * and cause real timeouts. For these real timeouts, the submission 1599 * path will complete the request using blk_mq_complete_request(). 1600 * Only fake timeouts need to execute blk_mq_complete_request() here. 1601 */ 1602 cmd->error = BLK_STS_TIMEOUT; 1603 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL) 1604 blk_mq_complete_request(rq); 1605 return BLK_EH_DONE; 1606 } 1607 1608 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx, 1609 const struct blk_mq_queue_data *bd) 1610 { 1611 struct request *rq = bd->rq; 1612 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1613 struct nullb_queue *nq = hctx->driver_data; 1614 sector_t nr_sectors = blk_rq_sectors(rq); 1615 sector_t sector = blk_rq_pos(rq); 1616 const bool is_poll = hctx->type == HCTX_TYPE_POLL; 1617 1618 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1619 1620 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) { 1621 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1622 cmd->timer.function = null_cmd_timer_expired; 1623 } 1624 cmd->error = BLK_STS_OK; 1625 cmd->nq = nq; 1626 cmd->fake_timeout = should_timeout_request(rq) || 1627 blk_should_fake_timeout(rq->q); 1628 1629 if (should_requeue_request(rq)) { 1630 /* 1631 * Alternate between hitting the core BUSY path, and the 1632 * driver driven requeue path 1633 */ 1634 nq->requeue_selection++; 1635 if (nq->requeue_selection & 1) 1636 return BLK_STS_RESOURCE; 1637 blk_mq_requeue_request(rq, true); 1638 return BLK_STS_OK; 1639 } 1640 1641 if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) { 1642 blk_status_t sts = null_handle_throttled(cmd); 1643 1644 if (sts != BLK_STS_OK) 1645 return sts; 1646 } 1647 1648 blk_mq_start_request(rq); 1649 1650 if (is_poll) { 1651 spin_lock(&nq->poll_lock); 1652 list_add_tail(&rq->queuelist, &nq->poll_list); 1653 spin_unlock(&nq->poll_lock); 1654 return BLK_STS_OK; 1655 } 1656 if (cmd->fake_timeout) 1657 return BLK_STS_OK; 1658 1659 null_handle_cmd(cmd, sector, nr_sectors, req_op(rq)); 1660 return BLK_STS_OK; 1661 } 1662 1663 static void null_queue_rqs(struct rq_list *rqlist) 1664 { 1665 struct rq_list requeue_list = {}; 1666 struct blk_mq_queue_data bd = { }; 1667 blk_status_t ret; 1668 1669 do { 1670 struct request *rq = rq_list_pop(rqlist); 1671 1672 bd.rq = rq; 1673 ret = null_queue_rq(rq->mq_hctx, &bd); 1674 if (ret != BLK_STS_OK) 1675 rq_list_add_tail(&requeue_list, rq); 1676 } while (!rq_list_empty(rqlist)); 1677 1678 *rqlist = requeue_list; 1679 } 1680 1681 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq) 1682 { 1683 nq->dev = nullb->dev; 1684 INIT_LIST_HEAD(&nq->poll_list); 1685 spin_lock_init(&nq->poll_lock); 1686 } 1687 1688 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data, 1689 unsigned int hctx_idx) 1690 { 1691 struct nullb *nullb = hctx->queue->queuedata; 1692 struct nullb_queue *nq; 1693 1694 if (should_init_hctx_fail(nullb->dev)) 1695 return -EFAULT; 1696 1697 nq = &nullb->queues[hctx_idx]; 1698 hctx->driver_data = nq; 1699 null_init_queue(nullb, nq); 1700 1701 return 0; 1702 } 1703 1704 static const struct blk_mq_ops null_mq_ops = { 1705 .queue_rq = null_queue_rq, 1706 .queue_rqs = null_queue_rqs, 1707 .complete = null_complete_rq, 1708 .timeout = null_timeout_rq, 1709 .poll = null_poll, 1710 .map_queues = null_map_queues, 1711 .init_hctx = null_init_hctx, 1712 }; 1713 1714 static void null_del_dev(struct nullb *nullb) 1715 { 1716 struct nullb_device *dev; 1717 1718 if (!nullb) 1719 return; 1720 1721 dev = nullb->dev; 1722 1723 ida_free(&nullb_indexes, nullb->index); 1724 1725 list_del_init(&nullb->list); 1726 1727 del_gendisk(nullb->disk); 1728 1729 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) { 1730 hrtimer_cancel(&nullb->bw_timer); 1731 atomic_long_set(&nullb->cur_bytes, LONG_MAX); 1732 blk_mq_start_stopped_hw_queues(nullb->q, true); 1733 } 1734 1735 put_disk(nullb->disk); 1736 if (nullb->tag_set == &nullb->__tag_set) 1737 blk_mq_free_tag_set(nullb->tag_set); 1738 kfree(nullb->queues); 1739 if (null_cache_active(nullb)) 1740 null_free_device_storage(nullb->dev, true); 1741 kfree(nullb); 1742 dev->nullb = NULL; 1743 } 1744 1745 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim) 1746 { 1747 if (nullb->dev->discard == false) 1748 return; 1749 1750 if (!nullb->dev->memory_backed) { 1751 nullb->dev->discard = false; 1752 pr_info("discard option is ignored without memory backing\n"); 1753 return; 1754 } 1755 1756 if (nullb->dev->zoned) { 1757 nullb->dev->discard = false; 1758 pr_info("discard option is ignored in zoned mode\n"); 1759 return; 1760 } 1761 1762 lim->max_hw_discard_sectors = UINT_MAX >> 9; 1763 } 1764 1765 static const struct block_device_operations null_ops = { 1766 .owner = THIS_MODULE, 1767 .report_zones = null_report_zones, 1768 }; 1769 1770 static int setup_queues(struct nullb *nullb) 1771 { 1772 int nqueues = nr_cpu_ids; 1773 1774 if (g_poll_queues) 1775 nqueues += g_poll_queues; 1776 1777 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue), 1778 GFP_KERNEL); 1779 if (!nullb->queues) 1780 return -ENOMEM; 1781 1782 return 0; 1783 } 1784 1785 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues) 1786 { 1787 set->ops = &null_mq_ops; 1788 set->cmd_size = sizeof(struct nullb_cmd); 1789 set->timeout = 5 * HZ; 1790 set->nr_maps = 1; 1791 if (poll_queues) { 1792 set->nr_hw_queues += poll_queues; 1793 set->nr_maps += 2; 1794 } 1795 return blk_mq_alloc_tag_set(set); 1796 } 1797 1798 static int null_init_global_tag_set(void) 1799 { 1800 int error; 1801 1802 if (tag_set.ops) 1803 return 0; 1804 1805 tag_set.nr_hw_queues = g_submit_queues; 1806 tag_set.queue_depth = g_hw_queue_depth; 1807 tag_set.numa_node = g_home_node; 1808 if (g_no_sched) 1809 tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1810 if (g_shared_tag_bitmap) 1811 tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1812 if (g_blocking) 1813 tag_set.flags |= BLK_MQ_F_BLOCKING; 1814 1815 error = null_init_tag_set(&tag_set, g_poll_queues); 1816 if (error) 1817 tag_set.ops = NULL; 1818 return error; 1819 } 1820 1821 static int null_setup_tagset(struct nullb *nullb) 1822 { 1823 if (nullb->dev->shared_tags) { 1824 nullb->tag_set = &tag_set; 1825 return null_init_global_tag_set(); 1826 } 1827 1828 nullb->tag_set = &nullb->__tag_set; 1829 nullb->tag_set->driver_data = nullb; 1830 nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues; 1831 nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth; 1832 nullb->tag_set->numa_node = nullb->dev->home_node; 1833 if (nullb->dev->no_sched) 1834 nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1835 if (nullb->dev->shared_tag_bitmap) 1836 nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1837 if (nullb->dev->blocking) 1838 nullb->tag_set->flags |= BLK_MQ_F_BLOCKING; 1839 return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues); 1840 } 1841 1842 static int null_validate_conf(struct nullb_device *dev) 1843 { 1844 if (dev->queue_mode == NULL_Q_RQ) { 1845 pr_err("legacy IO path is no longer available\n"); 1846 return -EINVAL; 1847 } 1848 if (dev->queue_mode == NULL_Q_BIO) { 1849 pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n"); 1850 dev->queue_mode = NULL_Q_MQ; 1851 } 1852 1853 if (dev->use_per_node_hctx) { 1854 if (dev->submit_queues != nr_online_nodes) 1855 dev->submit_queues = nr_online_nodes; 1856 } else if (dev->submit_queues > nr_cpu_ids) 1857 dev->submit_queues = nr_cpu_ids; 1858 else if (dev->submit_queues == 0) 1859 dev->submit_queues = 1; 1860 dev->prev_submit_queues = dev->submit_queues; 1861 1862 if (dev->poll_queues > g_poll_queues) 1863 dev->poll_queues = g_poll_queues; 1864 dev->prev_poll_queues = dev->poll_queues; 1865 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER); 1866 1867 /* Do memory allocation, so set blocking */ 1868 if (dev->memory_backed) 1869 dev->blocking = true; 1870 else /* cache is meaningless */ 1871 dev->cache_size = 0; 1872 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024, 1873 dev->cache_size); 1874 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps); 1875 1876 if (dev->zoned && 1877 (!dev->zone_size || !is_power_of_2(dev->zone_size))) { 1878 pr_err("zone_size must be power-of-two\n"); 1879 return -EINVAL; 1880 } 1881 1882 return 0; 1883 } 1884 1885 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1886 static bool __null_setup_fault(struct fault_attr *attr, char *str) 1887 { 1888 if (!str[0]) 1889 return true; 1890 1891 if (!setup_fault_attr(attr, str)) 1892 return false; 1893 1894 attr->verbose = 0; 1895 return true; 1896 } 1897 #endif 1898 1899 static bool null_setup_fault(void) 1900 { 1901 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1902 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str)) 1903 return false; 1904 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str)) 1905 return false; 1906 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str)) 1907 return false; 1908 #endif 1909 return true; 1910 } 1911 1912 static int null_add_dev(struct nullb_device *dev) 1913 { 1914 struct queue_limits lim = { 1915 .logical_block_size = dev->blocksize, 1916 .physical_block_size = dev->blocksize, 1917 .max_hw_sectors = dev->max_sectors, 1918 }; 1919 1920 struct nullb *nullb; 1921 int rv; 1922 1923 rv = null_validate_conf(dev); 1924 if (rv) 1925 return rv; 1926 1927 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node); 1928 if (!nullb) { 1929 rv = -ENOMEM; 1930 goto out; 1931 } 1932 nullb->dev = dev; 1933 dev->nullb = nullb; 1934 1935 spin_lock_init(&nullb->lock); 1936 1937 rv = setup_queues(nullb); 1938 if (rv) 1939 goto out_free_nullb; 1940 1941 rv = null_setup_tagset(nullb); 1942 if (rv) 1943 goto out_cleanup_queues; 1944 1945 if (dev->virt_boundary) 1946 lim.virt_boundary_mask = PAGE_SIZE - 1; 1947 null_config_discard(nullb, &lim); 1948 if (dev->zoned) { 1949 rv = null_init_zoned_dev(dev, &lim); 1950 if (rv) 1951 goto out_cleanup_tags; 1952 } 1953 1954 if (dev->cache_size > 0) { 1955 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 1956 lim.features |= BLK_FEAT_WRITE_CACHE; 1957 if (dev->fua) 1958 lim.features |= BLK_FEAT_FUA; 1959 } 1960 1961 if (dev->rotational) 1962 lim.features |= BLK_FEAT_ROTATIONAL; 1963 1964 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb); 1965 if (IS_ERR(nullb->disk)) { 1966 rv = PTR_ERR(nullb->disk); 1967 goto out_cleanup_zone; 1968 } 1969 nullb->q = nullb->disk->queue; 1970 1971 if (dev->mbps) { 1972 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags); 1973 nullb_setup_bwtimer(nullb); 1974 } 1975 1976 nullb->q->queuedata = nullb; 1977 1978 rv = ida_alloc(&nullb_indexes, GFP_KERNEL); 1979 if (rv < 0) 1980 goto out_cleanup_disk; 1981 1982 nullb->index = rv; 1983 dev->index = rv; 1984 1985 if (config_item_name(&dev->group.cg_item)) { 1986 /* Use configfs dir name as the device name */ 1987 snprintf(nullb->disk_name, sizeof(nullb->disk_name), 1988 "%s", config_item_name(&dev->group.cg_item)); 1989 } else { 1990 sprintf(nullb->disk_name, "nullb%d", nullb->index); 1991 } 1992 1993 set_capacity(nullb->disk, 1994 ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT); 1995 nullb->disk->major = null_major; 1996 nullb->disk->first_minor = nullb->index; 1997 nullb->disk->minors = 1; 1998 nullb->disk->fops = &null_ops; 1999 nullb->disk->private_data = nullb; 2000 strscpy_pad(nullb->disk->disk_name, nullb->disk_name, DISK_NAME_LEN); 2001 2002 if (nullb->dev->zoned) { 2003 rv = null_register_zoned_dev(nullb); 2004 if (rv) 2005 goto out_ida_free; 2006 } 2007 2008 rv = add_disk(nullb->disk); 2009 if (rv) 2010 goto out_ida_free; 2011 2012 list_add_tail(&nullb->list, &nullb_list); 2013 2014 pr_info("disk %s created\n", nullb->disk_name); 2015 2016 return 0; 2017 2018 out_ida_free: 2019 ida_free(&nullb_indexes, nullb->index); 2020 out_cleanup_disk: 2021 put_disk(nullb->disk); 2022 out_cleanup_zone: 2023 null_free_zoned_dev(dev); 2024 out_cleanup_tags: 2025 if (nullb->tag_set == &nullb->__tag_set) 2026 blk_mq_free_tag_set(nullb->tag_set); 2027 out_cleanup_queues: 2028 kfree(nullb->queues); 2029 out_free_nullb: 2030 kfree(nullb); 2031 dev->nullb = NULL; 2032 out: 2033 return rv; 2034 } 2035 2036 static struct nullb *null_find_dev_by_name(const char *name) 2037 { 2038 struct nullb *nullb = NULL, *nb; 2039 2040 mutex_lock(&lock); 2041 list_for_each_entry(nb, &nullb_list, list) { 2042 if (strcmp(nb->disk_name, name) == 0) { 2043 nullb = nb; 2044 break; 2045 } 2046 } 2047 mutex_unlock(&lock); 2048 2049 return nullb; 2050 } 2051 2052 static int null_create_dev(void) 2053 { 2054 struct nullb_device *dev; 2055 int ret; 2056 2057 dev = null_alloc_dev(); 2058 if (!dev) 2059 return -ENOMEM; 2060 2061 mutex_lock(&lock); 2062 ret = null_add_dev(dev); 2063 mutex_unlock(&lock); 2064 if (ret) { 2065 null_free_dev(dev); 2066 return ret; 2067 } 2068 2069 return 0; 2070 } 2071 2072 static void null_destroy_dev(struct nullb *nullb) 2073 { 2074 struct nullb_device *dev = nullb->dev; 2075 2076 null_del_dev(nullb); 2077 null_free_device_storage(dev, false); 2078 null_free_dev(dev); 2079 } 2080 2081 static int __init null_init(void) 2082 { 2083 int ret = 0; 2084 unsigned int i; 2085 struct nullb *nullb; 2086 2087 if (g_bs > PAGE_SIZE) { 2088 pr_warn("invalid block size\n"); 2089 pr_warn("defaults block size to %lu\n", PAGE_SIZE); 2090 g_bs = PAGE_SIZE; 2091 } 2092 2093 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) { 2094 pr_err("invalid home_node value\n"); 2095 g_home_node = NUMA_NO_NODE; 2096 } 2097 2098 if (!null_setup_fault()) 2099 return -EINVAL; 2100 2101 if (g_queue_mode == NULL_Q_RQ) { 2102 pr_err("legacy IO path is no longer available\n"); 2103 return -EINVAL; 2104 } 2105 2106 if (g_use_per_node_hctx) { 2107 if (g_submit_queues != nr_online_nodes) { 2108 pr_warn("submit_queues param is set to %u.\n", 2109 nr_online_nodes); 2110 g_submit_queues = nr_online_nodes; 2111 } 2112 } else if (g_submit_queues > nr_cpu_ids) { 2113 g_submit_queues = nr_cpu_ids; 2114 } else if (g_submit_queues <= 0) { 2115 g_submit_queues = 1; 2116 } 2117 2118 config_group_init(&nullb_subsys.su_group); 2119 mutex_init(&nullb_subsys.su_mutex); 2120 2121 ret = configfs_register_subsystem(&nullb_subsys); 2122 if (ret) 2123 return ret; 2124 2125 mutex_init(&lock); 2126 2127 null_major = register_blkdev(0, "nullb"); 2128 if (null_major < 0) { 2129 ret = null_major; 2130 goto err_conf; 2131 } 2132 2133 for (i = 0; i < nr_devices; i++) { 2134 ret = null_create_dev(); 2135 if (ret) 2136 goto err_dev; 2137 } 2138 2139 pr_info("module loaded\n"); 2140 return 0; 2141 2142 err_dev: 2143 while (!list_empty(&nullb_list)) { 2144 nullb = list_entry(nullb_list.next, struct nullb, list); 2145 null_destroy_dev(nullb); 2146 } 2147 unregister_blkdev(null_major, "nullb"); 2148 err_conf: 2149 configfs_unregister_subsystem(&nullb_subsys); 2150 return ret; 2151 } 2152 2153 static void __exit null_exit(void) 2154 { 2155 struct nullb *nullb; 2156 2157 configfs_unregister_subsystem(&nullb_subsys); 2158 2159 unregister_blkdev(null_major, "nullb"); 2160 2161 mutex_lock(&lock); 2162 while (!list_empty(&nullb_list)) { 2163 nullb = list_entry(nullb_list.next, struct nullb, list); 2164 null_destroy_dev(nullb); 2165 } 2166 mutex_unlock(&lock); 2167 2168 if (tag_set.ops) 2169 blk_mq_free_tag_set(&tag_set); 2170 2171 mutex_destroy(&lock); 2172 } 2173 2174 module_init(null_init); 2175 module_exit(null_exit); 2176 2177 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>"); 2178 MODULE_DESCRIPTION("multi queue aware block test driver"); 2179 MODULE_LICENSE("GPL"); 2180