xref: /linux/drivers/block/null_blk/main.c (revision 2cadb8ef25a6157b5bd3e8fe0d3e23f32defec25)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7 
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13 
14 #undef pr_fmt
15 #define pr_fmt(fmt)	"null_blk: " fmt
16 
17 #define FREE_BATCH		16
18 
19 #define TICKS_PER_SEC		50ULL
20 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
21 
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27 
28 static inline u64 mb_per_tick(int mbps)
29 {
30 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32 
33 /*
34  * Status flags for nullb_device.
35  *
36  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
37  * UP:		Device is currently on and visible in userspace.
38  * THROTTLED:	Device is being throttled.
39  * CACHE:	Device is using a write-back cache.
40  */
41 enum nullb_device_flags {
42 	NULLB_DEV_FL_CONFIGURED	= 0,
43 	NULLB_DEV_FL_UP		= 1,
44 	NULLB_DEV_FL_THROTTLED	= 2,
45 	NULLB_DEV_FL_CACHE	= 3,
46 };
47 
48 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50  * nullb_page is a page in memory for nullb devices.
51  *
52  * @page:	The page holding the data.
53  * @bitmap:	The bitmap represents which sector in the page has data.
54  *		Each bit represents one block size. For example, sector 8
55  *		will use the 7th bit
56  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57  * page is being flushing to storage. FREE means the cache page is freed and
58  * should be skipped from flushing to storage. Please see
59  * null_make_cache_space
60  */
61 struct nullb_page {
62 	struct page *page;
63 	DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67 
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73 
74 enum {
75 	NULL_IRQ_NONE		= 0,
76 	NULL_IRQ_SOFTIRQ	= 1,
77 	NULL_IRQ_TIMER		= 2,
78 };
79 
80 static bool g_virt_boundary;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83 
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87 
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91 
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95 
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99 
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102  * For more details about fault injection, please refer to
103  * Documentation/fault-injection/fault-injection.rst.
104  */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108 
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112 
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117 
118 /*
119  * Historic queue modes.
120  *
121  * These days nothing but NULL_Q_MQ is actually supported, but we keep it the
122  * enum for error reporting.
123  */
124 enum {
125 	NULL_Q_BIO	= 0,
126 	NULL_Q_RQ	= 1,
127 	NULL_Q_MQ	= 2,
128 };
129 
130 static int g_queue_mode = NULL_Q_MQ;
131 
132 static int null_param_store_val(const char *str, int *val, int min, int max)
133 {
134 	int ret, new_val;
135 
136 	ret = kstrtoint(str, 10, &new_val);
137 	if (ret)
138 		return -EINVAL;
139 
140 	if (new_val < min || new_val > max)
141 		return -EINVAL;
142 
143 	*val = new_val;
144 	return 0;
145 }
146 
147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
148 {
149 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
150 }
151 
152 static const struct kernel_param_ops null_queue_mode_param_ops = {
153 	.set	= null_set_queue_mode,
154 	.get	= param_get_int,
155 };
156 
157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
159 
160 static int g_gb = 250;
161 module_param_named(gb, g_gb, int, 0444);
162 MODULE_PARM_DESC(gb, "Size in GB");
163 
164 static int g_bs = 512;
165 module_param_named(bs, g_bs, int, 0444);
166 MODULE_PARM_DESC(bs, "Block size (in bytes)");
167 
168 static int g_max_sectors;
169 module_param_named(max_sectors, g_max_sectors, int, 0444);
170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
171 
172 static unsigned int nr_devices = 1;
173 module_param(nr_devices, uint, 0444);
174 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
175 
176 static bool g_blocking;
177 module_param_named(blocking, g_blocking, bool, 0444);
178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
179 
180 static bool g_shared_tags;
181 module_param_named(shared_tags, g_shared_tags, bool, 0444);
182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
183 
184 static bool g_shared_tag_bitmap;
185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
187 
188 static int g_irqmode = NULL_IRQ_SOFTIRQ;
189 
190 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
191 {
192 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
193 					NULL_IRQ_TIMER);
194 }
195 
196 static const struct kernel_param_ops null_irqmode_param_ops = {
197 	.set	= null_set_irqmode,
198 	.get	= param_get_int,
199 };
200 
201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
203 
204 static unsigned long g_completion_nsec = 10000;
205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
207 
208 static int g_hw_queue_depth = 64;
209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
211 
212 static bool g_use_per_node_hctx;
213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
215 
216 static bool g_memory_backed;
217 module_param_named(memory_backed, g_memory_backed, bool, 0444);
218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
219 
220 static bool g_discard;
221 module_param_named(discard, g_discard, bool, 0444);
222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
223 
224 static unsigned long g_cache_size;
225 module_param_named(cache_size, g_cache_size, ulong, 0444);
226 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
227 
228 static bool g_fua = true;
229 module_param_named(fua, g_fua, bool, 0444);
230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true");
231 
232 static unsigned int g_mbps;
233 module_param_named(mbps, g_mbps, uint, 0444);
234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
235 
236 static bool g_zoned;
237 module_param_named(zoned, g_zoned, bool, S_IRUGO);
238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
239 
240 static unsigned long g_zone_size = 256;
241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
243 
244 static unsigned long g_zone_capacity;
245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
247 
248 static unsigned int g_zone_nr_conv;
249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
251 
252 static unsigned int g_zone_max_open;
253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
255 
256 static unsigned int g_zone_max_active;
257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
259 
260 static int g_zone_append_max_sectors = INT_MAX;
261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444);
262 MODULE_PARM_DESC(zone_append_max_sectors,
263 		 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation");
264 
265 static bool g_zone_full;
266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO);
267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false");
268 
269 static bool g_rotational;
270 module_param_named(rotational, g_rotational, bool, S_IRUGO);
271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false");
272 
273 static struct nullb_device *null_alloc_dev(void);
274 static void null_free_dev(struct nullb_device *dev);
275 static void null_del_dev(struct nullb *nullb);
276 static int null_add_dev(struct nullb_device *dev);
277 static struct nullb *null_find_dev_by_name(const char *name);
278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
279 
280 static inline struct nullb_device *to_nullb_device(struct config_item *item)
281 {
282 	return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
283 }
284 
285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
286 {
287 	return snprintf(page, PAGE_SIZE, "%u\n", val);
288 }
289 
290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
291 	char *page)
292 {
293 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
294 }
295 
296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
297 {
298 	return snprintf(page, PAGE_SIZE, "%u\n", val);
299 }
300 
301 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
302 	const char *page, size_t count)
303 {
304 	unsigned int tmp;
305 	int result;
306 
307 	result = kstrtouint(page, 0, &tmp);
308 	if (result < 0)
309 		return result;
310 
311 	*val = tmp;
312 	return count;
313 }
314 
315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
316 	const char *page, size_t count)
317 {
318 	int result;
319 	unsigned long tmp;
320 
321 	result = kstrtoul(page, 0, &tmp);
322 	if (result < 0)
323 		return result;
324 
325 	*val = tmp;
326 	return count;
327 }
328 
329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
330 	size_t count)
331 {
332 	bool tmp;
333 	int result;
334 
335 	result = kstrtobool(page,  &tmp);
336 	if (result < 0)
337 		return result;
338 
339 	*val = tmp;
340 	return count;
341 }
342 
343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
345 static ssize_t								\
346 nullb_device_##NAME##_show(struct config_item *item, char *page)	\
347 {									\
348 	return nullb_device_##TYPE##_attr_show(				\
349 				to_nullb_device(item)->NAME, page);	\
350 }									\
351 static ssize_t								\
352 nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
353 			    size_t count)				\
354 {									\
355 	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
356 	struct nullb_device *dev = to_nullb_device(item);		\
357 	TYPE new_value = 0;						\
358 	int ret;							\
359 									\
360 	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
361 	if (ret < 0)							\
362 		return ret;						\
363 	if (apply_fn)							\
364 		ret = apply_fn(dev, new_value);				\
365 	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
366 		ret = -EBUSY;						\
367 	if (ret < 0)							\
368 		return ret;						\
369 	dev->NAME = new_value;						\
370 	return count;							\
371 }									\
372 CONFIGFS_ATTR(nullb_device_, NAME);
373 
374 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
375 				     unsigned int submit_queues,
376 				     unsigned int poll_queues)
377 
378 {
379 	struct blk_mq_tag_set *set;
380 	int ret, nr_hw_queues;
381 
382 	if (!dev->nullb)
383 		return 0;
384 
385 	/*
386 	 * Make sure at least one submit queue exists.
387 	 */
388 	if (!submit_queues)
389 		return -EINVAL;
390 
391 	/*
392 	 * Make sure that null_init_hctx() does not access nullb->queues[] past
393 	 * the end of that array.
394 	 */
395 	if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
396 		return -EINVAL;
397 
398 	/*
399 	 * Keep previous and new queue numbers in nullb_device for reference in
400 	 * the call back function null_map_queues().
401 	 */
402 	dev->prev_submit_queues = dev->submit_queues;
403 	dev->prev_poll_queues = dev->poll_queues;
404 	dev->submit_queues = submit_queues;
405 	dev->poll_queues = poll_queues;
406 
407 	set = dev->nullb->tag_set;
408 	nr_hw_queues = submit_queues + poll_queues;
409 	blk_mq_update_nr_hw_queues(set, nr_hw_queues);
410 	ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
411 
412 	if (ret) {
413 		/* on error, revert the queue numbers */
414 		dev->submit_queues = dev->prev_submit_queues;
415 		dev->poll_queues = dev->prev_poll_queues;
416 	}
417 
418 	return ret;
419 }
420 
421 static int nullb_apply_submit_queues(struct nullb_device *dev,
422 				     unsigned int submit_queues)
423 {
424 	int ret;
425 
426 	mutex_lock(&lock);
427 	ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
428 	mutex_unlock(&lock);
429 
430 	return ret;
431 }
432 
433 static int nullb_apply_poll_queues(struct nullb_device *dev,
434 				   unsigned int poll_queues)
435 {
436 	int ret;
437 
438 	mutex_lock(&lock);
439 	ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
440 	mutex_unlock(&lock);
441 
442 	return ret;
443 }
444 
445 NULLB_DEVICE_ATTR(size, ulong, NULL);
446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
449 NULLB_DEVICE_ATTR(home_node, uint, NULL);
450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
451 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
453 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
455 NULLB_DEVICE_ATTR(index, uint, NULL);
456 NULLB_DEVICE_ATTR(blocking, bool, NULL);
457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
459 NULLB_DEVICE_ATTR(discard, bool, NULL);
460 NULLB_DEVICE_ATTR(mbps, uint, NULL);
461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
462 NULLB_DEVICE_ATTR(zoned, bool, NULL);
463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL);
469 NULLB_DEVICE_ATTR(zone_full, bool, NULL);
470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
471 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL);
473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
474 NULLB_DEVICE_ATTR(fua, bool, NULL);
475 NULLB_DEVICE_ATTR(rotational, bool, NULL);
476 
477 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
478 {
479 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
480 }
481 
482 static ssize_t nullb_device_power_store(struct config_item *item,
483 				     const char *page, size_t count)
484 {
485 	struct nullb_device *dev = to_nullb_device(item);
486 	bool newp = false;
487 	ssize_t ret;
488 
489 	ret = nullb_device_bool_attr_store(&newp, page, count);
490 	if (ret < 0)
491 		return ret;
492 
493 	ret = count;
494 	mutex_lock(&lock);
495 	if (!dev->power && newp) {
496 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
497 			goto out;
498 
499 		ret = null_add_dev(dev);
500 		if (ret) {
501 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
502 			goto out;
503 		}
504 
505 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
506 		dev->power = newp;
507 		ret = count;
508 	} else if (dev->power && !newp) {
509 		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
510 			dev->power = newp;
511 			null_del_dev(dev->nullb);
512 		}
513 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
514 	}
515 
516 out:
517 	mutex_unlock(&lock);
518 	return ret;
519 }
520 
521 CONFIGFS_ATTR(nullb_device_, power);
522 
523 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
524 {
525 	struct nullb_device *t_dev = to_nullb_device(item);
526 
527 	return badblocks_show(&t_dev->badblocks, page, 0);
528 }
529 
530 static ssize_t nullb_device_badblocks_store(struct config_item *item,
531 				     const char *page, size_t count)
532 {
533 	struct nullb_device *t_dev = to_nullb_device(item);
534 	char *orig, *buf, *tmp;
535 	u64 start, end;
536 	int ret;
537 
538 	orig = kstrndup(page, count, GFP_KERNEL);
539 	if (!orig)
540 		return -ENOMEM;
541 
542 	buf = strstrip(orig);
543 
544 	ret = -EINVAL;
545 	if (buf[0] != '+' && buf[0] != '-')
546 		goto out;
547 	tmp = strchr(&buf[1], '-');
548 	if (!tmp)
549 		goto out;
550 	*tmp = '\0';
551 	ret = kstrtoull(buf + 1, 0, &start);
552 	if (ret)
553 		goto out;
554 	ret = kstrtoull(tmp + 1, 0, &end);
555 	if (ret)
556 		goto out;
557 	ret = -EINVAL;
558 	if (start > end)
559 		goto out;
560 	/* enable badblocks */
561 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
562 	if (buf[0] == '+')
563 		ret = badblocks_set(&t_dev->badblocks, start,
564 			end - start + 1, 1);
565 	else
566 		ret = badblocks_clear(&t_dev->badblocks, start,
567 			end - start + 1);
568 	if (ret == 0)
569 		ret = count;
570 out:
571 	kfree(orig);
572 	return ret;
573 }
574 CONFIGFS_ATTR(nullb_device_, badblocks);
575 
576 static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
577 						const char *page, size_t count)
578 {
579 	struct nullb_device *dev = to_nullb_device(item);
580 
581 	return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
582 }
583 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
584 
585 static ssize_t nullb_device_zone_offline_store(struct config_item *item,
586 					       const char *page, size_t count)
587 {
588 	struct nullb_device *dev = to_nullb_device(item);
589 
590 	return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
591 }
592 CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
593 
594 static struct configfs_attribute *nullb_device_attrs[] = {
595 	&nullb_device_attr_badblocks,
596 	&nullb_device_attr_blocking,
597 	&nullb_device_attr_blocksize,
598 	&nullb_device_attr_cache_size,
599 	&nullb_device_attr_completion_nsec,
600 	&nullb_device_attr_discard,
601 	&nullb_device_attr_fua,
602 	&nullb_device_attr_home_node,
603 	&nullb_device_attr_hw_queue_depth,
604 	&nullb_device_attr_index,
605 	&nullb_device_attr_irqmode,
606 	&nullb_device_attr_max_sectors,
607 	&nullb_device_attr_mbps,
608 	&nullb_device_attr_memory_backed,
609 	&nullb_device_attr_no_sched,
610 	&nullb_device_attr_poll_queues,
611 	&nullb_device_attr_power,
612 	&nullb_device_attr_queue_mode,
613 	&nullb_device_attr_rotational,
614 	&nullb_device_attr_shared_tag_bitmap,
615 	&nullb_device_attr_shared_tags,
616 	&nullb_device_attr_size,
617 	&nullb_device_attr_submit_queues,
618 	&nullb_device_attr_use_per_node_hctx,
619 	&nullb_device_attr_virt_boundary,
620 	&nullb_device_attr_zone_append_max_sectors,
621 	&nullb_device_attr_zone_capacity,
622 	&nullb_device_attr_zone_full,
623 	&nullb_device_attr_zone_max_active,
624 	&nullb_device_attr_zone_max_open,
625 	&nullb_device_attr_zone_nr_conv,
626 	&nullb_device_attr_zone_offline,
627 	&nullb_device_attr_zone_readonly,
628 	&nullb_device_attr_zone_size,
629 	&nullb_device_attr_zoned,
630 	NULL,
631 };
632 
633 static void nullb_device_release(struct config_item *item)
634 {
635 	struct nullb_device *dev = to_nullb_device(item);
636 
637 	null_free_device_storage(dev, false);
638 	null_free_dev(dev);
639 }
640 
641 static struct configfs_item_operations nullb_device_ops = {
642 	.release	= nullb_device_release,
643 };
644 
645 static const struct config_item_type nullb_device_type = {
646 	.ct_item_ops	= &nullb_device_ops,
647 	.ct_attrs	= nullb_device_attrs,
648 	.ct_owner	= THIS_MODULE,
649 };
650 
651 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
652 
653 static void nullb_add_fault_config(struct nullb_device *dev)
654 {
655 	fault_config_init(&dev->timeout_config, "timeout_inject");
656 	fault_config_init(&dev->requeue_config, "requeue_inject");
657 	fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
658 
659 	configfs_add_default_group(&dev->timeout_config.group, &dev->group);
660 	configfs_add_default_group(&dev->requeue_config.group, &dev->group);
661 	configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
662 }
663 
664 #else
665 
666 static void nullb_add_fault_config(struct nullb_device *dev)
667 {
668 }
669 
670 #endif
671 
672 static struct
673 config_group *nullb_group_make_group(struct config_group *group, const char *name)
674 {
675 	struct nullb_device *dev;
676 
677 	if (null_find_dev_by_name(name))
678 		return ERR_PTR(-EEXIST);
679 
680 	dev = null_alloc_dev();
681 	if (!dev)
682 		return ERR_PTR(-ENOMEM);
683 
684 	config_group_init_type_name(&dev->group, name, &nullb_device_type);
685 	nullb_add_fault_config(dev);
686 
687 	return &dev->group;
688 }
689 
690 static void
691 nullb_group_drop_item(struct config_group *group, struct config_item *item)
692 {
693 	struct nullb_device *dev = to_nullb_device(item);
694 
695 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
696 		mutex_lock(&lock);
697 		dev->power = false;
698 		null_del_dev(dev->nullb);
699 		mutex_unlock(&lock);
700 	}
701 
702 	config_item_put(item);
703 }
704 
705 static ssize_t memb_group_features_show(struct config_item *item, char *page)
706 {
707 
708 	struct configfs_attribute **entry;
709 	char delimiter = ',';
710 	size_t left = PAGE_SIZE;
711 	size_t written = 0;
712 	int ret;
713 
714 	for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) {
715 		if (!*(entry + 1))
716 			delimiter = '\n';
717 		ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name,
718 			       delimiter);
719 		if (ret >= left) {
720 			WARN_ONCE(1, "Too many null_blk features to print\n");
721 			memzero_explicit(page, PAGE_SIZE);
722 			return -ENOBUFS;
723 		}
724 		left -= ret;
725 		written += ret;
726 	}
727 
728 	return written;
729 }
730 
731 CONFIGFS_ATTR_RO(memb_group_, features);
732 
733 static struct configfs_attribute *nullb_group_attrs[] = {
734 	&memb_group_attr_features,
735 	NULL,
736 };
737 
738 static struct configfs_group_operations nullb_group_ops = {
739 	.make_group	= nullb_group_make_group,
740 	.drop_item	= nullb_group_drop_item,
741 };
742 
743 static const struct config_item_type nullb_group_type = {
744 	.ct_group_ops	= &nullb_group_ops,
745 	.ct_attrs	= nullb_group_attrs,
746 	.ct_owner	= THIS_MODULE,
747 };
748 
749 static struct configfs_subsystem nullb_subsys = {
750 	.su_group = {
751 		.cg_item = {
752 			.ci_namebuf = "nullb",
753 			.ci_type = &nullb_group_type,
754 		},
755 	},
756 };
757 
758 static inline int null_cache_active(struct nullb *nullb)
759 {
760 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
761 }
762 
763 static struct nullb_device *null_alloc_dev(void)
764 {
765 	struct nullb_device *dev;
766 
767 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
768 	if (!dev)
769 		return NULL;
770 
771 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
772 	dev->timeout_config.attr = null_timeout_attr;
773 	dev->requeue_config.attr = null_requeue_attr;
774 	dev->init_hctx_fault_config.attr = null_init_hctx_attr;
775 #endif
776 
777 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
778 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
779 	if (badblocks_init(&dev->badblocks, 0)) {
780 		kfree(dev);
781 		return NULL;
782 	}
783 
784 	dev->size = g_gb * 1024;
785 	dev->completion_nsec = g_completion_nsec;
786 	dev->submit_queues = g_submit_queues;
787 	dev->prev_submit_queues = g_submit_queues;
788 	dev->poll_queues = g_poll_queues;
789 	dev->prev_poll_queues = g_poll_queues;
790 	dev->home_node = g_home_node;
791 	dev->queue_mode = g_queue_mode;
792 	dev->blocksize = g_bs;
793 	dev->max_sectors = g_max_sectors;
794 	dev->irqmode = g_irqmode;
795 	dev->hw_queue_depth = g_hw_queue_depth;
796 	dev->blocking = g_blocking;
797 	dev->memory_backed = g_memory_backed;
798 	dev->discard = g_discard;
799 	dev->cache_size = g_cache_size;
800 	dev->mbps = g_mbps;
801 	dev->use_per_node_hctx = g_use_per_node_hctx;
802 	dev->zoned = g_zoned;
803 	dev->zone_size = g_zone_size;
804 	dev->zone_capacity = g_zone_capacity;
805 	dev->zone_nr_conv = g_zone_nr_conv;
806 	dev->zone_max_open = g_zone_max_open;
807 	dev->zone_max_active = g_zone_max_active;
808 	dev->zone_append_max_sectors = g_zone_append_max_sectors;
809 	dev->zone_full = g_zone_full;
810 	dev->virt_boundary = g_virt_boundary;
811 	dev->no_sched = g_no_sched;
812 	dev->shared_tags = g_shared_tags;
813 	dev->shared_tag_bitmap = g_shared_tag_bitmap;
814 	dev->fua = g_fua;
815 	dev->rotational = g_rotational;
816 
817 	return dev;
818 }
819 
820 static void null_free_dev(struct nullb_device *dev)
821 {
822 	if (!dev)
823 		return;
824 
825 	null_free_zoned_dev(dev);
826 	badblocks_exit(&dev->badblocks);
827 	kfree(dev);
828 }
829 
830 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
831 {
832 	struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer);
833 
834 	blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error);
835 	return HRTIMER_NORESTART;
836 }
837 
838 static void null_cmd_end_timer(struct nullb_cmd *cmd)
839 {
840 	ktime_t kt = cmd->nq->dev->completion_nsec;
841 
842 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
843 }
844 
845 static void null_complete_rq(struct request *rq)
846 {
847 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
848 
849 	blk_mq_end_request(rq, cmd->error);
850 }
851 
852 static struct nullb_page *null_alloc_page(void)
853 {
854 	struct nullb_page *t_page;
855 
856 	t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
857 	if (!t_page)
858 		return NULL;
859 
860 	t_page->page = alloc_pages(GFP_NOIO, 0);
861 	if (!t_page->page) {
862 		kfree(t_page);
863 		return NULL;
864 	}
865 
866 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
867 	return t_page;
868 }
869 
870 static void null_free_page(struct nullb_page *t_page)
871 {
872 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
873 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
874 		return;
875 	__free_page(t_page->page);
876 	kfree(t_page);
877 }
878 
879 static bool null_page_empty(struct nullb_page *page)
880 {
881 	int size = MAP_SZ - 2;
882 
883 	return find_first_bit(page->bitmap, size) == size;
884 }
885 
886 static void null_free_sector(struct nullb *nullb, sector_t sector,
887 	bool is_cache)
888 {
889 	unsigned int sector_bit;
890 	u64 idx;
891 	struct nullb_page *t_page, *ret;
892 	struct radix_tree_root *root;
893 
894 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
895 	idx = sector >> PAGE_SECTORS_SHIFT;
896 	sector_bit = (sector & SECTOR_MASK);
897 
898 	t_page = radix_tree_lookup(root, idx);
899 	if (t_page) {
900 		__clear_bit(sector_bit, t_page->bitmap);
901 
902 		if (null_page_empty(t_page)) {
903 			ret = radix_tree_delete_item(root, idx, t_page);
904 			WARN_ON(ret != t_page);
905 			null_free_page(ret);
906 			if (is_cache)
907 				nullb->dev->curr_cache -= PAGE_SIZE;
908 		}
909 	}
910 }
911 
912 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
913 	struct nullb_page *t_page, bool is_cache)
914 {
915 	struct radix_tree_root *root;
916 
917 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
918 
919 	if (radix_tree_insert(root, idx, t_page)) {
920 		null_free_page(t_page);
921 		t_page = radix_tree_lookup(root, idx);
922 		WARN_ON(!t_page || t_page->page->private != idx);
923 	} else if (is_cache)
924 		nullb->dev->curr_cache += PAGE_SIZE;
925 
926 	return t_page;
927 }
928 
929 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
930 {
931 	unsigned long pos = 0;
932 	int nr_pages;
933 	struct nullb_page *ret, *t_pages[FREE_BATCH];
934 	struct radix_tree_root *root;
935 
936 	root = is_cache ? &dev->cache : &dev->data;
937 
938 	do {
939 		int i;
940 
941 		nr_pages = radix_tree_gang_lookup(root,
942 				(void **)t_pages, pos, FREE_BATCH);
943 
944 		for (i = 0; i < nr_pages; i++) {
945 			pos = t_pages[i]->page->private;
946 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
947 			WARN_ON(ret != t_pages[i]);
948 			null_free_page(ret);
949 		}
950 
951 		pos++;
952 	} while (nr_pages == FREE_BATCH);
953 
954 	if (is_cache)
955 		dev->curr_cache = 0;
956 }
957 
958 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
959 	sector_t sector, bool for_write, bool is_cache)
960 {
961 	unsigned int sector_bit;
962 	u64 idx;
963 	struct nullb_page *t_page;
964 	struct radix_tree_root *root;
965 
966 	idx = sector >> PAGE_SECTORS_SHIFT;
967 	sector_bit = (sector & SECTOR_MASK);
968 
969 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
970 	t_page = radix_tree_lookup(root, idx);
971 	WARN_ON(t_page && t_page->page->private != idx);
972 
973 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
974 		return t_page;
975 
976 	return NULL;
977 }
978 
979 static struct nullb_page *null_lookup_page(struct nullb *nullb,
980 	sector_t sector, bool for_write, bool ignore_cache)
981 {
982 	struct nullb_page *page = NULL;
983 
984 	if (!ignore_cache)
985 		page = __null_lookup_page(nullb, sector, for_write, true);
986 	if (page)
987 		return page;
988 	return __null_lookup_page(nullb, sector, for_write, false);
989 }
990 
991 static struct nullb_page *null_insert_page(struct nullb *nullb,
992 					   sector_t sector, bool ignore_cache)
993 	__releases(&nullb->lock)
994 	__acquires(&nullb->lock)
995 {
996 	u64 idx;
997 	struct nullb_page *t_page;
998 
999 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
1000 	if (t_page)
1001 		return t_page;
1002 
1003 	spin_unlock_irq(&nullb->lock);
1004 
1005 	t_page = null_alloc_page();
1006 	if (!t_page)
1007 		goto out_lock;
1008 
1009 	if (radix_tree_preload(GFP_NOIO))
1010 		goto out_freepage;
1011 
1012 	spin_lock_irq(&nullb->lock);
1013 	idx = sector >> PAGE_SECTORS_SHIFT;
1014 	t_page->page->private = idx;
1015 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
1016 	radix_tree_preload_end();
1017 
1018 	return t_page;
1019 out_freepage:
1020 	null_free_page(t_page);
1021 out_lock:
1022 	spin_lock_irq(&nullb->lock);
1023 	return null_lookup_page(nullb, sector, true, ignore_cache);
1024 }
1025 
1026 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1027 {
1028 	int i;
1029 	unsigned int offset;
1030 	u64 idx;
1031 	struct nullb_page *t_page, *ret;
1032 	void *dst, *src;
1033 
1034 	idx = c_page->page->private;
1035 
1036 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1037 
1038 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1039 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1040 		null_free_page(c_page);
1041 		if (t_page && null_page_empty(t_page)) {
1042 			ret = radix_tree_delete_item(&nullb->dev->data,
1043 				idx, t_page);
1044 			null_free_page(t_page);
1045 		}
1046 		return 0;
1047 	}
1048 
1049 	if (!t_page)
1050 		return -ENOMEM;
1051 
1052 	src = kmap_local_page(c_page->page);
1053 	dst = kmap_local_page(t_page->page);
1054 
1055 	for (i = 0; i < PAGE_SECTORS;
1056 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1057 		if (test_bit(i, c_page->bitmap)) {
1058 			offset = (i << SECTOR_SHIFT);
1059 			memcpy(dst + offset, src + offset,
1060 				nullb->dev->blocksize);
1061 			__set_bit(i, t_page->bitmap);
1062 		}
1063 	}
1064 
1065 	kunmap_local(dst);
1066 	kunmap_local(src);
1067 
1068 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1069 	null_free_page(ret);
1070 	nullb->dev->curr_cache -= PAGE_SIZE;
1071 
1072 	return 0;
1073 }
1074 
1075 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1076 {
1077 	int i, err, nr_pages;
1078 	struct nullb_page *c_pages[FREE_BATCH];
1079 	unsigned long flushed = 0, one_round;
1080 
1081 again:
1082 	if ((nullb->dev->cache_size * 1024 * 1024) >
1083 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1084 		return 0;
1085 
1086 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1087 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1088 	/*
1089 	 * nullb_flush_cache_page could unlock before using the c_pages. To
1090 	 * avoid race, we don't allow page free
1091 	 */
1092 	for (i = 0; i < nr_pages; i++) {
1093 		nullb->cache_flush_pos = c_pages[i]->page->private;
1094 		/*
1095 		 * We found the page which is being flushed to disk by other
1096 		 * threads
1097 		 */
1098 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1099 			c_pages[i] = NULL;
1100 		else
1101 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1102 	}
1103 
1104 	one_round = 0;
1105 	for (i = 0; i < nr_pages; i++) {
1106 		if (c_pages[i] == NULL)
1107 			continue;
1108 		err = null_flush_cache_page(nullb, c_pages[i]);
1109 		if (err)
1110 			return err;
1111 		one_round++;
1112 	}
1113 	flushed += one_round << PAGE_SHIFT;
1114 
1115 	if (n > flushed) {
1116 		if (nr_pages == 0)
1117 			nullb->cache_flush_pos = 0;
1118 		if (one_round == 0) {
1119 			/* give other threads a chance */
1120 			spin_unlock_irq(&nullb->lock);
1121 			spin_lock_irq(&nullb->lock);
1122 		}
1123 		goto again;
1124 	}
1125 	return 0;
1126 }
1127 
1128 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1129 	unsigned int off, sector_t sector, size_t n, bool is_fua)
1130 {
1131 	size_t temp, count = 0;
1132 	unsigned int offset;
1133 	struct nullb_page *t_page;
1134 
1135 	while (count < n) {
1136 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1137 
1138 		if (null_cache_active(nullb) && !is_fua)
1139 			null_make_cache_space(nullb, PAGE_SIZE);
1140 
1141 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1142 		t_page = null_insert_page(nullb, sector,
1143 			!null_cache_active(nullb) || is_fua);
1144 		if (!t_page)
1145 			return -ENOSPC;
1146 
1147 		memcpy_page(t_page->page, offset, source, off + count, temp);
1148 
1149 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1150 
1151 		if (is_fua)
1152 			null_free_sector(nullb, sector, true);
1153 
1154 		count += temp;
1155 		sector += temp >> SECTOR_SHIFT;
1156 	}
1157 	return 0;
1158 }
1159 
1160 static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1161 	unsigned int off, sector_t sector, size_t n)
1162 {
1163 	size_t temp, count = 0;
1164 	unsigned int offset;
1165 	struct nullb_page *t_page;
1166 
1167 	while (count < n) {
1168 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1169 
1170 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1171 		t_page = null_lookup_page(nullb, sector, false,
1172 			!null_cache_active(nullb));
1173 
1174 		if (t_page)
1175 			memcpy_page(dest, off + count, t_page->page, offset,
1176 				    temp);
1177 		else
1178 			zero_user(dest, off + count, temp);
1179 
1180 		count += temp;
1181 		sector += temp >> SECTOR_SHIFT;
1182 	}
1183 	return 0;
1184 }
1185 
1186 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1187 			       unsigned int len, unsigned int off)
1188 {
1189 	memset_page(page, off, 0xff, len);
1190 }
1191 
1192 blk_status_t null_handle_discard(struct nullb_device *dev,
1193 				 sector_t sector, sector_t nr_sectors)
1194 {
1195 	struct nullb *nullb = dev->nullb;
1196 	size_t n = nr_sectors << SECTOR_SHIFT;
1197 	size_t temp;
1198 
1199 	spin_lock_irq(&nullb->lock);
1200 	while (n > 0) {
1201 		temp = min_t(size_t, n, dev->blocksize);
1202 		null_free_sector(nullb, sector, false);
1203 		if (null_cache_active(nullb))
1204 			null_free_sector(nullb, sector, true);
1205 		sector += temp >> SECTOR_SHIFT;
1206 		n -= temp;
1207 	}
1208 	spin_unlock_irq(&nullb->lock);
1209 
1210 	return BLK_STS_OK;
1211 }
1212 
1213 static blk_status_t null_handle_flush(struct nullb *nullb)
1214 {
1215 	int err;
1216 
1217 	if (!null_cache_active(nullb))
1218 		return 0;
1219 
1220 	spin_lock_irq(&nullb->lock);
1221 	while (true) {
1222 		err = null_make_cache_space(nullb,
1223 			nullb->dev->cache_size * 1024 * 1024);
1224 		if (err || nullb->dev->curr_cache == 0)
1225 			break;
1226 	}
1227 
1228 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1229 	spin_unlock_irq(&nullb->lock);
1230 	return errno_to_blk_status(err);
1231 }
1232 
1233 static int null_transfer(struct nullb *nullb, struct page *page,
1234 	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1235 	bool is_fua)
1236 {
1237 	struct nullb_device *dev = nullb->dev;
1238 	unsigned int valid_len = len;
1239 	int err = 0;
1240 
1241 	if (!is_write) {
1242 		if (dev->zoned)
1243 			valid_len = null_zone_valid_read_len(nullb,
1244 				sector, len);
1245 
1246 		if (valid_len) {
1247 			err = copy_from_nullb(nullb, page, off,
1248 				sector, valid_len);
1249 			off += valid_len;
1250 			len -= valid_len;
1251 		}
1252 
1253 		if (len)
1254 			nullb_fill_pattern(nullb, page, len, off);
1255 		flush_dcache_page(page);
1256 	} else {
1257 		flush_dcache_page(page);
1258 		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1259 	}
1260 
1261 	return err;
1262 }
1263 
1264 static blk_status_t null_handle_rq(struct nullb_cmd *cmd)
1265 {
1266 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1267 	struct nullb *nullb = cmd->nq->dev->nullb;
1268 	int err = 0;
1269 	unsigned int len;
1270 	sector_t sector = blk_rq_pos(rq);
1271 	struct req_iterator iter;
1272 	struct bio_vec bvec;
1273 
1274 	spin_lock_irq(&nullb->lock);
1275 	rq_for_each_segment(bvec, rq, iter) {
1276 		len = bvec.bv_len;
1277 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1278 				     op_is_write(req_op(rq)), sector,
1279 				     rq->cmd_flags & REQ_FUA);
1280 		if (err)
1281 			break;
1282 		sector += len >> SECTOR_SHIFT;
1283 	}
1284 	spin_unlock_irq(&nullb->lock);
1285 
1286 	return errno_to_blk_status(err);
1287 }
1288 
1289 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1290 {
1291 	struct nullb_device *dev = cmd->nq->dev;
1292 	struct nullb *nullb = dev->nullb;
1293 	blk_status_t sts = BLK_STS_OK;
1294 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1295 
1296 	if (!hrtimer_active(&nullb->bw_timer))
1297 		hrtimer_restart(&nullb->bw_timer);
1298 
1299 	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1300 		blk_mq_stop_hw_queues(nullb->q);
1301 		/* race with timer */
1302 		if (atomic_long_read(&nullb->cur_bytes) > 0)
1303 			blk_mq_start_stopped_hw_queues(nullb->q, true);
1304 		/* requeue request */
1305 		sts = BLK_STS_DEV_RESOURCE;
1306 	}
1307 	return sts;
1308 }
1309 
1310 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1311 						 sector_t sector,
1312 						 sector_t nr_sectors)
1313 {
1314 	struct badblocks *bb = &cmd->nq->dev->badblocks;
1315 	sector_t first_bad;
1316 	int bad_sectors;
1317 
1318 	if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
1319 		return BLK_STS_IOERR;
1320 
1321 	return BLK_STS_OK;
1322 }
1323 
1324 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1325 						     enum req_op op,
1326 						     sector_t sector,
1327 						     sector_t nr_sectors)
1328 {
1329 	struct nullb_device *dev = cmd->nq->dev;
1330 
1331 	if (op == REQ_OP_DISCARD)
1332 		return null_handle_discard(dev, sector, nr_sectors);
1333 
1334 	return null_handle_rq(cmd);
1335 }
1336 
1337 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1338 {
1339 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1340 	struct nullb_device *dev = cmd->nq->dev;
1341 	struct bio *bio;
1342 
1343 	if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) {
1344 		__rq_for_each_bio(bio, rq)
1345 			zero_fill_bio(bio);
1346 	}
1347 }
1348 
1349 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1350 {
1351 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1352 
1353 	/*
1354 	 * Since root privileges are required to configure the null_blk
1355 	 * driver, it is fine that this driver does not initialize the
1356 	 * data buffers of read commands. Zero-initialize these buffers
1357 	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1358 	 * about null_blk not initializing read data buffers.
1359 	 */
1360 	if (IS_ENABLED(CONFIG_KMSAN))
1361 		nullb_zero_read_cmd_buffer(cmd);
1362 
1363 	/* Complete IO by inline, softirq or timer */
1364 	switch (cmd->nq->dev->irqmode) {
1365 	case NULL_IRQ_SOFTIRQ:
1366 		blk_mq_complete_request(rq);
1367 		break;
1368 	case NULL_IRQ_NONE:
1369 		blk_mq_end_request(rq, cmd->error);
1370 		break;
1371 	case NULL_IRQ_TIMER:
1372 		null_cmd_end_timer(cmd);
1373 		break;
1374 	}
1375 }
1376 
1377 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1378 			      sector_t sector, unsigned int nr_sectors)
1379 {
1380 	struct nullb_device *dev = cmd->nq->dev;
1381 	blk_status_t ret;
1382 
1383 	if (dev->badblocks.shift != -1) {
1384 		ret = null_handle_badblocks(cmd, sector, nr_sectors);
1385 		if (ret != BLK_STS_OK)
1386 			return ret;
1387 	}
1388 
1389 	if (dev->memory_backed)
1390 		return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1391 
1392 	return BLK_STS_OK;
1393 }
1394 
1395 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1396 			    sector_t nr_sectors, enum req_op op)
1397 {
1398 	struct nullb_device *dev = cmd->nq->dev;
1399 	struct nullb *nullb = dev->nullb;
1400 	blk_status_t sts;
1401 
1402 	if (op == REQ_OP_FLUSH) {
1403 		cmd->error = null_handle_flush(nullb);
1404 		goto out;
1405 	}
1406 
1407 	if (dev->zoned)
1408 		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1409 	else
1410 		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1411 
1412 	/* Do not overwrite errors (e.g. timeout errors) */
1413 	if (cmd->error == BLK_STS_OK)
1414 		cmd->error = sts;
1415 
1416 out:
1417 	nullb_complete_cmd(cmd);
1418 }
1419 
1420 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1421 {
1422 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1423 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1424 	unsigned int mbps = nullb->dev->mbps;
1425 
1426 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1427 		return HRTIMER_NORESTART;
1428 
1429 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1430 	blk_mq_start_stopped_hw_queues(nullb->q, true);
1431 
1432 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1433 
1434 	return HRTIMER_RESTART;
1435 }
1436 
1437 static void nullb_setup_bwtimer(struct nullb *nullb)
1438 {
1439 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1440 
1441 	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1442 	nullb->bw_timer.function = nullb_bwtimer_fn;
1443 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1444 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1445 }
1446 
1447 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1448 
1449 static bool should_timeout_request(struct request *rq)
1450 {
1451 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1452 	struct nullb_device *dev = cmd->nq->dev;
1453 
1454 	return should_fail(&dev->timeout_config.attr, 1);
1455 }
1456 
1457 static bool should_requeue_request(struct request *rq)
1458 {
1459 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1460 	struct nullb_device *dev = cmd->nq->dev;
1461 
1462 	return should_fail(&dev->requeue_config.attr, 1);
1463 }
1464 
1465 static bool should_init_hctx_fail(struct nullb_device *dev)
1466 {
1467 	return should_fail(&dev->init_hctx_fault_config.attr, 1);
1468 }
1469 
1470 #else
1471 
1472 static bool should_timeout_request(struct request *rq)
1473 {
1474 	return false;
1475 }
1476 
1477 static bool should_requeue_request(struct request *rq)
1478 {
1479 	return false;
1480 }
1481 
1482 static bool should_init_hctx_fail(struct nullb_device *dev)
1483 {
1484 	return false;
1485 }
1486 
1487 #endif
1488 
1489 static void null_map_queues(struct blk_mq_tag_set *set)
1490 {
1491 	struct nullb *nullb = set->driver_data;
1492 	int i, qoff;
1493 	unsigned int submit_queues = g_submit_queues;
1494 	unsigned int poll_queues = g_poll_queues;
1495 
1496 	if (nullb) {
1497 		struct nullb_device *dev = nullb->dev;
1498 
1499 		/*
1500 		 * Refer nr_hw_queues of the tag set to check if the expected
1501 		 * number of hardware queues are prepared. If block layer failed
1502 		 * to prepare them, use previous numbers of submit queues and
1503 		 * poll queues to map queues.
1504 		 */
1505 		if (set->nr_hw_queues ==
1506 		    dev->submit_queues + dev->poll_queues) {
1507 			submit_queues = dev->submit_queues;
1508 			poll_queues = dev->poll_queues;
1509 		} else if (set->nr_hw_queues ==
1510 			   dev->prev_submit_queues + dev->prev_poll_queues) {
1511 			submit_queues = dev->prev_submit_queues;
1512 			poll_queues = dev->prev_poll_queues;
1513 		} else {
1514 			pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1515 				set->nr_hw_queues);
1516 			WARN_ON_ONCE(true);
1517 			submit_queues = 1;
1518 			poll_queues = 0;
1519 		}
1520 	}
1521 
1522 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1523 		struct blk_mq_queue_map *map = &set->map[i];
1524 
1525 		switch (i) {
1526 		case HCTX_TYPE_DEFAULT:
1527 			map->nr_queues = submit_queues;
1528 			break;
1529 		case HCTX_TYPE_READ:
1530 			map->nr_queues = 0;
1531 			continue;
1532 		case HCTX_TYPE_POLL:
1533 			map->nr_queues = poll_queues;
1534 			break;
1535 		}
1536 		map->queue_offset = qoff;
1537 		qoff += map->nr_queues;
1538 		blk_mq_map_queues(map);
1539 	}
1540 }
1541 
1542 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1543 {
1544 	struct nullb_queue *nq = hctx->driver_data;
1545 	LIST_HEAD(list);
1546 	int nr = 0;
1547 	struct request *rq;
1548 
1549 	spin_lock(&nq->poll_lock);
1550 	list_splice_init(&nq->poll_list, &list);
1551 	list_for_each_entry(rq, &list, queuelist)
1552 		blk_mq_set_request_complete(rq);
1553 	spin_unlock(&nq->poll_lock);
1554 
1555 	while (!list_empty(&list)) {
1556 		struct nullb_cmd *cmd;
1557 		struct request *req;
1558 
1559 		req = list_first_entry(&list, struct request, queuelist);
1560 		list_del_init(&req->queuelist);
1561 		cmd = blk_mq_rq_to_pdu(req);
1562 		cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1563 						blk_rq_sectors(req));
1564 		if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
1565 					blk_mq_end_request_batch))
1566 			blk_mq_end_request(req, cmd->error);
1567 		nr++;
1568 	}
1569 
1570 	return nr;
1571 }
1572 
1573 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1574 {
1575 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1576 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1577 
1578 	if (hctx->type == HCTX_TYPE_POLL) {
1579 		struct nullb_queue *nq = hctx->driver_data;
1580 
1581 		spin_lock(&nq->poll_lock);
1582 		/* The request may have completed meanwhile. */
1583 		if (blk_mq_request_completed(rq)) {
1584 			spin_unlock(&nq->poll_lock);
1585 			return BLK_EH_DONE;
1586 		}
1587 		list_del_init(&rq->queuelist);
1588 		spin_unlock(&nq->poll_lock);
1589 	}
1590 
1591 	pr_info("rq %p timed out\n", rq);
1592 
1593 	/*
1594 	 * If the device is marked as blocking (i.e. memory backed or zoned
1595 	 * device), the submission path may be blocked waiting for resources
1596 	 * and cause real timeouts. For these real timeouts, the submission
1597 	 * path will complete the request using blk_mq_complete_request().
1598 	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1599 	 */
1600 	cmd->error = BLK_STS_TIMEOUT;
1601 	if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1602 		blk_mq_complete_request(rq);
1603 	return BLK_EH_DONE;
1604 }
1605 
1606 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1607 				  const struct blk_mq_queue_data *bd)
1608 {
1609 	struct request *rq = bd->rq;
1610 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1611 	struct nullb_queue *nq = hctx->driver_data;
1612 	sector_t nr_sectors = blk_rq_sectors(rq);
1613 	sector_t sector = blk_rq_pos(rq);
1614 	const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1615 
1616 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1617 
1618 	if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1619 		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1620 		cmd->timer.function = null_cmd_timer_expired;
1621 	}
1622 	cmd->error = BLK_STS_OK;
1623 	cmd->nq = nq;
1624 	cmd->fake_timeout = should_timeout_request(rq) ||
1625 		blk_should_fake_timeout(rq->q);
1626 
1627 	if (should_requeue_request(rq)) {
1628 		/*
1629 		 * Alternate between hitting the core BUSY path, and the
1630 		 * driver driven requeue path
1631 		 */
1632 		nq->requeue_selection++;
1633 		if (nq->requeue_selection & 1)
1634 			return BLK_STS_RESOURCE;
1635 		blk_mq_requeue_request(rq, true);
1636 		return BLK_STS_OK;
1637 	}
1638 
1639 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) {
1640 		blk_status_t sts = null_handle_throttled(cmd);
1641 
1642 		if (sts != BLK_STS_OK)
1643 			return sts;
1644 	}
1645 
1646 	blk_mq_start_request(rq);
1647 
1648 	if (is_poll) {
1649 		spin_lock(&nq->poll_lock);
1650 		list_add_tail(&rq->queuelist, &nq->poll_list);
1651 		spin_unlock(&nq->poll_lock);
1652 		return BLK_STS_OK;
1653 	}
1654 	if (cmd->fake_timeout)
1655 		return BLK_STS_OK;
1656 
1657 	null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1658 	return BLK_STS_OK;
1659 }
1660 
1661 static void null_queue_rqs(struct rq_list *rqlist)
1662 {
1663 	struct rq_list requeue_list = {};
1664 	struct blk_mq_queue_data bd = { };
1665 	blk_status_t ret;
1666 
1667 	do {
1668 		struct request *rq = rq_list_pop(rqlist);
1669 
1670 		bd.rq = rq;
1671 		ret = null_queue_rq(rq->mq_hctx, &bd);
1672 		if (ret != BLK_STS_OK)
1673 			rq_list_add_tail(&requeue_list, rq);
1674 	} while (!rq_list_empty(rqlist));
1675 
1676 	*rqlist = requeue_list;
1677 }
1678 
1679 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1680 {
1681 	nq->dev = nullb->dev;
1682 	INIT_LIST_HEAD(&nq->poll_list);
1683 	spin_lock_init(&nq->poll_lock);
1684 }
1685 
1686 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1687 			  unsigned int hctx_idx)
1688 {
1689 	struct nullb *nullb = hctx->queue->queuedata;
1690 	struct nullb_queue *nq;
1691 
1692 	if (should_init_hctx_fail(nullb->dev))
1693 		return -EFAULT;
1694 
1695 	nq = &nullb->queues[hctx_idx];
1696 	hctx->driver_data = nq;
1697 	null_init_queue(nullb, nq);
1698 
1699 	return 0;
1700 }
1701 
1702 static const struct blk_mq_ops null_mq_ops = {
1703 	.queue_rq       = null_queue_rq,
1704 	.queue_rqs	= null_queue_rqs,
1705 	.complete	= null_complete_rq,
1706 	.timeout	= null_timeout_rq,
1707 	.poll		= null_poll,
1708 	.map_queues	= null_map_queues,
1709 	.init_hctx	= null_init_hctx,
1710 };
1711 
1712 static void null_del_dev(struct nullb *nullb)
1713 {
1714 	struct nullb_device *dev;
1715 
1716 	if (!nullb)
1717 		return;
1718 
1719 	dev = nullb->dev;
1720 
1721 	ida_free(&nullb_indexes, nullb->index);
1722 
1723 	list_del_init(&nullb->list);
1724 
1725 	del_gendisk(nullb->disk);
1726 
1727 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1728 		hrtimer_cancel(&nullb->bw_timer);
1729 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1730 		blk_mq_start_stopped_hw_queues(nullb->q, true);
1731 	}
1732 
1733 	put_disk(nullb->disk);
1734 	if (nullb->tag_set == &nullb->__tag_set)
1735 		blk_mq_free_tag_set(nullb->tag_set);
1736 	kfree(nullb->queues);
1737 	if (null_cache_active(nullb))
1738 		null_free_device_storage(nullb->dev, true);
1739 	kfree(nullb);
1740 	dev->nullb = NULL;
1741 }
1742 
1743 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim)
1744 {
1745 	if (nullb->dev->discard == false)
1746 		return;
1747 
1748 	if (!nullb->dev->memory_backed) {
1749 		nullb->dev->discard = false;
1750 		pr_info("discard option is ignored without memory backing\n");
1751 		return;
1752 	}
1753 
1754 	if (nullb->dev->zoned) {
1755 		nullb->dev->discard = false;
1756 		pr_info("discard option is ignored in zoned mode\n");
1757 		return;
1758 	}
1759 
1760 	lim->max_hw_discard_sectors = UINT_MAX >> 9;
1761 }
1762 
1763 static const struct block_device_operations null_ops = {
1764 	.owner		= THIS_MODULE,
1765 	.report_zones	= null_report_zones,
1766 };
1767 
1768 static int setup_queues(struct nullb *nullb)
1769 {
1770 	int nqueues = nr_cpu_ids;
1771 
1772 	if (g_poll_queues)
1773 		nqueues += g_poll_queues;
1774 
1775 	nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1776 				GFP_KERNEL);
1777 	if (!nullb->queues)
1778 		return -ENOMEM;
1779 
1780 	return 0;
1781 }
1782 
1783 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues)
1784 {
1785 	set->ops = &null_mq_ops;
1786 	set->cmd_size = sizeof(struct nullb_cmd);
1787 	set->timeout = 5 * HZ;
1788 	set->nr_maps = 1;
1789 	if (poll_queues) {
1790 		set->nr_hw_queues += poll_queues;
1791 		set->nr_maps += 2;
1792 	}
1793 	return blk_mq_alloc_tag_set(set);
1794 }
1795 
1796 static int null_init_global_tag_set(void)
1797 {
1798 	int error;
1799 
1800 	if (tag_set.ops)
1801 		return 0;
1802 
1803 	tag_set.nr_hw_queues = g_submit_queues;
1804 	tag_set.queue_depth = g_hw_queue_depth;
1805 	tag_set.numa_node = g_home_node;
1806 	if (g_no_sched)
1807 		tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1808 	if (g_shared_tag_bitmap)
1809 		tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1810 	if (g_blocking)
1811 		tag_set.flags |= BLK_MQ_F_BLOCKING;
1812 
1813 	error = null_init_tag_set(&tag_set, g_poll_queues);
1814 	if (error)
1815 		tag_set.ops = NULL;
1816 	return error;
1817 }
1818 
1819 static int null_setup_tagset(struct nullb *nullb)
1820 {
1821 	if (nullb->dev->shared_tags) {
1822 		nullb->tag_set = &tag_set;
1823 		return null_init_global_tag_set();
1824 	}
1825 
1826 	nullb->tag_set = &nullb->__tag_set;
1827 	nullb->tag_set->driver_data = nullb;
1828 	nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues;
1829 	nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth;
1830 	nullb->tag_set->numa_node = nullb->dev->home_node;
1831 	if (nullb->dev->no_sched)
1832 		nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1833 	if (nullb->dev->shared_tag_bitmap)
1834 		nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1835 	if (nullb->dev->blocking)
1836 		nullb->tag_set->flags |= BLK_MQ_F_BLOCKING;
1837 	return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues);
1838 }
1839 
1840 static int null_validate_conf(struct nullb_device *dev)
1841 {
1842 	if (dev->queue_mode == NULL_Q_RQ) {
1843 		pr_err("legacy IO path is no longer available\n");
1844 		return -EINVAL;
1845 	}
1846 	if (dev->queue_mode == NULL_Q_BIO) {
1847 		pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n");
1848 		dev->queue_mode = NULL_Q_MQ;
1849 	}
1850 
1851 	if (dev->use_per_node_hctx) {
1852 		if (dev->submit_queues != nr_online_nodes)
1853 			dev->submit_queues = nr_online_nodes;
1854 	} else if (dev->submit_queues > nr_cpu_ids)
1855 		dev->submit_queues = nr_cpu_ids;
1856 	else if (dev->submit_queues == 0)
1857 		dev->submit_queues = 1;
1858 	dev->prev_submit_queues = dev->submit_queues;
1859 
1860 	if (dev->poll_queues > g_poll_queues)
1861 		dev->poll_queues = g_poll_queues;
1862 	dev->prev_poll_queues = dev->poll_queues;
1863 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1864 
1865 	/* Do memory allocation, so set blocking */
1866 	if (dev->memory_backed)
1867 		dev->blocking = true;
1868 	else /* cache is meaningless */
1869 		dev->cache_size = 0;
1870 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1871 						dev->cache_size);
1872 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1873 
1874 	if (dev->zoned &&
1875 	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1876 		pr_err("zone_size must be power-of-two\n");
1877 		return -EINVAL;
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1884 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1885 {
1886 	if (!str[0])
1887 		return true;
1888 
1889 	if (!setup_fault_attr(attr, str))
1890 		return false;
1891 
1892 	attr->verbose = 0;
1893 	return true;
1894 }
1895 #endif
1896 
1897 static bool null_setup_fault(void)
1898 {
1899 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1900 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1901 		return false;
1902 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1903 		return false;
1904 	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1905 		return false;
1906 #endif
1907 	return true;
1908 }
1909 
1910 static int null_add_dev(struct nullb_device *dev)
1911 {
1912 	struct queue_limits lim = {
1913 		.logical_block_size	= dev->blocksize,
1914 		.physical_block_size	= dev->blocksize,
1915 		.max_hw_sectors		= dev->max_sectors,
1916 	};
1917 
1918 	struct nullb *nullb;
1919 	int rv;
1920 
1921 	rv = null_validate_conf(dev);
1922 	if (rv)
1923 		return rv;
1924 
1925 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1926 	if (!nullb) {
1927 		rv = -ENOMEM;
1928 		goto out;
1929 	}
1930 	nullb->dev = dev;
1931 	dev->nullb = nullb;
1932 
1933 	spin_lock_init(&nullb->lock);
1934 
1935 	rv = setup_queues(nullb);
1936 	if (rv)
1937 		goto out_free_nullb;
1938 
1939 	rv = null_setup_tagset(nullb);
1940 	if (rv)
1941 		goto out_cleanup_queues;
1942 
1943 	if (dev->virt_boundary)
1944 		lim.virt_boundary_mask = PAGE_SIZE - 1;
1945 	null_config_discard(nullb, &lim);
1946 	if (dev->zoned) {
1947 		rv = null_init_zoned_dev(dev, &lim);
1948 		if (rv)
1949 			goto out_cleanup_tags;
1950 	}
1951 
1952 	if (dev->cache_size > 0) {
1953 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1954 		lim.features |= BLK_FEAT_WRITE_CACHE;
1955 		if (dev->fua)
1956 			lim.features |= BLK_FEAT_FUA;
1957 	}
1958 
1959 	if (dev->rotational)
1960 		lim.features |= BLK_FEAT_ROTATIONAL;
1961 
1962 	nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb);
1963 	if (IS_ERR(nullb->disk)) {
1964 		rv = PTR_ERR(nullb->disk);
1965 		goto out_cleanup_zone;
1966 	}
1967 	nullb->q = nullb->disk->queue;
1968 
1969 	if (dev->mbps) {
1970 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
1971 		nullb_setup_bwtimer(nullb);
1972 	}
1973 
1974 	nullb->q->queuedata = nullb;
1975 
1976 	rv = ida_alloc(&nullb_indexes, GFP_KERNEL);
1977 	if (rv < 0)
1978 		goto out_cleanup_disk;
1979 
1980 	nullb->index = rv;
1981 	dev->index = rv;
1982 
1983 	if (config_item_name(&dev->group.cg_item)) {
1984 		/* Use configfs dir name as the device name */
1985 		snprintf(nullb->disk_name, sizeof(nullb->disk_name),
1986 			 "%s", config_item_name(&dev->group.cg_item));
1987 	} else {
1988 		sprintf(nullb->disk_name, "nullb%d", nullb->index);
1989 	}
1990 
1991 	set_capacity(nullb->disk,
1992 		((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT);
1993 	nullb->disk->major = null_major;
1994 	nullb->disk->first_minor = nullb->index;
1995 	nullb->disk->minors = 1;
1996 	nullb->disk->fops = &null_ops;
1997 	nullb->disk->private_data = nullb;
1998 	strscpy_pad(nullb->disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1999 
2000 	if (nullb->dev->zoned) {
2001 		rv = null_register_zoned_dev(nullb);
2002 		if (rv)
2003 			goto out_ida_free;
2004 	}
2005 
2006 	rv = add_disk(nullb->disk);
2007 	if (rv)
2008 		goto out_ida_free;
2009 
2010 	list_add_tail(&nullb->list, &nullb_list);
2011 
2012 	pr_info("disk %s created\n", nullb->disk_name);
2013 
2014 	return 0;
2015 
2016 out_ida_free:
2017 	ida_free(&nullb_indexes, nullb->index);
2018 out_cleanup_disk:
2019 	put_disk(nullb->disk);
2020 out_cleanup_zone:
2021 	null_free_zoned_dev(dev);
2022 out_cleanup_tags:
2023 	if (nullb->tag_set == &nullb->__tag_set)
2024 		blk_mq_free_tag_set(nullb->tag_set);
2025 out_cleanup_queues:
2026 	kfree(nullb->queues);
2027 out_free_nullb:
2028 	kfree(nullb);
2029 	dev->nullb = NULL;
2030 out:
2031 	return rv;
2032 }
2033 
2034 static struct nullb *null_find_dev_by_name(const char *name)
2035 {
2036 	struct nullb *nullb = NULL, *nb;
2037 
2038 	mutex_lock(&lock);
2039 	list_for_each_entry(nb, &nullb_list, list) {
2040 		if (strcmp(nb->disk_name, name) == 0) {
2041 			nullb = nb;
2042 			break;
2043 		}
2044 	}
2045 	mutex_unlock(&lock);
2046 
2047 	return nullb;
2048 }
2049 
2050 static int null_create_dev(void)
2051 {
2052 	struct nullb_device *dev;
2053 	int ret;
2054 
2055 	dev = null_alloc_dev();
2056 	if (!dev)
2057 		return -ENOMEM;
2058 
2059 	mutex_lock(&lock);
2060 	ret = null_add_dev(dev);
2061 	mutex_unlock(&lock);
2062 	if (ret) {
2063 		null_free_dev(dev);
2064 		return ret;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static void null_destroy_dev(struct nullb *nullb)
2071 {
2072 	struct nullb_device *dev = nullb->dev;
2073 
2074 	null_del_dev(nullb);
2075 	null_free_device_storage(dev, false);
2076 	null_free_dev(dev);
2077 }
2078 
2079 static int __init null_init(void)
2080 {
2081 	int ret = 0;
2082 	unsigned int i;
2083 	struct nullb *nullb;
2084 
2085 	if (g_bs > PAGE_SIZE) {
2086 		pr_warn("invalid block size\n");
2087 		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2088 		g_bs = PAGE_SIZE;
2089 	}
2090 
2091 	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2092 		pr_err("invalid home_node value\n");
2093 		g_home_node = NUMA_NO_NODE;
2094 	}
2095 
2096 	if (!null_setup_fault())
2097 		return -EINVAL;
2098 
2099 	if (g_queue_mode == NULL_Q_RQ) {
2100 		pr_err("legacy IO path is no longer available\n");
2101 		return -EINVAL;
2102 	}
2103 
2104 	if (g_use_per_node_hctx) {
2105 		if (g_submit_queues != nr_online_nodes) {
2106 			pr_warn("submit_queues param is set to %u.\n",
2107 				nr_online_nodes);
2108 			g_submit_queues = nr_online_nodes;
2109 		}
2110 	} else if (g_submit_queues > nr_cpu_ids) {
2111 		g_submit_queues = nr_cpu_ids;
2112 	} else if (g_submit_queues <= 0) {
2113 		g_submit_queues = 1;
2114 	}
2115 
2116 	config_group_init(&nullb_subsys.su_group);
2117 	mutex_init(&nullb_subsys.su_mutex);
2118 
2119 	ret = configfs_register_subsystem(&nullb_subsys);
2120 	if (ret)
2121 		return ret;
2122 
2123 	mutex_init(&lock);
2124 
2125 	null_major = register_blkdev(0, "nullb");
2126 	if (null_major < 0) {
2127 		ret = null_major;
2128 		goto err_conf;
2129 	}
2130 
2131 	for (i = 0; i < nr_devices; i++) {
2132 		ret = null_create_dev();
2133 		if (ret)
2134 			goto err_dev;
2135 	}
2136 
2137 	pr_info("module loaded\n");
2138 	return 0;
2139 
2140 err_dev:
2141 	while (!list_empty(&nullb_list)) {
2142 		nullb = list_entry(nullb_list.next, struct nullb, list);
2143 		null_destroy_dev(nullb);
2144 	}
2145 	unregister_blkdev(null_major, "nullb");
2146 err_conf:
2147 	configfs_unregister_subsystem(&nullb_subsys);
2148 	return ret;
2149 }
2150 
2151 static void __exit null_exit(void)
2152 {
2153 	struct nullb *nullb;
2154 
2155 	configfs_unregister_subsystem(&nullb_subsys);
2156 
2157 	unregister_blkdev(null_major, "nullb");
2158 
2159 	mutex_lock(&lock);
2160 	while (!list_empty(&nullb_list)) {
2161 		nullb = list_entry(nullb_list.next, struct nullb, list);
2162 		null_destroy_dev(nullb);
2163 	}
2164 	mutex_unlock(&lock);
2165 
2166 	if (tag_set.ops)
2167 		blk_mq_free_tag_set(&tag_set);
2168 
2169 	mutex_destroy(&lock);
2170 }
2171 
2172 module_init(null_init);
2173 module_exit(null_exit);
2174 
2175 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2176 MODULE_DESCRIPTION("multi queue aware block test driver");
2177 MODULE_LICENSE("GPL");
2178