1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and 4 * Shaohua Li <shli@fb.com> 5 */ 6 #include <linux/module.h> 7 8 #include <linux/moduleparam.h> 9 #include <linux/sched.h> 10 #include <linux/fs.h> 11 #include <linux/init.h> 12 #include "null_blk.h" 13 14 #undef pr_fmt 15 #define pr_fmt(fmt) "null_blk: " fmt 16 17 #define FREE_BATCH 16 18 19 #define TICKS_PER_SEC 50ULL 20 #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC) 21 22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 23 static DECLARE_FAULT_ATTR(null_timeout_attr); 24 static DECLARE_FAULT_ATTR(null_requeue_attr); 25 static DECLARE_FAULT_ATTR(null_init_hctx_attr); 26 #endif 27 28 static inline u64 mb_per_tick(int mbps) 29 { 30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps); 31 } 32 33 /* 34 * Status flags for nullb_device. 35 * 36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure. 37 * UP: Device is currently on and visible in userspace. 38 * THROTTLED: Device is being throttled. 39 * CACHE: Device is using a write-back cache. 40 */ 41 enum nullb_device_flags { 42 NULLB_DEV_FL_CONFIGURED = 0, 43 NULLB_DEV_FL_UP = 1, 44 NULLB_DEV_FL_THROTTLED = 2, 45 NULLB_DEV_FL_CACHE = 3, 46 }; 47 48 #define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2) 49 /* 50 * nullb_page is a page in memory for nullb devices. 51 * 52 * @page: The page holding the data. 53 * @bitmap: The bitmap represents which sector in the page has data. 54 * Each bit represents one block size. For example, sector 8 55 * will use the 7th bit 56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache 57 * page is being flushing to storage. FREE means the cache page is freed and 58 * should be skipped from flushing to storage. Please see 59 * null_make_cache_space 60 */ 61 struct nullb_page { 62 struct page *page; 63 DECLARE_BITMAP(bitmap, MAP_SZ); 64 }; 65 #define NULLB_PAGE_LOCK (MAP_SZ - 1) 66 #define NULLB_PAGE_FREE (MAP_SZ - 2) 67 68 static LIST_HEAD(nullb_list); 69 static struct mutex lock; 70 static int null_major; 71 static DEFINE_IDA(nullb_indexes); 72 static struct blk_mq_tag_set tag_set; 73 74 enum { 75 NULL_IRQ_NONE = 0, 76 NULL_IRQ_SOFTIRQ = 1, 77 NULL_IRQ_TIMER = 2, 78 }; 79 80 static bool g_virt_boundary; 81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444); 82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False"); 83 84 static int g_no_sched; 85 module_param_named(no_sched, g_no_sched, int, 0444); 86 MODULE_PARM_DESC(no_sched, "No io scheduler"); 87 88 static int g_submit_queues = 1; 89 module_param_named(submit_queues, g_submit_queues, int, 0444); 90 MODULE_PARM_DESC(submit_queues, "Number of submission queues"); 91 92 static int g_poll_queues = 1; 93 module_param_named(poll_queues, g_poll_queues, int, 0444); 94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues"); 95 96 static int g_home_node = NUMA_NO_NODE; 97 module_param_named(home_node, g_home_node, int, 0444); 98 MODULE_PARM_DESC(home_node, "Home node for the device"); 99 100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 101 /* 102 * For more details about fault injection, please refer to 103 * Documentation/fault-injection/fault-injection.rst. 104 */ 105 static char g_timeout_str[80]; 106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444); 107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>"); 108 109 static char g_requeue_str[80]; 110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444); 111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>"); 112 113 static char g_init_hctx_str[80]; 114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444); 115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>"); 116 #endif 117 118 /* 119 * Historic queue modes. 120 * 121 * These days nothing but NULL_Q_MQ is actually supported, but we keep it the 122 * enum for error reporting. 123 */ 124 enum { 125 NULL_Q_BIO = 0, 126 NULL_Q_RQ = 1, 127 NULL_Q_MQ = 2, 128 }; 129 130 static int g_queue_mode = NULL_Q_MQ; 131 132 static int null_param_store_val(const char *str, int *val, int min, int max) 133 { 134 int ret, new_val; 135 136 ret = kstrtoint(str, 10, &new_val); 137 if (ret) 138 return -EINVAL; 139 140 if (new_val < min || new_val > max) 141 return -EINVAL; 142 143 *val = new_val; 144 return 0; 145 } 146 147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp) 148 { 149 return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ); 150 } 151 152 static const struct kernel_param_ops null_queue_mode_param_ops = { 153 .set = null_set_queue_mode, 154 .get = param_get_int, 155 }; 156 157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444); 158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)"); 159 160 static int g_gb = 250; 161 module_param_named(gb, g_gb, int, 0444); 162 MODULE_PARM_DESC(gb, "Size in GB"); 163 164 static int g_bs = 512; 165 module_param_named(bs, g_bs, int, 0444); 166 MODULE_PARM_DESC(bs, "Block size (in bytes)"); 167 168 static int g_max_sectors; 169 module_param_named(max_sectors, g_max_sectors, int, 0444); 170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)"); 171 172 static unsigned int nr_devices = 1; 173 module_param(nr_devices, uint, 0444); 174 MODULE_PARM_DESC(nr_devices, "Number of devices to register"); 175 176 static bool g_blocking; 177 module_param_named(blocking, g_blocking, bool, 0444); 178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device"); 179 180 static bool g_shared_tags; 181 module_param_named(shared_tags, g_shared_tags, bool, 0444); 182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq"); 183 184 static bool g_shared_tag_bitmap; 185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444); 186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq"); 187 188 static int g_irqmode = NULL_IRQ_SOFTIRQ; 189 190 static int null_set_irqmode(const char *str, const struct kernel_param *kp) 191 { 192 return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE, 193 NULL_IRQ_TIMER); 194 } 195 196 static const struct kernel_param_ops null_irqmode_param_ops = { 197 .set = null_set_irqmode, 198 .get = param_get_int, 199 }; 200 201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444); 202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer"); 203 204 static unsigned long g_completion_nsec = 10000; 205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444); 206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns"); 207 208 static int g_hw_queue_depth = 64; 209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444); 210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64"); 211 212 static bool g_use_per_node_hctx; 213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444); 214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false"); 215 216 static bool g_memory_backed; 217 module_param_named(memory_backed, g_memory_backed, bool, 0444); 218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false"); 219 220 static bool g_discard; 221 module_param_named(discard, g_discard, bool, 0444); 222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false"); 223 224 static unsigned long g_cache_size; 225 module_param_named(cache_size, g_cache_size, ulong, 0444); 226 MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)"); 227 228 static bool g_fua = true; 229 module_param_named(fua, g_fua, bool, 0444); 230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true"); 231 232 static unsigned int g_mbps; 233 module_param_named(mbps, g_mbps, uint, 0444); 234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)"); 235 236 static bool g_zoned; 237 module_param_named(zoned, g_zoned, bool, S_IRUGO); 238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false"); 239 240 static unsigned long g_zone_size = 256; 241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO); 242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256"); 243 244 static unsigned long g_zone_capacity; 245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444); 246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size"); 247 248 static unsigned int g_zone_nr_conv; 249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444); 250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0"); 251 252 static unsigned int g_zone_max_open; 253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444); 254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)"); 255 256 static unsigned int g_zone_max_active; 257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444); 258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)"); 259 260 static int g_zone_append_max_sectors = INT_MAX; 261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444); 262 MODULE_PARM_DESC(zone_append_max_sectors, 263 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation"); 264 265 static bool g_zone_full; 266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO); 267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false"); 268 269 static bool g_rotational; 270 module_param_named(rotational, g_rotational, bool, S_IRUGO); 271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false"); 272 273 static struct nullb_device *null_alloc_dev(void); 274 static void null_free_dev(struct nullb_device *dev); 275 static void null_del_dev(struct nullb *nullb); 276 static int null_add_dev(struct nullb_device *dev); 277 static struct nullb *null_find_dev_by_name(const char *name); 278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache); 279 280 static inline struct nullb_device *to_nullb_device(struct config_item *item) 281 { 282 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL; 283 } 284 285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page) 286 { 287 return snprintf(page, PAGE_SIZE, "%u\n", val); 288 } 289 290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val, 291 char *page) 292 { 293 return snprintf(page, PAGE_SIZE, "%lu\n", val); 294 } 295 296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page) 297 { 298 return snprintf(page, PAGE_SIZE, "%u\n", val); 299 } 300 301 static ssize_t nullb_device_uint_attr_store(unsigned int *val, 302 const char *page, size_t count) 303 { 304 unsigned int tmp; 305 int result; 306 307 result = kstrtouint(page, 0, &tmp); 308 if (result < 0) 309 return result; 310 311 *val = tmp; 312 return count; 313 } 314 315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val, 316 const char *page, size_t count) 317 { 318 int result; 319 unsigned long tmp; 320 321 result = kstrtoul(page, 0, &tmp); 322 if (result < 0) 323 return result; 324 325 *val = tmp; 326 return count; 327 } 328 329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page, 330 size_t count) 331 { 332 bool tmp; 333 int result; 334 335 result = kstrtobool(page, &tmp); 336 if (result < 0) 337 return result; 338 339 *val = tmp; 340 return count; 341 } 342 343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */ 344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \ 345 static ssize_t \ 346 nullb_device_##NAME##_show(struct config_item *item, char *page) \ 347 { \ 348 return nullb_device_##TYPE##_attr_show( \ 349 to_nullb_device(item)->NAME, page); \ 350 } \ 351 static ssize_t \ 352 nullb_device_##NAME##_store(struct config_item *item, const char *page, \ 353 size_t count) \ 354 { \ 355 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\ 356 struct nullb_device *dev = to_nullb_device(item); \ 357 TYPE new_value = 0; \ 358 int ret; \ 359 \ 360 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\ 361 if (ret < 0) \ 362 return ret; \ 363 if (apply_fn) \ 364 ret = apply_fn(dev, new_value); \ 365 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \ 366 ret = -EBUSY; \ 367 if (ret < 0) \ 368 return ret; \ 369 dev->NAME = new_value; \ 370 return count; \ 371 } \ 372 CONFIGFS_ATTR(nullb_device_, NAME); 373 374 static int nullb_update_nr_hw_queues(struct nullb_device *dev, 375 unsigned int submit_queues, 376 unsigned int poll_queues) 377 378 { 379 struct blk_mq_tag_set *set; 380 int ret, nr_hw_queues; 381 382 if (!dev->nullb) 383 return 0; 384 385 /* 386 * Make sure at least one submit queue exists. 387 */ 388 if (!submit_queues) 389 return -EINVAL; 390 391 /* 392 * Make sure that null_init_hctx() does not access nullb->queues[] past 393 * the end of that array. 394 */ 395 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues) 396 return -EINVAL; 397 398 /* 399 * Keep previous and new queue numbers in nullb_device for reference in 400 * the call back function null_map_queues(). 401 */ 402 dev->prev_submit_queues = dev->submit_queues; 403 dev->prev_poll_queues = dev->poll_queues; 404 dev->submit_queues = submit_queues; 405 dev->poll_queues = poll_queues; 406 407 set = dev->nullb->tag_set; 408 nr_hw_queues = submit_queues + poll_queues; 409 blk_mq_update_nr_hw_queues(set, nr_hw_queues); 410 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM; 411 412 if (ret) { 413 /* on error, revert the queue numbers */ 414 dev->submit_queues = dev->prev_submit_queues; 415 dev->poll_queues = dev->prev_poll_queues; 416 } 417 418 return ret; 419 } 420 421 static int nullb_apply_submit_queues(struct nullb_device *dev, 422 unsigned int submit_queues) 423 { 424 int ret; 425 426 mutex_lock(&lock); 427 ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues); 428 mutex_unlock(&lock); 429 430 return ret; 431 } 432 433 static int nullb_apply_poll_queues(struct nullb_device *dev, 434 unsigned int poll_queues) 435 { 436 int ret; 437 438 mutex_lock(&lock); 439 ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues); 440 mutex_unlock(&lock); 441 442 return ret; 443 } 444 445 NULLB_DEVICE_ATTR(size, ulong, NULL); 446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL); 447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues); 448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues); 449 NULLB_DEVICE_ATTR(home_node, uint, NULL); 450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL); 451 NULLB_DEVICE_ATTR(blocksize, uint, NULL); 452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL); 453 NULLB_DEVICE_ATTR(irqmode, uint, NULL); 454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL); 455 NULLB_DEVICE_ATTR(index, uint, NULL); 456 NULLB_DEVICE_ATTR(blocking, bool, NULL); 457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL); 458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL); 459 NULLB_DEVICE_ATTR(discard, bool, NULL); 460 NULLB_DEVICE_ATTR(mbps, uint, NULL); 461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL); 462 NULLB_DEVICE_ATTR(zoned, bool, NULL); 463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL); 464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL); 465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL); 466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL); 467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL); 468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL); 469 NULLB_DEVICE_ATTR(zone_full, bool, NULL); 470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL); 471 NULLB_DEVICE_ATTR(no_sched, bool, NULL); 472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL); 473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL); 474 NULLB_DEVICE_ATTR(fua, bool, NULL); 475 NULLB_DEVICE_ATTR(rotational, bool, NULL); 476 477 static ssize_t nullb_device_power_show(struct config_item *item, char *page) 478 { 479 return nullb_device_bool_attr_show(to_nullb_device(item)->power, page); 480 } 481 482 static ssize_t nullb_device_power_store(struct config_item *item, 483 const char *page, size_t count) 484 { 485 struct nullb_device *dev = to_nullb_device(item); 486 bool newp = false; 487 ssize_t ret; 488 489 ret = nullb_device_bool_attr_store(&newp, page, count); 490 if (ret < 0) 491 return ret; 492 493 ret = count; 494 mutex_lock(&lock); 495 if (!dev->power && newp) { 496 if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags)) 497 goto out; 498 499 ret = null_add_dev(dev); 500 if (ret) { 501 clear_bit(NULLB_DEV_FL_UP, &dev->flags); 502 goto out; 503 } 504 505 set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 506 dev->power = newp; 507 ret = count; 508 } else if (dev->power && !newp) { 509 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 510 dev->power = newp; 511 null_del_dev(dev->nullb); 512 } 513 clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); 514 } 515 516 out: 517 mutex_unlock(&lock); 518 return ret; 519 } 520 521 CONFIGFS_ATTR(nullb_device_, power); 522 523 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page) 524 { 525 struct nullb_device *t_dev = to_nullb_device(item); 526 527 return badblocks_show(&t_dev->badblocks, page, 0); 528 } 529 530 static ssize_t nullb_device_badblocks_store(struct config_item *item, 531 const char *page, size_t count) 532 { 533 struct nullb_device *t_dev = to_nullb_device(item); 534 char *orig, *buf, *tmp; 535 u64 start, end; 536 int ret; 537 538 orig = kstrndup(page, count, GFP_KERNEL); 539 if (!orig) 540 return -ENOMEM; 541 542 buf = strstrip(orig); 543 544 ret = -EINVAL; 545 if (buf[0] != '+' && buf[0] != '-') 546 goto out; 547 tmp = strchr(&buf[1], '-'); 548 if (!tmp) 549 goto out; 550 *tmp = '\0'; 551 ret = kstrtoull(buf + 1, 0, &start); 552 if (ret) 553 goto out; 554 ret = kstrtoull(tmp + 1, 0, &end); 555 if (ret) 556 goto out; 557 ret = -EINVAL; 558 if (start > end) 559 goto out; 560 /* enable badblocks */ 561 cmpxchg(&t_dev->badblocks.shift, -1, 0); 562 if (buf[0] == '+') 563 ret = badblocks_set(&t_dev->badblocks, start, 564 end - start + 1, 1); 565 else 566 ret = badblocks_clear(&t_dev->badblocks, start, 567 end - start + 1); 568 if (ret == 0) 569 ret = count; 570 out: 571 kfree(orig); 572 return ret; 573 } 574 CONFIGFS_ATTR(nullb_device_, badblocks); 575 576 static ssize_t nullb_device_zone_readonly_store(struct config_item *item, 577 const char *page, size_t count) 578 { 579 struct nullb_device *dev = to_nullb_device(item); 580 581 return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY); 582 } 583 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly); 584 585 static ssize_t nullb_device_zone_offline_store(struct config_item *item, 586 const char *page, size_t count) 587 { 588 struct nullb_device *dev = to_nullb_device(item); 589 590 return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE); 591 } 592 CONFIGFS_ATTR_WO(nullb_device_, zone_offline); 593 594 static struct configfs_attribute *nullb_device_attrs[] = { 595 &nullb_device_attr_badblocks, 596 &nullb_device_attr_blocking, 597 &nullb_device_attr_blocksize, 598 &nullb_device_attr_cache_size, 599 &nullb_device_attr_completion_nsec, 600 &nullb_device_attr_discard, 601 &nullb_device_attr_fua, 602 &nullb_device_attr_home_node, 603 &nullb_device_attr_hw_queue_depth, 604 &nullb_device_attr_index, 605 &nullb_device_attr_irqmode, 606 &nullb_device_attr_max_sectors, 607 &nullb_device_attr_mbps, 608 &nullb_device_attr_memory_backed, 609 &nullb_device_attr_no_sched, 610 &nullb_device_attr_poll_queues, 611 &nullb_device_attr_power, 612 &nullb_device_attr_queue_mode, 613 &nullb_device_attr_rotational, 614 &nullb_device_attr_shared_tag_bitmap, 615 &nullb_device_attr_shared_tags, 616 &nullb_device_attr_size, 617 &nullb_device_attr_submit_queues, 618 &nullb_device_attr_use_per_node_hctx, 619 &nullb_device_attr_virt_boundary, 620 &nullb_device_attr_zone_append_max_sectors, 621 &nullb_device_attr_zone_capacity, 622 &nullb_device_attr_zone_full, 623 &nullb_device_attr_zone_max_active, 624 &nullb_device_attr_zone_max_open, 625 &nullb_device_attr_zone_nr_conv, 626 &nullb_device_attr_zone_offline, 627 &nullb_device_attr_zone_readonly, 628 &nullb_device_attr_zone_size, 629 &nullb_device_attr_zoned, 630 NULL, 631 }; 632 633 static void nullb_device_release(struct config_item *item) 634 { 635 struct nullb_device *dev = to_nullb_device(item); 636 637 null_free_device_storage(dev, false); 638 null_free_dev(dev); 639 } 640 641 static struct configfs_item_operations nullb_device_ops = { 642 .release = nullb_device_release, 643 }; 644 645 static const struct config_item_type nullb_device_type = { 646 .ct_item_ops = &nullb_device_ops, 647 .ct_attrs = nullb_device_attrs, 648 .ct_owner = THIS_MODULE, 649 }; 650 651 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 652 653 static void nullb_add_fault_config(struct nullb_device *dev) 654 { 655 fault_config_init(&dev->timeout_config, "timeout_inject"); 656 fault_config_init(&dev->requeue_config, "requeue_inject"); 657 fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject"); 658 659 configfs_add_default_group(&dev->timeout_config.group, &dev->group); 660 configfs_add_default_group(&dev->requeue_config.group, &dev->group); 661 configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group); 662 } 663 664 #else 665 666 static void nullb_add_fault_config(struct nullb_device *dev) 667 { 668 } 669 670 #endif 671 672 static struct 673 config_group *nullb_group_make_group(struct config_group *group, const char *name) 674 { 675 struct nullb_device *dev; 676 677 if (null_find_dev_by_name(name)) 678 return ERR_PTR(-EEXIST); 679 680 dev = null_alloc_dev(); 681 if (!dev) 682 return ERR_PTR(-ENOMEM); 683 684 config_group_init_type_name(&dev->group, name, &nullb_device_type); 685 nullb_add_fault_config(dev); 686 687 return &dev->group; 688 } 689 690 static void 691 nullb_group_drop_item(struct config_group *group, struct config_item *item) 692 { 693 struct nullb_device *dev = to_nullb_device(item); 694 695 if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { 696 mutex_lock(&lock); 697 dev->power = false; 698 null_del_dev(dev->nullb); 699 mutex_unlock(&lock); 700 } 701 702 config_item_put(item); 703 } 704 705 static ssize_t memb_group_features_show(struct config_item *item, char *page) 706 { 707 708 struct configfs_attribute **entry; 709 char delimiter = ','; 710 size_t left = PAGE_SIZE; 711 size_t written = 0; 712 int ret; 713 714 for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) { 715 if (!*(entry + 1)) 716 delimiter = '\n'; 717 ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name, 718 delimiter); 719 if (ret >= left) { 720 WARN_ONCE(1, "Too many null_blk features to print\n"); 721 memzero_explicit(page, PAGE_SIZE); 722 return -ENOBUFS; 723 } 724 left -= ret; 725 written += ret; 726 } 727 728 return written; 729 } 730 731 CONFIGFS_ATTR_RO(memb_group_, features); 732 733 static struct configfs_attribute *nullb_group_attrs[] = { 734 &memb_group_attr_features, 735 NULL, 736 }; 737 738 static struct configfs_group_operations nullb_group_ops = { 739 .make_group = nullb_group_make_group, 740 .drop_item = nullb_group_drop_item, 741 }; 742 743 static const struct config_item_type nullb_group_type = { 744 .ct_group_ops = &nullb_group_ops, 745 .ct_attrs = nullb_group_attrs, 746 .ct_owner = THIS_MODULE, 747 }; 748 749 static struct configfs_subsystem nullb_subsys = { 750 .su_group = { 751 .cg_item = { 752 .ci_namebuf = "nullb", 753 .ci_type = &nullb_group_type, 754 }, 755 }, 756 }; 757 758 static inline int null_cache_active(struct nullb *nullb) 759 { 760 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 761 } 762 763 static struct nullb_device *null_alloc_dev(void) 764 { 765 struct nullb_device *dev; 766 767 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 768 if (!dev) 769 return NULL; 770 771 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 772 dev->timeout_config.attr = null_timeout_attr; 773 dev->requeue_config.attr = null_requeue_attr; 774 dev->init_hctx_fault_config.attr = null_init_hctx_attr; 775 #endif 776 777 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC); 778 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC); 779 if (badblocks_init(&dev->badblocks, 0)) { 780 kfree(dev); 781 return NULL; 782 } 783 784 dev->size = g_gb * 1024; 785 dev->completion_nsec = g_completion_nsec; 786 dev->submit_queues = g_submit_queues; 787 dev->prev_submit_queues = g_submit_queues; 788 dev->poll_queues = g_poll_queues; 789 dev->prev_poll_queues = g_poll_queues; 790 dev->home_node = g_home_node; 791 dev->queue_mode = g_queue_mode; 792 dev->blocksize = g_bs; 793 dev->max_sectors = g_max_sectors; 794 dev->irqmode = g_irqmode; 795 dev->hw_queue_depth = g_hw_queue_depth; 796 dev->blocking = g_blocking; 797 dev->memory_backed = g_memory_backed; 798 dev->discard = g_discard; 799 dev->cache_size = g_cache_size; 800 dev->mbps = g_mbps; 801 dev->use_per_node_hctx = g_use_per_node_hctx; 802 dev->zoned = g_zoned; 803 dev->zone_size = g_zone_size; 804 dev->zone_capacity = g_zone_capacity; 805 dev->zone_nr_conv = g_zone_nr_conv; 806 dev->zone_max_open = g_zone_max_open; 807 dev->zone_max_active = g_zone_max_active; 808 dev->zone_append_max_sectors = g_zone_append_max_sectors; 809 dev->zone_full = g_zone_full; 810 dev->virt_boundary = g_virt_boundary; 811 dev->no_sched = g_no_sched; 812 dev->shared_tags = g_shared_tags; 813 dev->shared_tag_bitmap = g_shared_tag_bitmap; 814 dev->fua = g_fua; 815 dev->rotational = g_rotational; 816 817 return dev; 818 } 819 820 static void null_free_dev(struct nullb_device *dev) 821 { 822 if (!dev) 823 return; 824 825 null_free_zoned_dev(dev); 826 badblocks_exit(&dev->badblocks); 827 kfree(dev); 828 } 829 830 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer) 831 { 832 struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer); 833 834 blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error); 835 return HRTIMER_NORESTART; 836 } 837 838 static void null_cmd_end_timer(struct nullb_cmd *cmd) 839 { 840 ktime_t kt = cmd->nq->dev->completion_nsec; 841 842 hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL); 843 } 844 845 static void null_complete_rq(struct request *rq) 846 { 847 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 848 849 blk_mq_end_request(rq, cmd->error); 850 } 851 852 static struct nullb_page *null_alloc_page(void) 853 { 854 struct nullb_page *t_page; 855 856 t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO); 857 if (!t_page) 858 return NULL; 859 860 t_page->page = alloc_pages(GFP_NOIO, 0); 861 if (!t_page->page) { 862 kfree(t_page); 863 return NULL; 864 } 865 866 memset(t_page->bitmap, 0, sizeof(t_page->bitmap)); 867 return t_page; 868 } 869 870 static void null_free_page(struct nullb_page *t_page) 871 { 872 __set_bit(NULLB_PAGE_FREE, t_page->bitmap); 873 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap)) 874 return; 875 __free_page(t_page->page); 876 kfree(t_page); 877 } 878 879 static bool null_page_empty(struct nullb_page *page) 880 { 881 int size = MAP_SZ - 2; 882 883 return find_first_bit(page->bitmap, size) == size; 884 } 885 886 static void null_free_sector(struct nullb *nullb, sector_t sector, 887 bool is_cache) 888 { 889 unsigned int sector_bit; 890 u64 idx; 891 struct nullb_page *t_page, *ret; 892 struct radix_tree_root *root; 893 894 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 895 idx = sector >> PAGE_SECTORS_SHIFT; 896 sector_bit = (sector & SECTOR_MASK); 897 898 t_page = radix_tree_lookup(root, idx); 899 if (t_page) { 900 __clear_bit(sector_bit, t_page->bitmap); 901 902 if (null_page_empty(t_page)) { 903 ret = radix_tree_delete_item(root, idx, t_page); 904 WARN_ON(ret != t_page); 905 null_free_page(ret); 906 if (is_cache) 907 nullb->dev->curr_cache -= PAGE_SIZE; 908 } 909 } 910 } 911 912 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx, 913 struct nullb_page *t_page, bool is_cache) 914 { 915 struct radix_tree_root *root; 916 917 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 918 919 if (radix_tree_insert(root, idx, t_page)) { 920 null_free_page(t_page); 921 t_page = radix_tree_lookup(root, idx); 922 WARN_ON(!t_page || t_page->page->private != idx); 923 } else if (is_cache) 924 nullb->dev->curr_cache += PAGE_SIZE; 925 926 return t_page; 927 } 928 929 static void null_free_device_storage(struct nullb_device *dev, bool is_cache) 930 { 931 unsigned long pos = 0; 932 int nr_pages; 933 struct nullb_page *ret, *t_pages[FREE_BATCH]; 934 struct radix_tree_root *root; 935 936 root = is_cache ? &dev->cache : &dev->data; 937 938 do { 939 int i; 940 941 nr_pages = radix_tree_gang_lookup(root, 942 (void **)t_pages, pos, FREE_BATCH); 943 944 for (i = 0; i < nr_pages; i++) { 945 pos = t_pages[i]->page->private; 946 ret = radix_tree_delete_item(root, pos, t_pages[i]); 947 WARN_ON(ret != t_pages[i]); 948 null_free_page(ret); 949 } 950 951 pos++; 952 } while (nr_pages == FREE_BATCH); 953 954 if (is_cache) 955 dev->curr_cache = 0; 956 } 957 958 static struct nullb_page *__null_lookup_page(struct nullb *nullb, 959 sector_t sector, bool for_write, bool is_cache) 960 { 961 unsigned int sector_bit; 962 u64 idx; 963 struct nullb_page *t_page; 964 struct radix_tree_root *root; 965 966 idx = sector >> PAGE_SECTORS_SHIFT; 967 sector_bit = (sector & SECTOR_MASK); 968 969 root = is_cache ? &nullb->dev->cache : &nullb->dev->data; 970 t_page = radix_tree_lookup(root, idx); 971 WARN_ON(t_page && t_page->page->private != idx); 972 973 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap))) 974 return t_page; 975 976 return NULL; 977 } 978 979 static struct nullb_page *null_lookup_page(struct nullb *nullb, 980 sector_t sector, bool for_write, bool ignore_cache) 981 { 982 struct nullb_page *page = NULL; 983 984 if (!ignore_cache) 985 page = __null_lookup_page(nullb, sector, for_write, true); 986 if (page) 987 return page; 988 return __null_lookup_page(nullb, sector, for_write, false); 989 } 990 991 static struct nullb_page *null_insert_page(struct nullb *nullb, 992 sector_t sector, bool ignore_cache) 993 __releases(&nullb->lock) 994 __acquires(&nullb->lock) 995 { 996 u64 idx; 997 struct nullb_page *t_page; 998 999 t_page = null_lookup_page(nullb, sector, true, ignore_cache); 1000 if (t_page) 1001 return t_page; 1002 1003 spin_unlock_irq(&nullb->lock); 1004 1005 t_page = null_alloc_page(); 1006 if (!t_page) 1007 goto out_lock; 1008 1009 if (radix_tree_preload(GFP_NOIO)) 1010 goto out_freepage; 1011 1012 spin_lock_irq(&nullb->lock); 1013 idx = sector >> PAGE_SECTORS_SHIFT; 1014 t_page->page->private = idx; 1015 t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache); 1016 radix_tree_preload_end(); 1017 1018 return t_page; 1019 out_freepage: 1020 null_free_page(t_page); 1021 out_lock: 1022 spin_lock_irq(&nullb->lock); 1023 return null_lookup_page(nullb, sector, true, ignore_cache); 1024 } 1025 1026 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page) 1027 { 1028 int i; 1029 unsigned int offset; 1030 u64 idx; 1031 struct nullb_page *t_page, *ret; 1032 void *dst, *src; 1033 1034 idx = c_page->page->private; 1035 1036 t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true); 1037 1038 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap); 1039 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) { 1040 null_free_page(c_page); 1041 if (t_page && null_page_empty(t_page)) { 1042 ret = radix_tree_delete_item(&nullb->dev->data, 1043 idx, t_page); 1044 null_free_page(t_page); 1045 } 1046 return 0; 1047 } 1048 1049 if (!t_page) 1050 return -ENOMEM; 1051 1052 src = kmap_local_page(c_page->page); 1053 dst = kmap_local_page(t_page->page); 1054 1055 for (i = 0; i < PAGE_SECTORS; 1056 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) { 1057 if (test_bit(i, c_page->bitmap)) { 1058 offset = (i << SECTOR_SHIFT); 1059 memcpy(dst + offset, src + offset, 1060 nullb->dev->blocksize); 1061 __set_bit(i, t_page->bitmap); 1062 } 1063 } 1064 1065 kunmap_local(dst); 1066 kunmap_local(src); 1067 1068 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page); 1069 null_free_page(ret); 1070 nullb->dev->curr_cache -= PAGE_SIZE; 1071 1072 return 0; 1073 } 1074 1075 static int null_make_cache_space(struct nullb *nullb, unsigned long n) 1076 { 1077 int i, err, nr_pages; 1078 struct nullb_page *c_pages[FREE_BATCH]; 1079 unsigned long flushed = 0, one_round; 1080 1081 again: 1082 if ((nullb->dev->cache_size * 1024 * 1024) > 1083 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0) 1084 return 0; 1085 1086 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache, 1087 (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH); 1088 /* 1089 * nullb_flush_cache_page could unlock before using the c_pages. To 1090 * avoid race, we don't allow page free 1091 */ 1092 for (i = 0; i < nr_pages; i++) { 1093 nullb->cache_flush_pos = c_pages[i]->page->private; 1094 /* 1095 * We found the page which is being flushed to disk by other 1096 * threads 1097 */ 1098 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap)) 1099 c_pages[i] = NULL; 1100 else 1101 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap); 1102 } 1103 1104 one_round = 0; 1105 for (i = 0; i < nr_pages; i++) { 1106 if (c_pages[i] == NULL) 1107 continue; 1108 err = null_flush_cache_page(nullb, c_pages[i]); 1109 if (err) 1110 return err; 1111 one_round++; 1112 } 1113 flushed += one_round << PAGE_SHIFT; 1114 1115 if (n > flushed) { 1116 if (nr_pages == 0) 1117 nullb->cache_flush_pos = 0; 1118 if (one_round == 0) { 1119 /* give other threads a chance */ 1120 spin_unlock_irq(&nullb->lock); 1121 spin_lock_irq(&nullb->lock); 1122 } 1123 goto again; 1124 } 1125 return 0; 1126 } 1127 1128 static int copy_to_nullb(struct nullb *nullb, struct page *source, 1129 unsigned int off, sector_t sector, size_t n, bool is_fua) 1130 { 1131 size_t temp, count = 0; 1132 unsigned int offset; 1133 struct nullb_page *t_page; 1134 1135 while (count < n) { 1136 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1137 1138 if (null_cache_active(nullb) && !is_fua) 1139 null_make_cache_space(nullb, PAGE_SIZE); 1140 1141 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1142 t_page = null_insert_page(nullb, sector, 1143 !null_cache_active(nullb) || is_fua); 1144 if (!t_page) 1145 return -ENOSPC; 1146 1147 memcpy_page(t_page->page, offset, source, off + count, temp); 1148 1149 __set_bit(sector & SECTOR_MASK, t_page->bitmap); 1150 1151 if (is_fua) 1152 null_free_sector(nullb, sector, true); 1153 1154 count += temp; 1155 sector += temp >> SECTOR_SHIFT; 1156 } 1157 return 0; 1158 } 1159 1160 static int copy_from_nullb(struct nullb *nullb, struct page *dest, 1161 unsigned int off, sector_t sector, size_t n) 1162 { 1163 size_t temp, count = 0; 1164 unsigned int offset; 1165 struct nullb_page *t_page; 1166 1167 while (count < n) { 1168 temp = min_t(size_t, nullb->dev->blocksize, n - count); 1169 1170 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; 1171 t_page = null_lookup_page(nullb, sector, false, 1172 !null_cache_active(nullb)); 1173 1174 if (t_page) 1175 memcpy_page(dest, off + count, t_page->page, offset, 1176 temp); 1177 else 1178 zero_user(dest, off + count, temp); 1179 1180 count += temp; 1181 sector += temp >> SECTOR_SHIFT; 1182 } 1183 return 0; 1184 } 1185 1186 static void nullb_fill_pattern(struct nullb *nullb, struct page *page, 1187 unsigned int len, unsigned int off) 1188 { 1189 memset_page(page, off, 0xff, len); 1190 } 1191 1192 blk_status_t null_handle_discard(struct nullb_device *dev, 1193 sector_t sector, sector_t nr_sectors) 1194 { 1195 struct nullb *nullb = dev->nullb; 1196 size_t n = nr_sectors << SECTOR_SHIFT; 1197 size_t temp; 1198 1199 spin_lock_irq(&nullb->lock); 1200 while (n > 0) { 1201 temp = min_t(size_t, n, dev->blocksize); 1202 null_free_sector(nullb, sector, false); 1203 if (null_cache_active(nullb)) 1204 null_free_sector(nullb, sector, true); 1205 sector += temp >> SECTOR_SHIFT; 1206 n -= temp; 1207 } 1208 spin_unlock_irq(&nullb->lock); 1209 1210 return BLK_STS_OK; 1211 } 1212 1213 static blk_status_t null_handle_flush(struct nullb *nullb) 1214 { 1215 int err; 1216 1217 if (!null_cache_active(nullb)) 1218 return 0; 1219 1220 spin_lock_irq(&nullb->lock); 1221 while (true) { 1222 err = null_make_cache_space(nullb, 1223 nullb->dev->cache_size * 1024 * 1024); 1224 if (err || nullb->dev->curr_cache == 0) 1225 break; 1226 } 1227 1228 WARN_ON(!radix_tree_empty(&nullb->dev->cache)); 1229 spin_unlock_irq(&nullb->lock); 1230 return errno_to_blk_status(err); 1231 } 1232 1233 static int null_transfer(struct nullb *nullb, struct page *page, 1234 unsigned int len, unsigned int off, bool is_write, sector_t sector, 1235 bool is_fua) 1236 { 1237 struct nullb_device *dev = nullb->dev; 1238 unsigned int valid_len = len; 1239 int err = 0; 1240 1241 if (!is_write) { 1242 if (dev->zoned) 1243 valid_len = null_zone_valid_read_len(nullb, 1244 sector, len); 1245 1246 if (valid_len) { 1247 err = copy_from_nullb(nullb, page, off, 1248 sector, valid_len); 1249 off += valid_len; 1250 len -= valid_len; 1251 } 1252 1253 if (len) 1254 nullb_fill_pattern(nullb, page, len, off); 1255 flush_dcache_page(page); 1256 } else { 1257 flush_dcache_page(page); 1258 err = copy_to_nullb(nullb, page, off, sector, len, is_fua); 1259 } 1260 1261 return err; 1262 } 1263 1264 static blk_status_t null_handle_rq(struct nullb_cmd *cmd) 1265 { 1266 struct request *rq = blk_mq_rq_from_pdu(cmd); 1267 struct nullb *nullb = cmd->nq->dev->nullb; 1268 int err = 0; 1269 unsigned int len; 1270 sector_t sector = blk_rq_pos(rq); 1271 struct req_iterator iter; 1272 struct bio_vec bvec; 1273 1274 spin_lock_irq(&nullb->lock); 1275 rq_for_each_segment(bvec, rq, iter) { 1276 len = bvec.bv_len; 1277 err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, 1278 op_is_write(req_op(rq)), sector, 1279 rq->cmd_flags & REQ_FUA); 1280 if (err) 1281 break; 1282 sector += len >> SECTOR_SHIFT; 1283 } 1284 spin_unlock_irq(&nullb->lock); 1285 1286 return errno_to_blk_status(err); 1287 } 1288 1289 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd) 1290 { 1291 struct nullb_device *dev = cmd->nq->dev; 1292 struct nullb *nullb = dev->nullb; 1293 blk_status_t sts = BLK_STS_OK; 1294 struct request *rq = blk_mq_rq_from_pdu(cmd); 1295 1296 if (!hrtimer_active(&nullb->bw_timer)) 1297 hrtimer_restart(&nullb->bw_timer); 1298 1299 if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) { 1300 blk_mq_stop_hw_queues(nullb->q); 1301 /* race with timer */ 1302 if (atomic_long_read(&nullb->cur_bytes) > 0) 1303 blk_mq_start_stopped_hw_queues(nullb->q, true); 1304 /* requeue request */ 1305 sts = BLK_STS_DEV_RESOURCE; 1306 } 1307 return sts; 1308 } 1309 1310 static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, 1311 sector_t sector, 1312 sector_t nr_sectors) 1313 { 1314 struct badblocks *bb = &cmd->nq->dev->badblocks; 1315 sector_t first_bad; 1316 int bad_sectors; 1317 1318 if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors)) 1319 return BLK_STS_IOERR; 1320 1321 return BLK_STS_OK; 1322 } 1323 1324 static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, 1325 enum req_op op, 1326 sector_t sector, 1327 sector_t nr_sectors) 1328 { 1329 struct nullb_device *dev = cmd->nq->dev; 1330 1331 if (op == REQ_OP_DISCARD) 1332 return null_handle_discard(dev, sector, nr_sectors); 1333 1334 return null_handle_rq(cmd); 1335 } 1336 1337 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd) 1338 { 1339 struct request *rq = blk_mq_rq_from_pdu(cmd); 1340 struct nullb_device *dev = cmd->nq->dev; 1341 struct bio *bio; 1342 1343 if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) { 1344 __rq_for_each_bio(bio, rq) 1345 zero_fill_bio(bio); 1346 } 1347 } 1348 1349 static inline void nullb_complete_cmd(struct nullb_cmd *cmd) 1350 { 1351 struct request *rq = blk_mq_rq_from_pdu(cmd); 1352 1353 /* 1354 * Since root privileges are required to configure the null_blk 1355 * driver, it is fine that this driver does not initialize the 1356 * data buffers of read commands. Zero-initialize these buffers 1357 * anyway if KMSAN is enabled to prevent that KMSAN complains 1358 * about null_blk not initializing read data buffers. 1359 */ 1360 if (IS_ENABLED(CONFIG_KMSAN)) 1361 nullb_zero_read_cmd_buffer(cmd); 1362 1363 /* Complete IO by inline, softirq or timer */ 1364 switch (cmd->nq->dev->irqmode) { 1365 case NULL_IRQ_SOFTIRQ: 1366 blk_mq_complete_request(rq); 1367 break; 1368 case NULL_IRQ_NONE: 1369 blk_mq_end_request(rq, cmd->error); 1370 break; 1371 case NULL_IRQ_TIMER: 1372 null_cmd_end_timer(cmd); 1373 break; 1374 } 1375 } 1376 1377 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op, 1378 sector_t sector, unsigned int nr_sectors) 1379 { 1380 struct nullb_device *dev = cmd->nq->dev; 1381 blk_status_t ret; 1382 1383 if (dev->badblocks.shift != -1) { 1384 ret = null_handle_badblocks(cmd, sector, nr_sectors); 1385 if (ret != BLK_STS_OK) 1386 return ret; 1387 } 1388 1389 if (dev->memory_backed) 1390 return null_handle_memory_backed(cmd, op, sector, nr_sectors); 1391 1392 return BLK_STS_OK; 1393 } 1394 1395 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector, 1396 sector_t nr_sectors, enum req_op op) 1397 { 1398 struct nullb_device *dev = cmd->nq->dev; 1399 struct nullb *nullb = dev->nullb; 1400 blk_status_t sts; 1401 1402 if (op == REQ_OP_FLUSH) { 1403 cmd->error = null_handle_flush(nullb); 1404 goto out; 1405 } 1406 1407 if (dev->zoned) 1408 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors); 1409 else 1410 sts = null_process_cmd(cmd, op, sector, nr_sectors); 1411 1412 /* Do not overwrite errors (e.g. timeout errors) */ 1413 if (cmd->error == BLK_STS_OK) 1414 cmd->error = sts; 1415 1416 out: 1417 nullb_complete_cmd(cmd); 1418 } 1419 1420 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer) 1421 { 1422 struct nullb *nullb = container_of(timer, struct nullb, bw_timer); 1423 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1424 unsigned int mbps = nullb->dev->mbps; 1425 1426 if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps)) 1427 return HRTIMER_NORESTART; 1428 1429 atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps)); 1430 blk_mq_start_stopped_hw_queues(nullb->q, true); 1431 1432 hrtimer_forward_now(&nullb->bw_timer, timer_interval); 1433 1434 return HRTIMER_RESTART; 1435 } 1436 1437 static void nullb_setup_bwtimer(struct nullb *nullb) 1438 { 1439 ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); 1440 1441 hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1442 nullb->bw_timer.function = nullb_bwtimer_fn; 1443 atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps)); 1444 hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL); 1445 } 1446 1447 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1448 1449 static bool should_timeout_request(struct request *rq) 1450 { 1451 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1452 struct nullb_device *dev = cmd->nq->dev; 1453 1454 return should_fail(&dev->timeout_config.attr, 1); 1455 } 1456 1457 static bool should_requeue_request(struct request *rq) 1458 { 1459 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1460 struct nullb_device *dev = cmd->nq->dev; 1461 1462 return should_fail(&dev->requeue_config.attr, 1); 1463 } 1464 1465 static bool should_init_hctx_fail(struct nullb_device *dev) 1466 { 1467 return should_fail(&dev->init_hctx_fault_config.attr, 1); 1468 } 1469 1470 #else 1471 1472 static bool should_timeout_request(struct request *rq) 1473 { 1474 return false; 1475 } 1476 1477 static bool should_requeue_request(struct request *rq) 1478 { 1479 return false; 1480 } 1481 1482 static bool should_init_hctx_fail(struct nullb_device *dev) 1483 { 1484 return false; 1485 } 1486 1487 #endif 1488 1489 static void null_map_queues(struct blk_mq_tag_set *set) 1490 { 1491 struct nullb *nullb = set->driver_data; 1492 int i, qoff; 1493 unsigned int submit_queues = g_submit_queues; 1494 unsigned int poll_queues = g_poll_queues; 1495 1496 if (nullb) { 1497 struct nullb_device *dev = nullb->dev; 1498 1499 /* 1500 * Refer nr_hw_queues of the tag set to check if the expected 1501 * number of hardware queues are prepared. If block layer failed 1502 * to prepare them, use previous numbers of submit queues and 1503 * poll queues to map queues. 1504 */ 1505 if (set->nr_hw_queues == 1506 dev->submit_queues + dev->poll_queues) { 1507 submit_queues = dev->submit_queues; 1508 poll_queues = dev->poll_queues; 1509 } else if (set->nr_hw_queues == 1510 dev->prev_submit_queues + dev->prev_poll_queues) { 1511 submit_queues = dev->prev_submit_queues; 1512 poll_queues = dev->prev_poll_queues; 1513 } else { 1514 pr_warn("tag set has unexpected nr_hw_queues: %d\n", 1515 set->nr_hw_queues); 1516 WARN_ON_ONCE(true); 1517 submit_queues = 1; 1518 poll_queues = 0; 1519 } 1520 } 1521 1522 for (i = 0, qoff = 0; i < set->nr_maps; i++) { 1523 struct blk_mq_queue_map *map = &set->map[i]; 1524 1525 switch (i) { 1526 case HCTX_TYPE_DEFAULT: 1527 map->nr_queues = submit_queues; 1528 break; 1529 case HCTX_TYPE_READ: 1530 map->nr_queues = 0; 1531 continue; 1532 case HCTX_TYPE_POLL: 1533 map->nr_queues = poll_queues; 1534 break; 1535 } 1536 map->queue_offset = qoff; 1537 qoff += map->nr_queues; 1538 blk_mq_map_queues(map); 1539 } 1540 } 1541 1542 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob) 1543 { 1544 struct nullb_queue *nq = hctx->driver_data; 1545 LIST_HEAD(list); 1546 int nr = 0; 1547 struct request *rq; 1548 1549 spin_lock(&nq->poll_lock); 1550 list_splice_init(&nq->poll_list, &list); 1551 list_for_each_entry(rq, &list, queuelist) 1552 blk_mq_set_request_complete(rq); 1553 spin_unlock(&nq->poll_lock); 1554 1555 while (!list_empty(&list)) { 1556 struct nullb_cmd *cmd; 1557 struct request *req; 1558 1559 req = list_first_entry(&list, struct request, queuelist); 1560 list_del_init(&req->queuelist); 1561 cmd = blk_mq_rq_to_pdu(req); 1562 cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req), 1563 blk_rq_sectors(req)); 1564 if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error, 1565 blk_mq_end_request_batch)) 1566 blk_mq_end_request(req, cmd->error); 1567 nr++; 1568 } 1569 1570 return nr; 1571 } 1572 1573 static enum blk_eh_timer_return null_timeout_rq(struct request *rq) 1574 { 1575 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1576 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1577 1578 if (hctx->type == HCTX_TYPE_POLL) { 1579 struct nullb_queue *nq = hctx->driver_data; 1580 1581 spin_lock(&nq->poll_lock); 1582 /* The request may have completed meanwhile. */ 1583 if (blk_mq_request_completed(rq)) { 1584 spin_unlock(&nq->poll_lock); 1585 return BLK_EH_DONE; 1586 } 1587 list_del_init(&rq->queuelist); 1588 spin_unlock(&nq->poll_lock); 1589 } 1590 1591 pr_info("rq %p timed out\n", rq); 1592 1593 /* 1594 * If the device is marked as blocking (i.e. memory backed or zoned 1595 * device), the submission path may be blocked waiting for resources 1596 * and cause real timeouts. For these real timeouts, the submission 1597 * path will complete the request using blk_mq_complete_request(). 1598 * Only fake timeouts need to execute blk_mq_complete_request() here. 1599 */ 1600 cmd->error = BLK_STS_TIMEOUT; 1601 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL) 1602 blk_mq_complete_request(rq); 1603 return BLK_EH_DONE; 1604 } 1605 1606 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx, 1607 const struct blk_mq_queue_data *bd) 1608 { 1609 struct request *rq = bd->rq; 1610 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq); 1611 struct nullb_queue *nq = hctx->driver_data; 1612 sector_t nr_sectors = blk_rq_sectors(rq); 1613 sector_t sector = blk_rq_pos(rq); 1614 const bool is_poll = hctx->type == HCTX_TYPE_POLL; 1615 1616 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1617 1618 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) { 1619 hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1620 cmd->timer.function = null_cmd_timer_expired; 1621 } 1622 cmd->error = BLK_STS_OK; 1623 cmd->nq = nq; 1624 cmd->fake_timeout = should_timeout_request(rq) || 1625 blk_should_fake_timeout(rq->q); 1626 1627 if (should_requeue_request(rq)) { 1628 /* 1629 * Alternate between hitting the core BUSY path, and the 1630 * driver driven requeue path 1631 */ 1632 nq->requeue_selection++; 1633 if (nq->requeue_selection & 1) 1634 return BLK_STS_RESOURCE; 1635 blk_mq_requeue_request(rq, true); 1636 return BLK_STS_OK; 1637 } 1638 1639 if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) { 1640 blk_status_t sts = null_handle_throttled(cmd); 1641 1642 if (sts != BLK_STS_OK) 1643 return sts; 1644 } 1645 1646 blk_mq_start_request(rq); 1647 1648 if (is_poll) { 1649 spin_lock(&nq->poll_lock); 1650 list_add_tail(&rq->queuelist, &nq->poll_list); 1651 spin_unlock(&nq->poll_lock); 1652 return BLK_STS_OK; 1653 } 1654 if (cmd->fake_timeout) 1655 return BLK_STS_OK; 1656 1657 null_handle_cmd(cmd, sector, nr_sectors, req_op(rq)); 1658 return BLK_STS_OK; 1659 } 1660 1661 static void null_queue_rqs(struct rq_list *rqlist) 1662 { 1663 struct rq_list requeue_list = {}; 1664 struct blk_mq_queue_data bd = { }; 1665 blk_status_t ret; 1666 1667 do { 1668 struct request *rq = rq_list_pop(rqlist); 1669 1670 bd.rq = rq; 1671 ret = null_queue_rq(rq->mq_hctx, &bd); 1672 if (ret != BLK_STS_OK) 1673 rq_list_add_tail(&requeue_list, rq); 1674 } while (!rq_list_empty(rqlist)); 1675 1676 *rqlist = requeue_list; 1677 } 1678 1679 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq) 1680 { 1681 nq->dev = nullb->dev; 1682 INIT_LIST_HEAD(&nq->poll_list); 1683 spin_lock_init(&nq->poll_lock); 1684 } 1685 1686 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data, 1687 unsigned int hctx_idx) 1688 { 1689 struct nullb *nullb = hctx->queue->queuedata; 1690 struct nullb_queue *nq; 1691 1692 if (should_init_hctx_fail(nullb->dev)) 1693 return -EFAULT; 1694 1695 nq = &nullb->queues[hctx_idx]; 1696 hctx->driver_data = nq; 1697 null_init_queue(nullb, nq); 1698 1699 return 0; 1700 } 1701 1702 static const struct blk_mq_ops null_mq_ops = { 1703 .queue_rq = null_queue_rq, 1704 .queue_rqs = null_queue_rqs, 1705 .complete = null_complete_rq, 1706 .timeout = null_timeout_rq, 1707 .poll = null_poll, 1708 .map_queues = null_map_queues, 1709 .init_hctx = null_init_hctx, 1710 }; 1711 1712 static void null_del_dev(struct nullb *nullb) 1713 { 1714 struct nullb_device *dev; 1715 1716 if (!nullb) 1717 return; 1718 1719 dev = nullb->dev; 1720 1721 ida_free(&nullb_indexes, nullb->index); 1722 1723 list_del_init(&nullb->list); 1724 1725 del_gendisk(nullb->disk); 1726 1727 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) { 1728 hrtimer_cancel(&nullb->bw_timer); 1729 atomic_long_set(&nullb->cur_bytes, LONG_MAX); 1730 blk_mq_start_stopped_hw_queues(nullb->q, true); 1731 } 1732 1733 put_disk(nullb->disk); 1734 if (nullb->tag_set == &nullb->__tag_set) 1735 blk_mq_free_tag_set(nullb->tag_set); 1736 kfree(nullb->queues); 1737 if (null_cache_active(nullb)) 1738 null_free_device_storage(nullb->dev, true); 1739 kfree(nullb); 1740 dev->nullb = NULL; 1741 } 1742 1743 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim) 1744 { 1745 if (nullb->dev->discard == false) 1746 return; 1747 1748 if (!nullb->dev->memory_backed) { 1749 nullb->dev->discard = false; 1750 pr_info("discard option is ignored without memory backing\n"); 1751 return; 1752 } 1753 1754 if (nullb->dev->zoned) { 1755 nullb->dev->discard = false; 1756 pr_info("discard option is ignored in zoned mode\n"); 1757 return; 1758 } 1759 1760 lim->max_hw_discard_sectors = UINT_MAX >> 9; 1761 } 1762 1763 static const struct block_device_operations null_ops = { 1764 .owner = THIS_MODULE, 1765 .report_zones = null_report_zones, 1766 }; 1767 1768 static int setup_queues(struct nullb *nullb) 1769 { 1770 int nqueues = nr_cpu_ids; 1771 1772 if (g_poll_queues) 1773 nqueues += g_poll_queues; 1774 1775 nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue), 1776 GFP_KERNEL); 1777 if (!nullb->queues) 1778 return -ENOMEM; 1779 1780 return 0; 1781 } 1782 1783 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues) 1784 { 1785 set->ops = &null_mq_ops; 1786 set->cmd_size = sizeof(struct nullb_cmd); 1787 set->timeout = 5 * HZ; 1788 set->nr_maps = 1; 1789 if (poll_queues) { 1790 set->nr_hw_queues += poll_queues; 1791 set->nr_maps += 2; 1792 } 1793 return blk_mq_alloc_tag_set(set); 1794 } 1795 1796 static int null_init_global_tag_set(void) 1797 { 1798 int error; 1799 1800 if (tag_set.ops) 1801 return 0; 1802 1803 tag_set.nr_hw_queues = g_submit_queues; 1804 tag_set.queue_depth = g_hw_queue_depth; 1805 tag_set.numa_node = g_home_node; 1806 if (g_no_sched) 1807 tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1808 if (g_shared_tag_bitmap) 1809 tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1810 if (g_blocking) 1811 tag_set.flags |= BLK_MQ_F_BLOCKING; 1812 1813 error = null_init_tag_set(&tag_set, g_poll_queues); 1814 if (error) 1815 tag_set.ops = NULL; 1816 return error; 1817 } 1818 1819 static int null_setup_tagset(struct nullb *nullb) 1820 { 1821 if (nullb->dev->shared_tags) { 1822 nullb->tag_set = &tag_set; 1823 return null_init_global_tag_set(); 1824 } 1825 1826 nullb->tag_set = &nullb->__tag_set; 1827 nullb->tag_set->driver_data = nullb; 1828 nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues; 1829 nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth; 1830 nullb->tag_set->numa_node = nullb->dev->home_node; 1831 if (nullb->dev->no_sched) 1832 nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT; 1833 if (nullb->dev->shared_tag_bitmap) 1834 nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED; 1835 if (nullb->dev->blocking) 1836 nullb->tag_set->flags |= BLK_MQ_F_BLOCKING; 1837 return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues); 1838 } 1839 1840 static int null_validate_conf(struct nullb_device *dev) 1841 { 1842 if (dev->queue_mode == NULL_Q_RQ) { 1843 pr_err("legacy IO path is no longer available\n"); 1844 return -EINVAL; 1845 } 1846 if (dev->queue_mode == NULL_Q_BIO) { 1847 pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n"); 1848 dev->queue_mode = NULL_Q_MQ; 1849 } 1850 1851 if (dev->use_per_node_hctx) { 1852 if (dev->submit_queues != nr_online_nodes) 1853 dev->submit_queues = nr_online_nodes; 1854 } else if (dev->submit_queues > nr_cpu_ids) 1855 dev->submit_queues = nr_cpu_ids; 1856 else if (dev->submit_queues == 0) 1857 dev->submit_queues = 1; 1858 dev->prev_submit_queues = dev->submit_queues; 1859 1860 if (dev->poll_queues > g_poll_queues) 1861 dev->poll_queues = g_poll_queues; 1862 dev->prev_poll_queues = dev->poll_queues; 1863 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER); 1864 1865 /* Do memory allocation, so set blocking */ 1866 if (dev->memory_backed) 1867 dev->blocking = true; 1868 else /* cache is meaningless */ 1869 dev->cache_size = 0; 1870 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024, 1871 dev->cache_size); 1872 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps); 1873 1874 if (dev->zoned && 1875 (!dev->zone_size || !is_power_of_2(dev->zone_size))) { 1876 pr_err("zone_size must be power-of-two\n"); 1877 return -EINVAL; 1878 } 1879 1880 return 0; 1881 } 1882 1883 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1884 static bool __null_setup_fault(struct fault_attr *attr, char *str) 1885 { 1886 if (!str[0]) 1887 return true; 1888 1889 if (!setup_fault_attr(attr, str)) 1890 return false; 1891 1892 attr->verbose = 0; 1893 return true; 1894 } 1895 #endif 1896 1897 static bool null_setup_fault(void) 1898 { 1899 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION 1900 if (!__null_setup_fault(&null_timeout_attr, g_timeout_str)) 1901 return false; 1902 if (!__null_setup_fault(&null_requeue_attr, g_requeue_str)) 1903 return false; 1904 if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str)) 1905 return false; 1906 #endif 1907 return true; 1908 } 1909 1910 static int null_add_dev(struct nullb_device *dev) 1911 { 1912 struct queue_limits lim = { 1913 .logical_block_size = dev->blocksize, 1914 .physical_block_size = dev->blocksize, 1915 .max_hw_sectors = dev->max_sectors, 1916 }; 1917 1918 struct nullb *nullb; 1919 int rv; 1920 1921 rv = null_validate_conf(dev); 1922 if (rv) 1923 return rv; 1924 1925 nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node); 1926 if (!nullb) { 1927 rv = -ENOMEM; 1928 goto out; 1929 } 1930 nullb->dev = dev; 1931 dev->nullb = nullb; 1932 1933 spin_lock_init(&nullb->lock); 1934 1935 rv = setup_queues(nullb); 1936 if (rv) 1937 goto out_free_nullb; 1938 1939 rv = null_setup_tagset(nullb); 1940 if (rv) 1941 goto out_cleanup_queues; 1942 1943 if (dev->virt_boundary) 1944 lim.virt_boundary_mask = PAGE_SIZE - 1; 1945 null_config_discard(nullb, &lim); 1946 if (dev->zoned) { 1947 rv = null_init_zoned_dev(dev, &lim); 1948 if (rv) 1949 goto out_cleanup_tags; 1950 } 1951 1952 if (dev->cache_size > 0) { 1953 set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); 1954 lim.features |= BLK_FEAT_WRITE_CACHE; 1955 if (dev->fua) 1956 lim.features |= BLK_FEAT_FUA; 1957 } 1958 1959 if (dev->rotational) 1960 lim.features |= BLK_FEAT_ROTATIONAL; 1961 1962 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb); 1963 if (IS_ERR(nullb->disk)) { 1964 rv = PTR_ERR(nullb->disk); 1965 goto out_cleanup_zone; 1966 } 1967 nullb->q = nullb->disk->queue; 1968 1969 if (dev->mbps) { 1970 set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags); 1971 nullb_setup_bwtimer(nullb); 1972 } 1973 1974 nullb->q->queuedata = nullb; 1975 1976 rv = ida_alloc(&nullb_indexes, GFP_KERNEL); 1977 if (rv < 0) 1978 goto out_cleanup_disk; 1979 1980 nullb->index = rv; 1981 dev->index = rv; 1982 1983 if (config_item_name(&dev->group.cg_item)) { 1984 /* Use configfs dir name as the device name */ 1985 snprintf(nullb->disk_name, sizeof(nullb->disk_name), 1986 "%s", config_item_name(&dev->group.cg_item)); 1987 } else { 1988 sprintf(nullb->disk_name, "nullb%d", nullb->index); 1989 } 1990 1991 set_capacity(nullb->disk, 1992 ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT); 1993 nullb->disk->major = null_major; 1994 nullb->disk->first_minor = nullb->index; 1995 nullb->disk->minors = 1; 1996 nullb->disk->fops = &null_ops; 1997 nullb->disk->private_data = nullb; 1998 strscpy_pad(nullb->disk->disk_name, nullb->disk_name, DISK_NAME_LEN); 1999 2000 if (nullb->dev->zoned) { 2001 rv = null_register_zoned_dev(nullb); 2002 if (rv) 2003 goto out_ida_free; 2004 } 2005 2006 rv = add_disk(nullb->disk); 2007 if (rv) 2008 goto out_ida_free; 2009 2010 list_add_tail(&nullb->list, &nullb_list); 2011 2012 pr_info("disk %s created\n", nullb->disk_name); 2013 2014 return 0; 2015 2016 out_ida_free: 2017 ida_free(&nullb_indexes, nullb->index); 2018 out_cleanup_disk: 2019 put_disk(nullb->disk); 2020 out_cleanup_zone: 2021 null_free_zoned_dev(dev); 2022 out_cleanup_tags: 2023 if (nullb->tag_set == &nullb->__tag_set) 2024 blk_mq_free_tag_set(nullb->tag_set); 2025 out_cleanup_queues: 2026 kfree(nullb->queues); 2027 out_free_nullb: 2028 kfree(nullb); 2029 dev->nullb = NULL; 2030 out: 2031 return rv; 2032 } 2033 2034 static struct nullb *null_find_dev_by_name(const char *name) 2035 { 2036 struct nullb *nullb = NULL, *nb; 2037 2038 mutex_lock(&lock); 2039 list_for_each_entry(nb, &nullb_list, list) { 2040 if (strcmp(nb->disk_name, name) == 0) { 2041 nullb = nb; 2042 break; 2043 } 2044 } 2045 mutex_unlock(&lock); 2046 2047 return nullb; 2048 } 2049 2050 static int null_create_dev(void) 2051 { 2052 struct nullb_device *dev; 2053 int ret; 2054 2055 dev = null_alloc_dev(); 2056 if (!dev) 2057 return -ENOMEM; 2058 2059 mutex_lock(&lock); 2060 ret = null_add_dev(dev); 2061 mutex_unlock(&lock); 2062 if (ret) { 2063 null_free_dev(dev); 2064 return ret; 2065 } 2066 2067 return 0; 2068 } 2069 2070 static void null_destroy_dev(struct nullb *nullb) 2071 { 2072 struct nullb_device *dev = nullb->dev; 2073 2074 null_del_dev(nullb); 2075 null_free_device_storage(dev, false); 2076 null_free_dev(dev); 2077 } 2078 2079 static int __init null_init(void) 2080 { 2081 int ret = 0; 2082 unsigned int i; 2083 struct nullb *nullb; 2084 2085 if (g_bs > PAGE_SIZE) { 2086 pr_warn("invalid block size\n"); 2087 pr_warn("defaults block size to %lu\n", PAGE_SIZE); 2088 g_bs = PAGE_SIZE; 2089 } 2090 2091 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) { 2092 pr_err("invalid home_node value\n"); 2093 g_home_node = NUMA_NO_NODE; 2094 } 2095 2096 if (!null_setup_fault()) 2097 return -EINVAL; 2098 2099 if (g_queue_mode == NULL_Q_RQ) { 2100 pr_err("legacy IO path is no longer available\n"); 2101 return -EINVAL; 2102 } 2103 2104 if (g_use_per_node_hctx) { 2105 if (g_submit_queues != nr_online_nodes) { 2106 pr_warn("submit_queues param is set to %u.\n", 2107 nr_online_nodes); 2108 g_submit_queues = nr_online_nodes; 2109 } 2110 } else if (g_submit_queues > nr_cpu_ids) { 2111 g_submit_queues = nr_cpu_ids; 2112 } else if (g_submit_queues <= 0) { 2113 g_submit_queues = 1; 2114 } 2115 2116 config_group_init(&nullb_subsys.su_group); 2117 mutex_init(&nullb_subsys.su_mutex); 2118 2119 ret = configfs_register_subsystem(&nullb_subsys); 2120 if (ret) 2121 return ret; 2122 2123 mutex_init(&lock); 2124 2125 null_major = register_blkdev(0, "nullb"); 2126 if (null_major < 0) { 2127 ret = null_major; 2128 goto err_conf; 2129 } 2130 2131 for (i = 0; i < nr_devices; i++) { 2132 ret = null_create_dev(); 2133 if (ret) 2134 goto err_dev; 2135 } 2136 2137 pr_info("module loaded\n"); 2138 return 0; 2139 2140 err_dev: 2141 while (!list_empty(&nullb_list)) { 2142 nullb = list_entry(nullb_list.next, struct nullb, list); 2143 null_destroy_dev(nullb); 2144 } 2145 unregister_blkdev(null_major, "nullb"); 2146 err_conf: 2147 configfs_unregister_subsystem(&nullb_subsys); 2148 return ret; 2149 } 2150 2151 static void __exit null_exit(void) 2152 { 2153 struct nullb *nullb; 2154 2155 configfs_unregister_subsystem(&nullb_subsys); 2156 2157 unregister_blkdev(null_major, "nullb"); 2158 2159 mutex_lock(&lock); 2160 while (!list_empty(&nullb_list)) { 2161 nullb = list_entry(nullb_list.next, struct nullb, list); 2162 null_destroy_dev(nullb); 2163 } 2164 mutex_unlock(&lock); 2165 2166 if (tag_set.ops) 2167 blk_mq_free_tag_set(&tag_set); 2168 2169 mutex_destroy(&lock); 2170 } 2171 2172 module_init(null_init); 2173 module_exit(null_exit); 2174 2175 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>"); 2176 MODULE_DESCRIPTION("multi queue aware block test driver"); 2177 MODULE_LICENSE("GPL"); 2178