xref: /linux/drivers/block/null_blk/main.c (revision 1165d20f4d1abba59ff2f032df271605ad49c255)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4  * Shaohua Li <shli@fb.com>
5  */
6 #include <linux/module.h>
7 
8 #include <linux/moduleparam.h>
9 #include <linux/sched.h>
10 #include <linux/fs.h>
11 #include <linux/init.h>
12 #include "null_blk.h"
13 
14 #undef pr_fmt
15 #define pr_fmt(fmt)	"null_blk: " fmt
16 
17 #define FREE_BATCH		16
18 
19 #define TICKS_PER_SEC		50ULL
20 #define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
21 
22 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23 static DECLARE_FAULT_ATTR(null_timeout_attr);
24 static DECLARE_FAULT_ATTR(null_requeue_attr);
25 static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26 #endif
27 
28 static inline u64 mb_per_tick(int mbps)
29 {
30 	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31 }
32 
33 /*
34  * Status flags for nullb_device.
35  *
36  * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
37  * UP:		Device is currently on and visible in userspace.
38  * THROTTLED:	Device is being throttled.
39  * CACHE:	Device is using a write-back cache.
40  */
41 enum nullb_device_flags {
42 	NULLB_DEV_FL_CONFIGURED	= 0,
43 	NULLB_DEV_FL_UP		= 1,
44 	NULLB_DEV_FL_THROTTLED	= 2,
45 	NULLB_DEV_FL_CACHE	= 3,
46 };
47 
48 #define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49 /*
50  * nullb_page is a page in memory for nullb devices.
51  *
52  * @page:	The page holding the data.
53  * @bitmap:	The bitmap represents which sector in the page has data.
54  *		Each bit represents one block size. For example, sector 8
55  *		will use the 7th bit
56  * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57  * page is being flushing to storage. FREE means the cache page is freed and
58  * should be skipped from flushing to storage. Please see
59  * null_make_cache_space
60  */
61 struct nullb_page {
62 	struct page *page;
63 	DECLARE_BITMAP(bitmap, MAP_SZ);
64 };
65 #define NULLB_PAGE_LOCK (MAP_SZ - 1)
66 #define NULLB_PAGE_FREE (MAP_SZ - 2)
67 
68 static LIST_HEAD(nullb_list);
69 static struct mutex lock;
70 static int null_major;
71 static DEFINE_IDA(nullb_indexes);
72 static struct blk_mq_tag_set tag_set;
73 
74 enum {
75 	NULL_IRQ_NONE		= 0,
76 	NULL_IRQ_SOFTIRQ	= 1,
77 	NULL_IRQ_TIMER		= 2,
78 };
79 
80 static bool g_virt_boundary;
81 module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82 MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83 
84 static int g_no_sched;
85 module_param_named(no_sched, g_no_sched, int, 0444);
86 MODULE_PARM_DESC(no_sched, "No io scheduler");
87 
88 static int g_submit_queues = 1;
89 module_param_named(submit_queues, g_submit_queues, int, 0444);
90 MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91 
92 static int g_poll_queues = 1;
93 module_param_named(poll_queues, g_poll_queues, int, 0444);
94 MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95 
96 static int g_home_node = NUMA_NO_NODE;
97 module_param_named(home_node, g_home_node, int, 0444);
98 MODULE_PARM_DESC(home_node, "Home node for the device");
99 
100 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101 /*
102  * For more details about fault injection, please refer to
103  * Documentation/fault-injection/fault-injection.rst.
104  */
105 static char g_timeout_str[80];
106 module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107 MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108 
109 static char g_requeue_str[80];
110 module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111 MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112 
113 static char g_init_hctx_str[80];
114 module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115 MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116 #endif
117 
118 /*
119  * Historic queue modes.
120  *
121  * These days nothing but NULL_Q_MQ is actually supported, but we keep it the
122  * enum for error reporting.
123  */
124 enum {
125 	NULL_Q_BIO	= 0,
126 	NULL_Q_RQ	= 1,
127 	NULL_Q_MQ	= 2,
128 };
129 
130 static int g_queue_mode = NULL_Q_MQ;
131 
132 static int null_param_store_val(const char *str, int *val, int min, int max)
133 {
134 	int ret, new_val;
135 
136 	ret = kstrtoint(str, 10, &new_val);
137 	if (ret)
138 		return -EINVAL;
139 
140 	if (new_val < min || new_val > max)
141 		return -EINVAL;
142 
143 	*val = new_val;
144 	return 0;
145 }
146 
147 static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
148 {
149 	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
150 }
151 
152 static const struct kernel_param_ops null_queue_mode_param_ops = {
153 	.set	= null_set_queue_mode,
154 	.get	= param_get_int,
155 };
156 
157 device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
158 MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
159 
160 static int g_gb = 250;
161 module_param_named(gb, g_gb, int, 0444);
162 MODULE_PARM_DESC(gb, "Size in GB");
163 
164 static int g_bs = 512;
165 module_param_named(bs, g_bs, int, 0444);
166 MODULE_PARM_DESC(bs, "Block size (in bytes)");
167 
168 static int g_max_sectors;
169 module_param_named(max_sectors, g_max_sectors, int, 0444);
170 MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
171 
172 static unsigned int nr_devices = 1;
173 module_param(nr_devices, uint, 0444);
174 MODULE_PARM_DESC(nr_devices, "Number of devices to register");
175 
176 static bool g_blocking;
177 module_param_named(blocking, g_blocking, bool, 0444);
178 MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
179 
180 static bool g_shared_tags;
181 module_param_named(shared_tags, g_shared_tags, bool, 0444);
182 MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
183 
184 static bool g_shared_tag_bitmap;
185 module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
186 MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
187 
188 static int g_irqmode = NULL_IRQ_SOFTIRQ;
189 
190 static int null_set_irqmode(const char *str, const struct kernel_param *kp)
191 {
192 	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
193 					NULL_IRQ_TIMER);
194 }
195 
196 static const struct kernel_param_ops null_irqmode_param_ops = {
197 	.set	= null_set_irqmode,
198 	.get	= param_get_int,
199 };
200 
201 device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
202 MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
203 
204 static unsigned long g_completion_nsec = 10000;
205 module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
206 MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
207 
208 static int g_hw_queue_depth = 64;
209 module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
210 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
211 
212 static bool g_use_per_node_hctx;
213 module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
214 MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
215 
216 static bool g_memory_backed;
217 module_param_named(memory_backed, g_memory_backed, bool, 0444);
218 MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
219 
220 static bool g_discard;
221 module_param_named(discard, g_discard, bool, 0444);
222 MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
223 
224 static unsigned long g_cache_size;
225 module_param_named(cache_size, g_cache_size, ulong, 0444);
226 MODULE_PARM_DESC(cache_size, "Cache size in MiB for memory-backed device. Default: 0 (none)");
227 
228 static bool g_fua = true;
229 module_param_named(fua, g_fua, bool, 0444);
230 MODULE_PARM_DESC(fua, "Enable/disable FUA support when cache_size is used. Default: true");
231 
232 static unsigned int g_mbps;
233 module_param_named(mbps, g_mbps, uint, 0444);
234 MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
235 
236 static bool g_zoned;
237 module_param_named(zoned, g_zoned, bool, S_IRUGO);
238 MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
239 
240 static unsigned long g_zone_size = 256;
241 module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
242 MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
243 
244 static unsigned long g_zone_capacity;
245 module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
246 MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
247 
248 static unsigned int g_zone_nr_conv;
249 module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
250 MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
251 
252 static unsigned int g_zone_max_open;
253 module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
254 MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
255 
256 static unsigned int g_zone_max_active;
257 module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
258 MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
259 
260 static int g_zone_append_max_sectors = INT_MAX;
261 module_param_named(zone_append_max_sectors, g_zone_append_max_sectors, int, 0444);
262 MODULE_PARM_DESC(zone_append_max_sectors,
263 		 "Maximum size of a zone append command (in 512B sectors). Specify 0 for zone append emulation");
264 
265 static bool g_zone_full;
266 module_param_named(zone_full, g_zone_full, bool, S_IRUGO);
267 MODULE_PARM_DESC(zone_full, "Initialize the sequential write required zones of a zoned device to be full. Default: false");
268 
269 static bool g_rotational;
270 module_param_named(rotational, g_rotational, bool, S_IRUGO);
271 MODULE_PARM_DESC(rotational, "Set the rotational feature for the device. Default: false");
272 
273 static struct nullb_device *null_alloc_dev(void);
274 static void null_free_dev(struct nullb_device *dev);
275 static void null_del_dev(struct nullb *nullb);
276 static int null_add_dev(struct nullb_device *dev);
277 static struct nullb *null_find_dev_by_name(const char *name);
278 static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
279 
280 static inline struct nullb_device *to_nullb_device(struct config_item *item)
281 {
282 	return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
283 }
284 
285 static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
286 {
287 	return snprintf(page, PAGE_SIZE, "%u\n", val);
288 }
289 
290 static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
291 	char *page)
292 {
293 	return snprintf(page, PAGE_SIZE, "%lu\n", val);
294 }
295 
296 static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
297 {
298 	return snprintf(page, PAGE_SIZE, "%u\n", val);
299 }
300 
301 static ssize_t nullb_device_uint_attr_store(unsigned int *val,
302 	const char *page, size_t count)
303 {
304 	unsigned int tmp;
305 	int result;
306 
307 	result = kstrtouint(page, 0, &tmp);
308 	if (result < 0)
309 		return result;
310 
311 	*val = tmp;
312 	return count;
313 }
314 
315 static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
316 	const char *page, size_t count)
317 {
318 	int result;
319 	unsigned long tmp;
320 
321 	result = kstrtoul(page, 0, &tmp);
322 	if (result < 0)
323 		return result;
324 
325 	*val = tmp;
326 	return count;
327 }
328 
329 static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
330 	size_t count)
331 {
332 	bool tmp;
333 	int result;
334 
335 	result = kstrtobool(page,  &tmp);
336 	if (result < 0)
337 		return result;
338 
339 	*val = tmp;
340 	return count;
341 }
342 
343 /* The following macro should only be used with TYPE = {uint, ulong, bool}. */
344 #define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
345 static ssize_t								\
346 nullb_device_##NAME##_show(struct config_item *item, char *page)	\
347 {									\
348 	return nullb_device_##TYPE##_attr_show(				\
349 				to_nullb_device(item)->NAME, page);	\
350 }									\
351 static ssize_t								\
352 nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
353 			    size_t count)				\
354 {									\
355 	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
356 	struct nullb_device *dev = to_nullb_device(item);		\
357 	TYPE new_value = 0;						\
358 	int ret;							\
359 									\
360 	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
361 	if (ret < 0)							\
362 		return ret;						\
363 	if (apply_fn)							\
364 		ret = apply_fn(dev, new_value);				\
365 	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
366 		ret = -EBUSY;						\
367 	if (ret < 0)							\
368 		return ret;						\
369 	dev->NAME = new_value;						\
370 	return count;							\
371 }									\
372 CONFIGFS_ATTR(nullb_device_, NAME);
373 
374 static int nullb_update_nr_hw_queues(struct nullb_device *dev,
375 				     unsigned int submit_queues,
376 				     unsigned int poll_queues)
377 
378 {
379 	struct blk_mq_tag_set *set;
380 	int ret, nr_hw_queues;
381 
382 	if (!dev->nullb)
383 		return 0;
384 
385 	/*
386 	 * Make sure at least one submit queue exists.
387 	 */
388 	if (!submit_queues)
389 		return -EINVAL;
390 
391 	/*
392 	 * Make sure that null_init_hctx() does not access nullb->queues[] past
393 	 * the end of that array.
394 	 */
395 	if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
396 		return -EINVAL;
397 
398 	/*
399 	 * Keep previous and new queue numbers in nullb_device for reference in
400 	 * the call back function null_map_queues().
401 	 */
402 	dev->prev_submit_queues = dev->submit_queues;
403 	dev->prev_poll_queues = dev->poll_queues;
404 	dev->submit_queues = submit_queues;
405 	dev->poll_queues = poll_queues;
406 
407 	set = dev->nullb->tag_set;
408 	nr_hw_queues = submit_queues + poll_queues;
409 	blk_mq_update_nr_hw_queues(set, nr_hw_queues);
410 	ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
411 
412 	if (ret) {
413 		/* on error, revert the queue numbers */
414 		dev->submit_queues = dev->prev_submit_queues;
415 		dev->poll_queues = dev->prev_poll_queues;
416 	}
417 
418 	return ret;
419 }
420 
421 static int nullb_apply_submit_queues(struct nullb_device *dev,
422 				     unsigned int submit_queues)
423 {
424 	int ret;
425 
426 	mutex_lock(&lock);
427 	ret = nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
428 	mutex_unlock(&lock);
429 
430 	return ret;
431 }
432 
433 static int nullb_apply_poll_queues(struct nullb_device *dev,
434 				   unsigned int poll_queues)
435 {
436 	int ret;
437 
438 	mutex_lock(&lock);
439 	ret = nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
440 	mutex_unlock(&lock);
441 
442 	return ret;
443 }
444 
445 NULLB_DEVICE_ATTR(size, ulong, NULL);
446 NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
447 NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
448 NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
449 NULLB_DEVICE_ATTR(home_node, uint, NULL);
450 NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
451 NULLB_DEVICE_ATTR(blocksize, uint, NULL);
452 NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
453 NULLB_DEVICE_ATTR(irqmode, uint, NULL);
454 NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
455 NULLB_DEVICE_ATTR(index, uint, NULL);
456 NULLB_DEVICE_ATTR(blocking, bool, NULL);
457 NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
458 NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
459 NULLB_DEVICE_ATTR(discard, bool, NULL);
460 NULLB_DEVICE_ATTR(mbps, uint, NULL);
461 NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
462 NULLB_DEVICE_ATTR(zoned, bool, NULL);
463 NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
464 NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
465 NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
466 NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
467 NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
468 NULLB_DEVICE_ATTR(zone_append_max_sectors, uint, NULL);
469 NULLB_DEVICE_ATTR(zone_full, bool, NULL);
470 NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
471 NULLB_DEVICE_ATTR(no_sched, bool, NULL);
472 NULLB_DEVICE_ATTR(shared_tags, bool, NULL);
473 NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
474 NULLB_DEVICE_ATTR(fua, bool, NULL);
475 NULLB_DEVICE_ATTR(rotational, bool, NULL);
476 NULLB_DEVICE_ATTR(badblocks_once, bool, NULL);
477 NULLB_DEVICE_ATTR(badblocks_partial_io, bool, NULL);
478 
479 static ssize_t nullb_device_power_show(struct config_item *item, char *page)
480 {
481 	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
482 }
483 
484 static ssize_t nullb_device_power_store(struct config_item *item,
485 				     const char *page, size_t count)
486 {
487 	struct nullb_device *dev = to_nullb_device(item);
488 	bool newp = false;
489 	ssize_t ret;
490 
491 	ret = nullb_device_bool_attr_store(&newp, page, count);
492 	if (ret < 0)
493 		return ret;
494 
495 	ret = count;
496 	mutex_lock(&lock);
497 	if (!dev->power && newp) {
498 		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
499 			goto out;
500 
501 		ret = null_add_dev(dev);
502 		if (ret) {
503 			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
504 			goto out;
505 		}
506 
507 		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
508 		dev->power = newp;
509 		ret = count;
510 	} else if (dev->power && !newp) {
511 		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
512 			dev->power = newp;
513 			null_del_dev(dev->nullb);
514 		}
515 		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
516 	}
517 
518 out:
519 	mutex_unlock(&lock);
520 	return ret;
521 }
522 
523 CONFIGFS_ATTR(nullb_device_, power);
524 
525 static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
526 {
527 	struct nullb_device *t_dev = to_nullb_device(item);
528 
529 	return badblocks_show(&t_dev->badblocks, page, 0);
530 }
531 
532 static ssize_t nullb_device_badblocks_store(struct config_item *item,
533 				     const char *page, size_t count)
534 {
535 	struct nullb_device *t_dev = to_nullb_device(item);
536 	char *orig, *buf, *tmp;
537 	u64 start, end;
538 	int ret;
539 
540 	orig = kstrndup(page, count, GFP_KERNEL);
541 	if (!orig)
542 		return -ENOMEM;
543 
544 	buf = strstrip(orig);
545 
546 	ret = -EINVAL;
547 	if (buf[0] != '+' && buf[0] != '-')
548 		goto out;
549 	tmp = strchr(&buf[1], '-');
550 	if (!tmp)
551 		goto out;
552 	*tmp = '\0';
553 	ret = kstrtoull(buf + 1, 0, &start);
554 	if (ret)
555 		goto out;
556 	ret = kstrtoull(tmp + 1, 0, &end);
557 	if (ret)
558 		goto out;
559 	ret = -EINVAL;
560 	if (start > end)
561 		goto out;
562 	/* enable badblocks */
563 	cmpxchg(&t_dev->badblocks.shift, -1, 0);
564 	if (buf[0] == '+') {
565 		if (badblocks_set(&t_dev->badblocks, start,
566 				  end - start + 1, 1))
567 			ret = count;
568 	} else if (badblocks_clear(&t_dev->badblocks, start,
569 				   end - start + 1)) {
570 		ret = count;
571 	}
572 out:
573 	kfree(orig);
574 	return ret;
575 }
576 CONFIGFS_ATTR(nullb_device_, badblocks);
577 
578 static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
579 						const char *page, size_t count)
580 {
581 	struct nullb_device *dev = to_nullb_device(item);
582 
583 	return zone_cond_store(dev, page, count, BLK_ZONE_COND_READONLY);
584 }
585 CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
586 
587 static ssize_t nullb_device_zone_offline_store(struct config_item *item,
588 					       const char *page, size_t count)
589 {
590 	struct nullb_device *dev = to_nullb_device(item);
591 
592 	return zone_cond_store(dev, page, count, BLK_ZONE_COND_OFFLINE);
593 }
594 CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
595 
596 static struct configfs_attribute *nullb_device_attrs[] = {
597 	&nullb_device_attr_badblocks,
598 	&nullb_device_attr_badblocks_once,
599 	&nullb_device_attr_badblocks_partial_io,
600 	&nullb_device_attr_blocking,
601 	&nullb_device_attr_blocksize,
602 	&nullb_device_attr_cache_size,
603 	&nullb_device_attr_completion_nsec,
604 	&nullb_device_attr_discard,
605 	&nullb_device_attr_fua,
606 	&nullb_device_attr_home_node,
607 	&nullb_device_attr_hw_queue_depth,
608 	&nullb_device_attr_index,
609 	&nullb_device_attr_irqmode,
610 	&nullb_device_attr_max_sectors,
611 	&nullb_device_attr_mbps,
612 	&nullb_device_attr_memory_backed,
613 	&nullb_device_attr_no_sched,
614 	&nullb_device_attr_poll_queues,
615 	&nullb_device_attr_power,
616 	&nullb_device_attr_queue_mode,
617 	&nullb_device_attr_rotational,
618 	&nullb_device_attr_shared_tag_bitmap,
619 	&nullb_device_attr_shared_tags,
620 	&nullb_device_attr_size,
621 	&nullb_device_attr_submit_queues,
622 	&nullb_device_attr_use_per_node_hctx,
623 	&nullb_device_attr_virt_boundary,
624 	&nullb_device_attr_zone_append_max_sectors,
625 	&nullb_device_attr_zone_capacity,
626 	&nullb_device_attr_zone_full,
627 	&nullb_device_attr_zone_max_active,
628 	&nullb_device_attr_zone_max_open,
629 	&nullb_device_attr_zone_nr_conv,
630 	&nullb_device_attr_zone_offline,
631 	&nullb_device_attr_zone_readonly,
632 	&nullb_device_attr_zone_size,
633 	&nullb_device_attr_zoned,
634 	NULL,
635 };
636 
637 static void nullb_device_release(struct config_item *item)
638 {
639 	struct nullb_device *dev = to_nullb_device(item);
640 
641 	null_free_device_storage(dev, false);
642 	null_free_dev(dev);
643 }
644 
645 static struct configfs_item_operations nullb_device_ops = {
646 	.release	= nullb_device_release,
647 };
648 
649 static const struct config_item_type nullb_device_type = {
650 	.ct_item_ops	= &nullb_device_ops,
651 	.ct_attrs	= nullb_device_attrs,
652 	.ct_owner	= THIS_MODULE,
653 };
654 
655 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
656 
657 static void nullb_add_fault_config(struct nullb_device *dev)
658 {
659 	fault_config_init(&dev->timeout_config, "timeout_inject");
660 	fault_config_init(&dev->requeue_config, "requeue_inject");
661 	fault_config_init(&dev->init_hctx_fault_config, "init_hctx_fault_inject");
662 
663 	configfs_add_default_group(&dev->timeout_config.group, &dev->group);
664 	configfs_add_default_group(&dev->requeue_config.group, &dev->group);
665 	configfs_add_default_group(&dev->init_hctx_fault_config.group, &dev->group);
666 }
667 
668 #else
669 
670 static void nullb_add_fault_config(struct nullb_device *dev)
671 {
672 }
673 
674 #endif
675 
676 static struct
677 config_group *nullb_group_make_group(struct config_group *group, const char *name)
678 {
679 	struct nullb_device *dev;
680 
681 	if (null_find_dev_by_name(name))
682 		return ERR_PTR(-EEXIST);
683 
684 	dev = null_alloc_dev();
685 	if (!dev)
686 		return ERR_PTR(-ENOMEM);
687 
688 	config_group_init_type_name(&dev->group, name, &nullb_device_type);
689 	nullb_add_fault_config(dev);
690 
691 	return &dev->group;
692 }
693 
694 static void
695 nullb_group_drop_item(struct config_group *group, struct config_item *item)
696 {
697 	struct nullb_device *dev = to_nullb_device(item);
698 
699 	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
700 		mutex_lock(&lock);
701 		dev->power = false;
702 		null_del_dev(dev->nullb);
703 		mutex_unlock(&lock);
704 	}
705 
706 	config_item_put(item);
707 }
708 
709 static ssize_t memb_group_features_show(struct config_item *item, char *page)
710 {
711 
712 	struct configfs_attribute **entry;
713 	char delimiter = ',';
714 	size_t left = PAGE_SIZE;
715 	size_t written = 0;
716 	int ret;
717 
718 	for (entry = &nullb_device_attrs[0]; *entry && left > 0; entry++) {
719 		if (!*(entry + 1))
720 			delimiter = '\n';
721 		ret = snprintf(page + written, left, "%s%c", (*entry)->ca_name,
722 			       delimiter);
723 		if (ret >= left) {
724 			WARN_ONCE(1, "Too many null_blk features to print\n");
725 			memzero_explicit(page, PAGE_SIZE);
726 			return -ENOBUFS;
727 		}
728 		left -= ret;
729 		written += ret;
730 	}
731 
732 	return written;
733 }
734 
735 CONFIGFS_ATTR_RO(memb_group_, features);
736 
737 static struct configfs_attribute *nullb_group_attrs[] = {
738 	&memb_group_attr_features,
739 	NULL,
740 };
741 
742 static struct configfs_group_operations nullb_group_ops = {
743 	.make_group	= nullb_group_make_group,
744 	.drop_item	= nullb_group_drop_item,
745 };
746 
747 static const struct config_item_type nullb_group_type = {
748 	.ct_group_ops	= &nullb_group_ops,
749 	.ct_attrs	= nullb_group_attrs,
750 	.ct_owner	= THIS_MODULE,
751 };
752 
753 static struct configfs_subsystem nullb_subsys = {
754 	.su_group = {
755 		.cg_item = {
756 			.ci_namebuf = "nullb",
757 			.ci_type = &nullb_group_type,
758 		},
759 	},
760 };
761 
762 static inline int null_cache_active(struct nullb *nullb)
763 {
764 	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
765 }
766 
767 static struct nullb_device *null_alloc_dev(void)
768 {
769 	struct nullb_device *dev;
770 
771 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
772 	if (!dev)
773 		return NULL;
774 
775 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
776 	dev->timeout_config.attr = null_timeout_attr;
777 	dev->requeue_config.attr = null_requeue_attr;
778 	dev->init_hctx_fault_config.attr = null_init_hctx_attr;
779 #endif
780 
781 	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
782 	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
783 	if (badblocks_init(&dev->badblocks, 0)) {
784 		kfree(dev);
785 		return NULL;
786 	}
787 
788 	dev->size = g_gb * 1024;
789 	dev->completion_nsec = g_completion_nsec;
790 	dev->submit_queues = g_submit_queues;
791 	dev->prev_submit_queues = g_submit_queues;
792 	dev->poll_queues = g_poll_queues;
793 	dev->prev_poll_queues = g_poll_queues;
794 	dev->home_node = g_home_node;
795 	dev->queue_mode = g_queue_mode;
796 	dev->blocksize = g_bs;
797 	dev->max_sectors = g_max_sectors;
798 	dev->irqmode = g_irqmode;
799 	dev->hw_queue_depth = g_hw_queue_depth;
800 	dev->blocking = g_blocking;
801 	dev->memory_backed = g_memory_backed;
802 	dev->discard = g_discard;
803 	dev->cache_size = g_cache_size;
804 	dev->mbps = g_mbps;
805 	dev->use_per_node_hctx = g_use_per_node_hctx;
806 	dev->zoned = g_zoned;
807 	dev->zone_size = g_zone_size;
808 	dev->zone_capacity = g_zone_capacity;
809 	dev->zone_nr_conv = g_zone_nr_conv;
810 	dev->zone_max_open = g_zone_max_open;
811 	dev->zone_max_active = g_zone_max_active;
812 	dev->zone_append_max_sectors = g_zone_append_max_sectors;
813 	dev->zone_full = g_zone_full;
814 	dev->virt_boundary = g_virt_boundary;
815 	dev->no_sched = g_no_sched;
816 	dev->shared_tags = g_shared_tags;
817 	dev->shared_tag_bitmap = g_shared_tag_bitmap;
818 	dev->fua = g_fua;
819 	dev->rotational = g_rotational;
820 
821 	return dev;
822 }
823 
824 static void null_free_dev(struct nullb_device *dev)
825 {
826 	if (!dev)
827 		return;
828 
829 	null_free_zoned_dev(dev);
830 	badblocks_exit(&dev->badblocks);
831 	kfree(dev);
832 }
833 
834 static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
835 {
836 	struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer);
837 
838 	blk_mq_end_request(blk_mq_rq_from_pdu(cmd), cmd->error);
839 	return HRTIMER_NORESTART;
840 }
841 
842 static void null_cmd_end_timer(struct nullb_cmd *cmd)
843 {
844 	ktime_t kt = cmd->nq->dev->completion_nsec;
845 
846 	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
847 }
848 
849 static void null_complete_rq(struct request *rq)
850 {
851 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
852 
853 	blk_mq_end_request(rq, cmd->error);
854 }
855 
856 static struct nullb_page *null_alloc_page(void)
857 {
858 	struct nullb_page *t_page;
859 
860 	t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
861 	if (!t_page)
862 		return NULL;
863 
864 	t_page->page = alloc_pages(GFP_NOIO, 0);
865 	if (!t_page->page) {
866 		kfree(t_page);
867 		return NULL;
868 	}
869 
870 	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
871 	return t_page;
872 }
873 
874 static void null_free_page(struct nullb_page *t_page)
875 {
876 	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
877 	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
878 		return;
879 	__free_page(t_page->page);
880 	kfree(t_page);
881 }
882 
883 static bool null_page_empty(struct nullb_page *page)
884 {
885 	int size = MAP_SZ - 2;
886 
887 	return find_first_bit(page->bitmap, size) == size;
888 }
889 
890 static void null_free_sector(struct nullb *nullb, sector_t sector,
891 	bool is_cache)
892 {
893 	unsigned int sector_bit;
894 	u64 idx;
895 	struct nullb_page *t_page, *ret;
896 	struct radix_tree_root *root;
897 
898 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
899 	idx = sector >> PAGE_SECTORS_SHIFT;
900 	sector_bit = (sector & SECTOR_MASK);
901 
902 	t_page = radix_tree_lookup(root, idx);
903 	if (t_page) {
904 		__clear_bit(sector_bit, t_page->bitmap);
905 
906 		if (null_page_empty(t_page)) {
907 			ret = radix_tree_delete_item(root, idx, t_page);
908 			WARN_ON(ret != t_page);
909 			null_free_page(ret);
910 			if (is_cache)
911 				nullb->dev->curr_cache -= PAGE_SIZE;
912 		}
913 	}
914 }
915 
916 static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
917 	struct nullb_page *t_page, bool is_cache)
918 {
919 	struct radix_tree_root *root;
920 
921 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
922 
923 	if (radix_tree_insert(root, idx, t_page)) {
924 		null_free_page(t_page);
925 		t_page = radix_tree_lookup(root, idx);
926 		WARN_ON(!t_page || t_page->page->private != idx);
927 	} else if (is_cache)
928 		nullb->dev->curr_cache += PAGE_SIZE;
929 
930 	return t_page;
931 }
932 
933 static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
934 {
935 	unsigned long pos = 0;
936 	int nr_pages;
937 	struct nullb_page *ret, *t_pages[FREE_BATCH];
938 	struct radix_tree_root *root;
939 
940 	root = is_cache ? &dev->cache : &dev->data;
941 
942 	do {
943 		int i;
944 
945 		nr_pages = radix_tree_gang_lookup(root,
946 				(void **)t_pages, pos, FREE_BATCH);
947 
948 		for (i = 0; i < nr_pages; i++) {
949 			pos = t_pages[i]->page->private;
950 			ret = radix_tree_delete_item(root, pos, t_pages[i]);
951 			WARN_ON(ret != t_pages[i]);
952 			null_free_page(ret);
953 		}
954 
955 		pos++;
956 	} while (nr_pages == FREE_BATCH);
957 
958 	if (is_cache)
959 		dev->curr_cache = 0;
960 }
961 
962 static struct nullb_page *__null_lookup_page(struct nullb *nullb,
963 	sector_t sector, bool for_write, bool is_cache)
964 {
965 	unsigned int sector_bit;
966 	u64 idx;
967 	struct nullb_page *t_page;
968 	struct radix_tree_root *root;
969 
970 	idx = sector >> PAGE_SECTORS_SHIFT;
971 	sector_bit = (sector & SECTOR_MASK);
972 
973 	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
974 	t_page = radix_tree_lookup(root, idx);
975 	WARN_ON(t_page && t_page->page->private != idx);
976 
977 	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
978 		return t_page;
979 
980 	return NULL;
981 }
982 
983 static struct nullb_page *null_lookup_page(struct nullb *nullb,
984 	sector_t sector, bool for_write, bool ignore_cache)
985 {
986 	struct nullb_page *page = NULL;
987 
988 	if (!ignore_cache)
989 		page = __null_lookup_page(nullb, sector, for_write, true);
990 	if (page)
991 		return page;
992 	return __null_lookup_page(nullb, sector, for_write, false);
993 }
994 
995 static struct nullb_page *null_insert_page(struct nullb *nullb,
996 					   sector_t sector, bool ignore_cache)
997 	__releases(&nullb->lock)
998 	__acquires(&nullb->lock)
999 {
1000 	u64 idx;
1001 	struct nullb_page *t_page;
1002 
1003 	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
1004 	if (t_page)
1005 		return t_page;
1006 
1007 	spin_unlock_irq(&nullb->lock);
1008 
1009 	t_page = null_alloc_page();
1010 	if (!t_page)
1011 		goto out_lock;
1012 
1013 	if (radix_tree_preload(GFP_NOIO))
1014 		goto out_freepage;
1015 
1016 	spin_lock_irq(&nullb->lock);
1017 	idx = sector >> PAGE_SECTORS_SHIFT;
1018 	t_page->page->private = idx;
1019 	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
1020 	radix_tree_preload_end();
1021 
1022 	return t_page;
1023 out_freepage:
1024 	null_free_page(t_page);
1025 out_lock:
1026 	spin_lock_irq(&nullb->lock);
1027 	return null_lookup_page(nullb, sector, true, ignore_cache);
1028 }
1029 
1030 static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
1031 {
1032 	int i;
1033 	unsigned int offset;
1034 	u64 idx;
1035 	struct nullb_page *t_page, *ret;
1036 	void *dst, *src;
1037 
1038 	idx = c_page->page->private;
1039 
1040 	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
1041 
1042 	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
1043 	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
1044 		null_free_page(c_page);
1045 		if (t_page && null_page_empty(t_page)) {
1046 			ret = radix_tree_delete_item(&nullb->dev->data,
1047 				idx, t_page);
1048 			null_free_page(t_page);
1049 		}
1050 		return 0;
1051 	}
1052 
1053 	if (!t_page)
1054 		return -ENOMEM;
1055 
1056 	src = kmap_local_page(c_page->page);
1057 	dst = kmap_local_page(t_page->page);
1058 
1059 	for (i = 0; i < PAGE_SECTORS;
1060 			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
1061 		if (test_bit(i, c_page->bitmap)) {
1062 			offset = (i << SECTOR_SHIFT);
1063 			memcpy(dst + offset, src + offset,
1064 				nullb->dev->blocksize);
1065 			__set_bit(i, t_page->bitmap);
1066 		}
1067 	}
1068 
1069 	kunmap_local(dst);
1070 	kunmap_local(src);
1071 
1072 	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1073 	null_free_page(ret);
1074 	nullb->dev->curr_cache -= PAGE_SIZE;
1075 
1076 	return 0;
1077 }
1078 
1079 static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1080 {
1081 	int i, err, nr_pages;
1082 	struct nullb_page *c_pages[FREE_BATCH];
1083 	unsigned long flushed = 0, one_round;
1084 
1085 again:
1086 	if ((nullb->dev->cache_size * 1024 * 1024) >
1087 	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1088 		return 0;
1089 
1090 	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1091 			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
1092 	/*
1093 	 * nullb_flush_cache_page could unlock before using the c_pages. To
1094 	 * avoid race, we don't allow page free
1095 	 */
1096 	for (i = 0; i < nr_pages; i++) {
1097 		nullb->cache_flush_pos = c_pages[i]->page->private;
1098 		/*
1099 		 * We found the page which is being flushed to disk by other
1100 		 * threads
1101 		 */
1102 		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1103 			c_pages[i] = NULL;
1104 		else
1105 			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1106 	}
1107 
1108 	one_round = 0;
1109 	for (i = 0; i < nr_pages; i++) {
1110 		if (c_pages[i] == NULL)
1111 			continue;
1112 		err = null_flush_cache_page(nullb, c_pages[i]);
1113 		if (err)
1114 			return err;
1115 		one_round++;
1116 	}
1117 	flushed += one_round << PAGE_SHIFT;
1118 
1119 	if (n > flushed) {
1120 		if (nr_pages == 0)
1121 			nullb->cache_flush_pos = 0;
1122 		if (one_round == 0) {
1123 			/* give other threads a chance */
1124 			spin_unlock_irq(&nullb->lock);
1125 			spin_lock_irq(&nullb->lock);
1126 		}
1127 		goto again;
1128 	}
1129 	return 0;
1130 }
1131 
1132 static int copy_to_nullb(struct nullb *nullb, struct page *source,
1133 	unsigned int off, sector_t sector, size_t n, bool is_fua)
1134 {
1135 	size_t temp, count = 0;
1136 	unsigned int offset;
1137 	struct nullb_page *t_page;
1138 
1139 	while (count < n) {
1140 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1141 
1142 		if (null_cache_active(nullb) && !is_fua)
1143 			null_make_cache_space(nullb, PAGE_SIZE);
1144 
1145 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1146 		t_page = null_insert_page(nullb, sector,
1147 			!null_cache_active(nullb) || is_fua);
1148 		if (!t_page)
1149 			return -ENOSPC;
1150 
1151 		memcpy_page(t_page->page, offset, source, off + count, temp);
1152 
1153 		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
1154 
1155 		if (is_fua)
1156 			null_free_sector(nullb, sector, true);
1157 
1158 		count += temp;
1159 		sector += temp >> SECTOR_SHIFT;
1160 	}
1161 	return 0;
1162 }
1163 
1164 static void copy_from_nullb(struct nullb *nullb, struct page *dest,
1165 	unsigned int off, sector_t sector, size_t n)
1166 {
1167 	size_t temp, count = 0;
1168 	unsigned int offset;
1169 	struct nullb_page *t_page;
1170 
1171 	while (count < n) {
1172 		temp = min_t(size_t, nullb->dev->blocksize, n - count);
1173 
1174 		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1175 		t_page = null_lookup_page(nullb, sector, false,
1176 			!null_cache_active(nullb));
1177 
1178 		if (t_page)
1179 			memcpy_page(dest, off + count, t_page->page, offset,
1180 				    temp);
1181 		else
1182 			memzero_page(dest, off + count, temp);
1183 
1184 		count += temp;
1185 		sector += temp >> SECTOR_SHIFT;
1186 	}
1187 }
1188 
1189 static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1190 			       unsigned int len, unsigned int off)
1191 {
1192 	memset_page(page, off, 0xff, len);
1193 }
1194 
1195 blk_status_t null_handle_discard(struct nullb_device *dev,
1196 				 sector_t sector, sector_t nr_sectors)
1197 {
1198 	struct nullb *nullb = dev->nullb;
1199 	size_t n = nr_sectors << SECTOR_SHIFT;
1200 	size_t temp;
1201 
1202 	spin_lock_irq(&nullb->lock);
1203 	while (n > 0) {
1204 		temp = min_t(size_t, n, dev->blocksize);
1205 		null_free_sector(nullb, sector, false);
1206 		if (null_cache_active(nullb))
1207 			null_free_sector(nullb, sector, true);
1208 		sector += temp >> SECTOR_SHIFT;
1209 		n -= temp;
1210 	}
1211 	spin_unlock_irq(&nullb->lock);
1212 
1213 	return BLK_STS_OK;
1214 }
1215 
1216 static blk_status_t null_handle_flush(struct nullb *nullb)
1217 {
1218 	int err;
1219 
1220 	if (!null_cache_active(nullb))
1221 		return 0;
1222 
1223 	spin_lock_irq(&nullb->lock);
1224 	while (true) {
1225 		err = null_make_cache_space(nullb,
1226 			nullb->dev->cache_size * 1024 * 1024);
1227 		if (err || nullb->dev->curr_cache == 0)
1228 			break;
1229 	}
1230 
1231 	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1232 	spin_unlock_irq(&nullb->lock);
1233 	return errno_to_blk_status(err);
1234 }
1235 
1236 static int null_transfer(struct nullb *nullb, struct page *page,
1237 	unsigned int len, unsigned int off, bool is_write, sector_t sector,
1238 	bool is_fua)
1239 {
1240 	struct nullb_device *dev = nullb->dev;
1241 	unsigned int valid_len = len;
1242 	int err = 0;
1243 
1244 	if (!is_write) {
1245 		if (dev->zoned)
1246 			valid_len = null_zone_valid_read_len(nullb,
1247 				sector, len);
1248 
1249 		if (valid_len) {
1250 			copy_from_nullb(nullb, page, off, sector,
1251 					valid_len);
1252 			off += valid_len;
1253 			len -= valid_len;
1254 		}
1255 
1256 		if (len)
1257 			nullb_fill_pattern(nullb, page, len, off);
1258 		flush_dcache_page(page);
1259 	} else {
1260 		flush_dcache_page(page);
1261 		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
1262 	}
1263 
1264 	return err;
1265 }
1266 
1267 /*
1268  * Transfer data for the given request. The transfer size is capped with the
1269  * nr_sectors argument.
1270  */
1271 static blk_status_t null_handle_data_transfer(struct nullb_cmd *cmd,
1272 					      sector_t nr_sectors)
1273 {
1274 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1275 	struct nullb *nullb = cmd->nq->dev->nullb;
1276 	int err = 0;
1277 	unsigned int len;
1278 	sector_t sector = blk_rq_pos(rq);
1279 	unsigned int max_bytes = nr_sectors << SECTOR_SHIFT;
1280 	unsigned int transferred_bytes = 0;
1281 	struct req_iterator iter;
1282 	struct bio_vec bvec;
1283 
1284 	spin_lock_irq(&nullb->lock);
1285 	rq_for_each_segment(bvec, rq, iter) {
1286 		len = bvec.bv_len;
1287 		if (transferred_bytes + len > max_bytes)
1288 			len = max_bytes - transferred_bytes;
1289 		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
1290 				     op_is_write(req_op(rq)), sector,
1291 				     rq->cmd_flags & REQ_FUA);
1292 		if (err)
1293 			break;
1294 		sector += len >> SECTOR_SHIFT;
1295 		transferred_bytes += len;
1296 		if (transferred_bytes >= max_bytes)
1297 			break;
1298 	}
1299 	spin_unlock_irq(&nullb->lock);
1300 
1301 	return errno_to_blk_status(err);
1302 }
1303 
1304 static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1305 {
1306 	struct nullb_device *dev = cmd->nq->dev;
1307 	struct nullb *nullb = dev->nullb;
1308 	blk_status_t sts = BLK_STS_OK;
1309 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1310 
1311 	if (!hrtimer_active(&nullb->bw_timer))
1312 		hrtimer_restart(&nullb->bw_timer);
1313 
1314 	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
1315 		blk_mq_stop_hw_queues(nullb->q);
1316 		/* race with timer */
1317 		if (atomic_long_read(&nullb->cur_bytes) > 0)
1318 			blk_mq_start_stopped_hw_queues(nullb->q, true);
1319 		/* requeue request */
1320 		sts = BLK_STS_DEV_RESOURCE;
1321 	}
1322 	return sts;
1323 }
1324 
1325 /*
1326  * Check if the command should fail for the badblocks. If so, return
1327  * BLK_STS_IOERR and return number of partial I/O sectors to be written or read,
1328  * which may be less than the requested number of sectors.
1329  *
1330  * @cmd:        The command to handle.
1331  * @sector:     The start sector for I/O.
1332  * @nr_sectors: Specifies number of sectors to write or read, and returns the
1333  *              number of sectors to be written or read.
1334  */
1335 blk_status_t null_handle_badblocks(struct nullb_cmd *cmd, sector_t sector,
1336 				   unsigned int *nr_sectors)
1337 {
1338 	struct badblocks *bb = &cmd->nq->dev->badblocks;
1339 	struct nullb_device *dev = cmd->nq->dev;
1340 	unsigned int block_sectors = dev->blocksize >> SECTOR_SHIFT;
1341 	sector_t first_bad, bad_sectors;
1342 	unsigned int partial_io_sectors = 0;
1343 
1344 	if (!badblocks_check(bb, sector, *nr_sectors, &first_bad, &bad_sectors))
1345 		return BLK_STS_OK;
1346 
1347 	if (cmd->nq->dev->badblocks_once)
1348 		badblocks_clear(bb, first_bad, bad_sectors);
1349 
1350 	if (cmd->nq->dev->badblocks_partial_io) {
1351 		if (!IS_ALIGNED(first_bad, block_sectors))
1352 			first_bad = ALIGN_DOWN(first_bad, block_sectors);
1353 		if (sector < first_bad)
1354 			partial_io_sectors = first_bad - sector;
1355 	}
1356 	*nr_sectors = partial_io_sectors;
1357 
1358 	return BLK_STS_IOERR;
1359 }
1360 
1361 blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd, enum req_op op,
1362 				       sector_t sector, sector_t nr_sectors)
1363 {
1364 	struct nullb_device *dev = cmd->nq->dev;
1365 
1366 	if (op == REQ_OP_DISCARD)
1367 		return null_handle_discard(dev, sector, nr_sectors);
1368 
1369 	return null_handle_data_transfer(cmd, nr_sectors);
1370 }
1371 
1372 static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1373 {
1374 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1375 	struct nullb_device *dev = cmd->nq->dev;
1376 	struct bio *bio;
1377 
1378 	if (!dev->memory_backed && req_op(rq) == REQ_OP_READ) {
1379 		__rq_for_each_bio(bio, rq)
1380 			zero_fill_bio(bio);
1381 	}
1382 }
1383 
1384 static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1385 {
1386 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1387 
1388 	/*
1389 	 * Since root privileges are required to configure the null_blk
1390 	 * driver, it is fine that this driver does not initialize the
1391 	 * data buffers of read commands. Zero-initialize these buffers
1392 	 * anyway if KMSAN is enabled to prevent that KMSAN complains
1393 	 * about null_blk not initializing read data buffers.
1394 	 */
1395 	if (IS_ENABLED(CONFIG_KMSAN))
1396 		nullb_zero_read_cmd_buffer(cmd);
1397 
1398 	/* Complete IO by inline, softirq or timer */
1399 	switch (cmd->nq->dev->irqmode) {
1400 	case NULL_IRQ_SOFTIRQ:
1401 		blk_mq_complete_request(rq);
1402 		break;
1403 	case NULL_IRQ_NONE:
1404 		blk_mq_end_request(rq, cmd->error);
1405 		break;
1406 	case NULL_IRQ_TIMER:
1407 		null_cmd_end_timer(cmd);
1408 		break;
1409 	}
1410 }
1411 
1412 blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1413 			      sector_t sector, unsigned int nr_sectors)
1414 {
1415 	struct nullb_device *dev = cmd->nq->dev;
1416 	blk_status_t badblocks_ret = BLK_STS_OK;
1417 	blk_status_t ret;
1418 
1419 	if (dev->badblocks.shift != -1)
1420 		badblocks_ret = null_handle_badblocks(cmd, sector, &nr_sectors);
1421 
1422 	if (dev->memory_backed && nr_sectors) {
1423 		ret = null_handle_memory_backed(cmd, op, sector, nr_sectors);
1424 		if (ret != BLK_STS_OK)
1425 			return ret;
1426 	}
1427 
1428 	return badblocks_ret;
1429 }
1430 
1431 static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1432 			    sector_t nr_sectors, enum req_op op)
1433 {
1434 	struct nullb_device *dev = cmd->nq->dev;
1435 	struct nullb *nullb = dev->nullb;
1436 	blk_status_t sts;
1437 
1438 	if (op == REQ_OP_FLUSH) {
1439 		cmd->error = null_handle_flush(nullb);
1440 		goto out;
1441 	}
1442 
1443 	if (dev->zoned)
1444 		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1445 	else
1446 		sts = null_process_cmd(cmd, op, sector, nr_sectors);
1447 
1448 	/* Do not overwrite errors (e.g. timeout errors) */
1449 	if (cmd->error == BLK_STS_OK)
1450 		cmd->error = sts;
1451 
1452 out:
1453 	nullb_complete_cmd(cmd);
1454 }
1455 
1456 static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1457 {
1458 	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1459 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1460 	unsigned int mbps = nullb->dev->mbps;
1461 
1462 	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
1463 		return HRTIMER_NORESTART;
1464 
1465 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
1466 	blk_mq_start_stopped_hw_queues(nullb->q, true);
1467 
1468 	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
1469 
1470 	return HRTIMER_RESTART;
1471 }
1472 
1473 static void nullb_setup_bwtimer(struct nullb *nullb)
1474 {
1475 	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
1476 
1477 	hrtimer_setup(&nullb->bw_timer, nullb_bwtimer_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1478 	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
1479 	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
1480 }
1481 
1482 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1483 
1484 static bool should_timeout_request(struct request *rq)
1485 {
1486 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1487 	struct nullb_device *dev = cmd->nq->dev;
1488 
1489 	return should_fail(&dev->timeout_config.attr, 1);
1490 }
1491 
1492 static bool should_requeue_request(struct request *rq)
1493 {
1494 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1495 	struct nullb_device *dev = cmd->nq->dev;
1496 
1497 	return should_fail(&dev->requeue_config.attr, 1);
1498 }
1499 
1500 static bool should_init_hctx_fail(struct nullb_device *dev)
1501 {
1502 	return should_fail(&dev->init_hctx_fault_config.attr, 1);
1503 }
1504 
1505 #else
1506 
1507 static bool should_timeout_request(struct request *rq)
1508 {
1509 	return false;
1510 }
1511 
1512 static bool should_requeue_request(struct request *rq)
1513 {
1514 	return false;
1515 }
1516 
1517 static bool should_init_hctx_fail(struct nullb_device *dev)
1518 {
1519 	return false;
1520 }
1521 
1522 #endif
1523 
1524 static void null_map_queues(struct blk_mq_tag_set *set)
1525 {
1526 	struct nullb *nullb = set->driver_data;
1527 	int i, qoff;
1528 	unsigned int submit_queues = g_submit_queues;
1529 	unsigned int poll_queues = g_poll_queues;
1530 
1531 	if (nullb) {
1532 		struct nullb_device *dev = nullb->dev;
1533 
1534 		/*
1535 		 * Refer nr_hw_queues of the tag set to check if the expected
1536 		 * number of hardware queues are prepared. If block layer failed
1537 		 * to prepare them, use previous numbers of submit queues and
1538 		 * poll queues to map queues.
1539 		 */
1540 		if (set->nr_hw_queues ==
1541 		    dev->submit_queues + dev->poll_queues) {
1542 			submit_queues = dev->submit_queues;
1543 			poll_queues = dev->poll_queues;
1544 		} else if (set->nr_hw_queues ==
1545 			   dev->prev_submit_queues + dev->prev_poll_queues) {
1546 			submit_queues = dev->prev_submit_queues;
1547 			poll_queues = dev->prev_poll_queues;
1548 		} else {
1549 			pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1550 				set->nr_hw_queues);
1551 			WARN_ON_ONCE(true);
1552 			submit_queues = 1;
1553 			poll_queues = 0;
1554 		}
1555 	}
1556 
1557 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1558 		struct blk_mq_queue_map *map = &set->map[i];
1559 
1560 		switch (i) {
1561 		case HCTX_TYPE_DEFAULT:
1562 			map->nr_queues = submit_queues;
1563 			break;
1564 		case HCTX_TYPE_READ:
1565 			map->nr_queues = 0;
1566 			continue;
1567 		case HCTX_TYPE_POLL:
1568 			map->nr_queues = poll_queues;
1569 			break;
1570 		}
1571 		map->queue_offset = qoff;
1572 		qoff += map->nr_queues;
1573 		blk_mq_map_queues(map);
1574 	}
1575 }
1576 
1577 static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1578 {
1579 	struct nullb_queue *nq = hctx->driver_data;
1580 	LIST_HEAD(list);
1581 	int nr = 0;
1582 	struct request *rq;
1583 
1584 	spin_lock(&nq->poll_lock);
1585 	list_splice_init(&nq->poll_list, &list);
1586 	list_for_each_entry(rq, &list, queuelist)
1587 		blk_mq_set_request_complete(rq);
1588 	spin_unlock(&nq->poll_lock);
1589 
1590 	while (!list_empty(&list)) {
1591 		struct nullb_cmd *cmd;
1592 		struct request *req;
1593 
1594 		req = list_first_entry(&list, struct request, queuelist);
1595 		list_del_init(&req->queuelist);
1596 		cmd = blk_mq_rq_to_pdu(req);
1597 		cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
1598 						blk_rq_sectors(req));
1599 		if (!blk_mq_add_to_batch(req, iob, cmd->error != BLK_STS_OK,
1600 					 blk_mq_end_request_batch))
1601 			blk_mq_end_request(req, cmd->error);
1602 		nr++;
1603 	}
1604 
1605 	return nr;
1606 }
1607 
1608 static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1609 {
1610 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1611 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1612 
1613 	if (hctx->type == HCTX_TYPE_POLL) {
1614 		struct nullb_queue *nq = hctx->driver_data;
1615 
1616 		spin_lock(&nq->poll_lock);
1617 		/* The request may have completed meanwhile. */
1618 		if (blk_mq_request_completed(rq)) {
1619 			spin_unlock(&nq->poll_lock);
1620 			return BLK_EH_DONE;
1621 		}
1622 		list_del_init(&rq->queuelist);
1623 		spin_unlock(&nq->poll_lock);
1624 	}
1625 
1626 	pr_info("rq %p timed out\n", rq);
1627 
1628 	/*
1629 	 * If the device is marked as blocking (i.e. memory backed or zoned
1630 	 * device), the submission path may be blocked waiting for resources
1631 	 * and cause real timeouts. For these real timeouts, the submission
1632 	 * path will complete the request using blk_mq_complete_request().
1633 	 * Only fake timeouts need to execute blk_mq_complete_request() here.
1634 	 */
1635 	cmd->error = BLK_STS_TIMEOUT;
1636 	if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1637 		blk_mq_complete_request(rq);
1638 	return BLK_EH_DONE;
1639 }
1640 
1641 static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1642 				  const struct blk_mq_queue_data *bd)
1643 {
1644 	struct request *rq = bd->rq;
1645 	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1646 	struct nullb_queue *nq = hctx->driver_data;
1647 	sector_t nr_sectors = blk_rq_sectors(rq);
1648 	sector_t sector = blk_rq_pos(rq);
1649 	const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1650 
1651 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1652 
1653 	if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1654 		hrtimer_setup(&cmd->timer, null_cmd_timer_expired, CLOCK_MONOTONIC,
1655 			      HRTIMER_MODE_REL);
1656 	}
1657 	cmd->error = BLK_STS_OK;
1658 	cmd->nq = nq;
1659 	cmd->fake_timeout = should_timeout_request(rq) ||
1660 		blk_should_fake_timeout(rq->q);
1661 
1662 	if (should_requeue_request(rq)) {
1663 		/*
1664 		 * Alternate between hitting the core BUSY path, and the
1665 		 * driver driven requeue path
1666 		 */
1667 		nq->requeue_selection++;
1668 		if (nq->requeue_selection & 1)
1669 			return BLK_STS_RESOURCE;
1670 		blk_mq_requeue_request(rq, true);
1671 		return BLK_STS_OK;
1672 	}
1673 
1674 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) {
1675 		blk_status_t sts = null_handle_throttled(cmd);
1676 
1677 		if (sts != BLK_STS_OK)
1678 			return sts;
1679 	}
1680 
1681 	blk_mq_start_request(rq);
1682 
1683 	if (is_poll) {
1684 		spin_lock(&nq->poll_lock);
1685 		list_add_tail(&rq->queuelist, &nq->poll_list);
1686 		spin_unlock(&nq->poll_lock);
1687 		return BLK_STS_OK;
1688 	}
1689 	if (cmd->fake_timeout)
1690 		return BLK_STS_OK;
1691 
1692 	null_handle_cmd(cmd, sector, nr_sectors, req_op(rq));
1693 	return BLK_STS_OK;
1694 }
1695 
1696 static void null_queue_rqs(struct rq_list *rqlist)
1697 {
1698 	struct rq_list requeue_list = {};
1699 	struct blk_mq_queue_data bd = { };
1700 	blk_status_t ret;
1701 
1702 	do {
1703 		struct request *rq = rq_list_pop(rqlist);
1704 
1705 		bd.rq = rq;
1706 		ret = null_queue_rq(rq->mq_hctx, &bd);
1707 		if (ret != BLK_STS_OK)
1708 			rq_list_add_tail(&requeue_list, rq);
1709 	} while (!rq_list_empty(rqlist));
1710 
1711 	*rqlist = requeue_list;
1712 }
1713 
1714 static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1715 {
1716 	nq->dev = nullb->dev;
1717 	INIT_LIST_HEAD(&nq->poll_list);
1718 	spin_lock_init(&nq->poll_lock);
1719 }
1720 
1721 static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1722 			  unsigned int hctx_idx)
1723 {
1724 	struct nullb *nullb = hctx->queue->queuedata;
1725 	struct nullb_queue *nq;
1726 
1727 	if (should_init_hctx_fail(nullb->dev))
1728 		return -EFAULT;
1729 
1730 	nq = &nullb->queues[hctx_idx];
1731 	hctx->driver_data = nq;
1732 	null_init_queue(nullb, nq);
1733 
1734 	return 0;
1735 }
1736 
1737 static const struct blk_mq_ops null_mq_ops = {
1738 	.queue_rq       = null_queue_rq,
1739 	.queue_rqs	= null_queue_rqs,
1740 	.complete	= null_complete_rq,
1741 	.timeout	= null_timeout_rq,
1742 	.poll		= null_poll,
1743 	.map_queues	= null_map_queues,
1744 	.init_hctx	= null_init_hctx,
1745 };
1746 
1747 static void null_del_dev(struct nullb *nullb)
1748 {
1749 	struct nullb_device *dev;
1750 
1751 	if (!nullb)
1752 		return;
1753 
1754 	dev = nullb->dev;
1755 
1756 	ida_free(&nullb_indexes, nullb->index);
1757 
1758 	list_del_init(&nullb->list);
1759 
1760 	del_gendisk(nullb->disk);
1761 
1762 	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1763 		hrtimer_cancel(&nullb->bw_timer);
1764 		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
1765 		blk_mq_start_stopped_hw_queues(nullb->q, true);
1766 	}
1767 
1768 	put_disk(nullb->disk);
1769 	if (nullb->tag_set == &nullb->__tag_set)
1770 		blk_mq_free_tag_set(nullb->tag_set);
1771 	kfree(nullb->queues);
1772 	if (null_cache_active(nullb))
1773 		null_free_device_storage(nullb->dev, true);
1774 	kfree(nullb);
1775 	dev->nullb = NULL;
1776 }
1777 
1778 static void null_config_discard(struct nullb *nullb, struct queue_limits *lim)
1779 {
1780 	if (nullb->dev->discard == false)
1781 		return;
1782 
1783 	if (!nullb->dev->memory_backed) {
1784 		nullb->dev->discard = false;
1785 		pr_info("discard option is ignored without memory backing\n");
1786 		return;
1787 	}
1788 
1789 	if (nullb->dev->zoned) {
1790 		nullb->dev->discard = false;
1791 		pr_info("discard option is ignored in zoned mode\n");
1792 		return;
1793 	}
1794 
1795 	lim->max_hw_discard_sectors = UINT_MAX >> 9;
1796 }
1797 
1798 static const struct block_device_operations null_ops = {
1799 	.owner		= THIS_MODULE,
1800 	.report_zones	= null_report_zones,
1801 };
1802 
1803 static int setup_queues(struct nullb *nullb)
1804 {
1805 	int nqueues = nr_cpu_ids;
1806 
1807 	if (g_poll_queues)
1808 		nqueues += g_poll_queues;
1809 
1810 	nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
1811 				GFP_KERNEL);
1812 	if (!nullb->queues)
1813 		return -ENOMEM;
1814 
1815 	return 0;
1816 }
1817 
1818 static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues)
1819 {
1820 	set->ops = &null_mq_ops;
1821 	set->cmd_size = sizeof(struct nullb_cmd);
1822 	set->timeout = 5 * HZ;
1823 	set->nr_maps = 1;
1824 	if (poll_queues) {
1825 		set->nr_hw_queues += poll_queues;
1826 		set->nr_maps += 2;
1827 	}
1828 	return blk_mq_alloc_tag_set(set);
1829 }
1830 
1831 static int null_init_global_tag_set(void)
1832 {
1833 	int error;
1834 
1835 	if (tag_set.ops)
1836 		return 0;
1837 
1838 	tag_set.nr_hw_queues = g_submit_queues;
1839 	tag_set.queue_depth = g_hw_queue_depth;
1840 	tag_set.numa_node = g_home_node;
1841 	if (g_no_sched)
1842 		tag_set.flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1843 	if (g_shared_tag_bitmap)
1844 		tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1845 	if (g_blocking)
1846 		tag_set.flags |= BLK_MQ_F_BLOCKING;
1847 
1848 	error = null_init_tag_set(&tag_set, g_poll_queues);
1849 	if (error)
1850 		tag_set.ops = NULL;
1851 	return error;
1852 }
1853 
1854 static int null_setup_tagset(struct nullb *nullb)
1855 {
1856 	if (nullb->dev->shared_tags) {
1857 		nullb->tag_set = &tag_set;
1858 		return null_init_global_tag_set();
1859 	}
1860 
1861 	nullb->tag_set = &nullb->__tag_set;
1862 	nullb->tag_set->driver_data = nullb;
1863 	nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues;
1864 	nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth;
1865 	nullb->tag_set->numa_node = nullb->dev->home_node;
1866 	if (nullb->dev->no_sched)
1867 		nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED_BY_DEFAULT;
1868 	if (nullb->dev->shared_tag_bitmap)
1869 		nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1870 	if (nullb->dev->blocking)
1871 		nullb->tag_set->flags |= BLK_MQ_F_BLOCKING;
1872 	return null_init_tag_set(nullb->tag_set, nullb->dev->poll_queues);
1873 }
1874 
1875 static int null_validate_conf(struct nullb_device *dev)
1876 {
1877 	if (dev->queue_mode == NULL_Q_RQ) {
1878 		pr_err("legacy IO path is no longer available\n");
1879 		return -EINVAL;
1880 	}
1881 	if (dev->queue_mode == NULL_Q_BIO) {
1882 		pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n");
1883 		dev->queue_mode = NULL_Q_MQ;
1884 	}
1885 
1886 	if (dev->use_per_node_hctx) {
1887 		if (dev->submit_queues != nr_online_nodes)
1888 			dev->submit_queues = nr_online_nodes;
1889 	} else if (dev->submit_queues > nr_cpu_ids)
1890 		dev->submit_queues = nr_cpu_ids;
1891 	else if (dev->submit_queues == 0)
1892 		dev->submit_queues = 1;
1893 	dev->prev_submit_queues = dev->submit_queues;
1894 
1895 	if (dev->poll_queues > g_poll_queues)
1896 		dev->poll_queues = g_poll_queues;
1897 	dev->prev_poll_queues = dev->poll_queues;
1898 	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1899 
1900 	/* Do memory allocation, so set blocking */
1901 	if (dev->memory_backed)
1902 		dev->blocking = true;
1903 	else /* cache is meaningless */
1904 		dev->cache_size = 0;
1905 	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1906 						dev->cache_size);
1907 	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1908 
1909 	if (dev->zoned &&
1910 	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
1911 		pr_err("zone_size must be power-of-two\n");
1912 		return -EINVAL;
1913 	}
1914 
1915 	return 0;
1916 }
1917 
1918 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1919 static bool __null_setup_fault(struct fault_attr *attr, char *str)
1920 {
1921 	if (!str[0])
1922 		return true;
1923 
1924 	if (!setup_fault_attr(attr, str))
1925 		return false;
1926 
1927 	attr->verbose = 0;
1928 	return true;
1929 }
1930 #endif
1931 
1932 static bool null_setup_fault(void)
1933 {
1934 #ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1935 	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
1936 		return false;
1937 	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
1938 		return false;
1939 	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
1940 		return false;
1941 #endif
1942 	return true;
1943 }
1944 
1945 static int null_add_dev(struct nullb_device *dev)
1946 {
1947 	struct queue_limits lim = {
1948 		.logical_block_size	= dev->blocksize,
1949 		.physical_block_size	= dev->blocksize,
1950 		.max_hw_sectors		= dev->max_sectors,
1951 	};
1952 
1953 	struct nullb *nullb;
1954 	int rv;
1955 
1956 	rv = null_validate_conf(dev);
1957 	if (rv)
1958 		return rv;
1959 
1960 	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
1961 	if (!nullb) {
1962 		rv = -ENOMEM;
1963 		goto out;
1964 	}
1965 	nullb->dev = dev;
1966 	dev->nullb = nullb;
1967 
1968 	spin_lock_init(&nullb->lock);
1969 
1970 	rv = setup_queues(nullb);
1971 	if (rv)
1972 		goto out_free_nullb;
1973 
1974 	rv = null_setup_tagset(nullb);
1975 	if (rv)
1976 		goto out_cleanup_queues;
1977 
1978 	if (dev->virt_boundary)
1979 		lim.virt_boundary_mask = PAGE_SIZE - 1;
1980 	null_config_discard(nullb, &lim);
1981 	if (dev->zoned) {
1982 		rv = null_init_zoned_dev(dev, &lim);
1983 		if (rv)
1984 			goto out_cleanup_tags;
1985 	}
1986 
1987 	if (dev->cache_size > 0) {
1988 		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
1989 		lim.features |= BLK_FEAT_WRITE_CACHE;
1990 		if (dev->fua)
1991 			lim.features |= BLK_FEAT_FUA;
1992 	}
1993 
1994 	if (dev->rotational)
1995 		lim.features |= BLK_FEAT_ROTATIONAL;
1996 
1997 	nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb);
1998 	if (IS_ERR(nullb->disk)) {
1999 		rv = PTR_ERR(nullb->disk);
2000 		goto out_cleanup_zone;
2001 	}
2002 	nullb->q = nullb->disk->queue;
2003 
2004 	if (dev->mbps) {
2005 		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
2006 		nullb_setup_bwtimer(nullb);
2007 	}
2008 
2009 	nullb->q->queuedata = nullb;
2010 
2011 	rv = ida_alloc(&nullb_indexes, GFP_KERNEL);
2012 	if (rv < 0)
2013 		goto out_cleanup_disk;
2014 
2015 	nullb->index = rv;
2016 	dev->index = rv;
2017 
2018 	if (config_item_name(&dev->group.cg_item)) {
2019 		/* Use configfs dir name as the device name */
2020 		snprintf(nullb->disk_name, sizeof(nullb->disk_name),
2021 			 "%s", config_item_name(&dev->group.cg_item));
2022 	} else {
2023 		sprintf(nullb->disk_name, "nullb%d", nullb->index);
2024 	}
2025 
2026 	set_capacity(nullb->disk,
2027 		((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT);
2028 	nullb->disk->major = null_major;
2029 	nullb->disk->first_minor = nullb->index;
2030 	nullb->disk->minors = 1;
2031 	nullb->disk->fops = &null_ops;
2032 	nullb->disk->private_data = nullb;
2033 	strscpy(nullb->disk->disk_name, nullb->disk_name);
2034 
2035 	if (nullb->dev->zoned) {
2036 		rv = null_register_zoned_dev(nullb);
2037 		if (rv)
2038 			goto out_ida_free;
2039 	}
2040 
2041 	rv = add_disk(nullb->disk);
2042 	if (rv)
2043 		goto out_ida_free;
2044 
2045 	list_add_tail(&nullb->list, &nullb_list);
2046 
2047 	pr_info("disk %s created\n", nullb->disk_name);
2048 
2049 	return 0;
2050 
2051 out_ida_free:
2052 	ida_free(&nullb_indexes, nullb->index);
2053 out_cleanup_disk:
2054 	put_disk(nullb->disk);
2055 out_cleanup_zone:
2056 	null_free_zoned_dev(dev);
2057 out_cleanup_tags:
2058 	if (nullb->tag_set == &nullb->__tag_set)
2059 		blk_mq_free_tag_set(nullb->tag_set);
2060 out_cleanup_queues:
2061 	kfree(nullb->queues);
2062 out_free_nullb:
2063 	kfree(nullb);
2064 	dev->nullb = NULL;
2065 out:
2066 	return rv;
2067 }
2068 
2069 static struct nullb *null_find_dev_by_name(const char *name)
2070 {
2071 	struct nullb *nullb = NULL, *nb;
2072 
2073 	mutex_lock(&lock);
2074 	list_for_each_entry(nb, &nullb_list, list) {
2075 		if (strcmp(nb->disk_name, name) == 0) {
2076 			nullb = nb;
2077 			break;
2078 		}
2079 	}
2080 	mutex_unlock(&lock);
2081 
2082 	return nullb;
2083 }
2084 
2085 static int null_create_dev(void)
2086 {
2087 	struct nullb_device *dev;
2088 	int ret;
2089 
2090 	dev = null_alloc_dev();
2091 	if (!dev)
2092 		return -ENOMEM;
2093 
2094 	mutex_lock(&lock);
2095 	ret = null_add_dev(dev);
2096 	mutex_unlock(&lock);
2097 	if (ret) {
2098 		null_free_dev(dev);
2099 		return ret;
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 static void null_destroy_dev(struct nullb *nullb)
2106 {
2107 	struct nullb_device *dev = nullb->dev;
2108 
2109 	null_del_dev(nullb);
2110 	null_free_device_storage(dev, false);
2111 	null_free_dev(dev);
2112 }
2113 
2114 static int __init null_init(void)
2115 {
2116 	int ret = 0;
2117 	unsigned int i;
2118 	struct nullb *nullb;
2119 
2120 	if (g_bs > PAGE_SIZE) {
2121 		pr_warn("invalid block size\n");
2122 		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2123 		g_bs = PAGE_SIZE;
2124 	}
2125 
2126 	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2127 		pr_err("invalid home_node value\n");
2128 		g_home_node = NUMA_NO_NODE;
2129 	}
2130 
2131 	if (!null_setup_fault())
2132 		return -EINVAL;
2133 
2134 	if (g_queue_mode == NULL_Q_RQ) {
2135 		pr_err("legacy IO path is no longer available\n");
2136 		return -EINVAL;
2137 	}
2138 
2139 	if (g_use_per_node_hctx) {
2140 		if (g_submit_queues != nr_online_nodes) {
2141 			pr_warn("submit_queues param is set to %u.\n",
2142 				nr_online_nodes);
2143 			g_submit_queues = nr_online_nodes;
2144 		}
2145 	} else if (g_submit_queues > nr_cpu_ids) {
2146 		g_submit_queues = nr_cpu_ids;
2147 	} else if (g_submit_queues <= 0) {
2148 		g_submit_queues = 1;
2149 	}
2150 
2151 	config_group_init(&nullb_subsys.su_group);
2152 	mutex_init(&nullb_subsys.su_mutex);
2153 
2154 	ret = configfs_register_subsystem(&nullb_subsys);
2155 	if (ret)
2156 		return ret;
2157 
2158 	mutex_init(&lock);
2159 
2160 	null_major = register_blkdev(0, "nullb");
2161 	if (null_major < 0) {
2162 		ret = null_major;
2163 		goto err_conf;
2164 	}
2165 
2166 	for (i = 0; i < nr_devices; i++) {
2167 		ret = null_create_dev();
2168 		if (ret)
2169 			goto err_dev;
2170 	}
2171 
2172 	pr_info("module loaded\n");
2173 	return 0;
2174 
2175 err_dev:
2176 	while (!list_empty(&nullb_list)) {
2177 		nullb = list_entry(nullb_list.next, struct nullb, list);
2178 		null_destroy_dev(nullb);
2179 	}
2180 	unregister_blkdev(null_major, "nullb");
2181 err_conf:
2182 	configfs_unregister_subsystem(&nullb_subsys);
2183 	return ret;
2184 }
2185 
2186 static void __exit null_exit(void)
2187 {
2188 	struct nullb *nullb;
2189 
2190 	configfs_unregister_subsystem(&nullb_subsys);
2191 
2192 	unregister_blkdev(null_major, "nullb");
2193 
2194 	mutex_lock(&lock);
2195 	while (!list_empty(&nullb_list)) {
2196 		nullb = list_entry(nullb_list.next, struct nullb, list);
2197 		null_destroy_dev(nullb);
2198 	}
2199 	mutex_unlock(&lock);
2200 
2201 	if (tag_set.ops)
2202 		blk_mq_free_tag_set(&tag_set);
2203 
2204 	mutex_destroy(&lock);
2205 }
2206 
2207 module_init(null_init);
2208 module_exit(null_exit);
2209 
2210 MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2211 MODULE_DESCRIPTION("multi queue aware block test driver");
2212 MODULE_LICENSE("GPL");
2213