xref: /linux/drivers/block/loop.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bols�, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations prepare_write and/or commit_write are not available on the
44  * backing filesystem.
45  * Anton Altaparmakov, 16 Feb 2005
46  *
47  * Still To Fix:
48  * - Advisory locking is ignored here.
49  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
50  *
51  */
52 
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/sched.h>
57 #include <linux/fs.h>
58 #include <linux/file.h>
59 #include <linux/stat.h>
60 #include <linux/errno.h>
61 #include <linux/major.h>
62 #include <linux/wait.h>
63 #include <linux/blkdev.h>
64 #include <linux/blkpg.h>
65 #include <linux/init.h>
66 #include <linux/devfs_fs_kernel.h>
67 #include <linux/smp_lock.h>
68 #include <linux/swap.h>
69 #include <linux/slab.h>
70 #include <linux/loop.h>
71 #include <linux/suspend.h>
72 #include <linux/writeback.h>
73 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
74 #include <linux/completion.h>
75 #include <linux/highmem.h>
76 #include <linux/gfp.h>
77 
78 #include <asm/uaccess.h>
79 
80 static int max_loop = 8;
81 static struct loop_device *loop_dev;
82 static struct gendisk **disks;
83 
84 /*
85  * Transfer functions
86  */
87 static int transfer_none(struct loop_device *lo, int cmd,
88 			 struct page *raw_page, unsigned raw_off,
89 			 struct page *loop_page, unsigned loop_off,
90 			 int size, sector_t real_block)
91 {
92 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
93 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
94 
95 	if (cmd == READ)
96 		memcpy(loop_buf, raw_buf, size);
97 	else
98 		memcpy(raw_buf, loop_buf, size);
99 
100 	kunmap_atomic(raw_buf, KM_USER0);
101 	kunmap_atomic(loop_buf, KM_USER1);
102 	cond_resched();
103 	return 0;
104 }
105 
106 static int transfer_xor(struct loop_device *lo, int cmd,
107 			struct page *raw_page, unsigned raw_off,
108 			struct page *loop_page, unsigned loop_off,
109 			int size, sector_t real_block)
110 {
111 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
112 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
113 	char *in, *out, *key;
114 	int i, keysize;
115 
116 	if (cmd == READ) {
117 		in = raw_buf;
118 		out = loop_buf;
119 	} else {
120 		in = loop_buf;
121 		out = raw_buf;
122 	}
123 
124 	key = lo->lo_encrypt_key;
125 	keysize = lo->lo_encrypt_key_size;
126 	for (i = 0; i < size; i++)
127 		*out++ = *in++ ^ key[(i & 511) % keysize];
128 
129 	kunmap_atomic(raw_buf, KM_USER0);
130 	kunmap_atomic(loop_buf, KM_USER1);
131 	cond_resched();
132 	return 0;
133 }
134 
135 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
136 {
137 	if (unlikely(info->lo_encrypt_key_size <= 0))
138 		return -EINVAL;
139 	return 0;
140 }
141 
142 static struct loop_func_table none_funcs = {
143 	.number = LO_CRYPT_NONE,
144 	.transfer = transfer_none,
145 };
146 
147 static struct loop_func_table xor_funcs = {
148 	.number = LO_CRYPT_XOR,
149 	.transfer = transfer_xor,
150 	.init = xor_init
151 };
152 
153 /* xfer_funcs[0] is special - its release function is never called */
154 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
155 	&none_funcs,
156 	&xor_funcs
157 };
158 
159 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
160 {
161 	loff_t size, offset, loopsize;
162 
163 	/* Compute loopsize in bytes */
164 	size = i_size_read(file->f_mapping->host);
165 	offset = lo->lo_offset;
166 	loopsize = size - offset;
167 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
168 		loopsize = lo->lo_sizelimit;
169 
170 	/*
171 	 * Unfortunately, if we want to do I/O on the device,
172 	 * the number of 512-byte sectors has to fit into a sector_t.
173 	 */
174 	return loopsize >> 9;
175 }
176 
177 static int
178 figure_loop_size(struct loop_device *lo)
179 {
180 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
181 	sector_t x = (sector_t)size;
182 
183 	if (unlikely((loff_t)x != size))
184 		return -EFBIG;
185 
186 	set_capacity(disks[lo->lo_number], x);
187 	return 0;
188 }
189 
190 static inline int
191 lo_do_transfer(struct loop_device *lo, int cmd,
192 	       struct page *rpage, unsigned roffs,
193 	       struct page *lpage, unsigned loffs,
194 	       int size, sector_t rblock)
195 {
196 	if (unlikely(!lo->transfer))
197 		return 0;
198 
199 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
200 }
201 
202 /**
203  * do_lo_send_aops - helper for writing data to a loop device
204  *
205  * This is the fast version for backing filesystems which implement the address
206  * space operations prepare_write and commit_write.
207  */
208 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
209 		int bsize, loff_t pos, struct page *page)
210 {
211 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
212 	struct address_space *mapping = file->f_mapping;
213 	struct address_space_operations *aops = mapping->a_ops;
214 	pgoff_t index;
215 	unsigned offset, bv_offs;
216 	int len, ret;
217 
218 	mutex_lock(&mapping->host->i_mutex);
219 	index = pos >> PAGE_CACHE_SHIFT;
220 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
221 	bv_offs = bvec->bv_offset;
222 	len = bvec->bv_len;
223 	while (len > 0) {
224 		sector_t IV;
225 		unsigned size;
226 		int transfer_result;
227 
228 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
229 		size = PAGE_CACHE_SIZE - offset;
230 		if (size > len)
231 			size = len;
232 		page = grab_cache_page(mapping, index);
233 		if (unlikely(!page))
234 			goto fail;
235 		ret = aops->prepare_write(file, page, offset,
236 					  offset + size);
237 		if (unlikely(ret)) {
238 			if (ret == AOP_TRUNCATED_PAGE) {
239 				page_cache_release(page);
240 				continue;
241 			}
242 			goto unlock;
243 		}
244 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
245 				bvec->bv_page, bv_offs, size, IV);
246 		if (unlikely(transfer_result)) {
247 			char *kaddr;
248 
249 			/*
250 			 * The transfer failed, but we still write the data to
251 			 * keep prepare/commit calls balanced.
252 			 */
253 			printk(KERN_ERR "loop: transfer error block %llu\n",
254 			       (unsigned long long)index);
255 			kaddr = kmap_atomic(page, KM_USER0);
256 			memset(kaddr + offset, 0, size);
257 			kunmap_atomic(kaddr, KM_USER0);
258 		}
259 		flush_dcache_page(page);
260 		ret = aops->commit_write(file, page, offset,
261 					 offset + size);
262 		if (unlikely(ret)) {
263 			if (ret == AOP_TRUNCATED_PAGE) {
264 				page_cache_release(page);
265 				continue;
266 			}
267 			goto unlock;
268 		}
269 		if (unlikely(transfer_result))
270 			goto unlock;
271 		bv_offs += size;
272 		len -= size;
273 		offset = 0;
274 		index++;
275 		pos += size;
276 		unlock_page(page);
277 		page_cache_release(page);
278 	}
279 	ret = 0;
280 out:
281 	mutex_unlock(&mapping->host->i_mutex);
282 	return ret;
283 unlock:
284 	unlock_page(page);
285 	page_cache_release(page);
286 fail:
287 	ret = -1;
288 	goto out;
289 }
290 
291 /**
292  * __do_lo_send_write - helper for writing data to a loop device
293  *
294  * This helper just factors out common code between do_lo_send_direct_write()
295  * and do_lo_send_write().
296  */
297 static int __do_lo_send_write(struct file *file,
298 		u8 __user *buf, const int len, loff_t pos)
299 {
300 	ssize_t bw;
301 	mm_segment_t old_fs = get_fs();
302 
303 	set_fs(get_ds());
304 	bw = file->f_op->write(file, buf, len, &pos);
305 	set_fs(old_fs);
306 	if (likely(bw == len))
307 		return 0;
308 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
309 			(unsigned long long)pos, len);
310 	if (bw >= 0)
311 		bw = -EIO;
312 	return bw;
313 }
314 
315 /**
316  * do_lo_send_direct_write - helper for writing data to a loop device
317  *
318  * This is the fast, non-transforming version for backing filesystems which do
319  * not implement the address space operations prepare_write and commit_write.
320  * It uses the write file operation which should be present on all writeable
321  * filesystems.
322  */
323 static int do_lo_send_direct_write(struct loop_device *lo,
324 		struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
325 {
326 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
327 			(u8 __user *)kmap(bvec->bv_page) + bvec->bv_offset,
328 			bvec->bv_len, pos);
329 	kunmap(bvec->bv_page);
330 	cond_resched();
331 	return bw;
332 }
333 
334 /**
335  * do_lo_send_write - helper for writing data to a loop device
336  *
337  * This is the slow, transforming version for filesystems which do not
338  * implement the address space operations prepare_write and commit_write.  It
339  * uses the write file operation which should be present on all writeable
340  * filesystems.
341  *
342  * Using fops->write is slower than using aops->{prepare,commit}_write in the
343  * transforming case because we need to double buffer the data as we cannot do
344  * the transformations in place as we do not have direct access to the
345  * destination pages of the backing file.
346  */
347 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
348 		int bsize, loff_t pos, struct page *page)
349 {
350 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
351 			bvec->bv_offset, bvec->bv_len, pos >> 9);
352 	if (likely(!ret))
353 		return __do_lo_send_write(lo->lo_backing_file,
354 				(u8 __user *)page_address(page), bvec->bv_len,
355 				pos);
356 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
357 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
358 	if (ret > 0)
359 		ret = -EIO;
360 	return ret;
361 }
362 
363 static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
364 		loff_t pos)
365 {
366 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
367 			struct page *page);
368 	struct bio_vec *bvec;
369 	struct page *page = NULL;
370 	int i, ret = 0;
371 
372 	do_lo_send = do_lo_send_aops;
373 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
374 		do_lo_send = do_lo_send_direct_write;
375 		if (lo->transfer != transfer_none) {
376 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
377 			if (unlikely(!page))
378 				goto fail;
379 			kmap(page);
380 			do_lo_send = do_lo_send_write;
381 		}
382 	}
383 	bio_for_each_segment(bvec, bio, i) {
384 		ret = do_lo_send(lo, bvec, bsize, pos, page);
385 		if (ret < 0)
386 			break;
387 		pos += bvec->bv_len;
388 	}
389 	if (page) {
390 		kunmap(page);
391 		__free_page(page);
392 	}
393 out:
394 	return ret;
395 fail:
396 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
397 	ret = -ENOMEM;
398 	goto out;
399 }
400 
401 struct lo_read_data {
402 	struct loop_device *lo;
403 	struct page *page;
404 	unsigned offset;
405 	int bsize;
406 };
407 
408 static int
409 lo_read_actor(read_descriptor_t *desc, struct page *page,
410 	      unsigned long offset, unsigned long size)
411 {
412 	unsigned long count = desc->count;
413 	struct lo_read_data *p = desc->arg.data;
414 	struct loop_device *lo = p->lo;
415 	sector_t IV;
416 
417 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
418 
419 	if (size > count)
420 		size = count;
421 
422 	if (lo_do_transfer(lo, READ, page, offset, p->page, p->offset, size, IV)) {
423 		size = 0;
424 		printk(KERN_ERR "loop: transfer error block %ld\n",
425 		       page->index);
426 		desc->error = -EINVAL;
427 	}
428 
429 	flush_dcache_page(p->page);
430 
431 	desc->count = count - size;
432 	desc->written += size;
433 	p->offset += size;
434 	return size;
435 }
436 
437 static int
438 do_lo_receive(struct loop_device *lo,
439 	      struct bio_vec *bvec, int bsize, loff_t pos)
440 {
441 	struct lo_read_data cookie;
442 	struct file *file;
443 	int retval;
444 
445 	cookie.lo = lo;
446 	cookie.page = bvec->bv_page;
447 	cookie.offset = bvec->bv_offset;
448 	cookie.bsize = bsize;
449 	file = lo->lo_backing_file;
450 	retval = file->f_op->sendfile(file, &pos, bvec->bv_len,
451 			lo_read_actor, &cookie);
452 	return (retval < 0)? retval: 0;
453 }
454 
455 static int
456 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
457 {
458 	struct bio_vec *bvec;
459 	int i, ret = 0;
460 
461 	bio_for_each_segment(bvec, bio, i) {
462 		ret = do_lo_receive(lo, bvec, bsize, pos);
463 		if (ret < 0)
464 			break;
465 		pos += bvec->bv_len;
466 	}
467 	return ret;
468 }
469 
470 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
471 {
472 	loff_t pos;
473 	int ret;
474 
475 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
476 	if (bio_rw(bio) == WRITE)
477 		ret = lo_send(lo, bio, lo->lo_blocksize, pos);
478 	else
479 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
480 	return ret;
481 }
482 
483 /*
484  * Add bio to back of pending list
485  */
486 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
487 {
488 	if (lo->lo_biotail) {
489 		lo->lo_biotail->bi_next = bio;
490 		lo->lo_biotail = bio;
491 	} else
492 		lo->lo_bio = lo->lo_biotail = bio;
493 }
494 
495 /*
496  * Grab first pending buffer
497  */
498 static struct bio *loop_get_bio(struct loop_device *lo)
499 {
500 	struct bio *bio;
501 
502 	if ((bio = lo->lo_bio)) {
503 		if (bio == lo->lo_biotail)
504 			lo->lo_biotail = NULL;
505 		lo->lo_bio = bio->bi_next;
506 		bio->bi_next = NULL;
507 	}
508 
509 	return bio;
510 }
511 
512 static int loop_make_request(request_queue_t *q, struct bio *old_bio)
513 {
514 	struct loop_device *lo = q->queuedata;
515 	int rw = bio_rw(old_bio);
516 
517 	if (rw == READA)
518 		rw = READ;
519 
520 	BUG_ON(!lo || (rw != READ && rw != WRITE));
521 
522 	spin_lock_irq(&lo->lo_lock);
523 	if (lo->lo_state != Lo_bound)
524 		goto out;
525 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
526 		goto out;
527 	lo->lo_pending++;
528 	loop_add_bio(lo, old_bio);
529 	spin_unlock_irq(&lo->lo_lock);
530 	complete(&lo->lo_bh_done);
531 	return 0;
532 
533 out:
534 	if (lo->lo_pending == 0)
535 		complete(&lo->lo_bh_done);
536 	spin_unlock_irq(&lo->lo_lock);
537 	bio_io_error(old_bio, old_bio->bi_size);
538 	return 0;
539 }
540 
541 /*
542  * kick off io on the underlying address space
543  */
544 static void loop_unplug(request_queue_t *q)
545 {
546 	struct loop_device *lo = q->queuedata;
547 
548 	clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
549 	blk_run_address_space(lo->lo_backing_file->f_mapping);
550 }
551 
552 struct switch_request {
553 	struct file *file;
554 	struct completion wait;
555 };
556 
557 static void do_loop_switch(struct loop_device *, struct switch_request *);
558 
559 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
560 {
561 	if (unlikely(!bio->bi_bdev)) {
562 		do_loop_switch(lo, bio->bi_private);
563 		bio_put(bio);
564 	} else {
565 		int ret = do_bio_filebacked(lo, bio);
566 		bio_endio(bio, bio->bi_size, ret);
567 	}
568 }
569 
570 /*
571  * worker thread that handles reads/writes to file backed loop devices,
572  * to avoid blocking in our make_request_fn. it also does loop decrypting
573  * on reads for block backed loop, as that is too heavy to do from
574  * b_end_io context where irqs may be disabled.
575  */
576 static int loop_thread(void *data)
577 {
578 	struct loop_device *lo = data;
579 	struct bio *bio;
580 
581 	daemonize("loop%d", lo->lo_number);
582 
583 	/*
584 	 * loop can be used in an encrypted device,
585 	 * hence, it mustn't be stopped at all
586 	 * because it could be indirectly used during suspension
587 	 */
588 	current->flags |= PF_NOFREEZE;
589 
590 	set_user_nice(current, -20);
591 
592 	lo->lo_state = Lo_bound;
593 	lo->lo_pending = 1;
594 
595 	/*
596 	 * complete it, we are running
597 	 */
598 	complete(&lo->lo_done);
599 
600 	for (;;) {
601 		int pending;
602 
603 		if (wait_for_completion_interruptible(&lo->lo_bh_done))
604 			continue;
605 
606 		spin_lock_irq(&lo->lo_lock);
607 
608 		/*
609 		 * could be completed because of tear-down, not pending work
610 		 */
611 		if (unlikely(!lo->lo_pending)) {
612 			spin_unlock_irq(&lo->lo_lock);
613 			break;
614 		}
615 
616 		bio = loop_get_bio(lo);
617 		lo->lo_pending--;
618 		pending = lo->lo_pending;
619 		spin_unlock_irq(&lo->lo_lock);
620 
621 		BUG_ON(!bio);
622 		loop_handle_bio(lo, bio);
623 
624 		/*
625 		 * upped both for pending work and tear-down, lo_pending
626 		 * will hit zero then
627 		 */
628 		if (unlikely(!pending))
629 			break;
630 	}
631 
632 	complete(&lo->lo_done);
633 	return 0;
634 }
635 
636 /*
637  * loop_switch performs the hard work of switching a backing store.
638  * First it needs to flush existing IO, it does this by sending a magic
639  * BIO down the pipe. The completion of this BIO does the actual switch.
640  */
641 static int loop_switch(struct loop_device *lo, struct file *file)
642 {
643 	struct switch_request w;
644 	struct bio *bio = bio_alloc(GFP_KERNEL, 1);
645 	if (!bio)
646 		return -ENOMEM;
647 	init_completion(&w.wait);
648 	w.file = file;
649 	bio->bi_private = &w;
650 	bio->bi_bdev = NULL;
651 	loop_make_request(lo->lo_queue, bio);
652 	wait_for_completion(&w.wait);
653 	return 0;
654 }
655 
656 /*
657  * Do the actual switch; called from the BIO completion routine
658  */
659 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
660 {
661 	struct file *file = p->file;
662 	struct file *old_file = lo->lo_backing_file;
663 	struct address_space *mapping = file->f_mapping;
664 
665 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
666 	lo->lo_backing_file = file;
667 	lo->lo_blocksize = mapping->host->i_blksize;
668 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
669 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
670 	complete(&p->wait);
671 }
672 
673 
674 /*
675  * loop_change_fd switched the backing store of a loopback device to
676  * a new file. This is useful for operating system installers to free up
677  * the original file and in High Availability environments to switch to
678  * an alternative location for the content in case of server meltdown.
679  * This can only work if the loop device is used read-only, and if the
680  * new backing store is the same size and type as the old backing store.
681  */
682 static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
683 		       struct block_device *bdev, unsigned int arg)
684 {
685 	struct file	*file, *old_file;
686 	struct inode	*inode;
687 	int		error;
688 
689 	error = -ENXIO;
690 	if (lo->lo_state != Lo_bound)
691 		goto out;
692 
693 	/* the loop device has to be read-only */
694 	error = -EINVAL;
695 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
696 		goto out;
697 
698 	error = -EBADF;
699 	file = fget(arg);
700 	if (!file)
701 		goto out;
702 
703 	inode = file->f_mapping->host;
704 	old_file = lo->lo_backing_file;
705 
706 	error = -EINVAL;
707 
708 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
709 		goto out_putf;
710 
711 	/* new backing store needs to support loop (eg sendfile) */
712 	if (!inode->i_fop->sendfile)
713 		goto out_putf;
714 
715 	/* size of the new backing store needs to be the same */
716 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
717 		goto out_putf;
718 
719 	/* and ... switch */
720 	error = loop_switch(lo, file);
721 	if (error)
722 		goto out_putf;
723 
724 	fput(old_file);
725 	return 0;
726 
727  out_putf:
728 	fput(file);
729  out:
730 	return error;
731 }
732 
733 static inline int is_loop_device(struct file *file)
734 {
735 	struct inode *i = file->f_mapping->host;
736 
737 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
738 }
739 
740 static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
741 		       struct block_device *bdev, unsigned int arg)
742 {
743 	struct file	*file, *f;
744 	struct inode	*inode;
745 	struct address_space *mapping;
746 	unsigned lo_blocksize;
747 	int		lo_flags = 0;
748 	int		error;
749 	loff_t		size;
750 
751 	/* This is safe, since we have a reference from open(). */
752 	__module_get(THIS_MODULE);
753 
754 	error = -EBADF;
755 	file = fget(arg);
756 	if (!file)
757 		goto out;
758 
759 	error = -EBUSY;
760 	if (lo->lo_state != Lo_unbound)
761 		goto out_putf;
762 
763 	/* Avoid recursion */
764 	f = file;
765 	while (is_loop_device(f)) {
766 		struct loop_device *l;
767 
768 		if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
769 			goto out_putf;
770 
771 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
772 		if (l->lo_state == Lo_unbound) {
773 			error = -EINVAL;
774 			goto out_putf;
775 		}
776 		f = l->lo_backing_file;
777 	}
778 
779 	mapping = file->f_mapping;
780 	inode = mapping->host;
781 
782 	if (!(file->f_mode & FMODE_WRITE))
783 		lo_flags |= LO_FLAGS_READ_ONLY;
784 
785 	error = -EINVAL;
786 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
787 		struct address_space_operations *aops = mapping->a_ops;
788 		/*
789 		 * If we can't read - sorry. If we only can't write - well,
790 		 * it's going to be read-only.
791 		 */
792 		if (!file->f_op->sendfile)
793 			goto out_putf;
794 		if (aops->prepare_write && aops->commit_write)
795 			lo_flags |= LO_FLAGS_USE_AOPS;
796 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
797 			lo_flags |= LO_FLAGS_READ_ONLY;
798 
799 		lo_blocksize = inode->i_blksize;
800 		error = 0;
801 	} else {
802 		goto out_putf;
803 	}
804 
805 	size = get_loop_size(lo, file);
806 
807 	if ((loff_t)(sector_t)size != size) {
808 		error = -EFBIG;
809 		goto out_putf;
810 	}
811 
812 	if (!(lo_file->f_mode & FMODE_WRITE))
813 		lo_flags |= LO_FLAGS_READ_ONLY;
814 
815 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
816 
817 	lo->lo_blocksize = lo_blocksize;
818 	lo->lo_device = bdev;
819 	lo->lo_flags = lo_flags;
820 	lo->lo_backing_file = file;
821 	lo->transfer = NULL;
822 	lo->ioctl = NULL;
823 	lo->lo_sizelimit = 0;
824 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
825 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
826 
827 	lo->lo_bio = lo->lo_biotail = NULL;
828 
829 	/*
830 	 * set queue make_request_fn, and add limits based on lower level
831 	 * device
832 	 */
833 	blk_queue_make_request(lo->lo_queue, loop_make_request);
834 	lo->lo_queue->queuedata = lo;
835 	lo->lo_queue->unplug_fn = loop_unplug;
836 
837 	set_capacity(disks[lo->lo_number], size);
838 	bd_set_size(bdev, size << 9);
839 
840 	set_blocksize(bdev, lo_blocksize);
841 
842 	error = kernel_thread(loop_thread, lo, CLONE_KERNEL);
843 	if (error < 0)
844 		goto out_putf;
845 	wait_for_completion(&lo->lo_done);
846 	return 0;
847 
848  out_putf:
849 	fput(file);
850  out:
851 	/* This is safe: open() is still holding a reference. */
852 	module_put(THIS_MODULE);
853 	return error;
854 }
855 
856 static int
857 loop_release_xfer(struct loop_device *lo)
858 {
859 	int err = 0;
860 	struct loop_func_table *xfer = lo->lo_encryption;
861 
862 	if (xfer) {
863 		if (xfer->release)
864 			err = xfer->release(lo);
865 		lo->transfer = NULL;
866 		lo->lo_encryption = NULL;
867 		module_put(xfer->owner);
868 	}
869 	return err;
870 }
871 
872 static int
873 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
874 	       const struct loop_info64 *i)
875 {
876 	int err = 0;
877 
878 	if (xfer) {
879 		struct module *owner = xfer->owner;
880 
881 		if (!try_module_get(owner))
882 			return -EINVAL;
883 		if (xfer->init)
884 			err = xfer->init(lo, i);
885 		if (err)
886 			module_put(owner);
887 		else
888 			lo->lo_encryption = xfer;
889 	}
890 	return err;
891 }
892 
893 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
894 {
895 	struct file *filp = lo->lo_backing_file;
896 	gfp_t gfp = lo->old_gfp_mask;
897 
898 	if (lo->lo_state != Lo_bound)
899 		return -ENXIO;
900 
901 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
902 		return -EBUSY;
903 
904 	if (filp == NULL)
905 		return -EINVAL;
906 
907 	spin_lock_irq(&lo->lo_lock);
908 	lo->lo_state = Lo_rundown;
909 	lo->lo_pending--;
910 	if (!lo->lo_pending)
911 		complete(&lo->lo_bh_done);
912 	spin_unlock_irq(&lo->lo_lock);
913 
914 	wait_for_completion(&lo->lo_done);
915 
916 	lo->lo_backing_file = NULL;
917 
918 	loop_release_xfer(lo);
919 	lo->transfer = NULL;
920 	lo->ioctl = NULL;
921 	lo->lo_device = NULL;
922 	lo->lo_encryption = NULL;
923 	lo->lo_offset = 0;
924 	lo->lo_sizelimit = 0;
925 	lo->lo_encrypt_key_size = 0;
926 	lo->lo_flags = 0;
927 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
928 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
929 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
930 	invalidate_bdev(bdev, 0);
931 	set_capacity(disks[lo->lo_number], 0);
932 	bd_set_size(bdev, 0);
933 	mapping_set_gfp_mask(filp->f_mapping, gfp);
934 	lo->lo_state = Lo_unbound;
935 	fput(filp);
936 	/* This is safe: open() is still holding a reference. */
937 	module_put(THIS_MODULE);
938 	return 0;
939 }
940 
941 static int
942 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
943 {
944 	int err;
945 	struct loop_func_table *xfer;
946 
947 	if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
948 	    !capable(CAP_SYS_ADMIN))
949 		return -EPERM;
950 	if (lo->lo_state != Lo_bound)
951 		return -ENXIO;
952 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
953 		return -EINVAL;
954 
955 	err = loop_release_xfer(lo);
956 	if (err)
957 		return err;
958 
959 	if (info->lo_encrypt_type) {
960 		unsigned int type = info->lo_encrypt_type;
961 
962 		if (type >= MAX_LO_CRYPT)
963 			return -EINVAL;
964 		xfer = xfer_funcs[type];
965 		if (xfer == NULL)
966 			return -EINVAL;
967 	} else
968 		xfer = NULL;
969 
970 	err = loop_init_xfer(lo, xfer, info);
971 	if (err)
972 		return err;
973 
974 	if (lo->lo_offset != info->lo_offset ||
975 	    lo->lo_sizelimit != info->lo_sizelimit) {
976 		lo->lo_offset = info->lo_offset;
977 		lo->lo_sizelimit = info->lo_sizelimit;
978 		if (figure_loop_size(lo))
979 			return -EFBIG;
980 	}
981 
982 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
983 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
984 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
985 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
986 
987 	if (!xfer)
988 		xfer = &none_funcs;
989 	lo->transfer = xfer->transfer;
990 	lo->ioctl = xfer->ioctl;
991 
992 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
993 	lo->lo_init[0] = info->lo_init[0];
994 	lo->lo_init[1] = info->lo_init[1];
995 	if (info->lo_encrypt_key_size) {
996 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
997 		       info->lo_encrypt_key_size);
998 		lo->lo_key_owner = current->uid;
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 static int
1005 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1006 {
1007 	struct file *file = lo->lo_backing_file;
1008 	struct kstat stat;
1009 	int error;
1010 
1011 	if (lo->lo_state != Lo_bound)
1012 		return -ENXIO;
1013 	error = vfs_getattr(file->f_vfsmnt, file->f_dentry, &stat);
1014 	if (error)
1015 		return error;
1016 	memset(info, 0, sizeof(*info));
1017 	info->lo_number = lo->lo_number;
1018 	info->lo_device = huge_encode_dev(stat.dev);
1019 	info->lo_inode = stat.ino;
1020 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1021 	info->lo_offset = lo->lo_offset;
1022 	info->lo_sizelimit = lo->lo_sizelimit;
1023 	info->lo_flags = lo->lo_flags;
1024 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1025 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1026 	info->lo_encrypt_type =
1027 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1028 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1029 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1030 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1031 		       lo->lo_encrypt_key_size);
1032 	}
1033 	return 0;
1034 }
1035 
1036 static void
1037 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1038 {
1039 	memset(info64, 0, sizeof(*info64));
1040 	info64->lo_number = info->lo_number;
1041 	info64->lo_device = info->lo_device;
1042 	info64->lo_inode = info->lo_inode;
1043 	info64->lo_rdevice = info->lo_rdevice;
1044 	info64->lo_offset = info->lo_offset;
1045 	info64->lo_sizelimit = 0;
1046 	info64->lo_encrypt_type = info->lo_encrypt_type;
1047 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1048 	info64->lo_flags = info->lo_flags;
1049 	info64->lo_init[0] = info->lo_init[0];
1050 	info64->lo_init[1] = info->lo_init[1];
1051 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1052 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1053 	else
1054 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1055 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1056 }
1057 
1058 static int
1059 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1060 {
1061 	memset(info, 0, sizeof(*info));
1062 	info->lo_number = info64->lo_number;
1063 	info->lo_device = info64->lo_device;
1064 	info->lo_inode = info64->lo_inode;
1065 	info->lo_rdevice = info64->lo_rdevice;
1066 	info->lo_offset = info64->lo_offset;
1067 	info->lo_encrypt_type = info64->lo_encrypt_type;
1068 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1069 	info->lo_flags = info64->lo_flags;
1070 	info->lo_init[0] = info64->lo_init[0];
1071 	info->lo_init[1] = info64->lo_init[1];
1072 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1073 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1074 	else
1075 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1076 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1077 
1078 	/* error in case values were truncated */
1079 	if (info->lo_device != info64->lo_device ||
1080 	    info->lo_rdevice != info64->lo_rdevice ||
1081 	    info->lo_inode != info64->lo_inode ||
1082 	    info->lo_offset != info64->lo_offset)
1083 		return -EOVERFLOW;
1084 
1085 	return 0;
1086 }
1087 
1088 static int
1089 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1090 {
1091 	struct loop_info info;
1092 	struct loop_info64 info64;
1093 
1094 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1095 		return -EFAULT;
1096 	loop_info64_from_old(&info, &info64);
1097 	return loop_set_status(lo, &info64);
1098 }
1099 
1100 static int
1101 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1102 {
1103 	struct loop_info64 info64;
1104 
1105 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1106 		return -EFAULT;
1107 	return loop_set_status(lo, &info64);
1108 }
1109 
1110 static int
1111 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1112 	struct loop_info info;
1113 	struct loop_info64 info64;
1114 	int err = 0;
1115 
1116 	if (!arg)
1117 		err = -EINVAL;
1118 	if (!err)
1119 		err = loop_get_status(lo, &info64);
1120 	if (!err)
1121 		err = loop_info64_to_old(&info64, &info);
1122 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1123 		err = -EFAULT;
1124 
1125 	return err;
1126 }
1127 
1128 static int
1129 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1130 	struct loop_info64 info64;
1131 	int err = 0;
1132 
1133 	if (!arg)
1134 		err = -EINVAL;
1135 	if (!err)
1136 		err = loop_get_status(lo, &info64);
1137 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1138 		err = -EFAULT;
1139 
1140 	return err;
1141 }
1142 
1143 static int lo_ioctl(struct inode * inode, struct file * file,
1144 	unsigned int cmd, unsigned long arg)
1145 {
1146 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1147 	int err;
1148 
1149 	mutex_lock(&lo->lo_ctl_mutex);
1150 	switch (cmd) {
1151 	case LOOP_SET_FD:
1152 		err = loop_set_fd(lo, file, inode->i_bdev, arg);
1153 		break;
1154 	case LOOP_CHANGE_FD:
1155 		err = loop_change_fd(lo, file, inode->i_bdev, arg);
1156 		break;
1157 	case LOOP_CLR_FD:
1158 		err = loop_clr_fd(lo, inode->i_bdev);
1159 		break;
1160 	case LOOP_SET_STATUS:
1161 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1162 		break;
1163 	case LOOP_GET_STATUS:
1164 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1165 		break;
1166 	case LOOP_SET_STATUS64:
1167 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1168 		break;
1169 	case LOOP_GET_STATUS64:
1170 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1171 		break;
1172 	default:
1173 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1174 	}
1175 	mutex_unlock(&lo->lo_ctl_mutex);
1176 	return err;
1177 }
1178 
1179 static int lo_open(struct inode *inode, struct file *file)
1180 {
1181 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1182 
1183 	mutex_lock(&lo->lo_ctl_mutex);
1184 	lo->lo_refcnt++;
1185 	mutex_unlock(&lo->lo_ctl_mutex);
1186 
1187 	return 0;
1188 }
1189 
1190 static int lo_release(struct inode *inode, struct file *file)
1191 {
1192 	struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
1193 
1194 	mutex_lock(&lo->lo_ctl_mutex);
1195 	--lo->lo_refcnt;
1196 	mutex_unlock(&lo->lo_ctl_mutex);
1197 
1198 	return 0;
1199 }
1200 
1201 static struct block_device_operations lo_fops = {
1202 	.owner =	THIS_MODULE,
1203 	.open =		lo_open,
1204 	.release =	lo_release,
1205 	.ioctl =	lo_ioctl,
1206 };
1207 
1208 /*
1209  * And now the modules code and kernel interface.
1210  */
1211 module_param(max_loop, int, 0);
1212 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices (1-256)");
1213 MODULE_LICENSE("GPL");
1214 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1215 
1216 int loop_register_transfer(struct loop_func_table *funcs)
1217 {
1218 	unsigned int n = funcs->number;
1219 
1220 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1221 		return -EINVAL;
1222 	xfer_funcs[n] = funcs;
1223 	return 0;
1224 }
1225 
1226 int loop_unregister_transfer(int number)
1227 {
1228 	unsigned int n = number;
1229 	struct loop_device *lo;
1230 	struct loop_func_table *xfer;
1231 
1232 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1233 		return -EINVAL;
1234 
1235 	xfer_funcs[n] = NULL;
1236 
1237 	for (lo = &loop_dev[0]; lo < &loop_dev[max_loop]; lo++) {
1238 		mutex_lock(&lo->lo_ctl_mutex);
1239 
1240 		if (lo->lo_encryption == xfer)
1241 			loop_release_xfer(lo);
1242 
1243 		mutex_unlock(&lo->lo_ctl_mutex);
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 EXPORT_SYMBOL(loop_register_transfer);
1250 EXPORT_SYMBOL(loop_unregister_transfer);
1251 
1252 static int __init loop_init(void)
1253 {
1254 	int	i;
1255 
1256 	if (max_loop < 1 || max_loop > 256) {
1257 		printk(KERN_WARNING "loop: invalid max_loop (must be between"
1258 				    " 1 and 256), using default (8)\n");
1259 		max_loop = 8;
1260 	}
1261 
1262 	if (register_blkdev(LOOP_MAJOR, "loop"))
1263 		return -EIO;
1264 
1265 	loop_dev = kmalloc(max_loop * sizeof(struct loop_device), GFP_KERNEL);
1266 	if (!loop_dev)
1267 		goto out_mem1;
1268 	memset(loop_dev, 0, max_loop * sizeof(struct loop_device));
1269 
1270 	disks = kmalloc(max_loop * sizeof(struct gendisk *), GFP_KERNEL);
1271 	if (!disks)
1272 		goto out_mem2;
1273 
1274 	for (i = 0; i < max_loop; i++) {
1275 		disks[i] = alloc_disk(1);
1276 		if (!disks[i])
1277 			goto out_mem3;
1278 	}
1279 
1280 	devfs_mk_dir("loop");
1281 
1282 	for (i = 0; i < max_loop; i++) {
1283 		struct loop_device *lo = &loop_dev[i];
1284 		struct gendisk *disk = disks[i];
1285 
1286 		memset(lo, 0, sizeof(*lo));
1287 		lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1288 		if (!lo->lo_queue)
1289 			goto out_mem4;
1290 		mutex_init(&lo->lo_ctl_mutex);
1291 		init_completion(&lo->lo_done);
1292 		init_completion(&lo->lo_bh_done);
1293 		lo->lo_number = i;
1294 		spin_lock_init(&lo->lo_lock);
1295 		disk->major = LOOP_MAJOR;
1296 		disk->first_minor = i;
1297 		disk->fops = &lo_fops;
1298 		sprintf(disk->disk_name, "loop%d", i);
1299 		sprintf(disk->devfs_name, "loop/%d", i);
1300 		disk->private_data = lo;
1301 		disk->queue = lo->lo_queue;
1302 	}
1303 
1304 	/* We cannot fail after we call this, so another loop!*/
1305 	for (i = 0; i < max_loop; i++)
1306 		add_disk(disks[i]);
1307 	printk(KERN_INFO "loop: loaded (max %d devices)\n", max_loop);
1308 	return 0;
1309 
1310 out_mem4:
1311 	while (i--)
1312 		blk_cleanup_queue(loop_dev[i].lo_queue);
1313 	devfs_remove("loop");
1314 	i = max_loop;
1315 out_mem3:
1316 	while (i--)
1317 		put_disk(disks[i]);
1318 	kfree(disks);
1319 out_mem2:
1320 	kfree(loop_dev);
1321 out_mem1:
1322 	unregister_blkdev(LOOP_MAJOR, "loop");
1323 	printk(KERN_ERR "loop: ran out of memory\n");
1324 	return -ENOMEM;
1325 }
1326 
1327 static void loop_exit(void)
1328 {
1329 	int i;
1330 
1331 	for (i = 0; i < max_loop; i++) {
1332 		del_gendisk(disks[i]);
1333 		blk_cleanup_queue(loop_dev[i].lo_queue);
1334 		put_disk(disks[i]);
1335 	}
1336 	devfs_remove("loop");
1337 	if (unregister_blkdev(LOOP_MAJOR, "loop"))
1338 		printk(KERN_WARNING "loop: cannot unregister blkdev\n");
1339 
1340 	kfree(disks);
1341 	kfree(loop_dev);
1342 }
1343 
1344 module_init(loop_init);
1345 module_exit(loop_exit);
1346 
1347 #ifndef MODULE
1348 static int __init max_loop_setup(char *str)
1349 {
1350 	max_loop = simple_strtol(str, NULL, 0);
1351 	return 1;
1352 }
1353 
1354 __setup("max_loop=", max_loop_setup);
1355 #endif
1356