xref: /linux/drivers/block/loop.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/miscdevice.h>
79 #include <linux/falloc.h>
80 
81 #include <asm/uaccess.h>
82 
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
85 
86 static int max_part;
87 static int part_shift;
88 
89 /*
90  * Transfer functions
91  */
92 static int transfer_none(struct loop_device *lo, int cmd,
93 			 struct page *raw_page, unsigned raw_off,
94 			 struct page *loop_page, unsigned loop_off,
95 			 int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
99 
100 	if (cmd == READ)
101 		memcpy(loop_buf, raw_buf, size);
102 	else
103 		memcpy(raw_buf, loop_buf, size);
104 
105 	kunmap_atomic(loop_buf, KM_USER1);
106 	kunmap_atomic(raw_buf, KM_USER0);
107 	cond_resched();
108 	return 0;
109 }
110 
111 static int transfer_xor(struct loop_device *lo, int cmd,
112 			struct page *raw_page, unsigned raw_off,
113 			struct page *loop_page, unsigned loop_off,
114 			int size, sector_t real_block)
115 {
116 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
117 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
118 	char *in, *out, *key;
119 	int i, keysize;
120 
121 	if (cmd == READ) {
122 		in = raw_buf;
123 		out = loop_buf;
124 	} else {
125 		in = loop_buf;
126 		out = raw_buf;
127 	}
128 
129 	key = lo->lo_encrypt_key;
130 	keysize = lo->lo_encrypt_key_size;
131 	for (i = 0; i < size; i++)
132 		*out++ = *in++ ^ key[(i & 511) % keysize];
133 
134 	kunmap_atomic(loop_buf, KM_USER1);
135 	kunmap_atomic(raw_buf, KM_USER0);
136 	cond_resched();
137 	return 0;
138 }
139 
140 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
141 {
142 	if (unlikely(info->lo_encrypt_key_size <= 0))
143 		return -EINVAL;
144 	return 0;
145 }
146 
147 static struct loop_func_table none_funcs = {
148 	.number = LO_CRYPT_NONE,
149 	.transfer = transfer_none,
150 };
151 
152 static struct loop_func_table xor_funcs = {
153 	.number = LO_CRYPT_XOR,
154 	.transfer = transfer_xor,
155 	.init = xor_init
156 };
157 
158 /* xfer_funcs[0] is special - its release function is never called */
159 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
160 	&none_funcs,
161 	&xor_funcs
162 };
163 
164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
165 {
166 	loff_t size, offset, loopsize;
167 
168 	/* Compute loopsize in bytes */
169 	size = i_size_read(file->f_mapping->host);
170 	offset = lo->lo_offset;
171 	loopsize = size - offset;
172 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
173 		loopsize = lo->lo_sizelimit;
174 
175 	/*
176 	 * Unfortunately, if we want to do I/O on the device,
177 	 * the number of 512-byte sectors has to fit into a sector_t.
178 	 */
179 	return loopsize >> 9;
180 }
181 
182 static int
183 figure_loop_size(struct loop_device *lo)
184 {
185 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
186 	sector_t x = (sector_t)size;
187 
188 	if (unlikely((loff_t)x != size))
189 		return -EFBIG;
190 
191 	set_capacity(lo->lo_disk, x);
192 	return 0;
193 }
194 
195 static inline int
196 lo_do_transfer(struct loop_device *lo, int cmd,
197 	       struct page *rpage, unsigned roffs,
198 	       struct page *lpage, unsigned loffs,
199 	       int size, sector_t rblock)
200 {
201 	if (unlikely(!lo->transfer))
202 		return 0;
203 
204 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
205 }
206 
207 /**
208  * __do_lo_send_write - helper for writing data to a loop device
209  *
210  * This helper just factors out common code between do_lo_send_direct_write()
211  * and do_lo_send_write().
212  */
213 static int __do_lo_send_write(struct file *file,
214 		u8 *buf, const int len, loff_t pos)
215 {
216 	ssize_t bw;
217 	mm_segment_t old_fs = get_fs();
218 
219 	set_fs(get_ds());
220 	bw = file->f_op->write(file, buf, len, &pos);
221 	set_fs(old_fs);
222 	if (likely(bw == len))
223 		return 0;
224 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
225 			(unsigned long long)pos, len);
226 	if (bw >= 0)
227 		bw = -EIO;
228 	return bw;
229 }
230 
231 /**
232  * do_lo_send_direct_write - helper for writing data to a loop device
233  *
234  * This is the fast, non-transforming version that does not need double
235  * buffering.
236  */
237 static int do_lo_send_direct_write(struct loop_device *lo,
238 		struct bio_vec *bvec, loff_t pos, struct page *page)
239 {
240 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
241 			kmap(bvec->bv_page) + bvec->bv_offset,
242 			bvec->bv_len, pos);
243 	kunmap(bvec->bv_page);
244 	cond_resched();
245 	return bw;
246 }
247 
248 /**
249  * do_lo_send_write - helper for writing data to a loop device
250  *
251  * This is the slow, transforming version that needs to double buffer the
252  * data as it cannot do the transformations in place without having direct
253  * access to the destination pages of the backing file.
254  */
255 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
256 		loff_t pos, struct page *page)
257 {
258 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
259 			bvec->bv_offset, bvec->bv_len, pos >> 9);
260 	if (likely(!ret))
261 		return __do_lo_send_write(lo->lo_backing_file,
262 				page_address(page), bvec->bv_len,
263 				pos);
264 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
265 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
266 	if (ret > 0)
267 		ret = -EIO;
268 	return ret;
269 }
270 
271 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
272 {
273 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
274 			struct page *page);
275 	struct bio_vec *bvec;
276 	struct page *page = NULL;
277 	int i, ret = 0;
278 
279 	if (lo->transfer != transfer_none) {
280 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
281 		if (unlikely(!page))
282 			goto fail;
283 		kmap(page);
284 		do_lo_send = do_lo_send_write;
285 	} else {
286 		do_lo_send = do_lo_send_direct_write;
287 	}
288 
289 	bio_for_each_segment(bvec, bio, i) {
290 		ret = do_lo_send(lo, bvec, pos, page);
291 		if (ret < 0)
292 			break;
293 		pos += bvec->bv_len;
294 	}
295 	if (page) {
296 		kunmap(page);
297 		__free_page(page);
298 	}
299 out:
300 	return ret;
301 fail:
302 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
303 	ret = -ENOMEM;
304 	goto out;
305 }
306 
307 struct lo_read_data {
308 	struct loop_device *lo;
309 	struct page *page;
310 	unsigned offset;
311 	int bsize;
312 };
313 
314 static int
315 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
316 		struct splice_desc *sd)
317 {
318 	struct lo_read_data *p = sd->u.data;
319 	struct loop_device *lo = p->lo;
320 	struct page *page = buf->page;
321 	sector_t IV;
322 	int size;
323 
324 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
325 							(buf->offset >> 9);
326 	size = sd->len;
327 	if (size > p->bsize)
328 		size = p->bsize;
329 
330 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
331 		printk(KERN_ERR "loop: transfer error block %ld\n",
332 		       page->index);
333 		size = -EINVAL;
334 	}
335 
336 	flush_dcache_page(p->page);
337 
338 	if (size > 0)
339 		p->offset += size;
340 
341 	return size;
342 }
343 
344 static int
345 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
346 {
347 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
348 }
349 
350 static int
351 do_lo_receive(struct loop_device *lo,
352 	      struct bio_vec *bvec, int bsize, loff_t pos)
353 {
354 	struct lo_read_data cookie;
355 	struct splice_desc sd;
356 	struct file *file;
357 	long retval;
358 
359 	cookie.lo = lo;
360 	cookie.page = bvec->bv_page;
361 	cookie.offset = bvec->bv_offset;
362 	cookie.bsize = bsize;
363 
364 	sd.len = 0;
365 	sd.total_len = bvec->bv_len;
366 	sd.flags = 0;
367 	sd.pos = pos;
368 	sd.u.data = &cookie;
369 
370 	file = lo->lo_backing_file;
371 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
372 
373 	if (retval < 0)
374 		return retval;
375 
376 	return 0;
377 }
378 
379 static int
380 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
381 {
382 	struct bio_vec *bvec;
383 	int i, ret = 0;
384 
385 	bio_for_each_segment(bvec, bio, i) {
386 		ret = do_lo_receive(lo, bvec, bsize, pos);
387 		if (ret < 0)
388 			break;
389 		pos += bvec->bv_len;
390 	}
391 	return ret;
392 }
393 
394 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
395 {
396 	loff_t pos;
397 	int ret;
398 
399 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
400 
401 	if (bio_rw(bio) == WRITE) {
402 		struct file *file = lo->lo_backing_file;
403 
404 		if (bio->bi_rw & REQ_FLUSH) {
405 			ret = vfs_fsync(file, 0);
406 			if (unlikely(ret && ret != -EINVAL)) {
407 				ret = -EIO;
408 				goto out;
409 			}
410 		}
411 
412 		/*
413 		 * We use punch hole to reclaim the free space used by the
414 		 * image a.k.a. discard. However we do support discard if
415 		 * encryption is enabled, because it may give an attacker
416 		 * useful information.
417 		 */
418 		if (bio->bi_rw & REQ_DISCARD) {
419 			struct file *file = lo->lo_backing_file;
420 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
421 
422 			if ((!file->f_op->fallocate) ||
423 			    lo->lo_encrypt_key_size) {
424 				ret = -EOPNOTSUPP;
425 				goto out;
426 			}
427 			ret = file->f_op->fallocate(file, mode, pos,
428 						    bio->bi_size);
429 			if (unlikely(ret && ret != -EINVAL &&
430 				     ret != -EOPNOTSUPP))
431 				ret = -EIO;
432 			goto out;
433 		}
434 
435 		ret = lo_send(lo, bio, pos);
436 
437 		if ((bio->bi_rw & REQ_FUA) && !ret) {
438 			ret = vfs_fsync(file, 0);
439 			if (unlikely(ret && ret != -EINVAL))
440 				ret = -EIO;
441 		}
442 	} else
443 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
444 
445 out:
446 	return ret;
447 }
448 
449 /*
450  * Add bio to back of pending list
451  */
452 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
453 {
454 	bio_list_add(&lo->lo_bio_list, bio);
455 }
456 
457 /*
458  * Grab first pending buffer
459  */
460 static struct bio *loop_get_bio(struct loop_device *lo)
461 {
462 	return bio_list_pop(&lo->lo_bio_list);
463 }
464 
465 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
466 {
467 	struct loop_device *lo = q->queuedata;
468 	int rw = bio_rw(old_bio);
469 
470 	if (rw == READA)
471 		rw = READ;
472 
473 	BUG_ON(!lo || (rw != READ && rw != WRITE));
474 
475 	spin_lock_irq(&lo->lo_lock);
476 	if (lo->lo_state != Lo_bound)
477 		goto out;
478 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
479 		goto out;
480 	loop_add_bio(lo, old_bio);
481 	wake_up(&lo->lo_event);
482 	spin_unlock_irq(&lo->lo_lock);
483 	return;
484 
485 out:
486 	spin_unlock_irq(&lo->lo_lock);
487 	bio_io_error(old_bio);
488 }
489 
490 struct switch_request {
491 	struct file *file;
492 	struct completion wait;
493 };
494 
495 static void do_loop_switch(struct loop_device *, struct switch_request *);
496 
497 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
498 {
499 	if (unlikely(!bio->bi_bdev)) {
500 		do_loop_switch(lo, bio->bi_private);
501 		bio_put(bio);
502 	} else {
503 		int ret = do_bio_filebacked(lo, bio);
504 		bio_endio(bio, ret);
505 	}
506 }
507 
508 /*
509  * worker thread that handles reads/writes to file backed loop devices,
510  * to avoid blocking in our make_request_fn. it also does loop decrypting
511  * on reads for block backed loop, as that is too heavy to do from
512  * b_end_io context where irqs may be disabled.
513  *
514  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
515  * calling kthread_stop().  Therefore once kthread_should_stop() is
516  * true, make_request will not place any more requests.  Therefore
517  * once kthread_should_stop() is true and lo_bio is NULL, we are
518  * done with the loop.
519  */
520 static int loop_thread(void *data)
521 {
522 	struct loop_device *lo = data;
523 	struct bio *bio;
524 
525 	set_user_nice(current, -20);
526 
527 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
528 
529 		wait_event_interruptible(lo->lo_event,
530 				!bio_list_empty(&lo->lo_bio_list) ||
531 				kthread_should_stop());
532 
533 		if (bio_list_empty(&lo->lo_bio_list))
534 			continue;
535 		spin_lock_irq(&lo->lo_lock);
536 		bio = loop_get_bio(lo);
537 		spin_unlock_irq(&lo->lo_lock);
538 
539 		BUG_ON(!bio);
540 		loop_handle_bio(lo, bio);
541 	}
542 
543 	return 0;
544 }
545 
546 /*
547  * loop_switch performs the hard work of switching a backing store.
548  * First it needs to flush existing IO, it does this by sending a magic
549  * BIO down the pipe. The completion of this BIO does the actual switch.
550  */
551 static int loop_switch(struct loop_device *lo, struct file *file)
552 {
553 	struct switch_request w;
554 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
555 	if (!bio)
556 		return -ENOMEM;
557 	init_completion(&w.wait);
558 	w.file = file;
559 	bio->bi_private = &w;
560 	bio->bi_bdev = NULL;
561 	loop_make_request(lo->lo_queue, bio);
562 	wait_for_completion(&w.wait);
563 	return 0;
564 }
565 
566 /*
567  * Helper to flush the IOs in loop, but keeping loop thread running
568  */
569 static int loop_flush(struct loop_device *lo)
570 {
571 	/* loop not yet configured, no running thread, nothing to flush */
572 	if (!lo->lo_thread)
573 		return 0;
574 
575 	return loop_switch(lo, NULL);
576 }
577 
578 /*
579  * Do the actual switch; called from the BIO completion routine
580  */
581 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
582 {
583 	struct file *file = p->file;
584 	struct file *old_file = lo->lo_backing_file;
585 	struct address_space *mapping;
586 
587 	/* if no new file, only flush of queued bios requested */
588 	if (!file)
589 		goto out;
590 
591 	mapping = file->f_mapping;
592 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
593 	lo->lo_backing_file = file;
594 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
595 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
596 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
597 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
598 out:
599 	complete(&p->wait);
600 }
601 
602 
603 /*
604  * loop_change_fd switched the backing store of a loopback device to
605  * a new file. This is useful for operating system installers to free up
606  * the original file and in High Availability environments to switch to
607  * an alternative location for the content in case of server meltdown.
608  * This can only work if the loop device is used read-only, and if the
609  * new backing store is the same size and type as the old backing store.
610  */
611 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
612 			  unsigned int arg)
613 {
614 	struct file	*file, *old_file;
615 	struct inode	*inode;
616 	int		error;
617 
618 	error = -ENXIO;
619 	if (lo->lo_state != Lo_bound)
620 		goto out;
621 
622 	/* the loop device has to be read-only */
623 	error = -EINVAL;
624 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
625 		goto out;
626 
627 	error = -EBADF;
628 	file = fget(arg);
629 	if (!file)
630 		goto out;
631 
632 	inode = file->f_mapping->host;
633 	old_file = lo->lo_backing_file;
634 
635 	error = -EINVAL;
636 
637 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
638 		goto out_putf;
639 
640 	/* size of the new backing store needs to be the same */
641 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
642 		goto out_putf;
643 
644 	/* and ... switch */
645 	error = loop_switch(lo, file);
646 	if (error)
647 		goto out_putf;
648 
649 	fput(old_file);
650 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
651 		ioctl_by_bdev(bdev, BLKRRPART, 0);
652 	return 0;
653 
654  out_putf:
655 	fput(file);
656  out:
657 	return error;
658 }
659 
660 static inline int is_loop_device(struct file *file)
661 {
662 	struct inode *i = file->f_mapping->host;
663 
664 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
665 }
666 
667 /* loop sysfs attributes */
668 
669 static ssize_t loop_attr_show(struct device *dev, char *page,
670 			      ssize_t (*callback)(struct loop_device *, char *))
671 {
672 	struct gendisk *disk = dev_to_disk(dev);
673 	struct loop_device *lo = disk->private_data;
674 
675 	return callback(lo, page);
676 }
677 
678 #define LOOP_ATTR_RO(_name)						\
679 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
680 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
681 				struct device_attribute *attr, char *b)	\
682 {									\
683 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
684 }									\
685 static struct device_attribute loop_attr_##_name =			\
686 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
687 
688 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
689 {
690 	ssize_t ret;
691 	char *p = NULL;
692 
693 	spin_lock_irq(&lo->lo_lock);
694 	if (lo->lo_backing_file)
695 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
696 	spin_unlock_irq(&lo->lo_lock);
697 
698 	if (IS_ERR_OR_NULL(p))
699 		ret = PTR_ERR(p);
700 	else {
701 		ret = strlen(p);
702 		memmove(buf, p, ret);
703 		buf[ret++] = '\n';
704 		buf[ret] = 0;
705 	}
706 
707 	return ret;
708 }
709 
710 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
711 {
712 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
713 }
714 
715 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
716 {
717 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
718 }
719 
720 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
721 {
722 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
723 
724 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
725 }
726 
727 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
728 {
729 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
730 
731 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
732 }
733 
734 LOOP_ATTR_RO(backing_file);
735 LOOP_ATTR_RO(offset);
736 LOOP_ATTR_RO(sizelimit);
737 LOOP_ATTR_RO(autoclear);
738 LOOP_ATTR_RO(partscan);
739 
740 static struct attribute *loop_attrs[] = {
741 	&loop_attr_backing_file.attr,
742 	&loop_attr_offset.attr,
743 	&loop_attr_sizelimit.attr,
744 	&loop_attr_autoclear.attr,
745 	&loop_attr_partscan.attr,
746 	NULL,
747 };
748 
749 static struct attribute_group loop_attribute_group = {
750 	.name = "loop",
751 	.attrs= loop_attrs,
752 };
753 
754 static int loop_sysfs_init(struct loop_device *lo)
755 {
756 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
757 				  &loop_attribute_group);
758 }
759 
760 static void loop_sysfs_exit(struct loop_device *lo)
761 {
762 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
763 			   &loop_attribute_group);
764 }
765 
766 static void loop_config_discard(struct loop_device *lo)
767 {
768 	struct file *file = lo->lo_backing_file;
769 	struct inode *inode = file->f_mapping->host;
770 	struct request_queue *q = lo->lo_queue;
771 
772 	/*
773 	 * We use punch hole to reclaim the free space used by the
774 	 * image a.k.a. discard. However we do support discard if
775 	 * encryption is enabled, because it may give an attacker
776 	 * useful information.
777 	 */
778 	if ((!file->f_op->fallocate) ||
779 	    lo->lo_encrypt_key_size) {
780 		q->limits.discard_granularity = 0;
781 		q->limits.discard_alignment = 0;
782 		q->limits.max_discard_sectors = 0;
783 		q->limits.discard_zeroes_data = 0;
784 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
785 		return;
786 	}
787 
788 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
789 	q->limits.discard_alignment = inode->i_sb->s_blocksize;
790 	q->limits.max_discard_sectors = UINT_MAX >> 9;
791 	q->limits.discard_zeroes_data = 1;
792 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
793 }
794 
795 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
796 		       struct block_device *bdev, unsigned int arg)
797 {
798 	struct file	*file, *f;
799 	struct inode	*inode;
800 	struct address_space *mapping;
801 	unsigned lo_blocksize;
802 	int		lo_flags = 0;
803 	int		error;
804 	loff_t		size;
805 
806 	/* This is safe, since we have a reference from open(). */
807 	__module_get(THIS_MODULE);
808 
809 	error = -EBADF;
810 	file = fget(arg);
811 	if (!file)
812 		goto out;
813 
814 	error = -EBUSY;
815 	if (lo->lo_state != Lo_unbound)
816 		goto out_putf;
817 
818 	/* Avoid recursion */
819 	f = file;
820 	while (is_loop_device(f)) {
821 		struct loop_device *l;
822 
823 		if (f->f_mapping->host->i_bdev == bdev)
824 			goto out_putf;
825 
826 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
827 		if (l->lo_state == Lo_unbound) {
828 			error = -EINVAL;
829 			goto out_putf;
830 		}
831 		f = l->lo_backing_file;
832 	}
833 
834 	mapping = file->f_mapping;
835 	inode = mapping->host;
836 
837 	error = -EINVAL;
838 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
839 		goto out_putf;
840 
841 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
842 	    !file->f_op->write)
843 		lo_flags |= LO_FLAGS_READ_ONLY;
844 
845 	lo_blocksize = S_ISBLK(inode->i_mode) ?
846 		inode->i_bdev->bd_block_size : PAGE_SIZE;
847 
848 	error = -EFBIG;
849 	size = get_loop_size(lo, file);
850 	if ((loff_t)(sector_t)size != size)
851 		goto out_putf;
852 
853 	error = 0;
854 
855 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
856 
857 	lo->lo_blocksize = lo_blocksize;
858 	lo->lo_device = bdev;
859 	lo->lo_flags = lo_flags;
860 	lo->lo_backing_file = file;
861 	lo->transfer = transfer_none;
862 	lo->ioctl = NULL;
863 	lo->lo_sizelimit = 0;
864 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
865 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
866 
867 	bio_list_init(&lo->lo_bio_list);
868 
869 	/*
870 	 * set queue make_request_fn, and add limits based on lower level
871 	 * device
872 	 */
873 	blk_queue_make_request(lo->lo_queue, loop_make_request);
874 	lo->lo_queue->queuedata = lo;
875 
876 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
877 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
878 
879 	set_capacity(lo->lo_disk, size);
880 	bd_set_size(bdev, size << 9);
881 	loop_sysfs_init(lo);
882 	/* let user-space know about the new size */
883 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
884 
885 	set_blocksize(bdev, lo_blocksize);
886 
887 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
888 						lo->lo_number);
889 	if (IS_ERR(lo->lo_thread)) {
890 		error = PTR_ERR(lo->lo_thread);
891 		goto out_clr;
892 	}
893 	lo->lo_state = Lo_bound;
894 	wake_up_process(lo->lo_thread);
895 	if (part_shift)
896 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
897 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
898 		ioctl_by_bdev(bdev, BLKRRPART, 0);
899 	return 0;
900 
901 out_clr:
902 	loop_sysfs_exit(lo);
903 	lo->lo_thread = NULL;
904 	lo->lo_device = NULL;
905 	lo->lo_backing_file = NULL;
906 	lo->lo_flags = 0;
907 	set_capacity(lo->lo_disk, 0);
908 	invalidate_bdev(bdev);
909 	bd_set_size(bdev, 0);
910 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
911 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
912 	lo->lo_state = Lo_unbound;
913  out_putf:
914 	fput(file);
915  out:
916 	/* This is safe: open() is still holding a reference. */
917 	module_put(THIS_MODULE);
918 	return error;
919 }
920 
921 static int
922 loop_release_xfer(struct loop_device *lo)
923 {
924 	int err = 0;
925 	struct loop_func_table *xfer = lo->lo_encryption;
926 
927 	if (xfer) {
928 		if (xfer->release)
929 			err = xfer->release(lo);
930 		lo->transfer = NULL;
931 		lo->lo_encryption = NULL;
932 		module_put(xfer->owner);
933 	}
934 	return err;
935 }
936 
937 static int
938 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
939 	       const struct loop_info64 *i)
940 {
941 	int err = 0;
942 
943 	if (xfer) {
944 		struct module *owner = xfer->owner;
945 
946 		if (!try_module_get(owner))
947 			return -EINVAL;
948 		if (xfer->init)
949 			err = xfer->init(lo, i);
950 		if (err)
951 			module_put(owner);
952 		else
953 			lo->lo_encryption = xfer;
954 	}
955 	return err;
956 }
957 
958 static int loop_clr_fd(struct loop_device *lo)
959 {
960 	struct file *filp = lo->lo_backing_file;
961 	gfp_t gfp = lo->old_gfp_mask;
962 	struct block_device *bdev = lo->lo_device;
963 
964 	if (lo->lo_state != Lo_bound)
965 		return -ENXIO;
966 
967 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
968 		return -EBUSY;
969 
970 	if (filp == NULL)
971 		return -EINVAL;
972 
973 	spin_lock_irq(&lo->lo_lock);
974 	lo->lo_state = Lo_rundown;
975 	spin_unlock_irq(&lo->lo_lock);
976 
977 	kthread_stop(lo->lo_thread);
978 
979 	spin_lock_irq(&lo->lo_lock);
980 	lo->lo_backing_file = NULL;
981 	spin_unlock_irq(&lo->lo_lock);
982 
983 	loop_release_xfer(lo);
984 	lo->transfer = NULL;
985 	lo->ioctl = NULL;
986 	lo->lo_device = NULL;
987 	lo->lo_encryption = NULL;
988 	lo->lo_offset = 0;
989 	lo->lo_sizelimit = 0;
990 	lo->lo_encrypt_key_size = 0;
991 	lo->lo_thread = NULL;
992 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
993 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
994 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
995 	if (bdev)
996 		invalidate_bdev(bdev);
997 	set_capacity(lo->lo_disk, 0);
998 	loop_sysfs_exit(lo);
999 	if (bdev) {
1000 		bd_set_size(bdev, 0);
1001 		/* let user-space know about this change */
1002 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1003 	}
1004 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1005 	lo->lo_state = Lo_unbound;
1006 	/* This is safe: open() is still holding a reference. */
1007 	module_put(THIS_MODULE);
1008 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1009 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1010 	lo->lo_flags = 0;
1011 	if (!part_shift)
1012 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1013 	mutex_unlock(&lo->lo_ctl_mutex);
1014 	/*
1015 	 * Need not hold lo_ctl_mutex to fput backing file.
1016 	 * Calling fput holding lo_ctl_mutex triggers a circular
1017 	 * lock dependency possibility warning as fput can take
1018 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1019 	 */
1020 	fput(filp);
1021 	return 0;
1022 }
1023 
1024 static int
1025 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1026 {
1027 	int err;
1028 	struct loop_func_table *xfer;
1029 	uid_t uid = current_uid();
1030 
1031 	if (lo->lo_encrypt_key_size &&
1032 	    lo->lo_key_owner != uid &&
1033 	    !capable(CAP_SYS_ADMIN))
1034 		return -EPERM;
1035 	if (lo->lo_state != Lo_bound)
1036 		return -ENXIO;
1037 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1038 		return -EINVAL;
1039 
1040 	err = loop_release_xfer(lo);
1041 	if (err)
1042 		return err;
1043 
1044 	if (info->lo_encrypt_type) {
1045 		unsigned int type = info->lo_encrypt_type;
1046 
1047 		if (type >= MAX_LO_CRYPT)
1048 			return -EINVAL;
1049 		xfer = xfer_funcs[type];
1050 		if (xfer == NULL)
1051 			return -EINVAL;
1052 	} else
1053 		xfer = NULL;
1054 
1055 	err = loop_init_xfer(lo, xfer, info);
1056 	if (err)
1057 		return err;
1058 
1059 	if (lo->lo_offset != info->lo_offset ||
1060 	    lo->lo_sizelimit != info->lo_sizelimit) {
1061 		lo->lo_offset = info->lo_offset;
1062 		lo->lo_sizelimit = info->lo_sizelimit;
1063 		if (figure_loop_size(lo))
1064 			return -EFBIG;
1065 	}
1066 	loop_config_discard(lo);
1067 
1068 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1069 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1070 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1071 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1072 
1073 	if (!xfer)
1074 		xfer = &none_funcs;
1075 	lo->transfer = xfer->transfer;
1076 	lo->ioctl = xfer->ioctl;
1077 
1078 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1079 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1080 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1081 
1082 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1083 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1084 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1085 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1086 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1087 	}
1088 
1089 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1090 	lo->lo_init[0] = info->lo_init[0];
1091 	lo->lo_init[1] = info->lo_init[1];
1092 	if (info->lo_encrypt_key_size) {
1093 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1094 		       info->lo_encrypt_key_size);
1095 		lo->lo_key_owner = uid;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 static int
1102 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1103 {
1104 	struct file *file = lo->lo_backing_file;
1105 	struct kstat stat;
1106 	int error;
1107 
1108 	if (lo->lo_state != Lo_bound)
1109 		return -ENXIO;
1110 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1111 	if (error)
1112 		return error;
1113 	memset(info, 0, sizeof(*info));
1114 	info->lo_number = lo->lo_number;
1115 	info->lo_device = huge_encode_dev(stat.dev);
1116 	info->lo_inode = stat.ino;
1117 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1118 	info->lo_offset = lo->lo_offset;
1119 	info->lo_sizelimit = lo->lo_sizelimit;
1120 	info->lo_flags = lo->lo_flags;
1121 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1122 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1123 	info->lo_encrypt_type =
1124 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1125 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1126 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1127 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1128 		       lo->lo_encrypt_key_size);
1129 	}
1130 	return 0;
1131 }
1132 
1133 static void
1134 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1135 {
1136 	memset(info64, 0, sizeof(*info64));
1137 	info64->lo_number = info->lo_number;
1138 	info64->lo_device = info->lo_device;
1139 	info64->lo_inode = info->lo_inode;
1140 	info64->lo_rdevice = info->lo_rdevice;
1141 	info64->lo_offset = info->lo_offset;
1142 	info64->lo_sizelimit = 0;
1143 	info64->lo_encrypt_type = info->lo_encrypt_type;
1144 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1145 	info64->lo_flags = info->lo_flags;
1146 	info64->lo_init[0] = info->lo_init[0];
1147 	info64->lo_init[1] = info->lo_init[1];
1148 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1149 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1150 	else
1151 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1152 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1153 }
1154 
1155 static int
1156 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1157 {
1158 	memset(info, 0, sizeof(*info));
1159 	info->lo_number = info64->lo_number;
1160 	info->lo_device = info64->lo_device;
1161 	info->lo_inode = info64->lo_inode;
1162 	info->lo_rdevice = info64->lo_rdevice;
1163 	info->lo_offset = info64->lo_offset;
1164 	info->lo_encrypt_type = info64->lo_encrypt_type;
1165 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1166 	info->lo_flags = info64->lo_flags;
1167 	info->lo_init[0] = info64->lo_init[0];
1168 	info->lo_init[1] = info64->lo_init[1];
1169 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1170 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1171 	else
1172 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1173 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1174 
1175 	/* error in case values were truncated */
1176 	if (info->lo_device != info64->lo_device ||
1177 	    info->lo_rdevice != info64->lo_rdevice ||
1178 	    info->lo_inode != info64->lo_inode ||
1179 	    info->lo_offset != info64->lo_offset)
1180 		return -EOVERFLOW;
1181 
1182 	return 0;
1183 }
1184 
1185 static int
1186 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1187 {
1188 	struct loop_info info;
1189 	struct loop_info64 info64;
1190 
1191 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1192 		return -EFAULT;
1193 	loop_info64_from_old(&info, &info64);
1194 	return loop_set_status(lo, &info64);
1195 }
1196 
1197 static int
1198 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1199 {
1200 	struct loop_info64 info64;
1201 
1202 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1203 		return -EFAULT;
1204 	return loop_set_status(lo, &info64);
1205 }
1206 
1207 static int
1208 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1209 	struct loop_info info;
1210 	struct loop_info64 info64;
1211 	int err = 0;
1212 
1213 	if (!arg)
1214 		err = -EINVAL;
1215 	if (!err)
1216 		err = loop_get_status(lo, &info64);
1217 	if (!err)
1218 		err = loop_info64_to_old(&info64, &info);
1219 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1220 		err = -EFAULT;
1221 
1222 	return err;
1223 }
1224 
1225 static int
1226 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1227 	struct loop_info64 info64;
1228 	int err = 0;
1229 
1230 	if (!arg)
1231 		err = -EINVAL;
1232 	if (!err)
1233 		err = loop_get_status(lo, &info64);
1234 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1235 		err = -EFAULT;
1236 
1237 	return err;
1238 }
1239 
1240 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1241 {
1242 	int err;
1243 	sector_t sec;
1244 	loff_t sz;
1245 
1246 	err = -ENXIO;
1247 	if (unlikely(lo->lo_state != Lo_bound))
1248 		goto out;
1249 	err = figure_loop_size(lo);
1250 	if (unlikely(err))
1251 		goto out;
1252 	sec = get_capacity(lo->lo_disk);
1253 	/* the width of sector_t may be narrow for bit-shift */
1254 	sz = sec;
1255 	sz <<= 9;
1256 	mutex_lock(&bdev->bd_mutex);
1257 	bd_set_size(bdev, sz);
1258 	/* let user-space know about the new size */
1259 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1260 	mutex_unlock(&bdev->bd_mutex);
1261 
1262  out:
1263 	return err;
1264 }
1265 
1266 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1267 	unsigned int cmd, unsigned long arg)
1268 {
1269 	struct loop_device *lo = bdev->bd_disk->private_data;
1270 	int err;
1271 
1272 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1273 	switch (cmd) {
1274 	case LOOP_SET_FD:
1275 		err = loop_set_fd(lo, mode, bdev, arg);
1276 		break;
1277 	case LOOP_CHANGE_FD:
1278 		err = loop_change_fd(lo, bdev, arg);
1279 		break;
1280 	case LOOP_CLR_FD:
1281 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1282 		err = loop_clr_fd(lo);
1283 		if (!err)
1284 			goto out_unlocked;
1285 		break;
1286 	case LOOP_SET_STATUS:
1287 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1288 		break;
1289 	case LOOP_GET_STATUS:
1290 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1291 		break;
1292 	case LOOP_SET_STATUS64:
1293 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1294 		break;
1295 	case LOOP_GET_STATUS64:
1296 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1297 		break;
1298 	case LOOP_SET_CAPACITY:
1299 		err = -EPERM;
1300 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1301 			err = loop_set_capacity(lo, bdev);
1302 		break;
1303 	default:
1304 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1305 	}
1306 	mutex_unlock(&lo->lo_ctl_mutex);
1307 
1308 out_unlocked:
1309 	return err;
1310 }
1311 
1312 #ifdef CONFIG_COMPAT
1313 struct compat_loop_info {
1314 	compat_int_t	lo_number;      /* ioctl r/o */
1315 	compat_dev_t	lo_device;      /* ioctl r/o */
1316 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1317 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1318 	compat_int_t	lo_offset;
1319 	compat_int_t	lo_encrypt_type;
1320 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1321 	compat_int_t	lo_flags;       /* ioctl r/o */
1322 	char		lo_name[LO_NAME_SIZE];
1323 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1324 	compat_ulong_t	lo_init[2];
1325 	char		reserved[4];
1326 };
1327 
1328 /*
1329  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1330  * - noinlined to reduce stack space usage in main part of driver
1331  */
1332 static noinline int
1333 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1334 			struct loop_info64 *info64)
1335 {
1336 	struct compat_loop_info info;
1337 
1338 	if (copy_from_user(&info, arg, sizeof(info)))
1339 		return -EFAULT;
1340 
1341 	memset(info64, 0, sizeof(*info64));
1342 	info64->lo_number = info.lo_number;
1343 	info64->lo_device = info.lo_device;
1344 	info64->lo_inode = info.lo_inode;
1345 	info64->lo_rdevice = info.lo_rdevice;
1346 	info64->lo_offset = info.lo_offset;
1347 	info64->lo_sizelimit = 0;
1348 	info64->lo_encrypt_type = info.lo_encrypt_type;
1349 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1350 	info64->lo_flags = info.lo_flags;
1351 	info64->lo_init[0] = info.lo_init[0];
1352 	info64->lo_init[1] = info.lo_init[1];
1353 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1354 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1355 	else
1356 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1357 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1358 	return 0;
1359 }
1360 
1361 /*
1362  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1363  * - noinlined to reduce stack space usage in main part of driver
1364  */
1365 static noinline int
1366 loop_info64_to_compat(const struct loop_info64 *info64,
1367 		      struct compat_loop_info __user *arg)
1368 {
1369 	struct compat_loop_info info;
1370 
1371 	memset(&info, 0, sizeof(info));
1372 	info.lo_number = info64->lo_number;
1373 	info.lo_device = info64->lo_device;
1374 	info.lo_inode = info64->lo_inode;
1375 	info.lo_rdevice = info64->lo_rdevice;
1376 	info.lo_offset = info64->lo_offset;
1377 	info.lo_encrypt_type = info64->lo_encrypt_type;
1378 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1379 	info.lo_flags = info64->lo_flags;
1380 	info.lo_init[0] = info64->lo_init[0];
1381 	info.lo_init[1] = info64->lo_init[1];
1382 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1383 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1384 	else
1385 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1386 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1387 
1388 	/* error in case values were truncated */
1389 	if (info.lo_device != info64->lo_device ||
1390 	    info.lo_rdevice != info64->lo_rdevice ||
1391 	    info.lo_inode != info64->lo_inode ||
1392 	    info.lo_offset != info64->lo_offset ||
1393 	    info.lo_init[0] != info64->lo_init[0] ||
1394 	    info.lo_init[1] != info64->lo_init[1])
1395 		return -EOVERFLOW;
1396 
1397 	if (copy_to_user(arg, &info, sizeof(info)))
1398 		return -EFAULT;
1399 	return 0;
1400 }
1401 
1402 static int
1403 loop_set_status_compat(struct loop_device *lo,
1404 		       const struct compat_loop_info __user *arg)
1405 {
1406 	struct loop_info64 info64;
1407 	int ret;
1408 
1409 	ret = loop_info64_from_compat(arg, &info64);
1410 	if (ret < 0)
1411 		return ret;
1412 	return loop_set_status(lo, &info64);
1413 }
1414 
1415 static int
1416 loop_get_status_compat(struct loop_device *lo,
1417 		       struct compat_loop_info __user *arg)
1418 {
1419 	struct loop_info64 info64;
1420 	int err = 0;
1421 
1422 	if (!arg)
1423 		err = -EINVAL;
1424 	if (!err)
1425 		err = loop_get_status(lo, &info64);
1426 	if (!err)
1427 		err = loop_info64_to_compat(&info64, arg);
1428 	return err;
1429 }
1430 
1431 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1432 			   unsigned int cmd, unsigned long arg)
1433 {
1434 	struct loop_device *lo = bdev->bd_disk->private_data;
1435 	int err;
1436 
1437 	switch(cmd) {
1438 	case LOOP_SET_STATUS:
1439 		mutex_lock(&lo->lo_ctl_mutex);
1440 		err = loop_set_status_compat(
1441 			lo, (const struct compat_loop_info __user *) arg);
1442 		mutex_unlock(&lo->lo_ctl_mutex);
1443 		break;
1444 	case LOOP_GET_STATUS:
1445 		mutex_lock(&lo->lo_ctl_mutex);
1446 		err = loop_get_status_compat(
1447 			lo, (struct compat_loop_info __user *) arg);
1448 		mutex_unlock(&lo->lo_ctl_mutex);
1449 		break;
1450 	case LOOP_SET_CAPACITY:
1451 	case LOOP_CLR_FD:
1452 	case LOOP_GET_STATUS64:
1453 	case LOOP_SET_STATUS64:
1454 		arg = (unsigned long) compat_ptr(arg);
1455 	case LOOP_SET_FD:
1456 	case LOOP_CHANGE_FD:
1457 		err = lo_ioctl(bdev, mode, cmd, arg);
1458 		break;
1459 	default:
1460 		err = -ENOIOCTLCMD;
1461 		break;
1462 	}
1463 	return err;
1464 }
1465 #endif
1466 
1467 static int lo_open(struct block_device *bdev, fmode_t mode)
1468 {
1469 	struct loop_device *lo;
1470 	int err = 0;
1471 
1472 	mutex_lock(&loop_index_mutex);
1473 	lo = bdev->bd_disk->private_data;
1474 	if (!lo) {
1475 		err = -ENXIO;
1476 		goto out;
1477 	}
1478 
1479 	mutex_lock(&lo->lo_ctl_mutex);
1480 	lo->lo_refcnt++;
1481 	mutex_unlock(&lo->lo_ctl_mutex);
1482 out:
1483 	mutex_unlock(&loop_index_mutex);
1484 	return err;
1485 }
1486 
1487 static int lo_release(struct gendisk *disk, fmode_t mode)
1488 {
1489 	struct loop_device *lo = disk->private_data;
1490 	int err;
1491 
1492 	mutex_lock(&lo->lo_ctl_mutex);
1493 
1494 	if (--lo->lo_refcnt)
1495 		goto out;
1496 
1497 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1498 		/*
1499 		 * In autoclear mode, stop the loop thread
1500 		 * and remove configuration after last close.
1501 		 */
1502 		err = loop_clr_fd(lo);
1503 		if (!err)
1504 			goto out_unlocked;
1505 	} else {
1506 		/*
1507 		 * Otherwise keep thread (if running) and config,
1508 		 * but flush possible ongoing bios in thread.
1509 		 */
1510 		loop_flush(lo);
1511 	}
1512 
1513 out:
1514 	mutex_unlock(&lo->lo_ctl_mutex);
1515 out_unlocked:
1516 	return 0;
1517 }
1518 
1519 static const struct block_device_operations lo_fops = {
1520 	.owner =	THIS_MODULE,
1521 	.open =		lo_open,
1522 	.release =	lo_release,
1523 	.ioctl =	lo_ioctl,
1524 #ifdef CONFIG_COMPAT
1525 	.compat_ioctl =	lo_compat_ioctl,
1526 #endif
1527 };
1528 
1529 /*
1530  * And now the modules code and kernel interface.
1531  */
1532 static int max_loop;
1533 module_param(max_loop, int, S_IRUGO);
1534 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1535 module_param(max_part, int, S_IRUGO);
1536 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1537 MODULE_LICENSE("GPL");
1538 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1539 
1540 int loop_register_transfer(struct loop_func_table *funcs)
1541 {
1542 	unsigned int n = funcs->number;
1543 
1544 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1545 		return -EINVAL;
1546 	xfer_funcs[n] = funcs;
1547 	return 0;
1548 }
1549 
1550 static int unregister_transfer_cb(int id, void *ptr, void *data)
1551 {
1552 	struct loop_device *lo = ptr;
1553 	struct loop_func_table *xfer = data;
1554 
1555 	mutex_lock(&lo->lo_ctl_mutex);
1556 	if (lo->lo_encryption == xfer)
1557 		loop_release_xfer(lo);
1558 	mutex_unlock(&lo->lo_ctl_mutex);
1559 	return 0;
1560 }
1561 
1562 int loop_unregister_transfer(int number)
1563 {
1564 	unsigned int n = number;
1565 	struct loop_func_table *xfer;
1566 
1567 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1568 		return -EINVAL;
1569 
1570 	xfer_funcs[n] = NULL;
1571 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1572 	return 0;
1573 }
1574 
1575 EXPORT_SYMBOL(loop_register_transfer);
1576 EXPORT_SYMBOL(loop_unregister_transfer);
1577 
1578 static int loop_add(struct loop_device **l, int i)
1579 {
1580 	struct loop_device *lo;
1581 	struct gendisk *disk;
1582 	int err;
1583 
1584 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1585 	if (!lo) {
1586 		err = -ENOMEM;
1587 		goto out;
1588 	}
1589 
1590 	err = idr_pre_get(&loop_index_idr, GFP_KERNEL);
1591 	if (err < 0)
1592 		goto out_free_dev;
1593 
1594 	if (i >= 0) {
1595 		int m;
1596 
1597 		/* create specific i in the index */
1598 		err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1599 		if (err >= 0 && i != m) {
1600 			idr_remove(&loop_index_idr, m);
1601 			err = -EEXIST;
1602 		}
1603 	} else if (i == -1) {
1604 		int m;
1605 
1606 		/* get next free nr */
1607 		err = idr_get_new(&loop_index_idr, lo, &m);
1608 		if (err >= 0)
1609 			i = m;
1610 	} else {
1611 		err = -EINVAL;
1612 	}
1613 	if (err < 0)
1614 		goto out_free_dev;
1615 
1616 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1617 	if (!lo->lo_queue)
1618 		goto out_free_dev;
1619 
1620 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1621 	if (!disk)
1622 		goto out_free_queue;
1623 
1624 	/*
1625 	 * Disable partition scanning by default. The in-kernel partition
1626 	 * scanning can be requested individually per-device during its
1627 	 * setup. Userspace can always add and remove partitions from all
1628 	 * devices. The needed partition minors are allocated from the
1629 	 * extended minor space, the main loop device numbers will continue
1630 	 * to match the loop minors, regardless of the number of partitions
1631 	 * used.
1632 	 *
1633 	 * If max_part is given, partition scanning is globally enabled for
1634 	 * all loop devices. The minors for the main loop devices will be
1635 	 * multiples of max_part.
1636 	 *
1637 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1638 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1639 	 * complicated, are too static, inflexible and may surprise
1640 	 * userspace tools. Parameters like this in general should be avoided.
1641 	 */
1642 	if (!part_shift)
1643 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1644 	disk->flags |= GENHD_FL_EXT_DEVT;
1645 	mutex_init(&lo->lo_ctl_mutex);
1646 	lo->lo_number		= i;
1647 	lo->lo_thread		= NULL;
1648 	init_waitqueue_head(&lo->lo_event);
1649 	spin_lock_init(&lo->lo_lock);
1650 	disk->major		= LOOP_MAJOR;
1651 	disk->first_minor	= i << part_shift;
1652 	disk->fops		= &lo_fops;
1653 	disk->private_data	= lo;
1654 	disk->queue		= lo->lo_queue;
1655 	sprintf(disk->disk_name, "loop%d", i);
1656 	add_disk(disk);
1657 	*l = lo;
1658 	return lo->lo_number;
1659 
1660 out_free_queue:
1661 	blk_cleanup_queue(lo->lo_queue);
1662 out_free_dev:
1663 	kfree(lo);
1664 out:
1665 	return err;
1666 }
1667 
1668 static void loop_remove(struct loop_device *lo)
1669 {
1670 	del_gendisk(lo->lo_disk);
1671 	blk_cleanup_queue(lo->lo_queue);
1672 	put_disk(lo->lo_disk);
1673 	kfree(lo);
1674 }
1675 
1676 static int find_free_cb(int id, void *ptr, void *data)
1677 {
1678 	struct loop_device *lo = ptr;
1679 	struct loop_device **l = data;
1680 
1681 	if (lo->lo_state == Lo_unbound) {
1682 		*l = lo;
1683 		return 1;
1684 	}
1685 	return 0;
1686 }
1687 
1688 static int loop_lookup(struct loop_device **l, int i)
1689 {
1690 	struct loop_device *lo;
1691 	int ret = -ENODEV;
1692 
1693 	if (i < 0) {
1694 		int err;
1695 
1696 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1697 		if (err == 1) {
1698 			*l = lo;
1699 			ret = lo->lo_number;
1700 		}
1701 		goto out;
1702 	}
1703 
1704 	/* lookup and return a specific i */
1705 	lo = idr_find(&loop_index_idr, i);
1706 	if (lo) {
1707 		*l = lo;
1708 		ret = lo->lo_number;
1709 	}
1710 out:
1711 	return ret;
1712 }
1713 
1714 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1715 {
1716 	struct loop_device *lo;
1717 	struct kobject *kobj;
1718 	int err;
1719 
1720 	mutex_lock(&loop_index_mutex);
1721 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1722 	if (err < 0)
1723 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1724 	if (err < 0)
1725 		kobj = ERR_PTR(err);
1726 	else
1727 		kobj = get_disk(lo->lo_disk);
1728 	mutex_unlock(&loop_index_mutex);
1729 
1730 	*part = 0;
1731 	return kobj;
1732 }
1733 
1734 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1735 			       unsigned long parm)
1736 {
1737 	struct loop_device *lo;
1738 	int ret = -ENOSYS;
1739 
1740 	mutex_lock(&loop_index_mutex);
1741 	switch (cmd) {
1742 	case LOOP_CTL_ADD:
1743 		ret = loop_lookup(&lo, parm);
1744 		if (ret >= 0) {
1745 			ret = -EEXIST;
1746 			break;
1747 		}
1748 		ret = loop_add(&lo, parm);
1749 		break;
1750 	case LOOP_CTL_REMOVE:
1751 		ret = loop_lookup(&lo, parm);
1752 		if (ret < 0)
1753 			break;
1754 		mutex_lock(&lo->lo_ctl_mutex);
1755 		if (lo->lo_state != Lo_unbound) {
1756 			ret = -EBUSY;
1757 			mutex_unlock(&lo->lo_ctl_mutex);
1758 			break;
1759 		}
1760 		if (lo->lo_refcnt > 0) {
1761 			ret = -EBUSY;
1762 			mutex_unlock(&lo->lo_ctl_mutex);
1763 			break;
1764 		}
1765 		lo->lo_disk->private_data = NULL;
1766 		mutex_unlock(&lo->lo_ctl_mutex);
1767 		idr_remove(&loop_index_idr, lo->lo_number);
1768 		loop_remove(lo);
1769 		break;
1770 	case LOOP_CTL_GET_FREE:
1771 		ret = loop_lookup(&lo, -1);
1772 		if (ret >= 0)
1773 			break;
1774 		ret = loop_add(&lo, -1);
1775 	}
1776 	mutex_unlock(&loop_index_mutex);
1777 
1778 	return ret;
1779 }
1780 
1781 static const struct file_operations loop_ctl_fops = {
1782 	.open		= nonseekable_open,
1783 	.unlocked_ioctl	= loop_control_ioctl,
1784 	.compat_ioctl	= loop_control_ioctl,
1785 	.owner		= THIS_MODULE,
1786 	.llseek		= noop_llseek,
1787 };
1788 
1789 static struct miscdevice loop_misc = {
1790 	.minor		= LOOP_CTRL_MINOR,
1791 	.name		= "loop-control",
1792 	.fops		= &loop_ctl_fops,
1793 };
1794 
1795 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1796 MODULE_ALIAS("devname:loop-control");
1797 
1798 static int __init loop_init(void)
1799 {
1800 	int i, nr;
1801 	unsigned long range;
1802 	struct loop_device *lo;
1803 	int err;
1804 
1805 	err = misc_register(&loop_misc);
1806 	if (err < 0)
1807 		return err;
1808 
1809 	part_shift = 0;
1810 	if (max_part > 0) {
1811 		part_shift = fls(max_part);
1812 
1813 		/*
1814 		 * Adjust max_part according to part_shift as it is exported
1815 		 * to user space so that user can decide correct minor number
1816 		 * if [s]he want to create more devices.
1817 		 *
1818 		 * Note that -1 is required because partition 0 is reserved
1819 		 * for the whole disk.
1820 		 */
1821 		max_part = (1UL << part_shift) - 1;
1822 	}
1823 
1824 	if ((1UL << part_shift) > DISK_MAX_PARTS)
1825 		return -EINVAL;
1826 
1827 	if (max_loop > 1UL << (MINORBITS - part_shift))
1828 		return -EINVAL;
1829 
1830 	/*
1831 	 * If max_loop is specified, create that many devices upfront.
1832 	 * This also becomes a hard limit. If max_loop is not specified,
1833 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1834 	 * init time. Loop devices can be requested on-demand with the
1835 	 * /dev/loop-control interface, or be instantiated by accessing
1836 	 * a 'dead' device node.
1837 	 */
1838 	if (max_loop) {
1839 		nr = max_loop;
1840 		range = max_loop << part_shift;
1841 	} else {
1842 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1843 		range = 1UL << MINORBITS;
1844 	}
1845 
1846 	if (register_blkdev(LOOP_MAJOR, "loop"))
1847 		return -EIO;
1848 
1849 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1850 				  THIS_MODULE, loop_probe, NULL, NULL);
1851 
1852 	/* pre-create number of devices given by config or max_loop */
1853 	mutex_lock(&loop_index_mutex);
1854 	for (i = 0; i < nr; i++)
1855 		loop_add(&lo, i);
1856 	mutex_unlock(&loop_index_mutex);
1857 
1858 	printk(KERN_INFO "loop: module loaded\n");
1859 	return 0;
1860 }
1861 
1862 static int loop_exit_cb(int id, void *ptr, void *data)
1863 {
1864 	struct loop_device *lo = ptr;
1865 
1866 	loop_remove(lo);
1867 	return 0;
1868 }
1869 
1870 static void __exit loop_exit(void)
1871 {
1872 	unsigned long range;
1873 
1874 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1875 
1876 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1877 	idr_remove_all(&loop_index_idr);
1878 	idr_destroy(&loop_index_idr);
1879 
1880 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1881 	unregister_blkdev(LOOP_MAJOR, "loop");
1882 
1883 	misc_deregister(&loop_misc);
1884 }
1885 
1886 module_init(loop_init);
1887 module_exit(loop_exit);
1888 
1889 #ifndef MODULE
1890 static int __init max_loop_setup(char *str)
1891 {
1892 	max_loop = simple_strtol(str, NULL, 0);
1893 	return 1;
1894 }
1895 
1896 __setup("max_loop=", max_loop_setup);
1897 #endif
1898