1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 if (lo->lo_state == Lo_bound) 218 blk_mq_freeze_queue(lo->lo_queue); 219 lo->use_dio = use_dio; 220 if (use_dio) { 221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 222 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 223 } else { 224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 226 } 227 if (lo->lo_state == Lo_bound) 228 blk_mq_unfreeze_queue(lo->lo_queue); 229 } 230 231 /** 232 * loop_validate_block_size() - validates the passed in block size 233 * @bsize: size to validate 234 */ 235 static int 236 loop_validate_block_size(unsigned short bsize) 237 { 238 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 239 return -EINVAL; 240 241 return 0; 242 } 243 244 /** 245 * loop_set_size() - sets device size and notifies userspace 246 * @lo: struct loop_device to set the size for 247 * @size: new size of the loop device 248 * 249 * Callers must validate that the size passed into this function fits into 250 * a sector_t, eg using loop_validate_size() 251 */ 252 static void loop_set_size(struct loop_device *lo, loff_t size) 253 { 254 struct block_device *bdev = lo->lo_device; 255 256 bd_set_size(bdev, size << SECTOR_SHIFT); 257 258 set_capacity_revalidate_and_notify(lo->lo_disk, size, false); 259 } 260 261 static inline int 262 lo_do_transfer(struct loop_device *lo, int cmd, 263 struct page *rpage, unsigned roffs, 264 struct page *lpage, unsigned loffs, 265 int size, sector_t rblock) 266 { 267 int ret; 268 269 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 270 if (likely(!ret)) 271 return 0; 272 273 printk_ratelimited(KERN_ERR 274 "loop: Transfer error at byte offset %llu, length %i.\n", 275 (unsigned long long)rblock << 9, size); 276 return ret; 277 } 278 279 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 280 { 281 struct iov_iter i; 282 ssize_t bw; 283 284 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 285 286 file_start_write(file); 287 bw = vfs_iter_write(file, &i, ppos, 0); 288 file_end_write(file); 289 290 if (likely(bw == bvec->bv_len)) 291 return 0; 292 293 printk_ratelimited(KERN_ERR 294 "loop: Write error at byte offset %llu, length %i.\n", 295 (unsigned long long)*ppos, bvec->bv_len); 296 if (bw >= 0) 297 bw = -EIO; 298 return bw; 299 } 300 301 static int lo_write_simple(struct loop_device *lo, struct request *rq, 302 loff_t pos) 303 { 304 struct bio_vec bvec; 305 struct req_iterator iter; 306 int ret = 0; 307 308 rq_for_each_segment(bvec, rq, iter) { 309 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 310 if (ret < 0) 311 break; 312 cond_resched(); 313 } 314 315 return ret; 316 } 317 318 /* 319 * This is the slow, transforming version that needs to double buffer the 320 * data as it cannot do the transformations in place without having direct 321 * access to the destination pages of the backing file. 322 */ 323 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 324 loff_t pos) 325 { 326 struct bio_vec bvec, b; 327 struct req_iterator iter; 328 struct page *page; 329 int ret = 0; 330 331 page = alloc_page(GFP_NOIO); 332 if (unlikely(!page)) 333 return -ENOMEM; 334 335 rq_for_each_segment(bvec, rq, iter) { 336 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 337 bvec.bv_offset, bvec.bv_len, pos >> 9); 338 if (unlikely(ret)) 339 break; 340 341 b.bv_page = page; 342 b.bv_offset = 0; 343 b.bv_len = bvec.bv_len; 344 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 345 if (ret < 0) 346 break; 347 } 348 349 __free_page(page); 350 return ret; 351 } 352 353 static int lo_read_simple(struct loop_device *lo, struct request *rq, 354 loff_t pos) 355 { 356 struct bio_vec bvec; 357 struct req_iterator iter; 358 struct iov_iter i; 359 ssize_t len; 360 361 rq_for_each_segment(bvec, rq, iter) { 362 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 363 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 364 if (len < 0) 365 return len; 366 367 flush_dcache_page(bvec.bv_page); 368 369 if (len != bvec.bv_len) { 370 struct bio *bio; 371 372 __rq_for_each_bio(bio, rq) 373 zero_fill_bio(bio); 374 break; 375 } 376 cond_resched(); 377 } 378 379 return 0; 380 } 381 382 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 383 loff_t pos) 384 { 385 struct bio_vec bvec, b; 386 struct req_iterator iter; 387 struct iov_iter i; 388 struct page *page; 389 ssize_t len; 390 int ret = 0; 391 392 page = alloc_page(GFP_NOIO); 393 if (unlikely(!page)) 394 return -ENOMEM; 395 396 rq_for_each_segment(bvec, rq, iter) { 397 loff_t offset = pos; 398 399 b.bv_page = page; 400 b.bv_offset = 0; 401 b.bv_len = bvec.bv_len; 402 403 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 404 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 405 if (len < 0) { 406 ret = len; 407 goto out_free_page; 408 } 409 410 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 411 bvec.bv_offset, len, offset >> 9); 412 if (ret) 413 goto out_free_page; 414 415 flush_dcache_page(bvec.bv_page); 416 417 if (len != bvec.bv_len) { 418 struct bio *bio; 419 420 __rq_for_each_bio(bio, rq) 421 zero_fill_bio(bio); 422 break; 423 } 424 } 425 426 ret = 0; 427 out_free_page: 428 __free_page(page); 429 return ret; 430 } 431 432 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 433 int mode) 434 { 435 /* 436 * We use fallocate to manipulate the space mappings used by the image 437 * a.k.a. discard/zerorange. However we do not support this if 438 * encryption is enabled, because it may give an attacker useful 439 * information. 440 */ 441 struct file *file = lo->lo_backing_file; 442 struct request_queue *q = lo->lo_queue; 443 int ret; 444 445 mode |= FALLOC_FL_KEEP_SIZE; 446 447 if (!blk_queue_discard(q)) { 448 ret = -EOPNOTSUPP; 449 goto out; 450 } 451 452 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 453 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 454 ret = -EIO; 455 out: 456 return ret; 457 } 458 459 static int lo_req_flush(struct loop_device *lo, struct request *rq) 460 { 461 struct file *file = lo->lo_backing_file; 462 int ret = vfs_fsync(file, 0); 463 if (unlikely(ret && ret != -EINVAL)) 464 ret = -EIO; 465 466 return ret; 467 } 468 469 static void lo_complete_rq(struct request *rq) 470 { 471 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 472 blk_status_t ret = BLK_STS_OK; 473 474 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 475 req_op(rq) != REQ_OP_READ) { 476 if (cmd->ret < 0) 477 ret = errno_to_blk_status(cmd->ret); 478 goto end_io; 479 } 480 481 /* 482 * Short READ - if we got some data, advance our request and 483 * retry it. If we got no data, end the rest with EIO. 484 */ 485 if (cmd->ret) { 486 blk_update_request(rq, BLK_STS_OK, cmd->ret); 487 cmd->ret = 0; 488 blk_mq_requeue_request(rq, true); 489 } else { 490 if (cmd->use_aio) { 491 struct bio *bio = rq->bio; 492 493 while (bio) { 494 zero_fill_bio(bio); 495 bio = bio->bi_next; 496 } 497 } 498 ret = BLK_STS_IOERR; 499 end_io: 500 blk_mq_end_request(rq, ret); 501 } 502 } 503 504 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 505 { 506 struct request *rq = blk_mq_rq_from_pdu(cmd); 507 508 if (!atomic_dec_and_test(&cmd->ref)) 509 return; 510 kfree(cmd->bvec); 511 cmd->bvec = NULL; 512 if (likely(!blk_should_fake_timeout(rq->q))) 513 blk_mq_complete_request(rq); 514 } 515 516 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 517 { 518 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 519 520 if (cmd->css) 521 css_put(cmd->css); 522 cmd->ret = ret; 523 lo_rw_aio_do_completion(cmd); 524 } 525 526 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 527 loff_t pos, bool rw) 528 { 529 struct iov_iter iter; 530 struct req_iterator rq_iter; 531 struct bio_vec *bvec; 532 struct request *rq = blk_mq_rq_from_pdu(cmd); 533 struct bio *bio = rq->bio; 534 struct file *file = lo->lo_backing_file; 535 struct bio_vec tmp; 536 unsigned int offset; 537 int nr_bvec = 0; 538 int ret; 539 540 rq_for_each_bvec(tmp, rq, rq_iter) 541 nr_bvec++; 542 543 if (rq->bio != rq->biotail) { 544 545 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 546 GFP_NOIO); 547 if (!bvec) 548 return -EIO; 549 cmd->bvec = bvec; 550 551 /* 552 * The bios of the request may be started from the middle of 553 * the 'bvec' because of bio splitting, so we can't directly 554 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 555 * API will take care of all details for us. 556 */ 557 rq_for_each_bvec(tmp, rq, rq_iter) { 558 *bvec = tmp; 559 bvec++; 560 } 561 bvec = cmd->bvec; 562 offset = 0; 563 } else { 564 /* 565 * Same here, this bio may be started from the middle of the 566 * 'bvec' because of bio splitting, so offset from the bvec 567 * must be passed to iov iterator 568 */ 569 offset = bio->bi_iter.bi_bvec_done; 570 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 571 } 572 atomic_set(&cmd->ref, 2); 573 574 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 575 iter.iov_offset = offset; 576 577 cmd->iocb.ki_pos = pos; 578 cmd->iocb.ki_filp = file; 579 cmd->iocb.ki_complete = lo_rw_aio_complete; 580 cmd->iocb.ki_flags = IOCB_DIRECT; 581 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 582 if (cmd->css) 583 kthread_associate_blkcg(cmd->css); 584 585 if (rw == WRITE) 586 ret = call_write_iter(file, &cmd->iocb, &iter); 587 else 588 ret = call_read_iter(file, &cmd->iocb, &iter); 589 590 lo_rw_aio_do_completion(cmd); 591 kthread_associate_blkcg(NULL); 592 593 if (ret != -EIOCBQUEUED) 594 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 595 return 0; 596 } 597 598 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 599 { 600 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 601 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 602 603 /* 604 * lo_write_simple and lo_read_simple should have been covered 605 * by io submit style function like lo_rw_aio(), one blocker 606 * is that lo_read_simple() need to call flush_dcache_page after 607 * the page is written from kernel, and it isn't easy to handle 608 * this in io submit style function which submits all segments 609 * of the req at one time. And direct read IO doesn't need to 610 * run flush_dcache_page(). 611 */ 612 switch (req_op(rq)) { 613 case REQ_OP_FLUSH: 614 return lo_req_flush(lo, rq); 615 case REQ_OP_WRITE_ZEROES: 616 /* 617 * If the caller doesn't want deallocation, call zeroout to 618 * write zeroes the range. Otherwise, punch them out. 619 */ 620 return lo_fallocate(lo, rq, pos, 621 (rq->cmd_flags & REQ_NOUNMAP) ? 622 FALLOC_FL_ZERO_RANGE : 623 FALLOC_FL_PUNCH_HOLE); 624 case REQ_OP_DISCARD: 625 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 626 case REQ_OP_WRITE: 627 if (lo->transfer) 628 return lo_write_transfer(lo, rq, pos); 629 else if (cmd->use_aio) 630 return lo_rw_aio(lo, cmd, pos, WRITE); 631 else 632 return lo_write_simple(lo, rq, pos); 633 case REQ_OP_READ: 634 if (lo->transfer) 635 return lo_read_transfer(lo, rq, pos); 636 else if (cmd->use_aio) 637 return lo_rw_aio(lo, cmd, pos, READ); 638 else 639 return lo_read_simple(lo, rq, pos); 640 default: 641 WARN_ON_ONCE(1); 642 return -EIO; 643 } 644 } 645 646 static inline void loop_update_dio(struct loop_device *lo) 647 { 648 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 649 lo->use_dio); 650 } 651 652 static void loop_reread_partitions(struct loop_device *lo, 653 struct block_device *bdev) 654 { 655 int rc; 656 657 mutex_lock(&bdev->bd_mutex); 658 rc = bdev_disk_changed(bdev, false); 659 mutex_unlock(&bdev->bd_mutex); 660 if (rc) 661 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 662 __func__, lo->lo_number, lo->lo_file_name, rc); 663 } 664 665 static inline int is_loop_device(struct file *file) 666 { 667 struct inode *i = file->f_mapping->host; 668 669 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 670 } 671 672 static int loop_validate_file(struct file *file, struct block_device *bdev) 673 { 674 struct inode *inode = file->f_mapping->host; 675 struct file *f = file; 676 677 /* Avoid recursion */ 678 while (is_loop_device(f)) { 679 struct loop_device *l; 680 681 if (f->f_mapping->host->i_bdev == bdev) 682 return -EBADF; 683 684 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 685 if (l->lo_state != Lo_bound) { 686 return -EINVAL; 687 } 688 f = l->lo_backing_file; 689 } 690 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 691 return -EINVAL; 692 return 0; 693 } 694 695 /* 696 * loop_change_fd switched the backing store of a loopback device to 697 * a new file. This is useful for operating system installers to free up 698 * the original file and in High Availability environments to switch to 699 * an alternative location for the content in case of server meltdown. 700 * This can only work if the loop device is used read-only, and if the 701 * new backing store is the same size and type as the old backing store. 702 */ 703 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 704 unsigned int arg) 705 { 706 struct file *file = NULL, *old_file; 707 int error; 708 bool partscan; 709 710 error = mutex_lock_killable(&loop_ctl_mutex); 711 if (error) 712 return error; 713 error = -ENXIO; 714 if (lo->lo_state != Lo_bound) 715 goto out_err; 716 717 /* the loop device has to be read-only */ 718 error = -EINVAL; 719 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 720 goto out_err; 721 722 error = -EBADF; 723 file = fget(arg); 724 if (!file) 725 goto out_err; 726 727 error = loop_validate_file(file, bdev); 728 if (error) 729 goto out_err; 730 731 old_file = lo->lo_backing_file; 732 733 error = -EINVAL; 734 735 /* size of the new backing store needs to be the same */ 736 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 737 goto out_err; 738 739 /* and ... switch */ 740 blk_mq_freeze_queue(lo->lo_queue); 741 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 742 lo->lo_backing_file = file; 743 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 744 mapping_set_gfp_mask(file->f_mapping, 745 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 746 loop_update_dio(lo); 747 blk_mq_unfreeze_queue(lo->lo_queue); 748 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 749 mutex_unlock(&loop_ctl_mutex); 750 /* 751 * We must drop file reference outside of loop_ctl_mutex as dropping 752 * the file ref can take bd_mutex which creates circular locking 753 * dependency. 754 */ 755 fput(old_file); 756 if (partscan) 757 loop_reread_partitions(lo, bdev); 758 return 0; 759 760 out_err: 761 mutex_unlock(&loop_ctl_mutex); 762 if (file) 763 fput(file); 764 return error; 765 } 766 767 /* loop sysfs attributes */ 768 769 static ssize_t loop_attr_show(struct device *dev, char *page, 770 ssize_t (*callback)(struct loop_device *, char *)) 771 { 772 struct gendisk *disk = dev_to_disk(dev); 773 struct loop_device *lo = disk->private_data; 774 775 return callback(lo, page); 776 } 777 778 #define LOOP_ATTR_RO(_name) \ 779 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 780 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 781 struct device_attribute *attr, char *b) \ 782 { \ 783 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 784 } \ 785 static struct device_attribute loop_attr_##_name = \ 786 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 787 788 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 789 { 790 ssize_t ret; 791 char *p = NULL; 792 793 spin_lock_irq(&lo->lo_lock); 794 if (lo->lo_backing_file) 795 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 796 spin_unlock_irq(&lo->lo_lock); 797 798 if (IS_ERR_OR_NULL(p)) 799 ret = PTR_ERR(p); 800 else { 801 ret = strlen(p); 802 memmove(buf, p, ret); 803 buf[ret++] = '\n'; 804 buf[ret] = 0; 805 } 806 807 return ret; 808 } 809 810 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 811 { 812 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 813 } 814 815 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 816 { 817 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 818 } 819 820 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 821 { 822 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 823 824 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 825 } 826 827 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 828 { 829 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 830 831 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 832 } 833 834 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 835 { 836 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 837 838 return sprintf(buf, "%s\n", dio ? "1" : "0"); 839 } 840 841 LOOP_ATTR_RO(backing_file); 842 LOOP_ATTR_RO(offset); 843 LOOP_ATTR_RO(sizelimit); 844 LOOP_ATTR_RO(autoclear); 845 LOOP_ATTR_RO(partscan); 846 LOOP_ATTR_RO(dio); 847 848 static struct attribute *loop_attrs[] = { 849 &loop_attr_backing_file.attr, 850 &loop_attr_offset.attr, 851 &loop_attr_sizelimit.attr, 852 &loop_attr_autoclear.attr, 853 &loop_attr_partscan.attr, 854 &loop_attr_dio.attr, 855 NULL, 856 }; 857 858 static struct attribute_group loop_attribute_group = { 859 .name = "loop", 860 .attrs= loop_attrs, 861 }; 862 863 static void loop_sysfs_init(struct loop_device *lo) 864 { 865 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 866 &loop_attribute_group); 867 } 868 869 static void loop_sysfs_exit(struct loop_device *lo) 870 { 871 if (lo->sysfs_inited) 872 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 873 &loop_attribute_group); 874 } 875 876 static void loop_config_discard(struct loop_device *lo) 877 { 878 struct file *file = lo->lo_backing_file; 879 struct inode *inode = file->f_mapping->host; 880 struct request_queue *q = lo->lo_queue; 881 882 /* 883 * If the backing device is a block device, mirror its zeroing 884 * capability. Set the discard sectors to the block device's zeroing 885 * capabilities because loop discards result in blkdev_issue_zeroout(), 886 * not blkdev_issue_discard(). This maintains consistent behavior with 887 * file-backed loop devices: discarded regions read back as zero. 888 */ 889 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) { 890 struct request_queue *backingq; 891 892 backingq = bdev_get_queue(inode->i_bdev); 893 blk_queue_max_discard_sectors(q, 894 backingq->limits.max_write_zeroes_sectors); 895 896 blk_queue_max_write_zeroes_sectors(q, 897 backingq->limits.max_write_zeroes_sectors); 898 899 /* 900 * We use punch hole to reclaim the free space used by the 901 * image a.k.a. discard. However we do not support discard if 902 * encryption is enabled, because it may give an attacker 903 * useful information. 904 */ 905 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) { 906 q->limits.discard_granularity = 0; 907 q->limits.discard_alignment = 0; 908 blk_queue_max_discard_sectors(q, 0); 909 blk_queue_max_write_zeroes_sectors(q, 0); 910 911 } else { 912 q->limits.discard_granularity = inode->i_sb->s_blocksize; 913 q->limits.discard_alignment = 0; 914 915 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 916 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 917 } 918 919 if (q->limits.max_write_zeroes_sectors) 920 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 921 else 922 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 923 } 924 925 static void loop_unprepare_queue(struct loop_device *lo) 926 { 927 kthread_flush_worker(&lo->worker); 928 kthread_stop(lo->worker_task); 929 } 930 931 static int loop_kthread_worker_fn(void *worker_ptr) 932 { 933 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 934 return kthread_worker_fn(worker_ptr); 935 } 936 937 static int loop_prepare_queue(struct loop_device *lo) 938 { 939 kthread_init_worker(&lo->worker); 940 lo->worker_task = kthread_run(loop_kthread_worker_fn, 941 &lo->worker, "loop%d", lo->lo_number); 942 if (IS_ERR(lo->worker_task)) 943 return -ENOMEM; 944 set_user_nice(lo->worker_task, MIN_NICE); 945 return 0; 946 } 947 948 static void loop_update_rotational(struct loop_device *lo) 949 { 950 struct file *file = lo->lo_backing_file; 951 struct inode *file_inode = file->f_mapping->host; 952 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 953 struct request_queue *q = lo->lo_queue; 954 bool nonrot = true; 955 956 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 957 if (file_bdev) 958 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 959 960 if (nonrot) 961 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 962 else 963 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 964 } 965 966 static int 967 loop_release_xfer(struct loop_device *lo) 968 { 969 int err = 0; 970 struct loop_func_table *xfer = lo->lo_encryption; 971 972 if (xfer) { 973 if (xfer->release) 974 err = xfer->release(lo); 975 lo->transfer = NULL; 976 lo->lo_encryption = NULL; 977 module_put(xfer->owner); 978 } 979 return err; 980 } 981 982 static int 983 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 984 const struct loop_info64 *i) 985 { 986 int err = 0; 987 988 if (xfer) { 989 struct module *owner = xfer->owner; 990 991 if (!try_module_get(owner)) 992 return -EINVAL; 993 if (xfer->init) 994 err = xfer->init(lo, i); 995 if (err) 996 module_put(owner); 997 else 998 lo->lo_encryption = xfer; 999 } 1000 return err; 1001 } 1002 1003 /** 1004 * loop_set_status_from_info - configure device from loop_info 1005 * @lo: struct loop_device to configure 1006 * @info: struct loop_info64 to configure the device with 1007 * 1008 * Configures the loop device parameters according to the passed 1009 * in loop_info64 configuration. 1010 */ 1011 static int 1012 loop_set_status_from_info(struct loop_device *lo, 1013 const struct loop_info64 *info) 1014 { 1015 int err; 1016 struct loop_func_table *xfer; 1017 kuid_t uid = current_uid(); 1018 1019 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1020 return -EINVAL; 1021 1022 err = loop_release_xfer(lo); 1023 if (err) 1024 return err; 1025 1026 if (info->lo_encrypt_type) { 1027 unsigned int type = info->lo_encrypt_type; 1028 1029 if (type >= MAX_LO_CRYPT) 1030 return -EINVAL; 1031 xfer = xfer_funcs[type]; 1032 if (xfer == NULL) 1033 return -EINVAL; 1034 } else 1035 xfer = NULL; 1036 1037 err = loop_init_xfer(lo, xfer, info); 1038 if (err) 1039 return err; 1040 1041 lo->lo_offset = info->lo_offset; 1042 lo->lo_sizelimit = info->lo_sizelimit; 1043 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1044 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1045 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1046 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1047 1048 if (!xfer) 1049 xfer = &none_funcs; 1050 lo->transfer = xfer->transfer; 1051 lo->ioctl = xfer->ioctl; 1052 1053 lo->lo_flags = info->lo_flags; 1054 1055 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1056 lo->lo_init[0] = info->lo_init[0]; 1057 lo->lo_init[1] = info->lo_init[1]; 1058 if (info->lo_encrypt_key_size) { 1059 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1060 info->lo_encrypt_key_size); 1061 lo->lo_key_owner = uid; 1062 } 1063 1064 return 0; 1065 } 1066 1067 static int loop_configure(struct loop_device *lo, fmode_t mode, 1068 struct block_device *bdev, 1069 const struct loop_config *config) 1070 { 1071 struct file *file; 1072 struct inode *inode; 1073 struct address_space *mapping; 1074 struct block_device *claimed_bdev = NULL; 1075 int error; 1076 loff_t size; 1077 bool partscan; 1078 unsigned short bsize; 1079 1080 /* This is safe, since we have a reference from open(). */ 1081 __module_get(THIS_MODULE); 1082 1083 error = -EBADF; 1084 file = fget(config->fd); 1085 if (!file) 1086 goto out; 1087 1088 /* 1089 * If we don't hold exclusive handle for the device, upgrade to it 1090 * here to avoid changing device under exclusive owner. 1091 */ 1092 if (!(mode & FMODE_EXCL)) { 1093 claimed_bdev = bd_start_claiming(bdev, loop_configure); 1094 if (IS_ERR(claimed_bdev)) { 1095 error = PTR_ERR(claimed_bdev); 1096 goto out_putf; 1097 } 1098 } 1099 1100 error = mutex_lock_killable(&loop_ctl_mutex); 1101 if (error) 1102 goto out_bdev; 1103 1104 error = -EBUSY; 1105 if (lo->lo_state != Lo_unbound) 1106 goto out_unlock; 1107 1108 error = loop_validate_file(file, bdev); 1109 if (error) 1110 goto out_unlock; 1111 1112 mapping = file->f_mapping; 1113 inode = mapping->host; 1114 1115 size = get_loop_size(lo, file); 1116 1117 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1118 error = -EINVAL; 1119 goto out_unlock; 1120 } 1121 1122 if (config->block_size) { 1123 error = loop_validate_block_size(config->block_size); 1124 if (error) 1125 goto out_unlock; 1126 } 1127 1128 error = loop_set_status_from_info(lo, &config->info); 1129 if (error) 1130 goto out_unlock; 1131 1132 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1133 !file->f_op->write_iter) 1134 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1135 1136 error = loop_prepare_queue(lo); 1137 if (error) 1138 goto out_unlock; 1139 1140 set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1141 1142 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1143 lo->lo_device = bdev; 1144 lo->lo_backing_file = file; 1145 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1146 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1147 1148 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1149 blk_queue_write_cache(lo->lo_queue, true, false); 1150 1151 if (config->block_size) 1152 bsize = config->block_size; 1153 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1154 /* In case of direct I/O, match underlying block size */ 1155 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1156 else 1157 bsize = 512; 1158 1159 blk_queue_logical_block_size(lo->lo_queue, bsize); 1160 blk_queue_physical_block_size(lo->lo_queue, bsize); 1161 blk_queue_io_min(lo->lo_queue, bsize); 1162 1163 loop_update_rotational(lo); 1164 loop_update_dio(lo); 1165 loop_sysfs_init(lo); 1166 loop_set_size(lo, size); 1167 1168 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 1169 block_size(inode->i_bdev) : PAGE_SIZE); 1170 1171 lo->lo_state = Lo_bound; 1172 if (part_shift) 1173 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1174 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1175 1176 /* Grab the block_device to prevent its destruction after we 1177 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1178 */ 1179 bdgrab(bdev); 1180 mutex_unlock(&loop_ctl_mutex); 1181 if (partscan) 1182 loop_reread_partitions(lo, bdev); 1183 if (claimed_bdev) 1184 bd_abort_claiming(bdev, claimed_bdev, loop_configure); 1185 return 0; 1186 1187 out_unlock: 1188 mutex_unlock(&loop_ctl_mutex); 1189 out_bdev: 1190 if (claimed_bdev) 1191 bd_abort_claiming(bdev, claimed_bdev, loop_configure); 1192 out_putf: 1193 fput(file); 1194 out: 1195 /* This is safe: open() is still holding a reference. */ 1196 module_put(THIS_MODULE); 1197 return error; 1198 } 1199 1200 static int __loop_clr_fd(struct loop_device *lo, bool release) 1201 { 1202 struct file *filp = NULL; 1203 gfp_t gfp = lo->old_gfp_mask; 1204 struct block_device *bdev = lo->lo_device; 1205 int err = 0; 1206 bool partscan = false; 1207 int lo_number; 1208 1209 mutex_lock(&loop_ctl_mutex); 1210 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1211 err = -ENXIO; 1212 goto out_unlock; 1213 } 1214 1215 filp = lo->lo_backing_file; 1216 if (filp == NULL) { 1217 err = -EINVAL; 1218 goto out_unlock; 1219 } 1220 1221 /* freeze request queue during the transition */ 1222 blk_mq_freeze_queue(lo->lo_queue); 1223 1224 spin_lock_irq(&lo->lo_lock); 1225 lo->lo_backing_file = NULL; 1226 spin_unlock_irq(&lo->lo_lock); 1227 1228 loop_release_xfer(lo); 1229 lo->transfer = NULL; 1230 lo->ioctl = NULL; 1231 lo->lo_device = NULL; 1232 lo->lo_encryption = NULL; 1233 lo->lo_offset = 0; 1234 lo->lo_sizelimit = 0; 1235 lo->lo_encrypt_key_size = 0; 1236 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1237 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1238 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1239 blk_queue_logical_block_size(lo->lo_queue, 512); 1240 blk_queue_physical_block_size(lo->lo_queue, 512); 1241 blk_queue_io_min(lo->lo_queue, 512); 1242 if (bdev) { 1243 bdput(bdev); 1244 invalidate_bdev(bdev); 1245 bdev->bd_inode->i_mapping->wb_err = 0; 1246 } 1247 set_capacity(lo->lo_disk, 0); 1248 loop_sysfs_exit(lo); 1249 if (bdev) { 1250 bd_set_size(bdev, 0); 1251 /* let user-space know about this change */ 1252 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1253 } 1254 mapping_set_gfp_mask(filp->f_mapping, gfp); 1255 /* This is safe: open() is still holding a reference. */ 1256 module_put(THIS_MODULE); 1257 blk_mq_unfreeze_queue(lo->lo_queue); 1258 1259 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1260 lo_number = lo->lo_number; 1261 loop_unprepare_queue(lo); 1262 out_unlock: 1263 mutex_unlock(&loop_ctl_mutex); 1264 if (partscan) { 1265 /* 1266 * bd_mutex has been held already in release path, so don't 1267 * acquire it if this function is called in such case. 1268 * 1269 * If the reread partition isn't from release path, lo_refcnt 1270 * must be at least one and it can only become zero when the 1271 * current holder is released. 1272 */ 1273 if (!release) 1274 mutex_lock(&bdev->bd_mutex); 1275 err = bdev_disk_changed(bdev, false); 1276 if (!release) 1277 mutex_unlock(&bdev->bd_mutex); 1278 if (err) 1279 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1280 __func__, lo_number, err); 1281 /* Device is gone, no point in returning error */ 1282 err = 0; 1283 } 1284 1285 /* 1286 * lo->lo_state is set to Lo_unbound here after above partscan has 1287 * finished. 1288 * 1289 * There cannot be anybody else entering __loop_clr_fd() as 1290 * lo->lo_backing_file is already cleared and Lo_rundown state 1291 * protects us from all the other places trying to change the 'lo' 1292 * device. 1293 */ 1294 mutex_lock(&loop_ctl_mutex); 1295 lo->lo_flags = 0; 1296 if (!part_shift) 1297 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1298 lo->lo_state = Lo_unbound; 1299 mutex_unlock(&loop_ctl_mutex); 1300 1301 /* 1302 * Need not hold loop_ctl_mutex to fput backing file. 1303 * Calling fput holding loop_ctl_mutex triggers a circular 1304 * lock dependency possibility warning as fput can take 1305 * bd_mutex which is usually taken before loop_ctl_mutex. 1306 */ 1307 if (filp) 1308 fput(filp); 1309 return err; 1310 } 1311 1312 static int loop_clr_fd(struct loop_device *lo) 1313 { 1314 int err; 1315 1316 err = mutex_lock_killable(&loop_ctl_mutex); 1317 if (err) 1318 return err; 1319 if (lo->lo_state != Lo_bound) { 1320 mutex_unlock(&loop_ctl_mutex); 1321 return -ENXIO; 1322 } 1323 /* 1324 * If we've explicitly asked to tear down the loop device, 1325 * and it has an elevated reference count, set it for auto-teardown when 1326 * the last reference goes away. This stops $!~#$@ udev from 1327 * preventing teardown because it decided that it needs to run blkid on 1328 * the loopback device whenever they appear. xfstests is notorious for 1329 * failing tests because blkid via udev races with a losetup 1330 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1331 * command to fail with EBUSY. 1332 */ 1333 if (atomic_read(&lo->lo_refcnt) > 1) { 1334 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1335 mutex_unlock(&loop_ctl_mutex); 1336 return 0; 1337 } 1338 lo->lo_state = Lo_rundown; 1339 mutex_unlock(&loop_ctl_mutex); 1340 1341 return __loop_clr_fd(lo, false); 1342 } 1343 1344 static int 1345 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1346 { 1347 int err; 1348 struct block_device *bdev; 1349 kuid_t uid = current_uid(); 1350 int prev_lo_flags; 1351 bool partscan = false; 1352 bool size_changed = false; 1353 1354 err = mutex_lock_killable(&loop_ctl_mutex); 1355 if (err) 1356 return err; 1357 if (lo->lo_encrypt_key_size && 1358 !uid_eq(lo->lo_key_owner, uid) && 1359 !capable(CAP_SYS_ADMIN)) { 1360 err = -EPERM; 1361 goto out_unlock; 1362 } 1363 if (lo->lo_state != Lo_bound) { 1364 err = -ENXIO; 1365 goto out_unlock; 1366 } 1367 1368 if (lo->lo_offset != info->lo_offset || 1369 lo->lo_sizelimit != info->lo_sizelimit) { 1370 size_changed = true; 1371 sync_blockdev(lo->lo_device); 1372 invalidate_bdev(lo->lo_device); 1373 } 1374 1375 /* I/O need to be drained during transfer transition */ 1376 blk_mq_freeze_queue(lo->lo_queue); 1377 1378 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1379 /* If any pages were dirtied after invalidate_bdev(), try again */ 1380 err = -EAGAIN; 1381 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1382 __func__, lo->lo_number, lo->lo_file_name, 1383 lo->lo_device->bd_inode->i_mapping->nrpages); 1384 goto out_unfreeze; 1385 } 1386 1387 prev_lo_flags = lo->lo_flags; 1388 1389 err = loop_set_status_from_info(lo, info); 1390 if (err) 1391 goto out_unfreeze; 1392 1393 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1394 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1395 /* For those flags, use the previous values instead */ 1396 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1397 /* For flags that can't be cleared, use previous values too */ 1398 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1399 1400 if (size_changed) { 1401 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1402 lo->lo_backing_file); 1403 loop_set_size(lo, new_size); 1404 } 1405 1406 loop_config_discard(lo); 1407 1408 /* update dio if lo_offset or transfer is changed */ 1409 __loop_update_dio(lo, lo->use_dio); 1410 1411 out_unfreeze: 1412 blk_mq_unfreeze_queue(lo->lo_queue); 1413 1414 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1415 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1416 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1417 bdev = lo->lo_device; 1418 partscan = true; 1419 } 1420 out_unlock: 1421 mutex_unlock(&loop_ctl_mutex); 1422 if (partscan) 1423 loop_reread_partitions(lo, bdev); 1424 1425 return err; 1426 } 1427 1428 static int 1429 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1430 { 1431 struct path path; 1432 struct kstat stat; 1433 int ret; 1434 1435 ret = mutex_lock_killable(&loop_ctl_mutex); 1436 if (ret) 1437 return ret; 1438 if (lo->lo_state != Lo_bound) { 1439 mutex_unlock(&loop_ctl_mutex); 1440 return -ENXIO; 1441 } 1442 1443 memset(info, 0, sizeof(*info)); 1444 info->lo_number = lo->lo_number; 1445 info->lo_offset = lo->lo_offset; 1446 info->lo_sizelimit = lo->lo_sizelimit; 1447 info->lo_flags = lo->lo_flags; 1448 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1449 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1450 info->lo_encrypt_type = 1451 lo->lo_encryption ? lo->lo_encryption->number : 0; 1452 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1453 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1454 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1455 lo->lo_encrypt_key_size); 1456 } 1457 1458 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1459 path = lo->lo_backing_file->f_path; 1460 path_get(&path); 1461 mutex_unlock(&loop_ctl_mutex); 1462 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1463 if (!ret) { 1464 info->lo_device = huge_encode_dev(stat.dev); 1465 info->lo_inode = stat.ino; 1466 info->lo_rdevice = huge_encode_dev(stat.rdev); 1467 } 1468 path_put(&path); 1469 return ret; 1470 } 1471 1472 static void 1473 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1474 { 1475 memset(info64, 0, sizeof(*info64)); 1476 info64->lo_number = info->lo_number; 1477 info64->lo_device = info->lo_device; 1478 info64->lo_inode = info->lo_inode; 1479 info64->lo_rdevice = info->lo_rdevice; 1480 info64->lo_offset = info->lo_offset; 1481 info64->lo_sizelimit = 0; 1482 info64->lo_encrypt_type = info->lo_encrypt_type; 1483 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1484 info64->lo_flags = info->lo_flags; 1485 info64->lo_init[0] = info->lo_init[0]; 1486 info64->lo_init[1] = info->lo_init[1]; 1487 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1488 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1489 else 1490 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1491 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1492 } 1493 1494 static int 1495 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1496 { 1497 memset(info, 0, sizeof(*info)); 1498 info->lo_number = info64->lo_number; 1499 info->lo_device = info64->lo_device; 1500 info->lo_inode = info64->lo_inode; 1501 info->lo_rdevice = info64->lo_rdevice; 1502 info->lo_offset = info64->lo_offset; 1503 info->lo_encrypt_type = info64->lo_encrypt_type; 1504 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1505 info->lo_flags = info64->lo_flags; 1506 info->lo_init[0] = info64->lo_init[0]; 1507 info->lo_init[1] = info64->lo_init[1]; 1508 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1509 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1510 else 1511 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1512 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1513 1514 /* error in case values were truncated */ 1515 if (info->lo_device != info64->lo_device || 1516 info->lo_rdevice != info64->lo_rdevice || 1517 info->lo_inode != info64->lo_inode || 1518 info->lo_offset != info64->lo_offset) 1519 return -EOVERFLOW; 1520 1521 return 0; 1522 } 1523 1524 static int 1525 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1526 { 1527 struct loop_info info; 1528 struct loop_info64 info64; 1529 1530 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1531 return -EFAULT; 1532 loop_info64_from_old(&info, &info64); 1533 return loop_set_status(lo, &info64); 1534 } 1535 1536 static int 1537 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1538 { 1539 struct loop_info64 info64; 1540 1541 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1542 return -EFAULT; 1543 return loop_set_status(lo, &info64); 1544 } 1545 1546 static int 1547 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1548 struct loop_info info; 1549 struct loop_info64 info64; 1550 int err; 1551 1552 if (!arg) 1553 return -EINVAL; 1554 err = loop_get_status(lo, &info64); 1555 if (!err) 1556 err = loop_info64_to_old(&info64, &info); 1557 if (!err && copy_to_user(arg, &info, sizeof(info))) 1558 err = -EFAULT; 1559 1560 return err; 1561 } 1562 1563 static int 1564 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1565 struct loop_info64 info64; 1566 int err; 1567 1568 if (!arg) 1569 return -EINVAL; 1570 err = loop_get_status(lo, &info64); 1571 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1572 err = -EFAULT; 1573 1574 return err; 1575 } 1576 1577 static int loop_set_capacity(struct loop_device *lo) 1578 { 1579 loff_t size; 1580 1581 if (unlikely(lo->lo_state != Lo_bound)) 1582 return -ENXIO; 1583 1584 size = get_loop_size(lo, lo->lo_backing_file); 1585 loop_set_size(lo, size); 1586 1587 return 0; 1588 } 1589 1590 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1591 { 1592 int error = -ENXIO; 1593 if (lo->lo_state != Lo_bound) 1594 goto out; 1595 1596 __loop_update_dio(lo, !!arg); 1597 if (lo->use_dio == !!arg) 1598 return 0; 1599 error = -EINVAL; 1600 out: 1601 return error; 1602 } 1603 1604 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1605 { 1606 int err = 0; 1607 1608 if (lo->lo_state != Lo_bound) 1609 return -ENXIO; 1610 1611 err = loop_validate_block_size(arg); 1612 if (err) 1613 return err; 1614 1615 if (lo->lo_queue->limits.logical_block_size == arg) 1616 return 0; 1617 1618 sync_blockdev(lo->lo_device); 1619 invalidate_bdev(lo->lo_device); 1620 1621 blk_mq_freeze_queue(lo->lo_queue); 1622 1623 /* invalidate_bdev should have truncated all the pages */ 1624 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1625 err = -EAGAIN; 1626 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1627 __func__, lo->lo_number, lo->lo_file_name, 1628 lo->lo_device->bd_inode->i_mapping->nrpages); 1629 goto out_unfreeze; 1630 } 1631 1632 blk_queue_logical_block_size(lo->lo_queue, arg); 1633 blk_queue_physical_block_size(lo->lo_queue, arg); 1634 blk_queue_io_min(lo->lo_queue, arg); 1635 loop_update_dio(lo); 1636 out_unfreeze: 1637 blk_mq_unfreeze_queue(lo->lo_queue); 1638 1639 return err; 1640 } 1641 1642 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1643 unsigned long arg) 1644 { 1645 int err; 1646 1647 err = mutex_lock_killable(&loop_ctl_mutex); 1648 if (err) 1649 return err; 1650 switch (cmd) { 1651 case LOOP_SET_CAPACITY: 1652 err = loop_set_capacity(lo); 1653 break; 1654 case LOOP_SET_DIRECT_IO: 1655 err = loop_set_dio(lo, arg); 1656 break; 1657 case LOOP_SET_BLOCK_SIZE: 1658 err = loop_set_block_size(lo, arg); 1659 break; 1660 default: 1661 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1662 } 1663 mutex_unlock(&loop_ctl_mutex); 1664 return err; 1665 } 1666 1667 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1668 unsigned int cmd, unsigned long arg) 1669 { 1670 struct loop_device *lo = bdev->bd_disk->private_data; 1671 void __user *argp = (void __user *) arg; 1672 int err; 1673 1674 switch (cmd) { 1675 case LOOP_SET_FD: { 1676 /* 1677 * Legacy case - pass in a zeroed out struct loop_config with 1678 * only the file descriptor set , which corresponds with the 1679 * default parameters we'd have used otherwise. 1680 */ 1681 struct loop_config config; 1682 1683 memset(&config, 0, sizeof(config)); 1684 config.fd = arg; 1685 1686 return loop_configure(lo, mode, bdev, &config); 1687 } 1688 case LOOP_CONFIGURE: { 1689 struct loop_config config; 1690 1691 if (copy_from_user(&config, argp, sizeof(config))) 1692 return -EFAULT; 1693 1694 return loop_configure(lo, mode, bdev, &config); 1695 } 1696 case LOOP_CHANGE_FD: 1697 return loop_change_fd(lo, bdev, arg); 1698 case LOOP_CLR_FD: 1699 return loop_clr_fd(lo); 1700 case LOOP_SET_STATUS: 1701 err = -EPERM; 1702 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1703 err = loop_set_status_old(lo, argp); 1704 } 1705 break; 1706 case LOOP_GET_STATUS: 1707 return loop_get_status_old(lo, argp); 1708 case LOOP_SET_STATUS64: 1709 err = -EPERM; 1710 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1711 err = loop_set_status64(lo, argp); 1712 } 1713 break; 1714 case LOOP_GET_STATUS64: 1715 return loop_get_status64(lo, argp); 1716 case LOOP_SET_CAPACITY: 1717 case LOOP_SET_DIRECT_IO: 1718 case LOOP_SET_BLOCK_SIZE: 1719 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1720 return -EPERM; 1721 /* Fall through */ 1722 default: 1723 err = lo_simple_ioctl(lo, cmd, arg); 1724 break; 1725 } 1726 1727 return err; 1728 } 1729 1730 #ifdef CONFIG_COMPAT 1731 struct compat_loop_info { 1732 compat_int_t lo_number; /* ioctl r/o */ 1733 compat_dev_t lo_device; /* ioctl r/o */ 1734 compat_ulong_t lo_inode; /* ioctl r/o */ 1735 compat_dev_t lo_rdevice; /* ioctl r/o */ 1736 compat_int_t lo_offset; 1737 compat_int_t lo_encrypt_type; 1738 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1739 compat_int_t lo_flags; /* ioctl r/o */ 1740 char lo_name[LO_NAME_SIZE]; 1741 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1742 compat_ulong_t lo_init[2]; 1743 char reserved[4]; 1744 }; 1745 1746 /* 1747 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1748 * - noinlined to reduce stack space usage in main part of driver 1749 */ 1750 static noinline int 1751 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1752 struct loop_info64 *info64) 1753 { 1754 struct compat_loop_info info; 1755 1756 if (copy_from_user(&info, arg, sizeof(info))) 1757 return -EFAULT; 1758 1759 memset(info64, 0, sizeof(*info64)); 1760 info64->lo_number = info.lo_number; 1761 info64->lo_device = info.lo_device; 1762 info64->lo_inode = info.lo_inode; 1763 info64->lo_rdevice = info.lo_rdevice; 1764 info64->lo_offset = info.lo_offset; 1765 info64->lo_sizelimit = 0; 1766 info64->lo_encrypt_type = info.lo_encrypt_type; 1767 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1768 info64->lo_flags = info.lo_flags; 1769 info64->lo_init[0] = info.lo_init[0]; 1770 info64->lo_init[1] = info.lo_init[1]; 1771 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1772 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1773 else 1774 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1775 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1776 return 0; 1777 } 1778 1779 /* 1780 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1781 * - noinlined to reduce stack space usage in main part of driver 1782 */ 1783 static noinline int 1784 loop_info64_to_compat(const struct loop_info64 *info64, 1785 struct compat_loop_info __user *arg) 1786 { 1787 struct compat_loop_info info; 1788 1789 memset(&info, 0, sizeof(info)); 1790 info.lo_number = info64->lo_number; 1791 info.lo_device = info64->lo_device; 1792 info.lo_inode = info64->lo_inode; 1793 info.lo_rdevice = info64->lo_rdevice; 1794 info.lo_offset = info64->lo_offset; 1795 info.lo_encrypt_type = info64->lo_encrypt_type; 1796 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1797 info.lo_flags = info64->lo_flags; 1798 info.lo_init[0] = info64->lo_init[0]; 1799 info.lo_init[1] = info64->lo_init[1]; 1800 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1801 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1802 else 1803 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1804 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1805 1806 /* error in case values were truncated */ 1807 if (info.lo_device != info64->lo_device || 1808 info.lo_rdevice != info64->lo_rdevice || 1809 info.lo_inode != info64->lo_inode || 1810 info.lo_offset != info64->lo_offset || 1811 info.lo_init[0] != info64->lo_init[0] || 1812 info.lo_init[1] != info64->lo_init[1]) 1813 return -EOVERFLOW; 1814 1815 if (copy_to_user(arg, &info, sizeof(info))) 1816 return -EFAULT; 1817 return 0; 1818 } 1819 1820 static int 1821 loop_set_status_compat(struct loop_device *lo, 1822 const struct compat_loop_info __user *arg) 1823 { 1824 struct loop_info64 info64; 1825 int ret; 1826 1827 ret = loop_info64_from_compat(arg, &info64); 1828 if (ret < 0) 1829 return ret; 1830 return loop_set_status(lo, &info64); 1831 } 1832 1833 static int 1834 loop_get_status_compat(struct loop_device *lo, 1835 struct compat_loop_info __user *arg) 1836 { 1837 struct loop_info64 info64; 1838 int err; 1839 1840 if (!arg) 1841 return -EINVAL; 1842 err = loop_get_status(lo, &info64); 1843 if (!err) 1844 err = loop_info64_to_compat(&info64, arg); 1845 return err; 1846 } 1847 1848 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1849 unsigned int cmd, unsigned long arg) 1850 { 1851 struct loop_device *lo = bdev->bd_disk->private_data; 1852 int err; 1853 1854 switch(cmd) { 1855 case LOOP_SET_STATUS: 1856 err = loop_set_status_compat(lo, 1857 (const struct compat_loop_info __user *)arg); 1858 break; 1859 case LOOP_GET_STATUS: 1860 err = loop_get_status_compat(lo, 1861 (struct compat_loop_info __user *)arg); 1862 break; 1863 case LOOP_SET_CAPACITY: 1864 case LOOP_CLR_FD: 1865 case LOOP_GET_STATUS64: 1866 case LOOP_SET_STATUS64: 1867 case LOOP_CONFIGURE: 1868 arg = (unsigned long) compat_ptr(arg); 1869 /* fall through */ 1870 case LOOP_SET_FD: 1871 case LOOP_CHANGE_FD: 1872 case LOOP_SET_BLOCK_SIZE: 1873 case LOOP_SET_DIRECT_IO: 1874 err = lo_ioctl(bdev, mode, cmd, arg); 1875 break; 1876 default: 1877 err = -ENOIOCTLCMD; 1878 break; 1879 } 1880 return err; 1881 } 1882 #endif 1883 1884 static int lo_open(struct block_device *bdev, fmode_t mode) 1885 { 1886 struct loop_device *lo; 1887 int err; 1888 1889 err = mutex_lock_killable(&loop_ctl_mutex); 1890 if (err) 1891 return err; 1892 lo = bdev->bd_disk->private_data; 1893 if (!lo) { 1894 err = -ENXIO; 1895 goto out; 1896 } 1897 1898 atomic_inc(&lo->lo_refcnt); 1899 out: 1900 mutex_unlock(&loop_ctl_mutex); 1901 return err; 1902 } 1903 1904 static void lo_release(struct gendisk *disk, fmode_t mode) 1905 { 1906 struct loop_device *lo; 1907 1908 mutex_lock(&loop_ctl_mutex); 1909 lo = disk->private_data; 1910 if (atomic_dec_return(&lo->lo_refcnt)) 1911 goto out_unlock; 1912 1913 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1914 if (lo->lo_state != Lo_bound) 1915 goto out_unlock; 1916 lo->lo_state = Lo_rundown; 1917 mutex_unlock(&loop_ctl_mutex); 1918 /* 1919 * In autoclear mode, stop the loop thread 1920 * and remove configuration after last close. 1921 */ 1922 __loop_clr_fd(lo, true); 1923 return; 1924 } else if (lo->lo_state == Lo_bound) { 1925 /* 1926 * Otherwise keep thread (if running) and config, 1927 * but flush possible ongoing bios in thread. 1928 */ 1929 blk_mq_freeze_queue(lo->lo_queue); 1930 blk_mq_unfreeze_queue(lo->lo_queue); 1931 } 1932 1933 out_unlock: 1934 mutex_unlock(&loop_ctl_mutex); 1935 } 1936 1937 static const struct block_device_operations lo_fops = { 1938 .owner = THIS_MODULE, 1939 .open = lo_open, 1940 .release = lo_release, 1941 .ioctl = lo_ioctl, 1942 #ifdef CONFIG_COMPAT 1943 .compat_ioctl = lo_compat_ioctl, 1944 #endif 1945 }; 1946 1947 /* 1948 * And now the modules code and kernel interface. 1949 */ 1950 static int max_loop; 1951 module_param(max_loop, int, 0444); 1952 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1953 module_param(max_part, int, 0444); 1954 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1955 MODULE_LICENSE("GPL"); 1956 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1957 1958 int loop_register_transfer(struct loop_func_table *funcs) 1959 { 1960 unsigned int n = funcs->number; 1961 1962 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1963 return -EINVAL; 1964 xfer_funcs[n] = funcs; 1965 return 0; 1966 } 1967 1968 static int unregister_transfer_cb(int id, void *ptr, void *data) 1969 { 1970 struct loop_device *lo = ptr; 1971 struct loop_func_table *xfer = data; 1972 1973 mutex_lock(&loop_ctl_mutex); 1974 if (lo->lo_encryption == xfer) 1975 loop_release_xfer(lo); 1976 mutex_unlock(&loop_ctl_mutex); 1977 return 0; 1978 } 1979 1980 int loop_unregister_transfer(int number) 1981 { 1982 unsigned int n = number; 1983 struct loop_func_table *xfer; 1984 1985 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1986 return -EINVAL; 1987 1988 xfer_funcs[n] = NULL; 1989 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1990 return 0; 1991 } 1992 1993 EXPORT_SYMBOL(loop_register_transfer); 1994 EXPORT_SYMBOL(loop_unregister_transfer); 1995 1996 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1997 const struct blk_mq_queue_data *bd) 1998 { 1999 struct request *rq = bd->rq; 2000 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2001 struct loop_device *lo = rq->q->queuedata; 2002 2003 blk_mq_start_request(rq); 2004 2005 if (lo->lo_state != Lo_bound) 2006 return BLK_STS_IOERR; 2007 2008 switch (req_op(rq)) { 2009 case REQ_OP_FLUSH: 2010 case REQ_OP_DISCARD: 2011 case REQ_OP_WRITE_ZEROES: 2012 cmd->use_aio = false; 2013 break; 2014 default: 2015 cmd->use_aio = lo->use_dio; 2016 break; 2017 } 2018 2019 /* always use the first bio's css */ 2020 #ifdef CONFIG_BLK_CGROUP 2021 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 2022 cmd->css = &bio_blkcg(rq->bio)->css; 2023 css_get(cmd->css); 2024 } else 2025 #endif 2026 cmd->css = NULL; 2027 kthread_queue_work(&lo->worker, &cmd->work); 2028 2029 return BLK_STS_OK; 2030 } 2031 2032 static void loop_handle_cmd(struct loop_cmd *cmd) 2033 { 2034 struct request *rq = blk_mq_rq_from_pdu(cmd); 2035 const bool write = op_is_write(req_op(rq)); 2036 struct loop_device *lo = rq->q->queuedata; 2037 int ret = 0; 2038 2039 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 2040 ret = -EIO; 2041 goto failed; 2042 } 2043 2044 ret = do_req_filebacked(lo, rq); 2045 failed: 2046 /* complete non-aio request */ 2047 if (!cmd->use_aio || ret) { 2048 if (ret == -EOPNOTSUPP) 2049 cmd->ret = ret; 2050 else 2051 cmd->ret = ret ? -EIO : 0; 2052 if (likely(!blk_should_fake_timeout(rq->q))) 2053 blk_mq_complete_request(rq); 2054 } 2055 } 2056 2057 static void loop_queue_work(struct kthread_work *work) 2058 { 2059 struct loop_cmd *cmd = 2060 container_of(work, struct loop_cmd, work); 2061 2062 loop_handle_cmd(cmd); 2063 } 2064 2065 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 2066 unsigned int hctx_idx, unsigned int numa_node) 2067 { 2068 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2069 2070 kthread_init_work(&cmd->work, loop_queue_work); 2071 return 0; 2072 } 2073 2074 static const struct blk_mq_ops loop_mq_ops = { 2075 .queue_rq = loop_queue_rq, 2076 .init_request = loop_init_request, 2077 .complete = lo_complete_rq, 2078 }; 2079 2080 static int loop_add(struct loop_device **l, int i) 2081 { 2082 struct loop_device *lo; 2083 struct gendisk *disk; 2084 int err; 2085 2086 err = -ENOMEM; 2087 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2088 if (!lo) 2089 goto out; 2090 2091 lo->lo_state = Lo_unbound; 2092 2093 /* allocate id, if @id >= 0, we're requesting that specific id */ 2094 if (i >= 0) { 2095 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2096 if (err == -ENOSPC) 2097 err = -EEXIST; 2098 } else { 2099 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2100 } 2101 if (err < 0) 2102 goto out_free_dev; 2103 i = err; 2104 2105 err = -ENOMEM; 2106 lo->tag_set.ops = &loop_mq_ops; 2107 lo->tag_set.nr_hw_queues = 1; 2108 lo->tag_set.queue_depth = 128; 2109 lo->tag_set.numa_node = NUMA_NO_NODE; 2110 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2111 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING; 2112 lo->tag_set.driver_data = lo; 2113 2114 err = blk_mq_alloc_tag_set(&lo->tag_set); 2115 if (err) 2116 goto out_free_idr; 2117 2118 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 2119 if (IS_ERR(lo->lo_queue)) { 2120 err = PTR_ERR(lo->lo_queue); 2121 goto out_cleanup_tags; 2122 } 2123 lo->lo_queue->queuedata = lo; 2124 2125 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2126 2127 /* 2128 * By default, we do buffer IO, so it doesn't make sense to enable 2129 * merge because the I/O submitted to backing file is handled page by 2130 * page. For directio mode, merge does help to dispatch bigger request 2131 * to underlayer disk. We will enable merge once directio is enabled. 2132 */ 2133 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2134 2135 err = -ENOMEM; 2136 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2137 if (!disk) 2138 goto out_free_queue; 2139 2140 /* 2141 * Disable partition scanning by default. The in-kernel partition 2142 * scanning can be requested individually per-device during its 2143 * setup. Userspace can always add and remove partitions from all 2144 * devices. The needed partition minors are allocated from the 2145 * extended minor space, the main loop device numbers will continue 2146 * to match the loop minors, regardless of the number of partitions 2147 * used. 2148 * 2149 * If max_part is given, partition scanning is globally enabled for 2150 * all loop devices. The minors for the main loop devices will be 2151 * multiples of max_part. 2152 * 2153 * Note: Global-for-all-devices, set-only-at-init, read-only module 2154 * parameteters like 'max_loop' and 'max_part' make things needlessly 2155 * complicated, are too static, inflexible and may surprise 2156 * userspace tools. Parameters like this in general should be avoided. 2157 */ 2158 if (!part_shift) 2159 disk->flags |= GENHD_FL_NO_PART_SCAN; 2160 disk->flags |= GENHD_FL_EXT_DEVT; 2161 atomic_set(&lo->lo_refcnt, 0); 2162 lo->lo_number = i; 2163 spin_lock_init(&lo->lo_lock); 2164 disk->major = LOOP_MAJOR; 2165 disk->first_minor = i << part_shift; 2166 disk->fops = &lo_fops; 2167 disk->private_data = lo; 2168 disk->queue = lo->lo_queue; 2169 sprintf(disk->disk_name, "loop%d", i); 2170 add_disk(disk); 2171 *l = lo; 2172 return lo->lo_number; 2173 2174 out_free_queue: 2175 blk_cleanup_queue(lo->lo_queue); 2176 out_cleanup_tags: 2177 blk_mq_free_tag_set(&lo->tag_set); 2178 out_free_idr: 2179 idr_remove(&loop_index_idr, i); 2180 out_free_dev: 2181 kfree(lo); 2182 out: 2183 return err; 2184 } 2185 2186 static void loop_remove(struct loop_device *lo) 2187 { 2188 del_gendisk(lo->lo_disk); 2189 blk_cleanup_queue(lo->lo_queue); 2190 blk_mq_free_tag_set(&lo->tag_set); 2191 put_disk(lo->lo_disk); 2192 kfree(lo); 2193 } 2194 2195 static int find_free_cb(int id, void *ptr, void *data) 2196 { 2197 struct loop_device *lo = ptr; 2198 struct loop_device **l = data; 2199 2200 if (lo->lo_state == Lo_unbound) { 2201 *l = lo; 2202 return 1; 2203 } 2204 return 0; 2205 } 2206 2207 static int loop_lookup(struct loop_device **l, int i) 2208 { 2209 struct loop_device *lo; 2210 int ret = -ENODEV; 2211 2212 if (i < 0) { 2213 int err; 2214 2215 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2216 if (err == 1) { 2217 *l = lo; 2218 ret = lo->lo_number; 2219 } 2220 goto out; 2221 } 2222 2223 /* lookup and return a specific i */ 2224 lo = idr_find(&loop_index_idr, i); 2225 if (lo) { 2226 *l = lo; 2227 ret = lo->lo_number; 2228 } 2229 out: 2230 return ret; 2231 } 2232 2233 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 2234 { 2235 struct loop_device *lo; 2236 struct kobject *kobj; 2237 int err; 2238 2239 mutex_lock(&loop_ctl_mutex); 2240 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 2241 if (err < 0) 2242 err = loop_add(&lo, MINOR(dev) >> part_shift); 2243 if (err < 0) 2244 kobj = NULL; 2245 else 2246 kobj = get_disk_and_module(lo->lo_disk); 2247 mutex_unlock(&loop_ctl_mutex); 2248 2249 *part = 0; 2250 return kobj; 2251 } 2252 2253 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2254 unsigned long parm) 2255 { 2256 struct loop_device *lo; 2257 int ret; 2258 2259 ret = mutex_lock_killable(&loop_ctl_mutex); 2260 if (ret) 2261 return ret; 2262 2263 ret = -ENOSYS; 2264 switch (cmd) { 2265 case LOOP_CTL_ADD: 2266 ret = loop_lookup(&lo, parm); 2267 if (ret >= 0) { 2268 ret = -EEXIST; 2269 break; 2270 } 2271 ret = loop_add(&lo, parm); 2272 break; 2273 case LOOP_CTL_REMOVE: 2274 ret = loop_lookup(&lo, parm); 2275 if (ret < 0) 2276 break; 2277 if (lo->lo_state != Lo_unbound) { 2278 ret = -EBUSY; 2279 break; 2280 } 2281 if (atomic_read(&lo->lo_refcnt) > 0) { 2282 ret = -EBUSY; 2283 break; 2284 } 2285 lo->lo_disk->private_data = NULL; 2286 idr_remove(&loop_index_idr, lo->lo_number); 2287 loop_remove(lo); 2288 break; 2289 case LOOP_CTL_GET_FREE: 2290 ret = loop_lookup(&lo, -1); 2291 if (ret >= 0) 2292 break; 2293 ret = loop_add(&lo, -1); 2294 } 2295 mutex_unlock(&loop_ctl_mutex); 2296 2297 return ret; 2298 } 2299 2300 static const struct file_operations loop_ctl_fops = { 2301 .open = nonseekable_open, 2302 .unlocked_ioctl = loop_control_ioctl, 2303 .compat_ioctl = loop_control_ioctl, 2304 .owner = THIS_MODULE, 2305 .llseek = noop_llseek, 2306 }; 2307 2308 static struct miscdevice loop_misc = { 2309 .minor = LOOP_CTRL_MINOR, 2310 .name = "loop-control", 2311 .fops = &loop_ctl_fops, 2312 }; 2313 2314 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2315 MODULE_ALIAS("devname:loop-control"); 2316 2317 static int __init loop_init(void) 2318 { 2319 int i, nr; 2320 unsigned long range; 2321 struct loop_device *lo; 2322 int err; 2323 2324 part_shift = 0; 2325 if (max_part > 0) { 2326 part_shift = fls(max_part); 2327 2328 /* 2329 * Adjust max_part according to part_shift as it is exported 2330 * to user space so that user can decide correct minor number 2331 * if [s]he want to create more devices. 2332 * 2333 * Note that -1 is required because partition 0 is reserved 2334 * for the whole disk. 2335 */ 2336 max_part = (1UL << part_shift) - 1; 2337 } 2338 2339 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2340 err = -EINVAL; 2341 goto err_out; 2342 } 2343 2344 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2345 err = -EINVAL; 2346 goto err_out; 2347 } 2348 2349 /* 2350 * If max_loop is specified, create that many devices upfront. 2351 * This also becomes a hard limit. If max_loop is not specified, 2352 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2353 * init time. Loop devices can be requested on-demand with the 2354 * /dev/loop-control interface, or be instantiated by accessing 2355 * a 'dead' device node. 2356 */ 2357 if (max_loop) { 2358 nr = max_loop; 2359 range = max_loop << part_shift; 2360 } else { 2361 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2362 range = 1UL << MINORBITS; 2363 } 2364 2365 err = misc_register(&loop_misc); 2366 if (err < 0) 2367 goto err_out; 2368 2369 2370 if (register_blkdev(LOOP_MAJOR, "loop")) { 2371 err = -EIO; 2372 goto misc_out; 2373 } 2374 2375 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2376 THIS_MODULE, loop_probe, NULL, NULL); 2377 2378 /* pre-create number of devices given by config or max_loop */ 2379 mutex_lock(&loop_ctl_mutex); 2380 for (i = 0; i < nr; i++) 2381 loop_add(&lo, i); 2382 mutex_unlock(&loop_ctl_mutex); 2383 2384 printk(KERN_INFO "loop: module loaded\n"); 2385 return 0; 2386 2387 misc_out: 2388 misc_deregister(&loop_misc); 2389 err_out: 2390 return err; 2391 } 2392 2393 static int loop_exit_cb(int id, void *ptr, void *data) 2394 { 2395 struct loop_device *lo = ptr; 2396 2397 loop_remove(lo); 2398 return 0; 2399 } 2400 2401 static void __exit loop_exit(void) 2402 { 2403 unsigned long range; 2404 2405 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2406 2407 mutex_lock(&loop_ctl_mutex); 2408 2409 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2410 idr_destroy(&loop_index_idr); 2411 2412 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2413 unregister_blkdev(LOOP_MAJOR, "loop"); 2414 2415 misc_deregister(&loop_misc); 2416 2417 mutex_unlock(&loop_ctl_mutex); 2418 } 2419 2420 module_init(loop_init); 2421 module_exit(loop_exit); 2422 2423 #ifndef MODULE 2424 static int __init max_loop_setup(char *str) 2425 { 2426 max_loop = simple_strtol(str, NULL, 0); 2427 return 1; 2428 } 2429 2430 __setup("max_loop=", max_loop_setup); 2431 #endif 2432