xref: /linux/drivers/block/loop.c (revision ed00aabd5eb9fb44d6aff1173234a2e911b9fead)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 #include <linux/blk-cgroup.h>
81 
82 #include "loop.h"
83 
84 #include <linux/uaccess.h>
85 
86 static DEFINE_IDR(loop_index_idr);
87 static DEFINE_MUTEX(loop_ctl_mutex);
88 
89 static int max_part;
90 static int part_shift;
91 
92 static int transfer_xor(struct loop_device *lo, int cmd,
93 			struct page *raw_page, unsigned raw_off,
94 			struct page *loop_page, unsigned loop_off,
95 			int size, sector_t real_block)
96 {
97 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 	char *in, *out, *key;
100 	int i, keysize;
101 
102 	if (cmd == READ) {
103 		in = raw_buf;
104 		out = loop_buf;
105 	} else {
106 		in = loop_buf;
107 		out = raw_buf;
108 	}
109 
110 	key = lo->lo_encrypt_key;
111 	keysize = lo->lo_encrypt_key_size;
112 	for (i = 0; i < size; i++)
113 		*out++ = *in++ ^ key[(i & 511) % keysize];
114 
115 	kunmap_atomic(loop_buf);
116 	kunmap_atomic(raw_buf);
117 	cond_resched();
118 	return 0;
119 }
120 
121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122 {
123 	if (unlikely(info->lo_encrypt_key_size <= 0))
124 		return -EINVAL;
125 	return 0;
126 }
127 
128 static struct loop_func_table none_funcs = {
129 	.number = LO_CRYPT_NONE,
130 };
131 
132 static struct loop_func_table xor_funcs = {
133 	.number = LO_CRYPT_XOR,
134 	.transfer = transfer_xor,
135 	.init = xor_init
136 };
137 
138 /* xfer_funcs[0] is special - its release function is never called */
139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 	&none_funcs,
141 	&xor_funcs
142 };
143 
144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145 {
146 	loff_t loopsize;
147 
148 	/* Compute loopsize in bytes */
149 	loopsize = i_size_read(file->f_mapping->host);
150 	if (offset > 0)
151 		loopsize -= offset;
152 	/* offset is beyond i_size, weird but possible */
153 	if (loopsize < 0)
154 		return 0;
155 
156 	if (sizelimit > 0 && sizelimit < loopsize)
157 		loopsize = sizelimit;
158 	/*
159 	 * Unfortunately, if we want to do I/O on the device,
160 	 * the number of 512-byte sectors has to fit into a sector_t.
161 	 */
162 	return loopsize >> 9;
163 }
164 
165 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166 {
167 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168 }
169 
170 static void __loop_update_dio(struct loop_device *lo, bool dio)
171 {
172 	struct file *file = lo->lo_backing_file;
173 	struct address_space *mapping = file->f_mapping;
174 	struct inode *inode = mapping->host;
175 	unsigned short sb_bsize = 0;
176 	unsigned dio_align = 0;
177 	bool use_dio;
178 
179 	if (inode->i_sb->s_bdev) {
180 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 		dio_align = sb_bsize - 1;
182 	}
183 
184 	/*
185 	 * We support direct I/O only if lo_offset is aligned with the
186 	 * logical I/O size of backing device, and the logical block
187 	 * size of loop is bigger than the backing device's and the loop
188 	 * needn't transform transfer.
189 	 *
190 	 * TODO: the above condition may be loosed in the future, and
191 	 * direct I/O may be switched runtime at that time because most
192 	 * of requests in sane applications should be PAGE_SIZE aligned
193 	 */
194 	if (dio) {
195 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 				!(lo->lo_offset & dio_align) &&
197 				mapping->a_ops->direct_IO &&
198 				!lo->transfer)
199 			use_dio = true;
200 		else
201 			use_dio = false;
202 	} else {
203 		use_dio = false;
204 	}
205 
206 	if (lo->use_dio == use_dio)
207 		return;
208 
209 	/* flush dirty pages before changing direct IO */
210 	vfs_fsync(file, 0);
211 
212 	/*
213 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 	 * will get updated by ioctl(LOOP_GET_STATUS)
216 	 */
217 	if (lo->lo_state == Lo_bound)
218 		blk_mq_freeze_queue(lo->lo_queue);
219 	lo->use_dio = use_dio;
220 	if (use_dio) {
221 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 	} else {
224 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 	}
227 	if (lo->lo_state == Lo_bound)
228 		blk_mq_unfreeze_queue(lo->lo_queue);
229 }
230 
231 /**
232  * loop_validate_block_size() - validates the passed in block size
233  * @bsize: size to validate
234  */
235 static int
236 loop_validate_block_size(unsigned short bsize)
237 {
238 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
239 		return -EINVAL;
240 
241 	return 0;
242 }
243 
244 /**
245  * loop_set_size() - sets device size and notifies userspace
246  * @lo: struct loop_device to set the size for
247  * @size: new size of the loop device
248  *
249  * Callers must validate that the size passed into this function fits into
250  * a sector_t, eg using loop_validate_size()
251  */
252 static void loop_set_size(struct loop_device *lo, loff_t size)
253 {
254 	struct block_device *bdev = lo->lo_device;
255 
256 	bd_set_size(bdev, size << SECTOR_SHIFT);
257 
258 	set_capacity_revalidate_and_notify(lo->lo_disk, size, false);
259 }
260 
261 static inline int
262 lo_do_transfer(struct loop_device *lo, int cmd,
263 	       struct page *rpage, unsigned roffs,
264 	       struct page *lpage, unsigned loffs,
265 	       int size, sector_t rblock)
266 {
267 	int ret;
268 
269 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
270 	if (likely(!ret))
271 		return 0;
272 
273 	printk_ratelimited(KERN_ERR
274 		"loop: Transfer error at byte offset %llu, length %i.\n",
275 		(unsigned long long)rblock << 9, size);
276 	return ret;
277 }
278 
279 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
280 {
281 	struct iov_iter i;
282 	ssize_t bw;
283 
284 	iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
285 
286 	file_start_write(file);
287 	bw = vfs_iter_write(file, &i, ppos, 0);
288 	file_end_write(file);
289 
290 	if (likely(bw ==  bvec->bv_len))
291 		return 0;
292 
293 	printk_ratelimited(KERN_ERR
294 		"loop: Write error at byte offset %llu, length %i.\n",
295 		(unsigned long long)*ppos, bvec->bv_len);
296 	if (bw >= 0)
297 		bw = -EIO;
298 	return bw;
299 }
300 
301 static int lo_write_simple(struct loop_device *lo, struct request *rq,
302 		loff_t pos)
303 {
304 	struct bio_vec bvec;
305 	struct req_iterator iter;
306 	int ret = 0;
307 
308 	rq_for_each_segment(bvec, rq, iter) {
309 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
310 		if (ret < 0)
311 			break;
312 		cond_resched();
313 	}
314 
315 	return ret;
316 }
317 
318 /*
319  * This is the slow, transforming version that needs to double buffer the
320  * data as it cannot do the transformations in place without having direct
321  * access to the destination pages of the backing file.
322  */
323 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
324 		loff_t pos)
325 {
326 	struct bio_vec bvec, b;
327 	struct req_iterator iter;
328 	struct page *page;
329 	int ret = 0;
330 
331 	page = alloc_page(GFP_NOIO);
332 	if (unlikely(!page))
333 		return -ENOMEM;
334 
335 	rq_for_each_segment(bvec, rq, iter) {
336 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
337 			bvec.bv_offset, bvec.bv_len, pos >> 9);
338 		if (unlikely(ret))
339 			break;
340 
341 		b.bv_page = page;
342 		b.bv_offset = 0;
343 		b.bv_len = bvec.bv_len;
344 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
345 		if (ret < 0)
346 			break;
347 	}
348 
349 	__free_page(page);
350 	return ret;
351 }
352 
353 static int lo_read_simple(struct loop_device *lo, struct request *rq,
354 		loff_t pos)
355 {
356 	struct bio_vec bvec;
357 	struct req_iterator iter;
358 	struct iov_iter i;
359 	ssize_t len;
360 
361 	rq_for_each_segment(bvec, rq, iter) {
362 		iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
363 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
364 		if (len < 0)
365 			return len;
366 
367 		flush_dcache_page(bvec.bv_page);
368 
369 		if (len != bvec.bv_len) {
370 			struct bio *bio;
371 
372 			__rq_for_each_bio(bio, rq)
373 				zero_fill_bio(bio);
374 			break;
375 		}
376 		cond_resched();
377 	}
378 
379 	return 0;
380 }
381 
382 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
383 		loff_t pos)
384 {
385 	struct bio_vec bvec, b;
386 	struct req_iterator iter;
387 	struct iov_iter i;
388 	struct page *page;
389 	ssize_t len;
390 	int ret = 0;
391 
392 	page = alloc_page(GFP_NOIO);
393 	if (unlikely(!page))
394 		return -ENOMEM;
395 
396 	rq_for_each_segment(bvec, rq, iter) {
397 		loff_t offset = pos;
398 
399 		b.bv_page = page;
400 		b.bv_offset = 0;
401 		b.bv_len = bvec.bv_len;
402 
403 		iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
404 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
405 		if (len < 0) {
406 			ret = len;
407 			goto out_free_page;
408 		}
409 
410 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
411 			bvec.bv_offset, len, offset >> 9);
412 		if (ret)
413 			goto out_free_page;
414 
415 		flush_dcache_page(bvec.bv_page);
416 
417 		if (len != bvec.bv_len) {
418 			struct bio *bio;
419 
420 			__rq_for_each_bio(bio, rq)
421 				zero_fill_bio(bio);
422 			break;
423 		}
424 	}
425 
426 	ret = 0;
427 out_free_page:
428 	__free_page(page);
429 	return ret;
430 }
431 
432 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
433 			int mode)
434 {
435 	/*
436 	 * We use fallocate to manipulate the space mappings used by the image
437 	 * a.k.a. discard/zerorange. However we do not support this if
438 	 * encryption is enabled, because it may give an attacker useful
439 	 * information.
440 	 */
441 	struct file *file = lo->lo_backing_file;
442 	struct request_queue *q = lo->lo_queue;
443 	int ret;
444 
445 	mode |= FALLOC_FL_KEEP_SIZE;
446 
447 	if (!blk_queue_discard(q)) {
448 		ret = -EOPNOTSUPP;
449 		goto out;
450 	}
451 
452 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
453 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
454 		ret = -EIO;
455  out:
456 	return ret;
457 }
458 
459 static int lo_req_flush(struct loop_device *lo, struct request *rq)
460 {
461 	struct file *file = lo->lo_backing_file;
462 	int ret = vfs_fsync(file, 0);
463 	if (unlikely(ret && ret != -EINVAL))
464 		ret = -EIO;
465 
466 	return ret;
467 }
468 
469 static void lo_complete_rq(struct request *rq)
470 {
471 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
472 	blk_status_t ret = BLK_STS_OK;
473 
474 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
475 	    req_op(rq) != REQ_OP_READ) {
476 		if (cmd->ret < 0)
477 			ret = errno_to_blk_status(cmd->ret);
478 		goto end_io;
479 	}
480 
481 	/*
482 	 * Short READ - if we got some data, advance our request and
483 	 * retry it. If we got no data, end the rest with EIO.
484 	 */
485 	if (cmd->ret) {
486 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
487 		cmd->ret = 0;
488 		blk_mq_requeue_request(rq, true);
489 	} else {
490 		if (cmd->use_aio) {
491 			struct bio *bio = rq->bio;
492 
493 			while (bio) {
494 				zero_fill_bio(bio);
495 				bio = bio->bi_next;
496 			}
497 		}
498 		ret = BLK_STS_IOERR;
499 end_io:
500 		blk_mq_end_request(rq, ret);
501 	}
502 }
503 
504 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
505 {
506 	struct request *rq = blk_mq_rq_from_pdu(cmd);
507 
508 	if (!atomic_dec_and_test(&cmd->ref))
509 		return;
510 	kfree(cmd->bvec);
511 	cmd->bvec = NULL;
512 	if (likely(!blk_should_fake_timeout(rq->q)))
513 		blk_mq_complete_request(rq);
514 }
515 
516 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
517 {
518 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
519 
520 	if (cmd->css)
521 		css_put(cmd->css);
522 	cmd->ret = ret;
523 	lo_rw_aio_do_completion(cmd);
524 }
525 
526 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
527 		     loff_t pos, bool rw)
528 {
529 	struct iov_iter iter;
530 	struct req_iterator rq_iter;
531 	struct bio_vec *bvec;
532 	struct request *rq = blk_mq_rq_from_pdu(cmd);
533 	struct bio *bio = rq->bio;
534 	struct file *file = lo->lo_backing_file;
535 	struct bio_vec tmp;
536 	unsigned int offset;
537 	int nr_bvec = 0;
538 	int ret;
539 
540 	rq_for_each_bvec(tmp, rq, rq_iter)
541 		nr_bvec++;
542 
543 	if (rq->bio != rq->biotail) {
544 
545 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
546 				     GFP_NOIO);
547 		if (!bvec)
548 			return -EIO;
549 		cmd->bvec = bvec;
550 
551 		/*
552 		 * The bios of the request may be started from the middle of
553 		 * the 'bvec' because of bio splitting, so we can't directly
554 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
555 		 * API will take care of all details for us.
556 		 */
557 		rq_for_each_bvec(tmp, rq, rq_iter) {
558 			*bvec = tmp;
559 			bvec++;
560 		}
561 		bvec = cmd->bvec;
562 		offset = 0;
563 	} else {
564 		/*
565 		 * Same here, this bio may be started from the middle of the
566 		 * 'bvec' because of bio splitting, so offset from the bvec
567 		 * must be passed to iov iterator
568 		 */
569 		offset = bio->bi_iter.bi_bvec_done;
570 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
571 	}
572 	atomic_set(&cmd->ref, 2);
573 
574 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
575 	iter.iov_offset = offset;
576 
577 	cmd->iocb.ki_pos = pos;
578 	cmd->iocb.ki_filp = file;
579 	cmd->iocb.ki_complete = lo_rw_aio_complete;
580 	cmd->iocb.ki_flags = IOCB_DIRECT;
581 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
582 	if (cmd->css)
583 		kthread_associate_blkcg(cmd->css);
584 
585 	if (rw == WRITE)
586 		ret = call_write_iter(file, &cmd->iocb, &iter);
587 	else
588 		ret = call_read_iter(file, &cmd->iocb, &iter);
589 
590 	lo_rw_aio_do_completion(cmd);
591 	kthread_associate_blkcg(NULL);
592 
593 	if (ret != -EIOCBQUEUED)
594 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
595 	return 0;
596 }
597 
598 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
599 {
600 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
601 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
602 
603 	/*
604 	 * lo_write_simple and lo_read_simple should have been covered
605 	 * by io submit style function like lo_rw_aio(), one blocker
606 	 * is that lo_read_simple() need to call flush_dcache_page after
607 	 * the page is written from kernel, and it isn't easy to handle
608 	 * this in io submit style function which submits all segments
609 	 * of the req at one time. And direct read IO doesn't need to
610 	 * run flush_dcache_page().
611 	 */
612 	switch (req_op(rq)) {
613 	case REQ_OP_FLUSH:
614 		return lo_req_flush(lo, rq);
615 	case REQ_OP_WRITE_ZEROES:
616 		/*
617 		 * If the caller doesn't want deallocation, call zeroout to
618 		 * write zeroes the range.  Otherwise, punch them out.
619 		 */
620 		return lo_fallocate(lo, rq, pos,
621 			(rq->cmd_flags & REQ_NOUNMAP) ?
622 				FALLOC_FL_ZERO_RANGE :
623 				FALLOC_FL_PUNCH_HOLE);
624 	case REQ_OP_DISCARD:
625 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
626 	case REQ_OP_WRITE:
627 		if (lo->transfer)
628 			return lo_write_transfer(lo, rq, pos);
629 		else if (cmd->use_aio)
630 			return lo_rw_aio(lo, cmd, pos, WRITE);
631 		else
632 			return lo_write_simple(lo, rq, pos);
633 	case REQ_OP_READ:
634 		if (lo->transfer)
635 			return lo_read_transfer(lo, rq, pos);
636 		else if (cmd->use_aio)
637 			return lo_rw_aio(lo, cmd, pos, READ);
638 		else
639 			return lo_read_simple(lo, rq, pos);
640 	default:
641 		WARN_ON_ONCE(1);
642 		return -EIO;
643 	}
644 }
645 
646 static inline void loop_update_dio(struct loop_device *lo)
647 {
648 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
649 				lo->use_dio);
650 }
651 
652 static void loop_reread_partitions(struct loop_device *lo,
653 				   struct block_device *bdev)
654 {
655 	int rc;
656 
657 	mutex_lock(&bdev->bd_mutex);
658 	rc = bdev_disk_changed(bdev, false);
659 	mutex_unlock(&bdev->bd_mutex);
660 	if (rc)
661 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
662 			__func__, lo->lo_number, lo->lo_file_name, rc);
663 }
664 
665 static inline int is_loop_device(struct file *file)
666 {
667 	struct inode *i = file->f_mapping->host;
668 
669 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
670 }
671 
672 static int loop_validate_file(struct file *file, struct block_device *bdev)
673 {
674 	struct inode	*inode = file->f_mapping->host;
675 	struct file	*f = file;
676 
677 	/* Avoid recursion */
678 	while (is_loop_device(f)) {
679 		struct loop_device *l;
680 
681 		if (f->f_mapping->host->i_bdev == bdev)
682 			return -EBADF;
683 
684 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
685 		if (l->lo_state != Lo_bound) {
686 			return -EINVAL;
687 		}
688 		f = l->lo_backing_file;
689 	}
690 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
691 		return -EINVAL;
692 	return 0;
693 }
694 
695 /*
696  * loop_change_fd switched the backing store of a loopback device to
697  * a new file. This is useful for operating system installers to free up
698  * the original file and in High Availability environments to switch to
699  * an alternative location for the content in case of server meltdown.
700  * This can only work if the loop device is used read-only, and if the
701  * new backing store is the same size and type as the old backing store.
702  */
703 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
704 			  unsigned int arg)
705 {
706 	struct file	*file = NULL, *old_file;
707 	int		error;
708 	bool		partscan;
709 
710 	error = mutex_lock_killable(&loop_ctl_mutex);
711 	if (error)
712 		return error;
713 	error = -ENXIO;
714 	if (lo->lo_state != Lo_bound)
715 		goto out_err;
716 
717 	/* the loop device has to be read-only */
718 	error = -EINVAL;
719 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
720 		goto out_err;
721 
722 	error = -EBADF;
723 	file = fget(arg);
724 	if (!file)
725 		goto out_err;
726 
727 	error = loop_validate_file(file, bdev);
728 	if (error)
729 		goto out_err;
730 
731 	old_file = lo->lo_backing_file;
732 
733 	error = -EINVAL;
734 
735 	/* size of the new backing store needs to be the same */
736 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
737 		goto out_err;
738 
739 	/* and ... switch */
740 	blk_mq_freeze_queue(lo->lo_queue);
741 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
742 	lo->lo_backing_file = file;
743 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
744 	mapping_set_gfp_mask(file->f_mapping,
745 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
746 	loop_update_dio(lo);
747 	blk_mq_unfreeze_queue(lo->lo_queue);
748 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
749 	mutex_unlock(&loop_ctl_mutex);
750 	/*
751 	 * We must drop file reference outside of loop_ctl_mutex as dropping
752 	 * the file ref can take bd_mutex which creates circular locking
753 	 * dependency.
754 	 */
755 	fput(old_file);
756 	if (partscan)
757 		loop_reread_partitions(lo, bdev);
758 	return 0;
759 
760 out_err:
761 	mutex_unlock(&loop_ctl_mutex);
762 	if (file)
763 		fput(file);
764 	return error;
765 }
766 
767 /* loop sysfs attributes */
768 
769 static ssize_t loop_attr_show(struct device *dev, char *page,
770 			      ssize_t (*callback)(struct loop_device *, char *))
771 {
772 	struct gendisk *disk = dev_to_disk(dev);
773 	struct loop_device *lo = disk->private_data;
774 
775 	return callback(lo, page);
776 }
777 
778 #define LOOP_ATTR_RO(_name)						\
779 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
780 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
781 				struct device_attribute *attr, char *b)	\
782 {									\
783 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
784 }									\
785 static struct device_attribute loop_attr_##_name =			\
786 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
787 
788 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
789 {
790 	ssize_t ret;
791 	char *p = NULL;
792 
793 	spin_lock_irq(&lo->lo_lock);
794 	if (lo->lo_backing_file)
795 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
796 	spin_unlock_irq(&lo->lo_lock);
797 
798 	if (IS_ERR_OR_NULL(p))
799 		ret = PTR_ERR(p);
800 	else {
801 		ret = strlen(p);
802 		memmove(buf, p, ret);
803 		buf[ret++] = '\n';
804 		buf[ret] = 0;
805 	}
806 
807 	return ret;
808 }
809 
810 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
811 {
812 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
813 }
814 
815 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
816 {
817 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
818 }
819 
820 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
821 {
822 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
823 
824 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
825 }
826 
827 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
828 {
829 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
830 
831 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
832 }
833 
834 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
835 {
836 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
837 
838 	return sprintf(buf, "%s\n", dio ? "1" : "0");
839 }
840 
841 LOOP_ATTR_RO(backing_file);
842 LOOP_ATTR_RO(offset);
843 LOOP_ATTR_RO(sizelimit);
844 LOOP_ATTR_RO(autoclear);
845 LOOP_ATTR_RO(partscan);
846 LOOP_ATTR_RO(dio);
847 
848 static struct attribute *loop_attrs[] = {
849 	&loop_attr_backing_file.attr,
850 	&loop_attr_offset.attr,
851 	&loop_attr_sizelimit.attr,
852 	&loop_attr_autoclear.attr,
853 	&loop_attr_partscan.attr,
854 	&loop_attr_dio.attr,
855 	NULL,
856 };
857 
858 static struct attribute_group loop_attribute_group = {
859 	.name = "loop",
860 	.attrs= loop_attrs,
861 };
862 
863 static void loop_sysfs_init(struct loop_device *lo)
864 {
865 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
866 						&loop_attribute_group);
867 }
868 
869 static void loop_sysfs_exit(struct loop_device *lo)
870 {
871 	if (lo->sysfs_inited)
872 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
873 				   &loop_attribute_group);
874 }
875 
876 static void loop_config_discard(struct loop_device *lo)
877 {
878 	struct file *file = lo->lo_backing_file;
879 	struct inode *inode = file->f_mapping->host;
880 	struct request_queue *q = lo->lo_queue;
881 
882 	/*
883 	 * If the backing device is a block device, mirror its zeroing
884 	 * capability. Set the discard sectors to the block device's zeroing
885 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
886 	 * not blkdev_issue_discard(). This maintains consistent behavior with
887 	 * file-backed loop devices: discarded regions read back as zero.
888 	 */
889 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
890 		struct request_queue *backingq;
891 
892 		backingq = bdev_get_queue(inode->i_bdev);
893 		blk_queue_max_discard_sectors(q,
894 			backingq->limits.max_write_zeroes_sectors);
895 
896 		blk_queue_max_write_zeroes_sectors(q,
897 			backingq->limits.max_write_zeroes_sectors);
898 
899 	/*
900 	 * We use punch hole to reclaim the free space used by the
901 	 * image a.k.a. discard. However we do not support discard if
902 	 * encryption is enabled, because it may give an attacker
903 	 * useful information.
904 	 */
905 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
906 		q->limits.discard_granularity = 0;
907 		q->limits.discard_alignment = 0;
908 		blk_queue_max_discard_sectors(q, 0);
909 		blk_queue_max_write_zeroes_sectors(q, 0);
910 
911 	} else {
912 		q->limits.discard_granularity = inode->i_sb->s_blocksize;
913 		q->limits.discard_alignment = 0;
914 
915 		blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
916 		blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
917 	}
918 
919 	if (q->limits.max_write_zeroes_sectors)
920 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
921 	else
922 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
923 }
924 
925 static void loop_unprepare_queue(struct loop_device *lo)
926 {
927 	kthread_flush_worker(&lo->worker);
928 	kthread_stop(lo->worker_task);
929 }
930 
931 static int loop_kthread_worker_fn(void *worker_ptr)
932 {
933 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
934 	return kthread_worker_fn(worker_ptr);
935 }
936 
937 static int loop_prepare_queue(struct loop_device *lo)
938 {
939 	kthread_init_worker(&lo->worker);
940 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
941 			&lo->worker, "loop%d", lo->lo_number);
942 	if (IS_ERR(lo->worker_task))
943 		return -ENOMEM;
944 	set_user_nice(lo->worker_task, MIN_NICE);
945 	return 0;
946 }
947 
948 static void loop_update_rotational(struct loop_device *lo)
949 {
950 	struct file *file = lo->lo_backing_file;
951 	struct inode *file_inode = file->f_mapping->host;
952 	struct block_device *file_bdev = file_inode->i_sb->s_bdev;
953 	struct request_queue *q = lo->lo_queue;
954 	bool nonrot = true;
955 
956 	/* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
957 	if (file_bdev)
958 		nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
959 
960 	if (nonrot)
961 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
962 	else
963 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
964 }
965 
966 static int
967 loop_release_xfer(struct loop_device *lo)
968 {
969 	int err = 0;
970 	struct loop_func_table *xfer = lo->lo_encryption;
971 
972 	if (xfer) {
973 		if (xfer->release)
974 			err = xfer->release(lo);
975 		lo->transfer = NULL;
976 		lo->lo_encryption = NULL;
977 		module_put(xfer->owner);
978 	}
979 	return err;
980 }
981 
982 static int
983 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
984 	       const struct loop_info64 *i)
985 {
986 	int err = 0;
987 
988 	if (xfer) {
989 		struct module *owner = xfer->owner;
990 
991 		if (!try_module_get(owner))
992 			return -EINVAL;
993 		if (xfer->init)
994 			err = xfer->init(lo, i);
995 		if (err)
996 			module_put(owner);
997 		else
998 			lo->lo_encryption = xfer;
999 	}
1000 	return err;
1001 }
1002 
1003 /**
1004  * loop_set_status_from_info - configure device from loop_info
1005  * @lo: struct loop_device to configure
1006  * @info: struct loop_info64 to configure the device with
1007  *
1008  * Configures the loop device parameters according to the passed
1009  * in loop_info64 configuration.
1010  */
1011 static int
1012 loop_set_status_from_info(struct loop_device *lo,
1013 			  const struct loop_info64 *info)
1014 {
1015 	int err;
1016 	struct loop_func_table *xfer;
1017 	kuid_t uid = current_uid();
1018 
1019 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1020 		return -EINVAL;
1021 
1022 	err = loop_release_xfer(lo);
1023 	if (err)
1024 		return err;
1025 
1026 	if (info->lo_encrypt_type) {
1027 		unsigned int type = info->lo_encrypt_type;
1028 
1029 		if (type >= MAX_LO_CRYPT)
1030 			return -EINVAL;
1031 		xfer = xfer_funcs[type];
1032 		if (xfer == NULL)
1033 			return -EINVAL;
1034 	} else
1035 		xfer = NULL;
1036 
1037 	err = loop_init_xfer(lo, xfer, info);
1038 	if (err)
1039 		return err;
1040 
1041 	lo->lo_offset = info->lo_offset;
1042 	lo->lo_sizelimit = info->lo_sizelimit;
1043 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1044 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1045 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1046 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1047 
1048 	if (!xfer)
1049 		xfer = &none_funcs;
1050 	lo->transfer = xfer->transfer;
1051 	lo->ioctl = xfer->ioctl;
1052 
1053 	lo->lo_flags = info->lo_flags;
1054 
1055 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1056 	lo->lo_init[0] = info->lo_init[0];
1057 	lo->lo_init[1] = info->lo_init[1];
1058 	if (info->lo_encrypt_key_size) {
1059 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1060 		       info->lo_encrypt_key_size);
1061 		lo->lo_key_owner = uid;
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 static int loop_configure(struct loop_device *lo, fmode_t mode,
1068 			  struct block_device *bdev,
1069 			  const struct loop_config *config)
1070 {
1071 	struct file	*file;
1072 	struct inode	*inode;
1073 	struct address_space *mapping;
1074 	struct block_device *claimed_bdev = NULL;
1075 	int		error;
1076 	loff_t		size;
1077 	bool		partscan;
1078 	unsigned short  bsize;
1079 
1080 	/* This is safe, since we have a reference from open(). */
1081 	__module_get(THIS_MODULE);
1082 
1083 	error = -EBADF;
1084 	file = fget(config->fd);
1085 	if (!file)
1086 		goto out;
1087 
1088 	/*
1089 	 * If we don't hold exclusive handle for the device, upgrade to it
1090 	 * here to avoid changing device under exclusive owner.
1091 	 */
1092 	if (!(mode & FMODE_EXCL)) {
1093 		claimed_bdev = bd_start_claiming(bdev, loop_configure);
1094 		if (IS_ERR(claimed_bdev)) {
1095 			error = PTR_ERR(claimed_bdev);
1096 			goto out_putf;
1097 		}
1098 	}
1099 
1100 	error = mutex_lock_killable(&loop_ctl_mutex);
1101 	if (error)
1102 		goto out_bdev;
1103 
1104 	error = -EBUSY;
1105 	if (lo->lo_state != Lo_unbound)
1106 		goto out_unlock;
1107 
1108 	error = loop_validate_file(file, bdev);
1109 	if (error)
1110 		goto out_unlock;
1111 
1112 	mapping = file->f_mapping;
1113 	inode = mapping->host;
1114 
1115 	size = get_loop_size(lo, file);
1116 
1117 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1118 		error = -EINVAL;
1119 		goto out_unlock;
1120 	}
1121 
1122 	if (config->block_size) {
1123 		error = loop_validate_block_size(config->block_size);
1124 		if (error)
1125 			goto out_unlock;
1126 	}
1127 
1128 	error = loop_set_status_from_info(lo, &config->info);
1129 	if (error)
1130 		goto out_unlock;
1131 
1132 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1133 	    !file->f_op->write_iter)
1134 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1135 
1136 	error = loop_prepare_queue(lo);
1137 	if (error)
1138 		goto out_unlock;
1139 
1140 	set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1141 
1142 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1143 	lo->lo_device = bdev;
1144 	lo->lo_backing_file = file;
1145 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1146 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1147 
1148 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1149 		blk_queue_write_cache(lo->lo_queue, true, false);
1150 
1151 	if (config->block_size)
1152 		bsize = config->block_size;
1153 	else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1154 		/* In case of direct I/O, match underlying block size */
1155 		bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1156 	else
1157 		bsize = 512;
1158 
1159 	blk_queue_logical_block_size(lo->lo_queue, bsize);
1160 	blk_queue_physical_block_size(lo->lo_queue, bsize);
1161 	blk_queue_io_min(lo->lo_queue, bsize);
1162 
1163 	loop_update_rotational(lo);
1164 	loop_update_dio(lo);
1165 	loop_sysfs_init(lo);
1166 	loop_set_size(lo, size);
1167 
1168 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1169 		      block_size(inode->i_bdev) : PAGE_SIZE);
1170 
1171 	lo->lo_state = Lo_bound;
1172 	if (part_shift)
1173 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1174 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1175 
1176 	/* Grab the block_device to prevent its destruction after we
1177 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1178 	 */
1179 	bdgrab(bdev);
1180 	mutex_unlock(&loop_ctl_mutex);
1181 	if (partscan)
1182 		loop_reread_partitions(lo, bdev);
1183 	if (claimed_bdev)
1184 		bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1185 	return 0;
1186 
1187 out_unlock:
1188 	mutex_unlock(&loop_ctl_mutex);
1189 out_bdev:
1190 	if (claimed_bdev)
1191 		bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1192 out_putf:
1193 	fput(file);
1194 out:
1195 	/* This is safe: open() is still holding a reference. */
1196 	module_put(THIS_MODULE);
1197 	return error;
1198 }
1199 
1200 static int __loop_clr_fd(struct loop_device *lo, bool release)
1201 {
1202 	struct file *filp = NULL;
1203 	gfp_t gfp = lo->old_gfp_mask;
1204 	struct block_device *bdev = lo->lo_device;
1205 	int err = 0;
1206 	bool partscan = false;
1207 	int lo_number;
1208 
1209 	mutex_lock(&loop_ctl_mutex);
1210 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1211 		err = -ENXIO;
1212 		goto out_unlock;
1213 	}
1214 
1215 	filp = lo->lo_backing_file;
1216 	if (filp == NULL) {
1217 		err = -EINVAL;
1218 		goto out_unlock;
1219 	}
1220 
1221 	/* freeze request queue during the transition */
1222 	blk_mq_freeze_queue(lo->lo_queue);
1223 
1224 	spin_lock_irq(&lo->lo_lock);
1225 	lo->lo_backing_file = NULL;
1226 	spin_unlock_irq(&lo->lo_lock);
1227 
1228 	loop_release_xfer(lo);
1229 	lo->transfer = NULL;
1230 	lo->ioctl = NULL;
1231 	lo->lo_device = NULL;
1232 	lo->lo_encryption = NULL;
1233 	lo->lo_offset = 0;
1234 	lo->lo_sizelimit = 0;
1235 	lo->lo_encrypt_key_size = 0;
1236 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1237 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1238 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1239 	blk_queue_logical_block_size(lo->lo_queue, 512);
1240 	blk_queue_physical_block_size(lo->lo_queue, 512);
1241 	blk_queue_io_min(lo->lo_queue, 512);
1242 	if (bdev) {
1243 		bdput(bdev);
1244 		invalidate_bdev(bdev);
1245 		bdev->bd_inode->i_mapping->wb_err = 0;
1246 	}
1247 	set_capacity(lo->lo_disk, 0);
1248 	loop_sysfs_exit(lo);
1249 	if (bdev) {
1250 		bd_set_size(bdev, 0);
1251 		/* let user-space know about this change */
1252 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1253 	}
1254 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1255 	/* This is safe: open() is still holding a reference. */
1256 	module_put(THIS_MODULE);
1257 	blk_mq_unfreeze_queue(lo->lo_queue);
1258 
1259 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1260 	lo_number = lo->lo_number;
1261 	loop_unprepare_queue(lo);
1262 out_unlock:
1263 	mutex_unlock(&loop_ctl_mutex);
1264 	if (partscan) {
1265 		/*
1266 		 * bd_mutex has been held already in release path, so don't
1267 		 * acquire it if this function is called in such case.
1268 		 *
1269 		 * If the reread partition isn't from release path, lo_refcnt
1270 		 * must be at least one and it can only become zero when the
1271 		 * current holder is released.
1272 		 */
1273 		if (!release)
1274 			mutex_lock(&bdev->bd_mutex);
1275 		err = bdev_disk_changed(bdev, false);
1276 		if (!release)
1277 			mutex_unlock(&bdev->bd_mutex);
1278 		if (err)
1279 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1280 				__func__, lo_number, err);
1281 		/* Device is gone, no point in returning error */
1282 		err = 0;
1283 	}
1284 
1285 	/*
1286 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1287 	 * finished.
1288 	 *
1289 	 * There cannot be anybody else entering __loop_clr_fd() as
1290 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1291 	 * protects us from all the other places trying to change the 'lo'
1292 	 * device.
1293 	 */
1294 	mutex_lock(&loop_ctl_mutex);
1295 	lo->lo_flags = 0;
1296 	if (!part_shift)
1297 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1298 	lo->lo_state = Lo_unbound;
1299 	mutex_unlock(&loop_ctl_mutex);
1300 
1301 	/*
1302 	 * Need not hold loop_ctl_mutex to fput backing file.
1303 	 * Calling fput holding loop_ctl_mutex triggers a circular
1304 	 * lock dependency possibility warning as fput can take
1305 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1306 	 */
1307 	if (filp)
1308 		fput(filp);
1309 	return err;
1310 }
1311 
1312 static int loop_clr_fd(struct loop_device *lo)
1313 {
1314 	int err;
1315 
1316 	err = mutex_lock_killable(&loop_ctl_mutex);
1317 	if (err)
1318 		return err;
1319 	if (lo->lo_state != Lo_bound) {
1320 		mutex_unlock(&loop_ctl_mutex);
1321 		return -ENXIO;
1322 	}
1323 	/*
1324 	 * If we've explicitly asked to tear down the loop device,
1325 	 * and it has an elevated reference count, set it for auto-teardown when
1326 	 * the last reference goes away. This stops $!~#$@ udev from
1327 	 * preventing teardown because it decided that it needs to run blkid on
1328 	 * the loopback device whenever they appear. xfstests is notorious for
1329 	 * failing tests because blkid via udev races with a losetup
1330 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1331 	 * command to fail with EBUSY.
1332 	 */
1333 	if (atomic_read(&lo->lo_refcnt) > 1) {
1334 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1335 		mutex_unlock(&loop_ctl_mutex);
1336 		return 0;
1337 	}
1338 	lo->lo_state = Lo_rundown;
1339 	mutex_unlock(&loop_ctl_mutex);
1340 
1341 	return __loop_clr_fd(lo, false);
1342 }
1343 
1344 static int
1345 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1346 {
1347 	int err;
1348 	struct block_device *bdev;
1349 	kuid_t uid = current_uid();
1350 	int prev_lo_flags;
1351 	bool partscan = false;
1352 	bool size_changed = false;
1353 
1354 	err = mutex_lock_killable(&loop_ctl_mutex);
1355 	if (err)
1356 		return err;
1357 	if (lo->lo_encrypt_key_size &&
1358 	    !uid_eq(lo->lo_key_owner, uid) &&
1359 	    !capable(CAP_SYS_ADMIN)) {
1360 		err = -EPERM;
1361 		goto out_unlock;
1362 	}
1363 	if (lo->lo_state != Lo_bound) {
1364 		err = -ENXIO;
1365 		goto out_unlock;
1366 	}
1367 
1368 	if (lo->lo_offset != info->lo_offset ||
1369 	    lo->lo_sizelimit != info->lo_sizelimit) {
1370 		size_changed = true;
1371 		sync_blockdev(lo->lo_device);
1372 		invalidate_bdev(lo->lo_device);
1373 	}
1374 
1375 	/* I/O need to be drained during transfer transition */
1376 	blk_mq_freeze_queue(lo->lo_queue);
1377 
1378 	if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1379 		/* If any pages were dirtied after invalidate_bdev(), try again */
1380 		err = -EAGAIN;
1381 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1382 			__func__, lo->lo_number, lo->lo_file_name,
1383 			lo->lo_device->bd_inode->i_mapping->nrpages);
1384 		goto out_unfreeze;
1385 	}
1386 
1387 	prev_lo_flags = lo->lo_flags;
1388 
1389 	err = loop_set_status_from_info(lo, info);
1390 	if (err)
1391 		goto out_unfreeze;
1392 
1393 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1394 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1395 	/* For those flags, use the previous values instead */
1396 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1397 	/* For flags that can't be cleared, use previous values too */
1398 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1399 
1400 	if (size_changed) {
1401 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1402 					   lo->lo_backing_file);
1403 		loop_set_size(lo, new_size);
1404 	}
1405 
1406 	loop_config_discard(lo);
1407 
1408 	/* update dio if lo_offset or transfer is changed */
1409 	__loop_update_dio(lo, lo->use_dio);
1410 
1411 out_unfreeze:
1412 	blk_mq_unfreeze_queue(lo->lo_queue);
1413 
1414 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1415 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1416 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1417 		bdev = lo->lo_device;
1418 		partscan = true;
1419 	}
1420 out_unlock:
1421 	mutex_unlock(&loop_ctl_mutex);
1422 	if (partscan)
1423 		loop_reread_partitions(lo, bdev);
1424 
1425 	return err;
1426 }
1427 
1428 static int
1429 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1430 {
1431 	struct path path;
1432 	struct kstat stat;
1433 	int ret;
1434 
1435 	ret = mutex_lock_killable(&loop_ctl_mutex);
1436 	if (ret)
1437 		return ret;
1438 	if (lo->lo_state != Lo_bound) {
1439 		mutex_unlock(&loop_ctl_mutex);
1440 		return -ENXIO;
1441 	}
1442 
1443 	memset(info, 0, sizeof(*info));
1444 	info->lo_number = lo->lo_number;
1445 	info->lo_offset = lo->lo_offset;
1446 	info->lo_sizelimit = lo->lo_sizelimit;
1447 	info->lo_flags = lo->lo_flags;
1448 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1449 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1450 	info->lo_encrypt_type =
1451 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1452 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1453 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1454 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1455 		       lo->lo_encrypt_key_size);
1456 	}
1457 
1458 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1459 	path = lo->lo_backing_file->f_path;
1460 	path_get(&path);
1461 	mutex_unlock(&loop_ctl_mutex);
1462 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1463 	if (!ret) {
1464 		info->lo_device = huge_encode_dev(stat.dev);
1465 		info->lo_inode = stat.ino;
1466 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1467 	}
1468 	path_put(&path);
1469 	return ret;
1470 }
1471 
1472 static void
1473 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1474 {
1475 	memset(info64, 0, sizeof(*info64));
1476 	info64->lo_number = info->lo_number;
1477 	info64->lo_device = info->lo_device;
1478 	info64->lo_inode = info->lo_inode;
1479 	info64->lo_rdevice = info->lo_rdevice;
1480 	info64->lo_offset = info->lo_offset;
1481 	info64->lo_sizelimit = 0;
1482 	info64->lo_encrypt_type = info->lo_encrypt_type;
1483 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1484 	info64->lo_flags = info->lo_flags;
1485 	info64->lo_init[0] = info->lo_init[0];
1486 	info64->lo_init[1] = info->lo_init[1];
1487 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1488 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1489 	else
1490 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1491 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1492 }
1493 
1494 static int
1495 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1496 {
1497 	memset(info, 0, sizeof(*info));
1498 	info->lo_number = info64->lo_number;
1499 	info->lo_device = info64->lo_device;
1500 	info->lo_inode = info64->lo_inode;
1501 	info->lo_rdevice = info64->lo_rdevice;
1502 	info->lo_offset = info64->lo_offset;
1503 	info->lo_encrypt_type = info64->lo_encrypt_type;
1504 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1505 	info->lo_flags = info64->lo_flags;
1506 	info->lo_init[0] = info64->lo_init[0];
1507 	info->lo_init[1] = info64->lo_init[1];
1508 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1509 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1510 	else
1511 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1512 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1513 
1514 	/* error in case values were truncated */
1515 	if (info->lo_device != info64->lo_device ||
1516 	    info->lo_rdevice != info64->lo_rdevice ||
1517 	    info->lo_inode != info64->lo_inode ||
1518 	    info->lo_offset != info64->lo_offset)
1519 		return -EOVERFLOW;
1520 
1521 	return 0;
1522 }
1523 
1524 static int
1525 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1526 {
1527 	struct loop_info info;
1528 	struct loop_info64 info64;
1529 
1530 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1531 		return -EFAULT;
1532 	loop_info64_from_old(&info, &info64);
1533 	return loop_set_status(lo, &info64);
1534 }
1535 
1536 static int
1537 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1538 {
1539 	struct loop_info64 info64;
1540 
1541 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1542 		return -EFAULT;
1543 	return loop_set_status(lo, &info64);
1544 }
1545 
1546 static int
1547 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1548 	struct loop_info info;
1549 	struct loop_info64 info64;
1550 	int err;
1551 
1552 	if (!arg)
1553 		return -EINVAL;
1554 	err = loop_get_status(lo, &info64);
1555 	if (!err)
1556 		err = loop_info64_to_old(&info64, &info);
1557 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1558 		err = -EFAULT;
1559 
1560 	return err;
1561 }
1562 
1563 static int
1564 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1565 	struct loop_info64 info64;
1566 	int err;
1567 
1568 	if (!arg)
1569 		return -EINVAL;
1570 	err = loop_get_status(lo, &info64);
1571 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1572 		err = -EFAULT;
1573 
1574 	return err;
1575 }
1576 
1577 static int loop_set_capacity(struct loop_device *lo)
1578 {
1579 	loff_t size;
1580 
1581 	if (unlikely(lo->lo_state != Lo_bound))
1582 		return -ENXIO;
1583 
1584 	size = get_loop_size(lo, lo->lo_backing_file);
1585 	loop_set_size(lo, size);
1586 
1587 	return 0;
1588 }
1589 
1590 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1591 {
1592 	int error = -ENXIO;
1593 	if (lo->lo_state != Lo_bound)
1594 		goto out;
1595 
1596 	__loop_update_dio(lo, !!arg);
1597 	if (lo->use_dio == !!arg)
1598 		return 0;
1599 	error = -EINVAL;
1600  out:
1601 	return error;
1602 }
1603 
1604 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1605 {
1606 	int err = 0;
1607 
1608 	if (lo->lo_state != Lo_bound)
1609 		return -ENXIO;
1610 
1611 	err = loop_validate_block_size(arg);
1612 	if (err)
1613 		return err;
1614 
1615 	if (lo->lo_queue->limits.logical_block_size == arg)
1616 		return 0;
1617 
1618 	sync_blockdev(lo->lo_device);
1619 	invalidate_bdev(lo->lo_device);
1620 
1621 	blk_mq_freeze_queue(lo->lo_queue);
1622 
1623 	/* invalidate_bdev should have truncated all the pages */
1624 	if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1625 		err = -EAGAIN;
1626 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1627 			__func__, lo->lo_number, lo->lo_file_name,
1628 			lo->lo_device->bd_inode->i_mapping->nrpages);
1629 		goto out_unfreeze;
1630 	}
1631 
1632 	blk_queue_logical_block_size(lo->lo_queue, arg);
1633 	blk_queue_physical_block_size(lo->lo_queue, arg);
1634 	blk_queue_io_min(lo->lo_queue, arg);
1635 	loop_update_dio(lo);
1636 out_unfreeze:
1637 	blk_mq_unfreeze_queue(lo->lo_queue);
1638 
1639 	return err;
1640 }
1641 
1642 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1643 			   unsigned long arg)
1644 {
1645 	int err;
1646 
1647 	err = mutex_lock_killable(&loop_ctl_mutex);
1648 	if (err)
1649 		return err;
1650 	switch (cmd) {
1651 	case LOOP_SET_CAPACITY:
1652 		err = loop_set_capacity(lo);
1653 		break;
1654 	case LOOP_SET_DIRECT_IO:
1655 		err = loop_set_dio(lo, arg);
1656 		break;
1657 	case LOOP_SET_BLOCK_SIZE:
1658 		err = loop_set_block_size(lo, arg);
1659 		break;
1660 	default:
1661 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1662 	}
1663 	mutex_unlock(&loop_ctl_mutex);
1664 	return err;
1665 }
1666 
1667 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1668 	unsigned int cmd, unsigned long arg)
1669 {
1670 	struct loop_device *lo = bdev->bd_disk->private_data;
1671 	void __user *argp = (void __user *) arg;
1672 	int err;
1673 
1674 	switch (cmd) {
1675 	case LOOP_SET_FD: {
1676 		/*
1677 		 * Legacy case - pass in a zeroed out struct loop_config with
1678 		 * only the file descriptor set , which corresponds with the
1679 		 * default parameters we'd have used otherwise.
1680 		 */
1681 		struct loop_config config;
1682 
1683 		memset(&config, 0, sizeof(config));
1684 		config.fd = arg;
1685 
1686 		return loop_configure(lo, mode, bdev, &config);
1687 	}
1688 	case LOOP_CONFIGURE: {
1689 		struct loop_config config;
1690 
1691 		if (copy_from_user(&config, argp, sizeof(config)))
1692 			return -EFAULT;
1693 
1694 		return loop_configure(lo, mode, bdev, &config);
1695 	}
1696 	case LOOP_CHANGE_FD:
1697 		return loop_change_fd(lo, bdev, arg);
1698 	case LOOP_CLR_FD:
1699 		return loop_clr_fd(lo);
1700 	case LOOP_SET_STATUS:
1701 		err = -EPERM;
1702 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1703 			err = loop_set_status_old(lo, argp);
1704 		}
1705 		break;
1706 	case LOOP_GET_STATUS:
1707 		return loop_get_status_old(lo, argp);
1708 	case LOOP_SET_STATUS64:
1709 		err = -EPERM;
1710 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1711 			err = loop_set_status64(lo, argp);
1712 		}
1713 		break;
1714 	case LOOP_GET_STATUS64:
1715 		return loop_get_status64(lo, argp);
1716 	case LOOP_SET_CAPACITY:
1717 	case LOOP_SET_DIRECT_IO:
1718 	case LOOP_SET_BLOCK_SIZE:
1719 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1720 			return -EPERM;
1721 		/* Fall through */
1722 	default:
1723 		err = lo_simple_ioctl(lo, cmd, arg);
1724 		break;
1725 	}
1726 
1727 	return err;
1728 }
1729 
1730 #ifdef CONFIG_COMPAT
1731 struct compat_loop_info {
1732 	compat_int_t	lo_number;      /* ioctl r/o */
1733 	compat_dev_t	lo_device;      /* ioctl r/o */
1734 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1735 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1736 	compat_int_t	lo_offset;
1737 	compat_int_t	lo_encrypt_type;
1738 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1739 	compat_int_t	lo_flags;       /* ioctl r/o */
1740 	char		lo_name[LO_NAME_SIZE];
1741 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1742 	compat_ulong_t	lo_init[2];
1743 	char		reserved[4];
1744 };
1745 
1746 /*
1747  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1748  * - noinlined to reduce stack space usage in main part of driver
1749  */
1750 static noinline int
1751 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1752 			struct loop_info64 *info64)
1753 {
1754 	struct compat_loop_info info;
1755 
1756 	if (copy_from_user(&info, arg, sizeof(info)))
1757 		return -EFAULT;
1758 
1759 	memset(info64, 0, sizeof(*info64));
1760 	info64->lo_number = info.lo_number;
1761 	info64->lo_device = info.lo_device;
1762 	info64->lo_inode = info.lo_inode;
1763 	info64->lo_rdevice = info.lo_rdevice;
1764 	info64->lo_offset = info.lo_offset;
1765 	info64->lo_sizelimit = 0;
1766 	info64->lo_encrypt_type = info.lo_encrypt_type;
1767 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1768 	info64->lo_flags = info.lo_flags;
1769 	info64->lo_init[0] = info.lo_init[0];
1770 	info64->lo_init[1] = info.lo_init[1];
1771 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1772 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1773 	else
1774 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1775 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1776 	return 0;
1777 }
1778 
1779 /*
1780  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1781  * - noinlined to reduce stack space usage in main part of driver
1782  */
1783 static noinline int
1784 loop_info64_to_compat(const struct loop_info64 *info64,
1785 		      struct compat_loop_info __user *arg)
1786 {
1787 	struct compat_loop_info info;
1788 
1789 	memset(&info, 0, sizeof(info));
1790 	info.lo_number = info64->lo_number;
1791 	info.lo_device = info64->lo_device;
1792 	info.lo_inode = info64->lo_inode;
1793 	info.lo_rdevice = info64->lo_rdevice;
1794 	info.lo_offset = info64->lo_offset;
1795 	info.lo_encrypt_type = info64->lo_encrypt_type;
1796 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1797 	info.lo_flags = info64->lo_flags;
1798 	info.lo_init[0] = info64->lo_init[0];
1799 	info.lo_init[1] = info64->lo_init[1];
1800 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1801 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1802 	else
1803 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1804 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1805 
1806 	/* error in case values were truncated */
1807 	if (info.lo_device != info64->lo_device ||
1808 	    info.lo_rdevice != info64->lo_rdevice ||
1809 	    info.lo_inode != info64->lo_inode ||
1810 	    info.lo_offset != info64->lo_offset ||
1811 	    info.lo_init[0] != info64->lo_init[0] ||
1812 	    info.lo_init[1] != info64->lo_init[1])
1813 		return -EOVERFLOW;
1814 
1815 	if (copy_to_user(arg, &info, sizeof(info)))
1816 		return -EFAULT;
1817 	return 0;
1818 }
1819 
1820 static int
1821 loop_set_status_compat(struct loop_device *lo,
1822 		       const struct compat_loop_info __user *arg)
1823 {
1824 	struct loop_info64 info64;
1825 	int ret;
1826 
1827 	ret = loop_info64_from_compat(arg, &info64);
1828 	if (ret < 0)
1829 		return ret;
1830 	return loop_set_status(lo, &info64);
1831 }
1832 
1833 static int
1834 loop_get_status_compat(struct loop_device *lo,
1835 		       struct compat_loop_info __user *arg)
1836 {
1837 	struct loop_info64 info64;
1838 	int err;
1839 
1840 	if (!arg)
1841 		return -EINVAL;
1842 	err = loop_get_status(lo, &info64);
1843 	if (!err)
1844 		err = loop_info64_to_compat(&info64, arg);
1845 	return err;
1846 }
1847 
1848 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1849 			   unsigned int cmd, unsigned long arg)
1850 {
1851 	struct loop_device *lo = bdev->bd_disk->private_data;
1852 	int err;
1853 
1854 	switch(cmd) {
1855 	case LOOP_SET_STATUS:
1856 		err = loop_set_status_compat(lo,
1857 			     (const struct compat_loop_info __user *)arg);
1858 		break;
1859 	case LOOP_GET_STATUS:
1860 		err = loop_get_status_compat(lo,
1861 				     (struct compat_loop_info __user *)arg);
1862 		break;
1863 	case LOOP_SET_CAPACITY:
1864 	case LOOP_CLR_FD:
1865 	case LOOP_GET_STATUS64:
1866 	case LOOP_SET_STATUS64:
1867 	case LOOP_CONFIGURE:
1868 		arg = (unsigned long) compat_ptr(arg);
1869 		/* fall through */
1870 	case LOOP_SET_FD:
1871 	case LOOP_CHANGE_FD:
1872 	case LOOP_SET_BLOCK_SIZE:
1873 	case LOOP_SET_DIRECT_IO:
1874 		err = lo_ioctl(bdev, mode, cmd, arg);
1875 		break;
1876 	default:
1877 		err = -ENOIOCTLCMD;
1878 		break;
1879 	}
1880 	return err;
1881 }
1882 #endif
1883 
1884 static int lo_open(struct block_device *bdev, fmode_t mode)
1885 {
1886 	struct loop_device *lo;
1887 	int err;
1888 
1889 	err = mutex_lock_killable(&loop_ctl_mutex);
1890 	if (err)
1891 		return err;
1892 	lo = bdev->bd_disk->private_data;
1893 	if (!lo) {
1894 		err = -ENXIO;
1895 		goto out;
1896 	}
1897 
1898 	atomic_inc(&lo->lo_refcnt);
1899 out:
1900 	mutex_unlock(&loop_ctl_mutex);
1901 	return err;
1902 }
1903 
1904 static void lo_release(struct gendisk *disk, fmode_t mode)
1905 {
1906 	struct loop_device *lo;
1907 
1908 	mutex_lock(&loop_ctl_mutex);
1909 	lo = disk->private_data;
1910 	if (atomic_dec_return(&lo->lo_refcnt))
1911 		goto out_unlock;
1912 
1913 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1914 		if (lo->lo_state != Lo_bound)
1915 			goto out_unlock;
1916 		lo->lo_state = Lo_rundown;
1917 		mutex_unlock(&loop_ctl_mutex);
1918 		/*
1919 		 * In autoclear mode, stop the loop thread
1920 		 * and remove configuration after last close.
1921 		 */
1922 		__loop_clr_fd(lo, true);
1923 		return;
1924 	} else if (lo->lo_state == Lo_bound) {
1925 		/*
1926 		 * Otherwise keep thread (if running) and config,
1927 		 * but flush possible ongoing bios in thread.
1928 		 */
1929 		blk_mq_freeze_queue(lo->lo_queue);
1930 		blk_mq_unfreeze_queue(lo->lo_queue);
1931 	}
1932 
1933 out_unlock:
1934 	mutex_unlock(&loop_ctl_mutex);
1935 }
1936 
1937 static const struct block_device_operations lo_fops = {
1938 	.owner =	THIS_MODULE,
1939 	.open =		lo_open,
1940 	.release =	lo_release,
1941 	.ioctl =	lo_ioctl,
1942 #ifdef CONFIG_COMPAT
1943 	.compat_ioctl =	lo_compat_ioctl,
1944 #endif
1945 };
1946 
1947 /*
1948  * And now the modules code and kernel interface.
1949  */
1950 static int max_loop;
1951 module_param(max_loop, int, 0444);
1952 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1953 module_param(max_part, int, 0444);
1954 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1955 MODULE_LICENSE("GPL");
1956 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1957 
1958 int loop_register_transfer(struct loop_func_table *funcs)
1959 {
1960 	unsigned int n = funcs->number;
1961 
1962 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1963 		return -EINVAL;
1964 	xfer_funcs[n] = funcs;
1965 	return 0;
1966 }
1967 
1968 static int unregister_transfer_cb(int id, void *ptr, void *data)
1969 {
1970 	struct loop_device *lo = ptr;
1971 	struct loop_func_table *xfer = data;
1972 
1973 	mutex_lock(&loop_ctl_mutex);
1974 	if (lo->lo_encryption == xfer)
1975 		loop_release_xfer(lo);
1976 	mutex_unlock(&loop_ctl_mutex);
1977 	return 0;
1978 }
1979 
1980 int loop_unregister_transfer(int number)
1981 {
1982 	unsigned int n = number;
1983 	struct loop_func_table *xfer;
1984 
1985 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1986 		return -EINVAL;
1987 
1988 	xfer_funcs[n] = NULL;
1989 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1990 	return 0;
1991 }
1992 
1993 EXPORT_SYMBOL(loop_register_transfer);
1994 EXPORT_SYMBOL(loop_unregister_transfer);
1995 
1996 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1997 		const struct blk_mq_queue_data *bd)
1998 {
1999 	struct request *rq = bd->rq;
2000 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2001 	struct loop_device *lo = rq->q->queuedata;
2002 
2003 	blk_mq_start_request(rq);
2004 
2005 	if (lo->lo_state != Lo_bound)
2006 		return BLK_STS_IOERR;
2007 
2008 	switch (req_op(rq)) {
2009 	case REQ_OP_FLUSH:
2010 	case REQ_OP_DISCARD:
2011 	case REQ_OP_WRITE_ZEROES:
2012 		cmd->use_aio = false;
2013 		break;
2014 	default:
2015 		cmd->use_aio = lo->use_dio;
2016 		break;
2017 	}
2018 
2019 	/* always use the first bio's css */
2020 #ifdef CONFIG_BLK_CGROUP
2021 	if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2022 		cmd->css = &bio_blkcg(rq->bio)->css;
2023 		css_get(cmd->css);
2024 	} else
2025 #endif
2026 		cmd->css = NULL;
2027 	kthread_queue_work(&lo->worker, &cmd->work);
2028 
2029 	return BLK_STS_OK;
2030 }
2031 
2032 static void loop_handle_cmd(struct loop_cmd *cmd)
2033 {
2034 	struct request *rq = blk_mq_rq_from_pdu(cmd);
2035 	const bool write = op_is_write(req_op(rq));
2036 	struct loop_device *lo = rq->q->queuedata;
2037 	int ret = 0;
2038 
2039 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2040 		ret = -EIO;
2041 		goto failed;
2042 	}
2043 
2044 	ret = do_req_filebacked(lo, rq);
2045  failed:
2046 	/* complete non-aio request */
2047 	if (!cmd->use_aio || ret) {
2048 		if (ret == -EOPNOTSUPP)
2049 			cmd->ret = ret;
2050 		else
2051 			cmd->ret = ret ? -EIO : 0;
2052 		if (likely(!blk_should_fake_timeout(rq->q)))
2053 			blk_mq_complete_request(rq);
2054 	}
2055 }
2056 
2057 static void loop_queue_work(struct kthread_work *work)
2058 {
2059 	struct loop_cmd *cmd =
2060 		container_of(work, struct loop_cmd, work);
2061 
2062 	loop_handle_cmd(cmd);
2063 }
2064 
2065 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2066 		unsigned int hctx_idx, unsigned int numa_node)
2067 {
2068 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2069 
2070 	kthread_init_work(&cmd->work, loop_queue_work);
2071 	return 0;
2072 }
2073 
2074 static const struct blk_mq_ops loop_mq_ops = {
2075 	.queue_rq       = loop_queue_rq,
2076 	.init_request	= loop_init_request,
2077 	.complete	= lo_complete_rq,
2078 };
2079 
2080 static int loop_add(struct loop_device **l, int i)
2081 {
2082 	struct loop_device *lo;
2083 	struct gendisk *disk;
2084 	int err;
2085 
2086 	err = -ENOMEM;
2087 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2088 	if (!lo)
2089 		goto out;
2090 
2091 	lo->lo_state = Lo_unbound;
2092 
2093 	/* allocate id, if @id >= 0, we're requesting that specific id */
2094 	if (i >= 0) {
2095 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2096 		if (err == -ENOSPC)
2097 			err = -EEXIST;
2098 	} else {
2099 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2100 	}
2101 	if (err < 0)
2102 		goto out_free_dev;
2103 	i = err;
2104 
2105 	err = -ENOMEM;
2106 	lo->tag_set.ops = &loop_mq_ops;
2107 	lo->tag_set.nr_hw_queues = 1;
2108 	lo->tag_set.queue_depth = 128;
2109 	lo->tag_set.numa_node = NUMA_NO_NODE;
2110 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2111 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2112 	lo->tag_set.driver_data = lo;
2113 
2114 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2115 	if (err)
2116 		goto out_free_idr;
2117 
2118 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2119 	if (IS_ERR(lo->lo_queue)) {
2120 		err = PTR_ERR(lo->lo_queue);
2121 		goto out_cleanup_tags;
2122 	}
2123 	lo->lo_queue->queuedata = lo;
2124 
2125 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2126 
2127 	/*
2128 	 * By default, we do buffer IO, so it doesn't make sense to enable
2129 	 * merge because the I/O submitted to backing file is handled page by
2130 	 * page. For directio mode, merge does help to dispatch bigger request
2131 	 * to underlayer disk. We will enable merge once directio is enabled.
2132 	 */
2133 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2134 
2135 	err = -ENOMEM;
2136 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2137 	if (!disk)
2138 		goto out_free_queue;
2139 
2140 	/*
2141 	 * Disable partition scanning by default. The in-kernel partition
2142 	 * scanning can be requested individually per-device during its
2143 	 * setup. Userspace can always add and remove partitions from all
2144 	 * devices. The needed partition minors are allocated from the
2145 	 * extended minor space, the main loop device numbers will continue
2146 	 * to match the loop minors, regardless of the number of partitions
2147 	 * used.
2148 	 *
2149 	 * If max_part is given, partition scanning is globally enabled for
2150 	 * all loop devices. The minors for the main loop devices will be
2151 	 * multiples of max_part.
2152 	 *
2153 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2154 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2155 	 * complicated, are too static, inflexible and may surprise
2156 	 * userspace tools. Parameters like this in general should be avoided.
2157 	 */
2158 	if (!part_shift)
2159 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2160 	disk->flags |= GENHD_FL_EXT_DEVT;
2161 	atomic_set(&lo->lo_refcnt, 0);
2162 	lo->lo_number		= i;
2163 	spin_lock_init(&lo->lo_lock);
2164 	disk->major		= LOOP_MAJOR;
2165 	disk->first_minor	= i << part_shift;
2166 	disk->fops		= &lo_fops;
2167 	disk->private_data	= lo;
2168 	disk->queue		= lo->lo_queue;
2169 	sprintf(disk->disk_name, "loop%d", i);
2170 	add_disk(disk);
2171 	*l = lo;
2172 	return lo->lo_number;
2173 
2174 out_free_queue:
2175 	blk_cleanup_queue(lo->lo_queue);
2176 out_cleanup_tags:
2177 	blk_mq_free_tag_set(&lo->tag_set);
2178 out_free_idr:
2179 	idr_remove(&loop_index_idr, i);
2180 out_free_dev:
2181 	kfree(lo);
2182 out:
2183 	return err;
2184 }
2185 
2186 static void loop_remove(struct loop_device *lo)
2187 {
2188 	del_gendisk(lo->lo_disk);
2189 	blk_cleanup_queue(lo->lo_queue);
2190 	blk_mq_free_tag_set(&lo->tag_set);
2191 	put_disk(lo->lo_disk);
2192 	kfree(lo);
2193 }
2194 
2195 static int find_free_cb(int id, void *ptr, void *data)
2196 {
2197 	struct loop_device *lo = ptr;
2198 	struct loop_device **l = data;
2199 
2200 	if (lo->lo_state == Lo_unbound) {
2201 		*l = lo;
2202 		return 1;
2203 	}
2204 	return 0;
2205 }
2206 
2207 static int loop_lookup(struct loop_device **l, int i)
2208 {
2209 	struct loop_device *lo;
2210 	int ret = -ENODEV;
2211 
2212 	if (i < 0) {
2213 		int err;
2214 
2215 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2216 		if (err == 1) {
2217 			*l = lo;
2218 			ret = lo->lo_number;
2219 		}
2220 		goto out;
2221 	}
2222 
2223 	/* lookup and return a specific i */
2224 	lo = idr_find(&loop_index_idr, i);
2225 	if (lo) {
2226 		*l = lo;
2227 		ret = lo->lo_number;
2228 	}
2229 out:
2230 	return ret;
2231 }
2232 
2233 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2234 {
2235 	struct loop_device *lo;
2236 	struct kobject *kobj;
2237 	int err;
2238 
2239 	mutex_lock(&loop_ctl_mutex);
2240 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2241 	if (err < 0)
2242 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2243 	if (err < 0)
2244 		kobj = NULL;
2245 	else
2246 		kobj = get_disk_and_module(lo->lo_disk);
2247 	mutex_unlock(&loop_ctl_mutex);
2248 
2249 	*part = 0;
2250 	return kobj;
2251 }
2252 
2253 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2254 			       unsigned long parm)
2255 {
2256 	struct loop_device *lo;
2257 	int ret;
2258 
2259 	ret = mutex_lock_killable(&loop_ctl_mutex);
2260 	if (ret)
2261 		return ret;
2262 
2263 	ret = -ENOSYS;
2264 	switch (cmd) {
2265 	case LOOP_CTL_ADD:
2266 		ret = loop_lookup(&lo, parm);
2267 		if (ret >= 0) {
2268 			ret = -EEXIST;
2269 			break;
2270 		}
2271 		ret = loop_add(&lo, parm);
2272 		break;
2273 	case LOOP_CTL_REMOVE:
2274 		ret = loop_lookup(&lo, parm);
2275 		if (ret < 0)
2276 			break;
2277 		if (lo->lo_state != Lo_unbound) {
2278 			ret = -EBUSY;
2279 			break;
2280 		}
2281 		if (atomic_read(&lo->lo_refcnt) > 0) {
2282 			ret = -EBUSY;
2283 			break;
2284 		}
2285 		lo->lo_disk->private_data = NULL;
2286 		idr_remove(&loop_index_idr, lo->lo_number);
2287 		loop_remove(lo);
2288 		break;
2289 	case LOOP_CTL_GET_FREE:
2290 		ret = loop_lookup(&lo, -1);
2291 		if (ret >= 0)
2292 			break;
2293 		ret = loop_add(&lo, -1);
2294 	}
2295 	mutex_unlock(&loop_ctl_mutex);
2296 
2297 	return ret;
2298 }
2299 
2300 static const struct file_operations loop_ctl_fops = {
2301 	.open		= nonseekable_open,
2302 	.unlocked_ioctl	= loop_control_ioctl,
2303 	.compat_ioctl	= loop_control_ioctl,
2304 	.owner		= THIS_MODULE,
2305 	.llseek		= noop_llseek,
2306 };
2307 
2308 static struct miscdevice loop_misc = {
2309 	.minor		= LOOP_CTRL_MINOR,
2310 	.name		= "loop-control",
2311 	.fops		= &loop_ctl_fops,
2312 };
2313 
2314 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2315 MODULE_ALIAS("devname:loop-control");
2316 
2317 static int __init loop_init(void)
2318 {
2319 	int i, nr;
2320 	unsigned long range;
2321 	struct loop_device *lo;
2322 	int err;
2323 
2324 	part_shift = 0;
2325 	if (max_part > 0) {
2326 		part_shift = fls(max_part);
2327 
2328 		/*
2329 		 * Adjust max_part according to part_shift as it is exported
2330 		 * to user space so that user can decide correct minor number
2331 		 * if [s]he want to create more devices.
2332 		 *
2333 		 * Note that -1 is required because partition 0 is reserved
2334 		 * for the whole disk.
2335 		 */
2336 		max_part = (1UL << part_shift) - 1;
2337 	}
2338 
2339 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2340 		err = -EINVAL;
2341 		goto err_out;
2342 	}
2343 
2344 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2345 		err = -EINVAL;
2346 		goto err_out;
2347 	}
2348 
2349 	/*
2350 	 * If max_loop is specified, create that many devices upfront.
2351 	 * This also becomes a hard limit. If max_loop is not specified,
2352 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2353 	 * init time. Loop devices can be requested on-demand with the
2354 	 * /dev/loop-control interface, or be instantiated by accessing
2355 	 * a 'dead' device node.
2356 	 */
2357 	if (max_loop) {
2358 		nr = max_loop;
2359 		range = max_loop << part_shift;
2360 	} else {
2361 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2362 		range = 1UL << MINORBITS;
2363 	}
2364 
2365 	err = misc_register(&loop_misc);
2366 	if (err < 0)
2367 		goto err_out;
2368 
2369 
2370 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2371 		err = -EIO;
2372 		goto misc_out;
2373 	}
2374 
2375 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2376 				  THIS_MODULE, loop_probe, NULL, NULL);
2377 
2378 	/* pre-create number of devices given by config or max_loop */
2379 	mutex_lock(&loop_ctl_mutex);
2380 	for (i = 0; i < nr; i++)
2381 		loop_add(&lo, i);
2382 	mutex_unlock(&loop_ctl_mutex);
2383 
2384 	printk(KERN_INFO "loop: module loaded\n");
2385 	return 0;
2386 
2387 misc_out:
2388 	misc_deregister(&loop_misc);
2389 err_out:
2390 	return err;
2391 }
2392 
2393 static int loop_exit_cb(int id, void *ptr, void *data)
2394 {
2395 	struct loop_device *lo = ptr;
2396 
2397 	loop_remove(lo);
2398 	return 0;
2399 }
2400 
2401 static void __exit loop_exit(void)
2402 {
2403 	unsigned long range;
2404 
2405 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2406 
2407 	mutex_lock(&loop_ctl_mutex);
2408 
2409 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2410 	idr_destroy(&loop_index_idr);
2411 
2412 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2413 	unregister_blkdev(LOOP_MAJOR, "loop");
2414 
2415 	misc_deregister(&loop_misc);
2416 
2417 	mutex_unlock(&loop_ctl_mutex);
2418 }
2419 
2420 module_init(loop_init);
2421 module_exit(loop_exit);
2422 
2423 #ifndef MODULE
2424 static int __init max_loop_setup(char *str)
2425 {
2426 	max_loop = simple_strtol(str, NULL, 0);
2427 	return 1;
2428 }
2429 
2430 __setup("max_loop=", max_loop_setup);
2431 #endif
2432