1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_func_table; 49 50 struct loop_device { 51 int lo_number; 52 loff_t lo_offset; 53 loff_t lo_sizelimit; 54 int lo_flags; 55 char lo_file_name[LO_NAME_SIZE]; 56 57 struct file * lo_backing_file; 58 struct block_device *lo_device; 59 60 gfp_t old_gfp_mask; 61 62 spinlock_t lo_lock; 63 int lo_state; 64 spinlock_t lo_work_lock; 65 struct workqueue_struct *workqueue; 66 struct work_struct rootcg_work; 67 struct list_head rootcg_cmd_list; 68 struct list_head idle_worker_list; 69 struct rb_root worker_tree; 70 struct timer_list timer; 71 bool sysfs_inited; 72 73 struct request_queue *lo_queue; 74 struct blk_mq_tag_set tag_set; 75 struct gendisk *lo_disk; 76 struct mutex lo_mutex; 77 bool idr_visible; 78 }; 79 80 struct loop_cmd { 81 struct list_head list_entry; 82 bool use_aio; /* use AIO interface to handle I/O */ 83 atomic_t ref; /* only for aio */ 84 long ret; 85 struct kiocb iocb; 86 struct bio_vec *bvec; 87 struct cgroup_subsys_state *blkcg_css; 88 struct cgroup_subsys_state *memcg_css; 89 }; 90 91 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 92 #define LOOP_DEFAULT_HW_Q_DEPTH 128 93 94 static DEFINE_IDR(loop_index_idr); 95 static DEFINE_MUTEX(loop_ctl_mutex); 96 static DEFINE_MUTEX(loop_validate_mutex); 97 98 /** 99 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 100 * 101 * @lo: struct loop_device 102 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 103 * 104 * Returns 0 on success, -EINTR otherwise. 105 * 106 * Since loop_validate_file() traverses on other "struct loop_device" if 107 * is_loop_device() is true, we need a global lock for serializing concurrent 108 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 109 */ 110 static int loop_global_lock_killable(struct loop_device *lo, bool global) 111 { 112 int err; 113 114 if (global) { 115 err = mutex_lock_killable(&loop_validate_mutex); 116 if (err) 117 return err; 118 } 119 err = mutex_lock_killable(&lo->lo_mutex); 120 if (err && global) 121 mutex_unlock(&loop_validate_mutex); 122 return err; 123 } 124 125 /** 126 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 127 * 128 * @lo: struct loop_device 129 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 130 */ 131 static void loop_global_unlock(struct loop_device *lo, bool global) 132 { 133 mutex_unlock(&lo->lo_mutex); 134 if (global) 135 mutex_unlock(&loop_validate_mutex); 136 } 137 138 static int max_part; 139 static int part_shift; 140 141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 142 { 143 loff_t loopsize; 144 145 /* Compute loopsize in bytes */ 146 loopsize = i_size_read(file->f_mapping->host); 147 if (offset > 0) 148 loopsize -= offset; 149 /* offset is beyond i_size, weird but possible */ 150 if (loopsize < 0) 151 return 0; 152 153 if (sizelimit > 0 && sizelimit < loopsize) 154 loopsize = sizelimit; 155 /* 156 * Unfortunately, if we want to do I/O on the device, 157 * the number of 512-byte sectors has to fit into a sector_t. 158 */ 159 return loopsize >> 9; 160 } 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 165 } 166 167 /* 168 * We support direct I/O only if lo_offset is aligned with the logical I/O size 169 * of backing device, and the logical block size of loop is bigger than that of 170 * the backing device. 171 */ 172 static bool lo_bdev_can_use_dio(struct loop_device *lo, 173 struct block_device *backing_bdev) 174 { 175 unsigned int sb_bsize = bdev_logical_block_size(backing_bdev); 176 177 if (queue_logical_block_size(lo->lo_queue) < sb_bsize) 178 return false; 179 if (lo->lo_offset & (sb_bsize - 1)) 180 return false; 181 return true; 182 } 183 184 static bool lo_can_use_dio(struct loop_device *lo) 185 { 186 struct inode *inode = lo->lo_backing_file->f_mapping->host; 187 188 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 189 return false; 190 191 if (S_ISBLK(inode->i_mode)) 192 return lo_bdev_can_use_dio(lo, I_BDEV(inode)); 193 if (inode->i_sb->s_bdev) 194 return lo_bdev_can_use_dio(lo, inode->i_sb->s_bdev); 195 return true; 196 } 197 198 /* 199 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 200 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 201 * disabled when the device block size is too small or the offset is unaligned. 202 * 203 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 204 * not the originally passed in one. 205 */ 206 static inline void loop_update_dio(struct loop_device *lo) 207 { 208 bool dio_in_use = lo->lo_flags & LO_FLAGS_DIRECT_IO; 209 210 lockdep_assert_held(&lo->lo_mutex); 211 WARN_ON_ONCE(lo->lo_state == Lo_bound && 212 lo->lo_queue->mq_freeze_depth == 0); 213 214 if (lo->lo_backing_file->f_flags & O_DIRECT) 215 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 216 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 217 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 218 219 /* flush dirty pages before starting to issue direct I/O */ 220 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !dio_in_use) 221 vfs_fsync(lo->lo_backing_file, 0); 222 } 223 224 /** 225 * loop_set_size() - sets device size and notifies userspace 226 * @lo: struct loop_device to set the size for 227 * @size: new size of the loop device 228 * 229 * Callers must validate that the size passed into this function fits into 230 * a sector_t, eg using loop_validate_size() 231 */ 232 static void loop_set_size(struct loop_device *lo, loff_t size) 233 { 234 if (!set_capacity_and_notify(lo->lo_disk, size)) 235 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 236 } 237 238 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 239 { 240 struct iov_iter i; 241 ssize_t bw; 242 243 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 244 245 bw = vfs_iter_write(file, &i, ppos, 0); 246 247 if (likely(bw == bvec->bv_len)) 248 return 0; 249 250 printk_ratelimited(KERN_ERR 251 "loop: Write error at byte offset %llu, length %i.\n", 252 (unsigned long long)*ppos, bvec->bv_len); 253 if (bw >= 0) 254 bw = -EIO; 255 return bw; 256 } 257 258 static int lo_write_simple(struct loop_device *lo, struct request *rq, 259 loff_t pos) 260 { 261 struct bio_vec bvec; 262 struct req_iterator iter; 263 int ret = 0; 264 265 rq_for_each_segment(bvec, rq, iter) { 266 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 267 if (ret < 0) 268 break; 269 cond_resched(); 270 } 271 272 return ret; 273 } 274 275 static int lo_read_simple(struct loop_device *lo, struct request *rq, 276 loff_t pos) 277 { 278 struct bio_vec bvec; 279 struct req_iterator iter; 280 struct iov_iter i; 281 ssize_t len; 282 283 rq_for_each_segment(bvec, rq, iter) { 284 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 285 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 286 if (len < 0) 287 return len; 288 289 flush_dcache_page(bvec.bv_page); 290 291 if (len != bvec.bv_len) { 292 struct bio *bio; 293 294 __rq_for_each_bio(bio, rq) 295 zero_fill_bio(bio); 296 break; 297 } 298 cond_resched(); 299 } 300 301 return 0; 302 } 303 304 static void loop_clear_limits(struct loop_device *lo, int mode) 305 { 306 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 307 308 if (mode & FALLOC_FL_ZERO_RANGE) 309 lim.max_write_zeroes_sectors = 0; 310 311 if (mode & FALLOC_FL_PUNCH_HOLE) { 312 lim.max_hw_discard_sectors = 0; 313 lim.discard_granularity = 0; 314 } 315 316 /* 317 * XXX: this updates the queue limits without freezing the queue, which 318 * is against the locking protocol and dangerous. But we can't just 319 * freeze the queue as we're inside the ->queue_rq method here. So this 320 * should move out into a workqueue unless we get the file operations to 321 * advertise if they support specific fallocate operations. 322 */ 323 queue_limits_commit_update(lo->lo_queue, &lim); 324 } 325 326 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 327 int mode) 328 { 329 /* 330 * We use fallocate to manipulate the space mappings used by the image 331 * a.k.a. discard/zerorange. 332 */ 333 struct file *file = lo->lo_backing_file; 334 int ret; 335 336 mode |= FALLOC_FL_KEEP_SIZE; 337 338 if (!bdev_max_discard_sectors(lo->lo_device)) 339 return -EOPNOTSUPP; 340 341 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 342 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 343 return -EIO; 344 345 /* 346 * We initially configure the limits in a hope that fallocate is 347 * supported and clear them here if that turns out not to be true. 348 */ 349 if (unlikely(ret == -EOPNOTSUPP)) 350 loop_clear_limits(lo, mode); 351 352 return ret; 353 } 354 355 static int lo_req_flush(struct loop_device *lo, struct request *rq) 356 { 357 int ret = vfs_fsync(lo->lo_backing_file, 0); 358 if (unlikely(ret && ret != -EINVAL)) 359 ret = -EIO; 360 361 return ret; 362 } 363 364 static void lo_complete_rq(struct request *rq) 365 { 366 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 367 blk_status_t ret = BLK_STS_OK; 368 369 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 370 req_op(rq) != REQ_OP_READ) { 371 if (cmd->ret < 0) 372 ret = errno_to_blk_status(cmd->ret); 373 goto end_io; 374 } 375 376 /* 377 * Short READ - if we got some data, advance our request and 378 * retry it. If we got no data, end the rest with EIO. 379 */ 380 if (cmd->ret) { 381 blk_update_request(rq, BLK_STS_OK, cmd->ret); 382 cmd->ret = 0; 383 blk_mq_requeue_request(rq, true); 384 } else { 385 if (cmd->use_aio) { 386 struct bio *bio = rq->bio; 387 388 while (bio) { 389 zero_fill_bio(bio); 390 bio = bio->bi_next; 391 } 392 } 393 ret = BLK_STS_IOERR; 394 end_io: 395 blk_mq_end_request(rq, ret); 396 } 397 } 398 399 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 400 { 401 struct request *rq = blk_mq_rq_from_pdu(cmd); 402 403 if (!atomic_dec_and_test(&cmd->ref)) 404 return; 405 kfree(cmd->bvec); 406 cmd->bvec = NULL; 407 if (likely(!blk_should_fake_timeout(rq->q))) 408 blk_mq_complete_request(rq); 409 } 410 411 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 412 { 413 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 414 415 cmd->ret = ret; 416 lo_rw_aio_do_completion(cmd); 417 } 418 419 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 420 loff_t pos, int rw) 421 { 422 struct iov_iter iter; 423 struct req_iterator rq_iter; 424 struct bio_vec *bvec; 425 struct request *rq = blk_mq_rq_from_pdu(cmd); 426 struct bio *bio = rq->bio; 427 struct file *file = lo->lo_backing_file; 428 struct bio_vec tmp; 429 unsigned int offset; 430 int nr_bvec = 0; 431 int ret; 432 433 rq_for_each_bvec(tmp, rq, rq_iter) 434 nr_bvec++; 435 436 if (rq->bio != rq->biotail) { 437 438 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 439 GFP_NOIO); 440 if (!bvec) 441 return -EIO; 442 cmd->bvec = bvec; 443 444 /* 445 * The bios of the request may be started from the middle of 446 * the 'bvec' because of bio splitting, so we can't directly 447 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 448 * API will take care of all details for us. 449 */ 450 rq_for_each_bvec(tmp, rq, rq_iter) { 451 *bvec = tmp; 452 bvec++; 453 } 454 bvec = cmd->bvec; 455 offset = 0; 456 } else { 457 /* 458 * Same here, this bio may be started from the middle of the 459 * 'bvec' because of bio splitting, so offset from the bvec 460 * must be passed to iov iterator 461 */ 462 offset = bio->bi_iter.bi_bvec_done; 463 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 464 } 465 atomic_set(&cmd->ref, 2); 466 467 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 468 iter.iov_offset = offset; 469 470 cmd->iocb.ki_pos = pos; 471 cmd->iocb.ki_filp = file; 472 cmd->iocb.ki_complete = lo_rw_aio_complete; 473 cmd->iocb.ki_flags = IOCB_DIRECT; 474 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 475 476 if (rw == ITER_SOURCE) 477 ret = file->f_op->write_iter(&cmd->iocb, &iter); 478 else 479 ret = file->f_op->read_iter(&cmd->iocb, &iter); 480 481 lo_rw_aio_do_completion(cmd); 482 483 if (ret != -EIOCBQUEUED) 484 lo_rw_aio_complete(&cmd->iocb, ret); 485 return 0; 486 } 487 488 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 489 { 490 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 491 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 492 493 /* 494 * lo_write_simple and lo_read_simple should have been covered 495 * by io submit style function like lo_rw_aio(), one blocker 496 * is that lo_read_simple() need to call flush_dcache_page after 497 * the page is written from kernel, and it isn't easy to handle 498 * this in io submit style function which submits all segments 499 * of the req at one time. And direct read IO doesn't need to 500 * run flush_dcache_page(). 501 */ 502 switch (req_op(rq)) { 503 case REQ_OP_FLUSH: 504 return lo_req_flush(lo, rq); 505 case REQ_OP_WRITE_ZEROES: 506 /* 507 * If the caller doesn't want deallocation, call zeroout to 508 * write zeroes the range. Otherwise, punch them out. 509 */ 510 return lo_fallocate(lo, rq, pos, 511 (rq->cmd_flags & REQ_NOUNMAP) ? 512 FALLOC_FL_ZERO_RANGE : 513 FALLOC_FL_PUNCH_HOLE); 514 case REQ_OP_DISCARD: 515 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 516 case REQ_OP_WRITE: 517 if (cmd->use_aio) 518 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 519 else 520 return lo_write_simple(lo, rq, pos); 521 case REQ_OP_READ: 522 if (cmd->use_aio) 523 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 524 else 525 return lo_read_simple(lo, rq, pos); 526 default: 527 WARN_ON_ONCE(1); 528 return -EIO; 529 } 530 } 531 532 static void loop_reread_partitions(struct loop_device *lo) 533 { 534 int rc; 535 536 mutex_lock(&lo->lo_disk->open_mutex); 537 rc = bdev_disk_changed(lo->lo_disk, false); 538 mutex_unlock(&lo->lo_disk->open_mutex); 539 if (rc) 540 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 541 __func__, lo->lo_number, lo->lo_file_name, rc); 542 } 543 544 static inline int is_loop_device(struct file *file) 545 { 546 struct inode *i = file->f_mapping->host; 547 548 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 549 } 550 551 static int loop_validate_file(struct file *file, struct block_device *bdev) 552 { 553 struct inode *inode = file->f_mapping->host; 554 struct file *f = file; 555 556 /* Avoid recursion */ 557 while (is_loop_device(f)) { 558 struct loop_device *l; 559 560 lockdep_assert_held(&loop_validate_mutex); 561 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 562 return -EBADF; 563 564 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 565 if (l->lo_state != Lo_bound) 566 return -EINVAL; 567 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 568 rmb(); 569 f = l->lo_backing_file; 570 } 571 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 572 return -EINVAL; 573 return 0; 574 } 575 576 /* 577 * loop_change_fd switched the backing store of a loopback device to 578 * a new file. This is useful for operating system installers to free up 579 * the original file and in High Availability environments to switch to 580 * an alternative location for the content in case of server meltdown. 581 * This can only work if the loop device is used read-only, and if the 582 * new backing store is the same size and type as the old backing store. 583 */ 584 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 585 unsigned int arg) 586 { 587 struct file *file = fget(arg); 588 struct file *old_file; 589 int error; 590 bool partscan; 591 bool is_loop; 592 593 if (!file) 594 return -EBADF; 595 596 /* suppress uevents while reconfiguring the device */ 597 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 598 599 is_loop = is_loop_device(file); 600 error = loop_global_lock_killable(lo, is_loop); 601 if (error) 602 goto out_putf; 603 error = -ENXIO; 604 if (lo->lo_state != Lo_bound) 605 goto out_err; 606 607 /* the loop device has to be read-only */ 608 error = -EINVAL; 609 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 610 goto out_err; 611 612 error = loop_validate_file(file, bdev); 613 if (error) 614 goto out_err; 615 616 old_file = lo->lo_backing_file; 617 618 error = -EINVAL; 619 620 /* size of the new backing store needs to be the same */ 621 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 622 goto out_err; 623 624 /* and ... switch */ 625 disk_force_media_change(lo->lo_disk); 626 blk_mq_freeze_queue(lo->lo_queue); 627 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 628 lo->lo_backing_file = file; 629 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 630 mapping_set_gfp_mask(file->f_mapping, 631 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 632 loop_update_dio(lo); 633 blk_mq_unfreeze_queue(lo->lo_queue); 634 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 635 loop_global_unlock(lo, is_loop); 636 637 /* 638 * Flush loop_validate_file() before fput(), for l->lo_backing_file 639 * might be pointing at old_file which might be the last reference. 640 */ 641 if (!is_loop) { 642 mutex_lock(&loop_validate_mutex); 643 mutex_unlock(&loop_validate_mutex); 644 } 645 /* 646 * We must drop file reference outside of lo_mutex as dropping 647 * the file ref can take open_mutex which creates circular locking 648 * dependency. 649 */ 650 fput(old_file); 651 if (partscan) 652 loop_reread_partitions(lo); 653 654 error = 0; 655 done: 656 /* enable and uncork uevent now that we are done */ 657 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 658 return error; 659 660 out_err: 661 loop_global_unlock(lo, is_loop); 662 out_putf: 663 fput(file); 664 goto done; 665 } 666 667 /* loop sysfs attributes */ 668 669 static ssize_t loop_attr_show(struct device *dev, char *page, 670 ssize_t (*callback)(struct loop_device *, char *)) 671 { 672 struct gendisk *disk = dev_to_disk(dev); 673 struct loop_device *lo = disk->private_data; 674 675 return callback(lo, page); 676 } 677 678 #define LOOP_ATTR_RO(_name) \ 679 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 680 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 681 struct device_attribute *attr, char *b) \ 682 { \ 683 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 684 } \ 685 static struct device_attribute loop_attr_##_name = \ 686 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 687 688 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 689 { 690 ssize_t ret; 691 char *p = NULL; 692 693 spin_lock_irq(&lo->lo_lock); 694 if (lo->lo_backing_file) 695 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 696 spin_unlock_irq(&lo->lo_lock); 697 698 if (IS_ERR_OR_NULL(p)) 699 ret = PTR_ERR(p); 700 else { 701 ret = strlen(p); 702 memmove(buf, p, ret); 703 buf[ret++] = '\n'; 704 buf[ret] = 0; 705 } 706 707 return ret; 708 } 709 710 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 711 { 712 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 713 } 714 715 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 716 { 717 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 718 } 719 720 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 721 { 722 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 723 724 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 725 } 726 727 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 728 { 729 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 730 731 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 732 } 733 734 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 735 { 736 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 737 738 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 739 } 740 741 LOOP_ATTR_RO(backing_file); 742 LOOP_ATTR_RO(offset); 743 LOOP_ATTR_RO(sizelimit); 744 LOOP_ATTR_RO(autoclear); 745 LOOP_ATTR_RO(partscan); 746 LOOP_ATTR_RO(dio); 747 748 static struct attribute *loop_attrs[] = { 749 &loop_attr_backing_file.attr, 750 &loop_attr_offset.attr, 751 &loop_attr_sizelimit.attr, 752 &loop_attr_autoclear.attr, 753 &loop_attr_partscan.attr, 754 &loop_attr_dio.attr, 755 NULL, 756 }; 757 758 static struct attribute_group loop_attribute_group = { 759 .name = "loop", 760 .attrs= loop_attrs, 761 }; 762 763 static void loop_sysfs_init(struct loop_device *lo) 764 { 765 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 766 &loop_attribute_group); 767 } 768 769 static void loop_sysfs_exit(struct loop_device *lo) 770 { 771 if (lo->sysfs_inited) 772 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 773 &loop_attribute_group); 774 } 775 776 static void loop_get_discard_config(struct loop_device *lo, 777 u32 *granularity, u32 *max_discard_sectors) 778 { 779 struct file *file = lo->lo_backing_file; 780 struct inode *inode = file->f_mapping->host; 781 struct kstatfs sbuf; 782 783 /* 784 * If the backing device is a block device, mirror its zeroing 785 * capability. Set the discard sectors to the block device's zeroing 786 * capabilities because loop discards result in blkdev_issue_zeroout(), 787 * not blkdev_issue_discard(). This maintains consistent behavior with 788 * file-backed loop devices: discarded regions read back as zero. 789 */ 790 if (S_ISBLK(inode->i_mode)) { 791 struct block_device *bdev = I_BDEV(inode); 792 793 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 794 *granularity = bdev_discard_granularity(bdev); 795 796 /* 797 * We use punch hole to reclaim the free space used by the 798 * image a.k.a. discard. 799 */ 800 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 801 *max_discard_sectors = UINT_MAX >> 9; 802 *granularity = sbuf.f_bsize; 803 } 804 } 805 806 struct loop_worker { 807 struct rb_node rb_node; 808 struct work_struct work; 809 struct list_head cmd_list; 810 struct list_head idle_list; 811 struct loop_device *lo; 812 struct cgroup_subsys_state *blkcg_css; 813 unsigned long last_ran_at; 814 }; 815 816 static void loop_workfn(struct work_struct *work); 817 818 #ifdef CONFIG_BLK_CGROUP 819 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 820 { 821 return !css || css == blkcg_root_css; 822 } 823 #else 824 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 825 { 826 return !css; 827 } 828 #endif 829 830 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 831 { 832 struct rb_node **node, *parent = NULL; 833 struct loop_worker *cur_worker, *worker = NULL; 834 struct work_struct *work; 835 struct list_head *cmd_list; 836 837 spin_lock_irq(&lo->lo_work_lock); 838 839 if (queue_on_root_worker(cmd->blkcg_css)) 840 goto queue_work; 841 842 node = &lo->worker_tree.rb_node; 843 844 while (*node) { 845 parent = *node; 846 cur_worker = container_of(*node, struct loop_worker, rb_node); 847 if (cur_worker->blkcg_css == cmd->blkcg_css) { 848 worker = cur_worker; 849 break; 850 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 851 node = &(*node)->rb_left; 852 } else { 853 node = &(*node)->rb_right; 854 } 855 } 856 if (worker) 857 goto queue_work; 858 859 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 860 /* 861 * In the event we cannot allocate a worker, just queue on the 862 * rootcg worker and issue the I/O as the rootcg 863 */ 864 if (!worker) { 865 cmd->blkcg_css = NULL; 866 if (cmd->memcg_css) 867 css_put(cmd->memcg_css); 868 cmd->memcg_css = NULL; 869 goto queue_work; 870 } 871 872 worker->blkcg_css = cmd->blkcg_css; 873 css_get(worker->blkcg_css); 874 INIT_WORK(&worker->work, loop_workfn); 875 INIT_LIST_HEAD(&worker->cmd_list); 876 INIT_LIST_HEAD(&worker->idle_list); 877 worker->lo = lo; 878 rb_link_node(&worker->rb_node, parent, node); 879 rb_insert_color(&worker->rb_node, &lo->worker_tree); 880 queue_work: 881 if (worker) { 882 /* 883 * We need to remove from the idle list here while 884 * holding the lock so that the idle timer doesn't 885 * free the worker 886 */ 887 if (!list_empty(&worker->idle_list)) 888 list_del_init(&worker->idle_list); 889 work = &worker->work; 890 cmd_list = &worker->cmd_list; 891 } else { 892 work = &lo->rootcg_work; 893 cmd_list = &lo->rootcg_cmd_list; 894 } 895 list_add_tail(&cmd->list_entry, cmd_list); 896 queue_work(lo->workqueue, work); 897 spin_unlock_irq(&lo->lo_work_lock); 898 } 899 900 static void loop_set_timer(struct loop_device *lo) 901 { 902 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 903 } 904 905 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 906 { 907 struct loop_worker *pos, *worker; 908 909 spin_lock_irq(&lo->lo_work_lock); 910 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 911 idle_list) { 912 if (!delete_all && 913 time_is_after_jiffies(worker->last_ran_at + 914 LOOP_IDLE_WORKER_TIMEOUT)) 915 break; 916 list_del(&worker->idle_list); 917 rb_erase(&worker->rb_node, &lo->worker_tree); 918 css_put(worker->blkcg_css); 919 kfree(worker); 920 } 921 if (!list_empty(&lo->idle_worker_list)) 922 loop_set_timer(lo); 923 spin_unlock_irq(&lo->lo_work_lock); 924 } 925 926 static void loop_free_idle_workers_timer(struct timer_list *timer) 927 { 928 struct loop_device *lo = container_of(timer, struct loop_device, timer); 929 930 return loop_free_idle_workers(lo, false); 931 } 932 933 /** 934 * loop_set_status_from_info - configure device from loop_info 935 * @lo: struct loop_device to configure 936 * @info: struct loop_info64 to configure the device with 937 * 938 * Configures the loop device parameters according to the passed 939 * in loop_info64 configuration. 940 */ 941 static int 942 loop_set_status_from_info(struct loop_device *lo, 943 const struct loop_info64 *info) 944 { 945 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 946 return -EINVAL; 947 948 switch (info->lo_encrypt_type) { 949 case LO_CRYPT_NONE: 950 break; 951 case LO_CRYPT_XOR: 952 pr_warn("support for the xor transformation has been removed.\n"); 953 return -EINVAL; 954 case LO_CRYPT_CRYPTOAPI: 955 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 956 return -EINVAL; 957 default: 958 return -EINVAL; 959 } 960 961 /* Avoid assigning overflow values */ 962 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 963 return -EOVERFLOW; 964 965 lo->lo_offset = info->lo_offset; 966 lo->lo_sizelimit = info->lo_sizelimit; 967 968 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 969 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 970 return 0; 971 } 972 973 static unsigned int loop_default_blocksize(struct loop_device *lo, 974 struct block_device *backing_bdev) 975 { 976 /* In case of direct I/O, match underlying block size */ 977 if ((lo->lo_backing_file->f_flags & O_DIRECT) && backing_bdev) 978 return bdev_logical_block_size(backing_bdev); 979 return SECTOR_SIZE; 980 } 981 982 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 983 unsigned int bsize) 984 { 985 struct file *file = lo->lo_backing_file; 986 struct inode *inode = file->f_mapping->host; 987 struct block_device *backing_bdev = NULL; 988 u32 granularity = 0, max_discard_sectors = 0; 989 990 if (S_ISBLK(inode->i_mode)) 991 backing_bdev = I_BDEV(inode); 992 else if (inode->i_sb->s_bdev) 993 backing_bdev = inode->i_sb->s_bdev; 994 995 if (!bsize) 996 bsize = loop_default_blocksize(lo, backing_bdev); 997 998 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 999 1000 lim->logical_block_size = bsize; 1001 lim->physical_block_size = bsize; 1002 lim->io_min = bsize; 1003 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 1004 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 1005 lim->features |= BLK_FEAT_WRITE_CACHE; 1006 if (backing_bdev && !bdev_nonrot(backing_bdev)) 1007 lim->features |= BLK_FEAT_ROTATIONAL; 1008 lim->max_hw_discard_sectors = max_discard_sectors; 1009 lim->max_write_zeroes_sectors = max_discard_sectors; 1010 if (max_discard_sectors) 1011 lim->discard_granularity = granularity; 1012 else 1013 lim->discard_granularity = 0; 1014 } 1015 1016 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 1017 struct block_device *bdev, 1018 const struct loop_config *config) 1019 { 1020 struct file *file = fget(config->fd); 1021 struct address_space *mapping; 1022 struct queue_limits lim; 1023 int error; 1024 loff_t size; 1025 bool partscan; 1026 bool is_loop; 1027 1028 if (!file) 1029 return -EBADF; 1030 is_loop = is_loop_device(file); 1031 1032 /* This is safe, since we have a reference from open(). */ 1033 __module_get(THIS_MODULE); 1034 1035 /* 1036 * If we don't hold exclusive handle for the device, upgrade to it 1037 * here to avoid changing device under exclusive owner. 1038 */ 1039 if (!(mode & BLK_OPEN_EXCL)) { 1040 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1041 if (error) 1042 goto out_putf; 1043 } 1044 1045 error = loop_global_lock_killable(lo, is_loop); 1046 if (error) 1047 goto out_bdev; 1048 1049 error = -EBUSY; 1050 if (lo->lo_state != Lo_unbound) 1051 goto out_unlock; 1052 1053 error = loop_validate_file(file, bdev); 1054 if (error) 1055 goto out_unlock; 1056 1057 mapping = file->f_mapping; 1058 1059 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1060 error = -EINVAL; 1061 goto out_unlock; 1062 } 1063 1064 error = loop_set_status_from_info(lo, &config->info); 1065 if (error) 1066 goto out_unlock; 1067 lo->lo_flags = config->info.lo_flags; 1068 1069 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1070 !file->f_op->write_iter) 1071 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1072 1073 if (!lo->workqueue) { 1074 lo->workqueue = alloc_workqueue("loop%d", 1075 WQ_UNBOUND | WQ_FREEZABLE, 1076 0, lo->lo_number); 1077 if (!lo->workqueue) { 1078 error = -ENOMEM; 1079 goto out_unlock; 1080 } 1081 } 1082 1083 /* suppress uevents while reconfiguring the device */ 1084 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1085 1086 disk_force_media_change(lo->lo_disk); 1087 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1088 1089 lo->lo_device = bdev; 1090 lo->lo_backing_file = file; 1091 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1092 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1093 1094 lim = queue_limits_start_update(lo->lo_queue); 1095 loop_update_limits(lo, &lim, config->block_size); 1096 /* No need to freeze the queue as the device isn't bound yet. */ 1097 error = queue_limits_commit_update(lo->lo_queue, &lim); 1098 if (error) 1099 goto out_unlock; 1100 1101 loop_update_dio(lo); 1102 loop_sysfs_init(lo); 1103 1104 size = get_loop_size(lo, file); 1105 loop_set_size(lo, size); 1106 1107 /* Order wrt reading lo_state in loop_validate_file(). */ 1108 wmb(); 1109 1110 lo->lo_state = Lo_bound; 1111 if (part_shift) 1112 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1113 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1114 if (partscan) 1115 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1116 1117 /* enable and uncork uevent now that we are done */ 1118 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1119 1120 loop_global_unlock(lo, is_loop); 1121 if (partscan) 1122 loop_reread_partitions(lo); 1123 1124 if (!(mode & BLK_OPEN_EXCL)) 1125 bd_abort_claiming(bdev, loop_configure); 1126 1127 return 0; 1128 1129 out_unlock: 1130 loop_global_unlock(lo, is_loop); 1131 out_bdev: 1132 if (!(mode & BLK_OPEN_EXCL)) 1133 bd_abort_claiming(bdev, loop_configure); 1134 out_putf: 1135 fput(file); 1136 /* This is safe: open() is still holding a reference. */ 1137 module_put(THIS_MODULE); 1138 return error; 1139 } 1140 1141 static void __loop_clr_fd(struct loop_device *lo) 1142 { 1143 struct queue_limits lim; 1144 struct file *filp; 1145 gfp_t gfp = lo->old_gfp_mask; 1146 1147 spin_lock_irq(&lo->lo_lock); 1148 filp = lo->lo_backing_file; 1149 lo->lo_backing_file = NULL; 1150 spin_unlock_irq(&lo->lo_lock); 1151 1152 lo->lo_device = NULL; 1153 lo->lo_offset = 0; 1154 lo->lo_sizelimit = 0; 1155 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1156 1157 /* 1158 * Reset the block size to the default. 1159 * 1160 * No queue freezing needed because this is called from the final 1161 * ->release call only, so there can't be any outstanding I/O. 1162 */ 1163 lim = queue_limits_start_update(lo->lo_queue); 1164 lim.logical_block_size = SECTOR_SIZE; 1165 lim.physical_block_size = SECTOR_SIZE; 1166 lim.io_min = SECTOR_SIZE; 1167 queue_limits_commit_update(lo->lo_queue, &lim); 1168 1169 invalidate_disk(lo->lo_disk); 1170 loop_sysfs_exit(lo); 1171 /* let user-space know about this change */ 1172 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1173 mapping_set_gfp_mask(filp->f_mapping, gfp); 1174 /* This is safe: open() is still holding a reference. */ 1175 module_put(THIS_MODULE); 1176 1177 disk_force_media_change(lo->lo_disk); 1178 1179 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1180 int err; 1181 1182 /* 1183 * open_mutex has been held already in release path, so don't 1184 * acquire it if this function is called in such case. 1185 * 1186 * If the reread partition isn't from release path, lo_refcnt 1187 * must be at least one and it can only become zero when the 1188 * current holder is released. 1189 */ 1190 err = bdev_disk_changed(lo->lo_disk, false); 1191 if (err) 1192 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1193 __func__, lo->lo_number, err); 1194 /* Device is gone, no point in returning error */ 1195 } 1196 1197 /* 1198 * lo->lo_state is set to Lo_unbound here after above partscan has 1199 * finished. There cannot be anybody else entering __loop_clr_fd() as 1200 * Lo_rundown state protects us from all the other places trying to 1201 * change the 'lo' device. 1202 */ 1203 lo->lo_flags = 0; 1204 if (!part_shift) 1205 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1206 mutex_lock(&lo->lo_mutex); 1207 lo->lo_state = Lo_unbound; 1208 mutex_unlock(&lo->lo_mutex); 1209 1210 /* 1211 * Need not hold lo_mutex to fput backing file. Calling fput holding 1212 * lo_mutex triggers a circular lock dependency possibility warning as 1213 * fput can take open_mutex which is usually taken before lo_mutex. 1214 */ 1215 fput(filp); 1216 } 1217 1218 static int loop_clr_fd(struct loop_device *lo) 1219 { 1220 int err; 1221 1222 /* 1223 * Since lo_ioctl() is called without locks held, it is possible that 1224 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1225 * 1226 * Therefore, use global lock when setting Lo_rundown state in order to 1227 * make sure that loop_validate_file() will fail if the "struct file" 1228 * which loop_configure()/loop_change_fd() found via fget() was this 1229 * loop device. 1230 */ 1231 err = loop_global_lock_killable(lo, true); 1232 if (err) 1233 return err; 1234 if (lo->lo_state != Lo_bound) { 1235 loop_global_unlock(lo, true); 1236 return -ENXIO; 1237 } 1238 /* 1239 * Mark the device for removing the backing device on last close. 1240 * If we are the only opener, also switch the state to roundown here to 1241 * prevent new openers from coming in. 1242 */ 1243 1244 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1245 if (disk_openers(lo->lo_disk) == 1) 1246 lo->lo_state = Lo_rundown; 1247 loop_global_unlock(lo, true); 1248 1249 return 0; 1250 } 1251 1252 static int 1253 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1254 { 1255 int err; 1256 bool partscan = false; 1257 bool size_changed = false; 1258 1259 err = mutex_lock_killable(&lo->lo_mutex); 1260 if (err) 1261 return err; 1262 if (lo->lo_state != Lo_bound) { 1263 err = -ENXIO; 1264 goto out_unlock; 1265 } 1266 1267 if (lo->lo_offset != info->lo_offset || 1268 lo->lo_sizelimit != info->lo_sizelimit) { 1269 size_changed = true; 1270 sync_blockdev(lo->lo_device); 1271 invalidate_bdev(lo->lo_device); 1272 } 1273 1274 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1275 blk_mq_freeze_queue(lo->lo_queue); 1276 1277 err = loop_set_status_from_info(lo, info); 1278 if (err) 1279 goto out_unfreeze; 1280 1281 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1282 (info->lo_flags & LO_FLAGS_PARTSCAN); 1283 1284 lo->lo_flags &= ~(LOOP_SET_STATUS_SETTABLE_FLAGS | 1285 LOOP_SET_STATUS_CLEARABLE_FLAGS); 1286 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1287 1288 if (size_changed) { 1289 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1290 lo->lo_backing_file); 1291 loop_set_size(lo, new_size); 1292 } 1293 1294 /* update the direct I/O flag if lo_offset changed */ 1295 loop_update_dio(lo); 1296 1297 out_unfreeze: 1298 blk_mq_unfreeze_queue(lo->lo_queue); 1299 if (partscan) 1300 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1301 out_unlock: 1302 mutex_unlock(&lo->lo_mutex); 1303 if (partscan) 1304 loop_reread_partitions(lo); 1305 1306 return err; 1307 } 1308 1309 static int 1310 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1311 { 1312 struct path path; 1313 struct kstat stat; 1314 int ret; 1315 1316 ret = mutex_lock_killable(&lo->lo_mutex); 1317 if (ret) 1318 return ret; 1319 if (lo->lo_state != Lo_bound) { 1320 mutex_unlock(&lo->lo_mutex); 1321 return -ENXIO; 1322 } 1323 1324 memset(info, 0, sizeof(*info)); 1325 info->lo_number = lo->lo_number; 1326 info->lo_offset = lo->lo_offset; 1327 info->lo_sizelimit = lo->lo_sizelimit; 1328 info->lo_flags = lo->lo_flags; 1329 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1330 1331 /* Drop lo_mutex while we call into the filesystem. */ 1332 path = lo->lo_backing_file->f_path; 1333 path_get(&path); 1334 mutex_unlock(&lo->lo_mutex); 1335 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1336 if (!ret) { 1337 info->lo_device = huge_encode_dev(stat.dev); 1338 info->lo_inode = stat.ino; 1339 info->lo_rdevice = huge_encode_dev(stat.rdev); 1340 } 1341 path_put(&path); 1342 return ret; 1343 } 1344 1345 static void 1346 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1347 { 1348 memset(info64, 0, sizeof(*info64)); 1349 info64->lo_number = info->lo_number; 1350 info64->lo_device = info->lo_device; 1351 info64->lo_inode = info->lo_inode; 1352 info64->lo_rdevice = info->lo_rdevice; 1353 info64->lo_offset = info->lo_offset; 1354 info64->lo_sizelimit = 0; 1355 info64->lo_flags = info->lo_flags; 1356 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1357 } 1358 1359 static int 1360 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1361 { 1362 memset(info, 0, sizeof(*info)); 1363 info->lo_number = info64->lo_number; 1364 info->lo_device = info64->lo_device; 1365 info->lo_inode = info64->lo_inode; 1366 info->lo_rdevice = info64->lo_rdevice; 1367 info->lo_offset = info64->lo_offset; 1368 info->lo_flags = info64->lo_flags; 1369 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1370 1371 /* error in case values were truncated */ 1372 if (info->lo_device != info64->lo_device || 1373 info->lo_rdevice != info64->lo_rdevice || 1374 info->lo_inode != info64->lo_inode || 1375 info->lo_offset != info64->lo_offset) 1376 return -EOVERFLOW; 1377 1378 return 0; 1379 } 1380 1381 static int 1382 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1383 { 1384 struct loop_info info; 1385 struct loop_info64 info64; 1386 1387 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1388 return -EFAULT; 1389 loop_info64_from_old(&info, &info64); 1390 return loop_set_status(lo, &info64); 1391 } 1392 1393 static int 1394 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1395 { 1396 struct loop_info64 info64; 1397 1398 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1399 return -EFAULT; 1400 return loop_set_status(lo, &info64); 1401 } 1402 1403 static int 1404 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1405 struct loop_info info; 1406 struct loop_info64 info64; 1407 int err; 1408 1409 if (!arg) 1410 return -EINVAL; 1411 err = loop_get_status(lo, &info64); 1412 if (!err) 1413 err = loop_info64_to_old(&info64, &info); 1414 if (!err && copy_to_user(arg, &info, sizeof(info))) 1415 err = -EFAULT; 1416 1417 return err; 1418 } 1419 1420 static int 1421 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1422 struct loop_info64 info64; 1423 int err; 1424 1425 if (!arg) 1426 return -EINVAL; 1427 err = loop_get_status(lo, &info64); 1428 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1429 err = -EFAULT; 1430 1431 return err; 1432 } 1433 1434 static int loop_set_capacity(struct loop_device *lo) 1435 { 1436 loff_t size; 1437 1438 if (unlikely(lo->lo_state != Lo_bound)) 1439 return -ENXIO; 1440 1441 size = get_loop_size(lo, lo->lo_backing_file); 1442 loop_set_size(lo, size); 1443 1444 return 0; 1445 } 1446 1447 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1448 { 1449 bool use_dio = !!arg; 1450 1451 if (lo->lo_state != Lo_bound) 1452 return -ENXIO; 1453 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1454 return 0; 1455 1456 if (use_dio) { 1457 if (!lo_can_use_dio(lo)) 1458 return -EINVAL; 1459 /* flush dirty pages before starting to use direct I/O */ 1460 vfs_fsync(lo->lo_backing_file, 0); 1461 } 1462 1463 blk_mq_freeze_queue(lo->lo_queue); 1464 if (use_dio) 1465 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1466 else 1467 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1468 blk_mq_unfreeze_queue(lo->lo_queue); 1469 return 0; 1470 } 1471 1472 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1473 { 1474 struct queue_limits lim; 1475 int err = 0; 1476 1477 if (lo->lo_state != Lo_bound) 1478 return -ENXIO; 1479 1480 if (lo->lo_queue->limits.logical_block_size == arg) 1481 return 0; 1482 1483 sync_blockdev(lo->lo_device); 1484 invalidate_bdev(lo->lo_device); 1485 1486 lim = queue_limits_start_update(lo->lo_queue); 1487 loop_update_limits(lo, &lim, arg); 1488 1489 blk_mq_freeze_queue(lo->lo_queue); 1490 err = queue_limits_commit_update(lo->lo_queue, &lim); 1491 loop_update_dio(lo); 1492 blk_mq_unfreeze_queue(lo->lo_queue); 1493 1494 return err; 1495 } 1496 1497 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1498 unsigned long arg) 1499 { 1500 int err; 1501 1502 err = mutex_lock_killable(&lo->lo_mutex); 1503 if (err) 1504 return err; 1505 switch (cmd) { 1506 case LOOP_SET_CAPACITY: 1507 err = loop_set_capacity(lo); 1508 break; 1509 case LOOP_SET_DIRECT_IO: 1510 err = loop_set_dio(lo, arg); 1511 break; 1512 case LOOP_SET_BLOCK_SIZE: 1513 err = loop_set_block_size(lo, arg); 1514 break; 1515 default: 1516 err = -EINVAL; 1517 } 1518 mutex_unlock(&lo->lo_mutex); 1519 return err; 1520 } 1521 1522 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1523 unsigned int cmd, unsigned long arg) 1524 { 1525 struct loop_device *lo = bdev->bd_disk->private_data; 1526 void __user *argp = (void __user *) arg; 1527 int err; 1528 1529 switch (cmd) { 1530 case LOOP_SET_FD: { 1531 /* 1532 * Legacy case - pass in a zeroed out struct loop_config with 1533 * only the file descriptor set , which corresponds with the 1534 * default parameters we'd have used otherwise. 1535 */ 1536 struct loop_config config; 1537 1538 memset(&config, 0, sizeof(config)); 1539 config.fd = arg; 1540 1541 return loop_configure(lo, mode, bdev, &config); 1542 } 1543 case LOOP_CONFIGURE: { 1544 struct loop_config config; 1545 1546 if (copy_from_user(&config, argp, sizeof(config))) 1547 return -EFAULT; 1548 1549 return loop_configure(lo, mode, bdev, &config); 1550 } 1551 case LOOP_CHANGE_FD: 1552 return loop_change_fd(lo, bdev, arg); 1553 case LOOP_CLR_FD: 1554 return loop_clr_fd(lo); 1555 case LOOP_SET_STATUS: 1556 err = -EPERM; 1557 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1558 err = loop_set_status_old(lo, argp); 1559 break; 1560 case LOOP_GET_STATUS: 1561 return loop_get_status_old(lo, argp); 1562 case LOOP_SET_STATUS64: 1563 err = -EPERM; 1564 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1565 err = loop_set_status64(lo, argp); 1566 break; 1567 case LOOP_GET_STATUS64: 1568 return loop_get_status64(lo, argp); 1569 case LOOP_SET_CAPACITY: 1570 case LOOP_SET_DIRECT_IO: 1571 case LOOP_SET_BLOCK_SIZE: 1572 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1573 return -EPERM; 1574 fallthrough; 1575 default: 1576 err = lo_simple_ioctl(lo, cmd, arg); 1577 break; 1578 } 1579 1580 return err; 1581 } 1582 1583 #ifdef CONFIG_COMPAT 1584 struct compat_loop_info { 1585 compat_int_t lo_number; /* ioctl r/o */ 1586 compat_dev_t lo_device; /* ioctl r/o */ 1587 compat_ulong_t lo_inode; /* ioctl r/o */ 1588 compat_dev_t lo_rdevice; /* ioctl r/o */ 1589 compat_int_t lo_offset; 1590 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1591 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1592 compat_int_t lo_flags; /* ioctl r/o */ 1593 char lo_name[LO_NAME_SIZE]; 1594 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1595 compat_ulong_t lo_init[2]; 1596 char reserved[4]; 1597 }; 1598 1599 /* 1600 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1601 * - noinlined to reduce stack space usage in main part of driver 1602 */ 1603 static noinline int 1604 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1605 struct loop_info64 *info64) 1606 { 1607 struct compat_loop_info info; 1608 1609 if (copy_from_user(&info, arg, sizeof(info))) 1610 return -EFAULT; 1611 1612 memset(info64, 0, sizeof(*info64)); 1613 info64->lo_number = info.lo_number; 1614 info64->lo_device = info.lo_device; 1615 info64->lo_inode = info.lo_inode; 1616 info64->lo_rdevice = info.lo_rdevice; 1617 info64->lo_offset = info.lo_offset; 1618 info64->lo_sizelimit = 0; 1619 info64->lo_flags = info.lo_flags; 1620 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1621 return 0; 1622 } 1623 1624 /* 1625 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1626 * - noinlined to reduce stack space usage in main part of driver 1627 */ 1628 static noinline int 1629 loop_info64_to_compat(const struct loop_info64 *info64, 1630 struct compat_loop_info __user *arg) 1631 { 1632 struct compat_loop_info info; 1633 1634 memset(&info, 0, sizeof(info)); 1635 info.lo_number = info64->lo_number; 1636 info.lo_device = info64->lo_device; 1637 info.lo_inode = info64->lo_inode; 1638 info.lo_rdevice = info64->lo_rdevice; 1639 info.lo_offset = info64->lo_offset; 1640 info.lo_flags = info64->lo_flags; 1641 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1642 1643 /* error in case values were truncated */ 1644 if (info.lo_device != info64->lo_device || 1645 info.lo_rdevice != info64->lo_rdevice || 1646 info.lo_inode != info64->lo_inode || 1647 info.lo_offset != info64->lo_offset) 1648 return -EOVERFLOW; 1649 1650 if (copy_to_user(arg, &info, sizeof(info))) 1651 return -EFAULT; 1652 return 0; 1653 } 1654 1655 static int 1656 loop_set_status_compat(struct loop_device *lo, 1657 const struct compat_loop_info __user *arg) 1658 { 1659 struct loop_info64 info64; 1660 int ret; 1661 1662 ret = loop_info64_from_compat(arg, &info64); 1663 if (ret < 0) 1664 return ret; 1665 return loop_set_status(lo, &info64); 1666 } 1667 1668 static int 1669 loop_get_status_compat(struct loop_device *lo, 1670 struct compat_loop_info __user *arg) 1671 { 1672 struct loop_info64 info64; 1673 int err; 1674 1675 if (!arg) 1676 return -EINVAL; 1677 err = loop_get_status(lo, &info64); 1678 if (!err) 1679 err = loop_info64_to_compat(&info64, arg); 1680 return err; 1681 } 1682 1683 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1684 unsigned int cmd, unsigned long arg) 1685 { 1686 struct loop_device *lo = bdev->bd_disk->private_data; 1687 int err; 1688 1689 switch(cmd) { 1690 case LOOP_SET_STATUS: 1691 err = loop_set_status_compat(lo, 1692 (const struct compat_loop_info __user *)arg); 1693 break; 1694 case LOOP_GET_STATUS: 1695 err = loop_get_status_compat(lo, 1696 (struct compat_loop_info __user *)arg); 1697 break; 1698 case LOOP_SET_CAPACITY: 1699 case LOOP_CLR_FD: 1700 case LOOP_GET_STATUS64: 1701 case LOOP_SET_STATUS64: 1702 case LOOP_CONFIGURE: 1703 arg = (unsigned long) compat_ptr(arg); 1704 fallthrough; 1705 case LOOP_SET_FD: 1706 case LOOP_CHANGE_FD: 1707 case LOOP_SET_BLOCK_SIZE: 1708 case LOOP_SET_DIRECT_IO: 1709 err = lo_ioctl(bdev, mode, cmd, arg); 1710 break; 1711 default: 1712 err = -ENOIOCTLCMD; 1713 break; 1714 } 1715 return err; 1716 } 1717 #endif 1718 1719 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1720 { 1721 struct loop_device *lo = disk->private_data; 1722 int err; 1723 1724 err = mutex_lock_killable(&lo->lo_mutex); 1725 if (err) 1726 return err; 1727 1728 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1729 err = -ENXIO; 1730 mutex_unlock(&lo->lo_mutex); 1731 return err; 1732 } 1733 1734 static void lo_release(struct gendisk *disk) 1735 { 1736 struct loop_device *lo = disk->private_data; 1737 bool need_clear = false; 1738 1739 if (disk_openers(disk) > 0) 1740 return; 1741 /* 1742 * Clear the backing device information if this is the last close of 1743 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1744 * has been called. 1745 */ 1746 1747 mutex_lock(&lo->lo_mutex); 1748 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1749 lo->lo_state = Lo_rundown; 1750 1751 need_clear = (lo->lo_state == Lo_rundown); 1752 mutex_unlock(&lo->lo_mutex); 1753 1754 if (need_clear) 1755 __loop_clr_fd(lo); 1756 } 1757 1758 static void lo_free_disk(struct gendisk *disk) 1759 { 1760 struct loop_device *lo = disk->private_data; 1761 1762 if (lo->workqueue) 1763 destroy_workqueue(lo->workqueue); 1764 loop_free_idle_workers(lo, true); 1765 timer_shutdown_sync(&lo->timer); 1766 mutex_destroy(&lo->lo_mutex); 1767 kfree(lo); 1768 } 1769 1770 static const struct block_device_operations lo_fops = { 1771 .owner = THIS_MODULE, 1772 .open = lo_open, 1773 .release = lo_release, 1774 .ioctl = lo_ioctl, 1775 #ifdef CONFIG_COMPAT 1776 .compat_ioctl = lo_compat_ioctl, 1777 #endif 1778 .free_disk = lo_free_disk, 1779 }; 1780 1781 /* 1782 * And now the modules code and kernel interface. 1783 */ 1784 1785 /* 1786 * If max_loop is specified, create that many devices upfront. 1787 * This also becomes a hard limit. If max_loop is not specified, 1788 * the default isn't a hard limit (as before commit 85c50197716c 1789 * changed the default value from 0 for max_loop=0 reasons), just 1790 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1791 * init time. Loop devices can be requested on-demand with the 1792 * /dev/loop-control interface, or be instantiated by accessing 1793 * a 'dead' device node. 1794 */ 1795 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1796 1797 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1798 static bool max_loop_specified; 1799 1800 static int max_loop_param_set_int(const char *val, 1801 const struct kernel_param *kp) 1802 { 1803 int ret; 1804 1805 ret = param_set_int(val, kp); 1806 if (ret < 0) 1807 return ret; 1808 1809 max_loop_specified = true; 1810 return 0; 1811 } 1812 1813 static const struct kernel_param_ops max_loop_param_ops = { 1814 .set = max_loop_param_set_int, 1815 .get = param_get_int, 1816 }; 1817 1818 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1819 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1820 #else 1821 module_param(max_loop, int, 0444); 1822 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1823 #endif 1824 1825 module_param(max_part, int, 0444); 1826 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1827 1828 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1829 1830 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1831 { 1832 int qd, ret; 1833 1834 ret = kstrtoint(s, 0, &qd); 1835 if (ret < 0) 1836 return ret; 1837 if (qd < 1) 1838 return -EINVAL; 1839 hw_queue_depth = qd; 1840 return 0; 1841 } 1842 1843 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1844 .set = loop_set_hw_queue_depth, 1845 .get = param_get_int, 1846 }; 1847 1848 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1849 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1850 1851 MODULE_DESCRIPTION("Loopback device support"); 1852 MODULE_LICENSE("GPL"); 1853 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1854 1855 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1856 const struct blk_mq_queue_data *bd) 1857 { 1858 struct request *rq = bd->rq; 1859 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1860 struct loop_device *lo = rq->q->queuedata; 1861 1862 blk_mq_start_request(rq); 1863 1864 if (lo->lo_state != Lo_bound) 1865 return BLK_STS_IOERR; 1866 1867 switch (req_op(rq)) { 1868 case REQ_OP_FLUSH: 1869 case REQ_OP_DISCARD: 1870 case REQ_OP_WRITE_ZEROES: 1871 cmd->use_aio = false; 1872 break; 1873 default: 1874 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1875 break; 1876 } 1877 1878 /* always use the first bio's css */ 1879 cmd->blkcg_css = NULL; 1880 cmd->memcg_css = NULL; 1881 #ifdef CONFIG_BLK_CGROUP 1882 if (rq->bio) { 1883 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1884 #ifdef CONFIG_MEMCG 1885 if (cmd->blkcg_css) { 1886 cmd->memcg_css = 1887 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1888 &memory_cgrp_subsys); 1889 } 1890 #endif 1891 } 1892 #endif 1893 loop_queue_work(lo, cmd); 1894 1895 return BLK_STS_OK; 1896 } 1897 1898 static void loop_handle_cmd(struct loop_cmd *cmd) 1899 { 1900 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1901 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1902 struct request *rq = blk_mq_rq_from_pdu(cmd); 1903 const bool write = op_is_write(req_op(rq)); 1904 struct loop_device *lo = rq->q->queuedata; 1905 int ret = 0; 1906 struct mem_cgroup *old_memcg = NULL; 1907 const bool use_aio = cmd->use_aio; 1908 1909 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1910 ret = -EIO; 1911 goto failed; 1912 } 1913 1914 if (cmd_blkcg_css) 1915 kthread_associate_blkcg(cmd_blkcg_css); 1916 if (cmd_memcg_css) 1917 old_memcg = set_active_memcg( 1918 mem_cgroup_from_css(cmd_memcg_css)); 1919 1920 /* 1921 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1922 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1923 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1924 * not yet been completed. 1925 */ 1926 ret = do_req_filebacked(lo, rq); 1927 1928 if (cmd_blkcg_css) 1929 kthread_associate_blkcg(NULL); 1930 1931 if (cmd_memcg_css) { 1932 set_active_memcg(old_memcg); 1933 css_put(cmd_memcg_css); 1934 } 1935 failed: 1936 /* complete non-aio request */ 1937 if (!use_aio || ret) { 1938 if (ret == -EOPNOTSUPP) 1939 cmd->ret = ret; 1940 else 1941 cmd->ret = ret ? -EIO : 0; 1942 if (likely(!blk_should_fake_timeout(rq->q))) 1943 blk_mq_complete_request(rq); 1944 } 1945 } 1946 1947 static void loop_process_work(struct loop_worker *worker, 1948 struct list_head *cmd_list, struct loop_device *lo) 1949 { 1950 int orig_flags = current->flags; 1951 struct loop_cmd *cmd; 1952 1953 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1954 spin_lock_irq(&lo->lo_work_lock); 1955 while (!list_empty(cmd_list)) { 1956 cmd = container_of( 1957 cmd_list->next, struct loop_cmd, list_entry); 1958 list_del(cmd_list->next); 1959 spin_unlock_irq(&lo->lo_work_lock); 1960 1961 loop_handle_cmd(cmd); 1962 cond_resched(); 1963 1964 spin_lock_irq(&lo->lo_work_lock); 1965 } 1966 1967 /* 1968 * We only add to the idle list if there are no pending cmds 1969 * *and* the worker will not run again which ensures that it 1970 * is safe to free any worker on the idle list 1971 */ 1972 if (worker && !work_pending(&worker->work)) { 1973 worker->last_ran_at = jiffies; 1974 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1975 loop_set_timer(lo); 1976 } 1977 spin_unlock_irq(&lo->lo_work_lock); 1978 current->flags = orig_flags; 1979 } 1980 1981 static void loop_workfn(struct work_struct *work) 1982 { 1983 struct loop_worker *worker = 1984 container_of(work, struct loop_worker, work); 1985 loop_process_work(worker, &worker->cmd_list, worker->lo); 1986 } 1987 1988 static void loop_rootcg_workfn(struct work_struct *work) 1989 { 1990 struct loop_device *lo = 1991 container_of(work, struct loop_device, rootcg_work); 1992 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1993 } 1994 1995 static const struct blk_mq_ops loop_mq_ops = { 1996 .queue_rq = loop_queue_rq, 1997 .complete = lo_complete_rq, 1998 }; 1999 2000 static int loop_add(int i) 2001 { 2002 struct queue_limits lim = { 2003 /* 2004 * Random number picked from the historic block max_sectors cap. 2005 */ 2006 .max_hw_sectors = 2560u, 2007 }; 2008 struct loop_device *lo; 2009 struct gendisk *disk; 2010 int err; 2011 2012 err = -ENOMEM; 2013 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2014 if (!lo) 2015 goto out; 2016 lo->worker_tree = RB_ROOT; 2017 INIT_LIST_HEAD(&lo->idle_worker_list); 2018 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2019 lo->lo_state = Lo_unbound; 2020 2021 err = mutex_lock_killable(&loop_ctl_mutex); 2022 if (err) 2023 goto out_free_dev; 2024 2025 /* allocate id, if @id >= 0, we're requesting that specific id */ 2026 if (i >= 0) { 2027 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2028 if (err == -ENOSPC) 2029 err = -EEXIST; 2030 } else { 2031 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2032 } 2033 mutex_unlock(&loop_ctl_mutex); 2034 if (err < 0) 2035 goto out_free_dev; 2036 i = err; 2037 2038 lo->tag_set.ops = &loop_mq_ops; 2039 lo->tag_set.nr_hw_queues = 1; 2040 lo->tag_set.queue_depth = hw_queue_depth; 2041 lo->tag_set.numa_node = NUMA_NO_NODE; 2042 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2043 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2044 lo->tag_set.driver_data = lo; 2045 2046 err = blk_mq_alloc_tag_set(&lo->tag_set); 2047 if (err) 2048 goto out_free_idr; 2049 2050 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2051 if (IS_ERR(disk)) { 2052 err = PTR_ERR(disk); 2053 goto out_cleanup_tags; 2054 } 2055 lo->lo_queue = lo->lo_disk->queue; 2056 2057 /* 2058 * Disable partition scanning by default. The in-kernel partition 2059 * scanning can be requested individually per-device during its 2060 * setup. Userspace can always add and remove partitions from all 2061 * devices. The needed partition minors are allocated from the 2062 * extended minor space, the main loop device numbers will continue 2063 * to match the loop minors, regardless of the number of partitions 2064 * used. 2065 * 2066 * If max_part is given, partition scanning is globally enabled for 2067 * all loop devices. The minors for the main loop devices will be 2068 * multiples of max_part. 2069 * 2070 * Note: Global-for-all-devices, set-only-at-init, read-only module 2071 * parameteters like 'max_loop' and 'max_part' make things needlessly 2072 * complicated, are too static, inflexible and may surprise 2073 * userspace tools. Parameters like this in general should be avoided. 2074 */ 2075 if (!part_shift) 2076 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2077 mutex_init(&lo->lo_mutex); 2078 lo->lo_number = i; 2079 spin_lock_init(&lo->lo_lock); 2080 spin_lock_init(&lo->lo_work_lock); 2081 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2082 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2083 disk->major = LOOP_MAJOR; 2084 disk->first_minor = i << part_shift; 2085 disk->minors = 1 << part_shift; 2086 disk->fops = &lo_fops; 2087 disk->private_data = lo; 2088 disk->queue = lo->lo_queue; 2089 disk->events = DISK_EVENT_MEDIA_CHANGE; 2090 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2091 sprintf(disk->disk_name, "loop%d", i); 2092 /* Make this loop device reachable from pathname. */ 2093 err = add_disk(disk); 2094 if (err) 2095 goto out_cleanup_disk; 2096 2097 /* Show this loop device. */ 2098 mutex_lock(&loop_ctl_mutex); 2099 lo->idr_visible = true; 2100 mutex_unlock(&loop_ctl_mutex); 2101 2102 return i; 2103 2104 out_cleanup_disk: 2105 put_disk(disk); 2106 out_cleanup_tags: 2107 blk_mq_free_tag_set(&lo->tag_set); 2108 out_free_idr: 2109 mutex_lock(&loop_ctl_mutex); 2110 idr_remove(&loop_index_idr, i); 2111 mutex_unlock(&loop_ctl_mutex); 2112 out_free_dev: 2113 kfree(lo); 2114 out: 2115 return err; 2116 } 2117 2118 static void loop_remove(struct loop_device *lo) 2119 { 2120 /* Make this loop device unreachable from pathname. */ 2121 del_gendisk(lo->lo_disk); 2122 blk_mq_free_tag_set(&lo->tag_set); 2123 2124 mutex_lock(&loop_ctl_mutex); 2125 idr_remove(&loop_index_idr, lo->lo_number); 2126 mutex_unlock(&loop_ctl_mutex); 2127 2128 put_disk(lo->lo_disk); 2129 } 2130 2131 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2132 static void loop_probe(dev_t dev) 2133 { 2134 int idx = MINOR(dev) >> part_shift; 2135 2136 if (max_loop_specified && max_loop && idx >= max_loop) 2137 return; 2138 loop_add(idx); 2139 } 2140 #else 2141 #define loop_probe NULL 2142 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2143 2144 static int loop_control_remove(int idx) 2145 { 2146 struct loop_device *lo; 2147 int ret; 2148 2149 if (idx < 0) { 2150 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2151 return -EINVAL; 2152 } 2153 2154 /* Hide this loop device for serialization. */ 2155 ret = mutex_lock_killable(&loop_ctl_mutex); 2156 if (ret) 2157 return ret; 2158 lo = idr_find(&loop_index_idr, idx); 2159 if (!lo || !lo->idr_visible) 2160 ret = -ENODEV; 2161 else 2162 lo->idr_visible = false; 2163 mutex_unlock(&loop_ctl_mutex); 2164 if (ret) 2165 return ret; 2166 2167 /* Check whether this loop device can be removed. */ 2168 ret = mutex_lock_killable(&lo->lo_mutex); 2169 if (ret) 2170 goto mark_visible; 2171 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2172 mutex_unlock(&lo->lo_mutex); 2173 ret = -EBUSY; 2174 goto mark_visible; 2175 } 2176 /* Mark this loop device as no more bound, but not quite unbound yet */ 2177 lo->lo_state = Lo_deleting; 2178 mutex_unlock(&lo->lo_mutex); 2179 2180 loop_remove(lo); 2181 return 0; 2182 2183 mark_visible: 2184 /* Show this loop device again. */ 2185 mutex_lock(&loop_ctl_mutex); 2186 lo->idr_visible = true; 2187 mutex_unlock(&loop_ctl_mutex); 2188 return ret; 2189 } 2190 2191 static int loop_control_get_free(int idx) 2192 { 2193 struct loop_device *lo; 2194 int id, ret; 2195 2196 ret = mutex_lock_killable(&loop_ctl_mutex); 2197 if (ret) 2198 return ret; 2199 idr_for_each_entry(&loop_index_idr, lo, id) { 2200 /* Hitting a race results in creating a new loop device which is harmless. */ 2201 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2202 goto found; 2203 } 2204 mutex_unlock(&loop_ctl_mutex); 2205 return loop_add(-1); 2206 found: 2207 mutex_unlock(&loop_ctl_mutex); 2208 return id; 2209 } 2210 2211 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2212 unsigned long parm) 2213 { 2214 switch (cmd) { 2215 case LOOP_CTL_ADD: 2216 return loop_add(parm); 2217 case LOOP_CTL_REMOVE: 2218 return loop_control_remove(parm); 2219 case LOOP_CTL_GET_FREE: 2220 return loop_control_get_free(parm); 2221 default: 2222 return -ENOSYS; 2223 } 2224 } 2225 2226 static const struct file_operations loop_ctl_fops = { 2227 .open = nonseekable_open, 2228 .unlocked_ioctl = loop_control_ioctl, 2229 .compat_ioctl = loop_control_ioctl, 2230 .owner = THIS_MODULE, 2231 .llseek = noop_llseek, 2232 }; 2233 2234 static struct miscdevice loop_misc = { 2235 .minor = LOOP_CTRL_MINOR, 2236 .name = "loop-control", 2237 .fops = &loop_ctl_fops, 2238 }; 2239 2240 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2241 MODULE_ALIAS("devname:loop-control"); 2242 2243 static int __init loop_init(void) 2244 { 2245 int i; 2246 int err; 2247 2248 part_shift = 0; 2249 if (max_part > 0) { 2250 part_shift = fls(max_part); 2251 2252 /* 2253 * Adjust max_part according to part_shift as it is exported 2254 * to user space so that user can decide correct minor number 2255 * if [s]he want to create more devices. 2256 * 2257 * Note that -1 is required because partition 0 is reserved 2258 * for the whole disk. 2259 */ 2260 max_part = (1UL << part_shift) - 1; 2261 } 2262 2263 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2264 err = -EINVAL; 2265 goto err_out; 2266 } 2267 2268 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2269 err = -EINVAL; 2270 goto err_out; 2271 } 2272 2273 err = misc_register(&loop_misc); 2274 if (err < 0) 2275 goto err_out; 2276 2277 2278 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2279 err = -EIO; 2280 goto misc_out; 2281 } 2282 2283 /* pre-create number of devices given by config or max_loop */ 2284 for (i = 0; i < max_loop; i++) 2285 loop_add(i); 2286 2287 printk(KERN_INFO "loop: module loaded\n"); 2288 return 0; 2289 2290 misc_out: 2291 misc_deregister(&loop_misc); 2292 err_out: 2293 return err; 2294 } 2295 2296 static void __exit loop_exit(void) 2297 { 2298 struct loop_device *lo; 2299 int id; 2300 2301 unregister_blkdev(LOOP_MAJOR, "loop"); 2302 misc_deregister(&loop_misc); 2303 2304 /* 2305 * There is no need to use loop_ctl_mutex here, for nobody else can 2306 * access loop_index_idr when this module is unloading (unless forced 2307 * module unloading is requested). If this is not a clean unloading, 2308 * we have no means to avoid kernel crash. 2309 */ 2310 idr_for_each_entry(&loop_index_idr, lo, id) 2311 loop_remove(lo); 2312 2313 idr_destroy(&loop_index_idr); 2314 } 2315 2316 module_init(loop_init); 2317 module_exit(loop_exit); 2318 2319 #ifndef MODULE 2320 static int __init max_loop_setup(char *str) 2321 { 2322 max_loop = simple_strtol(str, NULL, 0); 2323 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2324 max_loop_specified = true; 2325 #endif 2326 return 1; 2327 } 2328 2329 __setup("max_loop=", max_loop_setup); 2330 #endif 2331