1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 81 #include "loop.h" 82 83 #include <linux/uaccess.h> 84 85 static DEFINE_IDR(loop_index_idr); 86 static DEFINE_MUTEX(loop_index_mutex); 87 88 static int max_part; 89 static int part_shift; 90 91 static int transfer_xor(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 char *in, *out, *key; 99 int i, keysize; 100 101 if (cmd == READ) { 102 in = raw_buf; 103 out = loop_buf; 104 } else { 105 in = loop_buf; 106 out = raw_buf; 107 } 108 109 key = lo->lo_encrypt_key; 110 keysize = lo->lo_encrypt_key_size; 111 for (i = 0; i < size; i++) 112 *out++ = *in++ ^ key[(i & 511) % keysize]; 113 114 kunmap_atomic(loop_buf); 115 kunmap_atomic(raw_buf); 116 cond_resched(); 117 return 0; 118 } 119 120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 121 { 122 if (unlikely(info->lo_encrypt_key_size <= 0)) 123 return -EINVAL; 124 return 0; 125 } 126 127 static struct loop_func_table none_funcs = { 128 .number = LO_CRYPT_NONE, 129 }; 130 131 static struct loop_func_table xor_funcs = { 132 .number = LO_CRYPT_XOR, 133 .transfer = transfer_xor, 134 .init = xor_init 135 }; 136 137 /* xfer_funcs[0] is special - its release function is never called */ 138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 139 &none_funcs, 140 &xor_funcs 141 }; 142 143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 144 { 145 loff_t loopsize; 146 147 /* Compute loopsize in bytes */ 148 loopsize = i_size_read(file->f_mapping->host); 149 if (offset > 0) 150 loopsize -= offset; 151 /* offset is beyond i_size, weird but possible */ 152 if (loopsize < 0) 153 return 0; 154 155 if (sizelimit > 0 && sizelimit < loopsize) 156 loopsize = sizelimit; 157 /* 158 * Unfortunately, if we want to do I/O on the device, 159 * the number of 512-byte sectors has to fit into a sector_t. 160 */ 161 return loopsize >> 9; 162 } 163 164 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 165 { 166 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 167 } 168 169 static void __loop_update_dio(struct loop_device *lo, bool dio) 170 { 171 struct file *file = lo->lo_backing_file; 172 struct address_space *mapping = file->f_mapping; 173 struct inode *inode = mapping->host; 174 unsigned short sb_bsize = 0; 175 unsigned dio_align = 0; 176 bool use_dio; 177 178 if (inode->i_sb->s_bdev) { 179 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 180 dio_align = sb_bsize - 1; 181 } 182 183 /* 184 * We support direct I/O only if lo_offset is aligned with the 185 * logical I/O size of backing device, and the logical block 186 * size of loop is bigger than the backing device's and the loop 187 * needn't transform transfer. 188 * 189 * TODO: the above condition may be loosed in the future, and 190 * direct I/O may be switched runtime at that time because most 191 * of requests in sane applications should be PAGE_SIZE aligned 192 */ 193 if (dio) { 194 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 195 !(lo->lo_offset & dio_align) && 196 mapping->a_ops->direct_IO && 197 !lo->transfer) 198 use_dio = true; 199 else 200 use_dio = false; 201 } else { 202 use_dio = false; 203 } 204 205 if (lo->use_dio == use_dio) 206 return; 207 208 /* flush dirty pages before changing direct IO */ 209 vfs_fsync(file, 0); 210 211 /* 212 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 213 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 214 * will get updated by ioctl(LOOP_GET_STATUS) 215 */ 216 blk_mq_freeze_queue(lo->lo_queue); 217 lo->use_dio = use_dio; 218 if (use_dio) { 219 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 220 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 221 } else { 222 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 223 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 224 } 225 blk_mq_unfreeze_queue(lo->lo_queue); 226 } 227 228 static int 229 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 230 { 231 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 232 sector_t x = (sector_t)size; 233 struct block_device *bdev = lo->lo_device; 234 235 if (unlikely((loff_t)x != size)) 236 return -EFBIG; 237 if (lo->lo_offset != offset) 238 lo->lo_offset = offset; 239 if (lo->lo_sizelimit != sizelimit) 240 lo->lo_sizelimit = sizelimit; 241 set_capacity(lo->lo_disk, x); 242 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 243 /* let user-space know about the new size */ 244 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 245 return 0; 246 } 247 248 static inline int 249 lo_do_transfer(struct loop_device *lo, int cmd, 250 struct page *rpage, unsigned roffs, 251 struct page *lpage, unsigned loffs, 252 int size, sector_t rblock) 253 { 254 int ret; 255 256 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 257 if (likely(!ret)) 258 return 0; 259 260 printk_ratelimited(KERN_ERR 261 "loop: Transfer error at byte offset %llu, length %i.\n", 262 (unsigned long long)rblock << 9, size); 263 return ret; 264 } 265 266 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 267 { 268 struct iov_iter i; 269 ssize_t bw; 270 271 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len); 272 273 file_start_write(file); 274 bw = vfs_iter_write(file, &i, ppos, 0); 275 file_end_write(file); 276 277 if (likely(bw == bvec->bv_len)) 278 return 0; 279 280 printk_ratelimited(KERN_ERR 281 "loop: Write error at byte offset %llu, length %i.\n", 282 (unsigned long long)*ppos, bvec->bv_len); 283 if (bw >= 0) 284 bw = -EIO; 285 return bw; 286 } 287 288 static int lo_write_simple(struct loop_device *lo, struct request *rq, 289 loff_t pos) 290 { 291 struct bio_vec bvec; 292 struct req_iterator iter; 293 int ret = 0; 294 295 rq_for_each_segment(bvec, rq, iter) { 296 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 297 if (ret < 0) 298 break; 299 cond_resched(); 300 } 301 302 return ret; 303 } 304 305 /* 306 * This is the slow, transforming version that needs to double buffer the 307 * data as it cannot do the transformations in place without having direct 308 * access to the destination pages of the backing file. 309 */ 310 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 311 loff_t pos) 312 { 313 struct bio_vec bvec, b; 314 struct req_iterator iter; 315 struct page *page; 316 int ret = 0; 317 318 page = alloc_page(GFP_NOIO); 319 if (unlikely(!page)) 320 return -ENOMEM; 321 322 rq_for_each_segment(bvec, rq, iter) { 323 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 324 bvec.bv_offset, bvec.bv_len, pos >> 9); 325 if (unlikely(ret)) 326 break; 327 328 b.bv_page = page; 329 b.bv_offset = 0; 330 b.bv_len = bvec.bv_len; 331 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 332 if (ret < 0) 333 break; 334 } 335 336 __free_page(page); 337 return ret; 338 } 339 340 static int lo_read_simple(struct loop_device *lo, struct request *rq, 341 loff_t pos) 342 { 343 struct bio_vec bvec; 344 struct req_iterator iter; 345 struct iov_iter i; 346 ssize_t len; 347 348 rq_for_each_segment(bvec, rq, iter) { 349 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); 350 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 351 if (len < 0) 352 return len; 353 354 flush_dcache_page(bvec.bv_page); 355 356 if (len != bvec.bv_len) { 357 struct bio *bio; 358 359 __rq_for_each_bio(bio, rq) 360 zero_fill_bio(bio); 361 break; 362 } 363 cond_resched(); 364 } 365 366 return 0; 367 } 368 369 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 370 loff_t pos) 371 { 372 struct bio_vec bvec, b; 373 struct req_iterator iter; 374 struct iov_iter i; 375 struct page *page; 376 ssize_t len; 377 int ret = 0; 378 379 page = alloc_page(GFP_NOIO); 380 if (unlikely(!page)) 381 return -ENOMEM; 382 383 rq_for_each_segment(bvec, rq, iter) { 384 loff_t offset = pos; 385 386 b.bv_page = page; 387 b.bv_offset = 0; 388 b.bv_len = bvec.bv_len; 389 390 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); 391 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 392 if (len < 0) { 393 ret = len; 394 goto out_free_page; 395 } 396 397 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 398 bvec.bv_offset, len, offset >> 9); 399 if (ret) 400 goto out_free_page; 401 402 flush_dcache_page(bvec.bv_page); 403 404 if (len != bvec.bv_len) { 405 struct bio *bio; 406 407 __rq_for_each_bio(bio, rq) 408 zero_fill_bio(bio); 409 break; 410 } 411 } 412 413 ret = 0; 414 out_free_page: 415 __free_page(page); 416 return ret; 417 } 418 419 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) 420 { 421 /* 422 * We use punch hole to reclaim the free space used by the 423 * image a.k.a. discard. However we do not support discard if 424 * encryption is enabled, because it may give an attacker 425 * useful information. 426 */ 427 struct file *file = lo->lo_backing_file; 428 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 429 int ret; 430 431 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { 432 ret = -EOPNOTSUPP; 433 goto out; 434 } 435 436 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 437 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 438 ret = -EIO; 439 out: 440 return ret; 441 } 442 443 static int lo_req_flush(struct loop_device *lo, struct request *rq) 444 { 445 struct file *file = lo->lo_backing_file; 446 int ret = vfs_fsync(file, 0); 447 if (unlikely(ret && ret != -EINVAL)) 448 ret = -EIO; 449 450 return ret; 451 } 452 453 static void lo_complete_rq(struct request *rq) 454 { 455 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 456 blk_status_t ret = BLK_STS_OK; 457 458 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 459 req_op(rq) != REQ_OP_READ) { 460 if (cmd->ret < 0) 461 ret = BLK_STS_IOERR; 462 goto end_io; 463 } 464 465 /* 466 * Short READ - if we got some data, advance our request and 467 * retry it. If we got no data, end the rest with EIO. 468 */ 469 if (cmd->ret) { 470 blk_update_request(rq, BLK_STS_OK, cmd->ret); 471 cmd->ret = 0; 472 blk_mq_requeue_request(rq, true); 473 } else { 474 if (cmd->use_aio) { 475 struct bio *bio = rq->bio; 476 477 while (bio) { 478 zero_fill_bio(bio); 479 bio = bio->bi_next; 480 } 481 } 482 ret = BLK_STS_IOERR; 483 end_io: 484 blk_mq_end_request(rq, ret); 485 } 486 } 487 488 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 489 { 490 struct request *rq = blk_mq_rq_from_pdu(cmd); 491 492 if (!atomic_dec_and_test(&cmd->ref)) 493 return; 494 kfree(cmd->bvec); 495 cmd->bvec = NULL; 496 blk_mq_complete_request(rq); 497 } 498 499 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 500 { 501 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 502 503 if (cmd->css) 504 css_put(cmd->css); 505 cmd->ret = ret; 506 lo_rw_aio_do_completion(cmd); 507 } 508 509 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 510 loff_t pos, bool rw) 511 { 512 struct iov_iter iter; 513 struct bio_vec *bvec; 514 struct request *rq = blk_mq_rq_from_pdu(cmd); 515 struct bio *bio = rq->bio; 516 struct file *file = lo->lo_backing_file; 517 unsigned int offset; 518 int segments = 0; 519 int ret; 520 521 if (rq->bio != rq->biotail) { 522 struct req_iterator iter; 523 struct bio_vec tmp; 524 525 __rq_for_each_bio(bio, rq) 526 segments += bio_segments(bio); 527 bvec = kmalloc_array(segments, sizeof(struct bio_vec), 528 GFP_NOIO); 529 if (!bvec) 530 return -EIO; 531 cmd->bvec = bvec; 532 533 /* 534 * The bios of the request may be started from the middle of 535 * the 'bvec' because of bio splitting, so we can't directly 536 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment 537 * API will take care of all details for us. 538 */ 539 rq_for_each_segment(tmp, rq, iter) { 540 *bvec = tmp; 541 bvec++; 542 } 543 bvec = cmd->bvec; 544 offset = 0; 545 } else { 546 /* 547 * Same here, this bio may be started from the middle of the 548 * 'bvec' because of bio splitting, so offset from the bvec 549 * must be passed to iov iterator 550 */ 551 offset = bio->bi_iter.bi_bvec_done; 552 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 553 segments = bio_segments(bio); 554 } 555 atomic_set(&cmd->ref, 2); 556 557 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, 558 segments, blk_rq_bytes(rq)); 559 iter.iov_offset = offset; 560 561 cmd->iocb.ki_pos = pos; 562 cmd->iocb.ki_filp = file; 563 cmd->iocb.ki_complete = lo_rw_aio_complete; 564 cmd->iocb.ki_flags = IOCB_DIRECT; 565 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 566 if (cmd->css) 567 kthread_associate_blkcg(cmd->css); 568 569 if (rw == WRITE) 570 ret = call_write_iter(file, &cmd->iocb, &iter); 571 else 572 ret = call_read_iter(file, &cmd->iocb, &iter); 573 574 lo_rw_aio_do_completion(cmd); 575 kthread_associate_blkcg(NULL); 576 577 if (ret != -EIOCBQUEUED) 578 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 579 return 0; 580 } 581 582 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 583 { 584 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 585 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 586 587 /* 588 * lo_write_simple and lo_read_simple should have been covered 589 * by io submit style function like lo_rw_aio(), one blocker 590 * is that lo_read_simple() need to call flush_dcache_page after 591 * the page is written from kernel, and it isn't easy to handle 592 * this in io submit style function which submits all segments 593 * of the req at one time. And direct read IO doesn't need to 594 * run flush_dcache_page(). 595 */ 596 switch (req_op(rq)) { 597 case REQ_OP_FLUSH: 598 return lo_req_flush(lo, rq); 599 case REQ_OP_DISCARD: 600 case REQ_OP_WRITE_ZEROES: 601 return lo_discard(lo, rq, pos); 602 case REQ_OP_WRITE: 603 if (lo->transfer) 604 return lo_write_transfer(lo, rq, pos); 605 else if (cmd->use_aio) 606 return lo_rw_aio(lo, cmd, pos, WRITE); 607 else 608 return lo_write_simple(lo, rq, pos); 609 case REQ_OP_READ: 610 if (lo->transfer) 611 return lo_read_transfer(lo, rq, pos); 612 else if (cmd->use_aio) 613 return lo_rw_aio(lo, cmd, pos, READ); 614 else 615 return lo_read_simple(lo, rq, pos); 616 default: 617 WARN_ON_ONCE(1); 618 return -EIO; 619 break; 620 } 621 } 622 623 static inline void loop_update_dio(struct loop_device *lo) 624 { 625 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 626 lo->use_dio); 627 } 628 629 static void loop_reread_partitions(struct loop_device *lo, 630 struct block_device *bdev) 631 { 632 int rc; 633 634 /* 635 * bd_mutex has been held already in release path, so don't 636 * acquire it if this function is called in such case. 637 * 638 * If the reread partition isn't from release path, lo_refcnt 639 * must be at least one and it can only become zero when the 640 * current holder is released. 641 */ 642 if (!atomic_read(&lo->lo_refcnt)) 643 rc = __blkdev_reread_part(bdev); 644 else 645 rc = blkdev_reread_part(bdev); 646 if (rc) 647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 648 __func__, lo->lo_number, lo->lo_file_name, rc); 649 } 650 651 static inline int is_loop_device(struct file *file) 652 { 653 struct inode *i = file->f_mapping->host; 654 655 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 656 } 657 658 static int loop_validate_file(struct file *file, struct block_device *bdev) 659 { 660 struct inode *inode = file->f_mapping->host; 661 struct file *f = file; 662 663 /* Avoid recursion */ 664 while (is_loop_device(f)) { 665 struct loop_device *l; 666 667 if (f->f_mapping->host->i_bdev == bdev) 668 return -EBADF; 669 670 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 671 if (l->lo_state == Lo_unbound) { 672 return -EINVAL; 673 } 674 f = l->lo_backing_file; 675 } 676 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 677 return -EINVAL; 678 return 0; 679 } 680 681 /* 682 * loop_change_fd switched the backing store of a loopback device to 683 * a new file. This is useful for operating system installers to free up 684 * the original file and in High Availability environments to switch to 685 * an alternative location for the content in case of server meltdown. 686 * This can only work if the loop device is used read-only, and if the 687 * new backing store is the same size and type as the old backing store. 688 */ 689 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 690 unsigned int arg) 691 { 692 struct file *file, *old_file; 693 int error; 694 695 error = -ENXIO; 696 if (lo->lo_state != Lo_bound) 697 goto out; 698 699 /* the loop device has to be read-only */ 700 error = -EINVAL; 701 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 702 goto out; 703 704 error = -EBADF; 705 file = fget(arg); 706 if (!file) 707 goto out; 708 709 error = loop_validate_file(file, bdev); 710 if (error) 711 goto out_putf; 712 713 old_file = lo->lo_backing_file; 714 715 error = -EINVAL; 716 717 /* size of the new backing store needs to be the same */ 718 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 719 goto out_putf; 720 721 /* and ... switch */ 722 blk_mq_freeze_queue(lo->lo_queue); 723 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 724 lo->lo_backing_file = file; 725 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 726 mapping_set_gfp_mask(file->f_mapping, 727 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 728 loop_update_dio(lo); 729 blk_mq_unfreeze_queue(lo->lo_queue); 730 731 fput(old_file); 732 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 733 loop_reread_partitions(lo, bdev); 734 return 0; 735 736 out_putf: 737 fput(file); 738 out: 739 return error; 740 } 741 742 /* loop sysfs attributes */ 743 744 static ssize_t loop_attr_show(struct device *dev, char *page, 745 ssize_t (*callback)(struct loop_device *, char *)) 746 { 747 struct gendisk *disk = dev_to_disk(dev); 748 struct loop_device *lo = disk->private_data; 749 750 return callback(lo, page); 751 } 752 753 #define LOOP_ATTR_RO(_name) \ 754 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 755 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 756 struct device_attribute *attr, char *b) \ 757 { \ 758 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 759 } \ 760 static struct device_attribute loop_attr_##_name = \ 761 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 762 763 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 764 { 765 ssize_t ret; 766 char *p = NULL; 767 768 spin_lock_irq(&lo->lo_lock); 769 if (lo->lo_backing_file) 770 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 771 spin_unlock_irq(&lo->lo_lock); 772 773 if (IS_ERR_OR_NULL(p)) 774 ret = PTR_ERR(p); 775 else { 776 ret = strlen(p); 777 memmove(buf, p, ret); 778 buf[ret++] = '\n'; 779 buf[ret] = 0; 780 } 781 782 return ret; 783 } 784 785 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 786 { 787 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 788 } 789 790 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 791 { 792 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 793 } 794 795 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 796 { 797 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 798 799 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 800 } 801 802 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 803 { 804 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 805 806 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 807 } 808 809 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 810 { 811 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 812 813 return sprintf(buf, "%s\n", dio ? "1" : "0"); 814 } 815 816 LOOP_ATTR_RO(backing_file); 817 LOOP_ATTR_RO(offset); 818 LOOP_ATTR_RO(sizelimit); 819 LOOP_ATTR_RO(autoclear); 820 LOOP_ATTR_RO(partscan); 821 LOOP_ATTR_RO(dio); 822 823 static struct attribute *loop_attrs[] = { 824 &loop_attr_backing_file.attr, 825 &loop_attr_offset.attr, 826 &loop_attr_sizelimit.attr, 827 &loop_attr_autoclear.attr, 828 &loop_attr_partscan.attr, 829 &loop_attr_dio.attr, 830 NULL, 831 }; 832 833 static struct attribute_group loop_attribute_group = { 834 .name = "loop", 835 .attrs= loop_attrs, 836 }; 837 838 static void loop_sysfs_init(struct loop_device *lo) 839 { 840 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 841 &loop_attribute_group); 842 } 843 844 static void loop_sysfs_exit(struct loop_device *lo) 845 { 846 if (lo->sysfs_inited) 847 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 848 &loop_attribute_group); 849 } 850 851 static void loop_config_discard(struct loop_device *lo) 852 { 853 struct file *file = lo->lo_backing_file; 854 struct inode *inode = file->f_mapping->host; 855 struct request_queue *q = lo->lo_queue; 856 857 /* 858 * We use punch hole to reclaim the free space used by the 859 * image a.k.a. discard. However we do not support discard if 860 * encryption is enabled, because it may give an attacker 861 * useful information. 862 */ 863 if ((!file->f_op->fallocate) || 864 lo->lo_encrypt_key_size) { 865 q->limits.discard_granularity = 0; 866 q->limits.discard_alignment = 0; 867 blk_queue_max_discard_sectors(q, 0); 868 blk_queue_max_write_zeroes_sectors(q, 0); 869 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 870 return; 871 } 872 873 q->limits.discard_granularity = inode->i_sb->s_blocksize; 874 q->limits.discard_alignment = 0; 875 876 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 877 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 878 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 879 } 880 881 static void loop_unprepare_queue(struct loop_device *lo) 882 { 883 kthread_flush_worker(&lo->worker); 884 kthread_stop(lo->worker_task); 885 } 886 887 static int loop_kthread_worker_fn(void *worker_ptr) 888 { 889 current->flags |= PF_LESS_THROTTLE; 890 return kthread_worker_fn(worker_ptr); 891 } 892 893 static int loop_prepare_queue(struct loop_device *lo) 894 { 895 kthread_init_worker(&lo->worker); 896 lo->worker_task = kthread_run(loop_kthread_worker_fn, 897 &lo->worker, "loop%d", lo->lo_number); 898 if (IS_ERR(lo->worker_task)) 899 return -ENOMEM; 900 set_user_nice(lo->worker_task, MIN_NICE); 901 return 0; 902 } 903 904 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 905 struct block_device *bdev, unsigned int arg) 906 { 907 struct file *file; 908 struct inode *inode; 909 struct address_space *mapping; 910 int lo_flags = 0; 911 int error; 912 loff_t size; 913 914 /* This is safe, since we have a reference from open(). */ 915 __module_get(THIS_MODULE); 916 917 error = -EBADF; 918 file = fget(arg); 919 if (!file) 920 goto out; 921 922 error = -EBUSY; 923 if (lo->lo_state != Lo_unbound) 924 goto out_putf; 925 926 error = loop_validate_file(file, bdev); 927 if (error) 928 goto out_putf; 929 930 mapping = file->f_mapping; 931 inode = mapping->host; 932 933 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 934 !file->f_op->write_iter) 935 lo_flags |= LO_FLAGS_READ_ONLY; 936 937 error = -EFBIG; 938 size = get_loop_size(lo, file); 939 if ((loff_t)(sector_t)size != size) 940 goto out_putf; 941 error = loop_prepare_queue(lo); 942 if (error) 943 goto out_putf; 944 945 error = 0; 946 947 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 948 949 lo->use_dio = false; 950 lo->lo_device = bdev; 951 lo->lo_flags = lo_flags; 952 lo->lo_backing_file = file; 953 lo->transfer = NULL; 954 lo->ioctl = NULL; 955 lo->lo_sizelimit = 0; 956 lo->old_gfp_mask = mapping_gfp_mask(mapping); 957 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 958 959 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 960 blk_queue_write_cache(lo->lo_queue, true, false); 961 962 loop_update_dio(lo); 963 set_capacity(lo->lo_disk, size); 964 bd_set_size(bdev, size << 9); 965 loop_sysfs_init(lo); 966 /* let user-space know about the new size */ 967 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 968 969 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 970 block_size(inode->i_bdev) : PAGE_SIZE); 971 972 lo->lo_state = Lo_bound; 973 if (part_shift) 974 lo->lo_flags |= LO_FLAGS_PARTSCAN; 975 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 976 loop_reread_partitions(lo, bdev); 977 978 /* Grab the block_device to prevent its destruction after we 979 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 980 */ 981 bdgrab(bdev); 982 return 0; 983 984 out_putf: 985 fput(file); 986 out: 987 /* This is safe: open() is still holding a reference. */ 988 module_put(THIS_MODULE); 989 return error; 990 } 991 992 static int 993 loop_release_xfer(struct loop_device *lo) 994 { 995 int err = 0; 996 struct loop_func_table *xfer = lo->lo_encryption; 997 998 if (xfer) { 999 if (xfer->release) 1000 err = xfer->release(lo); 1001 lo->transfer = NULL; 1002 lo->lo_encryption = NULL; 1003 module_put(xfer->owner); 1004 } 1005 return err; 1006 } 1007 1008 static int 1009 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 1010 const struct loop_info64 *i) 1011 { 1012 int err = 0; 1013 1014 if (xfer) { 1015 struct module *owner = xfer->owner; 1016 1017 if (!try_module_get(owner)) 1018 return -EINVAL; 1019 if (xfer->init) 1020 err = xfer->init(lo, i); 1021 if (err) 1022 module_put(owner); 1023 else 1024 lo->lo_encryption = xfer; 1025 } 1026 return err; 1027 } 1028 1029 static int loop_clr_fd(struct loop_device *lo) 1030 { 1031 struct file *filp = lo->lo_backing_file; 1032 gfp_t gfp = lo->old_gfp_mask; 1033 struct block_device *bdev = lo->lo_device; 1034 1035 if (lo->lo_state != Lo_bound) 1036 return -ENXIO; 1037 1038 /* 1039 * If we've explicitly asked to tear down the loop device, 1040 * and it has an elevated reference count, set it for auto-teardown when 1041 * the last reference goes away. This stops $!~#$@ udev from 1042 * preventing teardown because it decided that it needs to run blkid on 1043 * the loopback device whenever they appear. xfstests is notorious for 1044 * failing tests because blkid via udev races with a losetup 1045 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1046 * command to fail with EBUSY. 1047 */ 1048 if (atomic_read(&lo->lo_refcnt) > 1) { 1049 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1050 mutex_unlock(&lo->lo_ctl_mutex); 1051 return 0; 1052 } 1053 1054 if (filp == NULL) 1055 return -EINVAL; 1056 1057 /* freeze request queue during the transition */ 1058 blk_mq_freeze_queue(lo->lo_queue); 1059 1060 spin_lock_irq(&lo->lo_lock); 1061 lo->lo_state = Lo_rundown; 1062 lo->lo_backing_file = NULL; 1063 spin_unlock_irq(&lo->lo_lock); 1064 1065 loop_release_xfer(lo); 1066 lo->transfer = NULL; 1067 lo->ioctl = NULL; 1068 lo->lo_device = NULL; 1069 lo->lo_encryption = NULL; 1070 lo->lo_offset = 0; 1071 lo->lo_sizelimit = 0; 1072 lo->lo_encrypt_key_size = 0; 1073 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1074 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1075 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1076 blk_queue_logical_block_size(lo->lo_queue, 512); 1077 blk_queue_physical_block_size(lo->lo_queue, 512); 1078 blk_queue_io_min(lo->lo_queue, 512); 1079 if (bdev) { 1080 bdput(bdev); 1081 invalidate_bdev(bdev); 1082 bdev->bd_inode->i_mapping->wb_err = 0; 1083 } 1084 set_capacity(lo->lo_disk, 0); 1085 loop_sysfs_exit(lo); 1086 if (bdev) { 1087 bd_set_size(bdev, 0); 1088 /* let user-space know about this change */ 1089 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1090 } 1091 mapping_set_gfp_mask(filp->f_mapping, gfp); 1092 lo->lo_state = Lo_unbound; 1093 /* This is safe: open() is still holding a reference. */ 1094 module_put(THIS_MODULE); 1095 blk_mq_unfreeze_queue(lo->lo_queue); 1096 1097 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1098 loop_reread_partitions(lo, bdev); 1099 lo->lo_flags = 0; 1100 if (!part_shift) 1101 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1102 loop_unprepare_queue(lo); 1103 mutex_unlock(&lo->lo_ctl_mutex); 1104 /* 1105 * Need not hold lo_ctl_mutex to fput backing file. 1106 * Calling fput holding lo_ctl_mutex triggers a circular 1107 * lock dependency possibility warning as fput can take 1108 * bd_mutex which is usually taken before lo_ctl_mutex. 1109 */ 1110 fput(filp); 1111 return 0; 1112 } 1113 1114 static int 1115 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1116 { 1117 int err; 1118 struct loop_func_table *xfer; 1119 kuid_t uid = current_uid(); 1120 1121 if (lo->lo_encrypt_key_size && 1122 !uid_eq(lo->lo_key_owner, uid) && 1123 !capable(CAP_SYS_ADMIN)) 1124 return -EPERM; 1125 if (lo->lo_state != Lo_bound) 1126 return -ENXIO; 1127 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1128 return -EINVAL; 1129 1130 /* I/O need to be drained during transfer transition */ 1131 blk_mq_freeze_queue(lo->lo_queue); 1132 1133 err = loop_release_xfer(lo); 1134 if (err) 1135 goto exit; 1136 1137 if (info->lo_encrypt_type) { 1138 unsigned int type = info->lo_encrypt_type; 1139 1140 if (type >= MAX_LO_CRYPT) { 1141 err = -EINVAL; 1142 goto exit; 1143 } 1144 xfer = xfer_funcs[type]; 1145 if (xfer == NULL) { 1146 err = -EINVAL; 1147 goto exit; 1148 } 1149 } else 1150 xfer = NULL; 1151 1152 err = loop_init_xfer(lo, xfer, info); 1153 if (err) 1154 goto exit; 1155 1156 if (lo->lo_offset != info->lo_offset || 1157 lo->lo_sizelimit != info->lo_sizelimit) { 1158 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1159 err = -EFBIG; 1160 goto exit; 1161 } 1162 } 1163 1164 loop_config_discard(lo); 1165 1166 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1167 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1168 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1169 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1170 1171 if (!xfer) 1172 xfer = &none_funcs; 1173 lo->transfer = xfer->transfer; 1174 lo->ioctl = xfer->ioctl; 1175 1176 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1177 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1178 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1179 1180 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1181 lo->lo_init[0] = info->lo_init[0]; 1182 lo->lo_init[1] = info->lo_init[1]; 1183 if (info->lo_encrypt_key_size) { 1184 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1185 info->lo_encrypt_key_size); 1186 lo->lo_key_owner = uid; 1187 } 1188 1189 /* update dio if lo_offset or transfer is changed */ 1190 __loop_update_dio(lo, lo->use_dio); 1191 1192 exit: 1193 blk_mq_unfreeze_queue(lo->lo_queue); 1194 1195 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1196 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1197 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1198 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1199 loop_reread_partitions(lo, lo->lo_device); 1200 } 1201 1202 return err; 1203 } 1204 1205 static int 1206 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1207 { 1208 struct file *file; 1209 struct kstat stat; 1210 int ret; 1211 1212 if (lo->lo_state != Lo_bound) { 1213 mutex_unlock(&lo->lo_ctl_mutex); 1214 return -ENXIO; 1215 } 1216 1217 memset(info, 0, sizeof(*info)); 1218 info->lo_number = lo->lo_number; 1219 info->lo_offset = lo->lo_offset; 1220 info->lo_sizelimit = lo->lo_sizelimit; 1221 info->lo_flags = lo->lo_flags; 1222 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1223 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1224 info->lo_encrypt_type = 1225 lo->lo_encryption ? lo->lo_encryption->number : 0; 1226 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1227 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1228 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1229 lo->lo_encrypt_key_size); 1230 } 1231 1232 /* Drop lo_ctl_mutex while we call into the filesystem. */ 1233 file = get_file(lo->lo_backing_file); 1234 mutex_unlock(&lo->lo_ctl_mutex); 1235 ret = vfs_getattr(&file->f_path, &stat, STATX_INO, 1236 AT_STATX_SYNC_AS_STAT); 1237 if (!ret) { 1238 info->lo_device = huge_encode_dev(stat.dev); 1239 info->lo_inode = stat.ino; 1240 info->lo_rdevice = huge_encode_dev(stat.rdev); 1241 } 1242 fput(file); 1243 return ret; 1244 } 1245 1246 static void 1247 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1248 { 1249 memset(info64, 0, sizeof(*info64)); 1250 info64->lo_number = info->lo_number; 1251 info64->lo_device = info->lo_device; 1252 info64->lo_inode = info->lo_inode; 1253 info64->lo_rdevice = info->lo_rdevice; 1254 info64->lo_offset = info->lo_offset; 1255 info64->lo_sizelimit = 0; 1256 info64->lo_encrypt_type = info->lo_encrypt_type; 1257 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1258 info64->lo_flags = info->lo_flags; 1259 info64->lo_init[0] = info->lo_init[0]; 1260 info64->lo_init[1] = info->lo_init[1]; 1261 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1262 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1263 else 1264 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1265 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1266 } 1267 1268 static int 1269 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1270 { 1271 memset(info, 0, sizeof(*info)); 1272 info->lo_number = info64->lo_number; 1273 info->lo_device = info64->lo_device; 1274 info->lo_inode = info64->lo_inode; 1275 info->lo_rdevice = info64->lo_rdevice; 1276 info->lo_offset = info64->lo_offset; 1277 info->lo_encrypt_type = info64->lo_encrypt_type; 1278 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1279 info->lo_flags = info64->lo_flags; 1280 info->lo_init[0] = info64->lo_init[0]; 1281 info->lo_init[1] = info64->lo_init[1]; 1282 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1283 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1284 else 1285 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1286 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1287 1288 /* error in case values were truncated */ 1289 if (info->lo_device != info64->lo_device || 1290 info->lo_rdevice != info64->lo_rdevice || 1291 info->lo_inode != info64->lo_inode || 1292 info->lo_offset != info64->lo_offset) 1293 return -EOVERFLOW; 1294 1295 return 0; 1296 } 1297 1298 static int 1299 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1300 { 1301 struct loop_info info; 1302 struct loop_info64 info64; 1303 1304 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1305 return -EFAULT; 1306 loop_info64_from_old(&info, &info64); 1307 return loop_set_status(lo, &info64); 1308 } 1309 1310 static int 1311 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1312 { 1313 struct loop_info64 info64; 1314 1315 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1316 return -EFAULT; 1317 return loop_set_status(lo, &info64); 1318 } 1319 1320 static int 1321 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1322 struct loop_info info; 1323 struct loop_info64 info64; 1324 int err; 1325 1326 if (!arg) { 1327 mutex_unlock(&lo->lo_ctl_mutex); 1328 return -EINVAL; 1329 } 1330 err = loop_get_status(lo, &info64); 1331 if (!err) 1332 err = loop_info64_to_old(&info64, &info); 1333 if (!err && copy_to_user(arg, &info, sizeof(info))) 1334 err = -EFAULT; 1335 1336 return err; 1337 } 1338 1339 static int 1340 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1341 struct loop_info64 info64; 1342 int err; 1343 1344 if (!arg) { 1345 mutex_unlock(&lo->lo_ctl_mutex); 1346 return -EINVAL; 1347 } 1348 err = loop_get_status(lo, &info64); 1349 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1350 err = -EFAULT; 1351 1352 return err; 1353 } 1354 1355 static int loop_set_capacity(struct loop_device *lo) 1356 { 1357 if (unlikely(lo->lo_state != Lo_bound)) 1358 return -ENXIO; 1359 1360 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1361 } 1362 1363 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1364 { 1365 int error = -ENXIO; 1366 if (lo->lo_state != Lo_bound) 1367 goto out; 1368 1369 __loop_update_dio(lo, !!arg); 1370 if (lo->use_dio == !!arg) 1371 return 0; 1372 error = -EINVAL; 1373 out: 1374 return error; 1375 } 1376 1377 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1378 { 1379 if (lo->lo_state != Lo_bound) 1380 return -ENXIO; 1381 1382 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg)) 1383 return -EINVAL; 1384 1385 blk_mq_freeze_queue(lo->lo_queue); 1386 1387 blk_queue_logical_block_size(lo->lo_queue, arg); 1388 blk_queue_physical_block_size(lo->lo_queue, arg); 1389 blk_queue_io_min(lo->lo_queue, arg); 1390 loop_update_dio(lo); 1391 1392 blk_mq_unfreeze_queue(lo->lo_queue); 1393 1394 return 0; 1395 } 1396 1397 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1398 unsigned int cmd, unsigned long arg) 1399 { 1400 struct loop_device *lo = bdev->bd_disk->private_data; 1401 int err; 1402 1403 err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1); 1404 if (err) 1405 goto out_unlocked; 1406 1407 switch (cmd) { 1408 case LOOP_SET_FD: 1409 err = loop_set_fd(lo, mode, bdev, arg); 1410 break; 1411 case LOOP_CHANGE_FD: 1412 err = loop_change_fd(lo, bdev, arg); 1413 break; 1414 case LOOP_CLR_FD: 1415 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1416 err = loop_clr_fd(lo); 1417 if (!err) 1418 goto out_unlocked; 1419 break; 1420 case LOOP_SET_STATUS: 1421 err = -EPERM; 1422 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1423 err = loop_set_status_old(lo, 1424 (struct loop_info __user *)arg); 1425 break; 1426 case LOOP_GET_STATUS: 1427 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1428 /* loop_get_status() unlocks lo_ctl_mutex */ 1429 goto out_unlocked; 1430 case LOOP_SET_STATUS64: 1431 err = -EPERM; 1432 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1433 err = loop_set_status64(lo, 1434 (struct loop_info64 __user *) arg); 1435 break; 1436 case LOOP_GET_STATUS64: 1437 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1438 /* loop_get_status() unlocks lo_ctl_mutex */ 1439 goto out_unlocked; 1440 case LOOP_SET_CAPACITY: 1441 err = -EPERM; 1442 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1443 err = loop_set_capacity(lo); 1444 break; 1445 case LOOP_SET_DIRECT_IO: 1446 err = -EPERM; 1447 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1448 err = loop_set_dio(lo, arg); 1449 break; 1450 case LOOP_SET_BLOCK_SIZE: 1451 err = -EPERM; 1452 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1453 err = loop_set_block_size(lo, arg); 1454 break; 1455 default: 1456 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1457 } 1458 mutex_unlock(&lo->lo_ctl_mutex); 1459 1460 out_unlocked: 1461 return err; 1462 } 1463 1464 #ifdef CONFIG_COMPAT 1465 struct compat_loop_info { 1466 compat_int_t lo_number; /* ioctl r/o */ 1467 compat_dev_t lo_device; /* ioctl r/o */ 1468 compat_ulong_t lo_inode; /* ioctl r/o */ 1469 compat_dev_t lo_rdevice; /* ioctl r/o */ 1470 compat_int_t lo_offset; 1471 compat_int_t lo_encrypt_type; 1472 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1473 compat_int_t lo_flags; /* ioctl r/o */ 1474 char lo_name[LO_NAME_SIZE]; 1475 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1476 compat_ulong_t lo_init[2]; 1477 char reserved[4]; 1478 }; 1479 1480 /* 1481 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1482 * - noinlined to reduce stack space usage in main part of driver 1483 */ 1484 static noinline int 1485 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1486 struct loop_info64 *info64) 1487 { 1488 struct compat_loop_info info; 1489 1490 if (copy_from_user(&info, arg, sizeof(info))) 1491 return -EFAULT; 1492 1493 memset(info64, 0, sizeof(*info64)); 1494 info64->lo_number = info.lo_number; 1495 info64->lo_device = info.lo_device; 1496 info64->lo_inode = info.lo_inode; 1497 info64->lo_rdevice = info.lo_rdevice; 1498 info64->lo_offset = info.lo_offset; 1499 info64->lo_sizelimit = 0; 1500 info64->lo_encrypt_type = info.lo_encrypt_type; 1501 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1502 info64->lo_flags = info.lo_flags; 1503 info64->lo_init[0] = info.lo_init[0]; 1504 info64->lo_init[1] = info.lo_init[1]; 1505 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1506 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1507 else 1508 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1509 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1510 return 0; 1511 } 1512 1513 /* 1514 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1515 * - noinlined to reduce stack space usage in main part of driver 1516 */ 1517 static noinline int 1518 loop_info64_to_compat(const struct loop_info64 *info64, 1519 struct compat_loop_info __user *arg) 1520 { 1521 struct compat_loop_info info; 1522 1523 memset(&info, 0, sizeof(info)); 1524 info.lo_number = info64->lo_number; 1525 info.lo_device = info64->lo_device; 1526 info.lo_inode = info64->lo_inode; 1527 info.lo_rdevice = info64->lo_rdevice; 1528 info.lo_offset = info64->lo_offset; 1529 info.lo_encrypt_type = info64->lo_encrypt_type; 1530 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1531 info.lo_flags = info64->lo_flags; 1532 info.lo_init[0] = info64->lo_init[0]; 1533 info.lo_init[1] = info64->lo_init[1]; 1534 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1535 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1536 else 1537 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1538 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1539 1540 /* error in case values were truncated */ 1541 if (info.lo_device != info64->lo_device || 1542 info.lo_rdevice != info64->lo_rdevice || 1543 info.lo_inode != info64->lo_inode || 1544 info.lo_offset != info64->lo_offset || 1545 info.lo_init[0] != info64->lo_init[0] || 1546 info.lo_init[1] != info64->lo_init[1]) 1547 return -EOVERFLOW; 1548 1549 if (copy_to_user(arg, &info, sizeof(info))) 1550 return -EFAULT; 1551 return 0; 1552 } 1553 1554 static int 1555 loop_set_status_compat(struct loop_device *lo, 1556 const struct compat_loop_info __user *arg) 1557 { 1558 struct loop_info64 info64; 1559 int ret; 1560 1561 ret = loop_info64_from_compat(arg, &info64); 1562 if (ret < 0) 1563 return ret; 1564 return loop_set_status(lo, &info64); 1565 } 1566 1567 static int 1568 loop_get_status_compat(struct loop_device *lo, 1569 struct compat_loop_info __user *arg) 1570 { 1571 struct loop_info64 info64; 1572 int err; 1573 1574 if (!arg) { 1575 mutex_unlock(&lo->lo_ctl_mutex); 1576 return -EINVAL; 1577 } 1578 err = loop_get_status(lo, &info64); 1579 if (!err) 1580 err = loop_info64_to_compat(&info64, arg); 1581 return err; 1582 } 1583 1584 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1585 unsigned int cmd, unsigned long arg) 1586 { 1587 struct loop_device *lo = bdev->bd_disk->private_data; 1588 int err; 1589 1590 switch(cmd) { 1591 case LOOP_SET_STATUS: 1592 err = mutex_lock_killable(&lo->lo_ctl_mutex); 1593 if (!err) { 1594 err = loop_set_status_compat(lo, 1595 (const struct compat_loop_info __user *)arg); 1596 mutex_unlock(&lo->lo_ctl_mutex); 1597 } 1598 break; 1599 case LOOP_GET_STATUS: 1600 err = mutex_lock_killable(&lo->lo_ctl_mutex); 1601 if (!err) { 1602 err = loop_get_status_compat(lo, 1603 (struct compat_loop_info __user *)arg); 1604 /* loop_get_status() unlocks lo_ctl_mutex */ 1605 } 1606 break; 1607 case LOOP_SET_CAPACITY: 1608 case LOOP_CLR_FD: 1609 case LOOP_GET_STATUS64: 1610 case LOOP_SET_STATUS64: 1611 arg = (unsigned long) compat_ptr(arg); 1612 /* fall through */ 1613 case LOOP_SET_FD: 1614 case LOOP_CHANGE_FD: 1615 case LOOP_SET_BLOCK_SIZE: 1616 err = lo_ioctl(bdev, mode, cmd, arg); 1617 break; 1618 default: 1619 err = -ENOIOCTLCMD; 1620 break; 1621 } 1622 return err; 1623 } 1624 #endif 1625 1626 static int lo_open(struct block_device *bdev, fmode_t mode) 1627 { 1628 struct loop_device *lo; 1629 int err = 0; 1630 1631 mutex_lock(&loop_index_mutex); 1632 lo = bdev->bd_disk->private_data; 1633 if (!lo) { 1634 err = -ENXIO; 1635 goto out; 1636 } 1637 1638 atomic_inc(&lo->lo_refcnt); 1639 out: 1640 mutex_unlock(&loop_index_mutex); 1641 return err; 1642 } 1643 1644 static void __lo_release(struct loop_device *lo) 1645 { 1646 int err; 1647 1648 if (atomic_dec_return(&lo->lo_refcnt)) 1649 return; 1650 1651 mutex_lock(&lo->lo_ctl_mutex); 1652 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1653 /* 1654 * In autoclear mode, stop the loop thread 1655 * and remove configuration after last close. 1656 */ 1657 err = loop_clr_fd(lo); 1658 if (!err) 1659 return; 1660 } else if (lo->lo_state == Lo_bound) { 1661 /* 1662 * Otherwise keep thread (if running) and config, 1663 * but flush possible ongoing bios in thread. 1664 */ 1665 blk_mq_freeze_queue(lo->lo_queue); 1666 blk_mq_unfreeze_queue(lo->lo_queue); 1667 } 1668 1669 mutex_unlock(&lo->lo_ctl_mutex); 1670 } 1671 1672 static void lo_release(struct gendisk *disk, fmode_t mode) 1673 { 1674 mutex_lock(&loop_index_mutex); 1675 __lo_release(disk->private_data); 1676 mutex_unlock(&loop_index_mutex); 1677 } 1678 1679 static const struct block_device_operations lo_fops = { 1680 .owner = THIS_MODULE, 1681 .open = lo_open, 1682 .release = lo_release, 1683 .ioctl = lo_ioctl, 1684 #ifdef CONFIG_COMPAT 1685 .compat_ioctl = lo_compat_ioctl, 1686 #endif 1687 }; 1688 1689 /* 1690 * And now the modules code and kernel interface. 1691 */ 1692 static int max_loop; 1693 module_param(max_loop, int, 0444); 1694 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1695 module_param(max_part, int, 0444); 1696 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1697 MODULE_LICENSE("GPL"); 1698 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1699 1700 int loop_register_transfer(struct loop_func_table *funcs) 1701 { 1702 unsigned int n = funcs->number; 1703 1704 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1705 return -EINVAL; 1706 xfer_funcs[n] = funcs; 1707 return 0; 1708 } 1709 1710 static int unregister_transfer_cb(int id, void *ptr, void *data) 1711 { 1712 struct loop_device *lo = ptr; 1713 struct loop_func_table *xfer = data; 1714 1715 mutex_lock(&lo->lo_ctl_mutex); 1716 if (lo->lo_encryption == xfer) 1717 loop_release_xfer(lo); 1718 mutex_unlock(&lo->lo_ctl_mutex); 1719 return 0; 1720 } 1721 1722 int loop_unregister_transfer(int number) 1723 { 1724 unsigned int n = number; 1725 struct loop_func_table *xfer; 1726 1727 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1728 return -EINVAL; 1729 1730 xfer_funcs[n] = NULL; 1731 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1732 return 0; 1733 } 1734 1735 EXPORT_SYMBOL(loop_register_transfer); 1736 EXPORT_SYMBOL(loop_unregister_transfer); 1737 1738 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1739 const struct blk_mq_queue_data *bd) 1740 { 1741 struct request *rq = bd->rq; 1742 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1743 struct loop_device *lo = rq->q->queuedata; 1744 1745 blk_mq_start_request(rq); 1746 1747 if (lo->lo_state != Lo_bound) 1748 return BLK_STS_IOERR; 1749 1750 switch (req_op(rq)) { 1751 case REQ_OP_FLUSH: 1752 case REQ_OP_DISCARD: 1753 case REQ_OP_WRITE_ZEROES: 1754 cmd->use_aio = false; 1755 break; 1756 default: 1757 cmd->use_aio = lo->use_dio; 1758 break; 1759 } 1760 1761 /* always use the first bio's css */ 1762 #ifdef CONFIG_BLK_CGROUP 1763 if (cmd->use_aio && rq->bio && rq->bio->bi_css) { 1764 cmd->css = rq->bio->bi_css; 1765 css_get(cmd->css); 1766 } else 1767 #endif 1768 cmd->css = NULL; 1769 kthread_queue_work(&lo->worker, &cmd->work); 1770 1771 return BLK_STS_OK; 1772 } 1773 1774 static void loop_handle_cmd(struct loop_cmd *cmd) 1775 { 1776 struct request *rq = blk_mq_rq_from_pdu(cmd); 1777 const bool write = op_is_write(req_op(rq)); 1778 struct loop_device *lo = rq->q->queuedata; 1779 int ret = 0; 1780 1781 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1782 ret = -EIO; 1783 goto failed; 1784 } 1785 1786 ret = do_req_filebacked(lo, rq); 1787 failed: 1788 /* complete non-aio request */ 1789 if (!cmd->use_aio || ret) { 1790 cmd->ret = ret ? -EIO : 0; 1791 blk_mq_complete_request(rq); 1792 } 1793 } 1794 1795 static void loop_queue_work(struct kthread_work *work) 1796 { 1797 struct loop_cmd *cmd = 1798 container_of(work, struct loop_cmd, work); 1799 1800 loop_handle_cmd(cmd); 1801 } 1802 1803 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1804 unsigned int hctx_idx, unsigned int numa_node) 1805 { 1806 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1807 1808 kthread_init_work(&cmd->work, loop_queue_work); 1809 return 0; 1810 } 1811 1812 static const struct blk_mq_ops loop_mq_ops = { 1813 .queue_rq = loop_queue_rq, 1814 .init_request = loop_init_request, 1815 .complete = lo_complete_rq, 1816 }; 1817 1818 static int loop_add(struct loop_device **l, int i) 1819 { 1820 struct loop_device *lo; 1821 struct gendisk *disk; 1822 int err; 1823 1824 err = -ENOMEM; 1825 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1826 if (!lo) 1827 goto out; 1828 1829 lo->lo_state = Lo_unbound; 1830 1831 /* allocate id, if @id >= 0, we're requesting that specific id */ 1832 if (i >= 0) { 1833 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1834 if (err == -ENOSPC) 1835 err = -EEXIST; 1836 } else { 1837 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1838 } 1839 if (err < 0) 1840 goto out_free_dev; 1841 i = err; 1842 1843 err = -ENOMEM; 1844 lo->tag_set.ops = &loop_mq_ops; 1845 lo->tag_set.nr_hw_queues = 1; 1846 lo->tag_set.queue_depth = 128; 1847 lo->tag_set.numa_node = NUMA_NO_NODE; 1848 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 1849 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; 1850 lo->tag_set.driver_data = lo; 1851 1852 err = blk_mq_alloc_tag_set(&lo->tag_set); 1853 if (err) 1854 goto out_free_idr; 1855 1856 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 1857 if (IS_ERR_OR_NULL(lo->lo_queue)) { 1858 err = PTR_ERR(lo->lo_queue); 1859 goto out_cleanup_tags; 1860 } 1861 lo->lo_queue->queuedata = lo; 1862 1863 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 1864 1865 /* 1866 * By default, we do buffer IO, so it doesn't make sense to enable 1867 * merge because the I/O submitted to backing file is handled page by 1868 * page. For directio mode, merge does help to dispatch bigger request 1869 * to underlayer disk. We will enable merge once directio is enabled. 1870 */ 1871 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 1872 1873 err = -ENOMEM; 1874 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1875 if (!disk) 1876 goto out_free_queue; 1877 1878 /* 1879 * Disable partition scanning by default. The in-kernel partition 1880 * scanning can be requested individually per-device during its 1881 * setup. Userspace can always add and remove partitions from all 1882 * devices. The needed partition minors are allocated from the 1883 * extended minor space, the main loop device numbers will continue 1884 * to match the loop minors, regardless of the number of partitions 1885 * used. 1886 * 1887 * If max_part is given, partition scanning is globally enabled for 1888 * all loop devices. The minors for the main loop devices will be 1889 * multiples of max_part. 1890 * 1891 * Note: Global-for-all-devices, set-only-at-init, read-only module 1892 * parameteters like 'max_loop' and 'max_part' make things needlessly 1893 * complicated, are too static, inflexible and may surprise 1894 * userspace tools. Parameters like this in general should be avoided. 1895 */ 1896 if (!part_shift) 1897 disk->flags |= GENHD_FL_NO_PART_SCAN; 1898 disk->flags |= GENHD_FL_EXT_DEVT; 1899 mutex_init(&lo->lo_ctl_mutex); 1900 atomic_set(&lo->lo_refcnt, 0); 1901 lo->lo_number = i; 1902 spin_lock_init(&lo->lo_lock); 1903 disk->major = LOOP_MAJOR; 1904 disk->first_minor = i << part_shift; 1905 disk->fops = &lo_fops; 1906 disk->private_data = lo; 1907 disk->queue = lo->lo_queue; 1908 sprintf(disk->disk_name, "loop%d", i); 1909 add_disk(disk); 1910 *l = lo; 1911 return lo->lo_number; 1912 1913 out_free_queue: 1914 blk_cleanup_queue(lo->lo_queue); 1915 out_cleanup_tags: 1916 blk_mq_free_tag_set(&lo->tag_set); 1917 out_free_idr: 1918 idr_remove(&loop_index_idr, i); 1919 out_free_dev: 1920 kfree(lo); 1921 out: 1922 return err; 1923 } 1924 1925 static void loop_remove(struct loop_device *lo) 1926 { 1927 del_gendisk(lo->lo_disk); 1928 blk_cleanup_queue(lo->lo_queue); 1929 blk_mq_free_tag_set(&lo->tag_set); 1930 put_disk(lo->lo_disk); 1931 kfree(lo); 1932 } 1933 1934 static int find_free_cb(int id, void *ptr, void *data) 1935 { 1936 struct loop_device *lo = ptr; 1937 struct loop_device **l = data; 1938 1939 if (lo->lo_state == Lo_unbound) { 1940 *l = lo; 1941 return 1; 1942 } 1943 return 0; 1944 } 1945 1946 static int loop_lookup(struct loop_device **l, int i) 1947 { 1948 struct loop_device *lo; 1949 int ret = -ENODEV; 1950 1951 if (i < 0) { 1952 int err; 1953 1954 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1955 if (err == 1) { 1956 *l = lo; 1957 ret = lo->lo_number; 1958 } 1959 goto out; 1960 } 1961 1962 /* lookup and return a specific i */ 1963 lo = idr_find(&loop_index_idr, i); 1964 if (lo) { 1965 *l = lo; 1966 ret = lo->lo_number; 1967 } 1968 out: 1969 return ret; 1970 } 1971 1972 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1973 { 1974 struct loop_device *lo; 1975 struct kobject *kobj; 1976 int err; 1977 1978 mutex_lock(&loop_index_mutex); 1979 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1980 if (err < 0) 1981 err = loop_add(&lo, MINOR(dev) >> part_shift); 1982 if (err < 0) 1983 kobj = NULL; 1984 else 1985 kobj = get_disk_and_module(lo->lo_disk); 1986 mutex_unlock(&loop_index_mutex); 1987 1988 *part = 0; 1989 return kobj; 1990 } 1991 1992 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1993 unsigned long parm) 1994 { 1995 struct loop_device *lo; 1996 int ret = -ENOSYS; 1997 1998 mutex_lock(&loop_index_mutex); 1999 switch (cmd) { 2000 case LOOP_CTL_ADD: 2001 ret = loop_lookup(&lo, parm); 2002 if (ret >= 0) { 2003 ret = -EEXIST; 2004 break; 2005 } 2006 ret = loop_add(&lo, parm); 2007 break; 2008 case LOOP_CTL_REMOVE: 2009 ret = loop_lookup(&lo, parm); 2010 if (ret < 0) 2011 break; 2012 ret = mutex_lock_killable(&lo->lo_ctl_mutex); 2013 if (ret) 2014 break; 2015 if (lo->lo_state != Lo_unbound) { 2016 ret = -EBUSY; 2017 mutex_unlock(&lo->lo_ctl_mutex); 2018 break; 2019 } 2020 if (atomic_read(&lo->lo_refcnt) > 0) { 2021 ret = -EBUSY; 2022 mutex_unlock(&lo->lo_ctl_mutex); 2023 break; 2024 } 2025 lo->lo_disk->private_data = NULL; 2026 mutex_unlock(&lo->lo_ctl_mutex); 2027 idr_remove(&loop_index_idr, lo->lo_number); 2028 loop_remove(lo); 2029 break; 2030 case LOOP_CTL_GET_FREE: 2031 ret = loop_lookup(&lo, -1); 2032 if (ret >= 0) 2033 break; 2034 ret = loop_add(&lo, -1); 2035 } 2036 mutex_unlock(&loop_index_mutex); 2037 2038 return ret; 2039 } 2040 2041 static const struct file_operations loop_ctl_fops = { 2042 .open = nonseekable_open, 2043 .unlocked_ioctl = loop_control_ioctl, 2044 .compat_ioctl = loop_control_ioctl, 2045 .owner = THIS_MODULE, 2046 .llseek = noop_llseek, 2047 }; 2048 2049 static struct miscdevice loop_misc = { 2050 .minor = LOOP_CTRL_MINOR, 2051 .name = "loop-control", 2052 .fops = &loop_ctl_fops, 2053 }; 2054 2055 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2056 MODULE_ALIAS("devname:loop-control"); 2057 2058 static int __init loop_init(void) 2059 { 2060 int i, nr; 2061 unsigned long range; 2062 struct loop_device *lo; 2063 int err; 2064 2065 part_shift = 0; 2066 if (max_part > 0) { 2067 part_shift = fls(max_part); 2068 2069 /* 2070 * Adjust max_part according to part_shift as it is exported 2071 * to user space so that user can decide correct minor number 2072 * if [s]he want to create more devices. 2073 * 2074 * Note that -1 is required because partition 0 is reserved 2075 * for the whole disk. 2076 */ 2077 max_part = (1UL << part_shift) - 1; 2078 } 2079 2080 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2081 err = -EINVAL; 2082 goto err_out; 2083 } 2084 2085 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2086 err = -EINVAL; 2087 goto err_out; 2088 } 2089 2090 /* 2091 * If max_loop is specified, create that many devices upfront. 2092 * This also becomes a hard limit. If max_loop is not specified, 2093 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2094 * init time. Loop devices can be requested on-demand with the 2095 * /dev/loop-control interface, or be instantiated by accessing 2096 * a 'dead' device node. 2097 */ 2098 if (max_loop) { 2099 nr = max_loop; 2100 range = max_loop << part_shift; 2101 } else { 2102 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2103 range = 1UL << MINORBITS; 2104 } 2105 2106 err = misc_register(&loop_misc); 2107 if (err < 0) 2108 goto err_out; 2109 2110 2111 if (register_blkdev(LOOP_MAJOR, "loop")) { 2112 err = -EIO; 2113 goto misc_out; 2114 } 2115 2116 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2117 THIS_MODULE, loop_probe, NULL, NULL); 2118 2119 /* pre-create number of devices given by config or max_loop */ 2120 mutex_lock(&loop_index_mutex); 2121 for (i = 0; i < nr; i++) 2122 loop_add(&lo, i); 2123 mutex_unlock(&loop_index_mutex); 2124 2125 printk(KERN_INFO "loop: module loaded\n"); 2126 return 0; 2127 2128 misc_out: 2129 misc_deregister(&loop_misc); 2130 err_out: 2131 return err; 2132 } 2133 2134 static int loop_exit_cb(int id, void *ptr, void *data) 2135 { 2136 struct loop_device *lo = ptr; 2137 2138 loop_remove(lo); 2139 return 0; 2140 } 2141 2142 static void __exit loop_exit(void) 2143 { 2144 unsigned long range; 2145 2146 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2147 2148 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2149 idr_destroy(&loop_index_idr); 2150 2151 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2152 unregister_blkdev(LOOP_MAJOR, "loop"); 2153 2154 misc_deregister(&loop_misc); 2155 } 2156 2157 module_init(loop_init); 2158 module_exit(loop_exit); 2159 2160 #ifndef MODULE 2161 static int __init max_loop_setup(char *str) 2162 { 2163 max_loop = simple_strtol(str, NULL, 0); 2164 return 1; 2165 } 2166 2167 __setup("max_loop=", max_loop_setup); 2168 #endif 2169