xref: /linux/drivers/block/loop.c (revision e0a2e73e501c77037c8756137e87b12c7c3c9793)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 
81 #include "loop.h"
82 
83 #include <linux/uaccess.h>
84 
85 static DEFINE_IDR(loop_index_idr);
86 static DEFINE_MUTEX(loop_index_mutex);
87 
88 static int max_part;
89 static int part_shift;
90 
91 static int transfer_xor(struct loop_device *lo, int cmd,
92 			struct page *raw_page, unsigned raw_off,
93 			struct page *loop_page, unsigned loop_off,
94 			int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 	char *in, *out, *key;
99 	int i, keysize;
100 
101 	if (cmd == READ) {
102 		in = raw_buf;
103 		out = loop_buf;
104 	} else {
105 		in = loop_buf;
106 		out = raw_buf;
107 	}
108 
109 	key = lo->lo_encrypt_key;
110 	keysize = lo->lo_encrypt_key_size;
111 	for (i = 0; i < size; i++)
112 		*out++ = *in++ ^ key[(i & 511) % keysize];
113 
114 	kunmap_atomic(loop_buf);
115 	kunmap_atomic(raw_buf);
116 	cond_resched();
117 	return 0;
118 }
119 
120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
121 {
122 	if (unlikely(info->lo_encrypt_key_size <= 0))
123 		return -EINVAL;
124 	return 0;
125 }
126 
127 static struct loop_func_table none_funcs = {
128 	.number = LO_CRYPT_NONE,
129 };
130 
131 static struct loop_func_table xor_funcs = {
132 	.number = LO_CRYPT_XOR,
133 	.transfer = transfer_xor,
134 	.init = xor_init
135 };
136 
137 /* xfer_funcs[0] is special - its release function is never called */
138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
139 	&none_funcs,
140 	&xor_funcs
141 };
142 
143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
144 {
145 	loff_t loopsize;
146 
147 	/* Compute loopsize in bytes */
148 	loopsize = i_size_read(file->f_mapping->host);
149 	if (offset > 0)
150 		loopsize -= offset;
151 	/* offset is beyond i_size, weird but possible */
152 	if (loopsize < 0)
153 		return 0;
154 
155 	if (sizelimit > 0 && sizelimit < loopsize)
156 		loopsize = sizelimit;
157 	/*
158 	 * Unfortunately, if we want to do I/O on the device,
159 	 * the number of 512-byte sectors has to fit into a sector_t.
160 	 */
161 	return loopsize >> 9;
162 }
163 
164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
165 {
166 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 }
168 
169 static void __loop_update_dio(struct loop_device *lo, bool dio)
170 {
171 	struct file *file = lo->lo_backing_file;
172 	struct address_space *mapping = file->f_mapping;
173 	struct inode *inode = mapping->host;
174 	unsigned short sb_bsize = 0;
175 	unsigned dio_align = 0;
176 	bool use_dio;
177 
178 	if (inode->i_sb->s_bdev) {
179 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
180 		dio_align = sb_bsize - 1;
181 	}
182 
183 	/*
184 	 * We support direct I/O only if lo_offset is aligned with the
185 	 * logical I/O size of backing device, and the logical block
186 	 * size of loop is bigger than the backing device's and the loop
187 	 * needn't transform transfer.
188 	 *
189 	 * TODO: the above condition may be loosed in the future, and
190 	 * direct I/O may be switched runtime at that time because most
191 	 * of requests in sane applications should be PAGE_SIZE aligned
192 	 */
193 	if (dio) {
194 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
195 				!(lo->lo_offset & dio_align) &&
196 				mapping->a_ops->direct_IO &&
197 				!lo->transfer)
198 			use_dio = true;
199 		else
200 			use_dio = false;
201 	} else {
202 		use_dio = false;
203 	}
204 
205 	if (lo->use_dio == use_dio)
206 		return;
207 
208 	/* flush dirty pages before changing direct IO */
209 	vfs_fsync(file, 0);
210 
211 	/*
212 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
213 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
214 	 * will get updated by ioctl(LOOP_GET_STATUS)
215 	 */
216 	blk_mq_freeze_queue(lo->lo_queue);
217 	lo->use_dio = use_dio;
218 	if (use_dio) {
219 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
220 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
221 	} else {
222 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
223 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
224 	}
225 	blk_mq_unfreeze_queue(lo->lo_queue);
226 }
227 
228 static int
229 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
230 {
231 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
232 	sector_t x = (sector_t)size;
233 	struct block_device *bdev = lo->lo_device;
234 
235 	if (unlikely((loff_t)x != size))
236 		return -EFBIG;
237 	if (lo->lo_offset != offset)
238 		lo->lo_offset = offset;
239 	if (lo->lo_sizelimit != sizelimit)
240 		lo->lo_sizelimit = sizelimit;
241 	set_capacity(lo->lo_disk, x);
242 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
243 	/* let user-space know about the new size */
244 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
245 	return 0;
246 }
247 
248 static inline int
249 lo_do_transfer(struct loop_device *lo, int cmd,
250 	       struct page *rpage, unsigned roffs,
251 	       struct page *lpage, unsigned loffs,
252 	       int size, sector_t rblock)
253 {
254 	int ret;
255 
256 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
257 	if (likely(!ret))
258 		return 0;
259 
260 	printk_ratelimited(KERN_ERR
261 		"loop: Transfer error at byte offset %llu, length %i.\n",
262 		(unsigned long long)rblock << 9, size);
263 	return ret;
264 }
265 
266 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
267 {
268 	struct iov_iter i;
269 	ssize_t bw;
270 
271 	iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
272 
273 	file_start_write(file);
274 	bw = vfs_iter_write(file, &i, ppos, 0);
275 	file_end_write(file);
276 
277 	if (likely(bw ==  bvec->bv_len))
278 		return 0;
279 
280 	printk_ratelimited(KERN_ERR
281 		"loop: Write error at byte offset %llu, length %i.\n",
282 		(unsigned long long)*ppos, bvec->bv_len);
283 	if (bw >= 0)
284 		bw = -EIO;
285 	return bw;
286 }
287 
288 static int lo_write_simple(struct loop_device *lo, struct request *rq,
289 		loff_t pos)
290 {
291 	struct bio_vec bvec;
292 	struct req_iterator iter;
293 	int ret = 0;
294 
295 	rq_for_each_segment(bvec, rq, iter) {
296 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
297 		if (ret < 0)
298 			break;
299 		cond_resched();
300 	}
301 
302 	return ret;
303 }
304 
305 /*
306  * This is the slow, transforming version that needs to double buffer the
307  * data as it cannot do the transformations in place without having direct
308  * access to the destination pages of the backing file.
309  */
310 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
311 		loff_t pos)
312 {
313 	struct bio_vec bvec, b;
314 	struct req_iterator iter;
315 	struct page *page;
316 	int ret = 0;
317 
318 	page = alloc_page(GFP_NOIO);
319 	if (unlikely(!page))
320 		return -ENOMEM;
321 
322 	rq_for_each_segment(bvec, rq, iter) {
323 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
324 			bvec.bv_offset, bvec.bv_len, pos >> 9);
325 		if (unlikely(ret))
326 			break;
327 
328 		b.bv_page = page;
329 		b.bv_offset = 0;
330 		b.bv_len = bvec.bv_len;
331 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
332 		if (ret < 0)
333 			break;
334 	}
335 
336 	__free_page(page);
337 	return ret;
338 }
339 
340 static int lo_read_simple(struct loop_device *lo, struct request *rq,
341 		loff_t pos)
342 {
343 	struct bio_vec bvec;
344 	struct req_iterator iter;
345 	struct iov_iter i;
346 	ssize_t len;
347 
348 	rq_for_each_segment(bvec, rq, iter) {
349 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
350 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
351 		if (len < 0)
352 			return len;
353 
354 		flush_dcache_page(bvec.bv_page);
355 
356 		if (len != bvec.bv_len) {
357 			struct bio *bio;
358 
359 			__rq_for_each_bio(bio, rq)
360 				zero_fill_bio(bio);
361 			break;
362 		}
363 		cond_resched();
364 	}
365 
366 	return 0;
367 }
368 
369 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
370 		loff_t pos)
371 {
372 	struct bio_vec bvec, b;
373 	struct req_iterator iter;
374 	struct iov_iter i;
375 	struct page *page;
376 	ssize_t len;
377 	int ret = 0;
378 
379 	page = alloc_page(GFP_NOIO);
380 	if (unlikely(!page))
381 		return -ENOMEM;
382 
383 	rq_for_each_segment(bvec, rq, iter) {
384 		loff_t offset = pos;
385 
386 		b.bv_page = page;
387 		b.bv_offset = 0;
388 		b.bv_len = bvec.bv_len;
389 
390 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
391 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
392 		if (len < 0) {
393 			ret = len;
394 			goto out_free_page;
395 		}
396 
397 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
398 			bvec.bv_offset, len, offset >> 9);
399 		if (ret)
400 			goto out_free_page;
401 
402 		flush_dcache_page(bvec.bv_page);
403 
404 		if (len != bvec.bv_len) {
405 			struct bio *bio;
406 
407 			__rq_for_each_bio(bio, rq)
408 				zero_fill_bio(bio);
409 			break;
410 		}
411 	}
412 
413 	ret = 0;
414 out_free_page:
415 	__free_page(page);
416 	return ret;
417 }
418 
419 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
420 {
421 	/*
422 	 * We use punch hole to reclaim the free space used by the
423 	 * image a.k.a. discard. However we do not support discard if
424 	 * encryption is enabled, because it may give an attacker
425 	 * useful information.
426 	 */
427 	struct file *file = lo->lo_backing_file;
428 	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
429 	int ret;
430 
431 	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
432 		ret = -EOPNOTSUPP;
433 		goto out;
434 	}
435 
436 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
437 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
438 		ret = -EIO;
439  out:
440 	return ret;
441 }
442 
443 static int lo_req_flush(struct loop_device *lo, struct request *rq)
444 {
445 	struct file *file = lo->lo_backing_file;
446 	int ret = vfs_fsync(file, 0);
447 	if (unlikely(ret && ret != -EINVAL))
448 		ret = -EIO;
449 
450 	return ret;
451 }
452 
453 static void lo_complete_rq(struct request *rq)
454 {
455 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
456 	blk_status_t ret = BLK_STS_OK;
457 
458 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
459 	    req_op(rq) != REQ_OP_READ) {
460 		if (cmd->ret < 0)
461 			ret = BLK_STS_IOERR;
462 		goto end_io;
463 	}
464 
465 	/*
466 	 * Short READ - if we got some data, advance our request and
467 	 * retry it. If we got no data, end the rest with EIO.
468 	 */
469 	if (cmd->ret) {
470 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
471 		cmd->ret = 0;
472 		blk_mq_requeue_request(rq, true);
473 	} else {
474 		if (cmd->use_aio) {
475 			struct bio *bio = rq->bio;
476 
477 			while (bio) {
478 				zero_fill_bio(bio);
479 				bio = bio->bi_next;
480 			}
481 		}
482 		ret = BLK_STS_IOERR;
483 end_io:
484 		blk_mq_end_request(rq, ret);
485 	}
486 }
487 
488 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
489 {
490 	struct request *rq = blk_mq_rq_from_pdu(cmd);
491 
492 	if (!atomic_dec_and_test(&cmd->ref))
493 		return;
494 	kfree(cmd->bvec);
495 	cmd->bvec = NULL;
496 	blk_mq_complete_request(rq);
497 }
498 
499 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
500 {
501 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
502 
503 	if (cmd->css)
504 		css_put(cmd->css);
505 	cmd->ret = ret;
506 	lo_rw_aio_do_completion(cmd);
507 }
508 
509 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
510 		     loff_t pos, bool rw)
511 {
512 	struct iov_iter iter;
513 	struct bio_vec *bvec;
514 	struct request *rq = blk_mq_rq_from_pdu(cmd);
515 	struct bio *bio = rq->bio;
516 	struct file *file = lo->lo_backing_file;
517 	unsigned int offset;
518 	int segments = 0;
519 	int ret;
520 
521 	if (rq->bio != rq->biotail) {
522 		struct req_iterator iter;
523 		struct bio_vec tmp;
524 
525 		__rq_for_each_bio(bio, rq)
526 			segments += bio_segments(bio);
527 		bvec = kmalloc_array(segments, sizeof(struct bio_vec),
528 				     GFP_NOIO);
529 		if (!bvec)
530 			return -EIO;
531 		cmd->bvec = bvec;
532 
533 		/*
534 		 * The bios of the request may be started from the middle of
535 		 * the 'bvec' because of bio splitting, so we can't directly
536 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
537 		 * API will take care of all details for us.
538 		 */
539 		rq_for_each_segment(tmp, rq, iter) {
540 			*bvec = tmp;
541 			bvec++;
542 		}
543 		bvec = cmd->bvec;
544 		offset = 0;
545 	} else {
546 		/*
547 		 * Same here, this bio may be started from the middle of the
548 		 * 'bvec' because of bio splitting, so offset from the bvec
549 		 * must be passed to iov iterator
550 		 */
551 		offset = bio->bi_iter.bi_bvec_done;
552 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
553 		segments = bio_segments(bio);
554 	}
555 	atomic_set(&cmd->ref, 2);
556 
557 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
558 		      segments, blk_rq_bytes(rq));
559 	iter.iov_offset = offset;
560 
561 	cmd->iocb.ki_pos = pos;
562 	cmd->iocb.ki_filp = file;
563 	cmd->iocb.ki_complete = lo_rw_aio_complete;
564 	cmd->iocb.ki_flags = IOCB_DIRECT;
565 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
566 	if (cmd->css)
567 		kthread_associate_blkcg(cmd->css);
568 
569 	if (rw == WRITE)
570 		ret = call_write_iter(file, &cmd->iocb, &iter);
571 	else
572 		ret = call_read_iter(file, &cmd->iocb, &iter);
573 
574 	lo_rw_aio_do_completion(cmd);
575 	kthread_associate_blkcg(NULL);
576 
577 	if (ret != -EIOCBQUEUED)
578 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
579 	return 0;
580 }
581 
582 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
583 {
584 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
585 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
586 
587 	/*
588 	 * lo_write_simple and lo_read_simple should have been covered
589 	 * by io submit style function like lo_rw_aio(), one blocker
590 	 * is that lo_read_simple() need to call flush_dcache_page after
591 	 * the page is written from kernel, and it isn't easy to handle
592 	 * this in io submit style function which submits all segments
593 	 * of the req at one time. And direct read IO doesn't need to
594 	 * run flush_dcache_page().
595 	 */
596 	switch (req_op(rq)) {
597 	case REQ_OP_FLUSH:
598 		return lo_req_flush(lo, rq);
599 	case REQ_OP_DISCARD:
600 	case REQ_OP_WRITE_ZEROES:
601 		return lo_discard(lo, rq, pos);
602 	case REQ_OP_WRITE:
603 		if (lo->transfer)
604 			return lo_write_transfer(lo, rq, pos);
605 		else if (cmd->use_aio)
606 			return lo_rw_aio(lo, cmd, pos, WRITE);
607 		else
608 			return lo_write_simple(lo, rq, pos);
609 	case REQ_OP_READ:
610 		if (lo->transfer)
611 			return lo_read_transfer(lo, rq, pos);
612 		else if (cmd->use_aio)
613 			return lo_rw_aio(lo, cmd, pos, READ);
614 		else
615 			return lo_read_simple(lo, rq, pos);
616 	default:
617 		WARN_ON_ONCE(1);
618 		return -EIO;
619 		break;
620 	}
621 }
622 
623 static inline void loop_update_dio(struct loop_device *lo)
624 {
625 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
626 			lo->use_dio);
627 }
628 
629 static void loop_reread_partitions(struct loop_device *lo,
630 				   struct block_device *bdev)
631 {
632 	int rc;
633 
634 	/*
635 	 * bd_mutex has been held already in release path, so don't
636 	 * acquire it if this function is called in such case.
637 	 *
638 	 * If the reread partition isn't from release path, lo_refcnt
639 	 * must be at least one and it can only become zero when the
640 	 * current holder is released.
641 	 */
642 	if (!atomic_read(&lo->lo_refcnt))
643 		rc = __blkdev_reread_part(bdev);
644 	else
645 		rc = blkdev_reread_part(bdev);
646 	if (rc)
647 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 			__func__, lo->lo_number, lo->lo_file_name, rc);
649 }
650 
651 static inline int is_loop_device(struct file *file)
652 {
653 	struct inode *i = file->f_mapping->host;
654 
655 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
656 }
657 
658 static int loop_validate_file(struct file *file, struct block_device *bdev)
659 {
660 	struct inode	*inode = file->f_mapping->host;
661 	struct file	*f = file;
662 
663 	/* Avoid recursion */
664 	while (is_loop_device(f)) {
665 		struct loop_device *l;
666 
667 		if (f->f_mapping->host->i_bdev == bdev)
668 			return -EBADF;
669 
670 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
671 		if (l->lo_state == Lo_unbound) {
672 			return -EINVAL;
673 		}
674 		f = l->lo_backing_file;
675 	}
676 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
677 		return -EINVAL;
678 	return 0;
679 }
680 
681 /*
682  * loop_change_fd switched the backing store of a loopback device to
683  * a new file. This is useful for operating system installers to free up
684  * the original file and in High Availability environments to switch to
685  * an alternative location for the content in case of server meltdown.
686  * This can only work if the loop device is used read-only, and if the
687  * new backing store is the same size and type as the old backing store.
688  */
689 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
690 			  unsigned int arg)
691 {
692 	struct file	*file, *old_file;
693 	int		error;
694 
695 	error = -ENXIO;
696 	if (lo->lo_state != Lo_bound)
697 		goto out;
698 
699 	/* the loop device has to be read-only */
700 	error = -EINVAL;
701 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
702 		goto out;
703 
704 	error = -EBADF;
705 	file = fget(arg);
706 	if (!file)
707 		goto out;
708 
709 	error = loop_validate_file(file, bdev);
710 	if (error)
711 		goto out_putf;
712 
713 	old_file = lo->lo_backing_file;
714 
715 	error = -EINVAL;
716 
717 	/* size of the new backing store needs to be the same */
718 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
719 		goto out_putf;
720 
721 	/* and ... switch */
722 	blk_mq_freeze_queue(lo->lo_queue);
723 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
724 	lo->lo_backing_file = file;
725 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
726 	mapping_set_gfp_mask(file->f_mapping,
727 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
728 	loop_update_dio(lo);
729 	blk_mq_unfreeze_queue(lo->lo_queue);
730 
731 	fput(old_file);
732 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
733 		loop_reread_partitions(lo, bdev);
734 	return 0;
735 
736  out_putf:
737 	fput(file);
738  out:
739 	return error;
740 }
741 
742 /* loop sysfs attributes */
743 
744 static ssize_t loop_attr_show(struct device *dev, char *page,
745 			      ssize_t (*callback)(struct loop_device *, char *))
746 {
747 	struct gendisk *disk = dev_to_disk(dev);
748 	struct loop_device *lo = disk->private_data;
749 
750 	return callback(lo, page);
751 }
752 
753 #define LOOP_ATTR_RO(_name)						\
754 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
755 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
756 				struct device_attribute *attr, char *b)	\
757 {									\
758 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
759 }									\
760 static struct device_attribute loop_attr_##_name =			\
761 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
762 
763 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
764 {
765 	ssize_t ret;
766 	char *p = NULL;
767 
768 	spin_lock_irq(&lo->lo_lock);
769 	if (lo->lo_backing_file)
770 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
771 	spin_unlock_irq(&lo->lo_lock);
772 
773 	if (IS_ERR_OR_NULL(p))
774 		ret = PTR_ERR(p);
775 	else {
776 		ret = strlen(p);
777 		memmove(buf, p, ret);
778 		buf[ret++] = '\n';
779 		buf[ret] = 0;
780 	}
781 
782 	return ret;
783 }
784 
785 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
786 {
787 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
788 }
789 
790 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
791 {
792 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
793 }
794 
795 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
796 {
797 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
798 
799 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
800 }
801 
802 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
803 {
804 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
805 
806 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
807 }
808 
809 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
810 {
811 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
812 
813 	return sprintf(buf, "%s\n", dio ? "1" : "0");
814 }
815 
816 LOOP_ATTR_RO(backing_file);
817 LOOP_ATTR_RO(offset);
818 LOOP_ATTR_RO(sizelimit);
819 LOOP_ATTR_RO(autoclear);
820 LOOP_ATTR_RO(partscan);
821 LOOP_ATTR_RO(dio);
822 
823 static struct attribute *loop_attrs[] = {
824 	&loop_attr_backing_file.attr,
825 	&loop_attr_offset.attr,
826 	&loop_attr_sizelimit.attr,
827 	&loop_attr_autoclear.attr,
828 	&loop_attr_partscan.attr,
829 	&loop_attr_dio.attr,
830 	NULL,
831 };
832 
833 static struct attribute_group loop_attribute_group = {
834 	.name = "loop",
835 	.attrs= loop_attrs,
836 };
837 
838 static void loop_sysfs_init(struct loop_device *lo)
839 {
840 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
841 						&loop_attribute_group);
842 }
843 
844 static void loop_sysfs_exit(struct loop_device *lo)
845 {
846 	if (lo->sysfs_inited)
847 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
848 				   &loop_attribute_group);
849 }
850 
851 static void loop_config_discard(struct loop_device *lo)
852 {
853 	struct file *file = lo->lo_backing_file;
854 	struct inode *inode = file->f_mapping->host;
855 	struct request_queue *q = lo->lo_queue;
856 
857 	/*
858 	 * We use punch hole to reclaim the free space used by the
859 	 * image a.k.a. discard. However we do not support discard if
860 	 * encryption is enabled, because it may give an attacker
861 	 * useful information.
862 	 */
863 	if ((!file->f_op->fallocate) ||
864 	    lo->lo_encrypt_key_size) {
865 		q->limits.discard_granularity = 0;
866 		q->limits.discard_alignment = 0;
867 		blk_queue_max_discard_sectors(q, 0);
868 		blk_queue_max_write_zeroes_sectors(q, 0);
869 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
870 		return;
871 	}
872 
873 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
874 	q->limits.discard_alignment = 0;
875 
876 	blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
877 	blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
878 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
879 }
880 
881 static void loop_unprepare_queue(struct loop_device *lo)
882 {
883 	kthread_flush_worker(&lo->worker);
884 	kthread_stop(lo->worker_task);
885 }
886 
887 static int loop_kthread_worker_fn(void *worker_ptr)
888 {
889 	current->flags |= PF_LESS_THROTTLE;
890 	return kthread_worker_fn(worker_ptr);
891 }
892 
893 static int loop_prepare_queue(struct loop_device *lo)
894 {
895 	kthread_init_worker(&lo->worker);
896 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
897 			&lo->worker, "loop%d", lo->lo_number);
898 	if (IS_ERR(lo->worker_task))
899 		return -ENOMEM;
900 	set_user_nice(lo->worker_task, MIN_NICE);
901 	return 0;
902 }
903 
904 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
905 		       struct block_device *bdev, unsigned int arg)
906 {
907 	struct file	*file;
908 	struct inode	*inode;
909 	struct address_space *mapping;
910 	int		lo_flags = 0;
911 	int		error;
912 	loff_t		size;
913 
914 	/* This is safe, since we have a reference from open(). */
915 	__module_get(THIS_MODULE);
916 
917 	error = -EBADF;
918 	file = fget(arg);
919 	if (!file)
920 		goto out;
921 
922 	error = -EBUSY;
923 	if (lo->lo_state != Lo_unbound)
924 		goto out_putf;
925 
926 	error = loop_validate_file(file, bdev);
927 	if (error)
928 		goto out_putf;
929 
930 	mapping = file->f_mapping;
931 	inode = mapping->host;
932 
933 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
934 	    !file->f_op->write_iter)
935 		lo_flags |= LO_FLAGS_READ_ONLY;
936 
937 	error = -EFBIG;
938 	size = get_loop_size(lo, file);
939 	if ((loff_t)(sector_t)size != size)
940 		goto out_putf;
941 	error = loop_prepare_queue(lo);
942 	if (error)
943 		goto out_putf;
944 
945 	error = 0;
946 
947 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
948 
949 	lo->use_dio = false;
950 	lo->lo_device = bdev;
951 	lo->lo_flags = lo_flags;
952 	lo->lo_backing_file = file;
953 	lo->transfer = NULL;
954 	lo->ioctl = NULL;
955 	lo->lo_sizelimit = 0;
956 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
957 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
958 
959 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
960 		blk_queue_write_cache(lo->lo_queue, true, false);
961 
962 	loop_update_dio(lo);
963 	set_capacity(lo->lo_disk, size);
964 	bd_set_size(bdev, size << 9);
965 	loop_sysfs_init(lo);
966 	/* let user-space know about the new size */
967 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
968 
969 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
970 		      block_size(inode->i_bdev) : PAGE_SIZE);
971 
972 	lo->lo_state = Lo_bound;
973 	if (part_shift)
974 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
975 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
976 		loop_reread_partitions(lo, bdev);
977 
978 	/* Grab the block_device to prevent its destruction after we
979 	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
980 	 */
981 	bdgrab(bdev);
982 	return 0;
983 
984  out_putf:
985 	fput(file);
986  out:
987 	/* This is safe: open() is still holding a reference. */
988 	module_put(THIS_MODULE);
989 	return error;
990 }
991 
992 static int
993 loop_release_xfer(struct loop_device *lo)
994 {
995 	int err = 0;
996 	struct loop_func_table *xfer = lo->lo_encryption;
997 
998 	if (xfer) {
999 		if (xfer->release)
1000 			err = xfer->release(lo);
1001 		lo->transfer = NULL;
1002 		lo->lo_encryption = NULL;
1003 		module_put(xfer->owner);
1004 	}
1005 	return err;
1006 }
1007 
1008 static int
1009 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1010 	       const struct loop_info64 *i)
1011 {
1012 	int err = 0;
1013 
1014 	if (xfer) {
1015 		struct module *owner = xfer->owner;
1016 
1017 		if (!try_module_get(owner))
1018 			return -EINVAL;
1019 		if (xfer->init)
1020 			err = xfer->init(lo, i);
1021 		if (err)
1022 			module_put(owner);
1023 		else
1024 			lo->lo_encryption = xfer;
1025 	}
1026 	return err;
1027 }
1028 
1029 static int loop_clr_fd(struct loop_device *lo)
1030 {
1031 	struct file *filp = lo->lo_backing_file;
1032 	gfp_t gfp = lo->old_gfp_mask;
1033 	struct block_device *bdev = lo->lo_device;
1034 
1035 	if (lo->lo_state != Lo_bound)
1036 		return -ENXIO;
1037 
1038 	/*
1039 	 * If we've explicitly asked to tear down the loop device,
1040 	 * and it has an elevated reference count, set it for auto-teardown when
1041 	 * the last reference goes away. This stops $!~#$@ udev from
1042 	 * preventing teardown because it decided that it needs to run blkid on
1043 	 * the loopback device whenever they appear. xfstests is notorious for
1044 	 * failing tests because blkid via udev races with a losetup
1045 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1046 	 * command to fail with EBUSY.
1047 	 */
1048 	if (atomic_read(&lo->lo_refcnt) > 1) {
1049 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1050 		mutex_unlock(&lo->lo_ctl_mutex);
1051 		return 0;
1052 	}
1053 
1054 	if (filp == NULL)
1055 		return -EINVAL;
1056 
1057 	/* freeze request queue during the transition */
1058 	blk_mq_freeze_queue(lo->lo_queue);
1059 
1060 	spin_lock_irq(&lo->lo_lock);
1061 	lo->lo_state = Lo_rundown;
1062 	lo->lo_backing_file = NULL;
1063 	spin_unlock_irq(&lo->lo_lock);
1064 
1065 	loop_release_xfer(lo);
1066 	lo->transfer = NULL;
1067 	lo->ioctl = NULL;
1068 	lo->lo_device = NULL;
1069 	lo->lo_encryption = NULL;
1070 	lo->lo_offset = 0;
1071 	lo->lo_sizelimit = 0;
1072 	lo->lo_encrypt_key_size = 0;
1073 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1074 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1075 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1076 	blk_queue_logical_block_size(lo->lo_queue, 512);
1077 	blk_queue_physical_block_size(lo->lo_queue, 512);
1078 	blk_queue_io_min(lo->lo_queue, 512);
1079 	if (bdev) {
1080 		bdput(bdev);
1081 		invalidate_bdev(bdev);
1082 		bdev->bd_inode->i_mapping->wb_err = 0;
1083 	}
1084 	set_capacity(lo->lo_disk, 0);
1085 	loop_sysfs_exit(lo);
1086 	if (bdev) {
1087 		bd_set_size(bdev, 0);
1088 		/* let user-space know about this change */
1089 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1090 	}
1091 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1092 	lo->lo_state = Lo_unbound;
1093 	/* This is safe: open() is still holding a reference. */
1094 	module_put(THIS_MODULE);
1095 	blk_mq_unfreeze_queue(lo->lo_queue);
1096 
1097 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1098 		loop_reread_partitions(lo, bdev);
1099 	lo->lo_flags = 0;
1100 	if (!part_shift)
1101 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1102 	loop_unprepare_queue(lo);
1103 	mutex_unlock(&lo->lo_ctl_mutex);
1104 	/*
1105 	 * Need not hold lo_ctl_mutex to fput backing file.
1106 	 * Calling fput holding lo_ctl_mutex triggers a circular
1107 	 * lock dependency possibility warning as fput can take
1108 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1109 	 */
1110 	fput(filp);
1111 	return 0;
1112 }
1113 
1114 static int
1115 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1116 {
1117 	int err;
1118 	struct loop_func_table *xfer;
1119 	kuid_t uid = current_uid();
1120 
1121 	if (lo->lo_encrypt_key_size &&
1122 	    !uid_eq(lo->lo_key_owner, uid) &&
1123 	    !capable(CAP_SYS_ADMIN))
1124 		return -EPERM;
1125 	if (lo->lo_state != Lo_bound)
1126 		return -ENXIO;
1127 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1128 		return -EINVAL;
1129 
1130 	/* I/O need to be drained during transfer transition */
1131 	blk_mq_freeze_queue(lo->lo_queue);
1132 
1133 	err = loop_release_xfer(lo);
1134 	if (err)
1135 		goto exit;
1136 
1137 	if (info->lo_encrypt_type) {
1138 		unsigned int type = info->lo_encrypt_type;
1139 
1140 		if (type >= MAX_LO_CRYPT) {
1141 			err = -EINVAL;
1142 			goto exit;
1143 		}
1144 		xfer = xfer_funcs[type];
1145 		if (xfer == NULL) {
1146 			err = -EINVAL;
1147 			goto exit;
1148 		}
1149 	} else
1150 		xfer = NULL;
1151 
1152 	err = loop_init_xfer(lo, xfer, info);
1153 	if (err)
1154 		goto exit;
1155 
1156 	if (lo->lo_offset != info->lo_offset ||
1157 	    lo->lo_sizelimit != info->lo_sizelimit) {
1158 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1159 			err = -EFBIG;
1160 			goto exit;
1161 		}
1162 	}
1163 
1164 	loop_config_discard(lo);
1165 
1166 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1167 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1168 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1169 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1170 
1171 	if (!xfer)
1172 		xfer = &none_funcs;
1173 	lo->transfer = xfer->transfer;
1174 	lo->ioctl = xfer->ioctl;
1175 
1176 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1177 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1178 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1179 
1180 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1181 	lo->lo_init[0] = info->lo_init[0];
1182 	lo->lo_init[1] = info->lo_init[1];
1183 	if (info->lo_encrypt_key_size) {
1184 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1185 		       info->lo_encrypt_key_size);
1186 		lo->lo_key_owner = uid;
1187 	}
1188 
1189 	/* update dio if lo_offset or transfer is changed */
1190 	__loop_update_dio(lo, lo->use_dio);
1191 
1192  exit:
1193 	blk_mq_unfreeze_queue(lo->lo_queue);
1194 
1195 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1196 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1197 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1198 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1199 		loop_reread_partitions(lo, lo->lo_device);
1200 	}
1201 
1202 	return err;
1203 }
1204 
1205 static int
1206 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1207 {
1208 	struct file *file;
1209 	struct kstat stat;
1210 	int ret;
1211 
1212 	if (lo->lo_state != Lo_bound) {
1213 		mutex_unlock(&lo->lo_ctl_mutex);
1214 		return -ENXIO;
1215 	}
1216 
1217 	memset(info, 0, sizeof(*info));
1218 	info->lo_number = lo->lo_number;
1219 	info->lo_offset = lo->lo_offset;
1220 	info->lo_sizelimit = lo->lo_sizelimit;
1221 	info->lo_flags = lo->lo_flags;
1222 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1223 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1224 	info->lo_encrypt_type =
1225 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1226 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1227 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1228 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1229 		       lo->lo_encrypt_key_size);
1230 	}
1231 
1232 	/* Drop lo_ctl_mutex while we call into the filesystem. */
1233 	file = get_file(lo->lo_backing_file);
1234 	mutex_unlock(&lo->lo_ctl_mutex);
1235 	ret = vfs_getattr(&file->f_path, &stat, STATX_INO,
1236 			  AT_STATX_SYNC_AS_STAT);
1237 	if (!ret) {
1238 		info->lo_device = huge_encode_dev(stat.dev);
1239 		info->lo_inode = stat.ino;
1240 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1241 	}
1242 	fput(file);
1243 	return ret;
1244 }
1245 
1246 static void
1247 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1248 {
1249 	memset(info64, 0, sizeof(*info64));
1250 	info64->lo_number = info->lo_number;
1251 	info64->lo_device = info->lo_device;
1252 	info64->lo_inode = info->lo_inode;
1253 	info64->lo_rdevice = info->lo_rdevice;
1254 	info64->lo_offset = info->lo_offset;
1255 	info64->lo_sizelimit = 0;
1256 	info64->lo_encrypt_type = info->lo_encrypt_type;
1257 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1258 	info64->lo_flags = info->lo_flags;
1259 	info64->lo_init[0] = info->lo_init[0];
1260 	info64->lo_init[1] = info->lo_init[1];
1261 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1262 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1263 	else
1264 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1265 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1266 }
1267 
1268 static int
1269 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1270 {
1271 	memset(info, 0, sizeof(*info));
1272 	info->lo_number = info64->lo_number;
1273 	info->lo_device = info64->lo_device;
1274 	info->lo_inode = info64->lo_inode;
1275 	info->lo_rdevice = info64->lo_rdevice;
1276 	info->lo_offset = info64->lo_offset;
1277 	info->lo_encrypt_type = info64->lo_encrypt_type;
1278 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1279 	info->lo_flags = info64->lo_flags;
1280 	info->lo_init[0] = info64->lo_init[0];
1281 	info->lo_init[1] = info64->lo_init[1];
1282 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1283 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1284 	else
1285 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1286 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1287 
1288 	/* error in case values were truncated */
1289 	if (info->lo_device != info64->lo_device ||
1290 	    info->lo_rdevice != info64->lo_rdevice ||
1291 	    info->lo_inode != info64->lo_inode ||
1292 	    info->lo_offset != info64->lo_offset)
1293 		return -EOVERFLOW;
1294 
1295 	return 0;
1296 }
1297 
1298 static int
1299 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1300 {
1301 	struct loop_info info;
1302 	struct loop_info64 info64;
1303 
1304 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1305 		return -EFAULT;
1306 	loop_info64_from_old(&info, &info64);
1307 	return loop_set_status(lo, &info64);
1308 }
1309 
1310 static int
1311 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1312 {
1313 	struct loop_info64 info64;
1314 
1315 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1316 		return -EFAULT;
1317 	return loop_set_status(lo, &info64);
1318 }
1319 
1320 static int
1321 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1322 	struct loop_info info;
1323 	struct loop_info64 info64;
1324 	int err;
1325 
1326 	if (!arg) {
1327 		mutex_unlock(&lo->lo_ctl_mutex);
1328 		return -EINVAL;
1329 	}
1330 	err = loop_get_status(lo, &info64);
1331 	if (!err)
1332 		err = loop_info64_to_old(&info64, &info);
1333 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1334 		err = -EFAULT;
1335 
1336 	return err;
1337 }
1338 
1339 static int
1340 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1341 	struct loop_info64 info64;
1342 	int err;
1343 
1344 	if (!arg) {
1345 		mutex_unlock(&lo->lo_ctl_mutex);
1346 		return -EINVAL;
1347 	}
1348 	err = loop_get_status(lo, &info64);
1349 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1350 		err = -EFAULT;
1351 
1352 	return err;
1353 }
1354 
1355 static int loop_set_capacity(struct loop_device *lo)
1356 {
1357 	if (unlikely(lo->lo_state != Lo_bound))
1358 		return -ENXIO;
1359 
1360 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1361 }
1362 
1363 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1364 {
1365 	int error = -ENXIO;
1366 	if (lo->lo_state != Lo_bound)
1367 		goto out;
1368 
1369 	__loop_update_dio(lo, !!arg);
1370 	if (lo->use_dio == !!arg)
1371 		return 0;
1372 	error = -EINVAL;
1373  out:
1374 	return error;
1375 }
1376 
1377 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1378 {
1379 	if (lo->lo_state != Lo_bound)
1380 		return -ENXIO;
1381 
1382 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1383 		return -EINVAL;
1384 
1385 	blk_mq_freeze_queue(lo->lo_queue);
1386 
1387 	blk_queue_logical_block_size(lo->lo_queue, arg);
1388 	blk_queue_physical_block_size(lo->lo_queue, arg);
1389 	blk_queue_io_min(lo->lo_queue, arg);
1390 	loop_update_dio(lo);
1391 
1392 	blk_mq_unfreeze_queue(lo->lo_queue);
1393 
1394 	return 0;
1395 }
1396 
1397 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1398 	unsigned int cmd, unsigned long arg)
1399 {
1400 	struct loop_device *lo = bdev->bd_disk->private_data;
1401 	int err;
1402 
1403 	err = mutex_lock_killable_nested(&lo->lo_ctl_mutex, 1);
1404 	if (err)
1405 		goto out_unlocked;
1406 
1407 	switch (cmd) {
1408 	case LOOP_SET_FD:
1409 		err = loop_set_fd(lo, mode, bdev, arg);
1410 		break;
1411 	case LOOP_CHANGE_FD:
1412 		err = loop_change_fd(lo, bdev, arg);
1413 		break;
1414 	case LOOP_CLR_FD:
1415 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1416 		err = loop_clr_fd(lo);
1417 		if (!err)
1418 			goto out_unlocked;
1419 		break;
1420 	case LOOP_SET_STATUS:
1421 		err = -EPERM;
1422 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1423 			err = loop_set_status_old(lo,
1424 					(struct loop_info __user *)arg);
1425 		break;
1426 	case LOOP_GET_STATUS:
1427 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1428 		/* loop_get_status() unlocks lo_ctl_mutex */
1429 		goto out_unlocked;
1430 	case LOOP_SET_STATUS64:
1431 		err = -EPERM;
1432 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1433 			err = loop_set_status64(lo,
1434 					(struct loop_info64 __user *) arg);
1435 		break;
1436 	case LOOP_GET_STATUS64:
1437 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1438 		/* loop_get_status() unlocks lo_ctl_mutex */
1439 		goto out_unlocked;
1440 	case LOOP_SET_CAPACITY:
1441 		err = -EPERM;
1442 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1443 			err = loop_set_capacity(lo);
1444 		break;
1445 	case LOOP_SET_DIRECT_IO:
1446 		err = -EPERM;
1447 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1448 			err = loop_set_dio(lo, arg);
1449 		break;
1450 	case LOOP_SET_BLOCK_SIZE:
1451 		err = -EPERM;
1452 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1453 			err = loop_set_block_size(lo, arg);
1454 		break;
1455 	default:
1456 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1457 	}
1458 	mutex_unlock(&lo->lo_ctl_mutex);
1459 
1460 out_unlocked:
1461 	return err;
1462 }
1463 
1464 #ifdef CONFIG_COMPAT
1465 struct compat_loop_info {
1466 	compat_int_t	lo_number;      /* ioctl r/o */
1467 	compat_dev_t	lo_device;      /* ioctl r/o */
1468 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1469 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1470 	compat_int_t	lo_offset;
1471 	compat_int_t	lo_encrypt_type;
1472 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1473 	compat_int_t	lo_flags;       /* ioctl r/o */
1474 	char		lo_name[LO_NAME_SIZE];
1475 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1476 	compat_ulong_t	lo_init[2];
1477 	char		reserved[4];
1478 };
1479 
1480 /*
1481  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1482  * - noinlined to reduce stack space usage in main part of driver
1483  */
1484 static noinline int
1485 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1486 			struct loop_info64 *info64)
1487 {
1488 	struct compat_loop_info info;
1489 
1490 	if (copy_from_user(&info, arg, sizeof(info)))
1491 		return -EFAULT;
1492 
1493 	memset(info64, 0, sizeof(*info64));
1494 	info64->lo_number = info.lo_number;
1495 	info64->lo_device = info.lo_device;
1496 	info64->lo_inode = info.lo_inode;
1497 	info64->lo_rdevice = info.lo_rdevice;
1498 	info64->lo_offset = info.lo_offset;
1499 	info64->lo_sizelimit = 0;
1500 	info64->lo_encrypt_type = info.lo_encrypt_type;
1501 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1502 	info64->lo_flags = info.lo_flags;
1503 	info64->lo_init[0] = info.lo_init[0];
1504 	info64->lo_init[1] = info.lo_init[1];
1505 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1506 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1507 	else
1508 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1509 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1510 	return 0;
1511 }
1512 
1513 /*
1514  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1515  * - noinlined to reduce stack space usage in main part of driver
1516  */
1517 static noinline int
1518 loop_info64_to_compat(const struct loop_info64 *info64,
1519 		      struct compat_loop_info __user *arg)
1520 {
1521 	struct compat_loop_info info;
1522 
1523 	memset(&info, 0, sizeof(info));
1524 	info.lo_number = info64->lo_number;
1525 	info.lo_device = info64->lo_device;
1526 	info.lo_inode = info64->lo_inode;
1527 	info.lo_rdevice = info64->lo_rdevice;
1528 	info.lo_offset = info64->lo_offset;
1529 	info.lo_encrypt_type = info64->lo_encrypt_type;
1530 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1531 	info.lo_flags = info64->lo_flags;
1532 	info.lo_init[0] = info64->lo_init[0];
1533 	info.lo_init[1] = info64->lo_init[1];
1534 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1535 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1536 	else
1537 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1538 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1539 
1540 	/* error in case values were truncated */
1541 	if (info.lo_device != info64->lo_device ||
1542 	    info.lo_rdevice != info64->lo_rdevice ||
1543 	    info.lo_inode != info64->lo_inode ||
1544 	    info.lo_offset != info64->lo_offset ||
1545 	    info.lo_init[0] != info64->lo_init[0] ||
1546 	    info.lo_init[1] != info64->lo_init[1])
1547 		return -EOVERFLOW;
1548 
1549 	if (copy_to_user(arg, &info, sizeof(info)))
1550 		return -EFAULT;
1551 	return 0;
1552 }
1553 
1554 static int
1555 loop_set_status_compat(struct loop_device *lo,
1556 		       const struct compat_loop_info __user *arg)
1557 {
1558 	struct loop_info64 info64;
1559 	int ret;
1560 
1561 	ret = loop_info64_from_compat(arg, &info64);
1562 	if (ret < 0)
1563 		return ret;
1564 	return loop_set_status(lo, &info64);
1565 }
1566 
1567 static int
1568 loop_get_status_compat(struct loop_device *lo,
1569 		       struct compat_loop_info __user *arg)
1570 {
1571 	struct loop_info64 info64;
1572 	int err;
1573 
1574 	if (!arg) {
1575 		mutex_unlock(&lo->lo_ctl_mutex);
1576 		return -EINVAL;
1577 	}
1578 	err = loop_get_status(lo, &info64);
1579 	if (!err)
1580 		err = loop_info64_to_compat(&info64, arg);
1581 	return err;
1582 }
1583 
1584 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1585 			   unsigned int cmd, unsigned long arg)
1586 {
1587 	struct loop_device *lo = bdev->bd_disk->private_data;
1588 	int err;
1589 
1590 	switch(cmd) {
1591 	case LOOP_SET_STATUS:
1592 		err = mutex_lock_killable(&lo->lo_ctl_mutex);
1593 		if (!err) {
1594 			err = loop_set_status_compat(lo,
1595 						     (const struct compat_loop_info __user *)arg);
1596 			mutex_unlock(&lo->lo_ctl_mutex);
1597 		}
1598 		break;
1599 	case LOOP_GET_STATUS:
1600 		err = mutex_lock_killable(&lo->lo_ctl_mutex);
1601 		if (!err) {
1602 			err = loop_get_status_compat(lo,
1603 						     (struct compat_loop_info __user *)arg);
1604 			/* loop_get_status() unlocks lo_ctl_mutex */
1605 		}
1606 		break;
1607 	case LOOP_SET_CAPACITY:
1608 	case LOOP_CLR_FD:
1609 	case LOOP_GET_STATUS64:
1610 	case LOOP_SET_STATUS64:
1611 		arg = (unsigned long) compat_ptr(arg);
1612 		/* fall through */
1613 	case LOOP_SET_FD:
1614 	case LOOP_CHANGE_FD:
1615 	case LOOP_SET_BLOCK_SIZE:
1616 		err = lo_ioctl(bdev, mode, cmd, arg);
1617 		break;
1618 	default:
1619 		err = -ENOIOCTLCMD;
1620 		break;
1621 	}
1622 	return err;
1623 }
1624 #endif
1625 
1626 static int lo_open(struct block_device *bdev, fmode_t mode)
1627 {
1628 	struct loop_device *lo;
1629 	int err = 0;
1630 
1631 	mutex_lock(&loop_index_mutex);
1632 	lo = bdev->bd_disk->private_data;
1633 	if (!lo) {
1634 		err = -ENXIO;
1635 		goto out;
1636 	}
1637 
1638 	atomic_inc(&lo->lo_refcnt);
1639 out:
1640 	mutex_unlock(&loop_index_mutex);
1641 	return err;
1642 }
1643 
1644 static void __lo_release(struct loop_device *lo)
1645 {
1646 	int err;
1647 
1648 	if (atomic_dec_return(&lo->lo_refcnt))
1649 		return;
1650 
1651 	mutex_lock(&lo->lo_ctl_mutex);
1652 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1653 		/*
1654 		 * In autoclear mode, stop the loop thread
1655 		 * and remove configuration after last close.
1656 		 */
1657 		err = loop_clr_fd(lo);
1658 		if (!err)
1659 			return;
1660 	} else if (lo->lo_state == Lo_bound) {
1661 		/*
1662 		 * Otherwise keep thread (if running) and config,
1663 		 * but flush possible ongoing bios in thread.
1664 		 */
1665 		blk_mq_freeze_queue(lo->lo_queue);
1666 		blk_mq_unfreeze_queue(lo->lo_queue);
1667 	}
1668 
1669 	mutex_unlock(&lo->lo_ctl_mutex);
1670 }
1671 
1672 static void lo_release(struct gendisk *disk, fmode_t mode)
1673 {
1674 	mutex_lock(&loop_index_mutex);
1675 	__lo_release(disk->private_data);
1676 	mutex_unlock(&loop_index_mutex);
1677 }
1678 
1679 static const struct block_device_operations lo_fops = {
1680 	.owner =	THIS_MODULE,
1681 	.open =		lo_open,
1682 	.release =	lo_release,
1683 	.ioctl =	lo_ioctl,
1684 #ifdef CONFIG_COMPAT
1685 	.compat_ioctl =	lo_compat_ioctl,
1686 #endif
1687 };
1688 
1689 /*
1690  * And now the modules code and kernel interface.
1691  */
1692 static int max_loop;
1693 module_param(max_loop, int, 0444);
1694 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1695 module_param(max_part, int, 0444);
1696 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1697 MODULE_LICENSE("GPL");
1698 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1699 
1700 int loop_register_transfer(struct loop_func_table *funcs)
1701 {
1702 	unsigned int n = funcs->number;
1703 
1704 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1705 		return -EINVAL;
1706 	xfer_funcs[n] = funcs;
1707 	return 0;
1708 }
1709 
1710 static int unregister_transfer_cb(int id, void *ptr, void *data)
1711 {
1712 	struct loop_device *lo = ptr;
1713 	struct loop_func_table *xfer = data;
1714 
1715 	mutex_lock(&lo->lo_ctl_mutex);
1716 	if (lo->lo_encryption == xfer)
1717 		loop_release_xfer(lo);
1718 	mutex_unlock(&lo->lo_ctl_mutex);
1719 	return 0;
1720 }
1721 
1722 int loop_unregister_transfer(int number)
1723 {
1724 	unsigned int n = number;
1725 	struct loop_func_table *xfer;
1726 
1727 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1728 		return -EINVAL;
1729 
1730 	xfer_funcs[n] = NULL;
1731 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1732 	return 0;
1733 }
1734 
1735 EXPORT_SYMBOL(loop_register_transfer);
1736 EXPORT_SYMBOL(loop_unregister_transfer);
1737 
1738 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1739 		const struct blk_mq_queue_data *bd)
1740 {
1741 	struct request *rq = bd->rq;
1742 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1743 	struct loop_device *lo = rq->q->queuedata;
1744 
1745 	blk_mq_start_request(rq);
1746 
1747 	if (lo->lo_state != Lo_bound)
1748 		return BLK_STS_IOERR;
1749 
1750 	switch (req_op(rq)) {
1751 	case REQ_OP_FLUSH:
1752 	case REQ_OP_DISCARD:
1753 	case REQ_OP_WRITE_ZEROES:
1754 		cmd->use_aio = false;
1755 		break;
1756 	default:
1757 		cmd->use_aio = lo->use_dio;
1758 		break;
1759 	}
1760 
1761 	/* always use the first bio's css */
1762 #ifdef CONFIG_BLK_CGROUP
1763 	if (cmd->use_aio && rq->bio && rq->bio->bi_css) {
1764 		cmd->css = rq->bio->bi_css;
1765 		css_get(cmd->css);
1766 	} else
1767 #endif
1768 		cmd->css = NULL;
1769 	kthread_queue_work(&lo->worker, &cmd->work);
1770 
1771 	return BLK_STS_OK;
1772 }
1773 
1774 static void loop_handle_cmd(struct loop_cmd *cmd)
1775 {
1776 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1777 	const bool write = op_is_write(req_op(rq));
1778 	struct loop_device *lo = rq->q->queuedata;
1779 	int ret = 0;
1780 
1781 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1782 		ret = -EIO;
1783 		goto failed;
1784 	}
1785 
1786 	ret = do_req_filebacked(lo, rq);
1787  failed:
1788 	/* complete non-aio request */
1789 	if (!cmd->use_aio || ret) {
1790 		cmd->ret = ret ? -EIO : 0;
1791 		blk_mq_complete_request(rq);
1792 	}
1793 }
1794 
1795 static void loop_queue_work(struct kthread_work *work)
1796 {
1797 	struct loop_cmd *cmd =
1798 		container_of(work, struct loop_cmd, work);
1799 
1800 	loop_handle_cmd(cmd);
1801 }
1802 
1803 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1804 		unsigned int hctx_idx, unsigned int numa_node)
1805 {
1806 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1807 
1808 	kthread_init_work(&cmd->work, loop_queue_work);
1809 	return 0;
1810 }
1811 
1812 static const struct blk_mq_ops loop_mq_ops = {
1813 	.queue_rq       = loop_queue_rq,
1814 	.init_request	= loop_init_request,
1815 	.complete	= lo_complete_rq,
1816 };
1817 
1818 static int loop_add(struct loop_device **l, int i)
1819 {
1820 	struct loop_device *lo;
1821 	struct gendisk *disk;
1822 	int err;
1823 
1824 	err = -ENOMEM;
1825 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1826 	if (!lo)
1827 		goto out;
1828 
1829 	lo->lo_state = Lo_unbound;
1830 
1831 	/* allocate id, if @id >= 0, we're requesting that specific id */
1832 	if (i >= 0) {
1833 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1834 		if (err == -ENOSPC)
1835 			err = -EEXIST;
1836 	} else {
1837 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1838 	}
1839 	if (err < 0)
1840 		goto out_free_dev;
1841 	i = err;
1842 
1843 	err = -ENOMEM;
1844 	lo->tag_set.ops = &loop_mq_ops;
1845 	lo->tag_set.nr_hw_queues = 1;
1846 	lo->tag_set.queue_depth = 128;
1847 	lo->tag_set.numa_node = NUMA_NO_NODE;
1848 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1849 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1850 	lo->tag_set.driver_data = lo;
1851 
1852 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1853 	if (err)
1854 		goto out_free_idr;
1855 
1856 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1857 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1858 		err = PTR_ERR(lo->lo_queue);
1859 		goto out_cleanup_tags;
1860 	}
1861 	lo->lo_queue->queuedata = lo;
1862 
1863 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1864 
1865 	/*
1866 	 * By default, we do buffer IO, so it doesn't make sense to enable
1867 	 * merge because the I/O submitted to backing file is handled page by
1868 	 * page. For directio mode, merge does help to dispatch bigger request
1869 	 * to underlayer disk. We will enable merge once directio is enabled.
1870 	 */
1871 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1872 
1873 	err = -ENOMEM;
1874 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1875 	if (!disk)
1876 		goto out_free_queue;
1877 
1878 	/*
1879 	 * Disable partition scanning by default. The in-kernel partition
1880 	 * scanning can be requested individually per-device during its
1881 	 * setup. Userspace can always add and remove partitions from all
1882 	 * devices. The needed partition minors are allocated from the
1883 	 * extended minor space, the main loop device numbers will continue
1884 	 * to match the loop minors, regardless of the number of partitions
1885 	 * used.
1886 	 *
1887 	 * If max_part is given, partition scanning is globally enabled for
1888 	 * all loop devices. The minors for the main loop devices will be
1889 	 * multiples of max_part.
1890 	 *
1891 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1892 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1893 	 * complicated, are too static, inflexible and may surprise
1894 	 * userspace tools. Parameters like this in general should be avoided.
1895 	 */
1896 	if (!part_shift)
1897 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1898 	disk->flags |= GENHD_FL_EXT_DEVT;
1899 	mutex_init(&lo->lo_ctl_mutex);
1900 	atomic_set(&lo->lo_refcnt, 0);
1901 	lo->lo_number		= i;
1902 	spin_lock_init(&lo->lo_lock);
1903 	disk->major		= LOOP_MAJOR;
1904 	disk->first_minor	= i << part_shift;
1905 	disk->fops		= &lo_fops;
1906 	disk->private_data	= lo;
1907 	disk->queue		= lo->lo_queue;
1908 	sprintf(disk->disk_name, "loop%d", i);
1909 	add_disk(disk);
1910 	*l = lo;
1911 	return lo->lo_number;
1912 
1913 out_free_queue:
1914 	blk_cleanup_queue(lo->lo_queue);
1915 out_cleanup_tags:
1916 	blk_mq_free_tag_set(&lo->tag_set);
1917 out_free_idr:
1918 	idr_remove(&loop_index_idr, i);
1919 out_free_dev:
1920 	kfree(lo);
1921 out:
1922 	return err;
1923 }
1924 
1925 static void loop_remove(struct loop_device *lo)
1926 {
1927 	del_gendisk(lo->lo_disk);
1928 	blk_cleanup_queue(lo->lo_queue);
1929 	blk_mq_free_tag_set(&lo->tag_set);
1930 	put_disk(lo->lo_disk);
1931 	kfree(lo);
1932 }
1933 
1934 static int find_free_cb(int id, void *ptr, void *data)
1935 {
1936 	struct loop_device *lo = ptr;
1937 	struct loop_device **l = data;
1938 
1939 	if (lo->lo_state == Lo_unbound) {
1940 		*l = lo;
1941 		return 1;
1942 	}
1943 	return 0;
1944 }
1945 
1946 static int loop_lookup(struct loop_device **l, int i)
1947 {
1948 	struct loop_device *lo;
1949 	int ret = -ENODEV;
1950 
1951 	if (i < 0) {
1952 		int err;
1953 
1954 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1955 		if (err == 1) {
1956 			*l = lo;
1957 			ret = lo->lo_number;
1958 		}
1959 		goto out;
1960 	}
1961 
1962 	/* lookup and return a specific i */
1963 	lo = idr_find(&loop_index_idr, i);
1964 	if (lo) {
1965 		*l = lo;
1966 		ret = lo->lo_number;
1967 	}
1968 out:
1969 	return ret;
1970 }
1971 
1972 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1973 {
1974 	struct loop_device *lo;
1975 	struct kobject *kobj;
1976 	int err;
1977 
1978 	mutex_lock(&loop_index_mutex);
1979 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1980 	if (err < 0)
1981 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1982 	if (err < 0)
1983 		kobj = NULL;
1984 	else
1985 		kobj = get_disk_and_module(lo->lo_disk);
1986 	mutex_unlock(&loop_index_mutex);
1987 
1988 	*part = 0;
1989 	return kobj;
1990 }
1991 
1992 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1993 			       unsigned long parm)
1994 {
1995 	struct loop_device *lo;
1996 	int ret = -ENOSYS;
1997 
1998 	mutex_lock(&loop_index_mutex);
1999 	switch (cmd) {
2000 	case LOOP_CTL_ADD:
2001 		ret = loop_lookup(&lo, parm);
2002 		if (ret >= 0) {
2003 			ret = -EEXIST;
2004 			break;
2005 		}
2006 		ret = loop_add(&lo, parm);
2007 		break;
2008 	case LOOP_CTL_REMOVE:
2009 		ret = loop_lookup(&lo, parm);
2010 		if (ret < 0)
2011 			break;
2012 		ret = mutex_lock_killable(&lo->lo_ctl_mutex);
2013 		if (ret)
2014 			break;
2015 		if (lo->lo_state != Lo_unbound) {
2016 			ret = -EBUSY;
2017 			mutex_unlock(&lo->lo_ctl_mutex);
2018 			break;
2019 		}
2020 		if (atomic_read(&lo->lo_refcnt) > 0) {
2021 			ret = -EBUSY;
2022 			mutex_unlock(&lo->lo_ctl_mutex);
2023 			break;
2024 		}
2025 		lo->lo_disk->private_data = NULL;
2026 		mutex_unlock(&lo->lo_ctl_mutex);
2027 		idr_remove(&loop_index_idr, lo->lo_number);
2028 		loop_remove(lo);
2029 		break;
2030 	case LOOP_CTL_GET_FREE:
2031 		ret = loop_lookup(&lo, -1);
2032 		if (ret >= 0)
2033 			break;
2034 		ret = loop_add(&lo, -1);
2035 	}
2036 	mutex_unlock(&loop_index_mutex);
2037 
2038 	return ret;
2039 }
2040 
2041 static const struct file_operations loop_ctl_fops = {
2042 	.open		= nonseekable_open,
2043 	.unlocked_ioctl	= loop_control_ioctl,
2044 	.compat_ioctl	= loop_control_ioctl,
2045 	.owner		= THIS_MODULE,
2046 	.llseek		= noop_llseek,
2047 };
2048 
2049 static struct miscdevice loop_misc = {
2050 	.minor		= LOOP_CTRL_MINOR,
2051 	.name		= "loop-control",
2052 	.fops		= &loop_ctl_fops,
2053 };
2054 
2055 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2056 MODULE_ALIAS("devname:loop-control");
2057 
2058 static int __init loop_init(void)
2059 {
2060 	int i, nr;
2061 	unsigned long range;
2062 	struct loop_device *lo;
2063 	int err;
2064 
2065 	part_shift = 0;
2066 	if (max_part > 0) {
2067 		part_shift = fls(max_part);
2068 
2069 		/*
2070 		 * Adjust max_part according to part_shift as it is exported
2071 		 * to user space so that user can decide correct minor number
2072 		 * if [s]he want to create more devices.
2073 		 *
2074 		 * Note that -1 is required because partition 0 is reserved
2075 		 * for the whole disk.
2076 		 */
2077 		max_part = (1UL << part_shift) - 1;
2078 	}
2079 
2080 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2081 		err = -EINVAL;
2082 		goto err_out;
2083 	}
2084 
2085 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2086 		err = -EINVAL;
2087 		goto err_out;
2088 	}
2089 
2090 	/*
2091 	 * If max_loop is specified, create that many devices upfront.
2092 	 * This also becomes a hard limit. If max_loop is not specified,
2093 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2094 	 * init time. Loop devices can be requested on-demand with the
2095 	 * /dev/loop-control interface, or be instantiated by accessing
2096 	 * a 'dead' device node.
2097 	 */
2098 	if (max_loop) {
2099 		nr = max_loop;
2100 		range = max_loop << part_shift;
2101 	} else {
2102 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2103 		range = 1UL << MINORBITS;
2104 	}
2105 
2106 	err = misc_register(&loop_misc);
2107 	if (err < 0)
2108 		goto err_out;
2109 
2110 
2111 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2112 		err = -EIO;
2113 		goto misc_out;
2114 	}
2115 
2116 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2117 				  THIS_MODULE, loop_probe, NULL, NULL);
2118 
2119 	/* pre-create number of devices given by config or max_loop */
2120 	mutex_lock(&loop_index_mutex);
2121 	for (i = 0; i < nr; i++)
2122 		loop_add(&lo, i);
2123 	mutex_unlock(&loop_index_mutex);
2124 
2125 	printk(KERN_INFO "loop: module loaded\n");
2126 	return 0;
2127 
2128 misc_out:
2129 	misc_deregister(&loop_misc);
2130 err_out:
2131 	return err;
2132 }
2133 
2134 static int loop_exit_cb(int id, void *ptr, void *data)
2135 {
2136 	struct loop_device *lo = ptr;
2137 
2138 	loop_remove(lo);
2139 	return 0;
2140 }
2141 
2142 static void __exit loop_exit(void)
2143 {
2144 	unsigned long range;
2145 
2146 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2147 
2148 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2149 	idr_destroy(&loop_index_idr);
2150 
2151 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2152 	unregister_blkdev(LOOP_MAJOR, "loop");
2153 
2154 	misc_deregister(&loop_misc);
2155 }
2156 
2157 module_init(loop_init);
2158 module_exit(loop_exit);
2159 
2160 #ifndef MODULE
2161 static int __init max_loop_setup(char *str)
2162 {
2163 	max_loop = simple_strtol(str, NULL, 0);
2164 	return 1;
2165 }
2166 
2167 __setup("max_loop=", max_loop_setup);
2168 #endif
2169