xref: /linux/drivers/block/loop.c (revision db4e83957f961f9053282409c5062c6baef857a4)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/miscdevice.h>
79 #include <asm/uaccess.h>
80 
81 static DEFINE_IDR(loop_index_idr);
82 static DEFINE_MUTEX(loop_index_mutex);
83 
84 static int max_part;
85 static int part_shift;
86 
87 /*
88  * Transfer functions
89  */
90 static int transfer_none(struct loop_device *lo, int cmd,
91 			 struct page *raw_page, unsigned raw_off,
92 			 struct page *loop_page, unsigned loop_off,
93 			 int size, sector_t real_block)
94 {
95 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
97 
98 	if (cmd == READ)
99 		memcpy(loop_buf, raw_buf, size);
100 	else
101 		memcpy(raw_buf, loop_buf, size);
102 
103 	kunmap_atomic(loop_buf, KM_USER1);
104 	kunmap_atomic(raw_buf, KM_USER0);
105 	cond_resched();
106 	return 0;
107 }
108 
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 			struct page *raw_page, unsigned raw_off,
111 			struct page *loop_page, unsigned loop_off,
112 			int size, sector_t real_block)
113 {
114 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 	char *in, *out, *key;
117 	int i, keysize;
118 
119 	if (cmd == READ) {
120 		in = raw_buf;
121 		out = loop_buf;
122 	} else {
123 		in = loop_buf;
124 		out = raw_buf;
125 	}
126 
127 	key = lo->lo_encrypt_key;
128 	keysize = lo->lo_encrypt_key_size;
129 	for (i = 0; i < size; i++)
130 		*out++ = *in++ ^ key[(i & 511) % keysize];
131 
132 	kunmap_atomic(loop_buf, KM_USER1);
133 	kunmap_atomic(raw_buf, KM_USER0);
134 	cond_resched();
135 	return 0;
136 }
137 
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
139 {
140 	if (unlikely(info->lo_encrypt_key_size <= 0))
141 		return -EINVAL;
142 	return 0;
143 }
144 
145 static struct loop_func_table none_funcs = {
146 	.number = LO_CRYPT_NONE,
147 	.transfer = transfer_none,
148 };
149 
150 static struct loop_func_table xor_funcs = {
151 	.number = LO_CRYPT_XOR,
152 	.transfer = transfer_xor,
153 	.init = xor_init
154 };
155 
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 	&none_funcs,
159 	&xor_funcs
160 };
161 
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 	loff_t size, offset, loopsize;
165 
166 	/* Compute loopsize in bytes */
167 	size = i_size_read(file->f_mapping->host);
168 	offset = lo->lo_offset;
169 	loopsize = size - offset;
170 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 		loopsize = lo->lo_sizelimit;
172 
173 	/*
174 	 * Unfortunately, if we want to do I/O on the device,
175 	 * the number of 512-byte sectors has to fit into a sector_t.
176 	 */
177 	return loopsize >> 9;
178 }
179 
180 static int
181 figure_loop_size(struct loop_device *lo)
182 {
183 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 	sector_t x = (sector_t)size;
185 
186 	if (unlikely((loff_t)x != size))
187 		return -EFBIG;
188 
189 	set_capacity(lo->lo_disk, x);
190 	return 0;
191 }
192 
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 	       struct page *rpage, unsigned roffs,
196 	       struct page *lpage, unsigned loffs,
197 	       int size, sector_t rblock)
198 {
199 	if (unlikely(!lo->transfer))
200 		return 0;
201 
202 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
203 }
204 
205 /**
206  * do_lo_send_aops - helper for writing data to a loop device
207  *
208  * This is the fast version for backing filesystems which implement the address
209  * space operations write_begin and write_end.
210  */
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 		loff_t pos, struct page *unused)
213 {
214 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 	struct address_space *mapping = file->f_mapping;
216 	pgoff_t index;
217 	unsigned offset, bv_offs;
218 	int len, ret;
219 
220 	mutex_lock(&mapping->host->i_mutex);
221 	index = pos >> PAGE_CACHE_SHIFT;
222 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 	bv_offs = bvec->bv_offset;
224 	len = bvec->bv_len;
225 	while (len > 0) {
226 		sector_t IV;
227 		unsigned size, copied;
228 		int transfer_result;
229 		struct page *page;
230 		void *fsdata;
231 
232 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 		size = PAGE_CACHE_SIZE - offset;
234 		if (size > len)
235 			size = len;
236 
237 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 							&page, &fsdata);
239 		if (ret)
240 			goto fail;
241 
242 		file_update_time(file);
243 
244 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
245 				bvec->bv_page, bv_offs, size, IV);
246 		copied = size;
247 		if (unlikely(transfer_result))
248 			copied = 0;
249 
250 		ret = pagecache_write_end(file, mapping, pos, size, copied,
251 							page, fsdata);
252 		if (ret < 0 || ret != copied)
253 			goto fail;
254 
255 		if (unlikely(transfer_result))
256 			goto fail;
257 
258 		bv_offs += copied;
259 		len -= copied;
260 		offset = 0;
261 		index++;
262 		pos += copied;
263 	}
264 	ret = 0;
265 out:
266 	mutex_unlock(&mapping->host->i_mutex);
267 	return ret;
268 fail:
269 	ret = -1;
270 	goto out;
271 }
272 
273 /**
274  * __do_lo_send_write - helper for writing data to a loop device
275  *
276  * This helper just factors out common code between do_lo_send_direct_write()
277  * and do_lo_send_write().
278  */
279 static int __do_lo_send_write(struct file *file,
280 		u8 *buf, const int len, loff_t pos)
281 {
282 	ssize_t bw;
283 	mm_segment_t old_fs = get_fs();
284 
285 	set_fs(get_ds());
286 	bw = file->f_op->write(file, buf, len, &pos);
287 	set_fs(old_fs);
288 	if (likely(bw == len))
289 		return 0;
290 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
291 			(unsigned long long)pos, len);
292 	if (bw >= 0)
293 		bw = -EIO;
294 	return bw;
295 }
296 
297 /**
298  * do_lo_send_direct_write - helper for writing data to a loop device
299  *
300  * This is the fast, non-transforming version for backing filesystems which do
301  * not implement the address space operations write_begin and write_end.
302  * It uses the write file operation which should be present on all writeable
303  * filesystems.
304  */
305 static int do_lo_send_direct_write(struct loop_device *lo,
306 		struct bio_vec *bvec, loff_t pos, struct page *page)
307 {
308 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
309 			kmap(bvec->bv_page) + bvec->bv_offset,
310 			bvec->bv_len, pos);
311 	kunmap(bvec->bv_page);
312 	cond_resched();
313 	return bw;
314 }
315 
316 /**
317  * do_lo_send_write - helper for writing data to a loop device
318  *
319  * This is the slow, transforming version for filesystems which do not
320  * implement the address space operations write_begin and write_end.  It
321  * uses the write file operation which should be present on all writeable
322  * filesystems.
323  *
324  * Using fops->write is slower than using aops->{prepare,commit}_write in the
325  * transforming case because we need to double buffer the data as we cannot do
326  * the transformations in place as we do not have direct access to the
327  * destination pages of the backing file.
328  */
329 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
330 		loff_t pos, struct page *page)
331 {
332 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
333 			bvec->bv_offset, bvec->bv_len, pos >> 9);
334 	if (likely(!ret))
335 		return __do_lo_send_write(lo->lo_backing_file,
336 				page_address(page), bvec->bv_len,
337 				pos);
338 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
339 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
340 	if (ret > 0)
341 		ret = -EIO;
342 	return ret;
343 }
344 
345 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
346 {
347 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
348 			struct page *page);
349 	struct bio_vec *bvec;
350 	struct page *page = NULL;
351 	int i, ret = 0;
352 
353 	do_lo_send = do_lo_send_aops;
354 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
355 		do_lo_send = do_lo_send_direct_write;
356 		if (lo->transfer != transfer_none) {
357 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
358 			if (unlikely(!page))
359 				goto fail;
360 			kmap(page);
361 			do_lo_send = do_lo_send_write;
362 		}
363 	}
364 	bio_for_each_segment(bvec, bio, i) {
365 		ret = do_lo_send(lo, bvec, pos, page);
366 		if (ret < 0)
367 			break;
368 		pos += bvec->bv_len;
369 	}
370 	if (page) {
371 		kunmap(page);
372 		__free_page(page);
373 	}
374 out:
375 	return ret;
376 fail:
377 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
378 	ret = -ENOMEM;
379 	goto out;
380 }
381 
382 struct lo_read_data {
383 	struct loop_device *lo;
384 	struct page *page;
385 	unsigned offset;
386 	int bsize;
387 };
388 
389 static int
390 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
391 		struct splice_desc *sd)
392 {
393 	struct lo_read_data *p = sd->u.data;
394 	struct loop_device *lo = p->lo;
395 	struct page *page = buf->page;
396 	sector_t IV;
397 	int size;
398 
399 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
400 							(buf->offset >> 9);
401 	size = sd->len;
402 	if (size > p->bsize)
403 		size = p->bsize;
404 
405 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
406 		printk(KERN_ERR "loop: transfer error block %ld\n",
407 		       page->index);
408 		size = -EINVAL;
409 	}
410 
411 	flush_dcache_page(p->page);
412 
413 	if (size > 0)
414 		p->offset += size;
415 
416 	return size;
417 }
418 
419 static int
420 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
421 {
422 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
423 }
424 
425 static int
426 do_lo_receive(struct loop_device *lo,
427 	      struct bio_vec *bvec, int bsize, loff_t pos)
428 {
429 	struct lo_read_data cookie;
430 	struct splice_desc sd;
431 	struct file *file;
432 	long retval;
433 
434 	cookie.lo = lo;
435 	cookie.page = bvec->bv_page;
436 	cookie.offset = bvec->bv_offset;
437 	cookie.bsize = bsize;
438 
439 	sd.len = 0;
440 	sd.total_len = bvec->bv_len;
441 	sd.flags = 0;
442 	sd.pos = pos;
443 	sd.u.data = &cookie;
444 
445 	file = lo->lo_backing_file;
446 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
447 
448 	if (retval < 0)
449 		return retval;
450 
451 	return 0;
452 }
453 
454 static int
455 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
456 {
457 	struct bio_vec *bvec;
458 	int i, ret = 0;
459 
460 	bio_for_each_segment(bvec, bio, i) {
461 		ret = do_lo_receive(lo, bvec, bsize, pos);
462 		if (ret < 0)
463 			break;
464 		pos += bvec->bv_len;
465 	}
466 	return ret;
467 }
468 
469 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
470 {
471 	loff_t pos;
472 	int ret;
473 
474 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
475 
476 	if (bio_rw(bio) == WRITE) {
477 		struct file *file = lo->lo_backing_file;
478 
479 		if (bio->bi_rw & REQ_FLUSH) {
480 			ret = vfs_fsync(file, 0);
481 			if (unlikely(ret && ret != -EINVAL)) {
482 				ret = -EIO;
483 				goto out;
484 			}
485 		}
486 
487 		ret = lo_send(lo, bio, pos);
488 
489 		if ((bio->bi_rw & REQ_FUA) && !ret) {
490 			ret = vfs_fsync(file, 0);
491 			if (unlikely(ret && ret != -EINVAL))
492 				ret = -EIO;
493 		}
494 	} else
495 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
496 
497 out:
498 	return ret;
499 }
500 
501 /*
502  * Add bio to back of pending list
503  */
504 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
505 {
506 	bio_list_add(&lo->lo_bio_list, bio);
507 }
508 
509 /*
510  * Grab first pending buffer
511  */
512 static struct bio *loop_get_bio(struct loop_device *lo)
513 {
514 	return bio_list_pop(&lo->lo_bio_list);
515 }
516 
517 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
518 {
519 	struct loop_device *lo = q->queuedata;
520 	int rw = bio_rw(old_bio);
521 
522 	if (rw == READA)
523 		rw = READ;
524 
525 	BUG_ON(!lo || (rw != READ && rw != WRITE));
526 
527 	spin_lock_irq(&lo->lo_lock);
528 	if (lo->lo_state != Lo_bound)
529 		goto out;
530 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
531 		goto out;
532 	loop_add_bio(lo, old_bio);
533 	wake_up(&lo->lo_event);
534 	spin_unlock_irq(&lo->lo_lock);
535 	return 0;
536 
537 out:
538 	spin_unlock_irq(&lo->lo_lock);
539 	bio_io_error(old_bio);
540 	return 0;
541 }
542 
543 struct switch_request {
544 	struct file *file;
545 	struct completion wait;
546 };
547 
548 static void do_loop_switch(struct loop_device *, struct switch_request *);
549 
550 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
551 {
552 	if (unlikely(!bio->bi_bdev)) {
553 		do_loop_switch(lo, bio->bi_private);
554 		bio_put(bio);
555 	} else {
556 		int ret = do_bio_filebacked(lo, bio);
557 		bio_endio(bio, ret);
558 	}
559 }
560 
561 /*
562  * worker thread that handles reads/writes to file backed loop devices,
563  * to avoid blocking in our make_request_fn. it also does loop decrypting
564  * on reads for block backed loop, as that is too heavy to do from
565  * b_end_io context where irqs may be disabled.
566  *
567  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
568  * calling kthread_stop().  Therefore once kthread_should_stop() is
569  * true, make_request will not place any more requests.  Therefore
570  * once kthread_should_stop() is true and lo_bio is NULL, we are
571  * done with the loop.
572  */
573 static int loop_thread(void *data)
574 {
575 	struct loop_device *lo = data;
576 	struct bio *bio;
577 
578 	set_user_nice(current, -20);
579 
580 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
581 
582 		wait_event_interruptible(lo->lo_event,
583 				!bio_list_empty(&lo->lo_bio_list) ||
584 				kthread_should_stop());
585 
586 		if (bio_list_empty(&lo->lo_bio_list))
587 			continue;
588 		spin_lock_irq(&lo->lo_lock);
589 		bio = loop_get_bio(lo);
590 		spin_unlock_irq(&lo->lo_lock);
591 
592 		BUG_ON(!bio);
593 		loop_handle_bio(lo, bio);
594 	}
595 
596 	return 0;
597 }
598 
599 /*
600  * loop_switch performs the hard work of switching a backing store.
601  * First it needs to flush existing IO, it does this by sending a magic
602  * BIO down the pipe. The completion of this BIO does the actual switch.
603  */
604 static int loop_switch(struct loop_device *lo, struct file *file)
605 {
606 	struct switch_request w;
607 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
608 	if (!bio)
609 		return -ENOMEM;
610 	init_completion(&w.wait);
611 	w.file = file;
612 	bio->bi_private = &w;
613 	bio->bi_bdev = NULL;
614 	loop_make_request(lo->lo_queue, bio);
615 	wait_for_completion(&w.wait);
616 	return 0;
617 }
618 
619 /*
620  * Helper to flush the IOs in loop, but keeping loop thread running
621  */
622 static int loop_flush(struct loop_device *lo)
623 {
624 	/* loop not yet configured, no running thread, nothing to flush */
625 	if (!lo->lo_thread)
626 		return 0;
627 
628 	return loop_switch(lo, NULL);
629 }
630 
631 /*
632  * Do the actual switch; called from the BIO completion routine
633  */
634 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
635 {
636 	struct file *file = p->file;
637 	struct file *old_file = lo->lo_backing_file;
638 	struct address_space *mapping;
639 
640 	/* if no new file, only flush of queued bios requested */
641 	if (!file)
642 		goto out;
643 
644 	mapping = file->f_mapping;
645 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
646 	lo->lo_backing_file = file;
647 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
648 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
649 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
650 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
651 out:
652 	complete(&p->wait);
653 }
654 
655 
656 /*
657  * loop_change_fd switched the backing store of a loopback device to
658  * a new file. This is useful for operating system installers to free up
659  * the original file and in High Availability environments to switch to
660  * an alternative location for the content in case of server meltdown.
661  * This can only work if the loop device is used read-only, and if the
662  * new backing store is the same size and type as the old backing store.
663  */
664 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
665 			  unsigned int arg)
666 {
667 	struct file	*file, *old_file;
668 	struct inode	*inode;
669 	int		error;
670 
671 	error = -ENXIO;
672 	if (lo->lo_state != Lo_bound)
673 		goto out;
674 
675 	/* the loop device has to be read-only */
676 	error = -EINVAL;
677 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
678 		goto out;
679 
680 	error = -EBADF;
681 	file = fget(arg);
682 	if (!file)
683 		goto out;
684 
685 	inode = file->f_mapping->host;
686 	old_file = lo->lo_backing_file;
687 
688 	error = -EINVAL;
689 
690 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
691 		goto out_putf;
692 
693 	/* size of the new backing store needs to be the same */
694 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
695 		goto out_putf;
696 
697 	/* and ... switch */
698 	error = loop_switch(lo, file);
699 	if (error)
700 		goto out_putf;
701 
702 	fput(old_file);
703 	if (max_part > 0)
704 		ioctl_by_bdev(bdev, BLKRRPART, 0);
705 	return 0;
706 
707  out_putf:
708 	fput(file);
709  out:
710 	return error;
711 }
712 
713 static inline int is_loop_device(struct file *file)
714 {
715 	struct inode *i = file->f_mapping->host;
716 
717 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
718 }
719 
720 /* loop sysfs attributes */
721 
722 static ssize_t loop_attr_show(struct device *dev, char *page,
723 			      ssize_t (*callback)(struct loop_device *, char *))
724 {
725 	struct gendisk *disk = dev_to_disk(dev);
726 	struct loop_device *lo = disk->private_data;
727 
728 	return callback(lo, page);
729 }
730 
731 #define LOOP_ATTR_RO(_name)						\
732 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
733 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
734 				struct device_attribute *attr, char *b)	\
735 {									\
736 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
737 }									\
738 static struct device_attribute loop_attr_##_name =			\
739 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
740 
741 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
742 {
743 	ssize_t ret;
744 	char *p = NULL;
745 
746 	spin_lock_irq(&lo->lo_lock);
747 	if (lo->lo_backing_file)
748 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
749 	spin_unlock_irq(&lo->lo_lock);
750 
751 	if (IS_ERR_OR_NULL(p))
752 		ret = PTR_ERR(p);
753 	else {
754 		ret = strlen(p);
755 		memmove(buf, p, ret);
756 		buf[ret++] = '\n';
757 		buf[ret] = 0;
758 	}
759 
760 	return ret;
761 }
762 
763 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
764 {
765 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
766 }
767 
768 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
769 {
770 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
771 }
772 
773 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
774 {
775 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
776 
777 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
778 }
779 
780 LOOP_ATTR_RO(backing_file);
781 LOOP_ATTR_RO(offset);
782 LOOP_ATTR_RO(sizelimit);
783 LOOP_ATTR_RO(autoclear);
784 
785 static struct attribute *loop_attrs[] = {
786 	&loop_attr_backing_file.attr,
787 	&loop_attr_offset.attr,
788 	&loop_attr_sizelimit.attr,
789 	&loop_attr_autoclear.attr,
790 	NULL,
791 };
792 
793 static struct attribute_group loop_attribute_group = {
794 	.name = "loop",
795 	.attrs= loop_attrs,
796 };
797 
798 static int loop_sysfs_init(struct loop_device *lo)
799 {
800 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
801 				  &loop_attribute_group);
802 }
803 
804 static void loop_sysfs_exit(struct loop_device *lo)
805 {
806 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
807 			   &loop_attribute_group);
808 }
809 
810 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
811 		       struct block_device *bdev, unsigned int arg)
812 {
813 	struct file	*file, *f;
814 	struct inode	*inode;
815 	struct address_space *mapping;
816 	unsigned lo_blocksize;
817 	int		lo_flags = 0;
818 	int		error;
819 	loff_t		size;
820 
821 	/* This is safe, since we have a reference from open(). */
822 	__module_get(THIS_MODULE);
823 
824 	error = -EBADF;
825 	file = fget(arg);
826 	if (!file)
827 		goto out;
828 
829 	error = -EBUSY;
830 	if (lo->lo_state != Lo_unbound)
831 		goto out_putf;
832 
833 	/* Avoid recursion */
834 	f = file;
835 	while (is_loop_device(f)) {
836 		struct loop_device *l;
837 
838 		if (f->f_mapping->host->i_bdev == bdev)
839 			goto out_putf;
840 
841 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
842 		if (l->lo_state == Lo_unbound) {
843 			error = -EINVAL;
844 			goto out_putf;
845 		}
846 		f = l->lo_backing_file;
847 	}
848 
849 	mapping = file->f_mapping;
850 	inode = mapping->host;
851 
852 	if (!(file->f_mode & FMODE_WRITE))
853 		lo_flags |= LO_FLAGS_READ_ONLY;
854 
855 	error = -EINVAL;
856 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
857 		const struct address_space_operations *aops = mapping->a_ops;
858 
859 		if (aops->write_begin)
860 			lo_flags |= LO_FLAGS_USE_AOPS;
861 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
862 			lo_flags |= LO_FLAGS_READ_ONLY;
863 
864 		lo_blocksize = S_ISBLK(inode->i_mode) ?
865 			inode->i_bdev->bd_block_size : PAGE_SIZE;
866 
867 		error = 0;
868 	} else {
869 		goto out_putf;
870 	}
871 
872 	size = get_loop_size(lo, file);
873 
874 	if ((loff_t)(sector_t)size != size) {
875 		error = -EFBIG;
876 		goto out_putf;
877 	}
878 
879 	if (!(mode & FMODE_WRITE))
880 		lo_flags |= LO_FLAGS_READ_ONLY;
881 
882 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
883 
884 	lo->lo_blocksize = lo_blocksize;
885 	lo->lo_device = bdev;
886 	lo->lo_flags = lo_flags;
887 	lo->lo_backing_file = file;
888 	lo->transfer = transfer_none;
889 	lo->ioctl = NULL;
890 	lo->lo_sizelimit = 0;
891 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
892 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
893 
894 	bio_list_init(&lo->lo_bio_list);
895 
896 	/*
897 	 * set queue make_request_fn, and add limits based on lower level
898 	 * device
899 	 */
900 	blk_queue_make_request(lo->lo_queue, loop_make_request);
901 	lo->lo_queue->queuedata = lo;
902 
903 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
904 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
905 
906 	set_capacity(lo->lo_disk, size);
907 	bd_set_size(bdev, size << 9);
908 	loop_sysfs_init(lo);
909 	/* let user-space know about the new size */
910 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
911 
912 	set_blocksize(bdev, lo_blocksize);
913 
914 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
915 						lo->lo_number);
916 	if (IS_ERR(lo->lo_thread)) {
917 		error = PTR_ERR(lo->lo_thread);
918 		goto out_clr;
919 	}
920 	lo->lo_state = Lo_bound;
921 	wake_up_process(lo->lo_thread);
922 	if (max_part > 0)
923 		ioctl_by_bdev(bdev, BLKRRPART, 0);
924 	return 0;
925 
926 out_clr:
927 	loop_sysfs_exit(lo);
928 	lo->lo_thread = NULL;
929 	lo->lo_device = NULL;
930 	lo->lo_backing_file = NULL;
931 	lo->lo_flags = 0;
932 	set_capacity(lo->lo_disk, 0);
933 	invalidate_bdev(bdev);
934 	bd_set_size(bdev, 0);
935 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
936 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
937 	lo->lo_state = Lo_unbound;
938  out_putf:
939 	fput(file);
940  out:
941 	/* This is safe: open() is still holding a reference. */
942 	module_put(THIS_MODULE);
943 	return error;
944 }
945 
946 static int
947 loop_release_xfer(struct loop_device *lo)
948 {
949 	int err = 0;
950 	struct loop_func_table *xfer = lo->lo_encryption;
951 
952 	if (xfer) {
953 		if (xfer->release)
954 			err = xfer->release(lo);
955 		lo->transfer = NULL;
956 		lo->lo_encryption = NULL;
957 		module_put(xfer->owner);
958 	}
959 	return err;
960 }
961 
962 static int
963 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
964 	       const struct loop_info64 *i)
965 {
966 	int err = 0;
967 
968 	if (xfer) {
969 		struct module *owner = xfer->owner;
970 
971 		if (!try_module_get(owner))
972 			return -EINVAL;
973 		if (xfer->init)
974 			err = xfer->init(lo, i);
975 		if (err)
976 			module_put(owner);
977 		else
978 			lo->lo_encryption = xfer;
979 	}
980 	return err;
981 }
982 
983 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
984 {
985 	struct file *filp = lo->lo_backing_file;
986 	gfp_t gfp = lo->old_gfp_mask;
987 
988 	if (lo->lo_state != Lo_bound)
989 		return -ENXIO;
990 
991 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
992 		return -EBUSY;
993 
994 	if (filp == NULL)
995 		return -EINVAL;
996 
997 	spin_lock_irq(&lo->lo_lock);
998 	lo->lo_state = Lo_rundown;
999 	spin_unlock_irq(&lo->lo_lock);
1000 
1001 	kthread_stop(lo->lo_thread);
1002 
1003 	spin_lock_irq(&lo->lo_lock);
1004 	lo->lo_backing_file = NULL;
1005 	spin_unlock_irq(&lo->lo_lock);
1006 
1007 	loop_release_xfer(lo);
1008 	lo->transfer = NULL;
1009 	lo->ioctl = NULL;
1010 	lo->lo_device = NULL;
1011 	lo->lo_encryption = NULL;
1012 	lo->lo_offset = 0;
1013 	lo->lo_sizelimit = 0;
1014 	lo->lo_encrypt_key_size = 0;
1015 	lo->lo_flags = 0;
1016 	lo->lo_thread = NULL;
1017 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1018 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1019 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1020 	if (bdev)
1021 		invalidate_bdev(bdev);
1022 	set_capacity(lo->lo_disk, 0);
1023 	loop_sysfs_exit(lo);
1024 	if (bdev) {
1025 		bd_set_size(bdev, 0);
1026 		/* let user-space know about this change */
1027 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1028 	}
1029 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1030 	lo->lo_state = Lo_unbound;
1031 	/* This is safe: open() is still holding a reference. */
1032 	module_put(THIS_MODULE);
1033 	if (max_part > 0 && bdev)
1034 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1035 	mutex_unlock(&lo->lo_ctl_mutex);
1036 	/*
1037 	 * Need not hold lo_ctl_mutex to fput backing file.
1038 	 * Calling fput holding lo_ctl_mutex triggers a circular
1039 	 * lock dependency possibility warning as fput can take
1040 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1041 	 */
1042 	fput(filp);
1043 	return 0;
1044 }
1045 
1046 static int
1047 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1048 {
1049 	int err;
1050 	struct loop_func_table *xfer;
1051 	uid_t uid = current_uid();
1052 
1053 	if (lo->lo_encrypt_key_size &&
1054 	    lo->lo_key_owner != uid &&
1055 	    !capable(CAP_SYS_ADMIN))
1056 		return -EPERM;
1057 	if (lo->lo_state != Lo_bound)
1058 		return -ENXIO;
1059 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1060 		return -EINVAL;
1061 
1062 	err = loop_release_xfer(lo);
1063 	if (err)
1064 		return err;
1065 
1066 	if (info->lo_encrypt_type) {
1067 		unsigned int type = info->lo_encrypt_type;
1068 
1069 		if (type >= MAX_LO_CRYPT)
1070 			return -EINVAL;
1071 		xfer = xfer_funcs[type];
1072 		if (xfer == NULL)
1073 			return -EINVAL;
1074 	} else
1075 		xfer = NULL;
1076 
1077 	err = loop_init_xfer(lo, xfer, info);
1078 	if (err)
1079 		return err;
1080 
1081 	if (lo->lo_offset != info->lo_offset ||
1082 	    lo->lo_sizelimit != info->lo_sizelimit) {
1083 		lo->lo_offset = info->lo_offset;
1084 		lo->lo_sizelimit = info->lo_sizelimit;
1085 		if (figure_loop_size(lo))
1086 			return -EFBIG;
1087 	}
1088 
1089 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1090 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1091 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1092 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1093 
1094 	if (!xfer)
1095 		xfer = &none_funcs;
1096 	lo->transfer = xfer->transfer;
1097 	lo->ioctl = xfer->ioctl;
1098 
1099 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1100 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1101 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1102 
1103 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1104 	lo->lo_init[0] = info->lo_init[0];
1105 	lo->lo_init[1] = info->lo_init[1];
1106 	if (info->lo_encrypt_key_size) {
1107 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1108 		       info->lo_encrypt_key_size);
1109 		lo->lo_key_owner = uid;
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 static int
1116 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1117 {
1118 	struct file *file = lo->lo_backing_file;
1119 	struct kstat stat;
1120 	int error;
1121 
1122 	if (lo->lo_state != Lo_bound)
1123 		return -ENXIO;
1124 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1125 	if (error)
1126 		return error;
1127 	memset(info, 0, sizeof(*info));
1128 	info->lo_number = lo->lo_number;
1129 	info->lo_device = huge_encode_dev(stat.dev);
1130 	info->lo_inode = stat.ino;
1131 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1132 	info->lo_offset = lo->lo_offset;
1133 	info->lo_sizelimit = lo->lo_sizelimit;
1134 	info->lo_flags = lo->lo_flags;
1135 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1136 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1137 	info->lo_encrypt_type =
1138 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1139 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1140 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1141 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1142 		       lo->lo_encrypt_key_size);
1143 	}
1144 	return 0;
1145 }
1146 
1147 static void
1148 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1149 {
1150 	memset(info64, 0, sizeof(*info64));
1151 	info64->lo_number = info->lo_number;
1152 	info64->lo_device = info->lo_device;
1153 	info64->lo_inode = info->lo_inode;
1154 	info64->lo_rdevice = info->lo_rdevice;
1155 	info64->lo_offset = info->lo_offset;
1156 	info64->lo_sizelimit = 0;
1157 	info64->lo_encrypt_type = info->lo_encrypt_type;
1158 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1159 	info64->lo_flags = info->lo_flags;
1160 	info64->lo_init[0] = info->lo_init[0];
1161 	info64->lo_init[1] = info->lo_init[1];
1162 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1163 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1164 	else
1165 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1166 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1167 }
1168 
1169 static int
1170 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1171 {
1172 	memset(info, 0, sizeof(*info));
1173 	info->lo_number = info64->lo_number;
1174 	info->lo_device = info64->lo_device;
1175 	info->lo_inode = info64->lo_inode;
1176 	info->lo_rdevice = info64->lo_rdevice;
1177 	info->lo_offset = info64->lo_offset;
1178 	info->lo_encrypt_type = info64->lo_encrypt_type;
1179 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1180 	info->lo_flags = info64->lo_flags;
1181 	info->lo_init[0] = info64->lo_init[0];
1182 	info->lo_init[1] = info64->lo_init[1];
1183 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1184 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1185 	else
1186 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1187 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1188 
1189 	/* error in case values were truncated */
1190 	if (info->lo_device != info64->lo_device ||
1191 	    info->lo_rdevice != info64->lo_rdevice ||
1192 	    info->lo_inode != info64->lo_inode ||
1193 	    info->lo_offset != info64->lo_offset)
1194 		return -EOVERFLOW;
1195 
1196 	return 0;
1197 }
1198 
1199 static int
1200 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1201 {
1202 	struct loop_info info;
1203 	struct loop_info64 info64;
1204 
1205 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1206 		return -EFAULT;
1207 	loop_info64_from_old(&info, &info64);
1208 	return loop_set_status(lo, &info64);
1209 }
1210 
1211 static int
1212 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1213 {
1214 	struct loop_info64 info64;
1215 
1216 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1217 		return -EFAULT;
1218 	return loop_set_status(lo, &info64);
1219 }
1220 
1221 static int
1222 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1223 	struct loop_info info;
1224 	struct loop_info64 info64;
1225 	int err = 0;
1226 
1227 	if (!arg)
1228 		err = -EINVAL;
1229 	if (!err)
1230 		err = loop_get_status(lo, &info64);
1231 	if (!err)
1232 		err = loop_info64_to_old(&info64, &info);
1233 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1234 		err = -EFAULT;
1235 
1236 	return err;
1237 }
1238 
1239 static int
1240 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1241 	struct loop_info64 info64;
1242 	int err = 0;
1243 
1244 	if (!arg)
1245 		err = -EINVAL;
1246 	if (!err)
1247 		err = loop_get_status(lo, &info64);
1248 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1249 		err = -EFAULT;
1250 
1251 	return err;
1252 }
1253 
1254 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1255 {
1256 	int err;
1257 	sector_t sec;
1258 	loff_t sz;
1259 
1260 	err = -ENXIO;
1261 	if (unlikely(lo->lo_state != Lo_bound))
1262 		goto out;
1263 	err = figure_loop_size(lo);
1264 	if (unlikely(err))
1265 		goto out;
1266 	sec = get_capacity(lo->lo_disk);
1267 	/* the width of sector_t may be narrow for bit-shift */
1268 	sz = sec;
1269 	sz <<= 9;
1270 	mutex_lock(&bdev->bd_mutex);
1271 	bd_set_size(bdev, sz);
1272 	/* let user-space know about the new size */
1273 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1274 	mutex_unlock(&bdev->bd_mutex);
1275 
1276  out:
1277 	return err;
1278 }
1279 
1280 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1281 	unsigned int cmd, unsigned long arg)
1282 {
1283 	struct loop_device *lo = bdev->bd_disk->private_data;
1284 	int err;
1285 
1286 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1287 	switch (cmd) {
1288 	case LOOP_SET_FD:
1289 		err = loop_set_fd(lo, mode, bdev, arg);
1290 		break;
1291 	case LOOP_CHANGE_FD:
1292 		err = loop_change_fd(lo, bdev, arg);
1293 		break;
1294 	case LOOP_CLR_FD:
1295 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1296 		err = loop_clr_fd(lo, bdev);
1297 		if (!err)
1298 			goto out_unlocked;
1299 		break;
1300 	case LOOP_SET_STATUS:
1301 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1302 		break;
1303 	case LOOP_GET_STATUS:
1304 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1305 		break;
1306 	case LOOP_SET_STATUS64:
1307 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1308 		break;
1309 	case LOOP_GET_STATUS64:
1310 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1311 		break;
1312 	case LOOP_SET_CAPACITY:
1313 		err = -EPERM;
1314 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1315 			err = loop_set_capacity(lo, bdev);
1316 		break;
1317 	default:
1318 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1319 	}
1320 	mutex_unlock(&lo->lo_ctl_mutex);
1321 
1322 out_unlocked:
1323 	return err;
1324 }
1325 
1326 #ifdef CONFIG_COMPAT
1327 struct compat_loop_info {
1328 	compat_int_t	lo_number;      /* ioctl r/o */
1329 	compat_dev_t	lo_device;      /* ioctl r/o */
1330 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1331 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1332 	compat_int_t	lo_offset;
1333 	compat_int_t	lo_encrypt_type;
1334 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1335 	compat_int_t	lo_flags;       /* ioctl r/o */
1336 	char		lo_name[LO_NAME_SIZE];
1337 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1338 	compat_ulong_t	lo_init[2];
1339 	char		reserved[4];
1340 };
1341 
1342 /*
1343  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1344  * - noinlined to reduce stack space usage in main part of driver
1345  */
1346 static noinline int
1347 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1348 			struct loop_info64 *info64)
1349 {
1350 	struct compat_loop_info info;
1351 
1352 	if (copy_from_user(&info, arg, sizeof(info)))
1353 		return -EFAULT;
1354 
1355 	memset(info64, 0, sizeof(*info64));
1356 	info64->lo_number = info.lo_number;
1357 	info64->lo_device = info.lo_device;
1358 	info64->lo_inode = info.lo_inode;
1359 	info64->lo_rdevice = info.lo_rdevice;
1360 	info64->lo_offset = info.lo_offset;
1361 	info64->lo_sizelimit = 0;
1362 	info64->lo_encrypt_type = info.lo_encrypt_type;
1363 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1364 	info64->lo_flags = info.lo_flags;
1365 	info64->lo_init[0] = info.lo_init[0];
1366 	info64->lo_init[1] = info.lo_init[1];
1367 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1368 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1369 	else
1370 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1371 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1377  * - noinlined to reduce stack space usage in main part of driver
1378  */
1379 static noinline int
1380 loop_info64_to_compat(const struct loop_info64 *info64,
1381 		      struct compat_loop_info __user *arg)
1382 {
1383 	struct compat_loop_info info;
1384 
1385 	memset(&info, 0, sizeof(info));
1386 	info.lo_number = info64->lo_number;
1387 	info.lo_device = info64->lo_device;
1388 	info.lo_inode = info64->lo_inode;
1389 	info.lo_rdevice = info64->lo_rdevice;
1390 	info.lo_offset = info64->lo_offset;
1391 	info.lo_encrypt_type = info64->lo_encrypt_type;
1392 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1393 	info.lo_flags = info64->lo_flags;
1394 	info.lo_init[0] = info64->lo_init[0];
1395 	info.lo_init[1] = info64->lo_init[1];
1396 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1397 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1398 	else
1399 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1400 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1401 
1402 	/* error in case values were truncated */
1403 	if (info.lo_device != info64->lo_device ||
1404 	    info.lo_rdevice != info64->lo_rdevice ||
1405 	    info.lo_inode != info64->lo_inode ||
1406 	    info.lo_offset != info64->lo_offset ||
1407 	    info.lo_init[0] != info64->lo_init[0] ||
1408 	    info.lo_init[1] != info64->lo_init[1])
1409 		return -EOVERFLOW;
1410 
1411 	if (copy_to_user(arg, &info, sizeof(info)))
1412 		return -EFAULT;
1413 	return 0;
1414 }
1415 
1416 static int
1417 loop_set_status_compat(struct loop_device *lo,
1418 		       const struct compat_loop_info __user *arg)
1419 {
1420 	struct loop_info64 info64;
1421 	int ret;
1422 
1423 	ret = loop_info64_from_compat(arg, &info64);
1424 	if (ret < 0)
1425 		return ret;
1426 	return loop_set_status(lo, &info64);
1427 }
1428 
1429 static int
1430 loop_get_status_compat(struct loop_device *lo,
1431 		       struct compat_loop_info __user *arg)
1432 {
1433 	struct loop_info64 info64;
1434 	int err = 0;
1435 
1436 	if (!arg)
1437 		err = -EINVAL;
1438 	if (!err)
1439 		err = loop_get_status(lo, &info64);
1440 	if (!err)
1441 		err = loop_info64_to_compat(&info64, arg);
1442 	return err;
1443 }
1444 
1445 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1446 			   unsigned int cmd, unsigned long arg)
1447 {
1448 	struct loop_device *lo = bdev->bd_disk->private_data;
1449 	int err;
1450 
1451 	switch(cmd) {
1452 	case LOOP_SET_STATUS:
1453 		mutex_lock(&lo->lo_ctl_mutex);
1454 		err = loop_set_status_compat(
1455 			lo, (const struct compat_loop_info __user *) arg);
1456 		mutex_unlock(&lo->lo_ctl_mutex);
1457 		break;
1458 	case LOOP_GET_STATUS:
1459 		mutex_lock(&lo->lo_ctl_mutex);
1460 		err = loop_get_status_compat(
1461 			lo, (struct compat_loop_info __user *) arg);
1462 		mutex_unlock(&lo->lo_ctl_mutex);
1463 		break;
1464 	case LOOP_SET_CAPACITY:
1465 	case LOOP_CLR_FD:
1466 	case LOOP_GET_STATUS64:
1467 	case LOOP_SET_STATUS64:
1468 		arg = (unsigned long) compat_ptr(arg);
1469 	case LOOP_SET_FD:
1470 	case LOOP_CHANGE_FD:
1471 		err = lo_ioctl(bdev, mode, cmd, arg);
1472 		break;
1473 	default:
1474 		err = -ENOIOCTLCMD;
1475 		break;
1476 	}
1477 	return err;
1478 }
1479 #endif
1480 
1481 static int lo_open(struct block_device *bdev, fmode_t mode)
1482 {
1483 	struct loop_device *lo;
1484 	int err = 0;
1485 
1486 	mutex_lock(&loop_index_mutex);
1487 	lo = bdev->bd_disk->private_data;
1488 	if (!lo) {
1489 		err = -ENXIO;
1490 		goto out;
1491 	}
1492 
1493 	mutex_lock(&lo->lo_ctl_mutex);
1494 	lo->lo_refcnt++;
1495 	mutex_unlock(&lo->lo_ctl_mutex);
1496 out:
1497 	mutex_unlock(&loop_index_mutex);
1498 	return err;
1499 }
1500 
1501 static int lo_release(struct gendisk *disk, fmode_t mode)
1502 {
1503 	struct loop_device *lo = disk->private_data;
1504 	int err;
1505 
1506 	mutex_lock(&lo->lo_ctl_mutex);
1507 
1508 	if (--lo->lo_refcnt)
1509 		goto out;
1510 
1511 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1512 		/*
1513 		 * In autoclear mode, stop the loop thread
1514 		 * and remove configuration after last close.
1515 		 */
1516 		err = loop_clr_fd(lo, NULL);
1517 		if (!err)
1518 			goto out_unlocked;
1519 	} else {
1520 		/*
1521 		 * Otherwise keep thread (if running) and config,
1522 		 * but flush possible ongoing bios in thread.
1523 		 */
1524 		loop_flush(lo);
1525 	}
1526 
1527 out:
1528 	mutex_unlock(&lo->lo_ctl_mutex);
1529 out_unlocked:
1530 	return 0;
1531 }
1532 
1533 static const struct block_device_operations lo_fops = {
1534 	.owner =	THIS_MODULE,
1535 	.open =		lo_open,
1536 	.release =	lo_release,
1537 	.ioctl =	lo_ioctl,
1538 #ifdef CONFIG_COMPAT
1539 	.compat_ioctl =	lo_compat_ioctl,
1540 #endif
1541 };
1542 
1543 /*
1544  * And now the modules code and kernel interface.
1545  */
1546 static int max_loop;
1547 module_param(max_loop, int, S_IRUGO);
1548 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1549 module_param(max_part, int, S_IRUGO);
1550 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1551 MODULE_LICENSE("GPL");
1552 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1553 
1554 int loop_register_transfer(struct loop_func_table *funcs)
1555 {
1556 	unsigned int n = funcs->number;
1557 
1558 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1559 		return -EINVAL;
1560 	xfer_funcs[n] = funcs;
1561 	return 0;
1562 }
1563 
1564 static int unregister_transfer_cb(int id, void *ptr, void *data)
1565 {
1566 	struct loop_device *lo = ptr;
1567 	struct loop_func_table *xfer = data;
1568 
1569 	mutex_lock(&lo->lo_ctl_mutex);
1570 	if (lo->lo_encryption == xfer)
1571 		loop_release_xfer(lo);
1572 	mutex_unlock(&lo->lo_ctl_mutex);
1573 	return 0;
1574 }
1575 
1576 int loop_unregister_transfer(int number)
1577 {
1578 	unsigned int n = number;
1579 	struct loop_func_table *xfer;
1580 
1581 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1582 		return -EINVAL;
1583 
1584 	xfer_funcs[n] = NULL;
1585 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1586 	return 0;
1587 }
1588 
1589 EXPORT_SYMBOL(loop_register_transfer);
1590 EXPORT_SYMBOL(loop_unregister_transfer);
1591 
1592 static int loop_add(struct loop_device **l, int i)
1593 {
1594 	struct loop_device *lo;
1595 	struct gendisk *disk;
1596 	int err;
1597 
1598 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1599 	if (!lo) {
1600 		err = -ENOMEM;
1601 		goto out;
1602 	}
1603 
1604 	err = idr_pre_get(&loop_index_idr, GFP_KERNEL);
1605 	if (err < 0)
1606 		goto out_free_dev;
1607 
1608 	if (i >= 0) {
1609 		int m;
1610 
1611 		/* create specific i in the index */
1612 		err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1613 		if (err >= 0 && i != m) {
1614 			idr_remove(&loop_index_idr, m);
1615 			err = -EEXIST;
1616 		}
1617 	} else if (i == -1) {
1618 		int m;
1619 
1620 		/* get next free nr */
1621 		err = idr_get_new(&loop_index_idr, lo, &m);
1622 		if (err >= 0)
1623 			i = m;
1624 	} else {
1625 		err = -EINVAL;
1626 	}
1627 	if (err < 0)
1628 		goto out_free_dev;
1629 
1630 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1631 	if (!lo->lo_queue)
1632 		goto out_free_dev;
1633 
1634 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1635 	if (!disk)
1636 		goto out_free_queue;
1637 
1638 	mutex_init(&lo->lo_ctl_mutex);
1639 	lo->lo_number		= i;
1640 	lo->lo_thread		= NULL;
1641 	init_waitqueue_head(&lo->lo_event);
1642 	spin_lock_init(&lo->lo_lock);
1643 	disk->major		= LOOP_MAJOR;
1644 	disk->first_minor	= i << part_shift;
1645 	disk->fops		= &lo_fops;
1646 	disk->private_data	= lo;
1647 	disk->queue		= lo->lo_queue;
1648 	sprintf(disk->disk_name, "loop%d", i);
1649 	add_disk(disk);
1650 	*l = lo;
1651 	return lo->lo_number;
1652 
1653 out_free_queue:
1654 	blk_cleanup_queue(lo->lo_queue);
1655 out_free_dev:
1656 	kfree(lo);
1657 out:
1658 	return err;
1659 }
1660 
1661 static void loop_remove(struct loop_device *lo)
1662 {
1663 	del_gendisk(lo->lo_disk);
1664 	blk_cleanup_queue(lo->lo_queue);
1665 	put_disk(lo->lo_disk);
1666 	kfree(lo);
1667 }
1668 
1669 static int find_free_cb(int id, void *ptr, void *data)
1670 {
1671 	struct loop_device *lo = ptr;
1672 	struct loop_device **l = data;
1673 
1674 	if (lo->lo_state == Lo_unbound) {
1675 		*l = lo;
1676 		return 1;
1677 	}
1678 	return 0;
1679 }
1680 
1681 static int loop_lookup(struct loop_device **l, int i)
1682 {
1683 	struct loop_device *lo;
1684 	int ret = -ENODEV;
1685 
1686 	if (i < 0) {
1687 		int err;
1688 
1689 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1690 		if (err == 1) {
1691 			*l = lo;
1692 			ret = lo->lo_number;
1693 		}
1694 		goto out;
1695 	}
1696 
1697 	/* lookup and return a specific i */
1698 	lo = idr_find(&loop_index_idr, i);
1699 	if (lo) {
1700 		*l = lo;
1701 		ret = lo->lo_number;
1702 	}
1703 out:
1704 	return ret;
1705 }
1706 
1707 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1708 {
1709 	struct loop_device *lo;
1710 	struct kobject *kobj;
1711 	int err;
1712 
1713 	mutex_lock(&loop_index_mutex);
1714 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1715 	if (err < 0)
1716 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1717 	if (err < 0)
1718 		kobj = ERR_PTR(err);
1719 	else
1720 		kobj = get_disk(lo->lo_disk);
1721 	mutex_unlock(&loop_index_mutex);
1722 
1723 	*part = 0;
1724 	return kobj;
1725 }
1726 
1727 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1728 			       unsigned long parm)
1729 {
1730 	struct loop_device *lo;
1731 	int ret = -ENOSYS;
1732 
1733 	mutex_lock(&loop_index_mutex);
1734 	switch (cmd) {
1735 	case LOOP_CTL_ADD:
1736 		ret = loop_lookup(&lo, parm);
1737 		if (ret >= 0) {
1738 			ret = -EEXIST;
1739 			break;
1740 		}
1741 		ret = loop_add(&lo, parm);
1742 		break;
1743 	case LOOP_CTL_REMOVE:
1744 		ret = loop_lookup(&lo, parm);
1745 		if (ret < 0)
1746 			break;
1747 		mutex_lock(&lo->lo_ctl_mutex);
1748 		if (lo->lo_state != Lo_unbound) {
1749 			ret = -EBUSY;
1750 			mutex_unlock(&lo->lo_ctl_mutex);
1751 			break;
1752 		}
1753 		if (lo->lo_refcnt > 0) {
1754 			ret = -EBUSY;
1755 			mutex_unlock(&lo->lo_ctl_mutex);
1756 			break;
1757 		}
1758 		lo->lo_disk->private_data = NULL;
1759 		mutex_unlock(&lo->lo_ctl_mutex);
1760 		idr_remove(&loop_index_idr, lo->lo_number);
1761 		loop_remove(lo);
1762 		break;
1763 	case LOOP_CTL_GET_FREE:
1764 		ret = loop_lookup(&lo, -1);
1765 		if (ret >= 0)
1766 			break;
1767 		ret = loop_add(&lo, -1);
1768 	}
1769 	mutex_unlock(&loop_index_mutex);
1770 
1771 	return ret;
1772 }
1773 
1774 static const struct file_operations loop_ctl_fops = {
1775 	.open		= nonseekable_open,
1776 	.unlocked_ioctl	= loop_control_ioctl,
1777 	.compat_ioctl	= loop_control_ioctl,
1778 	.owner		= THIS_MODULE,
1779 	.llseek		= noop_llseek,
1780 };
1781 
1782 static struct miscdevice loop_misc = {
1783 	.minor		= LOOP_CTRL_MINOR,
1784 	.name		= "loop-control",
1785 	.fops		= &loop_ctl_fops,
1786 };
1787 
1788 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1789 MODULE_ALIAS("devname:loop-control");
1790 
1791 static int __init loop_init(void)
1792 {
1793 	int i, nr;
1794 	unsigned long range;
1795 	struct loop_device *lo;
1796 	int err;
1797 
1798 	err = misc_register(&loop_misc);
1799 	if (err < 0)
1800 		return err;
1801 
1802 	part_shift = 0;
1803 	if (max_part > 0) {
1804 		part_shift = fls(max_part);
1805 
1806 		/*
1807 		 * Adjust max_part according to part_shift as it is exported
1808 		 * to user space so that user can decide correct minor number
1809 		 * if [s]he want to create more devices.
1810 		 *
1811 		 * Note that -1 is required because partition 0 is reserved
1812 		 * for the whole disk.
1813 		 */
1814 		max_part = (1UL << part_shift) - 1;
1815 	}
1816 
1817 	if ((1UL << part_shift) > DISK_MAX_PARTS)
1818 		return -EINVAL;
1819 
1820 	if (max_loop > 1UL << (MINORBITS - part_shift))
1821 		return -EINVAL;
1822 
1823 	/*
1824 	 * If max_loop is specified, create that many devices upfront.
1825 	 * This also becomes a hard limit. If max_loop is not specified,
1826 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1827 	 * init time. Loop devices can be requested on-demand with the
1828 	 * /dev/loop-control interface, or be instantiated by accessing
1829 	 * a 'dead' device node.
1830 	 */
1831 	if (max_loop) {
1832 		nr = max_loop;
1833 		range = max_loop << part_shift;
1834 	} else {
1835 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1836 		range = 1UL << MINORBITS;
1837 	}
1838 
1839 	if (register_blkdev(LOOP_MAJOR, "loop"))
1840 		return -EIO;
1841 
1842 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1843 				  THIS_MODULE, loop_probe, NULL, NULL);
1844 
1845 	/* pre-create number of devices given by config or max_loop */
1846 	mutex_lock(&loop_index_mutex);
1847 	for (i = 0; i < nr; i++)
1848 		loop_add(&lo, i);
1849 	mutex_unlock(&loop_index_mutex);
1850 
1851 	printk(KERN_INFO "loop: module loaded\n");
1852 	return 0;
1853 }
1854 
1855 static int loop_exit_cb(int id, void *ptr, void *data)
1856 {
1857 	struct loop_device *lo = ptr;
1858 
1859 	loop_remove(lo);
1860 	return 0;
1861 }
1862 
1863 static void __exit loop_exit(void)
1864 {
1865 	unsigned long range;
1866 
1867 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1868 
1869 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1870 	idr_remove_all(&loop_index_idr);
1871 	idr_destroy(&loop_index_idr);
1872 
1873 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1874 	unregister_blkdev(LOOP_MAJOR, "loop");
1875 
1876 	misc_deregister(&loop_misc);
1877 }
1878 
1879 module_init(loop_init);
1880 module_exit(loop_exit);
1881 
1882 #ifndef MODULE
1883 static int __init max_loop_setup(char *str)
1884 {
1885 	max_loop = simple_strtol(str, NULL, 0);
1886 	return 1;
1887 }
1888 
1889 __setup("max_loop=", max_loop_setup);
1890 #endif
1891