xref: /linux/drivers/block/loop.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/smp_lock.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 
78 #include <asm/uaccess.h>
79 
80 static LIST_HEAD(loop_devices);
81 static DEFINE_MUTEX(loop_devices_mutex);
82 
83 static int max_part;
84 static int part_shift;
85 
86 /*
87  * Transfer functions
88  */
89 static int transfer_none(struct loop_device *lo, int cmd,
90 			 struct page *raw_page, unsigned raw_off,
91 			 struct page *loop_page, unsigned loop_off,
92 			 int size, sector_t real_block)
93 {
94 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
95 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
96 
97 	if (cmd == READ)
98 		memcpy(loop_buf, raw_buf, size);
99 	else
100 		memcpy(raw_buf, loop_buf, size);
101 
102 	kunmap_atomic(raw_buf, KM_USER0);
103 	kunmap_atomic(loop_buf, KM_USER1);
104 	cond_resched();
105 	return 0;
106 }
107 
108 static int transfer_xor(struct loop_device *lo, int cmd,
109 			struct page *raw_page, unsigned raw_off,
110 			struct page *loop_page, unsigned loop_off,
111 			int size, sector_t real_block)
112 {
113 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
114 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
115 	char *in, *out, *key;
116 	int i, keysize;
117 
118 	if (cmd == READ) {
119 		in = raw_buf;
120 		out = loop_buf;
121 	} else {
122 		in = loop_buf;
123 		out = raw_buf;
124 	}
125 
126 	key = lo->lo_encrypt_key;
127 	keysize = lo->lo_encrypt_key_size;
128 	for (i = 0; i < size; i++)
129 		*out++ = *in++ ^ key[(i & 511) % keysize];
130 
131 	kunmap_atomic(raw_buf, KM_USER0);
132 	kunmap_atomic(loop_buf, KM_USER1);
133 	cond_resched();
134 	return 0;
135 }
136 
137 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
138 {
139 	if (unlikely(info->lo_encrypt_key_size <= 0))
140 		return -EINVAL;
141 	return 0;
142 }
143 
144 static struct loop_func_table none_funcs = {
145 	.number = LO_CRYPT_NONE,
146 	.transfer = transfer_none,
147 };
148 
149 static struct loop_func_table xor_funcs = {
150 	.number = LO_CRYPT_XOR,
151 	.transfer = transfer_xor,
152 	.init = xor_init
153 };
154 
155 /* xfer_funcs[0] is special - its release function is never called */
156 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
157 	&none_funcs,
158 	&xor_funcs
159 };
160 
161 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
162 {
163 	loff_t size, offset, loopsize;
164 
165 	/* Compute loopsize in bytes */
166 	size = i_size_read(file->f_mapping->host);
167 	offset = lo->lo_offset;
168 	loopsize = size - offset;
169 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
170 		loopsize = lo->lo_sizelimit;
171 
172 	/*
173 	 * Unfortunately, if we want to do I/O on the device,
174 	 * the number of 512-byte sectors has to fit into a sector_t.
175 	 */
176 	return loopsize >> 9;
177 }
178 
179 static int
180 figure_loop_size(struct loop_device *lo)
181 {
182 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
183 	sector_t x = (sector_t)size;
184 
185 	if (unlikely((loff_t)x != size))
186 		return -EFBIG;
187 
188 	set_capacity(lo->lo_disk, x);
189 	return 0;
190 }
191 
192 static inline int
193 lo_do_transfer(struct loop_device *lo, int cmd,
194 	       struct page *rpage, unsigned roffs,
195 	       struct page *lpage, unsigned loffs,
196 	       int size, sector_t rblock)
197 {
198 	if (unlikely(!lo->transfer))
199 		return 0;
200 
201 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
202 }
203 
204 /**
205  * do_lo_send_aops - helper for writing data to a loop device
206  *
207  * This is the fast version for backing filesystems which implement the address
208  * space operations write_begin and write_end.
209  */
210 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
211 		loff_t pos, struct page *unused)
212 {
213 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
214 	struct address_space *mapping = file->f_mapping;
215 	pgoff_t index;
216 	unsigned offset, bv_offs;
217 	int len, ret;
218 
219 	mutex_lock(&mapping->host->i_mutex);
220 	index = pos >> PAGE_CACHE_SHIFT;
221 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
222 	bv_offs = bvec->bv_offset;
223 	len = bvec->bv_len;
224 	while (len > 0) {
225 		sector_t IV;
226 		unsigned size, copied;
227 		int transfer_result;
228 		struct page *page;
229 		void *fsdata;
230 
231 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
232 		size = PAGE_CACHE_SIZE - offset;
233 		if (size > len)
234 			size = len;
235 
236 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
237 							&page, &fsdata);
238 		if (ret)
239 			goto fail;
240 
241 		file_update_time(file);
242 
243 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
244 				bvec->bv_page, bv_offs, size, IV);
245 		copied = size;
246 		if (unlikely(transfer_result))
247 			copied = 0;
248 
249 		ret = pagecache_write_end(file, mapping, pos, size, copied,
250 							page, fsdata);
251 		if (ret < 0 || ret != copied)
252 			goto fail;
253 
254 		if (unlikely(transfer_result))
255 			goto fail;
256 
257 		bv_offs += copied;
258 		len -= copied;
259 		offset = 0;
260 		index++;
261 		pos += copied;
262 	}
263 	ret = 0;
264 out:
265 	mutex_unlock(&mapping->host->i_mutex);
266 	return ret;
267 fail:
268 	ret = -1;
269 	goto out;
270 }
271 
272 /**
273  * __do_lo_send_write - helper for writing data to a loop device
274  *
275  * This helper just factors out common code between do_lo_send_direct_write()
276  * and do_lo_send_write().
277  */
278 static int __do_lo_send_write(struct file *file,
279 		u8 *buf, const int len, loff_t pos)
280 {
281 	ssize_t bw;
282 	mm_segment_t old_fs = get_fs();
283 
284 	set_fs(get_ds());
285 	bw = file->f_op->write(file, buf, len, &pos);
286 	set_fs(old_fs);
287 	if (likely(bw == len))
288 		return 0;
289 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
290 			(unsigned long long)pos, len);
291 	if (bw >= 0)
292 		bw = -EIO;
293 	return bw;
294 }
295 
296 /**
297  * do_lo_send_direct_write - helper for writing data to a loop device
298  *
299  * This is the fast, non-transforming version for backing filesystems which do
300  * not implement the address space operations write_begin and write_end.
301  * It uses the write file operation which should be present on all writeable
302  * filesystems.
303  */
304 static int do_lo_send_direct_write(struct loop_device *lo,
305 		struct bio_vec *bvec, loff_t pos, struct page *page)
306 {
307 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
308 			kmap(bvec->bv_page) + bvec->bv_offset,
309 			bvec->bv_len, pos);
310 	kunmap(bvec->bv_page);
311 	cond_resched();
312 	return bw;
313 }
314 
315 /**
316  * do_lo_send_write - helper for writing data to a loop device
317  *
318  * This is the slow, transforming version for filesystems which do not
319  * implement the address space operations write_begin and write_end.  It
320  * uses the write file operation which should be present on all writeable
321  * filesystems.
322  *
323  * Using fops->write is slower than using aops->{prepare,commit}_write in the
324  * transforming case because we need to double buffer the data as we cannot do
325  * the transformations in place as we do not have direct access to the
326  * destination pages of the backing file.
327  */
328 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
329 		loff_t pos, struct page *page)
330 {
331 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
332 			bvec->bv_offset, bvec->bv_len, pos >> 9);
333 	if (likely(!ret))
334 		return __do_lo_send_write(lo->lo_backing_file,
335 				page_address(page), bvec->bv_len,
336 				pos);
337 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
338 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
339 	if (ret > 0)
340 		ret = -EIO;
341 	return ret;
342 }
343 
344 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
345 {
346 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
347 			struct page *page);
348 	struct bio_vec *bvec;
349 	struct page *page = NULL;
350 	int i, ret = 0;
351 
352 	do_lo_send = do_lo_send_aops;
353 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
354 		do_lo_send = do_lo_send_direct_write;
355 		if (lo->transfer != transfer_none) {
356 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
357 			if (unlikely(!page))
358 				goto fail;
359 			kmap(page);
360 			do_lo_send = do_lo_send_write;
361 		}
362 	}
363 	bio_for_each_segment(bvec, bio, i) {
364 		ret = do_lo_send(lo, bvec, pos, page);
365 		if (ret < 0)
366 			break;
367 		pos += bvec->bv_len;
368 	}
369 	if (page) {
370 		kunmap(page);
371 		__free_page(page);
372 	}
373 out:
374 	return ret;
375 fail:
376 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
377 	ret = -ENOMEM;
378 	goto out;
379 }
380 
381 struct lo_read_data {
382 	struct loop_device *lo;
383 	struct page *page;
384 	unsigned offset;
385 	int bsize;
386 };
387 
388 static int
389 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
390 		struct splice_desc *sd)
391 {
392 	struct lo_read_data *p = sd->u.data;
393 	struct loop_device *lo = p->lo;
394 	struct page *page = buf->page;
395 	sector_t IV;
396 	int size, ret;
397 
398 	ret = buf->ops->confirm(pipe, buf);
399 	if (unlikely(ret))
400 		return ret;
401 
402 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
403 							(buf->offset >> 9);
404 	size = sd->len;
405 	if (size > p->bsize)
406 		size = p->bsize;
407 
408 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
409 		printk(KERN_ERR "loop: transfer error block %ld\n",
410 		       page->index);
411 		size = -EINVAL;
412 	}
413 
414 	flush_dcache_page(p->page);
415 
416 	if (size > 0)
417 		p->offset += size;
418 
419 	return size;
420 }
421 
422 static int
423 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
424 {
425 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
426 }
427 
428 static int
429 do_lo_receive(struct loop_device *lo,
430 	      struct bio_vec *bvec, int bsize, loff_t pos)
431 {
432 	struct lo_read_data cookie;
433 	struct splice_desc sd;
434 	struct file *file;
435 	long retval;
436 
437 	cookie.lo = lo;
438 	cookie.page = bvec->bv_page;
439 	cookie.offset = bvec->bv_offset;
440 	cookie.bsize = bsize;
441 
442 	sd.len = 0;
443 	sd.total_len = bvec->bv_len;
444 	sd.flags = 0;
445 	sd.pos = pos;
446 	sd.u.data = &cookie;
447 
448 	file = lo->lo_backing_file;
449 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
450 
451 	if (retval < 0)
452 		return retval;
453 
454 	return 0;
455 }
456 
457 static int
458 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
459 {
460 	struct bio_vec *bvec;
461 	int i, ret = 0;
462 
463 	bio_for_each_segment(bvec, bio, i) {
464 		ret = do_lo_receive(lo, bvec, bsize, pos);
465 		if (ret < 0)
466 			break;
467 		pos += bvec->bv_len;
468 	}
469 	return ret;
470 }
471 
472 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
473 {
474 	loff_t pos;
475 	int ret;
476 
477 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
478 
479 	if (bio_rw(bio) == WRITE) {
480 		bool barrier = (bio->bi_rw & REQ_HARDBARRIER);
481 		struct file *file = lo->lo_backing_file;
482 
483 		if (barrier) {
484 			if (unlikely(!file->f_op->fsync)) {
485 				ret = -EOPNOTSUPP;
486 				goto out;
487 			}
488 
489 			ret = vfs_fsync(file, 0);
490 			if (unlikely(ret)) {
491 				ret = -EIO;
492 				goto out;
493 			}
494 		}
495 
496 		ret = lo_send(lo, bio, pos);
497 
498 		if (barrier && !ret) {
499 			ret = vfs_fsync(file, 0);
500 			if (unlikely(ret))
501 				ret = -EIO;
502 		}
503 	} else
504 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
505 
506 out:
507 	return ret;
508 }
509 
510 /*
511  * Add bio to back of pending list
512  */
513 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
514 {
515 	bio_list_add(&lo->lo_bio_list, bio);
516 }
517 
518 /*
519  * Grab first pending buffer
520  */
521 static struct bio *loop_get_bio(struct loop_device *lo)
522 {
523 	return bio_list_pop(&lo->lo_bio_list);
524 }
525 
526 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
527 {
528 	struct loop_device *lo = q->queuedata;
529 	int rw = bio_rw(old_bio);
530 
531 	if (rw == READA)
532 		rw = READ;
533 
534 	BUG_ON(!lo || (rw != READ && rw != WRITE));
535 
536 	spin_lock_irq(&lo->lo_lock);
537 	if (lo->lo_state != Lo_bound)
538 		goto out;
539 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
540 		goto out;
541 	loop_add_bio(lo, old_bio);
542 	wake_up(&lo->lo_event);
543 	spin_unlock_irq(&lo->lo_lock);
544 	return 0;
545 
546 out:
547 	spin_unlock_irq(&lo->lo_lock);
548 	bio_io_error(old_bio);
549 	return 0;
550 }
551 
552 /*
553  * kick off io on the underlying address space
554  */
555 static void loop_unplug(struct request_queue *q)
556 {
557 	struct loop_device *lo = q->queuedata;
558 
559 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
560 	blk_run_address_space(lo->lo_backing_file->f_mapping);
561 }
562 
563 struct switch_request {
564 	struct file *file;
565 	struct completion wait;
566 };
567 
568 static void do_loop_switch(struct loop_device *, struct switch_request *);
569 
570 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
571 {
572 	if (unlikely(!bio->bi_bdev)) {
573 		do_loop_switch(lo, bio->bi_private);
574 		bio_put(bio);
575 	} else {
576 		int ret = do_bio_filebacked(lo, bio);
577 		bio_endio(bio, ret);
578 	}
579 }
580 
581 /*
582  * worker thread that handles reads/writes to file backed loop devices,
583  * to avoid blocking in our make_request_fn. it also does loop decrypting
584  * on reads for block backed loop, as that is too heavy to do from
585  * b_end_io context where irqs may be disabled.
586  *
587  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
588  * calling kthread_stop().  Therefore once kthread_should_stop() is
589  * true, make_request will not place any more requests.  Therefore
590  * once kthread_should_stop() is true and lo_bio is NULL, we are
591  * done with the loop.
592  */
593 static int loop_thread(void *data)
594 {
595 	struct loop_device *lo = data;
596 	struct bio *bio;
597 
598 	set_user_nice(current, -20);
599 
600 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
601 
602 		wait_event_interruptible(lo->lo_event,
603 				!bio_list_empty(&lo->lo_bio_list) ||
604 				kthread_should_stop());
605 
606 		if (bio_list_empty(&lo->lo_bio_list))
607 			continue;
608 		spin_lock_irq(&lo->lo_lock);
609 		bio = loop_get_bio(lo);
610 		spin_unlock_irq(&lo->lo_lock);
611 
612 		BUG_ON(!bio);
613 		loop_handle_bio(lo, bio);
614 	}
615 
616 	return 0;
617 }
618 
619 /*
620  * loop_switch performs the hard work of switching a backing store.
621  * First it needs to flush existing IO, it does this by sending a magic
622  * BIO down the pipe. The completion of this BIO does the actual switch.
623  */
624 static int loop_switch(struct loop_device *lo, struct file *file)
625 {
626 	struct switch_request w;
627 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
628 	if (!bio)
629 		return -ENOMEM;
630 	init_completion(&w.wait);
631 	w.file = file;
632 	bio->bi_private = &w;
633 	bio->bi_bdev = NULL;
634 	loop_make_request(lo->lo_queue, bio);
635 	wait_for_completion(&w.wait);
636 	return 0;
637 }
638 
639 /*
640  * Helper to flush the IOs in loop, but keeping loop thread running
641  */
642 static int loop_flush(struct loop_device *lo)
643 {
644 	/* loop not yet configured, no running thread, nothing to flush */
645 	if (!lo->lo_thread)
646 		return 0;
647 
648 	return loop_switch(lo, NULL);
649 }
650 
651 /*
652  * Do the actual switch; called from the BIO completion routine
653  */
654 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
655 {
656 	struct file *file = p->file;
657 	struct file *old_file = lo->lo_backing_file;
658 	struct address_space *mapping;
659 
660 	/* if no new file, only flush of queued bios requested */
661 	if (!file)
662 		goto out;
663 
664 	mapping = file->f_mapping;
665 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
666 	lo->lo_backing_file = file;
667 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
668 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
669 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
670 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
671 out:
672 	complete(&p->wait);
673 }
674 
675 
676 /*
677  * loop_change_fd switched the backing store of a loopback device to
678  * a new file. This is useful for operating system installers to free up
679  * the original file and in High Availability environments to switch to
680  * an alternative location for the content in case of server meltdown.
681  * This can only work if the loop device is used read-only, and if the
682  * new backing store is the same size and type as the old backing store.
683  */
684 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
685 			  unsigned int arg)
686 {
687 	struct file	*file, *old_file;
688 	struct inode	*inode;
689 	int		error;
690 
691 	error = -ENXIO;
692 	if (lo->lo_state != Lo_bound)
693 		goto out;
694 
695 	/* the loop device has to be read-only */
696 	error = -EINVAL;
697 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
698 		goto out;
699 
700 	error = -EBADF;
701 	file = fget(arg);
702 	if (!file)
703 		goto out;
704 
705 	inode = file->f_mapping->host;
706 	old_file = lo->lo_backing_file;
707 
708 	error = -EINVAL;
709 
710 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
711 		goto out_putf;
712 
713 	/* size of the new backing store needs to be the same */
714 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
715 		goto out_putf;
716 
717 	/* and ... switch */
718 	error = loop_switch(lo, file);
719 	if (error)
720 		goto out_putf;
721 
722 	fput(old_file);
723 	if (max_part > 0)
724 		ioctl_by_bdev(bdev, BLKRRPART, 0);
725 	return 0;
726 
727  out_putf:
728 	fput(file);
729  out:
730 	return error;
731 }
732 
733 static inline int is_loop_device(struct file *file)
734 {
735 	struct inode *i = file->f_mapping->host;
736 
737 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
738 }
739 
740 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
741 		       struct block_device *bdev, unsigned int arg)
742 {
743 	struct file	*file, *f;
744 	struct inode	*inode;
745 	struct address_space *mapping;
746 	unsigned lo_blocksize;
747 	int		lo_flags = 0;
748 	int		error;
749 	loff_t		size;
750 
751 	/* This is safe, since we have a reference from open(). */
752 	__module_get(THIS_MODULE);
753 
754 	error = -EBADF;
755 	file = fget(arg);
756 	if (!file)
757 		goto out;
758 
759 	error = -EBUSY;
760 	if (lo->lo_state != Lo_unbound)
761 		goto out_putf;
762 
763 	/* Avoid recursion */
764 	f = file;
765 	while (is_loop_device(f)) {
766 		struct loop_device *l;
767 
768 		if (f->f_mapping->host->i_bdev == bdev)
769 			goto out_putf;
770 
771 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
772 		if (l->lo_state == Lo_unbound) {
773 			error = -EINVAL;
774 			goto out_putf;
775 		}
776 		f = l->lo_backing_file;
777 	}
778 
779 	mapping = file->f_mapping;
780 	inode = mapping->host;
781 
782 	if (!(file->f_mode & FMODE_WRITE))
783 		lo_flags |= LO_FLAGS_READ_ONLY;
784 
785 	error = -EINVAL;
786 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
787 		const struct address_space_operations *aops = mapping->a_ops;
788 
789 		if (aops->write_begin)
790 			lo_flags |= LO_FLAGS_USE_AOPS;
791 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
792 			lo_flags |= LO_FLAGS_READ_ONLY;
793 
794 		lo_blocksize = S_ISBLK(inode->i_mode) ?
795 			inode->i_bdev->bd_block_size : PAGE_SIZE;
796 
797 		error = 0;
798 	} else {
799 		goto out_putf;
800 	}
801 
802 	size = get_loop_size(lo, file);
803 
804 	if ((loff_t)(sector_t)size != size) {
805 		error = -EFBIG;
806 		goto out_putf;
807 	}
808 
809 	if (!(mode & FMODE_WRITE))
810 		lo_flags |= LO_FLAGS_READ_ONLY;
811 
812 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
813 
814 	lo->lo_blocksize = lo_blocksize;
815 	lo->lo_device = bdev;
816 	lo->lo_flags = lo_flags;
817 	lo->lo_backing_file = file;
818 	lo->transfer = transfer_none;
819 	lo->ioctl = NULL;
820 	lo->lo_sizelimit = 0;
821 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
822 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
823 
824 	bio_list_init(&lo->lo_bio_list);
825 
826 	/*
827 	 * set queue make_request_fn, and add limits based on lower level
828 	 * device
829 	 */
830 	blk_queue_make_request(lo->lo_queue, loop_make_request);
831 	lo->lo_queue->queuedata = lo;
832 	lo->lo_queue->unplug_fn = loop_unplug;
833 
834 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
835 		blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN);
836 
837 	set_capacity(lo->lo_disk, size);
838 	bd_set_size(bdev, size << 9);
839 	/* let user-space know about the new size */
840 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
841 
842 	set_blocksize(bdev, lo_blocksize);
843 
844 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
845 						lo->lo_number);
846 	if (IS_ERR(lo->lo_thread)) {
847 		error = PTR_ERR(lo->lo_thread);
848 		goto out_clr;
849 	}
850 	lo->lo_state = Lo_bound;
851 	wake_up_process(lo->lo_thread);
852 	if (max_part > 0)
853 		ioctl_by_bdev(bdev, BLKRRPART, 0);
854 	return 0;
855 
856 out_clr:
857 	lo->lo_thread = NULL;
858 	lo->lo_device = NULL;
859 	lo->lo_backing_file = NULL;
860 	lo->lo_flags = 0;
861 	set_capacity(lo->lo_disk, 0);
862 	invalidate_bdev(bdev);
863 	bd_set_size(bdev, 0);
864 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
865 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
866 	lo->lo_state = Lo_unbound;
867  out_putf:
868 	fput(file);
869  out:
870 	/* This is safe: open() is still holding a reference. */
871 	module_put(THIS_MODULE);
872 	return error;
873 }
874 
875 static int
876 loop_release_xfer(struct loop_device *lo)
877 {
878 	int err = 0;
879 	struct loop_func_table *xfer = lo->lo_encryption;
880 
881 	if (xfer) {
882 		if (xfer->release)
883 			err = xfer->release(lo);
884 		lo->transfer = NULL;
885 		lo->lo_encryption = NULL;
886 		module_put(xfer->owner);
887 	}
888 	return err;
889 }
890 
891 static int
892 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
893 	       const struct loop_info64 *i)
894 {
895 	int err = 0;
896 
897 	if (xfer) {
898 		struct module *owner = xfer->owner;
899 
900 		if (!try_module_get(owner))
901 			return -EINVAL;
902 		if (xfer->init)
903 			err = xfer->init(lo, i);
904 		if (err)
905 			module_put(owner);
906 		else
907 			lo->lo_encryption = xfer;
908 	}
909 	return err;
910 }
911 
912 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
913 {
914 	struct file *filp = lo->lo_backing_file;
915 	gfp_t gfp = lo->old_gfp_mask;
916 
917 	if (lo->lo_state != Lo_bound)
918 		return -ENXIO;
919 
920 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
921 		return -EBUSY;
922 
923 	if (filp == NULL)
924 		return -EINVAL;
925 
926 	spin_lock_irq(&lo->lo_lock);
927 	lo->lo_state = Lo_rundown;
928 	spin_unlock_irq(&lo->lo_lock);
929 
930 	kthread_stop(lo->lo_thread);
931 
932 	lo->lo_queue->unplug_fn = NULL;
933 	lo->lo_backing_file = NULL;
934 
935 	loop_release_xfer(lo);
936 	lo->transfer = NULL;
937 	lo->ioctl = NULL;
938 	lo->lo_device = NULL;
939 	lo->lo_encryption = NULL;
940 	lo->lo_offset = 0;
941 	lo->lo_sizelimit = 0;
942 	lo->lo_encrypt_key_size = 0;
943 	lo->lo_flags = 0;
944 	lo->lo_thread = NULL;
945 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
946 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
947 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
948 	if (bdev)
949 		invalidate_bdev(bdev);
950 	set_capacity(lo->lo_disk, 0);
951 	if (bdev) {
952 		bd_set_size(bdev, 0);
953 		/* let user-space know about this change */
954 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
955 	}
956 	mapping_set_gfp_mask(filp->f_mapping, gfp);
957 	lo->lo_state = Lo_unbound;
958 	/* This is safe: open() is still holding a reference. */
959 	module_put(THIS_MODULE);
960 	if (max_part > 0 && bdev)
961 		ioctl_by_bdev(bdev, BLKRRPART, 0);
962 	mutex_unlock(&lo->lo_ctl_mutex);
963 	/*
964 	 * Need not hold lo_ctl_mutex to fput backing file.
965 	 * Calling fput holding lo_ctl_mutex triggers a circular
966 	 * lock dependency possibility warning as fput can take
967 	 * bd_mutex which is usually taken before lo_ctl_mutex.
968 	 */
969 	fput(filp);
970 	return 0;
971 }
972 
973 static int
974 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
975 {
976 	int err;
977 	struct loop_func_table *xfer;
978 	uid_t uid = current_uid();
979 
980 	if (lo->lo_encrypt_key_size &&
981 	    lo->lo_key_owner != uid &&
982 	    !capable(CAP_SYS_ADMIN))
983 		return -EPERM;
984 	if (lo->lo_state != Lo_bound)
985 		return -ENXIO;
986 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
987 		return -EINVAL;
988 
989 	err = loop_release_xfer(lo);
990 	if (err)
991 		return err;
992 
993 	if (info->lo_encrypt_type) {
994 		unsigned int type = info->lo_encrypt_type;
995 
996 		if (type >= MAX_LO_CRYPT)
997 			return -EINVAL;
998 		xfer = xfer_funcs[type];
999 		if (xfer == NULL)
1000 			return -EINVAL;
1001 	} else
1002 		xfer = NULL;
1003 
1004 	err = loop_init_xfer(lo, xfer, info);
1005 	if (err)
1006 		return err;
1007 
1008 	if (lo->lo_offset != info->lo_offset ||
1009 	    lo->lo_sizelimit != info->lo_sizelimit) {
1010 		lo->lo_offset = info->lo_offset;
1011 		lo->lo_sizelimit = info->lo_sizelimit;
1012 		if (figure_loop_size(lo))
1013 			return -EFBIG;
1014 	}
1015 
1016 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1017 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1018 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1019 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1020 
1021 	if (!xfer)
1022 		xfer = &none_funcs;
1023 	lo->transfer = xfer->transfer;
1024 	lo->ioctl = xfer->ioctl;
1025 
1026 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1027 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1028 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1029 
1030 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1031 	lo->lo_init[0] = info->lo_init[0];
1032 	lo->lo_init[1] = info->lo_init[1];
1033 	if (info->lo_encrypt_key_size) {
1034 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1035 		       info->lo_encrypt_key_size);
1036 		lo->lo_key_owner = uid;
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 static int
1043 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1044 {
1045 	struct file *file = lo->lo_backing_file;
1046 	struct kstat stat;
1047 	int error;
1048 
1049 	if (lo->lo_state != Lo_bound)
1050 		return -ENXIO;
1051 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1052 	if (error)
1053 		return error;
1054 	memset(info, 0, sizeof(*info));
1055 	info->lo_number = lo->lo_number;
1056 	info->lo_device = huge_encode_dev(stat.dev);
1057 	info->lo_inode = stat.ino;
1058 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1059 	info->lo_offset = lo->lo_offset;
1060 	info->lo_sizelimit = lo->lo_sizelimit;
1061 	info->lo_flags = lo->lo_flags;
1062 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1063 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1064 	info->lo_encrypt_type =
1065 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1066 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1067 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1068 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1069 		       lo->lo_encrypt_key_size);
1070 	}
1071 	return 0;
1072 }
1073 
1074 static void
1075 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1076 {
1077 	memset(info64, 0, sizeof(*info64));
1078 	info64->lo_number = info->lo_number;
1079 	info64->lo_device = info->lo_device;
1080 	info64->lo_inode = info->lo_inode;
1081 	info64->lo_rdevice = info->lo_rdevice;
1082 	info64->lo_offset = info->lo_offset;
1083 	info64->lo_sizelimit = 0;
1084 	info64->lo_encrypt_type = info->lo_encrypt_type;
1085 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1086 	info64->lo_flags = info->lo_flags;
1087 	info64->lo_init[0] = info->lo_init[0];
1088 	info64->lo_init[1] = info->lo_init[1];
1089 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1090 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1091 	else
1092 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1093 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1094 }
1095 
1096 static int
1097 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1098 {
1099 	memset(info, 0, sizeof(*info));
1100 	info->lo_number = info64->lo_number;
1101 	info->lo_device = info64->lo_device;
1102 	info->lo_inode = info64->lo_inode;
1103 	info->lo_rdevice = info64->lo_rdevice;
1104 	info->lo_offset = info64->lo_offset;
1105 	info->lo_encrypt_type = info64->lo_encrypt_type;
1106 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1107 	info->lo_flags = info64->lo_flags;
1108 	info->lo_init[0] = info64->lo_init[0];
1109 	info->lo_init[1] = info64->lo_init[1];
1110 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1111 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1112 	else
1113 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1114 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1115 
1116 	/* error in case values were truncated */
1117 	if (info->lo_device != info64->lo_device ||
1118 	    info->lo_rdevice != info64->lo_rdevice ||
1119 	    info->lo_inode != info64->lo_inode ||
1120 	    info->lo_offset != info64->lo_offset)
1121 		return -EOVERFLOW;
1122 
1123 	return 0;
1124 }
1125 
1126 static int
1127 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1128 {
1129 	struct loop_info info;
1130 	struct loop_info64 info64;
1131 
1132 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1133 		return -EFAULT;
1134 	loop_info64_from_old(&info, &info64);
1135 	return loop_set_status(lo, &info64);
1136 }
1137 
1138 static int
1139 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1140 {
1141 	struct loop_info64 info64;
1142 
1143 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1144 		return -EFAULT;
1145 	return loop_set_status(lo, &info64);
1146 }
1147 
1148 static int
1149 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1150 	struct loop_info info;
1151 	struct loop_info64 info64;
1152 	int err = 0;
1153 
1154 	if (!arg)
1155 		err = -EINVAL;
1156 	if (!err)
1157 		err = loop_get_status(lo, &info64);
1158 	if (!err)
1159 		err = loop_info64_to_old(&info64, &info);
1160 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1161 		err = -EFAULT;
1162 
1163 	return err;
1164 }
1165 
1166 static int
1167 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1168 	struct loop_info64 info64;
1169 	int err = 0;
1170 
1171 	if (!arg)
1172 		err = -EINVAL;
1173 	if (!err)
1174 		err = loop_get_status(lo, &info64);
1175 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1176 		err = -EFAULT;
1177 
1178 	return err;
1179 }
1180 
1181 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1182 {
1183 	int err;
1184 	sector_t sec;
1185 	loff_t sz;
1186 
1187 	err = -ENXIO;
1188 	if (unlikely(lo->lo_state != Lo_bound))
1189 		goto out;
1190 	err = figure_loop_size(lo);
1191 	if (unlikely(err))
1192 		goto out;
1193 	sec = get_capacity(lo->lo_disk);
1194 	/* the width of sector_t may be narrow for bit-shift */
1195 	sz = sec;
1196 	sz <<= 9;
1197 	mutex_lock(&bdev->bd_mutex);
1198 	bd_set_size(bdev, sz);
1199 	/* let user-space know about the new size */
1200 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1201 	mutex_unlock(&bdev->bd_mutex);
1202 
1203  out:
1204 	return err;
1205 }
1206 
1207 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1208 	unsigned int cmd, unsigned long arg)
1209 {
1210 	struct loop_device *lo = bdev->bd_disk->private_data;
1211 	int err;
1212 
1213 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1214 	switch (cmd) {
1215 	case LOOP_SET_FD:
1216 		err = loop_set_fd(lo, mode, bdev, arg);
1217 		break;
1218 	case LOOP_CHANGE_FD:
1219 		err = loop_change_fd(lo, bdev, arg);
1220 		break;
1221 	case LOOP_CLR_FD:
1222 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1223 		err = loop_clr_fd(lo, bdev);
1224 		if (!err)
1225 			goto out_unlocked;
1226 		break;
1227 	case LOOP_SET_STATUS:
1228 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1229 		break;
1230 	case LOOP_GET_STATUS:
1231 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1232 		break;
1233 	case LOOP_SET_STATUS64:
1234 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1235 		break;
1236 	case LOOP_GET_STATUS64:
1237 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1238 		break;
1239 	case LOOP_SET_CAPACITY:
1240 		err = -EPERM;
1241 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1242 			err = loop_set_capacity(lo, bdev);
1243 		break;
1244 	default:
1245 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1246 	}
1247 	mutex_unlock(&lo->lo_ctl_mutex);
1248 
1249 out_unlocked:
1250 	return err;
1251 }
1252 
1253 #ifdef CONFIG_COMPAT
1254 struct compat_loop_info {
1255 	compat_int_t	lo_number;      /* ioctl r/o */
1256 	compat_dev_t	lo_device;      /* ioctl r/o */
1257 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1258 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1259 	compat_int_t	lo_offset;
1260 	compat_int_t	lo_encrypt_type;
1261 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1262 	compat_int_t	lo_flags;       /* ioctl r/o */
1263 	char		lo_name[LO_NAME_SIZE];
1264 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1265 	compat_ulong_t	lo_init[2];
1266 	char		reserved[4];
1267 };
1268 
1269 /*
1270  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1271  * - noinlined to reduce stack space usage in main part of driver
1272  */
1273 static noinline int
1274 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1275 			struct loop_info64 *info64)
1276 {
1277 	struct compat_loop_info info;
1278 
1279 	if (copy_from_user(&info, arg, sizeof(info)))
1280 		return -EFAULT;
1281 
1282 	memset(info64, 0, sizeof(*info64));
1283 	info64->lo_number = info.lo_number;
1284 	info64->lo_device = info.lo_device;
1285 	info64->lo_inode = info.lo_inode;
1286 	info64->lo_rdevice = info.lo_rdevice;
1287 	info64->lo_offset = info.lo_offset;
1288 	info64->lo_sizelimit = 0;
1289 	info64->lo_encrypt_type = info.lo_encrypt_type;
1290 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1291 	info64->lo_flags = info.lo_flags;
1292 	info64->lo_init[0] = info.lo_init[0];
1293 	info64->lo_init[1] = info.lo_init[1];
1294 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1295 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1296 	else
1297 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1298 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1304  * - noinlined to reduce stack space usage in main part of driver
1305  */
1306 static noinline int
1307 loop_info64_to_compat(const struct loop_info64 *info64,
1308 		      struct compat_loop_info __user *arg)
1309 {
1310 	struct compat_loop_info info;
1311 
1312 	memset(&info, 0, sizeof(info));
1313 	info.lo_number = info64->lo_number;
1314 	info.lo_device = info64->lo_device;
1315 	info.lo_inode = info64->lo_inode;
1316 	info.lo_rdevice = info64->lo_rdevice;
1317 	info.lo_offset = info64->lo_offset;
1318 	info.lo_encrypt_type = info64->lo_encrypt_type;
1319 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1320 	info.lo_flags = info64->lo_flags;
1321 	info.lo_init[0] = info64->lo_init[0];
1322 	info.lo_init[1] = info64->lo_init[1];
1323 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1324 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1325 	else
1326 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1327 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1328 
1329 	/* error in case values were truncated */
1330 	if (info.lo_device != info64->lo_device ||
1331 	    info.lo_rdevice != info64->lo_rdevice ||
1332 	    info.lo_inode != info64->lo_inode ||
1333 	    info.lo_offset != info64->lo_offset ||
1334 	    info.lo_init[0] != info64->lo_init[0] ||
1335 	    info.lo_init[1] != info64->lo_init[1])
1336 		return -EOVERFLOW;
1337 
1338 	if (copy_to_user(arg, &info, sizeof(info)))
1339 		return -EFAULT;
1340 	return 0;
1341 }
1342 
1343 static int
1344 loop_set_status_compat(struct loop_device *lo,
1345 		       const struct compat_loop_info __user *arg)
1346 {
1347 	struct loop_info64 info64;
1348 	int ret;
1349 
1350 	ret = loop_info64_from_compat(arg, &info64);
1351 	if (ret < 0)
1352 		return ret;
1353 	return loop_set_status(lo, &info64);
1354 }
1355 
1356 static int
1357 loop_get_status_compat(struct loop_device *lo,
1358 		       struct compat_loop_info __user *arg)
1359 {
1360 	struct loop_info64 info64;
1361 	int err = 0;
1362 
1363 	if (!arg)
1364 		err = -EINVAL;
1365 	if (!err)
1366 		err = loop_get_status(lo, &info64);
1367 	if (!err)
1368 		err = loop_info64_to_compat(&info64, arg);
1369 	return err;
1370 }
1371 
1372 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1373 			   unsigned int cmd, unsigned long arg)
1374 {
1375 	struct loop_device *lo = bdev->bd_disk->private_data;
1376 	int err;
1377 
1378 	switch(cmd) {
1379 	case LOOP_SET_STATUS:
1380 		mutex_lock(&lo->lo_ctl_mutex);
1381 		err = loop_set_status_compat(
1382 			lo, (const struct compat_loop_info __user *) arg);
1383 		mutex_unlock(&lo->lo_ctl_mutex);
1384 		break;
1385 	case LOOP_GET_STATUS:
1386 		mutex_lock(&lo->lo_ctl_mutex);
1387 		err = loop_get_status_compat(
1388 			lo, (struct compat_loop_info __user *) arg);
1389 		mutex_unlock(&lo->lo_ctl_mutex);
1390 		break;
1391 	case LOOP_SET_CAPACITY:
1392 	case LOOP_CLR_FD:
1393 	case LOOP_GET_STATUS64:
1394 	case LOOP_SET_STATUS64:
1395 		arg = (unsigned long) compat_ptr(arg);
1396 	case LOOP_SET_FD:
1397 	case LOOP_CHANGE_FD:
1398 		err = lo_ioctl(bdev, mode, cmd, arg);
1399 		break;
1400 	default:
1401 		err = -ENOIOCTLCMD;
1402 		break;
1403 	}
1404 	return err;
1405 }
1406 #endif
1407 
1408 static int lo_open(struct block_device *bdev, fmode_t mode)
1409 {
1410 	struct loop_device *lo = bdev->bd_disk->private_data;
1411 
1412 	lock_kernel();
1413 	mutex_lock(&lo->lo_ctl_mutex);
1414 	lo->lo_refcnt++;
1415 	mutex_unlock(&lo->lo_ctl_mutex);
1416 	unlock_kernel();
1417 
1418 	return 0;
1419 }
1420 
1421 static int lo_release(struct gendisk *disk, fmode_t mode)
1422 {
1423 	struct loop_device *lo = disk->private_data;
1424 	int err;
1425 
1426 	lock_kernel();
1427 	mutex_lock(&lo->lo_ctl_mutex);
1428 
1429 	if (--lo->lo_refcnt)
1430 		goto out;
1431 
1432 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1433 		/*
1434 		 * In autoclear mode, stop the loop thread
1435 		 * and remove configuration after last close.
1436 		 */
1437 		err = loop_clr_fd(lo, NULL);
1438 		if (!err)
1439 			goto out_unlocked;
1440 	} else {
1441 		/*
1442 		 * Otherwise keep thread (if running) and config,
1443 		 * but flush possible ongoing bios in thread.
1444 		 */
1445 		loop_flush(lo);
1446 	}
1447 
1448 out:
1449 	mutex_unlock(&lo->lo_ctl_mutex);
1450 out_unlocked:
1451 	lock_kernel();
1452 	return 0;
1453 }
1454 
1455 static const struct block_device_operations lo_fops = {
1456 	.owner =	THIS_MODULE,
1457 	.open =		lo_open,
1458 	.release =	lo_release,
1459 	.ioctl =	lo_ioctl,
1460 #ifdef CONFIG_COMPAT
1461 	.compat_ioctl =	lo_compat_ioctl,
1462 #endif
1463 };
1464 
1465 /*
1466  * And now the modules code and kernel interface.
1467  */
1468 static int max_loop;
1469 module_param(max_loop, int, 0);
1470 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1471 module_param(max_part, int, 0);
1472 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1473 MODULE_LICENSE("GPL");
1474 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1475 
1476 int loop_register_transfer(struct loop_func_table *funcs)
1477 {
1478 	unsigned int n = funcs->number;
1479 
1480 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1481 		return -EINVAL;
1482 	xfer_funcs[n] = funcs;
1483 	return 0;
1484 }
1485 
1486 int loop_unregister_transfer(int number)
1487 {
1488 	unsigned int n = number;
1489 	struct loop_device *lo;
1490 	struct loop_func_table *xfer;
1491 
1492 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1493 		return -EINVAL;
1494 
1495 	xfer_funcs[n] = NULL;
1496 
1497 	list_for_each_entry(lo, &loop_devices, lo_list) {
1498 		mutex_lock(&lo->lo_ctl_mutex);
1499 
1500 		if (lo->lo_encryption == xfer)
1501 			loop_release_xfer(lo);
1502 
1503 		mutex_unlock(&lo->lo_ctl_mutex);
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 EXPORT_SYMBOL(loop_register_transfer);
1510 EXPORT_SYMBOL(loop_unregister_transfer);
1511 
1512 static struct loop_device *loop_alloc(int i)
1513 {
1514 	struct loop_device *lo;
1515 	struct gendisk *disk;
1516 
1517 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1518 	if (!lo)
1519 		goto out;
1520 
1521 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1522 	if (!lo->lo_queue)
1523 		goto out_free_dev;
1524 
1525 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1526 	if (!disk)
1527 		goto out_free_queue;
1528 
1529 	mutex_init(&lo->lo_ctl_mutex);
1530 	lo->lo_number		= i;
1531 	lo->lo_thread		= NULL;
1532 	init_waitqueue_head(&lo->lo_event);
1533 	spin_lock_init(&lo->lo_lock);
1534 	disk->major		= LOOP_MAJOR;
1535 	disk->first_minor	= i << part_shift;
1536 	disk->fops		= &lo_fops;
1537 	disk->private_data	= lo;
1538 	disk->queue		= lo->lo_queue;
1539 	sprintf(disk->disk_name, "loop%d", i);
1540 	return lo;
1541 
1542 out_free_queue:
1543 	blk_cleanup_queue(lo->lo_queue);
1544 out_free_dev:
1545 	kfree(lo);
1546 out:
1547 	return NULL;
1548 }
1549 
1550 static void loop_free(struct loop_device *lo)
1551 {
1552 	blk_cleanup_queue(lo->lo_queue);
1553 	put_disk(lo->lo_disk);
1554 	list_del(&lo->lo_list);
1555 	kfree(lo);
1556 }
1557 
1558 static struct loop_device *loop_init_one(int i)
1559 {
1560 	struct loop_device *lo;
1561 
1562 	list_for_each_entry(lo, &loop_devices, lo_list) {
1563 		if (lo->lo_number == i)
1564 			return lo;
1565 	}
1566 
1567 	lo = loop_alloc(i);
1568 	if (lo) {
1569 		add_disk(lo->lo_disk);
1570 		list_add_tail(&lo->lo_list, &loop_devices);
1571 	}
1572 	return lo;
1573 }
1574 
1575 static void loop_del_one(struct loop_device *lo)
1576 {
1577 	del_gendisk(lo->lo_disk);
1578 	loop_free(lo);
1579 }
1580 
1581 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1582 {
1583 	struct loop_device *lo;
1584 	struct kobject *kobj;
1585 
1586 	mutex_lock(&loop_devices_mutex);
1587 	lo = loop_init_one(dev & MINORMASK);
1588 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1589 	mutex_unlock(&loop_devices_mutex);
1590 
1591 	*part = 0;
1592 	return kobj;
1593 }
1594 
1595 static int __init loop_init(void)
1596 {
1597 	int i, nr;
1598 	unsigned long range;
1599 	struct loop_device *lo, *next;
1600 
1601 	/*
1602 	 * loop module now has a feature to instantiate underlying device
1603 	 * structure on-demand, provided that there is an access dev node.
1604 	 * However, this will not work well with user space tool that doesn't
1605 	 * know about such "feature".  In order to not break any existing
1606 	 * tool, we do the following:
1607 	 *
1608 	 * (1) if max_loop is specified, create that many upfront, and this
1609 	 *     also becomes a hard limit.
1610 	 * (2) if max_loop is not specified, create 8 loop device on module
1611 	 *     load, user can further extend loop device by create dev node
1612 	 *     themselves and have kernel automatically instantiate actual
1613 	 *     device on-demand.
1614 	 */
1615 
1616 	part_shift = 0;
1617 	if (max_part > 0)
1618 		part_shift = fls(max_part);
1619 
1620 	if (max_loop > 1UL << (MINORBITS - part_shift))
1621 		return -EINVAL;
1622 
1623 	if (max_loop) {
1624 		nr = max_loop;
1625 		range = max_loop;
1626 	} else {
1627 		nr = 8;
1628 		range = 1UL << (MINORBITS - part_shift);
1629 	}
1630 
1631 	if (register_blkdev(LOOP_MAJOR, "loop"))
1632 		return -EIO;
1633 
1634 	for (i = 0; i < nr; i++) {
1635 		lo = loop_alloc(i);
1636 		if (!lo)
1637 			goto Enomem;
1638 		list_add_tail(&lo->lo_list, &loop_devices);
1639 	}
1640 
1641 	/* point of no return */
1642 
1643 	list_for_each_entry(lo, &loop_devices, lo_list)
1644 		add_disk(lo->lo_disk);
1645 
1646 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1647 				  THIS_MODULE, loop_probe, NULL, NULL);
1648 
1649 	printk(KERN_INFO "loop: module loaded\n");
1650 	return 0;
1651 
1652 Enomem:
1653 	printk(KERN_INFO "loop: out of memory\n");
1654 
1655 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1656 		loop_free(lo);
1657 
1658 	unregister_blkdev(LOOP_MAJOR, "loop");
1659 	return -ENOMEM;
1660 }
1661 
1662 static void __exit loop_exit(void)
1663 {
1664 	unsigned long range;
1665 	struct loop_device *lo, *next;
1666 
1667 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1668 
1669 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1670 		loop_del_one(lo);
1671 
1672 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1673 	unregister_blkdev(LOOP_MAJOR, "loop");
1674 }
1675 
1676 module_init(loop_init);
1677 module_exit(loop_exit);
1678 
1679 #ifndef MODULE
1680 static int __init max_loop_setup(char *str)
1681 {
1682 	max_loop = simple_strtol(str, NULL, 0);
1683 	return 1;
1684 }
1685 
1686 __setup("max_loop=", max_loop_setup);
1687 #endif
1688