1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/loop.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/smp_lock.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/kthread.h> 76 #include <linux/splice.h> 77 78 #include <asm/uaccess.h> 79 80 static LIST_HEAD(loop_devices); 81 static DEFINE_MUTEX(loop_devices_mutex); 82 83 static int max_part; 84 static int part_shift; 85 86 /* 87 * Transfer functions 88 */ 89 static int transfer_none(struct loop_device *lo, int cmd, 90 struct page *raw_page, unsigned raw_off, 91 struct page *loop_page, unsigned loop_off, 92 int size, sector_t real_block) 93 { 94 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 95 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 96 97 if (cmd == READ) 98 memcpy(loop_buf, raw_buf, size); 99 else 100 memcpy(raw_buf, loop_buf, size); 101 102 kunmap_atomic(raw_buf, KM_USER0); 103 kunmap_atomic(loop_buf, KM_USER1); 104 cond_resched(); 105 return 0; 106 } 107 108 static int transfer_xor(struct loop_device *lo, int cmd, 109 struct page *raw_page, unsigned raw_off, 110 struct page *loop_page, unsigned loop_off, 111 int size, sector_t real_block) 112 { 113 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 114 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 115 char *in, *out, *key; 116 int i, keysize; 117 118 if (cmd == READ) { 119 in = raw_buf; 120 out = loop_buf; 121 } else { 122 in = loop_buf; 123 out = raw_buf; 124 } 125 126 key = lo->lo_encrypt_key; 127 keysize = lo->lo_encrypt_key_size; 128 for (i = 0; i < size; i++) 129 *out++ = *in++ ^ key[(i & 511) % keysize]; 130 131 kunmap_atomic(raw_buf, KM_USER0); 132 kunmap_atomic(loop_buf, KM_USER1); 133 cond_resched(); 134 return 0; 135 } 136 137 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 138 { 139 if (unlikely(info->lo_encrypt_key_size <= 0)) 140 return -EINVAL; 141 return 0; 142 } 143 144 static struct loop_func_table none_funcs = { 145 .number = LO_CRYPT_NONE, 146 .transfer = transfer_none, 147 }; 148 149 static struct loop_func_table xor_funcs = { 150 .number = LO_CRYPT_XOR, 151 .transfer = transfer_xor, 152 .init = xor_init 153 }; 154 155 /* xfer_funcs[0] is special - its release function is never called */ 156 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 157 &none_funcs, 158 &xor_funcs 159 }; 160 161 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 162 { 163 loff_t size, offset, loopsize; 164 165 /* Compute loopsize in bytes */ 166 size = i_size_read(file->f_mapping->host); 167 offset = lo->lo_offset; 168 loopsize = size - offset; 169 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 170 loopsize = lo->lo_sizelimit; 171 172 /* 173 * Unfortunately, if we want to do I/O on the device, 174 * the number of 512-byte sectors has to fit into a sector_t. 175 */ 176 return loopsize >> 9; 177 } 178 179 static int 180 figure_loop_size(struct loop_device *lo) 181 { 182 loff_t size = get_loop_size(lo, lo->lo_backing_file); 183 sector_t x = (sector_t)size; 184 185 if (unlikely((loff_t)x != size)) 186 return -EFBIG; 187 188 set_capacity(lo->lo_disk, x); 189 return 0; 190 } 191 192 static inline int 193 lo_do_transfer(struct loop_device *lo, int cmd, 194 struct page *rpage, unsigned roffs, 195 struct page *lpage, unsigned loffs, 196 int size, sector_t rblock) 197 { 198 if (unlikely(!lo->transfer)) 199 return 0; 200 201 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 202 } 203 204 /** 205 * do_lo_send_aops - helper for writing data to a loop device 206 * 207 * This is the fast version for backing filesystems which implement the address 208 * space operations write_begin and write_end. 209 */ 210 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 211 loff_t pos, struct page *unused) 212 { 213 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 214 struct address_space *mapping = file->f_mapping; 215 pgoff_t index; 216 unsigned offset, bv_offs; 217 int len, ret; 218 219 mutex_lock(&mapping->host->i_mutex); 220 index = pos >> PAGE_CACHE_SHIFT; 221 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 222 bv_offs = bvec->bv_offset; 223 len = bvec->bv_len; 224 while (len > 0) { 225 sector_t IV; 226 unsigned size, copied; 227 int transfer_result; 228 struct page *page; 229 void *fsdata; 230 231 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 232 size = PAGE_CACHE_SIZE - offset; 233 if (size > len) 234 size = len; 235 236 ret = pagecache_write_begin(file, mapping, pos, size, 0, 237 &page, &fsdata); 238 if (ret) 239 goto fail; 240 241 file_update_time(file); 242 243 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 244 bvec->bv_page, bv_offs, size, IV); 245 copied = size; 246 if (unlikely(transfer_result)) 247 copied = 0; 248 249 ret = pagecache_write_end(file, mapping, pos, size, copied, 250 page, fsdata); 251 if (ret < 0 || ret != copied) 252 goto fail; 253 254 if (unlikely(transfer_result)) 255 goto fail; 256 257 bv_offs += copied; 258 len -= copied; 259 offset = 0; 260 index++; 261 pos += copied; 262 } 263 ret = 0; 264 out: 265 mutex_unlock(&mapping->host->i_mutex); 266 return ret; 267 fail: 268 ret = -1; 269 goto out; 270 } 271 272 /** 273 * __do_lo_send_write - helper for writing data to a loop device 274 * 275 * This helper just factors out common code between do_lo_send_direct_write() 276 * and do_lo_send_write(). 277 */ 278 static int __do_lo_send_write(struct file *file, 279 u8 *buf, const int len, loff_t pos) 280 { 281 ssize_t bw; 282 mm_segment_t old_fs = get_fs(); 283 284 set_fs(get_ds()); 285 bw = file->f_op->write(file, buf, len, &pos); 286 set_fs(old_fs); 287 if (likely(bw == len)) 288 return 0; 289 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 290 (unsigned long long)pos, len); 291 if (bw >= 0) 292 bw = -EIO; 293 return bw; 294 } 295 296 /** 297 * do_lo_send_direct_write - helper for writing data to a loop device 298 * 299 * This is the fast, non-transforming version for backing filesystems which do 300 * not implement the address space operations write_begin and write_end. 301 * It uses the write file operation which should be present on all writeable 302 * filesystems. 303 */ 304 static int do_lo_send_direct_write(struct loop_device *lo, 305 struct bio_vec *bvec, loff_t pos, struct page *page) 306 { 307 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 308 kmap(bvec->bv_page) + bvec->bv_offset, 309 bvec->bv_len, pos); 310 kunmap(bvec->bv_page); 311 cond_resched(); 312 return bw; 313 } 314 315 /** 316 * do_lo_send_write - helper for writing data to a loop device 317 * 318 * This is the slow, transforming version for filesystems which do not 319 * implement the address space operations write_begin and write_end. It 320 * uses the write file operation which should be present on all writeable 321 * filesystems. 322 * 323 * Using fops->write is slower than using aops->{prepare,commit}_write in the 324 * transforming case because we need to double buffer the data as we cannot do 325 * the transformations in place as we do not have direct access to the 326 * destination pages of the backing file. 327 */ 328 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 329 loff_t pos, struct page *page) 330 { 331 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 332 bvec->bv_offset, bvec->bv_len, pos >> 9); 333 if (likely(!ret)) 334 return __do_lo_send_write(lo->lo_backing_file, 335 page_address(page), bvec->bv_len, 336 pos); 337 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 338 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 339 if (ret > 0) 340 ret = -EIO; 341 return ret; 342 } 343 344 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 345 { 346 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 347 struct page *page); 348 struct bio_vec *bvec; 349 struct page *page = NULL; 350 int i, ret = 0; 351 352 do_lo_send = do_lo_send_aops; 353 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 354 do_lo_send = do_lo_send_direct_write; 355 if (lo->transfer != transfer_none) { 356 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 357 if (unlikely(!page)) 358 goto fail; 359 kmap(page); 360 do_lo_send = do_lo_send_write; 361 } 362 } 363 bio_for_each_segment(bvec, bio, i) { 364 ret = do_lo_send(lo, bvec, pos, page); 365 if (ret < 0) 366 break; 367 pos += bvec->bv_len; 368 } 369 if (page) { 370 kunmap(page); 371 __free_page(page); 372 } 373 out: 374 return ret; 375 fail: 376 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 377 ret = -ENOMEM; 378 goto out; 379 } 380 381 struct lo_read_data { 382 struct loop_device *lo; 383 struct page *page; 384 unsigned offset; 385 int bsize; 386 }; 387 388 static int 389 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 390 struct splice_desc *sd) 391 { 392 struct lo_read_data *p = sd->u.data; 393 struct loop_device *lo = p->lo; 394 struct page *page = buf->page; 395 sector_t IV; 396 int size, ret; 397 398 ret = buf->ops->confirm(pipe, buf); 399 if (unlikely(ret)) 400 return ret; 401 402 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 403 (buf->offset >> 9); 404 size = sd->len; 405 if (size > p->bsize) 406 size = p->bsize; 407 408 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 409 printk(KERN_ERR "loop: transfer error block %ld\n", 410 page->index); 411 size = -EINVAL; 412 } 413 414 flush_dcache_page(p->page); 415 416 if (size > 0) 417 p->offset += size; 418 419 return size; 420 } 421 422 static int 423 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 424 { 425 return __splice_from_pipe(pipe, sd, lo_splice_actor); 426 } 427 428 static int 429 do_lo_receive(struct loop_device *lo, 430 struct bio_vec *bvec, int bsize, loff_t pos) 431 { 432 struct lo_read_data cookie; 433 struct splice_desc sd; 434 struct file *file; 435 long retval; 436 437 cookie.lo = lo; 438 cookie.page = bvec->bv_page; 439 cookie.offset = bvec->bv_offset; 440 cookie.bsize = bsize; 441 442 sd.len = 0; 443 sd.total_len = bvec->bv_len; 444 sd.flags = 0; 445 sd.pos = pos; 446 sd.u.data = &cookie; 447 448 file = lo->lo_backing_file; 449 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 450 451 if (retval < 0) 452 return retval; 453 454 return 0; 455 } 456 457 static int 458 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 459 { 460 struct bio_vec *bvec; 461 int i, ret = 0; 462 463 bio_for_each_segment(bvec, bio, i) { 464 ret = do_lo_receive(lo, bvec, bsize, pos); 465 if (ret < 0) 466 break; 467 pos += bvec->bv_len; 468 } 469 return ret; 470 } 471 472 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 473 { 474 loff_t pos; 475 int ret; 476 477 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 478 479 if (bio_rw(bio) == WRITE) { 480 bool barrier = (bio->bi_rw & REQ_HARDBARRIER); 481 struct file *file = lo->lo_backing_file; 482 483 if (barrier) { 484 if (unlikely(!file->f_op->fsync)) { 485 ret = -EOPNOTSUPP; 486 goto out; 487 } 488 489 ret = vfs_fsync(file, 0); 490 if (unlikely(ret)) { 491 ret = -EIO; 492 goto out; 493 } 494 } 495 496 ret = lo_send(lo, bio, pos); 497 498 if (barrier && !ret) { 499 ret = vfs_fsync(file, 0); 500 if (unlikely(ret)) 501 ret = -EIO; 502 } 503 } else 504 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 505 506 out: 507 return ret; 508 } 509 510 /* 511 * Add bio to back of pending list 512 */ 513 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 514 { 515 bio_list_add(&lo->lo_bio_list, bio); 516 } 517 518 /* 519 * Grab first pending buffer 520 */ 521 static struct bio *loop_get_bio(struct loop_device *lo) 522 { 523 return bio_list_pop(&lo->lo_bio_list); 524 } 525 526 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 527 { 528 struct loop_device *lo = q->queuedata; 529 int rw = bio_rw(old_bio); 530 531 if (rw == READA) 532 rw = READ; 533 534 BUG_ON(!lo || (rw != READ && rw != WRITE)); 535 536 spin_lock_irq(&lo->lo_lock); 537 if (lo->lo_state != Lo_bound) 538 goto out; 539 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 540 goto out; 541 loop_add_bio(lo, old_bio); 542 wake_up(&lo->lo_event); 543 spin_unlock_irq(&lo->lo_lock); 544 return 0; 545 546 out: 547 spin_unlock_irq(&lo->lo_lock); 548 bio_io_error(old_bio); 549 return 0; 550 } 551 552 /* 553 * kick off io on the underlying address space 554 */ 555 static void loop_unplug(struct request_queue *q) 556 { 557 struct loop_device *lo = q->queuedata; 558 559 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 560 blk_run_address_space(lo->lo_backing_file->f_mapping); 561 } 562 563 struct switch_request { 564 struct file *file; 565 struct completion wait; 566 }; 567 568 static void do_loop_switch(struct loop_device *, struct switch_request *); 569 570 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 571 { 572 if (unlikely(!bio->bi_bdev)) { 573 do_loop_switch(lo, bio->bi_private); 574 bio_put(bio); 575 } else { 576 int ret = do_bio_filebacked(lo, bio); 577 bio_endio(bio, ret); 578 } 579 } 580 581 /* 582 * worker thread that handles reads/writes to file backed loop devices, 583 * to avoid blocking in our make_request_fn. it also does loop decrypting 584 * on reads for block backed loop, as that is too heavy to do from 585 * b_end_io context where irqs may be disabled. 586 * 587 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 588 * calling kthread_stop(). Therefore once kthread_should_stop() is 589 * true, make_request will not place any more requests. Therefore 590 * once kthread_should_stop() is true and lo_bio is NULL, we are 591 * done with the loop. 592 */ 593 static int loop_thread(void *data) 594 { 595 struct loop_device *lo = data; 596 struct bio *bio; 597 598 set_user_nice(current, -20); 599 600 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 601 602 wait_event_interruptible(lo->lo_event, 603 !bio_list_empty(&lo->lo_bio_list) || 604 kthread_should_stop()); 605 606 if (bio_list_empty(&lo->lo_bio_list)) 607 continue; 608 spin_lock_irq(&lo->lo_lock); 609 bio = loop_get_bio(lo); 610 spin_unlock_irq(&lo->lo_lock); 611 612 BUG_ON(!bio); 613 loop_handle_bio(lo, bio); 614 } 615 616 return 0; 617 } 618 619 /* 620 * loop_switch performs the hard work of switching a backing store. 621 * First it needs to flush existing IO, it does this by sending a magic 622 * BIO down the pipe. The completion of this BIO does the actual switch. 623 */ 624 static int loop_switch(struct loop_device *lo, struct file *file) 625 { 626 struct switch_request w; 627 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 628 if (!bio) 629 return -ENOMEM; 630 init_completion(&w.wait); 631 w.file = file; 632 bio->bi_private = &w; 633 bio->bi_bdev = NULL; 634 loop_make_request(lo->lo_queue, bio); 635 wait_for_completion(&w.wait); 636 return 0; 637 } 638 639 /* 640 * Helper to flush the IOs in loop, but keeping loop thread running 641 */ 642 static int loop_flush(struct loop_device *lo) 643 { 644 /* loop not yet configured, no running thread, nothing to flush */ 645 if (!lo->lo_thread) 646 return 0; 647 648 return loop_switch(lo, NULL); 649 } 650 651 /* 652 * Do the actual switch; called from the BIO completion routine 653 */ 654 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 655 { 656 struct file *file = p->file; 657 struct file *old_file = lo->lo_backing_file; 658 struct address_space *mapping; 659 660 /* if no new file, only flush of queued bios requested */ 661 if (!file) 662 goto out; 663 664 mapping = file->f_mapping; 665 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 666 lo->lo_backing_file = file; 667 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 668 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 669 lo->old_gfp_mask = mapping_gfp_mask(mapping); 670 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 671 out: 672 complete(&p->wait); 673 } 674 675 676 /* 677 * loop_change_fd switched the backing store of a loopback device to 678 * a new file. This is useful for operating system installers to free up 679 * the original file and in High Availability environments to switch to 680 * an alternative location for the content in case of server meltdown. 681 * This can only work if the loop device is used read-only, and if the 682 * new backing store is the same size and type as the old backing store. 683 */ 684 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 685 unsigned int arg) 686 { 687 struct file *file, *old_file; 688 struct inode *inode; 689 int error; 690 691 error = -ENXIO; 692 if (lo->lo_state != Lo_bound) 693 goto out; 694 695 /* the loop device has to be read-only */ 696 error = -EINVAL; 697 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 698 goto out; 699 700 error = -EBADF; 701 file = fget(arg); 702 if (!file) 703 goto out; 704 705 inode = file->f_mapping->host; 706 old_file = lo->lo_backing_file; 707 708 error = -EINVAL; 709 710 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 711 goto out_putf; 712 713 /* size of the new backing store needs to be the same */ 714 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 715 goto out_putf; 716 717 /* and ... switch */ 718 error = loop_switch(lo, file); 719 if (error) 720 goto out_putf; 721 722 fput(old_file); 723 if (max_part > 0) 724 ioctl_by_bdev(bdev, BLKRRPART, 0); 725 return 0; 726 727 out_putf: 728 fput(file); 729 out: 730 return error; 731 } 732 733 static inline int is_loop_device(struct file *file) 734 { 735 struct inode *i = file->f_mapping->host; 736 737 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 738 } 739 740 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 741 struct block_device *bdev, unsigned int arg) 742 { 743 struct file *file, *f; 744 struct inode *inode; 745 struct address_space *mapping; 746 unsigned lo_blocksize; 747 int lo_flags = 0; 748 int error; 749 loff_t size; 750 751 /* This is safe, since we have a reference from open(). */ 752 __module_get(THIS_MODULE); 753 754 error = -EBADF; 755 file = fget(arg); 756 if (!file) 757 goto out; 758 759 error = -EBUSY; 760 if (lo->lo_state != Lo_unbound) 761 goto out_putf; 762 763 /* Avoid recursion */ 764 f = file; 765 while (is_loop_device(f)) { 766 struct loop_device *l; 767 768 if (f->f_mapping->host->i_bdev == bdev) 769 goto out_putf; 770 771 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 772 if (l->lo_state == Lo_unbound) { 773 error = -EINVAL; 774 goto out_putf; 775 } 776 f = l->lo_backing_file; 777 } 778 779 mapping = file->f_mapping; 780 inode = mapping->host; 781 782 if (!(file->f_mode & FMODE_WRITE)) 783 lo_flags |= LO_FLAGS_READ_ONLY; 784 785 error = -EINVAL; 786 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 787 const struct address_space_operations *aops = mapping->a_ops; 788 789 if (aops->write_begin) 790 lo_flags |= LO_FLAGS_USE_AOPS; 791 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 792 lo_flags |= LO_FLAGS_READ_ONLY; 793 794 lo_blocksize = S_ISBLK(inode->i_mode) ? 795 inode->i_bdev->bd_block_size : PAGE_SIZE; 796 797 error = 0; 798 } else { 799 goto out_putf; 800 } 801 802 size = get_loop_size(lo, file); 803 804 if ((loff_t)(sector_t)size != size) { 805 error = -EFBIG; 806 goto out_putf; 807 } 808 809 if (!(mode & FMODE_WRITE)) 810 lo_flags |= LO_FLAGS_READ_ONLY; 811 812 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 813 814 lo->lo_blocksize = lo_blocksize; 815 lo->lo_device = bdev; 816 lo->lo_flags = lo_flags; 817 lo->lo_backing_file = file; 818 lo->transfer = transfer_none; 819 lo->ioctl = NULL; 820 lo->lo_sizelimit = 0; 821 lo->old_gfp_mask = mapping_gfp_mask(mapping); 822 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 823 824 bio_list_init(&lo->lo_bio_list); 825 826 /* 827 * set queue make_request_fn, and add limits based on lower level 828 * device 829 */ 830 blk_queue_make_request(lo->lo_queue, loop_make_request); 831 lo->lo_queue->queuedata = lo; 832 lo->lo_queue->unplug_fn = loop_unplug; 833 834 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 835 blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN); 836 837 set_capacity(lo->lo_disk, size); 838 bd_set_size(bdev, size << 9); 839 /* let user-space know about the new size */ 840 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 841 842 set_blocksize(bdev, lo_blocksize); 843 844 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 845 lo->lo_number); 846 if (IS_ERR(lo->lo_thread)) { 847 error = PTR_ERR(lo->lo_thread); 848 goto out_clr; 849 } 850 lo->lo_state = Lo_bound; 851 wake_up_process(lo->lo_thread); 852 if (max_part > 0) 853 ioctl_by_bdev(bdev, BLKRRPART, 0); 854 return 0; 855 856 out_clr: 857 lo->lo_thread = NULL; 858 lo->lo_device = NULL; 859 lo->lo_backing_file = NULL; 860 lo->lo_flags = 0; 861 set_capacity(lo->lo_disk, 0); 862 invalidate_bdev(bdev); 863 bd_set_size(bdev, 0); 864 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 865 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 866 lo->lo_state = Lo_unbound; 867 out_putf: 868 fput(file); 869 out: 870 /* This is safe: open() is still holding a reference. */ 871 module_put(THIS_MODULE); 872 return error; 873 } 874 875 static int 876 loop_release_xfer(struct loop_device *lo) 877 { 878 int err = 0; 879 struct loop_func_table *xfer = lo->lo_encryption; 880 881 if (xfer) { 882 if (xfer->release) 883 err = xfer->release(lo); 884 lo->transfer = NULL; 885 lo->lo_encryption = NULL; 886 module_put(xfer->owner); 887 } 888 return err; 889 } 890 891 static int 892 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 893 const struct loop_info64 *i) 894 { 895 int err = 0; 896 897 if (xfer) { 898 struct module *owner = xfer->owner; 899 900 if (!try_module_get(owner)) 901 return -EINVAL; 902 if (xfer->init) 903 err = xfer->init(lo, i); 904 if (err) 905 module_put(owner); 906 else 907 lo->lo_encryption = xfer; 908 } 909 return err; 910 } 911 912 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 913 { 914 struct file *filp = lo->lo_backing_file; 915 gfp_t gfp = lo->old_gfp_mask; 916 917 if (lo->lo_state != Lo_bound) 918 return -ENXIO; 919 920 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 921 return -EBUSY; 922 923 if (filp == NULL) 924 return -EINVAL; 925 926 spin_lock_irq(&lo->lo_lock); 927 lo->lo_state = Lo_rundown; 928 spin_unlock_irq(&lo->lo_lock); 929 930 kthread_stop(lo->lo_thread); 931 932 lo->lo_queue->unplug_fn = NULL; 933 lo->lo_backing_file = NULL; 934 935 loop_release_xfer(lo); 936 lo->transfer = NULL; 937 lo->ioctl = NULL; 938 lo->lo_device = NULL; 939 lo->lo_encryption = NULL; 940 lo->lo_offset = 0; 941 lo->lo_sizelimit = 0; 942 lo->lo_encrypt_key_size = 0; 943 lo->lo_flags = 0; 944 lo->lo_thread = NULL; 945 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 946 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 947 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 948 if (bdev) 949 invalidate_bdev(bdev); 950 set_capacity(lo->lo_disk, 0); 951 if (bdev) { 952 bd_set_size(bdev, 0); 953 /* let user-space know about this change */ 954 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 955 } 956 mapping_set_gfp_mask(filp->f_mapping, gfp); 957 lo->lo_state = Lo_unbound; 958 /* This is safe: open() is still holding a reference. */ 959 module_put(THIS_MODULE); 960 if (max_part > 0 && bdev) 961 ioctl_by_bdev(bdev, BLKRRPART, 0); 962 mutex_unlock(&lo->lo_ctl_mutex); 963 /* 964 * Need not hold lo_ctl_mutex to fput backing file. 965 * Calling fput holding lo_ctl_mutex triggers a circular 966 * lock dependency possibility warning as fput can take 967 * bd_mutex which is usually taken before lo_ctl_mutex. 968 */ 969 fput(filp); 970 return 0; 971 } 972 973 static int 974 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 975 { 976 int err; 977 struct loop_func_table *xfer; 978 uid_t uid = current_uid(); 979 980 if (lo->lo_encrypt_key_size && 981 lo->lo_key_owner != uid && 982 !capable(CAP_SYS_ADMIN)) 983 return -EPERM; 984 if (lo->lo_state != Lo_bound) 985 return -ENXIO; 986 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 987 return -EINVAL; 988 989 err = loop_release_xfer(lo); 990 if (err) 991 return err; 992 993 if (info->lo_encrypt_type) { 994 unsigned int type = info->lo_encrypt_type; 995 996 if (type >= MAX_LO_CRYPT) 997 return -EINVAL; 998 xfer = xfer_funcs[type]; 999 if (xfer == NULL) 1000 return -EINVAL; 1001 } else 1002 xfer = NULL; 1003 1004 err = loop_init_xfer(lo, xfer, info); 1005 if (err) 1006 return err; 1007 1008 if (lo->lo_offset != info->lo_offset || 1009 lo->lo_sizelimit != info->lo_sizelimit) { 1010 lo->lo_offset = info->lo_offset; 1011 lo->lo_sizelimit = info->lo_sizelimit; 1012 if (figure_loop_size(lo)) 1013 return -EFBIG; 1014 } 1015 1016 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1017 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1018 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1019 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1020 1021 if (!xfer) 1022 xfer = &none_funcs; 1023 lo->transfer = xfer->transfer; 1024 lo->ioctl = xfer->ioctl; 1025 1026 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1027 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1028 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1029 1030 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1031 lo->lo_init[0] = info->lo_init[0]; 1032 lo->lo_init[1] = info->lo_init[1]; 1033 if (info->lo_encrypt_key_size) { 1034 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1035 info->lo_encrypt_key_size); 1036 lo->lo_key_owner = uid; 1037 } 1038 1039 return 0; 1040 } 1041 1042 static int 1043 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1044 { 1045 struct file *file = lo->lo_backing_file; 1046 struct kstat stat; 1047 int error; 1048 1049 if (lo->lo_state != Lo_bound) 1050 return -ENXIO; 1051 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1052 if (error) 1053 return error; 1054 memset(info, 0, sizeof(*info)); 1055 info->lo_number = lo->lo_number; 1056 info->lo_device = huge_encode_dev(stat.dev); 1057 info->lo_inode = stat.ino; 1058 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1059 info->lo_offset = lo->lo_offset; 1060 info->lo_sizelimit = lo->lo_sizelimit; 1061 info->lo_flags = lo->lo_flags; 1062 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1063 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1064 info->lo_encrypt_type = 1065 lo->lo_encryption ? lo->lo_encryption->number : 0; 1066 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1067 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1068 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1069 lo->lo_encrypt_key_size); 1070 } 1071 return 0; 1072 } 1073 1074 static void 1075 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1076 { 1077 memset(info64, 0, sizeof(*info64)); 1078 info64->lo_number = info->lo_number; 1079 info64->lo_device = info->lo_device; 1080 info64->lo_inode = info->lo_inode; 1081 info64->lo_rdevice = info->lo_rdevice; 1082 info64->lo_offset = info->lo_offset; 1083 info64->lo_sizelimit = 0; 1084 info64->lo_encrypt_type = info->lo_encrypt_type; 1085 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1086 info64->lo_flags = info->lo_flags; 1087 info64->lo_init[0] = info->lo_init[0]; 1088 info64->lo_init[1] = info->lo_init[1]; 1089 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1090 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1091 else 1092 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1093 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1094 } 1095 1096 static int 1097 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1098 { 1099 memset(info, 0, sizeof(*info)); 1100 info->lo_number = info64->lo_number; 1101 info->lo_device = info64->lo_device; 1102 info->lo_inode = info64->lo_inode; 1103 info->lo_rdevice = info64->lo_rdevice; 1104 info->lo_offset = info64->lo_offset; 1105 info->lo_encrypt_type = info64->lo_encrypt_type; 1106 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1107 info->lo_flags = info64->lo_flags; 1108 info->lo_init[0] = info64->lo_init[0]; 1109 info->lo_init[1] = info64->lo_init[1]; 1110 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1111 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1112 else 1113 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1114 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1115 1116 /* error in case values were truncated */ 1117 if (info->lo_device != info64->lo_device || 1118 info->lo_rdevice != info64->lo_rdevice || 1119 info->lo_inode != info64->lo_inode || 1120 info->lo_offset != info64->lo_offset) 1121 return -EOVERFLOW; 1122 1123 return 0; 1124 } 1125 1126 static int 1127 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1128 { 1129 struct loop_info info; 1130 struct loop_info64 info64; 1131 1132 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1133 return -EFAULT; 1134 loop_info64_from_old(&info, &info64); 1135 return loop_set_status(lo, &info64); 1136 } 1137 1138 static int 1139 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1140 { 1141 struct loop_info64 info64; 1142 1143 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1144 return -EFAULT; 1145 return loop_set_status(lo, &info64); 1146 } 1147 1148 static int 1149 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1150 struct loop_info info; 1151 struct loop_info64 info64; 1152 int err = 0; 1153 1154 if (!arg) 1155 err = -EINVAL; 1156 if (!err) 1157 err = loop_get_status(lo, &info64); 1158 if (!err) 1159 err = loop_info64_to_old(&info64, &info); 1160 if (!err && copy_to_user(arg, &info, sizeof(info))) 1161 err = -EFAULT; 1162 1163 return err; 1164 } 1165 1166 static int 1167 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1168 struct loop_info64 info64; 1169 int err = 0; 1170 1171 if (!arg) 1172 err = -EINVAL; 1173 if (!err) 1174 err = loop_get_status(lo, &info64); 1175 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1176 err = -EFAULT; 1177 1178 return err; 1179 } 1180 1181 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1182 { 1183 int err; 1184 sector_t sec; 1185 loff_t sz; 1186 1187 err = -ENXIO; 1188 if (unlikely(lo->lo_state != Lo_bound)) 1189 goto out; 1190 err = figure_loop_size(lo); 1191 if (unlikely(err)) 1192 goto out; 1193 sec = get_capacity(lo->lo_disk); 1194 /* the width of sector_t may be narrow for bit-shift */ 1195 sz = sec; 1196 sz <<= 9; 1197 mutex_lock(&bdev->bd_mutex); 1198 bd_set_size(bdev, sz); 1199 /* let user-space know about the new size */ 1200 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1201 mutex_unlock(&bdev->bd_mutex); 1202 1203 out: 1204 return err; 1205 } 1206 1207 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1208 unsigned int cmd, unsigned long arg) 1209 { 1210 struct loop_device *lo = bdev->bd_disk->private_data; 1211 int err; 1212 1213 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1214 switch (cmd) { 1215 case LOOP_SET_FD: 1216 err = loop_set_fd(lo, mode, bdev, arg); 1217 break; 1218 case LOOP_CHANGE_FD: 1219 err = loop_change_fd(lo, bdev, arg); 1220 break; 1221 case LOOP_CLR_FD: 1222 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1223 err = loop_clr_fd(lo, bdev); 1224 if (!err) 1225 goto out_unlocked; 1226 break; 1227 case LOOP_SET_STATUS: 1228 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1229 break; 1230 case LOOP_GET_STATUS: 1231 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1232 break; 1233 case LOOP_SET_STATUS64: 1234 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1235 break; 1236 case LOOP_GET_STATUS64: 1237 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1238 break; 1239 case LOOP_SET_CAPACITY: 1240 err = -EPERM; 1241 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1242 err = loop_set_capacity(lo, bdev); 1243 break; 1244 default: 1245 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1246 } 1247 mutex_unlock(&lo->lo_ctl_mutex); 1248 1249 out_unlocked: 1250 return err; 1251 } 1252 1253 #ifdef CONFIG_COMPAT 1254 struct compat_loop_info { 1255 compat_int_t lo_number; /* ioctl r/o */ 1256 compat_dev_t lo_device; /* ioctl r/o */ 1257 compat_ulong_t lo_inode; /* ioctl r/o */ 1258 compat_dev_t lo_rdevice; /* ioctl r/o */ 1259 compat_int_t lo_offset; 1260 compat_int_t lo_encrypt_type; 1261 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1262 compat_int_t lo_flags; /* ioctl r/o */ 1263 char lo_name[LO_NAME_SIZE]; 1264 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1265 compat_ulong_t lo_init[2]; 1266 char reserved[4]; 1267 }; 1268 1269 /* 1270 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1271 * - noinlined to reduce stack space usage in main part of driver 1272 */ 1273 static noinline int 1274 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1275 struct loop_info64 *info64) 1276 { 1277 struct compat_loop_info info; 1278 1279 if (copy_from_user(&info, arg, sizeof(info))) 1280 return -EFAULT; 1281 1282 memset(info64, 0, sizeof(*info64)); 1283 info64->lo_number = info.lo_number; 1284 info64->lo_device = info.lo_device; 1285 info64->lo_inode = info.lo_inode; 1286 info64->lo_rdevice = info.lo_rdevice; 1287 info64->lo_offset = info.lo_offset; 1288 info64->lo_sizelimit = 0; 1289 info64->lo_encrypt_type = info.lo_encrypt_type; 1290 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1291 info64->lo_flags = info.lo_flags; 1292 info64->lo_init[0] = info.lo_init[0]; 1293 info64->lo_init[1] = info.lo_init[1]; 1294 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1295 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1296 else 1297 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1298 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1299 return 0; 1300 } 1301 1302 /* 1303 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1304 * - noinlined to reduce stack space usage in main part of driver 1305 */ 1306 static noinline int 1307 loop_info64_to_compat(const struct loop_info64 *info64, 1308 struct compat_loop_info __user *arg) 1309 { 1310 struct compat_loop_info info; 1311 1312 memset(&info, 0, sizeof(info)); 1313 info.lo_number = info64->lo_number; 1314 info.lo_device = info64->lo_device; 1315 info.lo_inode = info64->lo_inode; 1316 info.lo_rdevice = info64->lo_rdevice; 1317 info.lo_offset = info64->lo_offset; 1318 info.lo_encrypt_type = info64->lo_encrypt_type; 1319 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1320 info.lo_flags = info64->lo_flags; 1321 info.lo_init[0] = info64->lo_init[0]; 1322 info.lo_init[1] = info64->lo_init[1]; 1323 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1324 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1325 else 1326 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1327 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1328 1329 /* error in case values were truncated */ 1330 if (info.lo_device != info64->lo_device || 1331 info.lo_rdevice != info64->lo_rdevice || 1332 info.lo_inode != info64->lo_inode || 1333 info.lo_offset != info64->lo_offset || 1334 info.lo_init[0] != info64->lo_init[0] || 1335 info.lo_init[1] != info64->lo_init[1]) 1336 return -EOVERFLOW; 1337 1338 if (copy_to_user(arg, &info, sizeof(info))) 1339 return -EFAULT; 1340 return 0; 1341 } 1342 1343 static int 1344 loop_set_status_compat(struct loop_device *lo, 1345 const struct compat_loop_info __user *arg) 1346 { 1347 struct loop_info64 info64; 1348 int ret; 1349 1350 ret = loop_info64_from_compat(arg, &info64); 1351 if (ret < 0) 1352 return ret; 1353 return loop_set_status(lo, &info64); 1354 } 1355 1356 static int 1357 loop_get_status_compat(struct loop_device *lo, 1358 struct compat_loop_info __user *arg) 1359 { 1360 struct loop_info64 info64; 1361 int err = 0; 1362 1363 if (!arg) 1364 err = -EINVAL; 1365 if (!err) 1366 err = loop_get_status(lo, &info64); 1367 if (!err) 1368 err = loop_info64_to_compat(&info64, arg); 1369 return err; 1370 } 1371 1372 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1373 unsigned int cmd, unsigned long arg) 1374 { 1375 struct loop_device *lo = bdev->bd_disk->private_data; 1376 int err; 1377 1378 switch(cmd) { 1379 case LOOP_SET_STATUS: 1380 mutex_lock(&lo->lo_ctl_mutex); 1381 err = loop_set_status_compat( 1382 lo, (const struct compat_loop_info __user *) arg); 1383 mutex_unlock(&lo->lo_ctl_mutex); 1384 break; 1385 case LOOP_GET_STATUS: 1386 mutex_lock(&lo->lo_ctl_mutex); 1387 err = loop_get_status_compat( 1388 lo, (struct compat_loop_info __user *) arg); 1389 mutex_unlock(&lo->lo_ctl_mutex); 1390 break; 1391 case LOOP_SET_CAPACITY: 1392 case LOOP_CLR_FD: 1393 case LOOP_GET_STATUS64: 1394 case LOOP_SET_STATUS64: 1395 arg = (unsigned long) compat_ptr(arg); 1396 case LOOP_SET_FD: 1397 case LOOP_CHANGE_FD: 1398 err = lo_ioctl(bdev, mode, cmd, arg); 1399 break; 1400 default: 1401 err = -ENOIOCTLCMD; 1402 break; 1403 } 1404 return err; 1405 } 1406 #endif 1407 1408 static int lo_open(struct block_device *bdev, fmode_t mode) 1409 { 1410 struct loop_device *lo = bdev->bd_disk->private_data; 1411 1412 lock_kernel(); 1413 mutex_lock(&lo->lo_ctl_mutex); 1414 lo->lo_refcnt++; 1415 mutex_unlock(&lo->lo_ctl_mutex); 1416 unlock_kernel(); 1417 1418 return 0; 1419 } 1420 1421 static int lo_release(struct gendisk *disk, fmode_t mode) 1422 { 1423 struct loop_device *lo = disk->private_data; 1424 int err; 1425 1426 lock_kernel(); 1427 mutex_lock(&lo->lo_ctl_mutex); 1428 1429 if (--lo->lo_refcnt) 1430 goto out; 1431 1432 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1433 /* 1434 * In autoclear mode, stop the loop thread 1435 * and remove configuration after last close. 1436 */ 1437 err = loop_clr_fd(lo, NULL); 1438 if (!err) 1439 goto out_unlocked; 1440 } else { 1441 /* 1442 * Otherwise keep thread (if running) and config, 1443 * but flush possible ongoing bios in thread. 1444 */ 1445 loop_flush(lo); 1446 } 1447 1448 out: 1449 mutex_unlock(&lo->lo_ctl_mutex); 1450 out_unlocked: 1451 lock_kernel(); 1452 return 0; 1453 } 1454 1455 static const struct block_device_operations lo_fops = { 1456 .owner = THIS_MODULE, 1457 .open = lo_open, 1458 .release = lo_release, 1459 .ioctl = lo_ioctl, 1460 #ifdef CONFIG_COMPAT 1461 .compat_ioctl = lo_compat_ioctl, 1462 #endif 1463 }; 1464 1465 /* 1466 * And now the modules code and kernel interface. 1467 */ 1468 static int max_loop; 1469 module_param(max_loop, int, 0); 1470 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1471 module_param(max_part, int, 0); 1472 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1473 MODULE_LICENSE("GPL"); 1474 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1475 1476 int loop_register_transfer(struct loop_func_table *funcs) 1477 { 1478 unsigned int n = funcs->number; 1479 1480 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1481 return -EINVAL; 1482 xfer_funcs[n] = funcs; 1483 return 0; 1484 } 1485 1486 int loop_unregister_transfer(int number) 1487 { 1488 unsigned int n = number; 1489 struct loop_device *lo; 1490 struct loop_func_table *xfer; 1491 1492 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1493 return -EINVAL; 1494 1495 xfer_funcs[n] = NULL; 1496 1497 list_for_each_entry(lo, &loop_devices, lo_list) { 1498 mutex_lock(&lo->lo_ctl_mutex); 1499 1500 if (lo->lo_encryption == xfer) 1501 loop_release_xfer(lo); 1502 1503 mutex_unlock(&lo->lo_ctl_mutex); 1504 } 1505 1506 return 0; 1507 } 1508 1509 EXPORT_SYMBOL(loop_register_transfer); 1510 EXPORT_SYMBOL(loop_unregister_transfer); 1511 1512 static struct loop_device *loop_alloc(int i) 1513 { 1514 struct loop_device *lo; 1515 struct gendisk *disk; 1516 1517 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1518 if (!lo) 1519 goto out; 1520 1521 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1522 if (!lo->lo_queue) 1523 goto out_free_dev; 1524 1525 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1526 if (!disk) 1527 goto out_free_queue; 1528 1529 mutex_init(&lo->lo_ctl_mutex); 1530 lo->lo_number = i; 1531 lo->lo_thread = NULL; 1532 init_waitqueue_head(&lo->lo_event); 1533 spin_lock_init(&lo->lo_lock); 1534 disk->major = LOOP_MAJOR; 1535 disk->first_minor = i << part_shift; 1536 disk->fops = &lo_fops; 1537 disk->private_data = lo; 1538 disk->queue = lo->lo_queue; 1539 sprintf(disk->disk_name, "loop%d", i); 1540 return lo; 1541 1542 out_free_queue: 1543 blk_cleanup_queue(lo->lo_queue); 1544 out_free_dev: 1545 kfree(lo); 1546 out: 1547 return NULL; 1548 } 1549 1550 static void loop_free(struct loop_device *lo) 1551 { 1552 blk_cleanup_queue(lo->lo_queue); 1553 put_disk(lo->lo_disk); 1554 list_del(&lo->lo_list); 1555 kfree(lo); 1556 } 1557 1558 static struct loop_device *loop_init_one(int i) 1559 { 1560 struct loop_device *lo; 1561 1562 list_for_each_entry(lo, &loop_devices, lo_list) { 1563 if (lo->lo_number == i) 1564 return lo; 1565 } 1566 1567 lo = loop_alloc(i); 1568 if (lo) { 1569 add_disk(lo->lo_disk); 1570 list_add_tail(&lo->lo_list, &loop_devices); 1571 } 1572 return lo; 1573 } 1574 1575 static void loop_del_one(struct loop_device *lo) 1576 { 1577 del_gendisk(lo->lo_disk); 1578 loop_free(lo); 1579 } 1580 1581 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1582 { 1583 struct loop_device *lo; 1584 struct kobject *kobj; 1585 1586 mutex_lock(&loop_devices_mutex); 1587 lo = loop_init_one(dev & MINORMASK); 1588 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1589 mutex_unlock(&loop_devices_mutex); 1590 1591 *part = 0; 1592 return kobj; 1593 } 1594 1595 static int __init loop_init(void) 1596 { 1597 int i, nr; 1598 unsigned long range; 1599 struct loop_device *lo, *next; 1600 1601 /* 1602 * loop module now has a feature to instantiate underlying device 1603 * structure on-demand, provided that there is an access dev node. 1604 * However, this will not work well with user space tool that doesn't 1605 * know about such "feature". In order to not break any existing 1606 * tool, we do the following: 1607 * 1608 * (1) if max_loop is specified, create that many upfront, and this 1609 * also becomes a hard limit. 1610 * (2) if max_loop is not specified, create 8 loop device on module 1611 * load, user can further extend loop device by create dev node 1612 * themselves and have kernel automatically instantiate actual 1613 * device on-demand. 1614 */ 1615 1616 part_shift = 0; 1617 if (max_part > 0) 1618 part_shift = fls(max_part); 1619 1620 if (max_loop > 1UL << (MINORBITS - part_shift)) 1621 return -EINVAL; 1622 1623 if (max_loop) { 1624 nr = max_loop; 1625 range = max_loop; 1626 } else { 1627 nr = 8; 1628 range = 1UL << (MINORBITS - part_shift); 1629 } 1630 1631 if (register_blkdev(LOOP_MAJOR, "loop")) 1632 return -EIO; 1633 1634 for (i = 0; i < nr; i++) { 1635 lo = loop_alloc(i); 1636 if (!lo) 1637 goto Enomem; 1638 list_add_tail(&lo->lo_list, &loop_devices); 1639 } 1640 1641 /* point of no return */ 1642 1643 list_for_each_entry(lo, &loop_devices, lo_list) 1644 add_disk(lo->lo_disk); 1645 1646 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1647 THIS_MODULE, loop_probe, NULL, NULL); 1648 1649 printk(KERN_INFO "loop: module loaded\n"); 1650 return 0; 1651 1652 Enomem: 1653 printk(KERN_INFO "loop: out of memory\n"); 1654 1655 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1656 loop_free(lo); 1657 1658 unregister_blkdev(LOOP_MAJOR, "loop"); 1659 return -ENOMEM; 1660 } 1661 1662 static void __exit loop_exit(void) 1663 { 1664 unsigned long range; 1665 struct loop_device *lo, *next; 1666 1667 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1668 1669 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1670 loop_del_one(lo); 1671 1672 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1673 unregister_blkdev(LOOP_MAJOR, "loop"); 1674 } 1675 1676 module_init(loop_init); 1677 module_exit(loop_exit); 1678 1679 #ifndef MODULE 1680 static int __init max_loop_setup(char *str) 1681 { 1682 max_loop = simple_strtol(str, NULL, 0); 1683 return 1; 1684 } 1685 1686 __setup("max_loop=", max_loop_setup); 1687 #endif 1688