1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/loop.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/kthread.h> 76 #include <linux/splice.h> 77 #include <linux/sysfs.h> 78 79 #include <asm/uaccess.h> 80 81 static DEFINE_MUTEX(loop_mutex); 82 static LIST_HEAD(loop_devices); 83 static DEFINE_MUTEX(loop_devices_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(loop_buf, KM_USER1); 105 kunmap_atomic(raw_buf, KM_USER0); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(loop_buf, KM_USER1); 134 kunmap_atomic(raw_buf, KM_USER0); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 loff_t size, offset, loopsize; 166 167 /* Compute loopsize in bytes */ 168 size = i_size_read(file->f_mapping->host); 169 offset = lo->lo_offset; 170 loopsize = size - offset; 171 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 172 loopsize = lo->lo_sizelimit; 173 174 /* 175 * Unfortunately, if we want to do I/O on the device, 176 * the number of 512-byte sectors has to fit into a sector_t. 177 */ 178 return loopsize >> 9; 179 } 180 181 static int 182 figure_loop_size(struct loop_device *lo) 183 { 184 loff_t size = get_loop_size(lo, lo->lo_backing_file); 185 sector_t x = (sector_t)size; 186 187 if (unlikely((loff_t)x != size)) 188 return -EFBIG; 189 190 set_capacity(lo->lo_disk, x); 191 return 0; 192 } 193 194 static inline int 195 lo_do_transfer(struct loop_device *lo, int cmd, 196 struct page *rpage, unsigned roffs, 197 struct page *lpage, unsigned loffs, 198 int size, sector_t rblock) 199 { 200 if (unlikely(!lo->transfer)) 201 return 0; 202 203 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 204 } 205 206 /** 207 * do_lo_send_aops - helper for writing data to a loop device 208 * 209 * This is the fast version for backing filesystems which implement the address 210 * space operations write_begin and write_end. 211 */ 212 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 213 loff_t pos, struct page *unused) 214 { 215 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 216 struct address_space *mapping = file->f_mapping; 217 pgoff_t index; 218 unsigned offset, bv_offs; 219 int len, ret; 220 221 mutex_lock(&mapping->host->i_mutex); 222 index = pos >> PAGE_CACHE_SHIFT; 223 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 224 bv_offs = bvec->bv_offset; 225 len = bvec->bv_len; 226 while (len > 0) { 227 sector_t IV; 228 unsigned size, copied; 229 int transfer_result; 230 struct page *page; 231 void *fsdata; 232 233 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 234 size = PAGE_CACHE_SIZE - offset; 235 if (size > len) 236 size = len; 237 238 ret = pagecache_write_begin(file, mapping, pos, size, 0, 239 &page, &fsdata); 240 if (ret) 241 goto fail; 242 243 file_update_time(file); 244 245 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 246 bvec->bv_page, bv_offs, size, IV); 247 copied = size; 248 if (unlikely(transfer_result)) 249 copied = 0; 250 251 ret = pagecache_write_end(file, mapping, pos, size, copied, 252 page, fsdata); 253 if (ret < 0 || ret != copied) 254 goto fail; 255 256 if (unlikely(transfer_result)) 257 goto fail; 258 259 bv_offs += copied; 260 len -= copied; 261 offset = 0; 262 index++; 263 pos += copied; 264 } 265 ret = 0; 266 out: 267 mutex_unlock(&mapping->host->i_mutex); 268 return ret; 269 fail: 270 ret = -1; 271 goto out; 272 } 273 274 /** 275 * __do_lo_send_write - helper for writing data to a loop device 276 * 277 * This helper just factors out common code between do_lo_send_direct_write() 278 * and do_lo_send_write(). 279 */ 280 static int __do_lo_send_write(struct file *file, 281 u8 *buf, const int len, loff_t pos) 282 { 283 ssize_t bw; 284 mm_segment_t old_fs = get_fs(); 285 286 set_fs(get_ds()); 287 bw = file->f_op->write(file, buf, len, &pos); 288 set_fs(old_fs); 289 if (likely(bw == len)) 290 return 0; 291 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 292 (unsigned long long)pos, len); 293 if (bw >= 0) 294 bw = -EIO; 295 return bw; 296 } 297 298 /** 299 * do_lo_send_direct_write - helper for writing data to a loop device 300 * 301 * This is the fast, non-transforming version for backing filesystems which do 302 * not implement the address space operations write_begin and write_end. 303 * It uses the write file operation which should be present on all writeable 304 * filesystems. 305 */ 306 static int do_lo_send_direct_write(struct loop_device *lo, 307 struct bio_vec *bvec, loff_t pos, struct page *page) 308 { 309 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 310 kmap(bvec->bv_page) + bvec->bv_offset, 311 bvec->bv_len, pos); 312 kunmap(bvec->bv_page); 313 cond_resched(); 314 return bw; 315 } 316 317 /** 318 * do_lo_send_write - helper for writing data to a loop device 319 * 320 * This is the slow, transforming version for filesystems which do not 321 * implement the address space operations write_begin and write_end. It 322 * uses the write file operation which should be present on all writeable 323 * filesystems. 324 * 325 * Using fops->write is slower than using aops->{prepare,commit}_write in the 326 * transforming case because we need to double buffer the data as we cannot do 327 * the transformations in place as we do not have direct access to the 328 * destination pages of the backing file. 329 */ 330 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 331 loff_t pos, struct page *page) 332 { 333 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 334 bvec->bv_offset, bvec->bv_len, pos >> 9); 335 if (likely(!ret)) 336 return __do_lo_send_write(lo->lo_backing_file, 337 page_address(page), bvec->bv_len, 338 pos); 339 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 340 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 341 if (ret > 0) 342 ret = -EIO; 343 return ret; 344 } 345 346 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 347 { 348 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 349 struct page *page); 350 struct bio_vec *bvec; 351 struct page *page = NULL; 352 int i, ret = 0; 353 354 do_lo_send = do_lo_send_aops; 355 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 356 do_lo_send = do_lo_send_direct_write; 357 if (lo->transfer != transfer_none) { 358 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 359 if (unlikely(!page)) 360 goto fail; 361 kmap(page); 362 do_lo_send = do_lo_send_write; 363 } 364 } 365 bio_for_each_segment(bvec, bio, i) { 366 ret = do_lo_send(lo, bvec, pos, page); 367 if (ret < 0) 368 break; 369 pos += bvec->bv_len; 370 } 371 if (page) { 372 kunmap(page); 373 __free_page(page); 374 } 375 out: 376 return ret; 377 fail: 378 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 379 ret = -ENOMEM; 380 goto out; 381 } 382 383 struct lo_read_data { 384 struct loop_device *lo; 385 struct page *page; 386 unsigned offset; 387 int bsize; 388 }; 389 390 static int 391 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 392 struct splice_desc *sd) 393 { 394 struct lo_read_data *p = sd->u.data; 395 struct loop_device *lo = p->lo; 396 struct page *page = buf->page; 397 sector_t IV; 398 int size, ret; 399 400 ret = buf->ops->confirm(pipe, buf); 401 if (unlikely(ret)) 402 return ret; 403 404 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 405 (buf->offset >> 9); 406 size = sd->len; 407 if (size > p->bsize) 408 size = p->bsize; 409 410 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 411 printk(KERN_ERR "loop: transfer error block %ld\n", 412 page->index); 413 size = -EINVAL; 414 } 415 416 flush_dcache_page(p->page); 417 418 if (size > 0) 419 p->offset += size; 420 421 return size; 422 } 423 424 static int 425 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 426 { 427 return __splice_from_pipe(pipe, sd, lo_splice_actor); 428 } 429 430 static int 431 do_lo_receive(struct loop_device *lo, 432 struct bio_vec *bvec, int bsize, loff_t pos) 433 { 434 struct lo_read_data cookie; 435 struct splice_desc sd; 436 struct file *file; 437 long retval; 438 439 cookie.lo = lo; 440 cookie.page = bvec->bv_page; 441 cookie.offset = bvec->bv_offset; 442 cookie.bsize = bsize; 443 444 sd.len = 0; 445 sd.total_len = bvec->bv_len; 446 sd.flags = 0; 447 sd.pos = pos; 448 sd.u.data = &cookie; 449 450 file = lo->lo_backing_file; 451 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 452 453 if (retval < 0) 454 return retval; 455 456 return 0; 457 } 458 459 static int 460 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 461 { 462 struct bio_vec *bvec; 463 int i, ret = 0; 464 465 bio_for_each_segment(bvec, bio, i) { 466 ret = do_lo_receive(lo, bvec, bsize, pos); 467 if (ret < 0) 468 break; 469 pos += bvec->bv_len; 470 } 471 return ret; 472 } 473 474 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 475 { 476 loff_t pos; 477 int ret; 478 479 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 480 481 if (bio_rw(bio) == WRITE) { 482 struct file *file = lo->lo_backing_file; 483 484 /* REQ_HARDBARRIER is deprecated */ 485 if (bio->bi_rw & REQ_HARDBARRIER) { 486 ret = -EOPNOTSUPP; 487 goto out; 488 } 489 490 if (bio->bi_rw & REQ_FLUSH) { 491 ret = vfs_fsync(file, 0); 492 if (unlikely(ret && ret != -EINVAL)) { 493 ret = -EIO; 494 goto out; 495 } 496 } 497 498 ret = lo_send(lo, bio, pos); 499 500 if ((bio->bi_rw & REQ_FUA) && !ret) { 501 ret = vfs_fsync(file, 0); 502 if (unlikely(ret && ret != -EINVAL)) 503 ret = -EIO; 504 } 505 } else 506 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 507 508 out: 509 return ret; 510 } 511 512 /* 513 * Add bio to back of pending list 514 */ 515 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 516 { 517 bio_list_add(&lo->lo_bio_list, bio); 518 } 519 520 /* 521 * Grab first pending buffer 522 */ 523 static struct bio *loop_get_bio(struct loop_device *lo) 524 { 525 return bio_list_pop(&lo->lo_bio_list); 526 } 527 528 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 529 { 530 struct loop_device *lo = q->queuedata; 531 int rw = bio_rw(old_bio); 532 533 if (rw == READA) 534 rw = READ; 535 536 BUG_ON(!lo || (rw != READ && rw != WRITE)); 537 538 spin_lock_irq(&lo->lo_lock); 539 if (lo->lo_state != Lo_bound) 540 goto out; 541 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 542 goto out; 543 loop_add_bio(lo, old_bio); 544 wake_up(&lo->lo_event); 545 spin_unlock_irq(&lo->lo_lock); 546 return 0; 547 548 out: 549 spin_unlock_irq(&lo->lo_lock); 550 bio_io_error(old_bio); 551 return 0; 552 } 553 554 /* 555 * kick off io on the underlying address space 556 */ 557 static void loop_unplug(struct request_queue *q) 558 { 559 struct loop_device *lo = q->queuedata; 560 561 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 562 blk_run_address_space(lo->lo_backing_file->f_mapping); 563 } 564 565 struct switch_request { 566 struct file *file; 567 struct completion wait; 568 }; 569 570 static void do_loop_switch(struct loop_device *, struct switch_request *); 571 572 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 573 { 574 if (unlikely(!bio->bi_bdev)) { 575 do_loop_switch(lo, bio->bi_private); 576 bio_put(bio); 577 } else { 578 int ret = do_bio_filebacked(lo, bio); 579 bio_endio(bio, ret); 580 } 581 } 582 583 /* 584 * worker thread that handles reads/writes to file backed loop devices, 585 * to avoid blocking in our make_request_fn. it also does loop decrypting 586 * on reads for block backed loop, as that is too heavy to do from 587 * b_end_io context where irqs may be disabled. 588 * 589 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 590 * calling kthread_stop(). Therefore once kthread_should_stop() is 591 * true, make_request will not place any more requests. Therefore 592 * once kthread_should_stop() is true and lo_bio is NULL, we are 593 * done with the loop. 594 */ 595 static int loop_thread(void *data) 596 { 597 struct loop_device *lo = data; 598 struct bio *bio; 599 600 set_user_nice(current, -20); 601 602 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 603 604 wait_event_interruptible(lo->lo_event, 605 !bio_list_empty(&lo->lo_bio_list) || 606 kthread_should_stop()); 607 608 if (bio_list_empty(&lo->lo_bio_list)) 609 continue; 610 spin_lock_irq(&lo->lo_lock); 611 bio = loop_get_bio(lo); 612 spin_unlock_irq(&lo->lo_lock); 613 614 BUG_ON(!bio); 615 loop_handle_bio(lo, bio); 616 } 617 618 return 0; 619 } 620 621 /* 622 * loop_switch performs the hard work of switching a backing store. 623 * First it needs to flush existing IO, it does this by sending a magic 624 * BIO down the pipe. The completion of this BIO does the actual switch. 625 */ 626 static int loop_switch(struct loop_device *lo, struct file *file) 627 { 628 struct switch_request w; 629 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 630 if (!bio) 631 return -ENOMEM; 632 init_completion(&w.wait); 633 w.file = file; 634 bio->bi_private = &w; 635 bio->bi_bdev = NULL; 636 loop_make_request(lo->lo_queue, bio); 637 wait_for_completion(&w.wait); 638 return 0; 639 } 640 641 /* 642 * Helper to flush the IOs in loop, but keeping loop thread running 643 */ 644 static int loop_flush(struct loop_device *lo) 645 { 646 /* loop not yet configured, no running thread, nothing to flush */ 647 if (!lo->lo_thread) 648 return 0; 649 650 return loop_switch(lo, NULL); 651 } 652 653 /* 654 * Do the actual switch; called from the BIO completion routine 655 */ 656 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 657 { 658 struct file *file = p->file; 659 struct file *old_file = lo->lo_backing_file; 660 struct address_space *mapping; 661 662 /* if no new file, only flush of queued bios requested */ 663 if (!file) 664 goto out; 665 666 mapping = file->f_mapping; 667 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 668 lo->lo_backing_file = file; 669 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 670 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 671 lo->old_gfp_mask = mapping_gfp_mask(mapping); 672 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 673 out: 674 complete(&p->wait); 675 } 676 677 678 /* 679 * loop_change_fd switched the backing store of a loopback device to 680 * a new file. This is useful for operating system installers to free up 681 * the original file and in High Availability environments to switch to 682 * an alternative location for the content in case of server meltdown. 683 * This can only work if the loop device is used read-only, and if the 684 * new backing store is the same size and type as the old backing store. 685 */ 686 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 687 unsigned int arg) 688 { 689 struct file *file, *old_file; 690 struct inode *inode; 691 int error; 692 693 error = -ENXIO; 694 if (lo->lo_state != Lo_bound) 695 goto out; 696 697 /* the loop device has to be read-only */ 698 error = -EINVAL; 699 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 700 goto out; 701 702 error = -EBADF; 703 file = fget(arg); 704 if (!file) 705 goto out; 706 707 inode = file->f_mapping->host; 708 old_file = lo->lo_backing_file; 709 710 error = -EINVAL; 711 712 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 713 goto out_putf; 714 715 /* size of the new backing store needs to be the same */ 716 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 717 goto out_putf; 718 719 /* and ... switch */ 720 error = loop_switch(lo, file); 721 if (error) 722 goto out_putf; 723 724 fput(old_file); 725 if (max_part > 0) 726 ioctl_by_bdev(bdev, BLKRRPART, 0); 727 return 0; 728 729 out_putf: 730 fput(file); 731 out: 732 return error; 733 } 734 735 static inline int is_loop_device(struct file *file) 736 { 737 struct inode *i = file->f_mapping->host; 738 739 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 740 } 741 742 /* loop sysfs attributes */ 743 744 static ssize_t loop_attr_show(struct device *dev, char *page, 745 ssize_t (*callback)(struct loop_device *, char *)) 746 { 747 struct loop_device *l, *lo = NULL; 748 749 mutex_lock(&loop_devices_mutex); 750 list_for_each_entry(l, &loop_devices, lo_list) 751 if (disk_to_dev(l->lo_disk) == dev) { 752 lo = l; 753 break; 754 } 755 mutex_unlock(&loop_devices_mutex); 756 757 return lo ? callback(lo, page) : -EIO; 758 } 759 760 #define LOOP_ATTR_RO(_name) \ 761 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 762 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 763 struct device_attribute *attr, char *b) \ 764 { \ 765 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 766 } \ 767 static struct device_attribute loop_attr_##_name = \ 768 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 769 770 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 771 { 772 ssize_t ret; 773 char *p = NULL; 774 775 mutex_lock(&lo->lo_ctl_mutex); 776 if (lo->lo_backing_file) 777 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 778 mutex_unlock(&lo->lo_ctl_mutex); 779 780 if (IS_ERR_OR_NULL(p)) 781 ret = PTR_ERR(p); 782 else { 783 ret = strlen(p); 784 memmove(buf, p, ret); 785 buf[ret++] = '\n'; 786 buf[ret] = 0; 787 } 788 789 return ret; 790 } 791 792 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 793 { 794 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 795 } 796 797 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 798 { 799 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 800 } 801 802 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 803 { 804 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 805 806 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 807 } 808 809 LOOP_ATTR_RO(backing_file); 810 LOOP_ATTR_RO(offset); 811 LOOP_ATTR_RO(sizelimit); 812 LOOP_ATTR_RO(autoclear); 813 814 static struct attribute *loop_attrs[] = { 815 &loop_attr_backing_file.attr, 816 &loop_attr_offset.attr, 817 &loop_attr_sizelimit.attr, 818 &loop_attr_autoclear.attr, 819 NULL, 820 }; 821 822 static struct attribute_group loop_attribute_group = { 823 .name = "loop", 824 .attrs= loop_attrs, 825 }; 826 827 static int loop_sysfs_init(struct loop_device *lo) 828 { 829 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 830 &loop_attribute_group); 831 } 832 833 static void loop_sysfs_exit(struct loop_device *lo) 834 { 835 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 836 &loop_attribute_group); 837 } 838 839 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 840 struct block_device *bdev, unsigned int arg) 841 { 842 struct file *file, *f; 843 struct inode *inode; 844 struct address_space *mapping; 845 unsigned lo_blocksize; 846 int lo_flags = 0; 847 int error; 848 loff_t size; 849 850 /* This is safe, since we have a reference from open(). */ 851 __module_get(THIS_MODULE); 852 853 error = -EBADF; 854 file = fget(arg); 855 if (!file) 856 goto out; 857 858 error = -EBUSY; 859 if (lo->lo_state != Lo_unbound) 860 goto out_putf; 861 862 /* Avoid recursion */ 863 f = file; 864 while (is_loop_device(f)) { 865 struct loop_device *l; 866 867 if (f->f_mapping->host->i_bdev == bdev) 868 goto out_putf; 869 870 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 871 if (l->lo_state == Lo_unbound) { 872 error = -EINVAL; 873 goto out_putf; 874 } 875 f = l->lo_backing_file; 876 } 877 878 mapping = file->f_mapping; 879 inode = mapping->host; 880 881 if (!(file->f_mode & FMODE_WRITE)) 882 lo_flags |= LO_FLAGS_READ_ONLY; 883 884 error = -EINVAL; 885 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 886 const struct address_space_operations *aops = mapping->a_ops; 887 888 if (aops->write_begin) 889 lo_flags |= LO_FLAGS_USE_AOPS; 890 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 891 lo_flags |= LO_FLAGS_READ_ONLY; 892 893 lo_blocksize = S_ISBLK(inode->i_mode) ? 894 inode->i_bdev->bd_block_size : PAGE_SIZE; 895 896 error = 0; 897 } else { 898 goto out_putf; 899 } 900 901 size = get_loop_size(lo, file); 902 903 if ((loff_t)(sector_t)size != size) { 904 error = -EFBIG; 905 goto out_putf; 906 } 907 908 if (!(mode & FMODE_WRITE)) 909 lo_flags |= LO_FLAGS_READ_ONLY; 910 911 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 912 913 lo->lo_blocksize = lo_blocksize; 914 lo->lo_device = bdev; 915 lo->lo_flags = lo_flags; 916 lo->lo_backing_file = file; 917 lo->transfer = transfer_none; 918 lo->ioctl = NULL; 919 lo->lo_sizelimit = 0; 920 lo->old_gfp_mask = mapping_gfp_mask(mapping); 921 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 922 923 bio_list_init(&lo->lo_bio_list); 924 925 /* 926 * set queue make_request_fn, and add limits based on lower level 927 * device 928 */ 929 blk_queue_make_request(lo->lo_queue, loop_make_request); 930 lo->lo_queue->queuedata = lo; 931 lo->lo_queue->unplug_fn = loop_unplug; 932 933 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 934 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 935 936 set_capacity(lo->lo_disk, size); 937 bd_set_size(bdev, size << 9); 938 loop_sysfs_init(lo); 939 /* let user-space know about the new size */ 940 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 941 942 set_blocksize(bdev, lo_blocksize); 943 944 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 945 lo->lo_number); 946 if (IS_ERR(lo->lo_thread)) { 947 error = PTR_ERR(lo->lo_thread); 948 goto out_clr; 949 } 950 lo->lo_state = Lo_bound; 951 wake_up_process(lo->lo_thread); 952 if (max_part > 0) 953 ioctl_by_bdev(bdev, BLKRRPART, 0); 954 return 0; 955 956 out_clr: 957 loop_sysfs_exit(lo); 958 lo->lo_thread = NULL; 959 lo->lo_device = NULL; 960 lo->lo_backing_file = NULL; 961 lo->lo_flags = 0; 962 set_capacity(lo->lo_disk, 0); 963 invalidate_bdev(bdev); 964 bd_set_size(bdev, 0); 965 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 966 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 967 lo->lo_state = Lo_unbound; 968 out_putf: 969 fput(file); 970 out: 971 /* This is safe: open() is still holding a reference. */ 972 module_put(THIS_MODULE); 973 return error; 974 } 975 976 static int 977 loop_release_xfer(struct loop_device *lo) 978 { 979 int err = 0; 980 struct loop_func_table *xfer = lo->lo_encryption; 981 982 if (xfer) { 983 if (xfer->release) 984 err = xfer->release(lo); 985 lo->transfer = NULL; 986 lo->lo_encryption = NULL; 987 module_put(xfer->owner); 988 } 989 return err; 990 } 991 992 static int 993 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 994 const struct loop_info64 *i) 995 { 996 int err = 0; 997 998 if (xfer) { 999 struct module *owner = xfer->owner; 1000 1001 if (!try_module_get(owner)) 1002 return -EINVAL; 1003 if (xfer->init) 1004 err = xfer->init(lo, i); 1005 if (err) 1006 module_put(owner); 1007 else 1008 lo->lo_encryption = xfer; 1009 } 1010 return err; 1011 } 1012 1013 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 1014 { 1015 struct file *filp = lo->lo_backing_file; 1016 gfp_t gfp = lo->old_gfp_mask; 1017 1018 if (lo->lo_state != Lo_bound) 1019 return -ENXIO; 1020 1021 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 1022 return -EBUSY; 1023 1024 if (filp == NULL) 1025 return -EINVAL; 1026 1027 spin_lock_irq(&lo->lo_lock); 1028 lo->lo_state = Lo_rundown; 1029 spin_unlock_irq(&lo->lo_lock); 1030 1031 kthread_stop(lo->lo_thread); 1032 1033 lo->lo_queue->unplug_fn = NULL; 1034 lo->lo_backing_file = NULL; 1035 1036 loop_release_xfer(lo); 1037 lo->transfer = NULL; 1038 lo->ioctl = NULL; 1039 lo->lo_device = NULL; 1040 lo->lo_encryption = NULL; 1041 lo->lo_offset = 0; 1042 lo->lo_sizelimit = 0; 1043 lo->lo_encrypt_key_size = 0; 1044 lo->lo_flags = 0; 1045 lo->lo_thread = NULL; 1046 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1047 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1048 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1049 if (bdev) 1050 invalidate_bdev(bdev); 1051 set_capacity(lo->lo_disk, 0); 1052 if (bdev) { 1053 bd_set_size(bdev, 0); 1054 loop_sysfs_exit(lo); 1055 /* let user-space know about this change */ 1056 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1057 } 1058 mapping_set_gfp_mask(filp->f_mapping, gfp); 1059 lo->lo_state = Lo_unbound; 1060 /* This is safe: open() is still holding a reference. */ 1061 module_put(THIS_MODULE); 1062 if (max_part > 0 && bdev) 1063 ioctl_by_bdev(bdev, BLKRRPART, 0); 1064 mutex_unlock(&lo->lo_ctl_mutex); 1065 /* 1066 * Need not hold lo_ctl_mutex to fput backing file. 1067 * Calling fput holding lo_ctl_mutex triggers a circular 1068 * lock dependency possibility warning as fput can take 1069 * bd_mutex which is usually taken before lo_ctl_mutex. 1070 */ 1071 fput(filp); 1072 return 0; 1073 } 1074 1075 static int 1076 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1077 { 1078 int err; 1079 struct loop_func_table *xfer; 1080 uid_t uid = current_uid(); 1081 1082 if (lo->lo_encrypt_key_size && 1083 lo->lo_key_owner != uid && 1084 !capable(CAP_SYS_ADMIN)) 1085 return -EPERM; 1086 if (lo->lo_state != Lo_bound) 1087 return -ENXIO; 1088 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1089 return -EINVAL; 1090 1091 err = loop_release_xfer(lo); 1092 if (err) 1093 return err; 1094 1095 if (info->lo_encrypt_type) { 1096 unsigned int type = info->lo_encrypt_type; 1097 1098 if (type >= MAX_LO_CRYPT) 1099 return -EINVAL; 1100 xfer = xfer_funcs[type]; 1101 if (xfer == NULL) 1102 return -EINVAL; 1103 } else 1104 xfer = NULL; 1105 1106 err = loop_init_xfer(lo, xfer, info); 1107 if (err) 1108 return err; 1109 1110 if (lo->lo_offset != info->lo_offset || 1111 lo->lo_sizelimit != info->lo_sizelimit) { 1112 lo->lo_offset = info->lo_offset; 1113 lo->lo_sizelimit = info->lo_sizelimit; 1114 if (figure_loop_size(lo)) 1115 return -EFBIG; 1116 } 1117 1118 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1119 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1120 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1121 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1122 1123 if (!xfer) 1124 xfer = &none_funcs; 1125 lo->transfer = xfer->transfer; 1126 lo->ioctl = xfer->ioctl; 1127 1128 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1129 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1130 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1131 1132 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1133 lo->lo_init[0] = info->lo_init[0]; 1134 lo->lo_init[1] = info->lo_init[1]; 1135 if (info->lo_encrypt_key_size) { 1136 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1137 info->lo_encrypt_key_size); 1138 lo->lo_key_owner = uid; 1139 } 1140 1141 return 0; 1142 } 1143 1144 static int 1145 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1146 { 1147 struct file *file = lo->lo_backing_file; 1148 struct kstat stat; 1149 int error; 1150 1151 if (lo->lo_state != Lo_bound) 1152 return -ENXIO; 1153 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1154 if (error) 1155 return error; 1156 memset(info, 0, sizeof(*info)); 1157 info->lo_number = lo->lo_number; 1158 info->lo_device = huge_encode_dev(stat.dev); 1159 info->lo_inode = stat.ino; 1160 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1161 info->lo_offset = lo->lo_offset; 1162 info->lo_sizelimit = lo->lo_sizelimit; 1163 info->lo_flags = lo->lo_flags; 1164 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1165 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1166 info->lo_encrypt_type = 1167 lo->lo_encryption ? lo->lo_encryption->number : 0; 1168 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1169 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1170 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1171 lo->lo_encrypt_key_size); 1172 } 1173 return 0; 1174 } 1175 1176 static void 1177 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1178 { 1179 memset(info64, 0, sizeof(*info64)); 1180 info64->lo_number = info->lo_number; 1181 info64->lo_device = info->lo_device; 1182 info64->lo_inode = info->lo_inode; 1183 info64->lo_rdevice = info->lo_rdevice; 1184 info64->lo_offset = info->lo_offset; 1185 info64->lo_sizelimit = 0; 1186 info64->lo_encrypt_type = info->lo_encrypt_type; 1187 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1188 info64->lo_flags = info->lo_flags; 1189 info64->lo_init[0] = info->lo_init[0]; 1190 info64->lo_init[1] = info->lo_init[1]; 1191 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1192 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1193 else 1194 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1195 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1196 } 1197 1198 static int 1199 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1200 { 1201 memset(info, 0, sizeof(*info)); 1202 info->lo_number = info64->lo_number; 1203 info->lo_device = info64->lo_device; 1204 info->lo_inode = info64->lo_inode; 1205 info->lo_rdevice = info64->lo_rdevice; 1206 info->lo_offset = info64->lo_offset; 1207 info->lo_encrypt_type = info64->lo_encrypt_type; 1208 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1209 info->lo_flags = info64->lo_flags; 1210 info->lo_init[0] = info64->lo_init[0]; 1211 info->lo_init[1] = info64->lo_init[1]; 1212 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1213 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1214 else 1215 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1216 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1217 1218 /* error in case values were truncated */ 1219 if (info->lo_device != info64->lo_device || 1220 info->lo_rdevice != info64->lo_rdevice || 1221 info->lo_inode != info64->lo_inode || 1222 info->lo_offset != info64->lo_offset) 1223 return -EOVERFLOW; 1224 1225 return 0; 1226 } 1227 1228 static int 1229 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1230 { 1231 struct loop_info info; 1232 struct loop_info64 info64; 1233 1234 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1235 return -EFAULT; 1236 loop_info64_from_old(&info, &info64); 1237 return loop_set_status(lo, &info64); 1238 } 1239 1240 static int 1241 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1242 { 1243 struct loop_info64 info64; 1244 1245 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1246 return -EFAULT; 1247 return loop_set_status(lo, &info64); 1248 } 1249 1250 static int 1251 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1252 struct loop_info info; 1253 struct loop_info64 info64; 1254 int err = 0; 1255 1256 if (!arg) 1257 err = -EINVAL; 1258 if (!err) 1259 err = loop_get_status(lo, &info64); 1260 if (!err) 1261 err = loop_info64_to_old(&info64, &info); 1262 if (!err && copy_to_user(arg, &info, sizeof(info))) 1263 err = -EFAULT; 1264 1265 return err; 1266 } 1267 1268 static int 1269 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1270 struct loop_info64 info64; 1271 int err = 0; 1272 1273 if (!arg) 1274 err = -EINVAL; 1275 if (!err) 1276 err = loop_get_status(lo, &info64); 1277 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1278 err = -EFAULT; 1279 1280 return err; 1281 } 1282 1283 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1284 { 1285 int err; 1286 sector_t sec; 1287 loff_t sz; 1288 1289 err = -ENXIO; 1290 if (unlikely(lo->lo_state != Lo_bound)) 1291 goto out; 1292 err = figure_loop_size(lo); 1293 if (unlikely(err)) 1294 goto out; 1295 sec = get_capacity(lo->lo_disk); 1296 /* the width of sector_t may be narrow for bit-shift */ 1297 sz = sec; 1298 sz <<= 9; 1299 mutex_lock(&bdev->bd_mutex); 1300 bd_set_size(bdev, sz); 1301 /* let user-space know about the new size */ 1302 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1303 mutex_unlock(&bdev->bd_mutex); 1304 1305 out: 1306 return err; 1307 } 1308 1309 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1310 unsigned int cmd, unsigned long arg) 1311 { 1312 struct loop_device *lo = bdev->bd_disk->private_data; 1313 int err; 1314 1315 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1316 switch (cmd) { 1317 case LOOP_SET_FD: 1318 err = loop_set_fd(lo, mode, bdev, arg); 1319 break; 1320 case LOOP_CHANGE_FD: 1321 err = loop_change_fd(lo, bdev, arg); 1322 break; 1323 case LOOP_CLR_FD: 1324 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1325 err = loop_clr_fd(lo, bdev); 1326 if (!err) 1327 goto out_unlocked; 1328 break; 1329 case LOOP_SET_STATUS: 1330 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1331 break; 1332 case LOOP_GET_STATUS: 1333 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1334 break; 1335 case LOOP_SET_STATUS64: 1336 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1337 break; 1338 case LOOP_GET_STATUS64: 1339 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1340 break; 1341 case LOOP_SET_CAPACITY: 1342 err = -EPERM; 1343 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1344 err = loop_set_capacity(lo, bdev); 1345 break; 1346 default: 1347 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1348 } 1349 mutex_unlock(&lo->lo_ctl_mutex); 1350 1351 out_unlocked: 1352 return err; 1353 } 1354 1355 #ifdef CONFIG_COMPAT 1356 struct compat_loop_info { 1357 compat_int_t lo_number; /* ioctl r/o */ 1358 compat_dev_t lo_device; /* ioctl r/o */ 1359 compat_ulong_t lo_inode; /* ioctl r/o */ 1360 compat_dev_t lo_rdevice; /* ioctl r/o */ 1361 compat_int_t lo_offset; 1362 compat_int_t lo_encrypt_type; 1363 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1364 compat_int_t lo_flags; /* ioctl r/o */ 1365 char lo_name[LO_NAME_SIZE]; 1366 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1367 compat_ulong_t lo_init[2]; 1368 char reserved[4]; 1369 }; 1370 1371 /* 1372 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1373 * - noinlined to reduce stack space usage in main part of driver 1374 */ 1375 static noinline int 1376 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1377 struct loop_info64 *info64) 1378 { 1379 struct compat_loop_info info; 1380 1381 if (copy_from_user(&info, arg, sizeof(info))) 1382 return -EFAULT; 1383 1384 memset(info64, 0, sizeof(*info64)); 1385 info64->lo_number = info.lo_number; 1386 info64->lo_device = info.lo_device; 1387 info64->lo_inode = info.lo_inode; 1388 info64->lo_rdevice = info.lo_rdevice; 1389 info64->lo_offset = info.lo_offset; 1390 info64->lo_sizelimit = 0; 1391 info64->lo_encrypt_type = info.lo_encrypt_type; 1392 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1393 info64->lo_flags = info.lo_flags; 1394 info64->lo_init[0] = info.lo_init[0]; 1395 info64->lo_init[1] = info.lo_init[1]; 1396 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1397 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1398 else 1399 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1400 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1401 return 0; 1402 } 1403 1404 /* 1405 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1406 * - noinlined to reduce stack space usage in main part of driver 1407 */ 1408 static noinline int 1409 loop_info64_to_compat(const struct loop_info64 *info64, 1410 struct compat_loop_info __user *arg) 1411 { 1412 struct compat_loop_info info; 1413 1414 memset(&info, 0, sizeof(info)); 1415 info.lo_number = info64->lo_number; 1416 info.lo_device = info64->lo_device; 1417 info.lo_inode = info64->lo_inode; 1418 info.lo_rdevice = info64->lo_rdevice; 1419 info.lo_offset = info64->lo_offset; 1420 info.lo_encrypt_type = info64->lo_encrypt_type; 1421 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1422 info.lo_flags = info64->lo_flags; 1423 info.lo_init[0] = info64->lo_init[0]; 1424 info.lo_init[1] = info64->lo_init[1]; 1425 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1426 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1427 else 1428 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1429 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1430 1431 /* error in case values were truncated */ 1432 if (info.lo_device != info64->lo_device || 1433 info.lo_rdevice != info64->lo_rdevice || 1434 info.lo_inode != info64->lo_inode || 1435 info.lo_offset != info64->lo_offset || 1436 info.lo_init[0] != info64->lo_init[0] || 1437 info.lo_init[1] != info64->lo_init[1]) 1438 return -EOVERFLOW; 1439 1440 if (copy_to_user(arg, &info, sizeof(info))) 1441 return -EFAULT; 1442 return 0; 1443 } 1444 1445 static int 1446 loop_set_status_compat(struct loop_device *lo, 1447 const struct compat_loop_info __user *arg) 1448 { 1449 struct loop_info64 info64; 1450 int ret; 1451 1452 ret = loop_info64_from_compat(arg, &info64); 1453 if (ret < 0) 1454 return ret; 1455 return loop_set_status(lo, &info64); 1456 } 1457 1458 static int 1459 loop_get_status_compat(struct loop_device *lo, 1460 struct compat_loop_info __user *arg) 1461 { 1462 struct loop_info64 info64; 1463 int err = 0; 1464 1465 if (!arg) 1466 err = -EINVAL; 1467 if (!err) 1468 err = loop_get_status(lo, &info64); 1469 if (!err) 1470 err = loop_info64_to_compat(&info64, arg); 1471 return err; 1472 } 1473 1474 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1475 unsigned int cmd, unsigned long arg) 1476 { 1477 struct loop_device *lo = bdev->bd_disk->private_data; 1478 int err; 1479 1480 switch(cmd) { 1481 case LOOP_SET_STATUS: 1482 mutex_lock(&lo->lo_ctl_mutex); 1483 err = loop_set_status_compat( 1484 lo, (const struct compat_loop_info __user *) arg); 1485 mutex_unlock(&lo->lo_ctl_mutex); 1486 break; 1487 case LOOP_GET_STATUS: 1488 mutex_lock(&lo->lo_ctl_mutex); 1489 err = loop_get_status_compat( 1490 lo, (struct compat_loop_info __user *) arg); 1491 mutex_unlock(&lo->lo_ctl_mutex); 1492 break; 1493 case LOOP_SET_CAPACITY: 1494 case LOOP_CLR_FD: 1495 case LOOP_GET_STATUS64: 1496 case LOOP_SET_STATUS64: 1497 arg = (unsigned long) compat_ptr(arg); 1498 case LOOP_SET_FD: 1499 case LOOP_CHANGE_FD: 1500 err = lo_ioctl(bdev, mode, cmd, arg); 1501 break; 1502 default: 1503 err = -ENOIOCTLCMD; 1504 break; 1505 } 1506 return err; 1507 } 1508 #endif 1509 1510 static int lo_open(struct block_device *bdev, fmode_t mode) 1511 { 1512 struct loop_device *lo = bdev->bd_disk->private_data; 1513 1514 mutex_lock(&loop_mutex); 1515 mutex_lock(&lo->lo_ctl_mutex); 1516 lo->lo_refcnt++; 1517 mutex_unlock(&lo->lo_ctl_mutex); 1518 mutex_unlock(&loop_mutex); 1519 1520 return 0; 1521 } 1522 1523 static int lo_release(struct gendisk *disk, fmode_t mode) 1524 { 1525 struct loop_device *lo = disk->private_data; 1526 int err; 1527 1528 mutex_lock(&loop_mutex); 1529 mutex_lock(&lo->lo_ctl_mutex); 1530 1531 if (--lo->lo_refcnt) 1532 goto out; 1533 1534 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1535 /* 1536 * In autoclear mode, stop the loop thread 1537 * and remove configuration after last close. 1538 */ 1539 err = loop_clr_fd(lo, NULL); 1540 if (!err) 1541 goto out_unlocked; 1542 } else { 1543 /* 1544 * Otherwise keep thread (if running) and config, 1545 * but flush possible ongoing bios in thread. 1546 */ 1547 loop_flush(lo); 1548 } 1549 1550 out: 1551 mutex_unlock(&lo->lo_ctl_mutex); 1552 out_unlocked: 1553 mutex_unlock(&loop_mutex); 1554 return 0; 1555 } 1556 1557 static const struct block_device_operations lo_fops = { 1558 .owner = THIS_MODULE, 1559 .open = lo_open, 1560 .release = lo_release, 1561 .ioctl = lo_ioctl, 1562 #ifdef CONFIG_COMPAT 1563 .compat_ioctl = lo_compat_ioctl, 1564 #endif 1565 }; 1566 1567 /* 1568 * And now the modules code and kernel interface. 1569 */ 1570 static int max_loop; 1571 module_param(max_loop, int, 0); 1572 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1573 module_param(max_part, int, 0); 1574 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1575 MODULE_LICENSE("GPL"); 1576 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1577 1578 int loop_register_transfer(struct loop_func_table *funcs) 1579 { 1580 unsigned int n = funcs->number; 1581 1582 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1583 return -EINVAL; 1584 xfer_funcs[n] = funcs; 1585 return 0; 1586 } 1587 1588 int loop_unregister_transfer(int number) 1589 { 1590 unsigned int n = number; 1591 struct loop_device *lo; 1592 struct loop_func_table *xfer; 1593 1594 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1595 return -EINVAL; 1596 1597 xfer_funcs[n] = NULL; 1598 1599 list_for_each_entry(lo, &loop_devices, lo_list) { 1600 mutex_lock(&lo->lo_ctl_mutex); 1601 1602 if (lo->lo_encryption == xfer) 1603 loop_release_xfer(lo); 1604 1605 mutex_unlock(&lo->lo_ctl_mutex); 1606 } 1607 1608 return 0; 1609 } 1610 1611 EXPORT_SYMBOL(loop_register_transfer); 1612 EXPORT_SYMBOL(loop_unregister_transfer); 1613 1614 static struct loop_device *loop_alloc(int i) 1615 { 1616 struct loop_device *lo; 1617 struct gendisk *disk; 1618 1619 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1620 if (!lo) 1621 goto out; 1622 1623 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1624 if (!lo->lo_queue) 1625 goto out_free_dev; 1626 1627 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1628 if (!disk) 1629 goto out_free_queue; 1630 1631 mutex_init(&lo->lo_ctl_mutex); 1632 lo->lo_number = i; 1633 lo->lo_thread = NULL; 1634 init_waitqueue_head(&lo->lo_event); 1635 spin_lock_init(&lo->lo_lock); 1636 disk->major = LOOP_MAJOR; 1637 disk->first_minor = i << part_shift; 1638 disk->fops = &lo_fops; 1639 disk->private_data = lo; 1640 disk->queue = lo->lo_queue; 1641 sprintf(disk->disk_name, "loop%d", i); 1642 return lo; 1643 1644 out_free_queue: 1645 blk_cleanup_queue(lo->lo_queue); 1646 out_free_dev: 1647 kfree(lo); 1648 out: 1649 return NULL; 1650 } 1651 1652 static void loop_free(struct loop_device *lo) 1653 { 1654 blk_cleanup_queue(lo->lo_queue); 1655 put_disk(lo->lo_disk); 1656 list_del(&lo->lo_list); 1657 kfree(lo); 1658 } 1659 1660 static struct loop_device *loop_init_one(int i) 1661 { 1662 struct loop_device *lo; 1663 1664 list_for_each_entry(lo, &loop_devices, lo_list) { 1665 if (lo->lo_number == i) 1666 return lo; 1667 } 1668 1669 lo = loop_alloc(i); 1670 if (lo) { 1671 add_disk(lo->lo_disk); 1672 list_add_tail(&lo->lo_list, &loop_devices); 1673 } 1674 return lo; 1675 } 1676 1677 static void loop_del_one(struct loop_device *lo) 1678 { 1679 del_gendisk(lo->lo_disk); 1680 loop_free(lo); 1681 } 1682 1683 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1684 { 1685 struct loop_device *lo; 1686 struct kobject *kobj; 1687 1688 mutex_lock(&loop_devices_mutex); 1689 lo = loop_init_one(dev & MINORMASK); 1690 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1691 mutex_unlock(&loop_devices_mutex); 1692 1693 *part = 0; 1694 return kobj; 1695 } 1696 1697 static int __init loop_init(void) 1698 { 1699 int i, nr; 1700 unsigned long range; 1701 struct loop_device *lo, *next; 1702 1703 /* 1704 * loop module now has a feature to instantiate underlying device 1705 * structure on-demand, provided that there is an access dev node. 1706 * However, this will not work well with user space tool that doesn't 1707 * know about such "feature". In order to not break any existing 1708 * tool, we do the following: 1709 * 1710 * (1) if max_loop is specified, create that many upfront, and this 1711 * also becomes a hard limit. 1712 * (2) if max_loop is not specified, create 8 loop device on module 1713 * load, user can further extend loop device by create dev node 1714 * themselves and have kernel automatically instantiate actual 1715 * device on-demand. 1716 */ 1717 1718 part_shift = 0; 1719 if (max_part > 0) 1720 part_shift = fls(max_part); 1721 1722 if (max_loop > 1UL << (MINORBITS - part_shift)) 1723 return -EINVAL; 1724 1725 if (max_loop) { 1726 nr = max_loop; 1727 range = max_loop; 1728 } else { 1729 nr = 8; 1730 range = 1UL << (MINORBITS - part_shift); 1731 } 1732 1733 if (register_blkdev(LOOP_MAJOR, "loop")) 1734 return -EIO; 1735 1736 for (i = 0; i < nr; i++) { 1737 lo = loop_alloc(i); 1738 if (!lo) 1739 goto Enomem; 1740 list_add_tail(&lo->lo_list, &loop_devices); 1741 } 1742 1743 /* point of no return */ 1744 1745 list_for_each_entry(lo, &loop_devices, lo_list) 1746 add_disk(lo->lo_disk); 1747 1748 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1749 THIS_MODULE, loop_probe, NULL, NULL); 1750 1751 printk(KERN_INFO "loop: module loaded\n"); 1752 return 0; 1753 1754 Enomem: 1755 printk(KERN_INFO "loop: out of memory\n"); 1756 1757 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1758 loop_free(lo); 1759 1760 unregister_blkdev(LOOP_MAJOR, "loop"); 1761 return -ENOMEM; 1762 } 1763 1764 static void __exit loop_exit(void) 1765 { 1766 unsigned long range; 1767 struct loop_device *lo, *next; 1768 1769 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1770 1771 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1772 loop_del_one(lo); 1773 1774 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1775 unregister_blkdev(LOOP_MAJOR, "loop"); 1776 } 1777 1778 module_init(loop_init); 1779 module_exit(loop_exit); 1780 1781 #ifndef MODULE 1782 static int __init max_loop_setup(char *str) 1783 { 1784 max_loop = simple_strtol(str, NULL, 0); 1785 return 1; 1786 } 1787 1788 __setup("max_loop=", max_loop_setup); 1789 #endif 1790