1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/compat.h> 67 #include <linux/suspend.h> 68 #include <linux/freezer.h> 69 #include <linux/mutex.h> 70 #include <linux/writeback.h> 71 #include <linux/completion.h> 72 #include <linux/highmem.h> 73 #include <linux/kthread.h> 74 #include <linux/splice.h> 75 #include <linux/sysfs.h> 76 #include <linux/miscdevice.h> 77 #include <linux/falloc.h> 78 #include <linux/uio.h> 79 #include <linux/ioprio.h> 80 #include <linux/blk-cgroup.h> 81 82 #include "loop.h" 83 84 #include <linux/uaccess.h> 85 86 static DEFINE_IDR(loop_index_idr); 87 static DEFINE_MUTEX(loop_ctl_mutex); 88 89 static int max_part; 90 static int part_shift; 91 92 static int transfer_xor(struct loop_device *lo, int cmd, 93 struct page *raw_page, unsigned raw_off, 94 struct page *loop_page, unsigned loop_off, 95 int size, sector_t real_block) 96 { 97 char *raw_buf = kmap_atomic(raw_page) + raw_off; 98 char *loop_buf = kmap_atomic(loop_page) + loop_off; 99 char *in, *out, *key; 100 int i, keysize; 101 102 if (cmd == READ) { 103 in = raw_buf; 104 out = loop_buf; 105 } else { 106 in = loop_buf; 107 out = raw_buf; 108 } 109 110 key = lo->lo_encrypt_key; 111 keysize = lo->lo_encrypt_key_size; 112 for (i = 0; i < size; i++) 113 *out++ = *in++ ^ key[(i & 511) % keysize]; 114 115 kunmap_atomic(loop_buf); 116 kunmap_atomic(raw_buf); 117 cond_resched(); 118 return 0; 119 } 120 121 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 122 { 123 if (unlikely(info->lo_encrypt_key_size <= 0)) 124 return -EINVAL; 125 return 0; 126 } 127 128 static struct loop_func_table none_funcs = { 129 .number = LO_CRYPT_NONE, 130 }; 131 132 static struct loop_func_table xor_funcs = { 133 .number = LO_CRYPT_XOR, 134 .transfer = transfer_xor, 135 .init = xor_init 136 }; 137 138 /* xfer_funcs[0] is special - its release function is never called */ 139 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 140 &none_funcs, 141 &xor_funcs 142 }; 143 144 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 145 { 146 loff_t loopsize; 147 148 /* Compute loopsize in bytes */ 149 loopsize = i_size_read(file->f_mapping->host); 150 if (offset > 0) 151 loopsize -= offset; 152 /* offset is beyond i_size, weird but possible */ 153 if (loopsize < 0) 154 return 0; 155 156 if (sizelimit > 0 && sizelimit < loopsize) 157 loopsize = sizelimit; 158 /* 159 * Unfortunately, if we want to do I/O on the device, 160 * the number of 512-byte sectors has to fit into a sector_t. 161 */ 162 return loopsize >> 9; 163 } 164 165 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 166 { 167 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 168 } 169 170 static void __loop_update_dio(struct loop_device *lo, bool dio) 171 { 172 struct file *file = lo->lo_backing_file; 173 struct address_space *mapping = file->f_mapping; 174 struct inode *inode = mapping->host; 175 unsigned short sb_bsize = 0; 176 unsigned dio_align = 0; 177 bool use_dio; 178 179 if (inode->i_sb->s_bdev) { 180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 181 dio_align = sb_bsize - 1; 182 } 183 184 /* 185 * We support direct I/O only if lo_offset is aligned with the 186 * logical I/O size of backing device, and the logical block 187 * size of loop is bigger than the backing device's and the loop 188 * needn't transform transfer. 189 * 190 * TODO: the above condition may be loosed in the future, and 191 * direct I/O may be switched runtime at that time because most 192 * of requests in sane applications should be PAGE_SIZE aligned 193 */ 194 if (dio) { 195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 196 !(lo->lo_offset & dio_align) && 197 mapping->a_ops->direct_IO && 198 !lo->transfer) 199 use_dio = true; 200 else 201 use_dio = false; 202 } else { 203 use_dio = false; 204 } 205 206 if (lo->use_dio == use_dio) 207 return; 208 209 /* flush dirty pages before changing direct IO */ 210 vfs_fsync(file, 0); 211 212 /* 213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 215 * will get updated by ioctl(LOOP_GET_STATUS) 216 */ 217 if (lo->lo_state == Lo_bound) 218 blk_mq_freeze_queue(lo->lo_queue); 219 lo->use_dio = use_dio; 220 if (use_dio) { 221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 222 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 223 } else { 224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 226 } 227 if (lo->lo_state == Lo_bound) 228 blk_mq_unfreeze_queue(lo->lo_queue); 229 } 230 231 static int 232 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 233 { 234 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 235 sector_t x = (sector_t)size; 236 struct block_device *bdev = lo->lo_device; 237 238 if (unlikely((loff_t)x != size)) 239 return -EFBIG; 240 if (lo->lo_offset != offset) 241 lo->lo_offset = offset; 242 if (lo->lo_sizelimit != sizelimit) 243 lo->lo_sizelimit = sizelimit; 244 set_capacity(lo->lo_disk, x); 245 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 246 /* let user-space know about the new size */ 247 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 248 return 0; 249 } 250 251 static inline int 252 lo_do_transfer(struct loop_device *lo, int cmd, 253 struct page *rpage, unsigned roffs, 254 struct page *lpage, unsigned loffs, 255 int size, sector_t rblock) 256 { 257 int ret; 258 259 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 260 if (likely(!ret)) 261 return 0; 262 263 printk_ratelimited(KERN_ERR 264 "loop: Transfer error at byte offset %llu, length %i.\n", 265 (unsigned long long)rblock << 9, size); 266 return ret; 267 } 268 269 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 270 { 271 struct iov_iter i; 272 ssize_t bw; 273 274 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 275 276 file_start_write(file); 277 bw = vfs_iter_write(file, &i, ppos, 0); 278 file_end_write(file); 279 280 if (likely(bw == bvec->bv_len)) 281 return 0; 282 283 printk_ratelimited(KERN_ERR 284 "loop: Write error at byte offset %llu, length %i.\n", 285 (unsigned long long)*ppos, bvec->bv_len); 286 if (bw >= 0) 287 bw = -EIO; 288 return bw; 289 } 290 291 static int lo_write_simple(struct loop_device *lo, struct request *rq, 292 loff_t pos) 293 { 294 struct bio_vec bvec; 295 struct req_iterator iter; 296 int ret = 0; 297 298 rq_for_each_segment(bvec, rq, iter) { 299 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 300 if (ret < 0) 301 break; 302 cond_resched(); 303 } 304 305 return ret; 306 } 307 308 /* 309 * This is the slow, transforming version that needs to double buffer the 310 * data as it cannot do the transformations in place without having direct 311 * access to the destination pages of the backing file. 312 */ 313 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 314 loff_t pos) 315 { 316 struct bio_vec bvec, b; 317 struct req_iterator iter; 318 struct page *page; 319 int ret = 0; 320 321 page = alloc_page(GFP_NOIO); 322 if (unlikely(!page)) 323 return -ENOMEM; 324 325 rq_for_each_segment(bvec, rq, iter) { 326 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 327 bvec.bv_offset, bvec.bv_len, pos >> 9); 328 if (unlikely(ret)) 329 break; 330 331 b.bv_page = page; 332 b.bv_offset = 0; 333 b.bv_len = bvec.bv_len; 334 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 335 if (ret < 0) 336 break; 337 } 338 339 __free_page(page); 340 return ret; 341 } 342 343 static int lo_read_simple(struct loop_device *lo, struct request *rq, 344 loff_t pos) 345 { 346 struct bio_vec bvec; 347 struct req_iterator iter; 348 struct iov_iter i; 349 ssize_t len; 350 351 rq_for_each_segment(bvec, rq, iter) { 352 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 353 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 354 if (len < 0) 355 return len; 356 357 flush_dcache_page(bvec.bv_page); 358 359 if (len != bvec.bv_len) { 360 struct bio *bio; 361 362 __rq_for_each_bio(bio, rq) 363 zero_fill_bio(bio); 364 break; 365 } 366 cond_resched(); 367 } 368 369 return 0; 370 } 371 372 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 373 loff_t pos) 374 { 375 struct bio_vec bvec, b; 376 struct req_iterator iter; 377 struct iov_iter i; 378 struct page *page; 379 ssize_t len; 380 int ret = 0; 381 382 page = alloc_page(GFP_NOIO); 383 if (unlikely(!page)) 384 return -ENOMEM; 385 386 rq_for_each_segment(bvec, rq, iter) { 387 loff_t offset = pos; 388 389 b.bv_page = page; 390 b.bv_offset = 0; 391 b.bv_len = bvec.bv_len; 392 393 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 394 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 395 if (len < 0) { 396 ret = len; 397 goto out_free_page; 398 } 399 400 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 401 bvec.bv_offset, len, offset >> 9); 402 if (ret) 403 goto out_free_page; 404 405 flush_dcache_page(bvec.bv_page); 406 407 if (len != bvec.bv_len) { 408 struct bio *bio; 409 410 __rq_for_each_bio(bio, rq) 411 zero_fill_bio(bio); 412 break; 413 } 414 } 415 416 ret = 0; 417 out_free_page: 418 __free_page(page); 419 return ret; 420 } 421 422 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 423 int mode) 424 { 425 /* 426 * We use fallocate to manipulate the space mappings used by the image 427 * a.k.a. discard/zerorange. However we do not support this if 428 * encryption is enabled, because it may give an attacker useful 429 * information. 430 */ 431 struct file *file = lo->lo_backing_file; 432 struct request_queue *q = lo->lo_queue; 433 int ret; 434 435 mode |= FALLOC_FL_KEEP_SIZE; 436 437 if (!blk_queue_discard(q)) { 438 ret = -EOPNOTSUPP; 439 goto out; 440 } 441 442 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 443 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 444 ret = -EIO; 445 out: 446 return ret; 447 } 448 449 static int lo_req_flush(struct loop_device *lo, struct request *rq) 450 { 451 struct file *file = lo->lo_backing_file; 452 int ret = vfs_fsync(file, 0); 453 if (unlikely(ret && ret != -EINVAL)) 454 ret = -EIO; 455 456 return ret; 457 } 458 459 static void lo_complete_rq(struct request *rq) 460 { 461 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 462 blk_status_t ret = BLK_STS_OK; 463 464 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 465 req_op(rq) != REQ_OP_READ) { 466 if (cmd->ret < 0) 467 ret = errno_to_blk_status(cmd->ret); 468 goto end_io; 469 } 470 471 /* 472 * Short READ - if we got some data, advance our request and 473 * retry it. If we got no data, end the rest with EIO. 474 */ 475 if (cmd->ret) { 476 blk_update_request(rq, BLK_STS_OK, cmd->ret); 477 cmd->ret = 0; 478 blk_mq_requeue_request(rq, true); 479 } else { 480 if (cmd->use_aio) { 481 struct bio *bio = rq->bio; 482 483 while (bio) { 484 zero_fill_bio(bio); 485 bio = bio->bi_next; 486 } 487 } 488 ret = BLK_STS_IOERR; 489 end_io: 490 blk_mq_end_request(rq, ret); 491 } 492 } 493 494 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 495 { 496 struct request *rq = blk_mq_rq_from_pdu(cmd); 497 498 if (!atomic_dec_and_test(&cmd->ref)) 499 return; 500 kfree(cmd->bvec); 501 cmd->bvec = NULL; 502 blk_mq_complete_request(rq); 503 } 504 505 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 506 { 507 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 508 509 if (cmd->css) 510 css_put(cmd->css); 511 cmd->ret = ret; 512 lo_rw_aio_do_completion(cmd); 513 } 514 515 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 516 loff_t pos, bool rw) 517 { 518 struct iov_iter iter; 519 struct req_iterator rq_iter; 520 struct bio_vec *bvec; 521 struct request *rq = blk_mq_rq_from_pdu(cmd); 522 struct bio *bio = rq->bio; 523 struct file *file = lo->lo_backing_file; 524 struct bio_vec tmp; 525 unsigned int offset; 526 int nr_bvec = 0; 527 int ret; 528 529 rq_for_each_bvec(tmp, rq, rq_iter) 530 nr_bvec++; 531 532 if (rq->bio != rq->biotail) { 533 534 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 535 GFP_NOIO); 536 if (!bvec) 537 return -EIO; 538 cmd->bvec = bvec; 539 540 /* 541 * The bios of the request may be started from the middle of 542 * the 'bvec' because of bio splitting, so we can't directly 543 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 544 * API will take care of all details for us. 545 */ 546 rq_for_each_bvec(tmp, rq, rq_iter) { 547 *bvec = tmp; 548 bvec++; 549 } 550 bvec = cmd->bvec; 551 offset = 0; 552 } else { 553 /* 554 * Same here, this bio may be started from the middle of the 555 * 'bvec' because of bio splitting, so offset from the bvec 556 * must be passed to iov iterator 557 */ 558 offset = bio->bi_iter.bi_bvec_done; 559 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 560 } 561 atomic_set(&cmd->ref, 2); 562 563 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 564 iter.iov_offset = offset; 565 566 cmd->iocb.ki_pos = pos; 567 cmd->iocb.ki_filp = file; 568 cmd->iocb.ki_complete = lo_rw_aio_complete; 569 cmd->iocb.ki_flags = IOCB_DIRECT; 570 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 571 if (cmd->css) 572 kthread_associate_blkcg(cmd->css); 573 574 if (rw == WRITE) 575 ret = call_write_iter(file, &cmd->iocb, &iter); 576 else 577 ret = call_read_iter(file, &cmd->iocb, &iter); 578 579 lo_rw_aio_do_completion(cmd); 580 kthread_associate_blkcg(NULL); 581 582 if (ret != -EIOCBQUEUED) 583 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 584 return 0; 585 } 586 587 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 588 { 589 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 590 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 591 592 /* 593 * lo_write_simple and lo_read_simple should have been covered 594 * by io submit style function like lo_rw_aio(), one blocker 595 * is that lo_read_simple() need to call flush_dcache_page after 596 * the page is written from kernel, and it isn't easy to handle 597 * this in io submit style function which submits all segments 598 * of the req at one time. And direct read IO doesn't need to 599 * run flush_dcache_page(). 600 */ 601 switch (req_op(rq)) { 602 case REQ_OP_FLUSH: 603 return lo_req_flush(lo, rq); 604 case REQ_OP_WRITE_ZEROES: 605 /* 606 * If the caller doesn't want deallocation, call zeroout to 607 * write zeroes the range. Otherwise, punch them out. 608 */ 609 return lo_fallocate(lo, rq, pos, 610 (rq->cmd_flags & REQ_NOUNMAP) ? 611 FALLOC_FL_ZERO_RANGE : 612 FALLOC_FL_PUNCH_HOLE); 613 case REQ_OP_DISCARD: 614 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 615 case REQ_OP_WRITE: 616 if (lo->transfer) 617 return lo_write_transfer(lo, rq, pos); 618 else if (cmd->use_aio) 619 return lo_rw_aio(lo, cmd, pos, WRITE); 620 else 621 return lo_write_simple(lo, rq, pos); 622 case REQ_OP_READ: 623 if (lo->transfer) 624 return lo_read_transfer(lo, rq, pos); 625 else if (cmd->use_aio) 626 return lo_rw_aio(lo, cmd, pos, READ); 627 else 628 return lo_read_simple(lo, rq, pos); 629 default: 630 WARN_ON_ONCE(1); 631 return -EIO; 632 } 633 } 634 635 static inline void loop_update_dio(struct loop_device *lo) 636 { 637 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | 638 lo->use_dio); 639 } 640 641 static void loop_reread_partitions(struct loop_device *lo, 642 struct block_device *bdev) 643 { 644 int rc; 645 646 mutex_lock(&bdev->bd_mutex); 647 rc = bdev_disk_changed(bdev, false); 648 mutex_unlock(&bdev->bd_mutex); 649 if (rc) 650 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 651 __func__, lo->lo_number, lo->lo_file_name, rc); 652 } 653 654 static inline int is_loop_device(struct file *file) 655 { 656 struct inode *i = file->f_mapping->host; 657 658 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 659 } 660 661 static int loop_validate_file(struct file *file, struct block_device *bdev) 662 { 663 struct inode *inode = file->f_mapping->host; 664 struct file *f = file; 665 666 /* Avoid recursion */ 667 while (is_loop_device(f)) { 668 struct loop_device *l; 669 670 if (f->f_mapping->host->i_bdev == bdev) 671 return -EBADF; 672 673 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 674 if (l->lo_state != Lo_bound) { 675 return -EINVAL; 676 } 677 f = l->lo_backing_file; 678 } 679 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 680 return -EINVAL; 681 return 0; 682 } 683 684 /* 685 * loop_change_fd switched the backing store of a loopback device to 686 * a new file. This is useful for operating system installers to free up 687 * the original file and in High Availability environments to switch to 688 * an alternative location for the content in case of server meltdown. 689 * This can only work if the loop device is used read-only, and if the 690 * new backing store is the same size and type as the old backing store. 691 */ 692 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 693 unsigned int arg) 694 { 695 struct file *file = NULL, *old_file; 696 int error; 697 bool partscan; 698 699 error = mutex_lock_killable(&loop_ctl_mutex); 700 if (error) 701 return error; 702 error = -ENXIO; 703 if (lo->lo_state != Lo_bound) 704 goto out_err; 705 706 /* the loop device has to be read-only */ 707 error = -EINVAL; 708 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 709 goto out_err; 710 711 error = -EBADF; 712 file = fget(arg); 713 if (!file) 714 goto out_err; 715 716 error = loop_validate_file(file, bdev); 717 if (error) 718 goto out_err; 719 720 old_file = lo->lo_backing_file; 721 722 error = -EINVAL; 723 724 /* size of the new backing store needs to be the same */ 725 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 726 goto out_err; 727 728 /* and ... switch */ 729 blk_mq_freeze_queue(lo->lo_queue); 730 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 731 lo->lo_backing_file = file; 732 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 733 mapping_set_gfp_mask(file->f_mapping, 734 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 735 loop_update_dio(lo); 736 blk_mq_unfreeze_queue(lo->lo_queue); 737 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 738 mutex_unlock(&loop_ctl_mutex); 739 /* 740 * We must drop file reference outside of loop_ctl_mutex as dropping 741 * the file ref can take bd_mutex which creates circular locking 742 * dependency. 743 */ 744 fput(old_file); 745 if (partscan) 746 loop_reread_partitions(lo, bdev); 747 return 0; 748 749 out_err: 750 mutex_unlock(&loop_ctl_mutex); 751 if (file) 752 fput(file); 753 return error; 754 } 755 756 /* loop sysfs attributes */ 757 758 static ssize_t loop_attr_show(struct device *dev, char *page, 759 ssize_t (*callback)(struct loop_device *, char *)) 760 { 761 struct gendisk *disk = dev_to_disk(dev); 762 struct loop_device *lo = disk->private_data; 763 764 return callback(lo, page); 765 } 766 767 #define LOOP_ATTR_RO(_name) \ 768 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 769 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 770 struct device_attribute *attr, char *b) \ 771 { \ 772 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 773 } \ 774 static struct device_attribute loop_attr_##_name = \ 775 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 776 777 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 778 { 779 ssize_t ret; 780 char *p = NULL; 781 782 spin_lock_irq(&lo->lo_lock); 783 if (lo->lo_backing_file) 784 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 785 spin_unlock_irq(&lo->lo_lock); 786 787 if (IS_ERR_OR_NULL(p)) 788 ret = PTR_ERR(p); 789 else { 790 ret = strlen(p); 791 memmove(buf, p, ret); 792 buf[ret++] = '\n'; 793 buf[ret] = 0; 794 } 795 796 return ret; 797 } 798 799 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 800 { 801 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 802 } 803 804 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 805 { 806 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 807 } 808 809 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 810 { 811 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 812 813 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 814 } 815 816 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 817 { 818 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 819 820 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 821 } 822 823 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 824 { 825 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 826 827 return sprintf(buf, "%s\n", dio ? "1" : "0"); 828 } 829 830 LOOP_ATTR_RO(backing_file); 831 LOOP_ATTR_RO(offset); 832 LOOP_ATTR_RO(sizelimit); 833 LOOP_ATTR_RO(autoclear); 834 LOOP_ATTR_RO(partscan); 835 LOOP_ATTR_RO(dio); 836 837 static struct attribute *loop_attrs[] = { 838 &loop_attr_backing_file.attr, 839 &loop_attr_offset.attr, 840 &loop_attr_sizelimit.attr, 841 &loop_attr_autoclear.attr, 842 &loop_attr_partscan.attr, 843 &loop_attr_dio.attr, 844 NULL, 845 }; 846 847 static struct attribute_group loop_attribute_group = { 848 .name = "loop", 849 .attrs= loop_attrs, 850 }; 851 852 static void loop_sysfs_init(struct loop_device *lo) 853 { 854 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 855 &loop_attribute_group); 856 } 857 858 static void loop_sysfs_exit(struct loop_device *lo) 859 { 860 if (lo->sysfs_inited) 861 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 862 &loop_attribute_group); 863 } 864 865 static void loop_config_discard(struct loop_device *lo) 866 { 867 struct file *file = lo->lo_backing_file; 868 struct inode *inode = file->f_mapping->host; 869 struct request_queue *q = lo->lo_queue; 870 871 /* 872 * If the backing device is a block device, mirror its zeroing 873 * capability. Set the discard sectors to the block device's zeroing 874 * capabilities because loop discards result in blkdev_issue_zeroout(), 875 * not blkdev_issue_discard(). This maintains consistent behavior with 876 * file-backed loop devices: discarded regions read back as zero. 877 */ 878 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) { 879 struct request_queue *backingq; 880 881 backingq = bdev_get_queue(inode->i_bdev); 882 blk_queue_max_discard_sectors(q, 883 backingq->limits.max_write_zeroes_sectors); 884 885 blk_queue_max_write_zeroes_sectors(q, 886 backingq->limits.max_write_zeroes_sectors); 887 888 /* 889 * We use punch hole to reclaim the free space used by the 890 * image a.k.a. discard. However we do not support discard if 891 * encryption is enabled, because it may give an attacker 892 * useful information. 893 */ 894 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) { 895 q->limits.discard_granularity = 0; 896 q->limits.discard_alignment = 0; 897 blk_queue_max_discard_sectors(q, 0); 898 blk_queue_max_write_zeroes_sectors(q, 0); 899 900 } else { 901 q->limits.discard_granularity = inode->i_sb->s_blocksize; 902 q->limits.discard_alignment = 0; 903 904 blk_queue_max_discard_sectors(q, UINT_MAX >> 9); 905 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9); 906 } 907 908 if (q->limits.max_write_zeroes_sectors) 909 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 910 else 911 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 912 } 913 914 static void loop_unprepare_queue(struct loop_device *lo) 915 { 916 kthread_flush_worker(&lo->worker); 917 kthread_stop(lo->worker_task); 918 } 919 920 static int loop_kthread_worker_fn(void *worker_ptr) 921 { 922 current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO; 923 return kthread_worker_fn(worker_ptr); 924 } 925 926 static int loop_prepare_queue(struct loop_device *lo) 927 { 928 kthread_init_worker(&lo->worker); 929 lo->worker_task = kthread_run(loop_kthread_worker_fn, 930 &lo->worker, "loop%d", lo->lo_number); 931 if (IS_ERR(lo->worker_task)) 932 return -ENOMEM; 933 set_user_nice(lo->worker_task, MIN_NICE); 934 return 0; 935 } 936 937 static void loop_update_rotational(struct loop_device *lo) 938 { 939 struct file *file = lo->lo_backing_file; 940 struct inode *file_inode = file->f_mapping->host; 941 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 942 struct request_queue *q = lo->lo_queue; 943 bool nonrot = true; 944 945 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 946 if (file_bdev) 947 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 948 949 if (nonrot) 950 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 951 else 952 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 953 } 954 955 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 956 struct block_device *bdev, unsigned int arg) 957 { 958 struct file *file; 959 struct inode *inode; 960 struct address_space *mapping; 961 struct block_device *claimed_bdev = NULL; 962 int lo_flags = 0; 963 int error; 964 loff_t size; 965 bool partscan; 966 967 /* This is safe, since we have a reference from open(). */ 968 __module_get(THIS_MODULE); 969 970 error = -EBADF; 971 file = fget(arg); 972 if (!file) 973 goto out; 974 975 /* 976 * If we don't hold exclusive handle for the device, upgrade to it 977 * here to avoid changing device under exclusive owner. 978 */ 979 if (!(mode & FMODE_EXCL)) { 980 claimed_bdev = bd_start_claiming(bdev, loop_set_fd); 981 if (IS_ERR(claimed_bdev)) { 982 error = PTR_ERR(claimed_bdev); 983 goto out_putf; 984 } 985 } 986 987 error = mutex_lock_killable(&loop_ctl_mutex); 988 if (error) 989 goto out_bdev; 990 991 error = -EBUSY; 992 if (lo->lo_state != Lo_unbound) 993 goto out_unlock; 994 995 error = loop_validate_file(file, bdev); 996 if (error) 997 goto out_unlock; 998 999 mapping = file->f_mapping; 1000 inode = mapping->host; 1001 1002 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1003 !file->f_op->write_iter) 1004 lo_flags |= LO_FLAGS_READ_ONLY; 1005 1006 error = -EFBIG; 1007 size = get_loop_size(lo, file); 1008 if ((loff_t)(sector_t)size != size) 1009 goto out_unlock; 1010 error = loop_prepare_queue(lo); 1011 if (error) 1012 goto out_unlock; 1013 1014 error = 0; 1015 1016 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 1017 1018 lo->use_dio = false; 1019 lo->lo_device = bdev; 1020 lo->lo_flags = lo_flags; 1021 lo->lo_backing_file = file; 1022 lo->transfer = NULL; 1023 lo->ioctl = NULL; 1024 lo->lo_sizelimit = 0; 1025 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1026 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1027 1028 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1029 blk_queue_write_cache(lo->lo_queue, true, false); 1030 1031 if (io_is_direct(lo->lo_backing_file) && inode->i_sb->s_bdev) { 1032 /* In case of direct I/O, match underlying block size */ 1033 unsigned short bsize = bdev_logical_block_size( 1034 inode->i_sb->s_bdev); 1035 1036 blk_queue_logical_block_size(lo->lo_queue, bsize); 1037 blk_queue_physical_block_size(lo->lo_queue, bsize); 1038 blk_queue_io_min(lo->lo_queue, bsize); 1039 } 1040 1041 loop_update_rotational(lo); 1042 loop_update_dio(lo); 1043 set_capacity(lo->lo_disk, size); 1044 bd_set_size(bdev, size << 9); 1045 loop_sysfs_init(lo); 1046 /* let user-space know about the new size */ 1047 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1048 1049 set_blocksize(bdev, S_ISBLK(inode->i_mode) ? 1050 block_size(inode->i_bdev) : PAGE_SIZE); 1051 1052 lo->lo_state = Lo_bound; 1053 if (part_shift) 1054 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1055 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1056 1057 /* Grab the block_device to prevent its destruction after we 1058 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1059 */ 1060 bdgrab(bdev); 1061 mutex_unlock(&loop_ctl_mutex); 1062 if (partscan) 1063 loop_reread_partitions(lo, bdev); 1064 if (claimed_bdev) 1065 bd_abort_claiming(bdev, claimed_bdev, loop_set_fd); 1066 return 0; 1067 1068 out_unlock: 1069 mutex_unlock(&loop_ctl_mutex); 1070 out_bdev: 1071 if (claimed_bdev) 1072 bd_abort_claiming(bdev, claimed_bdev, loop_set_fd); 1073 out_putf: 1074 fput(file); 1075 out: 1076 /* This is safe: open() is still holding a reference. */ 1077 module_put(THIS_MODULE); 1078 return error; 1079 } 1080 1081 static int 1082 loop_release_xfer(struct loop_device *lo) 1083 { 1084 int err = 0; 1085 struct loop_func_table *xfer = lo->lo_encryption; 1086 1087 if (xfer) { 1088 if (xfer->release) 1089 err = xfer->release(lo); 1090 lo->transfer = NULL; 1091 lo->lo_encryption = NULL; 1092 module_put(xfer->owner); 1093 } 1094 return err; 1095 } 1096 1097 static int 1098 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 1099 const struct loop_info64 *i) 1100 { 1101 int err = 0; 1102 1103 if (xfer) { 1104 struct module *owner = xfer->owner; 1105 1106 if (!try_module_get(owner)) 1107 return -EINVAL; 1108 if (xfer->init) 1109 err = xfer->init(lo, i); 1110 if (err) 1111 module_put(owner); 1112 else 1113 lo->lo_encryption = xfer; 1114 } 1115 return err; 1116 } 1117 1118 static int __loop_clr_fd(struct loop_device *lo, bool release) 1119 { 1120 struct file *filp = NULL; 1121 gfp_t gfp = lo->old_gfp_mask; 1122 struct block_device *bdev = lo->lo_device; 1123 int err = 0; 1124 bool partscan = false; 1125 int lo_number; 1126 1127 mutex_lock(&loop_ctl_mutex); 1128 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1129 err = -ENXIO; 1130 goto out_unlock; 1131 } 1132 1133 filp = lo->lo_backing_file; 1134 if (filp == NULL) { 1135 err = -EINVAL; 1136 goto out_unlock; 1137 } 1138 1139 /* freeze request queue during the transition */ 1140 blk_mq_freeze_queue(lo->lo_queue); 1141 1142 spin_lock_irq(&lo->lo_lock); 1143 lo->lo_backing_file = NULL; 1144 spin_unlock_irq(&lo->lo_lock); 1145 1146 loop_release_xfer(lo); 1147 lo->transfer = NULL; 1148 lo->ioctl = NULL; 1149 lo->lo_device = NULL; 1150 lo->lo_encryption = NULL; 1151 lo->lo_offset = 0; 1152 lo->lo_sizelimit = 0; 1153 lo->lo_encrypt_key_size = 0; 1154 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1155 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1156 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1157 blk_queue_logical_block_size(lo->lo_queue, 512); 1158 blk_queue_physical_block_size(lo->lo_queue, 512); 1159 blk_queue_io_min(lo->lo_queue, 512); 1160 if (bdev) { 1161 bdput(bdev); 1162 invalidate_bdev(bdev); 1163 bdev->bd_inode->i_mapping->wb_err = 0; 1164 } 1165 set_capacity(lo->lo_disk, 0); 1166 loop_sysfs_exit(lo); 1167 if (bdev) { 1168 bd_set_size(bdev, 0); 1169 /* let user-space know about this change */ 1170 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1171 } 1172 mapping_set_gfp_mask(filp->f_mapping, gfp); 1173 /* This is safe: open() is still holding a reference. */ 1174 module_put(THIS_MODULE); 1175 blk_mq_unfreeze_queue(lo->lo_queue); 1176 1177 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1178 lo_number = lo->lo_number; 1179 loop_unprepare_queue(lo); 1180 out_unlock: 1181 mutex_unlock(&loop_ctl_mutex); 1182 if (partscan) { 1183 /* 1184 * bd_mutex has been held already in release path, so don't 1185 * acquire it if this function is called in such case. 1186 * 1187 * If the reread partition isn't from release path, lo_refcnt 1188 * must be at least one and it can only become zero when the 1189 * current holder is released. 1190 */ 1191 if (!release) 1192 mutex_lock(&bdev->bd_mutex); 1193 err = bdev_disk_changed(bdev, false); 1194 if (!release) 1195 mutex_unlock(&bdev->bd_mutex); 1196 if (err) 1197 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1198 __func__, lo_number, err); 1199 /* Device is gone, no point in returning error */ 1200 err = 0; 1201 } 1202 1203 /* 1204 * lo->lo_state is set to Lo_unbound here after above partscan has 1205 * finished. 1206 * 1207 * There cannot be anybody else entering __loop_clr_fd() as 1208 * lo->lo_backing_file is already cleared and Lo_rundown state 1209 * protects us from all the other places trying to change the 'lo' 1210 * device. 1211 */ 1212 mutex_lock(&loop_ctl_mutex); 1213 lo->lo_flags = 0; 1214 if (!part_shift) 1215 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1216 lo->lo_state = Lo_unbound; 1217 mutex_unlock(&loop_ctl_mutex); 1218 1219 /* 1220 * Need not hold loop_ctl_mutex to fput backing file. 1221 * Calling fput holding loop_ctl_mutex triggers a circular 1222 * lock dependency possibility warning as fput can take 1223 * bd_mutex which is usually taken before loop_ctl_mutex. 1224 */ 1225 if (filp) 1226 fput(filp); 1227 return err; 1228 } 1229 1230 static int loop_clr_fd(struct loop_device *lo) 1231 { 1232 int err; 1233 1234 err = mutex_lock_killable(&loop_ctl_mutex); 1235 if (err) 1236 return err; 1237 if (lo->lo_state != Lo_bound) { 1238 mutex_unlock(&loop_ctl_mutex); 1239 return -ENXIO; 1240 } 1241 /* 1242 * If we've explicitly asked to tear down the loop device, 1243 * and it has an elevated reference count, set it for auto-teardown when 1244 * the last reference goes away. This stops $!~#$@ udev from 1245 * preventing teardown because it decided that it needs to run blkid on 1246 * the loopback device whenever they appear. xfstests is notorious for 1247 * failing tests because blkid via udev races with a losetup 1248 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1249 * command to fail with EBUSY. 1250 */ 1251 if (atomic_read(&lo->lo_refcnt) > 1) { 1252 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1253 mutex_unlock(&loop_ctl_mutex); 1254 return 0; 1255 } 1256 lo->lo_state = Lo_rundown; 1257 mutex_unlock(&loop_ctl_mutex); 1258 1259 return __loop_clr_fd(lo, false); 1260 } 1261 1262 static int 1263 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1264 { 1265 int err; 1266 struct loop_func_table *xfer; 1267 kuid_t uid = current_uid(); 1268 struct block_device *bdev; 1269 bool partscan = false; 1270 1271 err = mutex_lock_killable(&loop_ctl_mutex); 1272 if (err) 1273 return err; 1274 if (lo->lo_encrypt_key_size && 1275 !uid_eq(lo->lo_key_owner, uid) && 1276 !capable(CAP_SYS_ADMIN)) { 1277 err = -EPERM; 1278 goto out_unlock; 1279 } 1280 if (lo->lo_state != Lo_bound) { 1281 err = -ENXIO; 1282 goto out_unlock; 1283 } 1284 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) { 1285 err = -EINVAL; 1286 goto out_unlock; 1287 } 1288 1289 if (lo->lo_offset != info->lo_offset || 1290 lo->lo_sizelimit != info->lo_sizelimit) { 1291 sync_blockdev(lo->lo_device); 1292 kill_bdev(lo->lo_device); 1293 } 1294 1295 /* I/O need to be drained during transfer transition */ 1296 blk_mq_freeze_queue(lo->lo_queue); 1297 1298 err = loop_release_xfer(lo); 1299 if (err) 1300 goto out_unfreeze; 1301 1302 if (info->lo_encrypt_type) { 1303 unsigned int type = info->lo_encrypt_type; 1304 1305 if (type >= MAX_LO_CRYPT) { 1306 err = -EINVAL; 1307 goto out_unfreeze; 1308 } 1309 xfer = xfer_funcs[type]; 1310 if (xfer == NULL) { 1311 err = -EINVAL; 1312 goto out_unfreeze; 1313 } 1314 } else 1315 xfer = NULL; 1316 1317 err = loop_init_xfer(lo, xfer, info); 1318 if (err) 1319 goto out_unfreeze; 1320 1321 if (lo->lo_offset != info->lo_offset || 1322 lo->lo_sizelimit != info->lo_sizelimit) { 1323 /* kill_bdev should have truncated all the pages */ 1324 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1325 err = -EAGAIN; 1326 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1327 __func__, lo->lo_number, lo->lo_file_name, 1328 lo->lo_device->bd_inode->i_mapping->nrpages); 1329 goto out_unfreeze; 1330 } 1331 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { 1332 err = -EFBIG; 1333 goto out_unfreeze; 1334 } 1335 } 1336 1337 loop_config_discard(lo); 1338 1339 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1340 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1341 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1342 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1343 1344 if (!xfer) 1345 xfer = &none_funcs; 1346 lo->transfer = xfer->transfer; 1347 lo->ioctl = xfer->ioctl; 1348 1349 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1350 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1351 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1352 1353 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1354 lo->lo_init[0] = info->lo_init[0]; 1355 lo->lo_init[1] = info->lo_init[1]; 1356 if (info->lo_encrypt_key_size) { 1357 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1358 info->lo_encrypt_key_size); 1359 lo->lo_key_owner = uid; 1360 } 1361 1362 /* update dio if lo_offset or transfer is changed */ 1363 __loop_update_dio(lo, lo->use_dio); 1364 1365 out_unfreeze: 1366 blk_mq_unfreeze_queue(lo->lo_queue); 1367 1368 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && 1369 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1370 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1371 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1372 bdev = lo->lo_device; 1373 partscan = true; 1374 } 1375 out_unlock: 1376 mutex_unlock(&loop_ctl_mutex); 1377 if (partscan) 1378 loop_reread_partitions(lo, bdev); 1379 1380 return err; 1381 } 1382 1383 static int 1384 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1385 { 1386 struct path path; 1387 struct kstat stat; 1388 int ret; 1389 1390 ret = mutex_lock_killable(&loop_ctl_mutex); 1391 if (ret) 1392 return ret; 1393 if (lo->lo_state != Lo_bound) { 1394 mutex_unlock(&loop_ctl_mutex); 1395 return -ENXIO; 1396 } 1397 1398 memset(info, 0, sizeof(*info)); 1399 info->lo_number = lo->lo_number; 1400 info->lo_offset = lo->lo_offset; 1401 info->lo_sizelimit = lo->lo_sizelimit; 1402 info->lo_flags = lo->lo_flags; 1403 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1404 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1405 info->lo_encrypt_type = 1406 lo->lo_encryption ? lo->lo_encryption->number : 0; 1407 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1408 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1409 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1410 lo->lo_encrypt_key_size); 1411 } 1412 1413 /* Drop loop_ctl_mutex while we call into the filesystem. */ 1414 path = lo->lo_backing_file->f_path; 1415 path_get(&path); 1416 mutex_unlock(&loop_ctl_mutex); 1417 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1418 if (!ret) { 1419 info->lo_device = huge_encode_dev(stat.dev); 1420 info->lo_inode = stat.ino; 1421 info->lo_rdevice = huge_encode_dev(stat.rdev); 1422 } 1423 path_put(&path); 1424 return ret; 1425 } 1426 1427 static void 1428 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1429 { 1430 memset(info64, 0, sizeof(*info64)); 1431 info64->lo_number = info->lo_number; 1432 info64->lo_device = info->lo_device; 1433 info64->lo_inode = info->lo_inode; 1434 info64->lo_rdevice = info->lo_rdevice; 1435 info64->lo_offset = info->lo_offset; 1436 info64->lo_sizelimit = 0; 1437 info64->lo_encrypt_type = info->lo_encrypt_type; 1438 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1439 info64->lo_flags = info->lo_flags; 1440 info64->lo_init[0] = info->lo_init[0]; 1441 info64->lo_init[1] = info->lo_init[1]; 1442 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1443 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1444 else 1445 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1446 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1447 } 1448 1449 static int 1450 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1451 { 1452 memset(info, 0, sizeof(*info)); 1453 info->lo_number = info64->lo_number; 1454 info->lo_device = info64->lo_device; 1455 info->lo_inode = info64->lo_inode; 1456 info->lo_rdevice = info64->lo_rdevice; 1457 info->lo_offset = info64->lo_offset; 1458 info->lo_encrypt_type = info64->lo_encrypt_type; 1459 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1460 info->lo_flags = info64->lo_flags; 1461 info->lo_init[0] = info64->lo_init[0]; 1462 info->lo_init[1] = info64->lo_init[1]; 1463 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1464 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1465 else 1466 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1467 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1468 1469 /* error in case values were truncated */ 1470 if (info->lo_device != info64->lo_device || 1471 info->lo_rdevice != info64->lo_rdevice || 1472 info->lo_inode != info64->lo_inode || 1473 info->lo_offset != info64->lo_offset) 1474 return -EOVERFLOW; 1475 1476 return 0; 1477 } 1478 1479 static int 1480 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1481 { 1482 struct loop_info info; 1483 struct loop_info64 info64; 1484 1485 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1486 return -EFAULT; 1487 loop_info64_from_old(&info, &info64); 1488 return loop_set_status(lo, &info64); 1489 } 1490 1491 static int 1492 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1493 { 1494 struct loop_info64 info64; 1495 1496 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1497 return -EFAULT; 1498 return loop_set_status(lo, &info64); 1499 } 1500 1501 static int 1502 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1503 struct loop_info info; 1504 struct loop_info64 info64; 1505 int err; 1506 1507 if (!arg) 1508 return -EINVAL; 1509 err = loop_get_status(lo, &info64); 1510 if (!err) 1511 err = loop_info64_to_old(&info64, &info); 1512 if (!err && copy_to_user(arg, &info, sizeof(info))) 1513 err = -EFAULT; 1514 1515 return err; 1516 } 1517 1518 static int 1519 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1520 struct loop_info64 info64; 1521 int err; 1522 1523 if (!arg) 1524 return -EINVAL; 1525 err = loop_get_status(lo, &info64); 1526 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1527 err = -EFAULT; 1528 1529 return err; 1530 } 1531 1532 static int loop_set_capacity(struct loop_device *lo) 1533 { 1534 if (unlikely(lo->lo_state != Lo_bound)) 1535 return -ENXIO; 1536 1537 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1538 } 1539 1540 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1541 { 1542 int error = -ENXIO; 1543 if (lo->lo_state != Lo_bound) 1544 goto out; 1545 1546 __loop_update_dio(lo, !!arg); 1547 if (lo->use_dio == !!arg) 1548 return 0; 1549 error = -EINVAL; 1550 out: 1551 return error; 1552 } 1553 1554 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1555 { 1556 int err = 0; 1557 1558 if (lo->lo_state != Lo_bound) 1559 return -ENXIO; 1560 1561 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg)) 1562 return -EINVAL; 1563 1564 if (lo->lo_queue->limits.logical_block_size == arg) 1565 return 0; 1566 1567 sync_blockdev(lo->lo_device); 1568 kill_bdev(lo->lo_device); 1569 1570 blk_mq_freeze_queue(lo->lo_queue); 1571 1572 /* kill_bdev should have truncated all the pages */ 1573 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1574 err = -EAGAIN; 1575 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1576 __func__, lo->lo_number, lo->lo_file_name, 1577 lo->lo_device->bd_inode->i_mapping->nrpages); 1578 goto out_unfreeze; 1579 } 1580 1581 blk_queue_logical_block_size(lo->lo_queue, arg); 1582 blk_queue_physical_block_size(lo->lo_queue, arg); 1583 blk_queue_io_min(lo->lo_queue, arg); 1584 loop_update_dio(lo); 1585 out_unfreeze: 1586 blk_mq_unfreeze_queue(lo->lo_queue); 1587 1588 return err; 1589 } 1590 1591 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1592 unsigned long arg) 1593 { 1594 int err; 1595 1596 err = mutex_lock_killable(&loop_ctl_mutex); 1597 if (err) 1598 return err; 1599 switch (cmd) { 1600 case LOOP_SET_CAPACITY: 1601 err = loop_set_capacity(lo); 1602 break; 1603 case LOOP_SET_DIRECT_IO: 1604 err = loop_set_dio(lo, arg); 1605 break; 1606 case LOOP_SET_BLOCK_SIZE: 1607 err = loop_set_block_size(lo, arg); 1608 break; 1609 default: 1610 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1611 } 1612 mutex_unlock(&loop_ctl_mutex); 1613 return err; 1614 } 1615 1616 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1617 unsigned int cmd, unsigned long arg) 1618 { 1619 struct loop_device *lo = bdev->bd_disk->private_data; 1620 int err; 1621 1622 switch (cmd) { 1623 case LOOP_SET_FD: 1624 return loop_set_fd(lo, mode, bdev, arg); 1625 case LOOP_CHANGE_FD: 1626 return loop_change_fd(lo, bdev, arg); 1627 case LOOP_CLR_FD: 1628 return loop_clr_fd(lo); 1629 case LOOP_SET_STATUS: 1630 err = -EPERM; 1631 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1632 err = loop_set_status_old(lo, 1633 (struct loop_info __user *)arg); 1634 } 1635 break; 1636 case LOOP_GET_STATUS: 1637 return loop_get_status_old(lo, (struct loop_info __user *) arg); 1638 case LOOP_SET_STATUS64: 1639 err = -EPERM; 1640 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1641 err = loop_set_status64(lo, 1642 (struct loop_info64 __user *) arg); 1643 } 1644 break; 1645 case LOOP_GET_STATUS64: 1646 return loop_get_status64(lo, (struct loop_info64 __user *) arg); 1647 case LOOP_SET_CAPACITY: 1648 case LOOP_SET_DIRECT_IO: 1649 case LOOP_SET_BLOCK_SIZE: 1650 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1651 return -EPERM; 1652 /* Fall through */ 1653 default: 1654 err = lo_simple_ioctl(lo, cmd, arg); 1655 break; 1656 } 1657 1658 return err; 1659 } 1660 1661 #ifdef CONFIG_COMPAT 1662 struct compat_loop_info { 1663 compat_int_t lo_number; /* ioctl r/o */ 1664 compat_dev_t lo_device; /* ioctl r/o */ 1665 compat_ulong_t lo_inode; /* ioctl r/o */ 1666 compat_dev_t lo_rdevice; /* ioctl r/o */ 1667 compat_int_t lo_offset; 1668 compat_int_t lo_encrypt_type; 1669 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1670 compat_int_t lo_flags; /* ioctl r/o */ 1671 char lo_name[LO_NAME_SIZE]; 1672 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1673 compat_ulong_t lo_init[2]; 1674 char reserved[4]; 1675 }; 1676 1677 /* 1678 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1679 * - noinlined to reduce stack space usage in main part of driver 1680 */ 1681 static noinline int 1682 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1683 struct loop_info64 *info64) 1684 { 1685 struct compat_loop_info info; 1686 1687 if (copy_from_user(&info, arg, sizeof(info))) 1688 return -EFAULT; 1689 1690 memset(info64, 0, sizeof(*info64)); 1691 info64->lo_number = info.lo_number; 1692 info64->lo_device = info.lo_device; 1693 info64->lo_inode = info.lo_inode; 1694 info64->lo_rdevice = info.lo_rdevice; 1695 info64->lo_offset = info.lo_offset; 1696 info64->lo_sizelimit = 0; 1697 info64->lo_encrypt_type = info.lo_encrypt_type; 1698 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1699 info64->lo_flags = info.lo_flags; 1700 info64->lo_init[0] = info.lo_init[0]; 1701 info64->lo_init[1] = info.lo_init[1]; 1702 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1703 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1704 else 1705 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1706 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1707 return 0; 1708 } 1709 1710 /* 1711 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1712 * - noinlined to reduce stack space usage in main part of driver 1713 */ 1714 static noinline int 1715 loop_info64_to_compat(const struct loop_info64 *info64, 1716 struct compat_loop_info __user *arg) 1717 { 1718 struct compat_loop_info info; 1719 1720 memset(&info, 0, sizeof(info)); 1721 info.lo_number = info64->lo_number; 1722 info.lo_device = info64->lo_device; 1723 info.lo_inode = info64->lo_inode; 1724 info.lo_rdevice = info64->lo_rdevice; 1725 info.lo_offset = info64->lo_offset; 1726 info.lo_encrypt_type = info64->lo_encrypt_type; 1727 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1728 info.lo_flags = info64->lo_flags; 1729 info.lo_init[0] = info64->lo_init[0]; 1730 info.lo_init[1] = info64->lo_init[1]; 1731 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1732 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1733 else 1734 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1735 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1736 1737 /* error in case values were truncated */ 1738 if (info.lo_device != info64->lo_device || 1739 info.lo_rdevice != info64->lo_rdevice || 1740 info.lo_inode != info64->lo_inode || 1741 info.lo_offset != info64->lo_offset || 1742 info.lo_init[0] != info64->lo_init[0] || 1743 info.lo_init[1] != info64->lo_init[1]) 1744 return -EOVERFLOW; 1745 1746 if (copy_to_user(arg, &info, sizeof(info))) 1747 return -EFAULT; 1748 return 0; 1749 } 1750 1751 static int 1752 loop_set_status_compat(struct loop_device *lo, 1753 const struct compat_loop_info __user *arg) 1754 { 1755 struct loop_info64 info64; 1756 int ret; 1757 1758 ret = loop_info64_from_compat(arg, &info64); 1759 if (ret < 0) 1760 return ret; 1761 return loop_set_status(lo, &info64); 1762 } 1763 1764 static int 1765 loop_get_status_compat(struct loop_device *lo, 1766 struct compat_loop_info __user *arg) 1767 { 1768 struct loop_info64 info64; 1769 int err; 1770 1771 if (!arg) 1772 return -EINVAL; 1773 err = loop_get_status(lo, &info64); 1774 if (!err) 1775 err = loop_info64_to_compat(&info64, arg); 1776 return err; 1777 } 1778 1779 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1780 unsigned int cmd, unsigned long arg) 1781 { 1782 struct loop_device *lo = bdev->bd_disk->private_data; 1783 int err; 1784 1785 switch(cmd) { 1786 case LOOP_SET_STATUS: 1787 err = loop_set_status_compat(lo, 1788 (const struct compat_loop_info __user *)arg); 1789 break; 1790 case LOOP_GET_STATUS: 1791 err = loop_get_status_compat(lo, 1792 (struct compat_loop_info __user *)arg); 1793 break; 1794 case LOOP_SET_CAPACITY: 1795 case LOOP_CLR_FD: 1796 case LOOP_GET_STATUS64: 1797 case LOOP_SET_STATUS64: 1798 arg = (unsigned long) compat_ptr(arg); 1799 /* fall through */ 1800 case LOOP_SET_FD: 1801 case LOOP_CHANGE_FD: 1802 case LOOP_SET_BLOCK_SIZE: 1803 case LOOP_SET_DIRECT_IO: 1804 err = lo_ioctl(bdev, mode, cmd, arg); 1805 break; 1806 default: 1807 err = -ENOIOCTLCMD; 1808 break; 1809 } 1810 return err; 1811 } 1812 #endif 1813 1814 static int lo_open(struct block_device *bdev, fmode_t mode) 1815 { 1816 struct loop_device *lo; 1817 int err; 1818 1819 err = mutex_lock_killable(&loop_ctl_mutex); 1820 if (err) 1821 return err; 1822 lo = bdev->bd_disk->private_data; 1823 if (!lo) { 1824 err = -ENXIO; 1825 goto out; 1826 } 1827 1828 atomic_inc(&lo->lo_refcnt); 1829 out: 1830 mutex_unlock(&loop_ctl_mutex); 1831 return err; 1832 } 1833 1834 static void lo_release(struct gendisk *disk, fmode_t mode) 1835 { 1836 struct loop_device *lo; 1837 1838 mutex_lock(&loop_ctl_mutex); 1839 lo = disk->private_data; 1840 if (atomic_dec_return(&lo->lo_refcnt)) 1841 goto out_unlock; 1842 1843 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1844 if (lo->lo_state != Lo_bound) 1845 goto out_unlock; 1846 lo->lo_state = Lo_rundown; 1847 mutex_unlock(&loop_ctl_mutex); 1848 /* 1849 * In autoclear mode, stop the loop thread 1850 * and remove configuration after last close. 1851 */ 1852 __loop_clr_fd(lo, true); 1853 return; 1854 } else if (lo->lo_state == Lo_bound) { 1855 /* 1856 * Otherwise keep thread (if running) and config, 1857 * but flush possible ongoing bios in thread. 1858 */ 1859 blk_mq_freeze_queue(lo->lo_queue); 1860 blk_mq_unfreeze_queue(lo->lo_queue); 1861 } 1862 1863 out_unlock: 1864 mutex_unlock(&loop_ctl_mutex); 1865 } 1866 1867 static const struct block_device_operations lo_fops = { 1868 .owner = THIS_MODULE, 1869 .open = lo_open, 1870 .release = lo_release, 1871 .ioctl = lo_ioctl, 1872 #ifdef CONFIG_COMPAT 1873 .compat_ioctl = lo_compat_ioctl, 1874 #endif 1875 }; 1876 1877 /* 1878 * And now the modules code and kernel interface. 1879 */ 1880 static int max_loop; 1881 module_param(max_loop, int, 0444); 1882 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1883 module_param(max_part, int, 0444); 1884 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1885 MODULE_LICENSE("GPL"); 1886 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1887 1888 int loop_register_transfer(struct loop_func_table *funcs) 1889 { 1890 unsigned int n = funcs->number; 1891 1892 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1893 return -EINVAL; 1894 xfer_funcs[n] = funcs; 1895 return 0; 1896 } 1897 1898 static int unregister_transfer_cb(int id, void *ptr, void *data) 1899 { 1900 struct loop_device *lo = ptr; 1901 struct loop_func_table *xfer = data; 1902 1903 mutex_lock(&loop_ctl_mutex); 1904 if (lo->lo_encryption == xfer) 1905 loop_release_xfer(lo); 1906 mutex_unlock(&loop_ctl_mutex); 1907 return 0; 1908 } 1909 1910 int loop_unregister_transfer(int number) 1911 { 1912 unsigned int n = number; 1913 struct loop_func_table *xfer; 1914 1915 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1916 return -EINVAL; 1917 1918 xfer_funcs[n] = NULL; 1919 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1920 return 0; 1921 } 1922 1923 EXPORT_SYMBOL(loop_register_transfer); 1924 EXPORT_SYMBOL(loop_unregister_transfer); 1925 1926 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1927 const struct blk_mq_queue_data *bd) 1928 { 1929 struct request *rq = bd->rq; 1930 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1931 struct loop_device *lo = rq->q->queuedata; 1932 1933 blk_mq_start_request(rq); 1934 1935 if (lo->lo_state != Lo_bound) 1936 return BLK_STS_IOERR; 1937 1938 switch (req_op(rq)) { 1939 case REQ_OP_FLUSH: 1940 case REQ_OP_DISCARD: 1941 case REQ_OP_WRITE_ZEROES: 1942 cmd->use_aio = false; 1943 break; 1944 default: 1945 cmd->use_aio = lo->use_dio; 1946 break; 1947 } 1948 1949 /* always use the first bio's css */ 1950 #ifdef CONFIG_BLK_CGROUP 1951 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 1952 cmd->css = &bio_blkcg(rq->bio)->css; 1953 css_get(cmd->css); 1954 } else 1955 #endif 1956 cmd->css = NULL; 1957 kthread_queue_work(&lo->worker, &cmd->work); 1958 1959 return BLK_STS_OK; 1960 } 1961 1962 static void loop_handle_cmd(struct loop_cmd *cmd) 1963 { 1964 struct request *rq = blk_mq_rq_from_pdu(cmd); 1965 const bool write = op_is_write(req_op(rq)); 1966 struct loop_device *lo = rq->q->queuedata; 1967 int ret = 0; 1968 1969 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1970 ret = -EIO; 1971 goto failed; 1972 } 1973 1974 ret = do_req_filebacked(lo, rq); 1975 failed: 1976 /* complete non-aio request */ 1977 if (!cmd->use_aio || ret) { 1978 if (ret == -EOPNOTSUPP) 1979 cmd->ret = ret; 1980 else 1981 cmd->ret = ret ? -EIO : 0; 1982 blk_mq_complete_request(rq); 1983 } 1984 } 1985 1986 static void loop_queue_work(struct kthread_work *work) 1987 { 1988 struct loop_cmd *cmd = 1989 container_of(work, struct loop_cmd, work); 1990 1991 loop_handle_cmd(cmd); 1992 } 1993 1994 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 1995 unsigned int hctx_idx, unsigned int numa_node) 1996 { 1997 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1998 1999 kthread_init_work(&cmd->work, loop_queue_work); 2000 return 0; 2001 } 2002 2003 static const struct blk_mq_ops loop_mq_ops = { 2004 .queue_rq = loop_queue_rq, 2005 .init_request = loop_init_request, 2006 .complete = lo_complete_rq, 2007 }; 2008 2009 static int loop_add(struct loop_device **l, int i) 2010 { 2011 struct loop_device *lo; 2012 struct gendisk *disk; 2013 int err; 2014 2015 err = -ENOMEM; 2016 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2017 if (!lo) 2018 goto out; 2019 2020 lo->lo_state = Lo_unbound; 2021 2022 /* allocate id, if @id >= 0, we're requesting that specific id */ 2023 if (i >= 0) { 2024 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2025 if (err == -ENOSPC) 2026 err = -EEXIST; 2027 } else { 2028 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2029 } 2030 if (err < 0) 2031 goto out_free_dev; 2032 i = err; 2033 2034 err = -ENOMEM; 2035 lo->tag_set.ops = &loop_mq_ops; 2036 lo->tag_set.nr_hw_queues = 1; 2037 lo->tag_set.queue_depth = 128; 2038 lo->tag_set.numa_node = NUMA_NO_NODE; 2039 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2040 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; 2041 lo->tag_set.driver_data = lo; 2042 2043 err = blk_mq_alloc_tag_set(&lo->tag_set); 2044 if (err) 2045 goto out_free_idr; 2046 2047 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 2048 if (IS_ERR(lo->lo_queue)) { 2049 err = PTR_ERR(lo->lo_queue); 2050 goto out_cleanup_tags; 2051 } 2052 lo->lo_queue->queuedata = lo; 2053 2054 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2055 2056 /* 2057 * By default, we do buffer IO, so it doesn't make sense to enable 2058 * merge because the I/O submitted to backing file is handled page by 2059 * page. For directio mode, merge does help to dispatch bigger request 2060 * to underlayer disk. We will enable merge once directio is enabled. 2061 */ 2062 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2063 2064 err = -ENOMEM; 2065 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2066 if (!disk) 2067 goto out_free_queue; 2068 2069 /* 2070 * Disable partition scanning by default. The in-kernel partition 2071 * scanning can be requested individually per-device during its 2072 * setup. Userspace can always add and remove partitions from all 2073 * devices. The needed partition minors are allocated from the 2074 * extended minor space, the main loop device numbers will continue 2075 * to match the loop minors, regardless of the number of partitions 2076 * used. 2077 * 2078 * If max_part is given, partition scanning is globally enabled for 2079 * all loop devices. The minors for the main loop devices will be 2080 * multiples of max_part. 2081 * 2082 * Note: Global-for-all-devices, set-only-at-init, read-only module 2083 * parameteters like 'max_loop' and 'max_part' make things needlessly 2084 * complicated, are too static, inflexible and may surprise 2085 * userspace tools. Parameters like this in general should be avoided. 2086 */ 2087 if (!part_shift) 2088 disk->flags |= GENHD_FL_NO_PART_SCAN; 2089 disk->flags |= GENHD_FL_EXT_DEVT; 2090 atomic_set(&lo->lo_refcnt, 0); 2091 lo->lo_number = i; 2092 spin_lock_init(&lo->lo_lock); 2093 disk->major = LOOP_MAJOR; 2094 disk->first_minor = i << part_shift; 2095 disk->fops = &lo_fops; 2096 disk->private_data = lo; 2097 disk->queue = lo->lo_queue; 2098 sprintf(disk->disk_name, "loop%d", i); 2099 add_disk(disk); 2100 *l = lo; 2101 return lo->lo_number; 2102 2103 out_free_queue: 2104 blk_cleanup_queue(lo->lo_queue); 2105 out_cleanup_tags: 2106 blk_mq_free_tag_set(&lo->tag_set); 2107 out_free_idr: 2108 idr_remove(&loop_index_idr, i); 2109 out_free_dev: 2110 kfree(lo); 2111 out: 2112 return err; 2113 } 2114 2115 static void loop_remove(struct loop_device *lo) 2116 { 2117 del_gendisk(lo->lo_disk); 2118 blk_cleanup_queue(lo->lo_queue); 2119 blk_mq_free_tag_set(&lo->tag_set); 2120 put_disk(lo->lo_disk); 2121 kfree(lo); 2122 } 2123 2124 static int find_free_cb(int id, void *ptr, void *data) 2125 { 2126 struct loop_device *lo = ptr; 2127 struct loop_device **l = data; 2128 2129 if (lo->lo_state == Lo_unbound) { 2130 *l = lo; 2131 return 1; 2132 } 2133 return 0; 2134 } 2135 2136 static int loop_lookup(struct loop_device **l, int i) 2137 { 2138 struct loop_device *lo; 2139 int ret = -ENODEV; 2140 2141 if (i < 0) { 2142 int err; 2143 2144 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2145 if (err == 1) { 2146 *l = lo; 2147 ret = lo->lo_number; 2148 } 2149 goto out; 2150 } 2151 2152 /* lookup and return a specific i */ 2153 lo = idr_find(&loop_index_idr, i); 2154 if (lo) { 2155 *l = lo; 2156 ret = lo->lo_number; 2157 } 2158 out: 2159 return ret; 2160 } 2161 2162 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 2163 { 2164 struct loop_device *lo; 2165 struct kobject *kobj; 2166 int err; 2167 2168 mutex_lock(&loop_ctl_mutex); 2169 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 2170 if (err < 0) 2171 err = loop_add(&lo, MINOR(dev) >> part_shift); 2172 if (err < 0) 2173 kobj = NULL; 2174 else 2175 kobj = get_disk_and_module(lo->lo_disk); 2176 mutex_unlock(&loop_ctl_mutex); 2177 2178 *part = 0; 2179 return kobj; 2180 } 2181 2182 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2183 unsigned long parm) 2184 { 2185 struct loop_device *lo; 2186 int ret; 2187 2188 ret = mutex_lock_killable(&loop_ctl_mutex); 2189 if (ret) 2190 return ret; 2191 2192 ret = -ENOSYS; 2193 switch (cmd) { 2194 case LOOP_CTL_ADD: 2195 ret = loop_lookup(&lo, parm); 2196 if (ret >= 0) { 2197 ret = -EEXIST; 2198 break; 2199 } 2200 ret = loop_add(&lo, parm); 2201 break; 2202 case LOOP_CTL_REMOVE: 2203 ret = loop_lookup(&lo, parm); 2204 if (ret < 0) 2205 break; 2206 if (lo->lo_state != Lo_unbound) { 2207 ret = -EBUSY; 2208 break; 2209 } 2210 if (atomic_read(&lo->lo_refcnt) > 0) { 2211 ret = -EBUSY; 2212 break; 2213 } 2214 lo->lo_disk->private_data = NULL; 2215 idr_remove(&loop_index_idr, lo->lo_number); 2216 loop_remove(lo); 2217 break; 2218 case LOOP_CTL_GET_FREE: 2219 ret = loop_lookup(&lo, -1); 2220 if (ret >= 0) 2221 break; 2222 ret = loop_add(&lo, -1); 2223 } 2224 mutex_unlock(&loop_ctl_mutex); 2225 2226 return ret; 2227 } 2228 2229 static const struct file_operations loop_ctl_fops = { 2230 .open = nonseekable_open, 2231 .unlocked_ioctl = loop_control_ioctl, 2232 .compat_ioctl = loop_control_ioctl, 2233 .owner = THIS_MODULE, 2234 .llseek = noop_llseek, 2235 }; 2236 2237 static struct miscdevice loop_misc = { 2238 .minor = LOOP_CTRL_MINOR, 2239 .name = "loop-control", 2240 .fops = &loop_ctl_fops, 2241 }; 2242 2243 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2244 MODULE_ALIAS("devname:loop-control"); 2245 2246 static int __init loop_init(void) 2247 { 2248 int i, nr; 2249 unsigned long range; 2250 struct loop_device *lo; 2251 int err; 2252 2253 part_shift = 0; 2254 if (max_part > 0) { 2255 part_shift = fls(max_part); 2256 2257 /* 2258 * Adjust max_part according to part_shift as it is exported 2259 * to user space so that user can decide correct minor number 2260 * if [s]he want to create more devices. 2261 * 2262 * Note that -1 is required because partition 0 is reserved 2263 * for the whole disk. 2264 */ 2265 max_part = (1UL << part_shift) - 1; 2266 } 2267 2268 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2269 err = -EINVAL; 2270 goto err_out; 2271 } 2272 2273 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2274 err = -EINVAL; 2275 goto err_out; 2276 } 2277 2278 /* 2279 * If max_loop is specified, create that many devices upfront. 2280 * This also becomes a hard limit. If max_loop is not specified, 2281 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2282 * init time. Loop devices can be requested on-demand with the 2283 * /dev/loop-control interface, or be instantiated by accessing 2284 * a 'dead' device node. 2285 */ 2286 if (max_loop) { 2287 nr = max_loop; 2288 range = max_loop << part_shift; 2289 } else { 2290 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2291 range = 1UL << MINORBITS; 2292 } 2293 2294 err = misc_register(&loop_misc); 2295 if (err < 0) 2296 goto err_out; 2297 2298 2299 if (register_blkdev(LOOP_MAJOR, "loop")) { 2300 err = -EIO; 2301 goto misc_out; 2302 } 2303 2304 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 2305 THIS_MODULE, loop_probe, NULL, NULL); 2306 2307 /* pre-create number of devices given by config or max_loop */ 2308 mutex_lock(&loop_ctl_mutex); 2309 for (i = 0; i < nr; i++) 2310 loop_add(&lo, i); 2311 mutex_unlock(&loop_ctl_mutex); 2312 2313 printk(KERN_INFO "loop: module loaded\n"); 2314 return 0; 2315 2316 misc_out: 2317 misc_deregister(&loop_misc); 2318 err_out: 2319 return err; 2320 } 2321 2322 static int loop_exit_cb(int id, void *ptr, void *data) 2323 { 2324 struct loop_device *lo = ptr; 2325 2326 loop_remove(lo); 2327 return 0; 2328 } 2329 2330 static void __exit loop_exit(void) 2331 { 2332 unsigned long range; 2333 2334 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 2335 2336 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2337 idr_destroy(&loop_index_idr); 2338 2339 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 2340 unregister_blkdev(LOOP_MAJOR, "loop"); 2341 2342 misc_deregister(&loop_misc); 2343 } 2344 2345 module_init(loop_init); 2346 module_exit(loop_exit); 2347 2348 #ifndef MODULE 2349 static int __init max_loop_setup(char *str) 2350 { 2351 max_loop = simple_strtol(str, NULL, 0); 2352 return 1; 2353 } 2354 2355 __setup("max_loop=", max_loop_setup); 2356 #endif 2357