1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/loop.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/kthread.h> 75 #include <linux/splice.h> 76 #include <linux/sysfs.h> 77 #include <linux/miscdevice.h> 78 #include <linux/falloc.h> 79 80 #include <asm/uaccess.h> 81 82 static DEFINE_IDR(loop_index_idr); 83 static DEFINE_MUTEX(loop_index_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(loop_buf); 105 kunmap_atomic(raw_buf); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(loop_buf); 134 kunmap_atomic(raw_buf); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 164 { 165 loff_t loopsize; 166 167 /* Compute loopsize in bytes */ 168 loopsize = i_size_read(file->f_mapping->host); 169 if (offset > 0) 170 loopsize -= offset; 171 /* offset is beyond i_size, weird but possible */ 172 if (loopsize < 0) 173 return 0; 174 175 if (sizelimit > 0 && sizelimit < loopsize) 176 loopsize = sizelimit; 177 /* 178 * Unfortunately, if we want to do I/O on the device, 179 * the number of 512-byte sectors has to fit into a sector_t. 180 */ 181 return loopsize >> 9; 182 } 183 184 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 185 { 186 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 187 } 188 189 static int 190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 191 { 192 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 193 sector_t x = (sector_t)size; 194 struct block_device *bdev = lo->lo_device; 195 196 if (unlikely((loff_t)x != size)) 197 return -EFBIG; 198 if (lo->lo_offset != offset) 199 lo->lo_offset = offset; 200 if (lo->lo_sizelimit != sizelimit) 201 lo->lo_sizelimit = sizelimit; 202 set_capacity(lo->lo_disk, x); 203 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 204 /* let user-space know about the new size */ 205 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 206 return 0; 207 } 208 209 static inline int 210 lo_do_transfer(struct loop_device *lo, int cmd, 211 struct page *rpage, unsigned roffs, 212 struct page *lpage, unsigned loffs, 213 int size, sector_t rblock) 214 { 215 if (unlikely(!lo->transfer)) 216 return 0; 217 218 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 219 } 220 221 /** 222 * __do_lo_send_write - helper for writing data to a loop device 223 * 224 * This helper just factors out common code between do_lo_send_direct_write() 225 * and do_lo_send_write(). 226 */ 227 static int __do_lo_send_write(struct file *file, 228 u8 *buf, const int len, loff_t pos) 229 { 230 ssize_t bw; 231 mm_segment_t old_fs = get_fs(); 232 233 set_fs(get_ds()); 234 bw = file->f_op->write(file, buf, len, &pos); 235 set_fs(old_fs); 236 if (likely(bw == len)) 237 return 0; 238 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 239 (unsigned long long)pos, len); 240 if (bw >= 0) 241 bw = -EIO; 242 return bw; 243 } 244 245 /** 246 * do_lo_send_direct_write - helper for writing data to a loop device 247 * 248 * This is the fast, non-transforming version that does not need double 249 * buffering. 250 */ 251 static int do_lo_send_direct_write(struct loop_device *lo, 252 struct bio_vec *bvec, loff_t pos, struct page *page) 253 { 254 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 255 kmap(bvec->bv_page) + bvec->bv_offset, 256 bvec->bv_len, pos); 257 kunmap(bvec->bv_page); 258 cond_resched(); 259 return bw; 260 } 261 262 /** 263 * do_lo_send_write - helper for writing data to a loop device 264 * 265 * This is the slow, transforming version that needs to double buffer the 266 * data as it cannot do the transformations in place without having direct 267 * access to the destination pages of the backing file. 268 */ 269 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 270 loff_t pos, struct page *page) 271 { 272 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 273 bvec->bv_offset, bvec->bv_len, pos >> 9); 274 if (likely(!ret)) 275 return __do_lo_send_write(lo->lo_backing_file, 276 page_address(page), bvec->bv_len, 277 pos); 278 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 279 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 280 if (ret > 0) 281 ret = -EIO; 282 return ret; 283 } 284 285 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 286 { 287 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 288 struct page *page); 289 struct bio_vec *bvec; 290 struct page *page = NULL; 291 int i, ret = 0; 292 293 if (lo->transfer != transfer_none) { 294 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 295 if (unlikely(!page)) 296 goto fail; 297 kmap(page); 298 do_lo_send = do_lo_send_write; 299 } else { 300 do_lo_send = do_lo_send_direct_write; 301 } 302 303 bio_for_each_segment(bvec, bio, i) { 304 ret = do_lo_send(lo, bvec, pos, page); 305 if (ret < 0) 306 break; 307 pos += bvec->bv_len; 308 } 309 if (page) { 310 kunmap(page); 311 __free_page(page); 312 } 313 out: 314 return ret; 315 fail: 316 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 317 ret = -ENOMEM; 318 goto out; 319 } 320 321 struct lo_read_data { 322 struct loop_device *lo; 323 struct page *page; 324 unsigned offset; 325 int bsize; 326 }; 327 328 static int 329 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 330 struct splice_desc *sd) 331 { 332 struct lo_read_data *p = sd->u.data; 333 struct loop_device *lo = p->lo; 334 struct page *page = buf->page; 335 sector_t IV; 336 int size; 337 338 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 339 (buf->offset >> 9); 340 size = sd->len; 341 if (size > p->bsize) 342 size = p->bsize; 343 344 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 345 printk(KERN_ERR "loop: transfer error block %ld\n", 346 page->index); 347 size = -EINVAL; 348 } 349 350 flush_dcache_page(p->page); 351 352 if (size > 0) 353 p->offset += size; 354 355 return size; 356 } 357 358 static int 359 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 360 { 361 return __splice_from_pipe(pipe, sd, lo_splice_actor); 362 } 363 364 static ssize_t 365 do_lo_receive(struct loop_device *lo, 366 struct bio_vec *bvec, int bsize, loff_t pos) 367 { 368 struct lo_read_data cookie; 369 struct splice_desc sd; 370 struct file *file; 371 ssize_t retval; 372 373 cookie.lo = lo; 374 cookie.page = bvec->bv_page; 375 cookie.offset = bvec->bv_offset; 376 cookie.bsize = bsize; 377 378 sd.len = 0; 379 sd.total_len = bvec->bv_len; 380 sd.flags = 0; 381 sd.pos = pos; 382 sd.u.data = &cookie; 383 384 file = lo->lo_backing_file; 385 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 386 387 return retval; 388 } 389 390 static int 391 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 392 { 393 struct bio_vec *bvec; 394 ssize_t s; 395 int i; 396 397 bio_for_each_segment(bvec, bio, i) { 398 s = do_lo_receive(lo, bvec, bsize, pos); 399 if (s < 0) 400 return s; 401 402 if (s != bvec->bv_len) { 403 zero_fill_bio(bio); 404 break; 405 } 406 pos += bvec->bv_len; 407 } 408 return 0; 409 } 410 411 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 412 { 413 loff_t pos; 414 int ret; 415 416 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 417 418 if (bio_rw(bio) == WRITE) { 419 struct file *file = lo->lo_backing_file; 420 421 if (bio->bi_rw & REQ_FLUSH) { 422 ret = vfs_fsync(file, 0); 423 if (unlikely(ret && ret != -EINVAL)) { 424 ret = -EIO; 425 goto out; 426 } 427 } 428 429 /* 430 * We use punch hole to reclaim the free space used by the 431 * image a.k.a. discard. However we do not support discard if 432 * encryption is enabled, because it may give an attacker 433 * useful information. 434 */ 435 if (bio->bi_rw & REQ_DISCARD) { 436 struct file *file = lo->lo_backing_file; 437 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 438 439 if ((!file->f_op->fallocate) || 440 lo->lo_encrypt_key_size) { 441 ret = -EOPNOTSUPP; 442 goto out; 443 } 444 ret = file->f_op->fallocate(file, mode, pos, 445 bio->bi_size); 446 if (unlikely(ret && ret != -EINVAL && 447 ret != -EOPNOTSUPP)) 448 ret = -EIO; 449 goto out; 450 } 451 452 ret = lo_send(lo, bio, pos); 453 454 if ((bio->bi_rw & REQ_FUA) && !ret) { 455 ret = vfs_fsync(file, 0); 456 if (unlikely(ret && ret != -EINVAL)) 457 ret = -EIO; 458 } 459 } else 460 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 461 462 out: 463 return ret; 464 } 465 466 /* 467 * Add bio to back of pending list 468 */ 469 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 470 { 471 lo->lo_bio_count++; 472 bio_list_add(&lo->lo_bio_list, bio); 473 } 474 475 /* 476 * Grab first pending buffer 477 */ 478 static struct bio *loop_get_bio(struct loop_device *lo) 479 { 480 lo->lo_bio_count--; 481 return bio_list_pop(&lo->lo_bio_list); 482 } 483 484 static void loop_make_request(struct request_queue *q, struct bio *old_bio) 485 { 486 struct loop_device *lo = q->queuedata; 487 int rw = bio_rw(old_bio); 488 489 if (rw == READA) 490 rw = READ; 491 492 BUG_ON(!lo || (rw != READ && rw != WRITE)); 493 494 spin_lock_irq(&lo->lo_lock); 495 if (lo->lo_state != Lo_bound) 496 goto out; 497 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 498 goto out; 499 if (lo->lo_bio_count >= q->nr_congestion_on) 500 wait_event_lock_irq(lo->lo_req_wait, 501 lo->lo_bio_count < q->nr_congestion_off, 502 lo->lo_lock); 503 loop_add_bio(lo, old_bio); 504 wake_up(&lo->lo_event); 505 spin_unlock_irq(&lo->lo_lock); 506 return; 507 508 out: 509 spin_unlock_irq(&lo->lo_lock); 510 bio_io_error(old_bio); 511 } 512 513 struct switch_request { 514 struct file *file; 515 struct completion wait; 516 }; 517 518 static void do_loop_switch(struct loop_device *, struct switch_request *); 519 520 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 521 { 522 if (unlikely(!bio->bi_bdev)) { 523 do_loop_switch(lo, bio->bi_private); 524 bio_put(bio); 525 } else { 526 int ret = do_bio_filebacked(lo, bio); 527 bio_endio(bio, ret); 528 } 529 } 530 531 /* 532 * worker thread that handles reads/writes to file backed loop devices, 533 * to avoid blocking in our make_request_fn. it also does loop decrypting 534 * on reads for block backed loop, as that is too heavy to do from 535 * b_end_io context where irqs may be disabled. 536 * 537 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 538 * calling kthread_stop(). Therefore once kthread_should_stop() is 539 * true, make_request will not place any more requests. Therefore 540 * once kthread_should_stop() is true and lo_bio is NULL, we are 541 * done with the loop. 542 */ 543 static int loop_thread(void *data) 544 { 545 struct loop_device *lo = data; 546 struct bio *bio; 547 548 set_user_nice(current, -20); 549 550 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 551 552 wait_event_interruptible(lo->lo_event, 553 !bio_list_empty(&lo->lo_bio_list) || 554 kthread_should_stop()); 555 556 if (bio_list_empty(&lo->lo_bio_list)) 557 continue; 558 spin_lock_irq(&lo->lo_lock); 559 bio = loop_get_bio(lo); 560 if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off) 561 wake_up(&lo->lo_req_wait); 562 spin_unlock_irq(&lo->lo_lock); 563 564 BUG_ON(!bio); 565 loop_handle_bio(lo, bio); 566 } 567 568 return 0; 569 } 570 571 /* 572 * loop_switch performs the hard work of switching a backing store. 573 * First it needs to flush existing IO, it does this by sending a magic 574 * BIO down the pipe. The completion of this BIO does the actual switch. 575 */ 576 static int loop_switch(struct loop_device *lo, struct file *file) 577 { 578 struct switch_request w; 579 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 580 if (!bio) 581 return -ENOMEM; 582 init_completion(&w.wait); 583 w.file = file; 584 bio->bi_private = &w; 585 bio->bi_bdev = NULL; 586 loop_make_request(lo->lo_queue, bio); 587 wait_for_completion(&w.wait); 588 return 0; 589 } 590 591 /* 592 * Helper to flush the IOs in loop, but keeping loop thread running 593 */ 594 static int loop_flush(struct loop_device *lo) 595 { 596 /* loop not yet configured, no running thread, nothing to flush */ 597 if (!lo->lo_thread) 598 return 0; 599 600 return loop_switch(lo, NULL); 601 } 602 603 /* 604 * Do the actual switch; called from the BIO completion routine 605 */ 606 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 607 { 608 struct file *file = p->file; 609 struct file *old_file = lo->lo_backing_file; 610 struct address_space *mapping; 611 612 /* if no new file, only flush of queued bios requested */ 613 if (!file) 614 goto out; 615 616 mapping = file->f_mapping; 617 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 618 lo->lo_backing_file = file; 619 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 620 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 621 lo->old_gfp_mask = mapping_gfp_mask(mapping); 622 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 623 out: 624 complete(&p->wait); 625 } 626 627 628 /* 629 * loop_change_fd switched the backing store of a loopback device to 630 * a new file. This is useful for operating system installers to free up 631 * the original file and in High Availability environments to switch to 632 * an alternative location for the content in case of server meltdown. 633 * This can only work if the loop device is used read-only, and if the 634 * new backing store is the same size and type as the old backing store. 635 */ 636 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 637 unsigned int arg) 638 { 639 struct file *file, *old_file; 640 struct inode *inode; 641 int error; 642 643 error = -ENXIO; 644 if (lo->lo_state != Lo_bound) 645 goto out; 646 647 /* the loop device has to be read-only */ 648 error = -EINVAL; 649 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 650 goto out; 651 652 error = -EBADF; 653 file = fget(arg); 654 if (!file) 655 goto out; 656 657 inode = file->f_mapping->host; 658 old_file = lo->lo_backing_file; 659 660 error = -EINVAL; 661 662 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 663 goto out_putf; 664 665 /* size of the new backing store needs to be the same */ 666 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 667 goto out_putf; 668 669 /* and ... switch */ 670 error = loop_switch(lo, file); 671 if (error) 672 goto out_putf; 673 674 fput(old_file); 675 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 676 ioctl_by_bdev(bdev, BLKRRPART, 0); 677 return 0; 678 679 out_putf: 680 fput(file); 681 out: 682 return error; 683 } 684 685 static inline int is_loop_device(struct file *file) 686 { 687 struct inode *i = file->f_mapping->host; 688 689 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 690 } 691 692 /* loop sysfs attributes */ 693 694 static ssize_t loop_attr_show(struct device *dev, char *page, 695 ssize_t (*callback)(struct loop_device *, char *)) 696 { 697 struct gendisk *disk = dev_to_disk(dev); 698 struct loop_device *lo = disk->private_data; 699 700 return callback(lo, page); 701 } 702 703 #define LOOP_ATTR_RO(_name) \ 704 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 705 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 706 struct device_attribute *attr, char *b) \ 707 { \ 708 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 709 } \ 710 static struct device_attribute loop_attr_##_name = \ 711 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 712 713 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 714 { 715 ssize_t ret; 716 char *p = NULL; 717 718 spin_lock_irq(&lo->lo_lock); 719 if (lo->lo_backing_file) 720 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 721 spin_unlock_irq(&lo->lo_lock); 722 723 if (IS_ERR_OR_NULL(p)) 724 ret = PTR_ERR(p); 725 else { 726 ret = strlen(p); 727 memmove(buf, p, ret); 728 buf[ret++] = '\n'; 729 buf[ret] = 0; 730 } 731 732 return ret; 733 } 734 735 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 736 { 737 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 738 } 739 740 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 741 { 742 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 743 } 744 745 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 746 { 747 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 748 749 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 750 } 751 752 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 753 { 754 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 755 756 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 757 } 758 759 LOOP_ATTR_RO(backing_file); 760 LOOP_ATTR_RO(offset); 761 LOOP_ATTR_RO(sizelimit); 762 LOOP_ATTR_RO(autoclear); 763 LOOP_ATTR_RO(partscan); 764 765 static struct attribute *loop_attrs[] = { 766 &loop_attr_backing_file.attr, 767 &loop_attr_offset.attr, 768 &loop_attr_sizelimit.attr, 769 &loop_attr_autoclear.attr, 770 &loop_attr_partscan.attr, 771 NULL, 772 }; 773 774 static struct attribute_group loop_attribute_group = { 775 .name = "loop", 776 .attrs= loop_attrs, 777 }; 778 779 static int loop_sysfs_init(struct loop_device *lo) 780 { 781 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 782 &loop_attribute_group); 783 } 784 785 static void loop_sysfs_exit(struct loop_device *lo) 786 { 787 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 788 &loop_attribute_group); 789 } 790 791 static void loop_config_discard(struct loop_device *lo) 792 { 793 struct file *file = lo->lo_backing_file; 794 struct inode *inode = file->f_mapping->host; 795 struct request_queue *q = lo->lo_queue; 796 797 /* 798 * We use punch hole to reclaim the free space used by the 799 * image a.k.a. discard. However we do support discard if 800 * encryption is enabled, because it may give an attacker 801 * useful information. 802 */ 803 if ((!file->f_op->fallocate) || 804 lo->lo_encrypt_key_size) { 805 q->limits.discard_granularity = 0; 806 q->limits.discard_alignment = 0; 807 q->limits.max_discard_sectors = 0; 808 q->limits.discard_zeroes_data = 0; 809 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 810 return; 811 } 812 813 q->limits.discard_granularity = inode->i_sb->s_blocksize; 814 q->limits.discard_alignment = 0; 815 q->limits.max_discard_sectors = UINT_MAX >> 9; 816 q->limits.discard_zeroes_data = 1; 817 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 818 } 819 820 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 821 struct block_device *bdev, unsigned int arg) 822 { 823 struct file *file, *f; 824 struct inode *inode; 825 struct address_space *mapping; 826 unsigned lo_blocksize; 827 int lo_flags = 0; 828 int error; 829 loff_t size; 830 831 /* This is safe, since we have a reference from open(). */ 832 __module_get(THIS_MODULE); 833 834 error = -EBADF; 835 file = fget(arg); 836 if (!file) 837 goto out; 838 839 error = -EBUSY; 840 if (lo->lo_state != Lo_unbound) 841 goto out_putf; 842 843 /* Avoid recursion */ 844 f = file; 845 while (is_loop_device(f)) { 846 struct loop_device *l; 847 848 if (f->f_mapping->host->i_bdev == bdev) 849 goto out_putf; 850 851 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 852 if (l->lo_state == Lo_unbound) { 853 error = -EINVAL; 854 goto out_putf; 855 } 856 f = l->lo_backing_file; 857 } 858 859 mapping = file->f_mapping; 860 inode = mapping->host; 861 862 error = -EINVAL; 863 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 864 goto out_putf; 865 866 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 867 !file->f_op->write) 868 lo_flags |= LO_FLAGS_READ_ONLY; 869 870 lo_blocksize = S_ISBLK(inode->i_mode) ? 871 inode->i_bdev->bd_block_size : PAGE_SIZE; 872 873 error = -EFBIG; 874 size = get_loop_size(lo, file); 875 if ((loff_t)(sector_t)size != size) 876 goto out_putf; 877 878 error = 0; 879 880 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 881 882 lo->lo_blocksize = lo_blocksize; 883 lo->lo_device = bdev; 884 lo->lo_flags = lo_flags; 885 lo->lo_backing_file = file; 886 lo->transfer = transfer_none; 887 lo->ioctl = NULL; 888 lo->lo_sizelimit = 0; 889 lo->lo_bio_count = 0; 890 lo->old_gfp_mask = mapping_gfp_mask(mapping); 891 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 892 893 bio_list_init(&lo->lo_bio_list); 894 895 /* 896 * set queue make_request_fn, and add limits based on lower level 897 * device 898 */ 899 blk_queue_make_request(lo->lo_queue, loop_make_request); 900 lo->lo_queue->queuedata = lo; 901 902 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 903 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 904 905 set_capacity(lo->lo_disk, size); 906 bd_set_size(bdev, size << 9); 907 loop_sysfs_init(lo); 908 /* let user-space know about the new size */ 909 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 910 911 set_blocksize(bdev, lo_blocksize); 912 913 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 914 lo->lo_number); 915 if (IS_ERR(lo->lo_thread)) { 916 error = PTR_ERR(lo->lo_thread); 917 goto out_clr; 918 } 919 lo->lo_state = Lo_bound; 920 wake_up_process(lo->lo_thread); 921 if (part_shift) 922 lo->lo_flags |= LO_FLAGS_PARTSCAN; 923 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 924 ioctl_by_bdev(bdev, BLKRRPART, 0); 925 926 /* Grab the block_device to prevent its destruction after we 927 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 928 */ 929 bdgrab(bdev); 930 return 0; 931 932 out_clr: 933 loop_sysfs_exit(lo); 934 lo->lo_thread = NULL; 935 lo->lo_device = NULL; 936 lo->lo_backing_file = NULL; 937 lo->lo_flags = 0; 938 set_capacity(lo->lo_disk, 0); 939 invalidate_bdev(bdev); 940 bd_set_size(bdev, 0); 941 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 942 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 943 lo->lo_state = Lo_unbound; 944 out_putf: 945 fput(file); 946 out: 947 /* This is safe: open() is still holding a reference. */ 948 module_put(THIS_MODULE); 949 return error; 950 } 951 952 static int 953 loop_release_xfer(struct loop_device *lo) 954 { 955 int err = 0; 956 struct loop_func_table *xfer = lo->lo_encryption; 957 958 if (xfer) { 959 if (xfer->release) 960 err = xfer->release(lo); 961 lo->transfer = NULL; 962 lo->lo_encryption = NULL; 963 module_put(xfer->owner); 964 } 965 return err; 966 } 967 968 static int 969 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 970 const struct loop_info64 *i) 971 { 972 int err = 0; 973 974 if (xfer) { 975 struct module *owner = xfer->owner; 976 977 if (!try_module_get(owner)) 978 return -EINVAL; 979 if (xfer->init) 980 err = xfer->init(lo, i); 981 if (err) 982 module_put(owner); 983 else 984 lo->lo_encryption = xfer; 985 } 986 return err; 987 } 988 989 static int loop_clr_fd(struct loop_device *lo) 990 { 991 struct file *filp = lo->lo_backing_file; 992 gfp_t gfp = lo->old_gfp_mask; 993 struct block_device *bdev = lo->lo_device; 994 995 if (lo->lo_state != Lo_bound) 996 return -ENXIO; 997 998 /* 999 * If we've explicitly asked to tear down the loop device, 1000 * and it has an elevated reference count, set it for auto-teardown when 1001 * the last reference goes away. This stops $!~#$@ udev from 1002 * preventing teardown because it decided that it needs to run blkid on 1003 * the loopback device whenever they appear. xfstests is notorious for 1004 * failing tests because blkid via udev races with a losetup 1005 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1006 * command to fail with EBUSY. 1007 */ 1008 if (lo->lo_refcnt > 1) { 1009 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1010 mutex_unlock(&lo->lo_ctl_mutex); 1011 return 0; 1012 } 1013 1014 if (filp == NULL) 1015 return -EINVAL; 1016 1017 spin_lock_irq(&lo->lo_lock); 1018 lo->lo_state = Lo_rundown; 1019 spin_unlock_irq(&lo->lo_lock); 1020 1021 kthread_stop(lo->lo_thread); 1022 1023 spin_lock_irq(&lo->lo_lock); 1024 lo->lo_backing_file = NULL; 1025 spin_unlock_irq(&lo->lo_lock); 1026 1027 loop_release_xfer(lo); 1028 lo->transfer = NULL; 1029 lo->ioctl = NULL; 1030 lo->lo_device = NULL; 1031 lo->lo_encryption = NULL; 1032 lo->lo_offset = 0; 1033 lo->lo_sizelimit = 0; 1034 lo->lo_encrypt_key_size = 0; 1035 lo->lo_thread = NULL; 1036 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1037 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1038 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1039 if (bdev) { 1040 bdput(bdev); 1041 invalidate_bdev(bdev); 1042 } 1043 set_capacity(lo->lo_disk, 0); 1044 loop_sysfs_exit(lo); 1045 if (bdev) { 1046 bd_set_size(bdev, 0); 1047 /* let user-space know about this change */ 1048 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1049 } 1050 mapping_set_gfp_mask(filp->f_mapping, gfp); 1051 lo->lo_state = Lo_unbound; 1052 /* This is safe: open() is still holding a reference. */ 1053 module_put(THIS_MODULE); 1054 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1055 ioctl_by_bdev(bdev, BLKRRPART, 0); 1056 lo->lo_flags = 0; 1057 if (!part_shift) 1058 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1059 mutex_unlock(&lo->lo_ctl_mutex); 1060 /* 1061 * Need not hold lo_ctl_mutex to fput backing file. 1062 * Calling fput holding lo_ctl_mutex triggers a circular 1063 * lock dependency possibility warning as fput can take 1064 * bd_mutex which is usually taken before lo_ctl_mutex. 1065 */ 1066 fput(filp); 1067 return 0; 1068 } 1069 1070 static int 1071 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1072 { 1073 int err; 1074 struct loop_func_table *xfer; 1075 kuid_t uid = current_uid(); 1076 1077 if (lo->lo_encrypt_key_size && 1078 !uid_eq(lo->lo_key_owner, uid) && 1079 !capable(CAP_SYS_ADMIN)) 1080 return -EPERM; 1081 if (lo->lo_state != Lo_bound) 1082 return -ENXIO; 1083 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1084 return -EINVAL; 1085 1086 err = loop_release_xfer(lo); 1087 if (err) 1088 return err; 1089 1090 if (info->lo_encrypt_type) { 1091 unsigned int type = info->lo_encrypt_type; 1092 1093 if (type >= MAX_LO_CRYPT) 1094 return -EINVAL; 1095 xfer = xfer_funcs[type]; 1096 if (xfer == NULL) 1097 return -EINVAL; 1098 } else 1099 xfer = NULL; 1100 1101 err = loop_init_xfer(lo, xfer, info); 1102 if (err) 1103 return err; 1104 1105 if (lo->lo_offset != info->lo_offset || 1106 lo->lo_sizelimit != info->lo_sizelimit) 1107 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1108 return -EFBIG; 1109 1110 loop_config_discard(lo); 1111 1112 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1113 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1114 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1115 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1116 1117 if (!xfer) 1118 xfer = &none_funcs; 1119 lo->transfer = xfer->transfer; 1120 lo->ioctl = xfer->ioctl; 1121 1122 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1123 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1124 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1125 1126 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1127 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1128 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1129 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1130 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0); 1131 } 1132 1133 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1134 lo->lo_init[0] = info->lo_init[0]; 1135 lo->lo_init[1] = info->lo_init[1]; 1136 if (info->lo_encrypt_key_size) { 1137 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1138 info->lo_encrypt_key_size); 1139 lo->lo_key_owner = uid; 1140 } 1141 1142 return 0; 1143 } 1144 1145 static int 1146 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1147 { 1148 struct file *file = lo->lo_backing_file; 1149 struct kstat stat; 1150 int error; 1151 1152 if (lo->lo_state != Lo_bound) 1153 return -ENXIO; 1154 error = vfs_getattr(&file->f_path, &stat); 1155 if (error) 1156 return error; 1157 memset(info, 0, sizeof(*info)); 1158 info->lo_number = lo->lo_number; 1159 info->lo_device = huge_encode_dev(stat.dev); 1160 info->lo_inode = stat.ino; 1161 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1162 info->lo_offset = lo->lo_offset; 1163 info->lo_sizelimit = lo->lo_sizelimit; 1164 info->lo_flags = lo->lo_flags; 1165 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1166 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1167 info->lo_encrypt_type = 1168 lo->lo_encryption ? lo->lo_encryption->number : 0; 1169 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1170 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1171 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1172 lo->lo_encrypt_key_size); 1173 } 1174 return 0; 1175 } 1176 1177 static void 1178 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1179 { 1180 memset(info64, 0, sizeof(*info64)); 1181 info64->lo_number = info->lo_number; 1182 info64->lo_device = info->lo_device; 1183 info64->lo_inode = info->lo_inode; 1184 info64->lo_rdevice = info->lo_rdevice; 1185 info64->lo_offset = info->lo_offset; 1186 info64->lo_sizelimit = 0; 1187 info64->lo_encrypt_type = info->lo_encrypt_type; 1188 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1189 info64->lo_flags = info->lo_flags; 1190 info64->lo_init[0] = info->lo_init[0]; 1191 info64->lo_init[1] = info->lo_init[1]; 1192 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1193 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1194 else 1195 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1196 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1197 } 1198 1199 static int 1200 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1201 { 1202 memset(info, 0, sizeof(*info)); 1203 info->lo_number = info64->lo_number; 1204 info->lo_device = info64->lo_device; 1205 info->lo_inode = info64->lo_inode; 1206 info->lo_rdevice = info64->lo_rdevice; 1207 info->lo_offset = info64->lo_offset; 1208 info->lo_encrypt_type = info64->lo_encrypt_type; 1209 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1210 info->lo_flags = info64->lo_flags; 1211 info->lo_init[0] = info64->lo_init[0]; 1212 info->lo_init[1] = info64->lo_init[1]; 1213 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1214 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1215 else 1216 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1217 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1218 1219 /* error in case values were truncated */ 1220 if (info->lo_device != info64->lo_device || 1221 info->lo_rdevice != info64->lo_rdevice || 1222 info->lo_inode != info64->lo_inode || 1223 info->lo_offset != info64->lo_offset) 1224 return -EOVERFLOW; 1225 1226 return 0; 1227 } 1228 1229 static int 1230 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1231 { 1232 struct loop_info info; 1233 struct loop_info64 info64; 1234 1235 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1236 return -EFAULT; 1237 loop_info64_from_old(&info, &info64); 1238 return loop_set_status(lo, &info64); 1239 } 1240 1241 static int 1242 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1243 { 1244 struct loop_info64 info64; 1245 1246 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1247 return -EFAULT; 1248 return loop_set_status(lo, &info64); 1249 } 1250 1251 static int 1252 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1253 struct loop_info info; 1254 struct loop_info64 info64; 1255 int err = 0; 1256 1257 if (!arg) 1258 err = -EINVAL; 1259 if (!err) 1260 err = loop_get_status(lo, &info64); 1261 if (!err) 1262 err = loop_info64_to_old(&info64, &info); 1263 if (!err && copy_to_user(arg, &info, sizeof(info))) 1264 err = -EFAULT; 1265 1266 return err; 1267 } 1268 1269 static int 1270 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1271 struct loop_info64 info64; 1272 int err = 0; 1273 1274 if (!arg) 1275 err = -EINVAL; 1276 if (!err) 1277 err = loop_get_status(lo, &info64); 1278 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1279 err = -EFAULT; 1280 1281 return err; 1282 } 1283 1284 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1285 { 1286 if (unlikely(lo->lo_state != Lo_bound)) 1287 return -ENXIO; 1288 1289 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1290 } 1291 1292 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1293 unsigned int cmd, unsigned long arg) 1294 { 1295 struct loop_device *lo = bdev->bd_disk->private_data; 1296 int err; 1297 1298 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1299 switch (cmd) { 1300 case LOOP_SET_FD: 1301 err = loop_set_fd(lo, mode, bdev, arg); 1302 break; 1303 case LOOP_CHANGE_FD: 1304 err = loop_change_fd(lo, bdev, arg); 1305 break; 1306 case LOOP_CLR_FD: 1307 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1308 err = loop_clr_fd(lo); 1309 if (!err) 1310 goto out_unlocked; 1311 break; 1312 case LOOP_SET_STATUS: 1313 err = -EPERM; 1314 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1315 err = loop_set_status_old(lo, 1316 (struct loop_info __user *)arg); 1317 break; 1318 case LOOP_GET_STATUS: 1319 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1320 break; 1321 case LOOP_SET_STATUS64: 1322 err = -EPERM; 1323 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1324 err = loop_set_status64(lo, 1325 (struct loop_info64 __user *) arg); 1326 break; 1327 case LOOP_GET_STATUS64: 1328 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1329 break; 1330 case LOOP_SET_CAPACITY: 1331 err = -EPERM; 1332 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1333 err = loop_set_capacity(lo, bdev); 1334 break; 1335 default: 1336 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1337 } 1338 mutex_unlock(&lo->lo_ctl_mutex); 1339 1340 out_unlocked: 1341 return err; 1342 } 1343 1344 #ifdef CONFIG_COMPAT 1345 struct compat_loop_info { 1346 compat_int_t lo_number; /* ioctl r/o */ 1347 compat_dev_t lo_device; /* ioctl r/o */ 1348 compat_ulong_t lo_inode; /* ioctl r/o */ 1349 compat_dev_t lo_rdevice; /* ioctl r/o */ 1350 compat_int_t lo_offset; 1351 compat_int_t lo_encrypt_type; 1352 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1353 compat_int_t lo_flags; /* ioctl r/o */ 1354 char lo_name[LO_NAME_SIZE]; 1355 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1356 compat_ulong_t lo_init[2]; 1357 char reserved[4]; 1358 }; 1359 1360 /* 1361 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1362 * - noinlined to reduce stack space usage in main part of driver 1363 */ 1364 static noinline int 1365 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1366 struct loop_info64 *info64) 1367 { 1368 struct compat_loop_info info; 1369 1370 if (copy_from_user(&info, arg, sizeof(info))) 1371 return -EFAULT; 1372 1373 memset(info64, 0, sizeof(*info64)); 1374 info64->lo_number = info.lo_number; 1375 info64->lo_device = info.lo_device; 1376 info64->lo_inode = info.lo_inode; 1377 info64->lo_rdevice = info.lo_rdevice; 1378 info64->lo_offset = info.lo_offset; 1379 info64->lo_sizelimit = 0; 1380 info64->lo_encrypt_type = info.lo_encrypt_type; 1381 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1382 info64->lo_flags = info.lo_flags; 1383 info64->lo_init[0] = info.lo_init[0]; 1384 info64->lo_init[1] = info.lo_init[1]; 1385 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1386 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1387 else 1388 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1389 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1390 return 0; 1391 } 1392 1393 /* 1394 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1395 * - noinlined to reduce stack space usage in main part of driver 1396 */ 1397 static noinline int 1398 loop_info64_to_compat(const struct loop_info64 *info64, 1399 struct compat_loop_info __user *arg) 1400 { 1401 struct compat_loop_info info; 1402 1403 memset(&info, 0, sizeof(info)); 1404 info.lo_number = info64->lo_number; 1405 info.lo_device = info64->lo_device; 1406 info.lo_inode = info64->lo_inode; 1407 info.lo_rdevice = info64->lo_rdevice; 1408 info.lo_offset = info64->lo_offset; 1409 info.lo_encrypt_type = info64->lo_encrypt_type; 1410 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1411 info.lo_flags = info64->lo_flags; 1412 info.lo_init[0] = info64->lo_init[0]; 1413 info.lo_init[1] = info64->lo_init[1]; 1414 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1415 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1416 else 1417 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1418 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1419 1420 /* error in case values were truncated */ 1421 if (info.lo_device != info64->lo_device || 1422 info.lo_rdevice != info64->lo_rdevice || 1423 info.lo_inode != info64->lo_inode || 1424 info.lo_offset != info64->lo_offset || 1425 info.lo_init[0] != info64->lo_init[0] || 1426 info.lo_init[1] != info64->lo_init[1]) 1427 return -EOVERFLOW; 1428 1429 if (copy_to_user(arg, &info, sizeof(info))) 1430 return -EFAULT; 1431 return 0; 1432 } 1433 1434 static int 1435 loop_set_status_compat(struct loop_device *lo, 1436 const struct compat_loop_info __user *arg) 1437 { 1438 struct loop_info64 info64; 1439 int ret; 1440 1441 ret = loop_info64_from_compat(arg, &info64); 1442 if (ret < 0) 1443 return ret; 1444 return loop_set_status(lo, &info64); 1445 } 1446 1447 static int 1448 loop_get_status_compat(struct loop_device *lo, 1449 struct compat_loop_info __user *arg) 1450 { 1451 struct loop_info64 info64; 1452 int err = 0; 1453 1454 if (!arg) 1455 err = -EINVAL; 1456 if (!err) 1457 err = loop_get_status(lo, &info64); 1458 if (!err) 1459 err = loop_info64_to_compat(&info64, arg); 1460 return err; 1461 } 1462 1463 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1464 unsigned int cmd, unsigned long arg) 1465 { 1466 struct loop_device *lo = bdev->bd_disk->private_data; 1467 int err; 1468 1469 switch(cmd) { 1470 case LOOP_SET_STATUS: 1471 mutex_lock(&lo->lo_ctl_mutex); 1472 err = loop_set_status_compat( 1473 lo, (const struct compat_loop_info __user *) arg); 1474 mutex_unlock(&lo->lo_ctl_mutex); 1475 break; 1476 case LOOP_GET_STATUS: 1477 mutex_lock(&lo->lo_ctl_mutex); 1478 err = loop_get_status_compat( 1479 lo, (struct compat_loop_info __user *) arg); 1480 mutex_unlock(&lo->lo_ctl_mutex); 1481 break; 1482 case LOOP_SET_CAPACITY: 1483 case LOOP_CLR_FD: 1484 case LOOP_GET_STATUS64: 1485 case LOOP_SET_STATUS64: 1486 arg = (unsigned long) compat_ptr(arg); 1487 case LOOP_SET_FD: 1488 case LOOP_CHANGE_FD: 1489 err = lo_ioctl(bdev, mode, cmd, arg); 1490 break; 1491 default: 1492 err = -ENOIOCTLCMD; 1493 break; 1494 } 1495 return err; 1496 } 1497 #endif 1498 1499 static int lo_open(struct block_device *bdev, fmode_t mode) 1500 { 1501 struct loop_device *lo; 1502 int err = 0; 1503 1504 mutex_lock(&loop_index_mutex); 1505 lo = bdev->bd_disk->private_data; 1506 if (!lo) { 1507 err = -ENXIO; 1508 goto out; 1509 } 1510 1511 mutex_lock(&lo->lo_ctl_mutex); 1512 lo->lo_refcnt++; 1513 mutex_unlock(&lo->lo_ctl_mutex); 1514 out: 1515 mutex_unlock(&loop_index_mutex); 1516 return err; 1517 } 1518 1519 static int lo_release(struct gendisk *disk, fmode_t mode) 1520 { 1521 struct loop_device *lo = disk->private_data; 1522 int err; 1523 1524 mutex_lock(&lo->lo_ctl_mutex); 1525 1526 if (--lo->lo_refcnt) 1527 goto out; 1528 1529 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1530 /* 1531 * In autoclear mode, stop the loop thread 1532 * and remove configuration after last close. 1533 */ 1534 err = loop_clr_fd(lo); 1535 if (!err) 1536 goto out_unlocked; 1537 } else { 1538 /* 1539 * Otherwise keep thread (if running) and config, 1540 * but flush possible ongoing bios in thread. 1541 */ 1542 loop_flush(lo); 1543 } 1544 1545 out: 1546 mutex_unlock(&lo->lo_ctl_mutex); 1547 out_unlocked: 1548 return 0; 1549 } 1550 1551 static const struct block_device_operations lo_fops = { 1552 .owner = THIS_MODULE, 1553 .open = lo_open, 1554 .release = lo_release, 1555 .ioctl = lo_ioctl, 1556 #ifdef CONFIG_COMPAT 1557 .compat_ioctl = lo_compat_ioctl, 1558 #endif 1559 }; 1560 1561 /* 1562 * And now the modules code and kernel interface. 1563 */ 1564 static int max_loop; 1565 module_param(max_loop, int, S_IRUGO); 1566 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1567 module_param(max_part, int, S_IRUGO); 1568 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1569 MODULE_LICENSE("GPL"); 1570 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1571 1572 int loop_register_transfer(struct loop_func_table *funcs) 1573 { 1574 unsigned int n = funcs->number; 1575 1576 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1577 return -EINVAL; 1578 xfer_funcs[n] = funcs; 1579 return 0; 1580 } 1581 1582 static int unregister_transfer_cb(int id, void *ptr, void *data) 1583 { 1584 struct loop_device *lo = ptr; 1585 struct loop_func_table *xfer = data; 1586 1587 mutex_lock(&lo->lo_ctl_mutex); 1588 if (lo->lo_encryption == xfer) 1589 loop_release_xfer(lo); 1590 mutex_unlock(&lo->lo_ctl_mutex); 1591 return 0; 1592 } 1593 1594 int loop_unregister_transfer(int number) 1595 { 1596 unsigned int n = number; 1597 struct loop_func_table *xfer; 1598 1599 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1600 return -EINVAL; 1601 1602 xfer_funcs[n] = NULL; 1603 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1604 return 0; 1605 } 1606 1607 EXPORT_SYMBOL(loop_register_transfer); 1608 EXPORT_SYMBOL(loop_unregister_transfer); 1609 1610 static int loop_add(struct loop_device **l, int i) 1611 { 1612 struct loop_device *lo; 1613 struct gendisk *disk; 1614 int err; 1615 1616 err = -ENOMEM; 1617 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1618 if (!lo) 1619 goto out; 1620 1621 /* allocate id, if @id >= 0, we're requesting that specific id */ 1622 if (i >= 0) { 1623 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1624 if (err == -ENOSPC) 1625 err = -EEXIST; 1626 } else { 1627 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1628 } 1629 if (err < 0) 1630 goto out_free_dev; 1631 i = err; 1632 1633 err = -ENOMEM; 1634 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1635 if (!lo->lo_queue) 1636 goto out_free_dev; 1637 1638 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1639 if (!disk) 1640 goto out_free_queue; 1641 1642 /* 1643 * Disable partition scanning by default. The in-kernel partition 1644 * scanning can be requested individually per-device during its 1645 * setup. Userspace can always add and remove partitions from all 1646 * devices. The needed partition minors are allocated from the 1647 * extended minor space, the main loop device numbers will continue 1648 * to match the loop minors, regardless of the number of partitions 1649 * used. 1650 * 1651 * If max_part is given, partition scanning is globally enabled for 1652 * all loop devices. The minors for the main loop devices will be 1653 * multiples of max_part. 1654 * 1655 * Note: Global-for-all-devices, set-only-at-init, read-only module 1656 * parameteters like 'max_loop' and 'max_part' make things needlessly 1657 * complicated, are too static, inflexible and may surprise 1658 * userspace tools. Parameters like this in general should be avoided. 1659 */ 1660 if (!part_shift) 1661 disk->flags |= GENHD_FL_NO_PART_SCAN; 1662 disk->flags |= GENHD_FL_EXT_DEVT; 1663 mutex_init(&lo->lo_ctl_mutex); 1664 lo->lo_number = i; 1665 lo->lo_thread = NULL; 1666 init_waitqueue_head(&lo->lo_event); 1667 init_waitqueue_head(&lo->lo_req_wait); 1668 spin_lock_init(&lo->lo_lock); 1669 disk->major = LOOP_MAJOR; 1670 disk->first_minor = i << part_shift; 1671 disk->fops = &lo_fops; 1672 disk->private_data = lo; 1673 disk->queue = lo->lo_queue; 1674 sprintf(disk->disk_name, "loop%d", i); 1675 add_disk(disk); 1676 *l = lo; 1677 return lo->lo_number; 1678 1679 out_free_queue: 1680 blk_cleanup_queue(lo->lo_queue); 1681 out_free_dev: 1682 kfree(lo); 1683 out: 1684 return err; 1685 } 1686 1687 static void loop_remove(struct loop_device *lo) 1688 { 1689 del_gendisk(lo->lo_disk); 1690 blk_cleanup_queue(lo->lo_queue); 1691 put_disk(lo->lo_disk); 1692 kfree(lo); 1693 } 1694 1695 static int find_free_cb(int id, void *ptr, void *data) 1696 { 1697 struct loop_device *lo = ptr; 1698 struct loop_device **l = data; 1699 1700 if (lo->lo_state == Lo_unbound) { 1701 *l = lo; 1702 return 1; 1703 } 1704 return 0; 1705 } 1706 1707 static int loop_lookup(struct loop_device **l, int i) 1708 { 1709 struct loop_device *lo; 1710 int ret = -ENODEV; 1711 1712 if (i < 0) { 1713 int err; 1714 1715 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1716 if (err == 1) { 1717 *l = lo; 1718 ret = lo->lo_number; 1719 } 1720 goto out; 1721 } 1722 1723 /* lookup and return a specific i */ 1724 lo = idr_find(&loop_index_idr, i); 1725 if (lo) { 1726 *l = lo; 1727 ret = lo->lo_number; 1728 } 1729 out: 1730 return ret; 1731 } 1732 1733 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1734 { 1735 struct loop_device *lo; 1736 struct kobject *kobj; 1737 int err; 1738 1739 mutex_lock(&loop_index_mutex); 1740 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1741 if (err < 0) 1742 err = loop_add(&lo, MINOR(dev) >> part_shift); 1743 if (err < 0) 1744 kobj = ERR_PTR(err); 1745 else 1746 kobj = get_disk(lo->lo_disk); 1747 mutex_unlock(&loop_index_mutex); 1748 1749 *part = 0; 1750 return kobj; 1751 } 1752 1753 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1754 unsigned long parm) 1755 { 1756 struct loop_device *lo; 1757 int ret = -ENOSYS; 1758 1759 mutex_lock(&loop_index_mutex); 1760 switch (cmd) { 1761 case LOOP_CTL_ADD: 1762 ret = loop_lookup(&lo, parm); 1763 if (ret >= 0) { 1764 ret = -EEXIST; 1765 break; 1766 } 1767 ret = loop_add(&lo, parm); 1768 break; 1769 case LOOP_CTL_REMOVE: 1770 ret = loop_lookup(&lo, parm); 1771 if (ret < 0) 1772 break; 1773 mutex_lock(&lo->lo_ctl_mutex); 1774 if (lo->lo_state != Lo_unbound) { 1775 ret = -EBUSY; 1776 mutex_unlock(&lo->lo_ctl_mutex); 1777 break; 1778 } 1779 if (lo->lo_refcnt > 0) { 1780 ret = -EBUSY; 1781 mutex_unlock(&lo->lo_ctl_mutex); 1782 break; 1783 } 1784 lo->lo_disk->private_data = NULL; 1785 mutex_unlock(&lo->lo_ctl_mutex); 1786 idr_remove(&loop_index_idr, lo->lo_number); 1787 loop_remove(lo); 1788 break; 1789 case LOOP_CTL_GET_FREE: 1790 ret = loop_lookup(&lo, -1); 1791 if (ret >= 0) 1792 break; 1793 ret = loop_add(&lo, -1); 1794 } 1795 mutex_unlock(&loop_index_mutex); 1796 1797 return ret; 1798 } 1799 1800 static const struct file_operations loop_ctl_fops = { 1801 .open = nonseekable_open, 1802 .unlocked_ioctl = loop_control_ioctl, 1803 .compat_ioctl = loop_control_ioctl, 1804 .owner = THIS_MODULE, 1805 .llseek = noop_llseek, 1806 }; 1807 1808 static struct miscdevice loop_misc = { 1809 .minor = LOOP_CTRL_MINOR, 1810 .name = "loop-control", 1811 .fops = &loop_ctl_fops, 1812 }; 1813 1814 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1815 MODULE_ALIAS("devname:loop-control"); 1816 1817 static int __init loop_init(void) 1818 { 1819 int i, nr; 1820 unsigned long range; 1821 struct loop_device *lo; 1822 int err; 1823 1824 err = misc_register(&loop_misc); 1825 if (err < 0) 1826 return err; 1827 1828 part_shift = 0; 1829 if (max_part > 0) { 1830 part_shift = fls(max_part); 1831 1832 /* 1833 * Adjust max_part according to part_shift as it is exported 1834 * to user space so that user can decide correct minor number 1835 * if [s]he want to create more devices. 1836 * 1837 * Note that -1 is required because partition 0 is reserved 1838 * for the whole disk. 1839 */ 1840 max_part = (1UL << part_shift) - 1; 1841 } 1842 1843 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1844 err = -EINVAL; 1845 goto misc_out; 1846 } 1847 1848 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1849 err = -EINVAL; 1850 goto misc_out; 1851 } 1852 1853 /* 1854 * If max_loop is specified, create that many devices upfront. 1855 * This also becomes a hard limit. If max_loop is not specified, 1856 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1857 * init time. Loop devices can be requested on-demand with the 1858 * /dev/loop-control interface, or be instantiated by accessing 1859 * a 'dead' device node. 1860 */ 1861 if (max_loop) { 1862 nr = max_loop; 1863 range = max_loop << part_shift; 1864 } else { 1865 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1866 range = 1UL << MINORBITS; 1867 } 1868 1869 if (register_blkdev(LOOP_MAJOR, "loop")) { 1870 err = -EIO; 1871 goto misc_out; 1872 } 1873 1874 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1875 THIS_MODULE, loop_probe, NULL, NULL); 1876 1877 /* pre-create number of devices given by config or max_loop */ 1878 mutex_lock(&loop_index_mutex); 1879 for (i = 0; i < nr; i++) 1880 loop_add(&lo, i); 1881 mutex_unlock(&loop_index_mutex); 1882 1883 printk(KERN_INFO "loop: module loaded\n"); 1884 return 0; 1885 1886 misc_out: 1887 misc_deregister(&loop_misc); 1888 return err; 1889 } 1890 1891 static int loop_exit_cb(int id, void *ptr, void *data) 1892 { 1893 struct loop_device *lo = ptr; 1894 1895 loop_remove(lo); 1896 return 0; 1897 } 1898 1899 static void __exit loop_exit(void) 1900 { 1901 unsigned long range; 1902 1903 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 1904 1905 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 1906 idr_destroy(&loop_index_idr); 1907 1908 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1909 unregister_blkdev(LOOP_MAJOR, "loop"); 1910 1911 misc_deregister(&loop_misc); 1912 } 1913 1914 module_init(loop_init); 1915 module_exit(loop_exit); 1916 1917 #ifndef MODULE 1918 static int __init max_loop_setup(char *str) 1919 { 1920 max_loop = simple_strtol(str, NULL, 0); 1921 return 1; 1922 } 1923 1924 __setup("max_loop=", max_loop_setup); 1925 #endif 1926