xref: /linux/drivers/block/loop.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 1993 by Theodore Ts'o.
4  */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39 
40 /* Possible states of device */
41 enum {
42 	Lo_unbound,
43 	Lo_bound,
44 	Lo_rundown,
45 	Lo_deleting,
46 };
47 
48 struct loop_func_table;
49 
50 struct loop_device {
51 	int		lo_number;
52 	loff_t		lo_offset;
53 	loff_t		lo_sizelimit;
54 	int		lo_flags;
55 	char		lo_file_name[LO_NAME_SIZE];
56 
57 	struct file *	lo_backing_file;
58 	struct block_device *lo_device;
59 
60 	gfp_t		old_gfp_mask;
61 
62 	spinlock_t		lo_lock;
63 	int			lo_state;
64 	spinlock_t              lo_work_lock;
65 	struct workqueue_struct *workqueue;
66 	struct work_struct      rootcg_work;
67 	struct list_head        rootcg_cmd_list;
68 	struct list_head        idle_worker_list;
69 	struct rb_root          worker_tree;
70 	struct timer_list       timer;
71 	bool			use_dio;
72 	bool			sysfs_inited;
73 
74 	struct request_queue	*lo_queue;
75 	struct blk_mq_tag_set	tag_set;
76 	struct gendisk		*lo_disk;
77 	struct mutex		lo_mutex;
78 	bool			idr_visible;
79 };
80 
81 struct loop_cmd {
82 	struct list_head list_entry;
83 	bool use_aio; /* use AIO interface to handle I/O */
84 	atomic_t ref; /* only for aio */
85 	long ret;
86 	struct kiocb iocb;
87 	struct bio_vec *bvec;
88 	struct cgroup_subsys_state *blkcg_css;
89 	struct cgroup_subsys_state *memcg_css;
90 };
91 
92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
93 #define LOOP_DEFAULT_HW_Q_DEPTH 128
94 
95 static DEFINE_IDR(loop_index_idr);
96 static DEFINE_MUTEX(loop_ctl_mutex);
97 static DEFINE_MUTEX(loop_validate_mutex);
98 
99 /**
100  * loop_global_lock_killable() - take locks for safe loop_validate_file() test
101  *
102  * @lo: struct loop_device
103  * @global: true if @lo is about to bind another "struct loop_device", false otherwise
104  *
105  * Returns 0 on success, -EINTR otherwise.
106  *
107  * Since loop_validate_file() traverses on other "struct loop_device" if
108  * is_loop_device() is true, we need a global lock for serializing concurrent
109  * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
110  */
111 static int loop_global_lock_killable(struct loop_device *lo, bool global)
112 {
113 	int err;
114 
115 	if (global) {
116 		err = mutex_lock_killable(&loop_validate_mutex);
117 		if (err)
118 			return err;
119 	}
120 	err = mutex_lock_killable(&lo->lo_mutex);
121 	if (err && global)
122 		mutex_unlock(&loop_validate_mutex);
123 	return err;
124 }
125 
126 /**
127  * loop_global_unlock() - release locks taken by loop_global_lock_killable()
128  *
129  * @lo: struct loop_device
130  * @global: true if @lo was about to bind another "struct loop_device", false otherwise
131  */
132 static void loop_global_unlock(struct loop_device *lo, bool global)
133 {
134 	mutex_unlock(&lo->lo_mutex);
135 	if (global)
136 		mutex_unlock(&loop_validate_mutex);
137 }
138 
139 static int max_part;
140 static int part_shift;
141 
142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 {
144 	loff_t loopsize;
145 
146 	/* Compute loopsize in bytes */
147 	loopsize = i_size_read(file->f_mapping->host);
148 	if (offset > 0)
149 		loopsize -= offset;
150 	/* offset is beyond i_size, weird but possible */
151 	if (loopsize < 0)
152 		return 0;
153 
154 	if (sizelimit > 0 && sizelimit < loopsize)
155 		loopsize = sizelimit;
156 	/*
157 	 * Unfortunately, if we want to do I/O on the device,
158 	 * the number of 512-byte sectors has to fit into a sector_t.
159 	 */
160 	return loopsize >> 9;
161 }
162 
163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
166 }
167 
168 /*
169  * We support direct I/O only if lo_offset is aligned with the logical I/O size
170  * of backing device, and the logical block size of loop is bigger than that of
171  * the backing device.
172  */
173 static bool lo_bdev_can_use_dio(struct loop_device *lo,
174 		struct block_device *backing_bdev)
175 {
176 	unsigned short sb_bsize = bdev_logical_block_size(backing_bdev);
177 
178 	if (queue_logical_block_size(lo->lo_queue) < sb_bsize)
179 		return false;
180 	if (lo->lo_offset & (sb_bsize - 1))
181 		return false;
182 	return true;
183 }
184 
185 static void __loop_update_dio(struct loop_device *lo, bool dio)
186 {
187 	struct file *file = lo->lo_backing_file;
188 	struct inode *inode = file->f_mapping->host;
189 	struct block_device *backing_bdev = NULL;
190 	bool use_dio;
191 
192 	if (S_ISBLK(inode->i_mode))
193 		backing_bdev = I_BDEV(inode);
194 	else if (inode->i_sb->s_bdev)
195 		backing_bdev = inode->i_sb->s_bdev;
196 
197 	use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) &&
198 		(!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev));
199 
200 	if (lo->use_dio == use_dio)
201 		return;
202 
203 	/* flush dirty pages before changing direct IO */
204 	vfs_fsync(file, 0);
205 
206 	/*
207 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
208 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
209 	 * will get updated by ioctl(LOOP_GET_STATUS)
210 	 */
211 	if (lo->lo_state == Lo_bound)
212 		blk_mq_freeze_queue(lo->lo_queue);
213 	lo->use_dio = use_dio;
214 	if (use_dio)
215 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
216 	else
217 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
218 	if (lo->lo_state == Lo_bound)
219 		blk_mq_unfreeze_queue(lo->lo_queue);
220 }
221 
222 /**
223  * loop_set_size() - sets device size and notifies userspace
224  * @lo: struct loop_device to set the size for
225  * @size: new size of the loop device
226  *
227  * Callers must validate that the size passed into this function fits into
228  * a sector_t, eg using loop_validate_size()
229  */
230 static void loop_set_size(struct loop_device *lo, loff_t size)
231 {
232 	if (!set_capacity_and_notify(lo->lo_disk, size))
233 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
234 }
235 
236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
237 {
238 	struct iov_iter i;
239 	ssize_t bw;
240 
241 	iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len);
242 
243 	bw = vfs_iter_write(file, &i, ppos, 0);
244 
245 	if (likely(bw ==  bvec->bv_len))
246 		return 0;
247 
248 	printk_ratelimited(KERN_ERR
249 		"loop: Write error at byte offset %llu, length %i.\n",
250 		(unsigned long long)*ppos, bvec->bv_len);
251 	if (bw >= 0)
252 		bw = -EIO;
253 	return bw;
254 }
255 
256 static int lo_write_simple(struct loop_device *lo, struct request *rq,
257 		loff_t pos)
258 {
259 	struct bio_vec bvec;
260 	struct req_iterator iter;
261 	int ret = 0;
262 
263 	rq_for_each_segment(bvec, rq, iter) {
264 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
265 		if (ret < 0)
266 			break;
267 		cond_resched();
268 	}
269 
270 	return ret;
271 }
272 
273 static int lo_read_simple(struct loop_device *lo, struct request *rq,
274 		loff_t pos)
275 {
276 	struct bio_vec bvec;
277 	struct req_iterator iter;
278 	struct iov_iter i;
279 	ssize_t len;
280 
281 	rq_for_each_segment(bvec, rq, iter) {
282 		iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len);
283 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
284 		if (len < 0)
285 			return len;
286 
287 		flush_dcache_page(bvec.bv_page);
288 
289 		if (len != bvec.bv_len) {
290 			struct bio *bio;
291 
292 			__rq_for_each_bio(bio, rq)
293 				zero_fill_bio(bio);
294 			break;
295 		}
296 		cond_resched();
297 	}
298 
299 	return 0;
300 }
301 
302 static void loop_clear_limits(struct loop_device *lo, int mode)
303 {
304 	struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
305 
306 	if (mode & FALLOC_FL_ZERO_RANGE)
307 		lim.max_write_zeroes_sectors = 0;
308 
309 	if (mode & FALLOC_FL_PUNCH_HOLE) {
310 		lim.max_hw_discard_sectors = 0;
311 		lim.discard_granularity = 0;
312 	}
313 
314 	queue_limits_commit_update(lo->lo_queue, &lim);
315 }
316 
317 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
318 			int mode)
319 {
320 	/*
321 	 * We use fallocate to manipulate the space mappings used by the image
322 	 * a.k.a. discard/zerorange.
323 	 */
324 	struct file *file = lo->lo_backing_file;
325 	int ret;
326 
327 	mode |= FALLOC_FL_KEEP_SIZE;
328 
329 	if (!bdev_max_discard_sectors(lo->lo_device))
330 		return -EOPNOTSUPP;
331 
332 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
333 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
334 		return -EIO;
335 
336 	/*
337 	 * We initially configure the limits in a hope that fallocate is
338 	 * supported and clear them here if that turns out not to be true.
339 	 */
340 	if (unlikely(ret == -EOPNOTSUPP))
341 		loop_clear_limits(lo, mode);
342 
343 	return ret;
344 }
345 
346 static int lo_req_flush(struct loop_device *lo, struct request *rq)
347 {
348 	int ret = vfs_fsync(lo->lo_backing_file, 0);
349 	if (unlikely(ret && ret != -EINVAL))
350 		ret = -EIO;
351 
352 	return ret;
353 }
354 
355 static void lo_complete_rq(struct request *rq)
356 {
357 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
358 	blk_status_t ret = BLK_STS_OK;
359 
360 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
361 	    req_op(rq) != REQ_OP_READ) {
362 		if (cmd->ret < 0)
363 			ret = errno_to_blk_status(cmd->ret);
364 		goto end_io;
365 	}
366 
367 	/*
368 	 * Short READ - if we got some data, advance our request and
369 	 * retry it. If we got no data, end the rest with EIO.
370 	 */
371 	if (cmd->ret) {
372 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
373 		cmd->ret = 0;
374 		blk_mq_requeue_request(rq, true);
375 	} else {
376 		if (cmd->use_aio) {
377 			struct bio *bio = rq->bio;
378 
379 			while (bio) {
380 				zero_fill_bio(bio);
381 				bio = bio->bi_next;
382 			}
383 		}
384 		ret = BLK_STS_IOERR;
385 end_io:
386 		blk_mq_end_request(rq, ret);
387 	}
388 }
389 
390 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
391 {
392 	struct request *rq = blk_mq_rq_from_pdu(cmd);
393 
394 	if (!atomic_dec_and_test(&cmd->ref))
395 		return;
396 	kfree(cmd->bvec);
397 	cmd->bvec = NULL;
398 	if (likely(!blk_should_fake_timeout(rq->q)))
399 		blk_mq_complete_request(rq);
400 }
401 
402 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
403 {
404 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
405 
406 	cmd->ret = ret;
407 	lo_rw_aio_do_completion(cmd);
408 }
409 
410 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
411 		     loff_t pos, int rw)
412 {
413 	struct iov_iter iter;
414 	struct req_iterator rq_iter;
415 	struct bio_vec *bvec;
416 	struct request *rq = blk_mq_rq_from_pdu(cmd);
417 	struct bio *bio = rq->bio;
418 	struct file *file = lo->lo_backing_file;
419 	struct bio_vec tmp;
420 	unsigned int offset;
421 	int nr_bvec = 0;
422 	int ret;
423 
424 	rq_for_each_bvec(tmp, rq, rq_iter)
425 		nr_bvec++;
426 
427 	if (rq->bio != rq->biotail) {
428 
429 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
430 				     GFP_NOIO);
431 		if (!bvec)
432 			return -EIO;
433 		cmd->bvec = bvec;
434 
435 		/*
436 		 * The bios of the request may be started from the middle of
437 		 * the 'bvec' because of bio splitting, so we can't directly
438 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
439 		 * API will take care of all details for us.
440 		 */
441 		rq_for_each_bvec(tmp, rq, rq_iter) {
442 			*bvec = tmp;
443 			bvec++;
444 		}
445 		bvec = cmd->bvec;
446 		offset = 0;
447 	} else {
448 		/*
449 		 * Same here, this bio may be started from the middle of the
450 		 * 'bvec' because of bio splitting, so offset from the bvec
451 		 * must be passed to iov iterator
452 		 */
453 		offset = bio->bi_iter.bi_bvec_done;
454 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
455 	}
456 	atomic_set(&cmd->ref, 2);
457 
458 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
459 	iter.iov_offset = offset;
460 
461 	cmd->iocb.ki_pos = pos;
462 	cmd->iocb.ki_filp = file;
463 	cmd->iocb.ki_complete = lo_rw_aio_complete;
464 	cmd->iocb.ki_flags = IOCB_DIRECT;
465 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
466 
467 	if (rw == ITER_SOURCE)
468 		ret = file->f_op->write_iter(&cmd->iocb, &iter);
469 	else
470 		ret = file->f_op->read_iter(&cmd->iocb, &iter);
471 
472 	lo_rw_aio_do_completion(cmd);
473 
474 	if (ret != -EIOCBQUEUED)
475 		lo_rw_aio_complete(&cmd->iocb, ret);
476 	return 0;
477 }
478 
479 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
480 {
481 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
482 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
483 
484 	/*
485 	 * lo_write_simple and lo_read_simple should have been covered
486 	 * by io submit style function like lo_rw_aio(), one blocker
487 	 * is that lo_read_simple() need to call flush_dcache_page after
488 	 * the page is written from kernel, and it isn't easy to handle
489 	 * this in io submit style function which submits all segments
490 	 * of the req at one time. And direct read IO doesn't need to
491 	 * run flush_dcache_page().
492 	 */
493 	switch (req_op(rq)) {
494 	case REQ_OP_FLUSH:
495 		return lo_req_flush(lo, rq);
496 	case REQ_OP_WRITE_ZEROES:
497 		/*
498 		 * If the caller doesn't want deallocation, call zeroout to
499 		 * write zeroes the range.  Otherwise, punch them out.
500 		 */
501 		return lo_fallocate(lo, rq, pos,
502 			(rq->cmd_flags & REQ_NOUNMAP) ?
503 				FALLOC_FL_ZERO_RANGE :
504 				FALLOC_FL_PUNCH_HOLE);
505 	case REQ_OP_DISCARD:
506 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
507 	case REQ_OP_WRITE:
508 		if (cmd->use_aio)
509 			return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
510 		else
511 			return lo_write_simple(lo, rq, pos);
512 	case REQ_OP_READ:
513 		if (cmd->use_aio)
514 			return lo_rw_aio(lo, cmd, pos, ITER_DEST);
515 		else
516 			return lo_read_simple(lo, rq, pos);
517 	default:
518 		WARN_ON_ONCE(1);
519 		return -EIO;
520 	}
521 }
522 
523 static inline void loop_update_dio(struct loop_device *lo)
524 {
525 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
526 				lo->use_dio);
527 }
528 
529 static void loop_reread_partitions(struct loop_device *lo)
530 {
531 	int rc;
532 
533 	mutex_lock(&lo->lo_disk->open_mutex);
534 	rc = bdev_disk_changed(lo->lo_disk, false);
535 	mutex_unlock(&lo->lo_disk->open_mutex);
536 	if (rc)
537 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
538 			__func__, lo->lo_number, lo->lo_file_name, rc);
539 }
540 
541 static inline int is_loop_device(struct file *file)
542 {
543 	struct inode *i = file->f_mapping->host;
544 
545 	return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
546 }
547 
548 static int loop_validate_file(struct file *file, struct block_device *bdev)
549 {
550 	struct inode	*inode = file->f_mapping->host;
551 	struct file	*f = file;
552 
553 	/* Avoid recursion */
554 	while (is_loop_device(f)) {
555 		struct loop_device *l;
556 
557 		lockdep_assert_held(&loop_validate_mutex);
558 		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
559 			return -EBADF;
560 
561 		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
562 		if (l->lo_state != Lo_bound)
563 			return -EINVAL;
564 		/* Order wrt setting lo->lo_backing_file in loop_configure(). */
565 		rmb();
566 		f = l->lo_backing_file;
567 	}
568 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
569 		return -EINVAL;
570 	return 0;
571 }
572 
573 /*
574  * loop_change_fd switched the backing store of a loopback device to
575  * a new file. This is useful for operating system installers to free up
576  * the original file and in High Availability environments to switch to
577  * an alternative location for the content in case of server meltdown.
578  * This can only work if the loop device is used read-only, and if the
579  * new backing store is the same size and type as the old backing store.
580  */
581 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
582 			  unsigned int arg)
583 {
584 	struct file *file = fget(arg);
585 	struct file *old_file;
586 	int error;
587 	bool partscan;
588 	bool is_loop;
589 
590 	if (!file)
591 		return -EBADF;
592 
593 	/* suppress uevents while reconfiguring the device */
594 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
595 
596 	is_loop = is_loop_device(file);
597 	error = loop_global_lock_killable(lo, is_loop);
598 	if (error)
599 		goto out_putf;
600 	error = -ENXIO;
601 	if (lo->lo_state != Lo_bound)
602 		goto out_err;
603 
604 	/* the loop device has to be read-only */
605 	error = -EINVAL;
606 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
607 		goto out_err;
608 
609 	error = loop_validate_file(file, bdev);
610 	if (error)
611 		goto out_err;
612 
613 	old_file = lo->lo_backing_file;
614 
615 	error = -EINVAL;
616 
617 	/* size of the new backing store needs to be the same */
618 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
619 		goto out_err;
620 
621 	/* and ... switch */
622 	disk_force_media_change(lo->lo_disk);
623 	blk_mq_freeze_queue(lo->lo_queue);
624 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
625 	lo->lo_backing_file = file;
626 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
627 	mapping_set_gfp_mask(file->f_mapping,
628 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
629 	loop_update_dio(lo);
630 	blk_mq_unfreeze_queue(lo->lo_queue);
631 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
632 	loop_global_unlock(lo, is_loop);
633 
634 	/*
635 	 * Flush loop_validate_file() before fput(), for l->lo_backing_file
636 	 * might be pointing at old_file which might be the last reference.
637 	 */
638 	if (!is_loop) {
639 		mutex_lock(&loop_validate_mutex);
640 		mutex_unlock(&loop_validate_mutex);
641 	}
642 	/*
643 	 * We must drop file reference outside of lo_mutex as dropping
644 	 * the file ref can take open_mutex which creates circular locking
645 	 * dependency.
646 	 */
647 	fput(old_file);
648 	if (partscan)
649 		loop_reread_partitions(lo);
650 
651 	error = 0;
652 done:
653 	/* enable and uncork uevent now that we are done */
654 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
655 	return error;
656 
657 out_err:
658 	loop_global_unlock(lo, is_loop);
659 out_putf:
660 	fput(file);
661 	goto done;
662 }
663 
664 /* loop sysfs attributes */
665 
666 static ssize_t loop_attr_show(struct device *dev, char *page,
667 			      ssize_t (*callback)(struct loop_device *, char *))
668 {
669 	struct gendisk *disk = dev_to_disk(dev);
670 	struct loop_device *lo = disk->private_data;
671 
672 	return callback(lo, page);
673 }
674 
675 #define LOOP_ATTR_RO(_name)						\
676 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
677 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
678 				struct device_attribute *attr, char *b)	\
679 {									\
680 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
681 }									\
682 static struct device_attribute loop_attr_##_name =			\
683 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
684 
685 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
686 {
687 	ssize_t ret;
688 	char *p = NULL;
689 
690 	spin_lock_irq(&lo->lo_lock);
691 	if (lo->lo_backing_file)
692 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
693 	spin_unlock_irq(&lo->lo_lock);
694 
695 	if (IS_ERR_OR_NULL(p))
696 		ret = PTR_ERR(p);
697 	else {
698 		ret = strlen(p);
699 		memmove(buf, p, ret);
700 		buf[ret++] = '\n';
701 		buf[ret] = 0;
702 	}
703 
704 	return ret;
705 }
706 
707 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
708 {
709 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
710 }
711 
712 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
713 {
714 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
715 }
716 
717 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
718 {
719 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
720 
721 	return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
722 }
723 
724 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
725 {
726 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
727 
728 	return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
729 }
730 
731 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
732 {
733 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
734 
735 	return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
736 }
737 
738 LOOP_ATTR_RO(backing_file);
739 LOOP_ATTR_RO(offset);
740 LOOP_ATTR_RO(sizelimit);
741 LOOP_ATTR_RO(autoclear);
742 LOOP_ATTR_RO(partscan);
743 LOOP_ATTR_RO(dio);
744 
745 static struct attribute *loop_attrs[] = {
746 	&loop_attr_backing_file.attr,
747 	&loop_attr_offset.attr,
748 	&loop_attr_sizelimit.attr,
749 	&loop_attr_autoclear.attr,
750 	&loop_attr_partscan.attr,
751 	&loop_attr_dio.attr,
752 	NULL,
753 };
754 
755 static struct attribute_group loop_attribute_group = {
756 	.name = "loop",
757 	.attrs= loop_attrs,
758 };
759 
760 static void loop_sysfs_init(struct loop_device *lo)
761 {
762 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
763 						&loop_attribute_group);
764 }
765 
766 static void loop_sysfs_exit(struct loop_device *lo)
767 {
768 	if (lo->sysfs_inited)
769 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
770 				   &loop_attribute_group);
771 }
772 
773 static void loop_config_discard(struct loop_device *lo,
774 		struct queue_limits *lim)
775 {
776 	struct file *file = lo->lo_backing_file;
777 	struct inode *inode = file->f_mapping->host;
778 	u32 granularity = 0, max_discard_sectors = 0;
779 	struct kstatfs sbuf;
780 
781 	/*
782 	 * If the backing device is a block device, mirror its zeroing
783 	 * capability. Set the discard sectors to the block device's zeroing
784 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
785 	 * not blkdev_issue_discard(). This maintains consistent behavior with
786 	 * file-backed loop devices: discarded regions read back as zero.
787 	 */
788 	if (S_ISBLK(inode->i_mode)) {
789 		struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
790 
791 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
792 		granularity = bdev_discard_granularity(I_BDEV(inode)) ?:
793 			queue_physical_block_size(backingq);
794 
795 	/*
796 	 * We use punch hole to reclaim the free space used by the
797 	 * image a.k.a. discard.
798 	 */
799 	} else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
800 		max_discard_sectors = UINT_MAX >> 9;
801 		granularity = sbuf.f_bsize;
802 	}
803 
804 	lim->max_hw_discard_sectors = max_discard_sectors;
805 	lim->max_write_zeroes_sectors = max_discard_sectors;
806 	if (max_discard_sectors)
807 		lim->discard_granularity = granularity;
808 	else
809 		lim->discard_granularity = 0;
810 }
811 
812 struct loop_worker {
813 	struct rb_node rb_node;
814 	struct work_struct work;
815 	struct list_head cmd_list;
816 	struct list_head idle_list;
817 	struct loop_device *lo;
818 	struct cgroup_subsys_state *blkcg_css;
819 	unsigned long last_ran_at;
820 };
821 
822 static void loop_workfn(struct work_struct *work);
823 
824 #ifdef CONFIG_BLK_CGROUP
825 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
826 {
827 	return !css || css == blkcg_root_css;
828 }
829 #else
830 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
831 {
832 	return !css;
833 }
834 #endif
835 
836 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
837 {
838 	struct rb_node **node, *parent = NULL;
839 	struct loop_worker *cur_worker, *worker = NULL;
840 	struct work_struct *work;
841 	struct list_head *cmd_list;
842 
843 	spin_lock_irq(&lo->lo_work_lock);
844 
845 	if (queue_on_root_worker(cmd->blkcg_css))
846 		goto queue_work;
847 
848 	node = &lo->worker_tree.rb_node;
849 
850 	while (*node) {
851 		parent = *node;
852 		cur_worker = container_of(*node, struct loop_worker, rb_node);
853 		if (cur_worker->blkcg_css == cmd->blkcg_css) {
854 			worker = cur_worker;
855 			break;
856 		} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
857 			node = &(*node)->rb_left;
858 		} else {
859 			node = &(*node)->rb_right;
860 		}
861 	}
862 	if (worker)
863 		goto queue_work;
864 
865 	worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
866 	/*
867 	 * In the event we cannot allocate a worker, just queue on the
868 	 * rootcg worker and issue the I/O as the rootcg
869 	 */
870 	if (!worker) {
871 		cmd->blkcg_css = NULL;
872 		if (cmd->memcg_css)
873 			css_put(cmd->memcg_css);
874 		cmd->memcg_css = NULL;
875 		goto queue_work;
876 	}
877 
878 	worker->blkcg_css = cmd->blkcg_css;
879 	css_get(worker->blkcg_css);
880 	INIT_WORK(&worker->work, loop_workfn);
881 	INIT_LIST_HEAD(&worker->cmd_list);
882 	INIT_LIST_HEAD(&worker->idle_list);
883 	worker->lo = lo;
884 	rb_link_node(&worker->rb_node, parent, node);
885 	rb_insert_color(&worker->rb_node, &lo->worker_tree);
886 queue_work:
887 	if (worker) {
888 		/*
889 		 * We need to remove from the idle list here while
890 		 * holding the lock so that the idle timer doesn't
891 		 * free the worker
892 		 */
893 		if (!list_empty(&worker->idle_list))
894 			list_del_init(&worker->idle_list);
895 		work = &worker->work;
896 		cmd_list = &worker->cmd_list;
897 	} else {
898 		work = &lo->rootcg_work;
899 		cmd_list = &lo->rootcg_cmd_list;
900 	}
901 	list_add_tail(&cmd->list_entry, cmd_list);
902 	queue_work(lo->workqueue, work);
903 	spin_unlock_irq(&lo->lo_work_lock);
904 }
905 
906 static void loop_set_timer(struct loop_device *lo)
907 {
908 	timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
909 }
910 
911 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
912 {
913 	struct loop_worker *pos, *worker;
914 
915 	spin_lock_irq(&lo->lo_work_lock);
916 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
917 				idle_list) {
918 		if (!delete_all &&
919 		    time_is_after_jiffies(worker->last_ran_at +
920 					  LOOP_IDLE_WORKER_TIMEOUT))
921 			break;
922 		list_del(&worker->idle_list);
923 		rb_erase(&worker->rb_node, &lo->worker_tree);
924 		css_put(worker->blkcg_css);
925 		kfree(worker);
926 	}
927 	if (!list_empty(&lo->idle_worker_list))
928 		loop_set_timer(lo);
929 	spin_unlock_irq(&lo->lo_work_lock);
930 }
931 
932 static void loop_free_idle_workers_timer(struct timer_list *timer)
933 {
934 	struct loop_device *lo = container_of(timer, struct loop_device, timer);
935 
936 	return loop_free_idle_workers(lo, false);
937 }
938 
939 /**
940  * loop_set_status_from_info - configure device from loop_info
941  * @lo: struct loop_device to configure
942  * @info: struct loop_info64 to configure the device with
943  *
944  * Configures the loop device parameters according to the passed
945  * in loop_info64 configuration.
946  */
947 static int
948 loop_set_status_from_info(struct loop_device *lo,
949 			  const struct loop_info64 *info)
950 {
951 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
952 		return -EINVAL;
953 
954 	switch (info->lo_encrypt_type) {
955 	case LO_CRYPT_NONE:
956 		break;
957 	case LO_CRYPT_XOR:
958 		pr_warn("support for the xor transformation has been removed.\n");
959 		return -EINVAL;
960 	case LO_CRYPT_CRYPTOAPI:
961 		pr_warn("support for cryptoloop has been removed.  Use dm-crypt instead.\n");
962 		return -EINVAL;
963 	default:
964 		return -EINVAL;
965 	}
966 
967 	/* Avoid assigning overflow values */
968 	if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
969 		return -EOVERFLOW;
970 
971 	lo->lo_offset = info->lo_offset;
972 	lo->lo_sizelimit = info->lo_sizelimit;
973 
974 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
975 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
976 	lo->lo_flags = info->lo_flags;
977 	return 0;
978 }
979 
980 static unsigned short loop_default_blocksize(struct loop_device *lo,
981 		struct block_device *backing_bdev)
982 {
983 	/* In case of direct I/O, match underlying block size */
984 	if ((lo->lo_backing_file->f_flags & O_DIRECT) && backing_bdev)
985 		return bdev_logical_block_size(backing_bdev);
986 	return SECTOR_SIZE;
987 }
988 
989 static int loop_reconfigure_limits(struct loop_device *lo, unsigned short bsize)
990 {
991 	struct file *file = lo->lo_backing_file;
992 	struct inode *inode = file->f_mapping->host;
993 	struct block_device *backing_bdev = NULL;
994 	struct queue_limits lim;
995 
996 	if (S_ISBLK(inode->i_mode))
997 		backing_bdev = I_BDEV(inode);
998 	else if (inode->i_sb->s_bdev)
999 		backing_bdev = inode->i_sb->s_bdev;
1000 
1001 	if (!bsize)
1002 		bsize = loop_default_blocksize(lo, backing_bdev);
1003 
1004 	lim = queue_limits_start_update(lo->lo_queue);
1005 	lim.logical_block_size = bsize;
1006 	lim.physical_block_size = bsize;
1007 	lim.io_min = bsize;
1008 	lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
1009 	if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
1010 		lim.features |= BLK_FEAT_WRITE_CACHE;
1011 	if (backing_bdev && !bdev_nonrot(backing_bdev))
1012 		lim.features |= BLK_FEAT_ROTATIONAL;
1013 	loop_config_discard(lo, &lim);
1014 	return queue_limits_commit_update(lo->lo_queue, &lim);
1015 }
1016 
1017 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
1018 			  struct block_device *bdev,
1019 			  const struct loop_config *config)
1020 {
1021 	struct file *file = fget(config->fd);
1022 	struct address_space *mapping;
1023 	int error;
1024 	loff_t size;
1025 	bool partscan;
1026 	bool is_loop;
1027 
1028 	if (!file)
1029 		return -EBADF;
1030 	is_loop = is_loop_device(file);
1031 
1032 	/* This is safe, since we have a reference from open(). */
1033 	__module_get(THIS_MODULE);
1034 
1035 	/*
1036 	 * If we don't hold exclusive handle for the device, upgrade to it
1037 	 * here to avoid changing device under exclusive owner.
1038 	 */
1039 	if (!(mode & BLK_OPEN_EXCL)) {
1040 		error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1041 		if (error)
1042 			goto out_putf;
1043 	}
1044 
1045 	error = loop_global_lock_killable(lo, is_loop);
1046 	if (error)
1047 		goto out_bdev;
1048 
1049 	error = -EBUSY;
1050 	if (lo->lo_state != Lo_unbound)
1051 		goto out_unlock;
1052 
1053 	error = loop_validate_file(file, bdev);
1054 	if (error)
1055 		goto out_unlock;
1056 
1057 	mapping = file->f_mapping;
1058 
1059 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1060 		error = -EINVAL;
1061 		goto out_unlock;
1062 	}
1063 
1064 	error = loop_set_status_from_info(lo, &config->info);
1065 	if (error)
1066 		goto out_unlock;
1067 
1068 	if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1069 	    !file->f_op->write_iter)
1070 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1071 
1072 	if (!lo->workqueue) {
1073 		lo->workqueue = alloc_workqueue("loop%d",
1074 						WQ_UNBOUND | WQ_FREEZABLE,
1075 						0, lo->lo_number);
1076 		if (!lo->workqueue) {
1077 			error = -ENOMEM;
1078 			goto out_unlock;
1079 		}
1080 	}
1081 
1082 	/* suppress uevents while reconfiguring the device */
1083 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1084 
1085 	disk_force_media_change(lo->lo_disk);
1086 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1087 
1088 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1089 	lo->lo_device = bdev;
1090 	lo->lo_backing_file = file;
1091 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1092 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1093 
1094 	error = loop_reconfigure_limits(lo, config->block_size);
1095 	if (error)
1096 		goto out_unlock;
1097 
1098 	loop_update_dio(lo);
1099 	loop_sysfs_init(lo);
1100 
1101 	size = get_loop_size(lo, file);
1102 	loop_set_size(lo, size);
1103 
1104 	/* Order wrt reading lo_state in loop_validate_file(). */
1105 	wmb();
1106 
1107 	lo->lo_state = Lo_bound;
1108 	if (part_shift)
1109 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1110 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1111 	if (partscan)
1112 		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1113 
1114 	/* enable and uncork uevent now that we are done */
1115 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1116 
1117 	loop_global_unlock(lo, is_loop);
1118 	if (partscan)
1119 		loop_reread_partitions(lo);
1120 
1121 	if (!(mode & BLK_OPEN_EXCL))
1122 		bd_abort_claiming(bdev, loop_configure);
1123 
1124 	return 0;
1125 
1126 out_unlock:
1127 	loop_global_unlock(lo, is_loop);
1128 out_bdev:
1129 	if (!(mode & BLK_OPEN_EXCL))
1130 		bd_abort_claiming(bdev, loop_configure);
1131 out_putf:
1132 	fput(file);
1133 	/* This is safe: open() is still holding a reference. */
1134 	module_put(THIS_MODULE);
1135 	return error;
1136 }
1137 
1138 static void __loop_clr_fd(struct loop_device *lo)
1139 {
1140 	struct queue_limits lim;
1141 	struct file *filp;
1142 	gfp_t gfp = lo->old_gfp_mask;
1143 
1144 	spin_lock_irq(&lo->lo_lock);
1145 	filp = lo->lo_backing_file;
1146 	lo->lo_backing_file = NULL;
1147 	spin_unlock_irq(&lo->lo_lock);
1148 
1149 	lo->lo_device = NULL;
1150 	lo->lo_offset = 0;
1151 	lo->lo_sizelimit = 0;
1152 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1153 
1154 	/* reset the block size to the default */
1155 	lim = queue_limits_start_update(lo->lo_queue);
1156 	lim.logical_block_size = SECTOR_SIZE;
1157 	lim.physical_block_size = SECTOR_SIZE;
1158 	lim.io_min = SECTOR_SIZE;
1159 	queue_limits_commit_update(lo->lo_queue, &lim);
1160 
1161 	invalidate_disk(lo->lo_disk);
1162 	loop_sysfs_exit(lo);
1163 	/* let user-space know about this change */
1164 	kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1165 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1166 	/* This is safe: open() is still holding a reference. */
1167 	module_put(THIS_MODULE);
1168 
1169 	disk_force_media_change(lo->lo_disk);
1170 
1171 	if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1172 		int err;
1173 
1174 		/*
1175 		 * open_mutex has been held already in release path, so don't
1176 		 * acquire it if this function is called in such case.
1177 		 *
1178 		 * If the reread partition isn't from release path, lo_refcnt
1179 		 * must be at least one and it can only become zero when the
1180 		 * current holder is released.
1181 		 */
1182 		err = bdev_disk_changed(lo->lo_disk, false);
1183 		if (err)
1184 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1185 				__func__, lo->lo_number, err);
1186 		/* Device is gone, no point in returning error */
1187 	}
1188 
1189 	/*
1190 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1191 	 * finished. There cannot be anybody else entering __loop_clr_fd() as
1192 	 * Lo_rundown state protects us from all the other places trying to
1193 	 * change the 'lo' device.
1194 	 */
1195 	lo->lo_flags = 0;
1196 	if (!part_shift)
1197 		set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1198 	mutex_lock(&lo->lo_mutex);
1199 	lo->lo_state = Lo_unbound;
1200 	mutex_unlock(&lo->lo_mutex);
1201 
1202 	/*
1203 	 * Need not hold lo_mutex to fput backing file. Calling fput holding
1204 	 * lo_mutex triggers a circular lock dependency possibility warning as
1205 	 * fput can take open_mutex which is usually taken before lo_mutex.
1206 	 */
1207 	fput(filp);
1208 }
1209 
1210 static int loop_clr_fd(struct loop_device *lo)
1211 {
1212 	int err;
1213 
1214 	/*
1215 	 * Since lo_ioctl() is called without locks held, it is possible that
1216 	 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1217 	 *
1218 	 * Therefore, use global lock when setting Lo_rundown state in order to
1219 	 * make sure that loop_validate_file() will fail if the "struct file"
1220 	 * which loop_configure()/loop_change_fd() found via fget() was this
1221 	 * loop device.
1222 	 */
1223 	err = loop_global_lock_killable(lo, true);
1224 	if (err)
1225 		return err;
1226 	if (lo->lo_state != Lo_bound) {
1227 		loop_global_unlock(lo, true);
1228 		return -ENXIO;
1229 	}
1230 	/*
1231 	 * Mark the device for removing the backing device on last close.
1232 	 * If we are the only opener, also switch the state to roundown here to
1233 	 * prevent new openers from coming in.
1234 	 */
1235 
1236 	lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1237 	if (disk_openers(lo->lo_disk) == 1)
1238 		lo->lo_state = Lo_rundown;
1239 	loop_global_unlock(lo, true);
1240 
1241 	return 0;
1242 }
1243 
1244 static int
1245 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1246 {
1247 	int err;
1248 	int prev_lo_flags;
1249 	bool partscan = false;
1250 	bool size_changed = false;
1251 
1252 	err = mutex_lock_killable(&lo->lo_mutex);
1253 	if (err)
1254 		return err;
1255 	if (lo->lo_state != Lo_bound) {
1256 		err = -ENXIO;
1257 		goto out_unlock;
1258 	}
1259 
1260 	if (lo->lo_offset != info->lo_offset ||
1261 	    lo->lo_sizelimit != info->lo_sizelimit) {
1262 		size_changed = true;
1263 		sync_blockdev(lo->lo_device);
1264 		invalidate_bdev(lo->lo_device);
1265 	}
1266 
1267 	/* I/O need to be drained during transfer transition */
1268 	blk_mq_freeze_queue(lo->lo_queue);
1269 
1270 	prev_lo_flags = lo->lo_flags;
1271 
1272 	err = loop_set_status_from_info(lo, info);
1273 	if (err)
1274 		goto out_unfreeze;
1275 
1276 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1277 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1278 	/* For those flags, use the previous values instead */
1279 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1280 	/* For flags that can't be cleared, use previous values too */
1281 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1282 
1283 	if (size_changed) {
1284 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1285 					   lo->lo_backing_file);
1286 		loop_set_size(lo, new_size);
1287 	}
1288 
1289 	/* update dio if lo_offset or transfer is changed */
1290 	__loop_update_dio(lo, lo->use_dio);
1291 
1292 out_unfreeze:
1293 	blk_mq_unfreeze_queue(lo->lo_queue);
1294 
1295 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1296 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1297 		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1298 		partscan = true;
1299 	}
1300 out_unlock:
1301 	mutex_unlock(&lo->lo_mutex);
1302 	if (partscan)
1303 		loop_reread_partitions(lo);
1304 
1305 	return err;
1306 }
1307 
1308 static int
1309 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1310 {
1311 	struct path path;
1312 	struct kstat stat;
1313 	int ret;
1314 
1315 	ret = mutex_lock_killable(&lo->lo_mutex);
1316 	if (ret)
1317 		return ret;
1318 	if (lo->lo_state != Lo_bound) {
1319 		mutex_unlock(&lo->lo_mutex);
1320 		return -ENXIO;
1321 	}
1322 
1323 	memset(info, 0, sizeof(*info));
1324 	info->lo_number = lo->lo_number;
1325 	info->lo_offset = lo->lo_offset;
1326 	info->lo_sizelimit = lo->lo_sizelimit;
1327 	info->lo_flags = lo->lo_flags;
1328 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1329 
1330 	/* Drop lo_mutex while we call into the filesystem. */
1331 	path = lo->lo_backing_file->f_path;
1332 	path_get(&path);
1333 	mutex_unlock(&lo->lo_mutex);
1334 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1335 	if (!ret) {
1336 		info->lo_device = huge_encode_dev(stat.dev);
1337 		info->lo_inode = stat.ino;
1338 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1339 	}
1340 	path_put(&path);
1341 	return ret;
1342 }
1343 
1344 static void
1345 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1346 {
1347 	memset(info64, 0, sizeof(*info64));
1348 	info64->lo_number = info->lo_number;
1349 	info64->lo_device = info->lo_device;
1350 	info64->lo_inode = info->lo_inode;
1351 	info64->lo_rdevice = info->lo_rdevice;
1352 	info64->lo_offset = info->lo_offset;
1353 	info64->lo_sizelimit = 0;
1354 	info64->lo_flags = info->lo_flags;
1355 	memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1356 }
1357 
1358 static int
1359 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1360 {
1361 	memset(info, 0, sizeof(*info));
1362 	info->lo_number = info64->lo_number;
1363 	info->lo_device = info64->lo_device;
1364 	info->lo_inode = info64->lo_inode;
1365 	info->lo_rdevice = info64->lo_rdevice;
1366 	info->lo_offset = info64->lo_offset;
1367 	info->lo_flags = info64->lo_flags;
1368 	memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1369 
1370 	/* error in case values were truncated */
1371 	if (info->lo_device != info64->lo_device ||
1372 	    info->lo_rdevice != info64->lo_rdevice ||
1373 	    info->lo_inode != info64->lo_inode ||
1374 	    info->lo_offset != info64->lo_offset)
1375 		return -EOVERFLOW;
1376 
1377 	return 0;
1378 }
1379 
1380 static int
1381 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1382 {
1383 	struct loop_info info;
1384 	struct loop_info64 info64;
1385 
1386 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1387 		return -EFAULT;
1388 	loop_info64_from_old(&info, &info64);
1389 	return loop_set_status(lo, &info64);
1390 }
1391 
1392 static int
1393 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1394 {
1395 	struct loop_info64 info64;
1396 
1397 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1398 		return -EFAULT;
1399 	return loop_set_status(lo, &info64);
1400 }
1401 
1402 static int
1403 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1404 	struct loop_info info;
1405 	struct loop_info64 info64;
1406 	int err;
1407 
1408 	if (!arg)
1409 		return -EINVAL;
1410 	err = loop_get_status(lo, &info64);
1411 	if (!err)
1412 		err = loop_info64_to_old(&info64, &info);
1413 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1414 		err = -EFAULT;
1415 
1416 	return err;
1417 }
1418 
1419 static int
1420 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1421 	struct loop_info64 info64;
1422 	int err;
1423 
1424 	if (!arg)
1425 		return -EINVAL;
1426 	err = loop_get_status(lo, &info64);
1427 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1428 		err = -EFAULT;
1429 
1430 	return err;
1431 }
1432 
1433 static int loop_set_capacity(struct loop_device *lo)
1434 {
1435 	loff_t size;
1436 
1437 	if (unlikely(lo->lo_state != Lo_bound))
1438 		return -ENXIO;
1439 
1440 	size = get_loop_size(lo, lo->lo_backing_file);
1441 	loop_set_size(lo, size);
1442 
1443 	return 0;
1444 }
1445 
1446 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1447 {
1448 	int error = -ENXIO;
1449 	if (lo->lo_state != Lo_bound)
1450 		goto out;
1451 
1452 	__loop_update_dio(lo, !!arg);
1453 	if (lo->use_dio == !!arg)
1454 		return 0;
1455 	error = -EINVAL;
1456  out:
1457 	return error;
1458 }
1459 
1460 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1461 {
1462 	int err = 0;
1463 
1464 	if (lo->lo_state != Lo_bound)
1465 		return -ENXIO;
1466 
1467 	if (lo->lo_queue->limits.logical_block_size == arg)
1468 		return 0;
1469 
1470 	sync_blockdev(lo->lo_device);
1471 	invalidate_bdev(lo->lo_device);
1472 
1473 	blk_mq_freeze_queue(lo->lo_queue);
1474 	err = loop_reconfigure_limits(lo, arg);
1475 	loop_update_dio(lo);
1476 	blk_mq_unfreeze_queue(lo->lo_queue);
1477 
1478 	return err;
1479 }
1480 
1481 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1482 			   unsigned long arg)
1483 {
1484 	int err;
1485 
1486 	err = mutex_lock_killable(&lo->lo_mutex);
1487 	if (err)
1488 		return err;
1489 	switch (cmd) {
1490 	case LOOP_SET_CAPACITY:
1491 		err = loop_set_capacity(lo);
1492 		break;
1493 	case LOOP_SET_DIRECT_IO:
1494 		err = loop_set_dio(lo, arg);
1495 		break;
1496 	case LOOP_SET_BLOCK_SIZE:
1497 		err = loop_set_block_size(lo, arg);
1498 		break;
1499 	default:
1500 		err = -EINVAL;
1501 	}
1502 	mutex_unlock(&lo->lo_mutex);
1503 	return err;
1504 }
1505 
1506 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1507 	unsigned int cmd, unsigned long arg)
1508 {
1509 	struct loop_device *lo = bdev->bd_disk->private_data;
1510 	void __user *argp = (void __user *) arg;
1511 	int err;
1512 
1513 	switch (cmd) {
1514 	case LOOP_SET_FD: {
1515 		/*
1516 		 * Legacy case - pass in a zeroed out struct loop_config with
1517 		 * only the file descriptor set , which corresponds with the
1518 		 * default parameters we'd have used otherwise.
1519 		 */
1520 		struct loop_config config;
1521 
1522 		memset(&config, 0, sizeof(config));
1523 		config.fd = arg;
1524 
1525 		return loop_configure(lo, mode, bdev, &config);
1526 	}
1527 	case LOOP_CONFIGURE: {
1528 		struct loop_config config;
1529 
1530 		if (copy_from_user(&config, argp, sizeof(config)))
1531 			return -EFAULT;
1532 
1533 		return loop_configure(lo, mode, bdev, &config);
1534 	}
1535 	case LOOP_CHANGE_FD:
1536 		return loop_change_fd(lo, bdev, arg);
1537 	case LOOP_CLR_FD:
1538 		return loop_clr_fd(lo);
1539 	case LOOP_SET_STATUS:
1540 		err = -EPERM;
1541 		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1542 			err = loop_set_status_old(lo, argp);
1543 		break;
1544 	case LOOP_GET_STATUS:
1545 		return loop_get_status_old(lo, argp);
1546 	case LOOP_SET_STATUS64:
1547 		err = -EPERM;
1548 		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1549 			err = loop_set_status64(lo, argp);
1550 		break;
1551 	case LOOP_GET_STATUS64:
1552 		return loop_get_status64(lo, argp);
1553 	case LOOP_SET_CAPACITY:
1554 	case LOOP_SET_DIRECT_IO:
1555 	case LOOP_SET_BLOCK_SIZE:
1556 		if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1557 			return -EPERM;
1558 		fallthrough;
1559 	default:
1560 		err = lo_simple_ioctl(lo, cmd, arg);
1561 		break;
1562 	}
1563 
1564 	return err;
1565 }
1566 
1567 #ifdef CONFIG_COMPAT
1568 struct compat_loop_info {
1569 	compat_int_t	lo_number;      /* ioctl r/o */
1570 	compat_dev_t	lo_device;      /* ioctl r/o */
1571 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1572 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1573 	compat_int_t	lo_offset;
1574 	compat_int_t	lo_encrypt_type;        /* obsolete, ignored */
1575 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1576 	compat_int_t	lo_flags;       /* ioctl r/o */
1577 	char		lo_name[LO_NAME_SIZE];
1578 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1579 	compat_ulong_t	lo_init[2];
1580 	char		reserved[4];
1581 };
1582 
1583 /*
1584  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1585  * - noinlined to reduce stack space usage in main part of driver
1586  */
1587 static noinline int
1588 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1589 			struct loop_info64 *info64)
1590 {
1591 	struct compat_loop_info info;
1592 
1593 	if (copy_from_user(&info, arg, sizeof(info)))
1594 		return -EFAULT;
1595 
1596 	memset(info64, 0, sizeof(*info64));
1597 	info64->lo_number = info.lo_number;
1598 	info64->lo_device = info.lo_device;
1599 	info64->lo_inode = info.lo_inode;
1600 	info64->lo_rdevice = info.lo_rdevice;
1601 	info64->lo_offset = info.lo_offset;
1602 	info64->lo_sizelimit = 0;
1603 	info64->lo_flags = info.lo_flags;
1604 	memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1605 	return 0;
1606 }
1607 
1608 /*
1609  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1610  * - noinlined to reduce stack space usage in main part of driver
1611  */
1612 static noinline int
1613 loop_info64_to_compat(const struct loop_info64 *info64,
1614 		      struct compat_loop_info __user *arg)
1615 {
1616 	struct compat_loop_info info;
1617 
1618 	memset(&info, 0, sizeof(info));
1619 	info.lo_number = info64->lo_number;
1620 	info.lo_device = info64->lo_device;
1621 	info.lo_inode = info64->lo_inode;
1622 	info.lo_rdevice = info64->lo_rdevice;
1623 	info.lo_offset = info64->lo_offset;
1624 	info.lo_flags = info64->lo_flags;
1625 	memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1626 
1627 	/* error in case values were truncated */
1628 	if (info.lo_device != info64->lo_device ||
1629 	    info.lo_rdevice != info64->lo_rdevice ||
1630 	    info.lo_inode != info64->lo_inode ||
1631 	    info.lo_offset != info64->lo_offset)
1632 		return -EOVERFLOW;
1633 
1634 	if (copy_to_user(arg, &info, sizeof(info)))
1635 		return -EFAULT;
1636 	return 0;
1637 }
1638 
1639 static int
1640 loop_set_status_compat(struct loop_device *lo,
1641 		       const struct compat_loop_info __user *arg)
1642 {
1643 	struct loop_info64 info64;
1644 	int ret;
1645 
1646 	ret = loop_info64_from_compat(arg, &info64);
1647 	if (ret < 0)
1648 		return ret;
1649 	return loop_set_status(lo, &info64);
1650 }
1651 
1652 static int
1653 loop_get_status_compat(struct loop_device *lo,
1654 		       struct compat_loop_info __user *arg)
1655 {
1656 	struct loop_info64 info64;
1657 	int err;
1658 
1659 	if (!arg)
1660 		return -EINVAL;
1661 	err = loop_get_status(lo, &info64);
1662 	if (!err)
1663 		err = loop_info64_to_compat(&info64, arg);
1664 	return err;
1665 }
1666 
1667 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1668 			   unsigned int cmd, unsigned long arg)
1669 {
1670 	struct loop_device *lo = bdev->bd_disk->private_data;
1671 	int err;
1672 
1673 	switch(cmd) {
1674 	case LOOP_SET_STATUS:
1675 		err = loop_set_status_compat(lo,
1676 			     (const struct compat_loop_info __user *)arg);
1677 		break;
1678 	case LOOP_GET_STATUS:
1679 		err = loop_get_status_compat(lo,
1680 				     (struct compat_loop_info __user *)arg);
1681 		break;
1682 	case LOOP_SET_CAPACITY:
1683 	case LOOP_CLR_FD:
1684 	case LOOP_GET_STATUS64:
1685 	case LOOP_SET_STATUS64:
1686 	case LOOP_CONFIGURE:
1687 		arg = (unsigned long) compat_ptr(arg);
1688 		fallthrough;
1689 	case LOOP_SET_FD:
1690 	case LOOP_CHANGE_FD:
1691 	case LOOP_SET_BLOCK_SIZE:
1692 	case LOOP_SET_DIRECT_IO:
1693 		err = lo_ioctl(bdev, mode, cmd, arg);
1694 		break;
1695 	default:
1696 		err = -ENOIOCTLCMD;
1697 		break;
1698 	}
1699 	return err;
1700 }
1701 #endif
1702 
1703 static int lo_open(struct gendisk *disk, blk_mode_t mode)
1704 {
1705 	struct loop_device *lo = disk->private_data;
1706 	int err;
1707 
1708 	err = mutex_lock_killable(&lo->lo_mutex);
1709 	if (err)
1710 		return err;
1711 
1712 	if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1713 		err = -ENXIO;
1714 	mutex_unlock(&lo->lo_mutex);
1715 	return err;
1716 }
1717 
1718 static void lo_release(struct gendisk *disk)
1719 {
1720 	struct loop_device *lo = disk->private_data;
1721 	bool need_clear = false;
1722 
1723 	if (disk_openers(disk) > 0)
1724 		return;
1725 	/*
1726 	 * Clear the backing device information if this is the last close of
1727 	 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1728 	 * has been called.
1729 	 */
1730 
1731 	mutex_lock(&lo->lo_mutex);
1732 	if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1733 		lo->lo_state = Lo_rundown;
1734 
1735 	need_clear = (lo->lo_state == Lo_rundown);
1736 	mutex_unlock(&lo->lo_mutex);
1737 
1738 	if (need_clear)
1739 		__loop_clr_fd(lo);
1740 }
1741 
1742 static void lo_free_disk(struct gendisk *disk)
1743 {
1744 	struct loop_device *lo = disk->private_data;
1745 
1746 	if (lo->workqueue)
1747 		destroy_workqueue(lo->workqueue);
1748 	loop_free_idle_workers(lo, true);
1749 	timer_shutdown_sync(&lo->timer);
1750 	mutex_destroy(&lo->lo_mutex);
1751 	kfree(lo);
1752 }
1753 
1754 static const struct block_device_operations lo_fops = {
1755 	.owner =	THIS_MODULE,
1756 	.open =         lo_open,
1757 	.release =	lo_release,
1758 	.ioctl =	lo_ioctl,
1759 #ifdef CONFIG_COMPAT
1760 	.compat_ioctl =	lo_compat_ioctl,
1761 #endif
1762 	.free_disk =	lo_free_disk,
1763 };
1764 
1765 /*
1766  * And now the modules code and kernel interface.
1767  */
1768 
1769 /*
1770  * If max_loop is specified, create that many devices upfront.
1771  * This also becomes a hard limit. If max_loop is not specified,
1772  * the default isn't a hard limit (as before commit 85c50197716c
1773  * changed the default value from 0 for max_loop=0 reasons), just
1774  * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1775  * init time. Loop devices can be requested on-demand with the
1776  * /dev/loop-control interface, or be instantiated by accessing
1777  * a 'dead' device node.
1778  */
1779 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1780 
1781 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1782 static bool max_loop_specified;
1783 
1784 static int max_loop_param_set_int(const char *val,
1785 				  const struct kernel_param *kp)
1786 {
1787 	int ret;
1788 
1789 	ret = param_set_int(val, kp);
1790 	if (ret < 0)
1791 		return ret;
1792 
1793 	max_loop_specified = true;
1794 	return 0;
1795 }
1796 
1797 static const struct kernel_param_ops max_loop_param_ops = {
1798 	.set = max_loop_param_set_int,
1799 	.get = param_get_int,
1800 };
1801 
1802 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1803 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1804 #else
1805 module_param(max_loop, int, 0444);
1806 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1807 #endif
1808 
1809 module_param(max_part, int, 0444);
1810 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1811 
1812 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1813 
1814 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1815 {
1816 	int qd, ret;
1817 
1818 	ret = kstrtoint(s, 0, &qd);
1819 	if (ret < 0)
1820 		return ret;
1821 	if (qd < 1)
1822 		return -EINVAL;
1823 	hw_queue_depth = qd;
1824 	return 0;
1825 }
1826 
1827 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1828 	.set	= loop_set_hw_queue_depth,
1829 	.get	= param_get_int,
1830 };
1831 
1832 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1833 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1834 
1835 MODULE_DESCRIPTION("Loopback device support");
1836 MODULE_LICENSE("GPL");
1837 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1838 
1839 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1840 		const struct blk_mq_queue_data *bd)
1841 {
1842 	struct request *rq = bd->rq;
1843 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1844 	struct loop_device *lo = rq->q->queuedata;
1845 
1846 	blk_mq_start_request(rq);
1847 
1848 	if (lo->lo_state != Lo_bound)
1849 		return BLK_STS_IOERR;
1850 
1851 	switch (req_op(rq)) {
1852 	case REQ_OP_FLUSH:
1853 	case REQ_OP_DISCARD:
1854 	case REQ_OP_WRITE_ZEROES:
1855 		cmd->use_aio = false;
1856 		break;
1857 	default:
1858 		cmd->use_aio = lo->use_dio;
1859 		break;
1860 	}
1861 
1862 	/* always use the first bio's css */
1863 	cmd->blkcg_css = NULL;
1864 	cmd->memcg_css = NULL;
1865 #ifdef CONFIG_BLK_CGROUP
1866 	if (rq->bio) {
1867 		cmd->blkcg_css = bio_blkcg_css(rq->bio);
1868 #ifdef CONFIG_MEMCG
1869 		if (cmd->blkcg_css) {
1870 			cmd->memcg_css =
1871 				cgroup_get_e_css(cmd->blkcg_css->cgroup,
1872 						&memory_cgrp_subsys);
1873 		}
1874 #endif
1875 	}
1876 #endif
1877 	loop_queue_work(lo, cmd);
1878 
1879 	return BLK_STS_OK;
1880 }
1881 
1882 static void loop_handle_cmd(struct loop_cmd *cmd)
1883 {
1884 	struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1885 	struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1886 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1887 	const bool write = op_is_write(req_op(rq));
1888 	struct loop_device *lo = rq->q->queuedata;
1889 	int ret = 0;
1890 	struct mem_cgroup *old_memcg = NULL;
1891 	const bool use_aio = cmd->use_aio;
1892 
1893 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1894 		ret = -EIO;
1895 		goto failed;
1896 	}
1897 
1898 	if (cmd_blkcg_css)
1899 		kthread_associate_blkcg(cmd_blkcg_css);
1900 	if (cmd_memcg_css)
1901 		old_memcg = set_active_memcg(
1902 			mem_cgroup_from_css(cmd_memcg_css));
1903 
1904 	/*
1905 	 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1906 	 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1907 	 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1908 	 * not yet been completed.
1909 	 */
1910 	ret = do_req_filebacked(lo, rq);
1911 
1912 	if (cmd_blkcg_css)
1913 		kthread_associate_blkcg(NULL);
1914 
1915 	if (cmd_memcg_css) {
1916 		set_active_memcg(old_memcg);
1917 		css_put(cmd_memcg_css);
1918 	}
1919  failed:
1920 	/* complete non-aio request */
1921 	if (!use_aio || ret) {
1922 		if (ret == -EOPNOTSUPP)
1923 			cmd->ret = ret;
1924 		else
1925 			cmd->ret = ret ? -EIO : 0;
1926 		if (likely(!blk_should_fake_timeout(rq->q)))
1927 			blk_mq_complete_request(rq);
1928 	}
1929 }
1930 
1931 static void loop_process_work(struct loop_worker *worker,
1932 			struct list_head *cmd_list, struct loop_device *lo)
1933 {
1934 	int orig_flags = current->flags;
1935 	struct loop_cmd *cmd;
1936 
1937 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1938 	spin_lock_irq(&lo->lo_work_lock);
1939 	while (!list_empty(cmd_list)) {
1940 		cmd = container_of(
1941 			cmd_list->next, struct loop_cmd, list_entry);
1942 		list_del(cmd_list->next);
1943 		spin_unlock_irq(&lo->lo_work_lock);
1944 
1945 		loop_handle_cmd(cmd);
1946 		cond_resched();
1947 
1948 		spin_lock_irq(&lo->lo_work_lock);
1949 	}
1950 
1951 	/*
1952 	 * We only add to the idle list if there are no pending cmds
1953 	 * *and* the worker will not run again which ensures that it
1954 	 * is safe to free any worker on the idle list
1955 	 */
1956 	if (worker && !work_pending(&worker->work)) {
1957 		worker->last_ran_at = jiffies;
1958 		list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1959 		loop_set_timer(lo);
1960 	}
1961 	spin_unlock_irq(&lo->lo_work_lock);
1962 	current->flags = orig_flags;
1963 }
1964 
1965 static void loop_workfn(struct work_struct *work)
1966 {
1967 	struct loop_worker *worker =
1968 		container_of(work, struct loop_worker, work);
1969 	loop_process_work(worker, &worker->cmd_list, worker->lo);
1970 }
1971 
1972 static void loop_rootcg_workfn(struct work_struct *work)
1973 {
1974 	struct loop_device *lo =
1975 		container_of(work, struct loop_device, rootcg_work);
1976 	loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1977 }
1978 
1979 static const struct blk_mq_ops loop_mq_ops = {
1980 	.queue_rq       = loop_queue_rq,
1981 	.complete	= lo_complete_rq,
1982 };
1983 
1984 static int loop_add(int i)
1985 {
1986 	struct queue_limits lim = {
1987 		/*
1988 		 * Random number picked from the historic block max_sectors cap.
1989 		 */
1990 		.max_hw_sectors		= 2560u,
1991 	};
1992 	struct loop_device *lo;
1993 	struct gendisk *disk;
1994 	int err;
1995 
1996 	err = -ENOMEM;
1997 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1998 	if (!lo)
1999 		goto out;
2000 	lo->worker_tree = RB_ROOT;
2001 	INIT_LIST_HEAD(&lo->idle_worker_list);
2002 	timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2003 	lo->lo_state = Lo_unbound;
2004 
2005 	err = mutex_lock_killable(&loop_ctl_mutex);
2006 	if (err)
2007 		goto out_free_dev;
2008 
2009 	/* allocate id, if @id >= 0, we're requesting that specific id */
2010 	if (i >= 0) {
2011 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2012 		if (err == -ENOSPC)
2013 			err = -EEXIST;
2014 	} else {
2015 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2016 	}
2017 	mutex_unlock(&loop_ctl_mutex);
2018 	if (err < 0)
2019 		goto out_free_dev;
2020 	i = err;
2021 
2022 	lo->tag_set.ops = &loop_mq_ops;
2023 	lo->tag_set.nr_hw_queues = 1;
2024 	lo->tag_set.queue_depth = hw_queue_depth;
2025 	lo->tag_set.numa_node = NUMA_NO_NODE;
2026 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2027 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2028 		BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2029 	lo->tag_set.driver_data = lo;
2030 
2031 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2032 	if (err)
2033 		goto out_free_idr;
2034 
2035 	disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2036 	if (IS_ERR(disk)) {
2037 		err = PTR_ERR(disk);
2038 		goto out_cleanup_tags;
2039 	}
2040 	lo->lo_queue = lo->lo_disk->queue;
2041 
2042 	/*
2043 	 * Disable partition scanning by default. The in-kernel partition
2044 	 * scanning can be requested individually per-device during its
2045 	 * setup. Userspace can always add and remove partitions from all
2046 	 * devices. The needed partition minors are allocated from the
2047 	 * extended minor space, the main loop device numbers will continue
2048 	 * to match the loop minors, regardless of the number of partitions
2049 	 * used.
2050 	 *
2051 	 * If max_part is given, partition scanning is globally enabled for
2052 	 * all loop devices. The minors for the main loop devices will be
2053 	 * multiples of max_part.
2054 	 *
2055 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2056 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2057 	 * complicated, are too static, inflexible and may surprise
2058 	 * userspace tools. Parameters like this in general should be avoided.
2059 	 */
2060 	if (!part_shift)
2061 		set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2062 	mutex_init(&lo->lo_mutex);
2063 	lo->lo_number		= i;
2064 	spin_lock_init(&lo->lo_lock);
2065 	spin_lock_init(&lo->lo_work_lock);
2066 	INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2067 	INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2068 	disk->major		= LOOP_MAJOR;
2069 	disk->first_minor	= i << part_shift;
2070 	disk->minors		= 1 << part_shift;
2071 	disk->fops		= &lo_fops;
2072 	disk->private_data	= lo;
2073 	disk->queue		= lo->lo_queue;
2074 	disk->events		= DISK_EVENT_MEDIA_CHANGE;
2075 	disk->event_flags	= DISK_EVENT_FLAG_UEVENT;
2076 	sprintf(disk->disk_name, "loop%d", i);
2077 	/* Make this loop device reachable from pathname. */
2078 	err = add_disk(disk);
2079 	if (err)
2080 		goto out_cleanup_disk;
2081 
2082 	/* Show this loop device. */
2083 	mutex_lock(&loop_ctl_mutex);
2084 	lo->idr_visible = true;
2085 	mutex_unlock(&loop_ctl_mutex);
2086 
2087 	return i;
2088 
2089 out_cleanup_disk:
2090 	put_disk(disk);
2091 out_cleanup_tags:
2092 	blk_mq_free_tag_set(&lo->tag_set);
2093 out_free_idr:
2094 	mutex_lock(&loop_ctl_mutex);
2095 	idr_remove(&loop_index_idr, i);
2096 	mutex_unlock(&loop_ctl_mutex);
2097 out_free_dev:
2098 	kfree(lo);
2099 out:
2100 	return err;
2101 }
2102 
2103 static void loop_remove(struct loop_device *lo)
2104 {
2105 	/* Make this loop device unreachable from pathname. */
2106 	del_gendisk(lo->lo_disk);
2107 	blk_mq_free_tag_set(&lo->tag_set);
2108 
2109 	mutex_lock(&loop_ctl_mutex);
2110 	idr_remove(&loop_index_idr, lo->lo_number);
2111 	mutex_unlock(&loop_ctl_mutex);
2112 
2113 	put_disk(lo->lo_disk);
2114 }
2115 
2116 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2117 static void loop_probe(dev_t dev)
2118 {
2119 	int idx = MINOR(dev) >> part_shift;
2120 
2121 	if (max_loop_specified && max_loop && idx >= max_loop)
2122 		return;
2123 	loop_add(idx);
2124 }
2125 #else
2126 #define loop_probe NULL
2127 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2128 
2129 static int loop_control_remove(int idx)
2130 {
2131 	struct loop_device *lo;
2132 	int ret;
2133 
2134 	if (idx < 0) {
2135 		pr_warn_once("deleting an unspecified loop device is not supported.\n");
2136 		return -EINVAL;
2137 	}
2138 
2139 	/* Hide this loop device for serialization. */
2140 	ret = mutex_lock_killable(&loop_ctl_mutex);
2141 	if (ret)
2142 		return ret;
2143 	lo = idr_find(&loop_index_idr, idx);
2144 	if (!lo || !lo->idr_visible)
2145 		ret = -ENODEV;
2146 	else
2147 		lo->idr_visible = false;
2148 	mutex_unlock(&loop_ctl_mutex);
2149 	if (ret)
2150 		return ret;
2151 
2152 	/* Check whether this loop device can be removed. */
2153 	ret = mutex_lock_killable(&lo->lo_mutex);
2154 	if (ret)
2155 		goto mark_visible;
2156 	if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2157 		mutex_unlock(&lo->lo_mutex);
2158 		ret = -EBUSY;
2159 		goto mark_visible;
2160 	}
2161 	/* Mark this loop device as no more bound, but not quite unbound yet */
2162 	lo->lo_state = Lo_deleting;
2163 	mutex_unlock(&lo->lo_mutex);
2164 
2165 	loop_remove(lo);
2166 	return 0;
2167 
2168 mark_visible:
2169 	/* Show this loop device again. */
2170 	mutex_lock(&loop_ctl_mutex);
2171 	lo->idr_visible = true;
2172 	mutex_unlock(&loop_ctl_mutex);
2173 	return ret;
2174 }
2175 
2176 static int loop_control_get_free(int idx)
2177 {
2178 	struct loop_device *lo;
2179 	int id, ret;
2180 
2181 	ret = mutex_lock_killable(&loop_ctl_mutex);
2182 	if (ret)
2183 		return ret;
2184 	idr_for_each_entry(&loop_index_idr, lo, id) {
2185 		/* Hitting a race results in creating a new loop device which is harmless. */
2186 		if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2187 			goto found;
2188 	}
2189 	mutex_unlock(&loop_ctl_mutex);
2190 	return loop_add(-1);
2191 found:
2192 	mutex_unlock(&loop_ctl_mutex);
2193 	return id;
2194 }
2195 
2196 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2197 			       unsigned long parm)
2198 {
2199 	switch (cmd) {
2200 	case LOOP_CTL_ADD:
2201 		return loop_add(parm);
2202 	case LOOP_CTL_REMOVE:
2203 		return loop_control_remove(parm);
2204 	case LOOP_CTL_GET_FREE:
2205 		return loop_control_get_free(parm);
2206 	default:
2207 		return -ENOSYS;
2208 	}
2209 }
2210 
2211 static const struct file_operations loop_ctl_fops = {
2212 	.open		= nonseekable_open,
2213 	.unlocked_ioctl	= loop_control_ioctl,
2214 	.compat_ioctl	= loop_control_ioctl,
2215 	.owner		= THIS_MODULE,
2216 	.llseek		= noop_llseek,
2217 };
2218 
2219 static struct miscdevice loop_misc = {
2220 	.minor		= LOOP_CTRL_MINOR,
2221 	.name		= "loop-control",
2222 	.fops		= &loop_ctl_fops,
2223 };
2224 
2225 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2226 MODULE_ALIAS("devname:loop-control");
2227 
2228 static int __init loop_init(void)
2229 {
2230 	int i;
2231 	int err;
2232 
2233 	part_shift = 0;
2234 	if (max_part > 0) {
2235 		part_shift = fls(max_part);
2236 
2237 		/*
2238 		 * Adjust max_part according to part_shift as it is exported
2239 		 * to user space so that user can decide correct minor number
2240 		 * if [s]he want to create more devices.
2241 		 *
2242 		 * Note that -1 is required because partition 0 is reserved
2243 		 * for the whole disk.
2244 		 */
2245 		max_part = (1UL << part_shift) - 1;
2246 	}
2247 
2248 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2249 		err = -EINVAL;
2250 		goto err_out;
2251 	}
2252 
2253 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2254 		err = -EINVAL;
2255 		goto err_out;
2256 	}
2257 
2258 	err = misc_register(&loop_misc);
2259 	if (err < 0)
2260 		goto err_out;
2261 
2262 
2263 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2264 		err = -EIO;
2265 		goto misc_out;
2266 	}
2267 
2268 	/* pre-create number of devices given by config or max_loop */
2269 	for (i = 0; i < max_loop; i++)
2270 		loop_add(i);
2271 
2272 	printk(KERN_INFO "loop: module loaded\n");
2273 	return 0;
2274 
2275 misc_out:
2276 	misc_deregister(&loop_misc);
2277 err_out:
2278 	return err;
2279 }
2280 
2281 static void __exit loop_exit(void)
2282 {
2283 	struct loop_device *lo;
2284 	int id;
2285 
2286 	unregister_blkdev(LOOP_MAJOR, "loop");
2287 	misc_deregister(&loop_misc);
2288 
2289 	/*
2290 	 * There is no need to use loop_ctl_mutex here, for nobody else can
2291 	 * access loop_index_idr when this module is unloading (unless forced
2292 	 * module unloading is requested). If this is not a clean unloading,
2293 	 * we have no means to avoid kernel crash.
2294 	 */
2295 	idr_for_each_entry(&loop_index_idr, lo, id)
2296 		loop_remove(lo);
2297 
2298 	idr_destroy(&loop_index_idr);
2299 }
2300 
2301 module_init(loop_init);
2302 module_exit(loop_exit);
2303 
2304 #ifndef MODULE
2305 static int __init max_loop_setup(char *str)
2306 {
2307 	max_loop = simple_strtol(str, NULL, 0);
2308 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2309 	max_loop_specified = true;
2310 #endif
2311 	return 1;
2312 }
2313 
2314 __setup("max_loop=", max_loop_setup);
2315 #endif
2316