1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/loop.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/kthread.h> 75 #include <linux/splice.h> 76 #include <linux/sysfs.h> 77 #include <linux/miscdevice.h> 78 #include <linux/falloc.h> 79 80 #include <asm/uaccess.h> 81 82 static DEFINE_IDR(loop_index_idr); 83 static DEFINE_MUTEX(loop_index_mutex); 84 85 static int max_part; 86 static int part_shift; 87 88 /* 89 * Transfer functions 90 */ 91 static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95 { 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(loop_buf); 105 kunmap_atomic(raw_buf); 106 cond_resched(); 107 return 0; 108 } 109 110 static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114 { 115 char *raw_buf = kmap_atomic(raw_page) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(loop_buf); 134 kunmap_atomic(raw_buf); 135 cond_resched(); 136 return 0; 137 } 138 139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140 { 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144 } 145 146 static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149 }; 150 151 static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155 }; 156 157 /* xfer_funcs[0] is special - its release function is never called */ 158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161 }; 162 163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 164 { 165 loff_t loopsize; 166 167 /* Compute loopsize in bytes */ 168 loopsize = i_size_read(file->f_mapping->host); 169 if (offset > 0) 170 loopsize -= offset; 171 /* offset is beyond i_size, weird but possible */ 172 if (loopsize < 0) 173 return 0; 174 175 if (sizelimit > 0 && sizelimit < loopsize) 176 loopsize = sizelimit; 177 /* 178 * Unfortunately, if we want to do I/O on the device, 179 * the number of 512-byte sectors has to fit into a sector_t. 180 */ 181 return loopsize >> 9; 182 } 183 184 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 185 { 186 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 187 } 188 189 static int 190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 191 { 192 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 193 sector_t x = (sector_t)size; 194 struct block_device *bdev = lo->lo_device; 195 196 if (unlikely((loff_t)x != size)) 197 return -EFBIG; 198 if (lo->lo_offset != offset) 199 lo->lo_offset = offset; 200 if (lo->lo_sizelimit != sizelimit) 201 lo->lo_sizelimit = sizelimit; 202 set_capacity(lo->lo_disk, x); 203 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 204 /* let user-space know about the new size */ 205 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 206 return 0; 207 } 208 209 static inline int 210 lo_do_transfer(struct loop_device *lo, int cmd, 211 struct page *rpage, unsigned roffs, 212 struct page *lpage, unsigned loffs, 213 int size, sector_t rblock) 214 { 215 if (unlikely(!lo->transfer)) 216 return 0; 217 218 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 219 } 220 221 /** 222 * __do_lo_send_write - helper for writing data to a loop device 223 * 224 * This helper just factors out common code between do_lo_send_direct_write() 225 * and do_lo_send_write(). 226 */ 227 static int __do_lo_send_write(struct file *file, 228 u8 *buf, const int len, loff_t pos) 229 { 230 ssize_t bw; 231 mm_segment_t old_fs = get_fs(); 232 233 set_fs(get_ds()); 234 bw = file->f_op->write(file, buf, len, &pos); 235 set_fs(old_fs); 236 if (likely(bw == len)) 237 return 0; 238 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 239 (unsigned long long)pos, len); 240 if (bw >= 0) 241 bw = -EIO; 242 return bw; 243 } 244 245 /** 246 * do_lo_send_direct_write - helper for writing data to a loop device 247 * 248 * This is the fast, non-transforming version that does not need double 249 * buffering. 250 */ 251 static int do_lo_send_direct_write(struct loop_device *lo, 252 struct bio_vec *bvec, loff_t pos, struct page *page) 253 { 254 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 255 kmap(bvec->bv_page) + bvec->bv_offset, 256 bvec->bv_len, pos); 257 kunmap(bvec->bv_page); 258 cond_resched(); 259 return bw; 260 } 261 262 /** 263 * do_lo_send_write - helper for writing data to a loop device 264 * 265 * This is the slow, transforming version that needs to double buffer the 266 * data as it cannot do the transformations in place without having direct 267 * access to the destination pages of the backing file. 268 */ 269 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 270 loff_t pos, struct page *page) 271 { 272 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 273 bvec->bv_offset, bvec->bv_len, pos >> 9); 274 if (likely(!ret)) 275 return __do_lo_send_write(lo->lo_backing_file, 276 page_address(page), bvec->bv_len, 277 pos); 278 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 279 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 280 if (ret > 0) 281 ret = -EIO; 282 return ret; 283 } 284 285 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 286 { 287 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 288 struct page *page); 289 struct bio_vec *bvec; 290 struct page *page = NULL; 291 int i, ret = 0; 292 293 if (lo->transfer != transfer_none) { 294 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 295 if (unlikely(!page)) 296 goto fail; 297 kmap(page); 298 do_lo_send = do_lo_send_write; 299 } else { 300 do_lo_send = do_lo_send_direct_write; 301 } 302 303 bio_for_each_segment(bvec, bio, i) { 304 ret = do_lo_send(lo, bvec, pos, page); 305 if (ret < 0) 306 break; 307 pos += bvec->bv_len; 308 } 309 if (page) { 310 kunmap(page); 311 __free_page(page); 312 } 313 out: 314 return ret; 315 fail: 316 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 317 ret = -ENOMEM; 318 goto out; 319 } 320 321 struct lo_read_data { 322 struct loop_device *lo; 323 struct page *page; 324 unsigned offset; 325 int bsize; 326 }; 327 328 static int 329 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 330 struct splice_desc *sd) 331 { 332 struct lo_read_data *p = sd->u.data; 333 struct loop_device *lo = p->lo; 334 struct page *page = buf->page; 335 sector_t IV; 336 int size; 337 338 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 339 (buf->offset >> 9); 340 size = sd->len; 341 if (size > p->bsize) 342 size = p->bsize; 343 344 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 345 printk(KERN_ERR "loop: transfer error block %ld\n", 346 page->index); 347 size = -EINVAL; 348 } 349 350 flush_dcache_page(p->page); 351 352 if (size > 0) 353 p->offset += size; 354 355 return size; 356 } 357 358 static int 359 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 360 { 361 return __splice_from_pipe(pipe, sd, lo_splice_actor); 362 } 363 364 static ssize_t 365 do_lo_receive(struct loop_device *lo, 366 struct bio_vec *bvec, int bsize, loff_t pos) 367 { 368 struct lo_read_data cookie; 369 struct splice_desc sd; 370 struct file *file; 371 ssize_t retval; 372 373 cookie.lo = lo; 374 cookie.page = bvec->bv_page; 375 cookie.offset = bvec->bv_offset; 376 cookie.bsize = bsize; 377 378 sd.len = 0; 379 sd.total_len = bvec->bv_len; 380 sd.flags = 0; 381 sd.pos = pos; 382 sd.u.data = &cookie; 383 384 file = lo->lo_backing_file; 385 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 386 387 return retval; 388 } 389 390 static int 391 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 392 { 393 struct bio_vec *bvec; 394 ssize_t s; 395 int i; 396 397 bio_for_each_segment(bvec, bio, i) { 398 s = do_lo_receive(lo, bvec, bsize, pos); 399 if (s < 0) 400 return s; 401 402 if (s != bvec->bv_len) { 403 zero_fill_bio(bio); 404 break; 405 } 406 pos += bvec->bv_len; 407 } 408 return 0; 409 } 410 411 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 412 { 413 loff_t pos; 414 int ret; 415 416 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 417 418 if (bio_rw(bio) == WRITE) { 419 struct file *file = lo->lo_backing_file; 420 421 if (bio->bi_rw & REQ_FLUSH) { 422 ret = vfs_fsync(file, 0); 423 if (unlikely(ret && ret != -EINVAL)) { 424 ret = -EIO; 425 goto out; 426 } 427 } 428 429 /* 430 * We use punch hole to reclaim the free space used by the 431 * image a.k.a. discard. However we do not support discard if 432 * encryption is enabled, because it may give an attacker 433 * useful information. 434 */ 435 if (bio->bi_rw & REQ_DISCARD) { 436 struct file *file = lo->lo_backing_file; 437 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 438 439 if ((!file->f_op->fallocate) || 440 lo->lo_encrypt_key_size) { 441 ret = -EOPNOTSUPP; 442 goto out; 443 } 444 ret = file->f_op->fallocate(file, mode, pos, 445 bio->bi_size); 446 if (unlikely(ret && ret != -EINVAL && 447 ret != -EOPNOTSUPP)) 448 ret = -EIO; 449 goto out; 450 } 451 452 ret = lo_send(lo, bio, pos); 453 454 if ((bio->bi_rw & REQ_FUA) && !ret) { 455 ret = vfs_fsync(file, 0); 456 if (unlikely(ret && ret != -EINVAL)) 457 ret = -EIO; 458 } 459 } else 460 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 461 462 out: 463 return ret; 464 } 465 466 /* 467 * Add bio to back of pending list 468 */ 469 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 470 { 471 lo->lo_bio_count++; 472 bio_list_add(&lo->lo_bio_list, bio); 473 } 474 475 /* 476 * Grab first pending buffer 477 */ 478 static struct bio *loop_get_bio(struct loop_device *lo) 479 { 480 lo->lo_bio_count--; 481 return bio_list_pop(&lo->lo_bio_list); 482 } 483 484 static void loop_make_request(struct request_queue *q, struct bio *old_bio) 485 { 486 struct loop_device *lo = q->queuedata; 487 int rw = bio_rw(old_bio); 488 489 if (rw == READA) 490 rw = READ; 491 492 BUG_ON(!lo || (rw != READ && rw != WRITE)); 493 494 spin_lock_irq(&lo->lo_lock); 495 if (lo->lo_state != Lo_bound) 496 goto out; 497 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 498 goto out; 499 if (lo->lo_bio_count >= q->nr_congestion_on) 500 wait_event_lock_irq(lo->lo_req_wait, 501 lo->lo_bio_count < q->nr_congestion_off, 502 lo->lo_lock); 503 loop_add_bio(lo, old_bio); 504 wake_up(&lo->lo_event); 505 spin_unlock_irq(&lo->lo_lock); 506 return; 507 508 out: 509 spin_unlock_irq(&lo->lo_lock); 510 bio_io_error(old_bio); 511 } 512 513 struct switch_request { 514 struct file *file; 515 struct completion wait; 516 }; 517 518 static void do_loop_switch(struct loop_device *, struct switch_request *); 519 520 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 521 { 522 if (unlikely(!bio->bi_bdev)) { 523 do_loop_switch(lo, bio->bi_private); 524 bio_put(bio); 525 } else { 526 int ret = do_bio_filebacked(lo, bio); 527 bio_endio(bio, ret); 528 } 529 } 530 531 /* 532 * worker thread that handles reads/writes to file backed loop devices, 533 * to avoid blocking in our make_request_fn. it also does loop decrypting 534 * on reads for block backed loop, as that is too heavy to do from 535 * b_end_io context where irqs may be disabled. 536 * 537 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 538 * calling kthread_stop(). Therefore once kthread_should_stop() is 539 * true, make_request will not place any more requests. Therefore 540 * once kthread_should_stop() is true and lo_bio is NULL, we are 541 * done with the loop. 542 */ 543 static int loop_thread(void *data) 544 { 545 struct loop_device *lo = data; 546 struct bio *bio; 547 548 set_user_nice(current, -20); 549 550 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 551 552 wait_event_interruptible(lo->lo_event, 553 !bio_list_empty(&lo->lo_bio_list) || 554 kthread_should_stop()); 555 556 if (bio_list_empty(&lo->lo_bio_list)) 557 continue; 558 spin_lock_irq(&lo->lo_lock); 559 bio = loop_get_bio(lo); 560 if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off) 561 wake_up(&lo->lo_req_wait); 562 spin_unlock_irq(&lo->lo_lock); 563 564 BUG_ON(!bio); 565 loop_handle_bio(lo, bio); 566 } 567 568 return 0; 569 } 570 571 /* 572 * loop_switch performs the hard work of switching a backing store. 573 * First it needs to flush existing IO, it does this by sending a magic 574 * BIO down the pipe. The completion of this BIO does the actual switch. 575 */ 576 static int loop_switch(struct loop_device *lo, struct file *file) 577 { 578 struct switch_request w; 579 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 580 if (!bio) 581 return -ENOMEM; 582 init_completion(&w.wait); 583 w.file = file; 584 bio->bi_private = &w; 585 bio->bi_bdev = NULL; 586 loop_make_request(lo->lo_queue, bio); 587 wait_for_completion(&w.wait); 588 return 0; 589 } 590 591 /* 592 * Helper to flush the IOs in loop, but keeping loop thread running 593 */ 594 static int loop_flush(struct loop_device *lo) 595 { 596 /* loop not yet configured, no running thread, nothing to flush */ 597 if (!lo->lo_thread) 598 return 0; 599 600 return loop_switch(lo, NULL); 601 } 602 603 /* 604 * Do the actual switch; called from the BIO completion routine 605 */ 606 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 607 { 608 struct file *file = p->file; 609 struct file *old_file = lo->lo_backing_file; 610 struct address_space *mapping; 611 612 /* if no new file, only flush of queued bios requested */ 613 if (!file) 614 goto out; 615 616 mapping = file->f_mapping; 617 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 618 lo->lo_backing_file = file; 619 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 620 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 621 lo->old_gfp_mask = mapping_gfp_mask(mapping); 622 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 623 out: 624 complete(&p->wait); 625 } 626 627 628 /* 629 * loop_change_fd switched the backing store of a loopback device to 630 * a new file. This is useful for operating system installers to free up 631 * the original file and in High Availability environments to switch to 632 * an alternative location for the content in case of server meltdown. 633 * This can only work if the loop device is used read-only, and if the 634 * new backing store is the same size and type as the old backing store. 635 */ 636 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 637 unsigned int arg) 638 { 639 struct file *file, *old_file; 640 struct inode *inode; 641 int error; 642 643 error = -ENXIO; 644 if (lo->lo_state != Lo_bound) 645 goto out; 646 647 /* the loop device has to be read-only */ 648 error = -EINVAL; 649 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 650 goto out; 651 652 error = -EBADF; 653 file = fget(arg); 654 if (!file) 655 goto out; 656 657 inode = file->f_mapping->host; 658 old_file = lo->lo_backing_file; 659 660 error = -EINVAL; 661 662 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 663 goto out_putf; 664 665 /* size of the new backing store needs to be the same */ 666 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 667 goto out_putf; 668 669 /* and ... switch */ 670 error = loop_switch(lo, file); 671 if (error) 672 goto out_putf; 673 674 fput(old_file); 675 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 676 ioctl_by_bdev(bdev, BLKRRPART, 0); 677 return 0; 678 679 out_putf: 680 fput(file); 681 out: 682 return error; 683 } 684 685 static inline int is_loop_device(struct file *file) 686 { 687 struct inode *i = file->f_mapping->host; 688 689 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 690 } 691 692 /* loop sysfs attributes */ 693 694 static ssize_t loop_attr_show(struct device *dev, char *page, 695 ssize_t (*callback)(struct loop_device *, char *)) 696 { 697 struct gendisk *disk = dev_to_disk(dev); 698 struct loop_device *lo = disk->private_data; 699 700 return callback(lo, page); 701 } 702 703 #define LOOP_ATTR_RO(_name) \ 704 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 705 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 706 struct device_attribute *attr, char *b) \ 707 { \ 708 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 709 } \ 710 static struct device_attribute loop_attr_##_name = \ 711 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 712 713 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 714 { 715 ssize_t ret; 716 char *p = NULL; 717 718 spin_lock_irq(&lo->lo_lock); 719 if (lo->lo_backing_file) 720 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 721 spin_unlock_irq(&lo->lo_lock); 722 723 if (IS_ERR_OR_NULL(p)) 724 ret = PTR_ERR(p); 725 else { 726 ret = strlen(p); 727 memmove(buf, p, ret); 728 buf[ret++] = '\n'; 729 buf[ret] = 0; 730 } 731 732 return ret; 733 } 734 735 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 736 { 737 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 738 } 739 740 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 741 { 742 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 743 } 744 745 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 746 { 747 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 748 749 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 750 } 751 752 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 753 { 754 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 755 756 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 757 } 758 759 LOOP_ATTR_RO(backing_file); 760 LOOP_ATTR_RO(offset); 761 LOOP_ATTR_RO(sizelimit); 762 LOOP_ATTR_RO(autoclear); 763 LOOP_ATTR_RO(partscan); 764 765 static struct attribute *loop_attrs[] = { 766 &loop_attr_backing_file.attr, 767 &loop_attr_offset.attr, 768 &loop_attr_sizelimit.attr, 769 &loop_attr_autoclear.attr, 770 &loop_attr_partscan.attr, 771 NULL, 772 }; 773 774 static struct attribute_group loop_attribute_group = { 775 .name = "loop", 776 .attrs= loop_attrs, 777 }; 778 779 static int loop_sysfs_init(struct loop_device *lo) 780 { 781 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 782 &loop_attribute_group); 783 } 784 785 static void loop_sysfs_exit(struct loop_device *lo) 786 { 787 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 788 &loop_attribute_group); 789 } 790 791 static void loop_config_discard(struct loop_device *lo) 792 { 793 struct file *file = lo->lo_backing_file; 794 struct inode *inode = file->f_mapping->host; 795 struct request_queue *q = lo->lo_queue; 796 797 /* 798 * We use punch hole to reclaim the free space used by the 799 * image a.k.a. discard. However we do support discard if 800 * encryption is enabled, because it may give an attacker 801 * useful information. 802 */ 803 if ((!file->f_op->fallocate) || 804 lo->lo_encrypt_key_size) { 805 q->limits.discard_granularity = 0; 806 q->limits.discard_alignment = 0; 807 q->limits.max_discard_sectors = 0; 808 q->limits.discard_zeroes_data = 0; 809 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 810 return; 811 } 812 813 q->limits.discard_granularity = inode->i_sb->s_blocksize; 814 q->limits.discard_alignment = 0; 815 q->limits.max_discard_sectors = UINT_MAX >> 9; 816 q->limits.discard_zeroes_data = 1; 817 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 818 } 819 820 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 821 struct block_device *bdev, unsigned int arg) 822 { 823 struct file *file, *f; 824 struct inode *inode; 825 struct address_space *mapping; 826 unsigned lo_blocksize; 827 int lo_flags = 0; 828 int error; 829 loff_t size; 830 831 /* This is safe, since we have a reference from open(). */ 832 __module_get(THIS_MODULE); 833 834 error = -EBADF; 835 file = fget(arg); 836 if (!file) 837 goto out; 838 839 error = -EBUSY; 840 if (lo->lo_state != Lo_unbound) 841 goto out_putf; 842 843 /* Avoid recursion */ 844 f = file; 845 while (is_loop_device(f)) { 846 struct loop_device *l; 847 848 if (f->f_mapping->host->i_bdev == bdev) 849 goto out_putf; 850 851 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 852 if (l->lo_state == Lo_unbound) { 853 error = -EINVAL; 854 goto out_putf; 855 } 856 f = l->lo_backing_file; 857 } 858 859 mapping = file->f_mapping; 860 inode = mapping->host; 861 862 error = -EINVAL; 863 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 864 goto out_putf; 865 866 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 867 !file->f_op->write) 868 lo_flags |= LO_FLAGS_READ_ONLY; 869 870 lo_blocksize = S_ISBLK(inode->i_mode) ? 871 inode->i_bdev->bd_block_size : PAGE_SIZE; 872 873 error = -EFBIG; 874 size = get_loop_size(lo, file); 875 if ((loff_t)(sector_t)size != size) 876 goto out_putf; 877 878 error = 0; 879 880 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 881 882 lo->lo_blocksize = lo_blocksize; 883 lo->lo_device = bdev; 884 lo->lo_flags = lo_flags; 885 lo->lo_backing_file = file; 886 lo->transfer = transfer_none; 887 lo->ioctl = NULL; 888 lo->lo_sizelimit = 0; 889 lo->lo_bio_count = 0; 890 lo->old_gfp_mask = mapping_gfp_mask(mapping); 891 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 892 893 bio_list_init(&lo->lo_bio_list); 894 895 /* 896 * set queue make_request_fn, and add limits based on lower level 897 * device 898 */ 899 blk_queue_make_request(lo->lo_queue, loop_make_request); 900 lo->lo_queue->queuedata = lo; 901 902 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 903 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 904 905 set_capacity(lo->lo_disk, size); 906 bd_set_size(bdev, size << 9); 907 loop_sysfs_init(lo); 908 /* let user-space know about the new size */ 909 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 910 911 set_blocksize(bdev, lo_blocksize); 912 913 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 914 lo->lo_number); 915 if (IS_ERR(lo->lo_thread)) { 916 error = PTR_ERR(lo->lo_thread); 917 goto out_clr; 918 } 919 lo->lo_state = Lo_bound; 920 wake_up_process(lo->lo_thread); 921 if (part_shift) 922 lo->lo_flags |= LO_FLAGS_PARTSCAN; 923 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 924 ioctl_by_bdev(bdev, BLKRRPART, 0); 925 return 0; 926 927 out_clr: 928 loop_sysfs_exit(lo); 929 lo->lo_thread = NULL; 930 lo->lo_device = NULL; 931 lo->lo_backing_file = NULL; 932 lo->lo_flags = 0; 933 set_capacity(lo->lo_disk, 0); 934 invalidate_bdev(bdev); 935 bd_set_size(bdev, 0); 936 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 937 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 938 lo->lo_state = Lo_unbound; 939 out_putf: 940 fput(file); 941 out: 942 /* This is safe: open() is still holding a reference. */ 943 module_put(THIS_MODULE); 944 return error; 945 } 946 947 static int 948 loop_release_xfer(struct loop_device *lo) 949 { 950 int err = 0; 951 struct loop_func_table *xfer = lo->lo_encryption; 952 953 if (xfer) { 954 if (xfer->release) 955 err = xfer->release(lo); 956 lo->transfer = NULL; 957 lo->lo_encryption = NULL; 958 module_put(xfer->owner); 959 } 960 return err; 961 } 962 963 static int 964 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 965 const struct loop_info64 *i) 966 { 967 int err = 0; 968 969 if (xfer) { 970 struct module *owner = xfer->owner; 971 972 if (!try_module_get(owner)) 973 return -EINVAL; 974 if (xfer->init) 975 err = xfer->init(lo, i); 976 if (err) 977 module_put(owner); 978 else 979 lo->lo_encryption = xfer; 980 } 981 return err; 982 } 983 984 static int loop_clr_fd(struct loop_device *lo) 985 { 986 struct file *filp = lo->lo_backing_file; 987 gfp_t gfp = lo->old_gfp_mask; 988 struct block_device *bdev = lo->lo_device; 989 990 if (lo->lo_state != Lo_bound) 991 return -ENXIO; 992 993 /* 994 * If we've explicitly asked to tear down the loop device, 995 * and it has an elevated reference count, set it for auto-teardown when 996 * the last reference goes away. This stops $!~#$@ udev from 997 * preventing teardown because it decided that it needs to run blkid on 998 * the loopback device whenever they appear. xfstests is notorious for 999 * failing tests because blkid via udev races with a losetup 1000 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1001 * command to fail with EBUSY. 1002 */ 1003 if (lo->lo_refcnt > 1) { 1004 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1005 mutex_unlock(&lo->lo_ctl_mutex); 1006 return 0; 1007 } 1008 1009 if (filp == NULL) 1010 return -EINVAL; 1011 1012 spin_lock_irq(&lo->lo_lock); 1013 lo->lo_state = Lo_rundown; 1014 spin_unlock_irq(&lo->lo_lock); 1015 1016 kthread_stop(lo->lo_thread); 1017 1018 spin_lock_irq(&lo->lo_lock); 1019 lo->lo_backing_file = NULL; 1020 spin_unlock_irq(&lo->lo_lock); 1021 1022 loop_release_xfer(lo); 1023 lo->transfer = NULL; 1024 lo->ioctl = NULL; 1025 lo->lo_device = NULL; 1026 lo->lo_encryption = NULL; 1027 lo->lo_offset = 0; 1028 lo->lo_sizelimit = 0; 1029 lo->lo_encrypt_key_size = 0; 1030 lo->lo_thread = NULL; 1031 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1032 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1033 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1034 if (bdev) 1035 invalidate_bdev(bdev); 1036 set_capacity(lo->lo_disk, 0); 1037 loop_sysfs_exit(lo); 1038 if (bdev) { 1039 bd_set_size(bdev, 0); 1040 /* let user-space know about this change */ 1041 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1042 } 1043 mapping_set_gfp_mask(filp->f_mapping, gfp); 1044 lo->lo_state = Lo_unbound; 1045 /* This is safe: open() is still holding a reference. */ 1046 module_put(THIS_MODULE); 1047 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) 1048 ioctl_by_bdev(bdev, BLKRRPART, 0); 1049 lo->lo_flags = 0; 1050 if (!part_shift) 1051 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1052 mutex_unlock(&lo->lo_ctl_mutex); 1053 /* 1054 * Need not hold lo_ctl_mutex to fput backing file. 1055 * Calling fput holding lo_ctl_mutex triggers a circular 1056 * lock dependency possibility warning as fput can take 1057 * bd_mutex which is usually taken before lo_ctl_mutex. 1058 */ 1059 fput(filp); 1060 return 0; 1061 } 1062 1063 static int 1064 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1065 { 1066 int err; 1067 struct loop_func_table *xfer; 1068 kuid_t uid = current_uid(); 1069 1070 if (lo->lo_encrypt_key_size && 1071 !uid_eq(lo->lo_key_owner, uid) && 1072 !capable(CAP_SYS_ADMIN)) 1073 return -EPERM; 1074 if (lo->lo_state != Lo_bound) 1075 return -ENXIO; 1076 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1077 return -EINVAL; 1078 1079 err = loop_release_xfer(lo); 1080 if (err) 1081 return err; 1082 1083 if (info->lo_encrypt_type) { 1084 unsigned int type = info->lo_encrypt_type; 1085 1086 if (type >= MAX_LO_CRYPT) 1087 return -EINVAL; 1088 xfer = xfer_funcs[type]; 1089 if (xfer == NULL) 1090 return -EINVAL; 1091 } else 1092 xfer = NULL; 1093 1094 err = loop_init_xfer(lo, xfer, info); 1095 if (err) 1096 return err; 1097 1098 if (lo->lo_offset != info->lo_offset || 1099 lo->lo_sizelimit != info->lo_sizelimit) 1100 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1101 return -EFBIG; 1102 1103 loop_config_discard(lo); 1104 1105 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1106 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1107 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1108 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1109 1110 if (!xfer) 1111 xfer = &none_funcs; 1112 lo->transfer = xfer->transfer; 1113 lo->ioctl = xfer->ioctl; 1114 1115 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1116 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1117 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1118 1119 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1120 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1121 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1122 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1123 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0); 1124 } 1125 1126 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1127 lo->lo_init[0] = info->lo_init[0]; 1128 lo->lo_init[1] = info->lo_init[1]; 1129 if (info->lo_encrypt_key_size) { 1130 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1131 info->lo_encrypt_key_size); 1132 lo->lo_key_owner = uid; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int 1139 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1140 { 1141 struct file *file = lo->lo_backing_file; 1142 struct kstat stat; 1143 int error; 1144 1145 if (lo->lo_state != Lo_bound) 1146 return -ENXIO; 1147 error = vfs_getattr(&file->f_path, &stat); 1148 if (error) 1149 return error; 1150 memset(info, 0, sizeof(*info)); 1151 info->lo_number = lo->lo_number; 1152 info->lo_device = huge_encode_dev(stat.dev); 1153 info->lo_inode = stat.ino; 1154 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1155 info->lo_offset = lo->lo_offset; 1156 info->lo_sizelimit = lo->lo_sizelimit; 1157 info->lo_flags = lo->lo_flags; 1158 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1159 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1160 info->lo_encrypt_type = 1161 lo->lo_encryption ? lo->lo_encryption->number : 0; 1162 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1163 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1164 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1165 lo->lo_encrypt_key_size); 1166 } 1167 return 0; 1168 } 1169 1170 static void 1171 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1172 { 1173 memset(info64, 0, sizeof(*info64)); 1174 info64->lo_number = info->lo_number; 1175 info64->lo_device = info->lo_device; 1176 info64->lo_inode = info->lo_inode; 1177 info64->lo_rdevice = info->lo_rdevice; 1178 info64->lo_offset = info->lo_offset; 1179 info64->lo_sizelimit = 0; 1180 info64->lo_encrypt_type = info->lo_encrypt_type; 1181 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1182 info64->lo_flags = info->lo_flags; 1183 info64->lo_init[0] = info->lo_init[0]; 1184 info64->lo_init[1] = info->lo_init[1]; 1185 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1186 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1187 else 1188 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1189 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1190 } 1191 1192 static int 1193 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1194 { 1195 memset(info, 0, sizeof(*info)); 1196 info->lo_number = info64->lo_number; 1197 info->lo_device = info64->lo_device; 1198 info->lo_inode = info64->lo_inode; 1199 info->lo_rdevice = info64->lo_rdevice; 1200 info->lo_offset = info64->lo_offset; 1201 info->lo_encrypt_type = info64->lo_encrypt_type; 1202 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1203 info->lo_flags = info64->lo_flags; 1204 info->lo_init[0] = info64->lo_init[0]; 1205 info->lo_init[1] = info64->lo_init[1]; 1206 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1207 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1208 else 1209 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1210 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1211 1212 /* error in case values were truncated */ 1213 if (info->lo_device != info64->lo_device || 1214 info->lo_rdevice != info64->lo_rdevice || 1215 info->lo_inode != info64->lo_inode || 1216 info->lo_offset != info64->lo_offset) 1217 return -EOVERFLOW; 1218 1219 return 0; 1220 } 1221 1222 static int 1223 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1224 { 1225 struct loop_info info; 1226 struct loop_info64 info64; 1227 1228 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1229 return -EFAULT; 1230 loop_info64_from_old(&info, &info64); 1231 return loop_set_status(lo, &info64); 1232 } 1233 1234 static int 1235 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1236 { 1237 struct loop_info64 info64; 1238 1239 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1240 return -EFAULT; 1241 return loop_set_status(lo, &info64); 1242 } 1243 1244 static int 1245 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1246 struct loop_info info; 1247 struct loop_info64 info64; 1248 int err = 0; 1249 1250 if (!arg) 1251 err = -EINVAL; 1252 if (!err) 1253 err = loop_get_status(lo, &info64); 1254 if (!err) 1255 err = loop_info64_to_old(&info64, &info); 1256 if (!err && copy_to_user(arg, &info, sizeof(info))) 1257 err = -EFAULT; 1258 1259 return err; 1260 } 1261 1262 static int 1263 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1264 struct loop_info64 info64; 1265 int err = 0; 1266 1267 if (!arg) 1268 err = -EINVAL; 1269 if (!err) 1270 err = loop_get_status(lo, &info64); 1271 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1272 err = -EFAULT; 1273 1274 return err; 1275 } 1276 1277 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1278 { 1279 if (unlikely(lo->lo_state != Lo_bound)) 1280 return -ENXIO; 1281 1282 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1283 } 1284 1285 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1286 unsigned int cmd, unsigned long arg) 1287 { 1288 struct loop_device *lo = bdev->bd_disk->private_data; 1289 int err; 1290 1291 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1292 switch (cmd) { 1293 case LOOP_SET_FD: 1294 err = loop_set_fd(lo, mode, bdev, arg); 1295 break; 1296 case LOOP_CHANGE_FD: 1297 err = loop_change_fd(lo, bdev, arg); 1298 break; 1299 case LOOP_CLR_FD: 1300 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1301 err = loop_clr_fd(lo); 1302 if (!err) 1303 goto out_unlocked; 1304 break; 1305 case LOOP_SET_STATUS: 1306 err = -EPERM; 1307 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1308 err = loop_set_status_old(lo, 1309 (struct loop_info __user *)arg); 1310 break; 1311 case LOOP_GET_STATUS: 1312 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1313 break; 1314 case LOOP_SET_STATUS64: 1315 err = -EPERM; 1316 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1317 err = loop_set_status64(lo, 1318 (struct loop_info64 __user *) arg); 1319 break; 1320 case LOOP_GET_STATUS64: 1321 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1322 break; 1323 case LOOP_SET_CAPACITY: 1324 err = -EPERM; 1325 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1326 err = loop_set_capacity(lo, bdev); 1327 break; 1328 default: 1329 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1330 } 1331 mutex_unlock(&lo->lo_ctl_mutex); 1332 1333 out_unlocked: 1334 return err; 1335 } 1336 1337 #ifdef CONFIG_COMPAT 1338 struct compat_loop_info { 1339 compat_int_t lo_number; /* ioctl r/o */ 1340 compat_dev_t lo_device; /* ioctl r/o */ 1341 compat_ulong_t lo_inode; /* ioctl r/o */ 1342 compat_dev_t lo_rdevice; /* ioctl r/o */ 1343 compat_int_t lo_offset; 1344 compat_int_t lo_encrypt_type; 1345 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1346 compat_int_t lo_flags; /* ioctl r/o */ 1347 char lo_name[LO_NAME_SIZE]; 1348 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1349 compat_ulong_t lo_init[2]; 1350 char reserved[4]; 1351 }; 1352 1353 /* 1354 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1355 * - noinlined to reduce stack space usage in main part of driver 1356 */ 1357 static noinline int 1358 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1359 struct loop_info64 *info64) 1360 { 1361 struct compat_loop_info info; 1362 1363 if (copy_from_user(&info, arg, sizeof(info))) 1364 return -EFAULT; 1365 1366 memset(info64, 0, sizeof(*info64)); 1367 info64->lo_number = info.lo_number; 1368 info64->lo_device = info.lo_device; 1369 info64->lo_inode = info.lo_inode; 1370 info64->lo_rdevice = info.lo_rdevice; 1371 info64->lo_offset = info.lo_offset; 1372 info64->lo_sizelimit = 0; 1373 info64->lo_encrypt_type = info.lo_encrypt_type; 1374 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1375 info64->lo_flags = info.lo_flags; 1376 info64->lo_init[0] = info.lo_init[0]; 1377 info64->lo_init[1] = info.lo_init[1]; 1378 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1379 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1380 else 1381 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1382 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1383 return 0; 1384 } 1385 1386 /* 1387 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1388 * - noinlined to reduce stack space usage in main part of driver 1389 */ 1390 static noinline int 1391 loop_info64_to_compat(const struct loop_info64 *info64, 1392 struct compat_loop_info __user *arg) 1393 { 1394 struct compat_loop_info info; 1395 1396 memset(&info, 0, sizeof(info)); 1397 info.lo_number = info64->lo_number; 1398 info.lo_device = info64->lo_device; 1399 info.lo_inode = info64->lo_inode; 1400 info.lo_rdevice = info64->lo_rdevice; 1401 info.lo_offset = info64->lo_offset; 1402 info.lo_encrypt_type = info64->lo_encrypt_type; 1403 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1404 info.lo_flags = info64->lo_flags; 1405 info.lo_init[0] = info64->lo_init[0]; 1406 info.lo_init[1] = info64->lo_init[1]; 1407 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1408 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1409 else 1410 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1411 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1412 1413 /* error in case values were truncated */ 1414 if (info.lo_device != info64->lo_device || 1415 info.lo_rdevice != info64->lo_rdevice || 1416 info.lo_inode != info64->lo_inode || 1417 info.lo_offset != info64->lo_offset || 1418 info.lo_init[0] != info64->lo_init[0] || 1419 info.lo_init[1] != info64->lo_init[1]) 1420 return -EOVERFLOW; 1421 1422 if (copy_to_user(arg, &info, sizeof(info))) 1423 return -EFAULT; 1424 return 0; 1425 } 1426 1427 static int 1428 loop_set_status_compat(struct loop_device *lo, 1429 const struct compat_loop_info __user *arg) 1430 { 1431 struct loop_info64 info64; 1432 int ret; 1433 1434 ret = loop_info64_from_compat(arg, &info64); 1435 if (ret < 0) 1436 return ret; 1437 return loop_set_status(lo, &info64); 1438 } 1439 1440 static int 1441 loop_get_status_compat(struct loop_device *lo, 1442 struct compat_loop_info __user *arg) 1443 { 1444 struct loop_info64 info64; 1445 int err = 0; 1446 1447 if (!arg) 1448 err = -EINVAL; 1449 if (!err) 1450 err = loop_get_status(lo, &info64); 1451 if (!err) 1452 err = loop_info64_to_compat(&info64, arg); 1453 return err; 1454 } 1455 1456 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1457 unsigned int cmd, unsigned long arg) 1458 { 1459 struct loop_device *lo = bdev->bd_disk->private_data; 1460 int err; 1461 1462 switch(cmd) { 1463 case LOOP_SET_STATUS: 1464 mutex_lock(&lo->lo_ctl_mutex); 1465 err = loop_set_status_compat( 1466 lo, (const struct compat_loop_info __user *) arg); 1467 mutex_unlock(&lo->lo_ctl_mutex); 1468 break; 1469 case LOOP_GET_STATUS: 1470 mutex_lock(&lo->lo_ctl_mutex); 1471 err = loop_get_status_compat( 1472 lo, (struct compat_loop_info __user *) arg); 1473 mutex_unlock(&lo->lo_ctl_mutex); 1474 break; 1475 case LOOP_SET_CAPACITY: 1476 case LOOP_CLR_FD: 1477 case LOOP_GET_STATUS64: 1478 case LOOP_SET_STATUS64: 1479 arg = (unsigned long) compat_ptr(arg); 1480 case LOOP_SET_FD: 1481 case LOOP_CHANGE_FD: 1482 err = lo_ioctl(bdev, mode, cmd, arg); 1483 break; 1484 default: 1485 err = -ENOIOCTLCMD; 1486 break; 1487 } 1488 return err; 1489 } 1490 #endif 1491 1492 static int lo_open(struct block_device *bdev, fmode_t mode) 1493 { 1494 struct loop_device *lo; 1495 int err = 0; 1496 1497 mutex_lock(&loop_index_mutex); 1498 lo = bdev->bd_disk->private_data; 1499 if (!lo) { 1500 err = -ENXIO; 1501 goto out; 1502 } 1503 1504 mutex_lock(&lo->lo_ctl_mutex); 1505 lo->lo_refcnt++; 1506 mutex_unlock(&lo->lo_ctl_mutex); 1507 out: 1508 mutex_unlock(&loop_index_mutex); 1509 return err; 1510 } 1511 1512 static int lo_release(struct gendisk *disk, fmode_t mode) 1513 { 1514 struct loop_device *lo = disk->private_data; 1515 int err; 1516 1517 mutex_lock(&lo->lo_ctl_mutex); 1518 1519 if (--lo->lo_refcnt) 1520 goto out; 1521 1522 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1523 /* 1524 * In autoclear mode, stop the loop thread 1525 * and remove configuration after last close. 1526 */ 1527 err = loop_clr_fd(lo); 1528 if (!err) 1529 goto out_unlocked; 1530 } else { 1531 /* 1532 * Otherwise keep thread (if running) and config, 1533 * but flush possible ongoing bios in thread. 1534 */ 1535 loop_flush(lo); 1536 } 1537 1538 out: 1539 mutex_unlock(&lo->lo_ctl_mutex); 1540 out_unlocked: 1541 return 0; 1542 } 1543 1544 static const struct block_device_operations lo_fops = { 1545 .owner = THIS_MODULE, 1546 .open = lo_open, 1547 .release = lo_release, 1548 .ioctl = lo_ioctl, 1549 #ifdef CONFIG_COMPAT 1550 .compat_ioctl = lo_compat_ioctl, 1551 #endif 1552 }; 1553 1554 /* 1555 * And now the modules code and kernel interface. 1556 */ 1557 static int max_loop; 1558 module_param(max_loop, int, S_IRUGO); 1559 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1560 module_param(max_part, int, S_IRUGO); 1561 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1562 MODULE_LICENSE("GPL"); 1563 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1564 1565 int loop_register_transfer(struct loop_func_table *funcs) 1566 { 1567 unsigned int n = funcs->number; 1568 1569 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1570 return -EINVAL; 1571 xfer_funcs[n] = funcs; 1572 return 0; 1573 } 1574 1575 static int unregister_transfer_cb(int id, void *ptr, void *data) 1576 { 1577 struct loop_device *lo = ptr; 1578 struct loop_func_table *xfer = data; 1579 1580 mutex_lock(&lo->lo_ctl_mutex); 1581 if (lo->lo_encryption == xfer) 1582 loop_release_xfer(lo); 1583 mutex_unlock(&lo->lo_ctl_mutex); 1584 return 0; 1585 } 1586 1587 int loop_unregister_transfer(int number) 1588 { 1589 unsigned int n = number; 1590 struct loop_func_table *xfer; 1591 1592 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1593 return -EINVAL; 1594 1595 xfer_funcs[n] = NULL; 1596 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1597 return 0; 1598 } 1599 1600 EXPORT_SYMBOL(loop_register_transfer); 1601 EXPORT_SYMBOL(loop_unregister_transfer); 1602 1603 static int loop_add(struct loop_device **l, int i) 1604 { 1605 struct loop_device *lo; 1606 struct gendisk *disk; 1607 int err; 1608 1609 err = -ENOMEM; 1610 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1611 if (!lo) 1612 goto out; 1613 1614 /* allocate id, if @id >= 0, we're requesting that specific id */ 1615 if (i >= 0) { 1616 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1617 if (err == -ENOSPC) 1618 err = -EEXIST; 1619 } else { 1620 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1621 } 1622 if (err < 0) 1623 goto out_free_dev; 1624 i = err; 1625 1626 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1627 if (!lo->lo_queue) 1628 goto out_free_dev; 1629 1630 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1631 if (!disk) 1632 goto out_free_queue; 1633 1634 /* 1635 * Disable partition scanning by default. The in-kernel partition 1636 * scanning can be requested individually per-device during its 1637 * setup. Userspace can always add and remove partitions from all 1638 * devices. The needed partition minors are allocated from the 1639 * extended minor space, the main loop device numbers will continue 1640 * to match the loop minors, regardless of the number of partitions 1641 * used. 1642 * 1643 * If max_part is given, partition scanning is globally enabled for 1644 * all loop devices. The minors for the main loop devices will be 1645 * multiples of max_part. 1646 * 1647 * Note: Global-for-all-devices, set-only-at-init, read-only module 1648 * parameteters like 'max_loop' and 'max_part' make things needlessly 1649 * complicated, are too static, inflexible and may surprise 1650 * userspace tools. Parameters like this in general should be avoided. 1651 */ 1652 if (!part_shift) 1653 disk->flags |= GENHD_FL_NO_PART_SCAN; 1654 disk->flags |= GENHD_FL_EXT_DEVT; 1655 mutex_init(&lo->lo_ctl_mutex); 1656 lo->lo_number = i; 1657 lo->lo_thread = NULL; 1658 init_waitqueue_head(&lo->lo_event); 1659 init_waitqueue_head(&lo->lo_req_wait); 1660 spin_lock_init(&lo->lo_lock); 1661 disk->major = LOOP_MAJOR; 1662 disk->first_minor = i << part_shift; 1663 disk->fops = &lo_fops; 1664 disk->private_data = lo; 1665 disk->queue = lo->lo_queue; 1666 sprintf(disk->disk_name, "loop%d", i); 1667 add_disk(disk); 1668 *l = lo; 1669 return lo->lo_number; 1670 1671 out_free_queue: 1672 blk_cleanup_queue(lo->lo_queue); 1673 out_free_dev: 1674 kfree(lo); 1675 out: 1676 return err; 1677 } 1678 1679 static void loop_remove(struct loop_device *lo) 1680 { 1681 del_gendisk(lo->lo_disk); 1682 blk_cleanup_queue(lo->lo_queue); 1683 put_disk(lo->lo_disk); 1684 kfree(lo); 1685 } 1686 1687 static int find_free_cb(int id, void *ptr, void *data) 1688 { 1689 struct loop_device *lo = ptr; 1690 struct loop_device **l = data; 1691 1692 if (lo->lo_state == Lo_unbound) { 1693 *l = lo; 1694 return 1; 1695 } 1696 return 0; 1697 } 1698 1699 static int loop_lookup(struct loop_device **l, int i) 1700 { 1701 struct loop_device *lo; 1702 int ret = -ENODEV; 1703 1704 if (i < 0) { 1705 int err; 1706 1707 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1708 if (err == 1) { 1709 *l = lo; 1710 ret = lo->lo_number; 1711 } 1712 goto out; 1713 } 1714 1715 /* lookup and return a specific i */ 1716 lo = idr_find(&loop_index_idr, i); 1717 if (lo) { 1718 *l = lo; 1719 ret = lo->lo_number; 1720 } 1721 out: 1722 return ret; 1723 } 1724 1725 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1726 { 1727 struct loop_device *lo; 1728 struct kobject *kobj; 1729 int err; 1730 1731 mutex_lock(&loop_index_mutex); 1732 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1733 if (err < 0) 1734 err = loop_add(&lo, MINOR(dev) >> part_shift); 1735 if (err < 0) 1736 kobj = ERR_PTR(err); 1737 else 1738 kobj = get_disk(lo->lo_disk); 1739 mutex_unlock(&loop_index_mutex); 1740 1741 *part = 0; 1742 return kobj; 1743 } 1744 1745 static long loop_control_ioctl(struct file *file, unsigned int cmd, 1746 unsigned long parm) 1747 { 1748 struct loop_device *lo; 1749 int ret = -ENOSYS; 1750 1751 mutex_lock(&loop_index_mutex); 1752 switch (cmd) { 1753 case LOOP_CTL_ADD: 1754 ret = loop_lookup(&lo, parm); 1755 if (ret >= 0) { 1756 ret = -EEXIST; 1757 break; 1758 } 1759 ret = loop_add(&lo, parm); 1760 break; 1761 case LOOP_CTL_REMOVE: 1762 ret = loop_lookup(&lo, parm); 1763 if (ret < 0) 1764 break; 1765 mutex_lock(&lo->lo_ctl_mutex); 1766 if (lo->lo_state != Lo_unbound) { 1767 ret = -EBUSY; 1768 mutex_unlock(&lo->lo_ctl_mutex); 1769 break; 1770 } 1771 if (lo->lo_refcnt > 0) { 1772 ret = -EBUSY; 1773 mutex_unlock(&lo->lo_ctl_mutex); 1774 break; 1775 } 1776 lo->lo_disk->private_data = NULL; 1777 mutex_unlock(&lo->lo_ctl_mutex); 1778 idr_remove(&loop_index_idr, lo->lo_number); 1779 loop_remove(lo); 1780 break; 1781 case LOOP_CTL_GET_FREE: 1782 ret = loop_lookup(&lo, -1); 1783 if (ret >= 0) 1784 break; 1785 ret = loop_add(&lo, -1); 1786 } 1787 mutex_unlock(&loop_index_mutex); 1788 1789 return ret; 1790 } 1791 1792 static const struct file_operations loop_ctl_fops = { 1793 .open = nonseekable_open, 1794 .unlocked_ioctl = loop_control_ioctl, 1795 .compat_ioctl = loop_control_ioctl, 1796 .owner = THIS_MODULE, 1797 .llseek = noop_llseek, 1798 }; 1799 1800 static struct miscdevice loop_misc = { 1801 .minor = LOOP_CTRL_MINOR, 1802 .name = "loop-control", 1803 .fops = &loop_ctl_fops, 1804 }; 1805 1806 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1807 MODULE_ALIAS("devname:loop-control"); 1808 1809 static int __init loop_init(void) 1810 { 1811 int i, nr; 1812 unsigned long range; 1813 struct loop_device *lo; 1814 int err; 1815 1816 err = misc_register(&loop_misc); 1817 if (err < 0) 1818 return err; 1819 1820 part_shift = 0; 1821 if (max_part > 0) { 1822 part_shift = fls(max_part); 1823 1824 /* 1825 * Adjust max_part according to part_shift as it is exported 1826 * to user space so that user can decide correct minor number 1827 * if [s]he want to create more devices. 1828 * 1829 * Note that -1 is required because partition 0 is reserved 1830 * for the whole disk. 1831 */ 1832 max_part = (1UL << part_shift) - 1; 1833 } 1834 1835 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1836 err = -EINVAL; 1837 goto misc_out; 1838 } 1839 1840 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1841 err = -EINVAL; 1842 goto misc_out; 1843 } 1844 1845 /* 1846 * If max_loop is specified, create that many devices upfront. 1847 * This also becomes a hard limit. If max_loop is not specified, 1848 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1849 * init time. Loop devices can be requested on-demand with the 1850 * /dev/loop-control interface, or be instantiated by accessing 1851 * a 'dead' device node. 1852 */ 1853 if (max_loop) { 1854 nr = max_loop; 1855 range = max_loop << part_shift; 1856 } else { 1857 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1858 range = 1UL << MINORBITS; 1859 } 1860 1861 if (register_blkdev(LOOP_MAJOR, "loop")) { 1862 err = -EIO; 1863 goto misc_out; 1864 } 1865 1866 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1867 THIS_MODULE, loop_probe, NULL, NULL); 1868 1869 /* pre-create number of devices given by config or max_loop */ 1870 mutex_lock(&loop_index_mutex); 1871 for (i = 0; i < nr; i++) 1872 loop_add(&lo, i); 1873 mutex_unlock(&loop_index_mutex); 1874 1875 printk(KERN_INFO "loop: module loaded\n"); 1876 return 0; 1877 1878 misc_out: 1879 misc_deregister(&loop_misc); 1880 return err; 1881 } 1882 1883 static int loop_exit_cb(int id, void *ptr, void *data) 1884 { 1885 struct loop_device *lo = ptr; 1886 1887 loop_remove(lo); 1888 return 0; 1889 } 1890 1891 static void __exit loop_exit(void) 1892 { 1893 unsigned long range; 1894 1895 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 1896 1897 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 1898 idr_destroy(&loop_index_idr); 1899 1900 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1901 unregister_blkdev(LOOP_MAJOR, "loop"); 1902 1903 misc_deregister(&loop_misc); 1904 } 1905 1906 module_init(loop_init); 1907 module_exit(loop_exit); 1908 1909 #ifndef MODULE 1910 static int __init max_loop_setup(char *str) 1911 { 1912 max_loop = simple_strtol(str, NULL, 0); 1913 return 1; 1914 } 1915 1916 __setup("max_loop=", max_loop_setup); 1917 #endif 1918