xref: /linux/drivers/block/loop.c (revision c3d6b628395fe6ec3442a83ddf02334c54867d43)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
79 
80 #include <asm/uaccess.h>
81 
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(loop_buf);
105 	kunmap_atomic(raw_buf);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(loop_buf);
134 	kunmap_atomic(raw_buf);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164 {
165 	loff_t loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	loopsize = i_size_read(file->f_mapping->host);
169 	if (offset > 0)
170 		loopsize -= offset;
171 	/* offset is beyond i_size, weird but possible */
172 	if (loopsize < 0)
173 		return 0;
174 
175 	if (sizelimit > 0 && sizelimit < loopsize)
176 		loopsize = sizelimit;
177 	/*
178 	 * Unfortunately, if we want to do I/O on the device,
179 	 * the number of 512-byte sectors has to fit into a sector_t.
180 	 */
181 	return loopsize >> 9;
182 }
183 
184 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
185 {
186 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
187 }
188 
189 static int
190 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
191 {
192 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
193 	sector_t x = (sector_t)size;
194 	struct block_device *bdev = lo->lo_device;
195 
196 	if (unlikely((loff_t)x != size))
197 		return -EFBIG;
198 	if (lo->lo_offset != offset)
199 		lo->lo_offset = offset;
200 	if (lo->lo_sizelimit != sizelimit)
201 		lo->lo_sizelimit = sizelimit;
202 	set_capacity(lo->lo_disk, x);
203 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
204 	/* let user-space know about the new size */
205 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
206 	return 0;
207 }
208 
209 static inline int
210 lo_do_transfer(struct loop_device *lo, int cmd,
211 	       struct page *rpage, unsigned roffs,
212 	       struct page *lpage, unsigned loffs,
213 	       int size, sector_t rblock)
214 {
215 	if (unlikely(!lo->transfer))
216 		return 0;
217 
218 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
219 }
220 
221 /**
222  * __do_lo_send_write - helper for writing data to a loop device
223  *
224  * This helper just factors out common code between do_lo_send_direct_write()
225  * and do_lo_send_write().
226  */
227 static int __do_lo_send_write(struct file *file,
228 		u8 *buf, const int len, loff_t pos)
229 {
230 	ssize_t bw;
231 	mm_segment_t old_fs = get_fs();
232 
233 	set_fs(get_ds());
234 	bw = file->f_op->write(file, buf, len, &pos);
235 	set_fs(old_fs);
236 	if (likely(bw == len))
237 		return 0;
238 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
239 			(unsigned long long)pos, len);
240 	if (bw >= 0)
241 		bw = -EIO;
242 	return bw;
243 }
244 
245 /**
246  * do_lo_send_direct_write - helper for writing data to a loop device
247  *
248  * This is the fast, non-transforming version that does not need double
249  * buffering.
250  */
251 static int do_lo_send_direct_write(struct loop_device *lo,
252 		struct bio_vec *bvec, loff_t pos, struct page *page)
253 {
254 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
255 			kmap(bvec->bv_page) + bvec->bv_offset,
256 			bvec->bv_len, pos);
257 	kunmap(bvec->bv_page);
258 	cond_resched();
259 	return bw;
260 }
261 
262 /**
263  * do_lo_send_write - helper for writing data to a loop device
264  *
265  * This is the slow, transforming version that needs to double buffer the
266  * data as it cannot do the transformations in place without having direct
267  * access to the destination pages of the backing file.
268  */
269 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
270 		loff_t pos, struct page *page)
271 {
272 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
273 			bvec->bv_offset, bvec->bv_len, pos >> 9);
274 	if (likely(!ret))
275 		return __do_lo_send_write(lo->lo_backing_file,
276 				page_address(page), bvec->bv_len,
277 				pos);
278 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
279 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
280 	if (ret > 0)
281 		ret = -EIO;
282 	return ret;
283 }
284 
285 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
286 {
287 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
288 			struct page *page);
289 	struct bio_vec *bvec;
290 	struct page *page = NULL;
291 	int i, ret = 0;
292 
293 	if (lo->transfer != transfer_none) {
294 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
295 		if (unlikely(!page))
296 			goto fail;
297 		kmap(page);
298 		do_lo_send = do_lo_send_write;
299 	} else {
300 		do_lo_send = do_lo_send_direct_write;
301 	}
302 
303 	bio_for_each_segment(bvec, bio, i) {
304 		ret = do_lo_send(lo, bvec, pos, page);
305 		if (ret < 0)
306 			break;
307 		pos += bvec->bv_len;
308 	}
309 	if (page) {
310 		kunmap(page);
311 		__free_page(page);
312 	}
313 out:
314 	return ret;
315 fail:
316 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
317 	ret = -ENOMEM;
318 	goto out;
319 }
320 
321 struct lo_read_data {
322 	struct loop_device *lo;
323 	struct page *page;
324 	unsigned offset;
325 	int bsize;
326 };
327 
328 static int
329 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
330 		struct splice_desc *sd)
331 {
332 	struct lo_read_data *p = sd->u.data;
333 	struct loop_device *lo = p->lo;
334 	struct page *page = buf->page;
335 	sector_t IV;
336 	int size;
337 
338 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
339 							(buf->offset >> 9);
340 	size = sd->len;
341 	if (size > p->bsize)
342 		size = p->bsize;
343 
344 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
345 		printk(KERN_ERR "loop: transfer error block %ld\n",
346 		       page->index);
347 		size = -EINVAL;
348 	}
349 
350 	flush_dcache_page(p->page);
351 
352 	if (size > 0)
353 		p->offset += size;
354 
355 	return size;
356 }
357 
358 static int
359 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
360 {
361 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
362 }
363 
364 static ssize_t
365 do_lo_receive(struct loop_device *lo,
366 	      struct bio_vec *bvec, int bsize, loff_t pos)
367 {
368 	struct lo_read_data cookie;
369 	struct splice_desc sd;
370 	struct file *file;
371 	ssize_t retval;
372 
373 	cookie.lo = lo;
374 	cookie.page = bvec->bv_page;
375 	cookie.offset = bvec->bv_offset;
376 	cookie.bsize = bsize;
377 
378 	sd.len = 0;
379 	sd.total_len = bvec->bv_len;
380 	sd.flags = 0;
381 	sd.pos = pos;
382 	sd.u.data = &cookie;
383 
384 	file = lo->lo_backing_file;
385 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
386 
387 	return retval;
388 }
389 
390 static int
391 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
392 {
393 	struct bio_vec *bvec;
394 	ssize_t s;
395 	int i;
396 
397 	bio_for_each_segment(bvec, bio, i) {
398 		s = do_lo_receive(lo, bvec, bsize, pos);
399 		if (s < 0)
400 			return s;
401 
402 		if (s != bvec->bv_len) {
403 			zero_fill_bio(bio);
404 			break;
405 		}
406 		pos += bvec->bv_len;
407 	}
408 	return 0;
409 }
410 
411 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
412 {
413 	loff_t pos;
414 	int ret;
415 
416 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
417 
418 	if (bio_rw(bio) == WRITE) {
419 		struct file *file = lo->lo_backing_file;
420 
421 		if (bio->bi_rw & REQ_FLUSH) {
422 			ret = vfs_fsync(file, 0);
423 			if (unlikely(ret && ret != -EINVAL)) {
424 				ret = -EIO;
425 				goto out;
426 			}
427 		}
428 
429 		/*
430 		 * We use punch hole to reclaim the free space used by the
431 		 * image a.k.a. discard. However we do not support discard if
432 		 * encryption is enabled, because it may give an attacker
433 		 * useful information.
434 		 */
435 		if (bio->bi_rw & REQ_DISCARD) {
436 			struct file *file = lo->lo_backing_file;
437 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
438 
439 			if ((!file->f_op->fallocate) ||
440 			    lo->lo_encrypt_key_size) {
441 				ret = -EOPNOTSUPP;
442 				goto out;
443 			}
444 			ret = file->f_op->fallocate(file, mode, pos,
445 						    bio->bi_size);
446 			if (unlikely(ret && ret != -EINVAL &&
447 				     ret != -EOPNOTSUPP))
448 				ret = -EIO;
449 			goto out;
450 		}
451 
452 		ret = lo_send(lo, bio, pos);
453 
454 		if ((bio->bi_rw & REQ_FUA) && !ret) {
455 			ret = vfs_fsync(file, 0);
456 			if (unlikely(ret && ret != -EINVAL))
457 				ret = -EIO;
458 		}
459 	} else
460 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
461 
462 out:
463 	return ret;
464 }
465 
466 /*
467  * Add bio to back of pending list
468  */
469 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
470 {
471 	lo->lo_bio_count++;
472 	bio_list_add(&lo->lo_bio_list, bio);
473 }
474 
475 /*
476  * Grab first pending buffer
477  */
478 static struct bio *loop_get_bio(struct loop_device *lo)
479 {
480 	lo->lo_bio_count--;
481 	return bio_list_pop(&lo->lo_bio_list);
482 }
483 
484 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
485 {
486 	struct loop_device *lo = q->queuedata;
487 	int rw = bio_rw(old_bio);
488 
489 	if (rw == READA)
490 		rw = READ;
491 
492 	BUG_ON(!lo || (rw != READ && rw != WRITE));
493 
494 	spin_lock_irq(&lo->lo_lock);
495 	if (lo->lo_state != Lo_bound)
496 		goto out;
497 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
498 		goto out;
499 	if (lo->lo_bio_count >= q->nr_congestion_on)
500 		wait_event_lock_irq(lo->lo_req_wait,
501 				    lo->lo_bio_count < q->nr_congestion_off,
502 				    lo->lo_lock);
503 	loop_add_bio(lo, old_bio);
504 	wake_up(&lo->lo_event);
505 	spin_unlock_irq(&lo->lo_lock);
506 	return;
507 
508 out:
509 	spin_unlock_irq(&lo->lo_lock);
510 	bio_io_error(old_bio);
511 }
512 
513 struct switch_request {
514 	struct file *file;
515 	struct completion wait;
516 };
517 
518 static void do_loop_switch(struct loop_device *, struct switch_request *);
519 
520 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
521 {
522 	if (unlikely(!bio->bi_bdev)) {
523 		do_loop_switch(lo, bio->bi_private);
524 		bio_put(bio);
525 	} else {
526 		int ret = do_bio_filebacked(lo, bio);
527 		bio_endio(bio, ret);
528 	}
529 }
530 
531 /*
532  * worker thread that handles reads/writes to file backed loop devices,
533  * to avoid blocking in our make_request_fn. it also does loop decrypting
534  * on reads for block backed loop, as that is too heavy to do from
535  * b_end_io context where irqs may be disabled.
536  *
537  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
538  * calling kthread_stop().  Therefore once kthread_should_stop() is
539  * true, make_request will not place any more requests.  Therefore
540  * once kthread_should_stop() is true and lo_bio is NULL, we are
541  * done with the loop.
542  */
543 static int loop_thread(void *data)
544 {
545 	struct loop_device *lo = data;
546 	struct bio *bio;
547 
548 	set_user_nice(current, -20);
549 
550 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
551 
552 		wait_event_interruptible(lo->lo_event,
553 				!bio_list_empty(&lo->lo_bio_list) ||
554 				kthread_should_stop());
555 
556 		if (bio_list_empty(&lo->lo_bio_list))
557 			continue;
558 		spin_lock_irq(&lo->lo_lock);
559 		bio = loop_get_bio(lo);
560 		if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off)
561 			wake_up(&lo->lo_req_wait);
562 		spin_unlock_irq(&lo->lo_lock);
563 
564 		BUG_ON(!bio);
565 		loop_handle_bio(lo, bio);
566 	}
567 
568 	return 0;
569 }
570 
571 /*
572  * loop_switch performs the hard work of switching a backing store.
573  * First it needs to flush existing IO, it does this by sending a magic
574  * BIO down the pipe. The completion of this BIO does the actual switch.
575  */
576 static int loop_switch(struct loop_device *lo, struct file *file)
577 {
578 	struct switch_request w;
579 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
580 	if (!bio)
581 		return -ENOMEM;
582 	init_completion(&w.wait);
583 	w.file = file;
584 	bio->bi_private = &w;
585 	bio->bi_bdev = NULL;
586 	loop_make_request(lo->lo_queue, bio);
587 	wait_for_completion(&w.wait);
588 	return 0;
589 }
590 
591 /*
592  * Helper to flush the IOs in loop, but keeping loop thread running
593  */
594 static int loop_flush(struct loop_device *lo)
595 {
596 	/* loop not yet configured, no running thread, nothing to flush */
597 	if (!lo->lo_thread)
598 		return 0;
599 
600 	return loop_switch(lo, NULL);
601 }
602 
603 /*
604  * Do the actual switch; called from the BIO completion routine
605  */
606 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
607 {
608 	struct file *file = p->file;
609 	struct file *old_file = lo->lo_backing_file;
610 	struct address_space *mapping;
611 
612 	/* if no new file, only flush of queued bios requested */
613 	if (!file)
614 		goto out;
615 
616 	mapping = file->f_mapping;
617 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
618 	lo->lo_backing_file = file;
619 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
620 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
621 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
622 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
623 out:
624 	complete(&p->wait);
625 }
626 
627 
628 /*
629  * loop_change_fd switched the backing store of a loopback device to
630  * a new file. This is useful for operating system installers to free up
631  * the original file and in High Availability environments to switch to
632  * an alternative location for the content in case of server meltdown.
633  * This can only work if the loop device is used read-only, and if the
634  * new backing store is the same size and type as the old backing store.
635  */
636 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
637 			  unsigned int arg)
638 {
639 	struct file	*file, *old_file;
640 	struct inode	*inode;
641 	int		error;
642 
643 	error = -ENXIO;
644 	if (lo->lo_state != Lo_bound)
645 		goto out;
646 
647 	/* the loop device has to be read-only */
648 	error = -EINVAL;
649 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
650 		goto out;
651 
652 	error = -EBADF;
653 	file = fget(arg);
654 	if (!file)
655 		goto out;
656 
657 	inode = file->f_mapping->host;
658 	old_file = lo->lo_backing_file;
659 
660 	error = -EINVAL;
661 
662 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
663 		goto out_putf;
664 
665 	/* size of the new backing store needs to be the same */
666 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
667 		goto out_putf;
668 
669 	/* and ... switch */
670 	error = loop_switch(lo, file);
671 	if (error)
672 		goto out_putf;
673 
674 	fput(old_file);
675 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
676 		ioctl_by_bdev(bdev, BLKRRPART, 0);
677 	return 0;
678 
679  out_putf:
680 	fput(file);
681  out:
682 	return error;
683 }
684 
685 static inline int is_loop_device(struct file *file)
686 {
687 	struct inode *i = file->f_mapping->host;
688 
689 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
690 }
691 
692 /* loop sysfs attributes */
693 
694 static ssize_t loop_attr_show(struct device *dev, char *page,
695 			      ssize_t (*callback)(struct loop_device *, char *))
696 {
697 	struct gendisk *disk = dev_to_disk(dev);
698 	struct loop_device *lo = disk->private_data;
699 
700 	return callback(lo, page);
701 }
702 
703 #define LOOP_ATTR_RO(_name)						\
704 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
705 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
706 				struct device_attribute *attr, char *b)	\
707 {									\
708 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
709 }									\
710 static struct device_attribute loop_attr_##_name =			\
711 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
712 
713 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
714 {
715 	ssize_t ret;
716 	char *p = NULL;
717 
718 	spin_lock_irq(&lo->lo_lock);
719 	if (lo->lo_backing_file)
720 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
721 	spin_unlock_irq(&lo->lo_lock);
722 
723 	if (IS_ERR_OR_NULL(p))
724 		ret = PTR_ERR(p);
725 	else {
726 		ret = strlen(p);
727 		memmove(buf, p, ret);
728 		buf[ret++] = '\n';
729 		buf[ret] = 0;
730 	}
731 
732 	return ret;
733 }
734 
735 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
736 {
737 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
738 }
739 
740 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
741 {
742 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
743 }
744 
745 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
746 {
747 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
748 
749 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
750 }
751 
752 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
753 {
754 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
755 
756 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
757 }
758 
759 LOOP_ATTR_RO(backing_file);
760 LOOP_ATTR_RO(offset);
761 LOOP_ATTR_RO(sizelimit);
762 LOOP_ATTR_RO(autoclear);
763 LOOP_ATTR_RO(partscan);
764 
765 static struct attribute *loop_attrs[] = {
766 	&loop_attr_backing_file.attr,
767 	&loop_attr_offset.attr,
768 	&loop_attr_sizelimit.attr,
769 	&loop_attr_autoclear.attr,
770 	&loop_attr_partscan.attr,
771 	NULL,
772 };
773 
774 static struct attribute_group loop_attribute_group = {
775 	.name = "loop",
776 	.attrs= loop_attrs,
777 };
778 
779 static int loop_sysfs_init(struct loop_device *lo)
780 {
781 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
782 				  &loop_attribute_group);
783 }
784 
785 static void loop_sysfs_exit(struct loop_device *lo)
786 {
787 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
788 			   &loop_attribute_group);
789 }
790 
791 static void loop_config_discard(struct loop_device *lo)
792 {
793 	struct file *file = lo->lo_backing_file;
794 	struct inode *inode = file->f_mapping->host;
795 	struct request_queue *q = lo->lo_queue;
796 
797 	/*
798 	 * We use punch hole to reclaim the free space used by the
799 	 * image a.k.a. discard. However we do support discard if
800 	 * encryption is enabled, because it may give an attacker
801 	 * useful information.
802 	 */
803 	if ((!file->f_op->fallocate) ||
804 	    lo->lo_encrypt_key_size) {
805 		q->limits.discard_granularity = 0;
806 		q->limits.discard_alignment = 0;
807 		q->limits.max_discard_sectors = 0;
808 		q->limits.discard_zeroes_data = 0;
809 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
810 		return;
811 	}
812 
813 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
814 	q->limits.discard_alignment = 0;
815 	q->limits.max_discard_sectors = UINT_MAX >> 9;
816 	q->limits.discard_zeroes_data = 1;
817 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
818 }
819 
820 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
821 		       struct block_device *bdev, unsigned int arg)
822 {
823 	struct file	*file, *f;
824 	struct inode	*inode;
825 	struct address_space *mapping;
826 	unsigned lo_blocksize;
827 	int		lo_flags = 0;
828 	int		error;
829 	loff_t		size;
830 
831 	/* This is safe, since we have a reference from open(). */
832 	__module_get(THIS_MODULE);
833 
834 	error = -EBADF;
835 	file = fget(arg);
836 	if (!file)
837 		goto out;
838 
839 	error = -EBUSY;
840 	if (lo->lo_state != Lo_unbound)
841 		goto out_putf;
842 
843 	/* Avoid recursion */
844 	f = file;
845 	while (is_loop_device(f)) {
846 		struct loop_device *l;
847 
848 		if (f->f_mapping->host->i_bdev == bdev)
849 			goto out_putf;
850 
851 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
852 		if (l->lo_state == Lo_unbound) {
853 			error = -EINVAL;
854 			goto out_putf;
855 		}
856 		f = l->lo_backing_file;
857 	}
858 
859 	mapping = file->f_mapping;
860 	inode = mapping->host;
861 
862 	error = -EINVAL;
863 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
864 		goto out_putf;
865 
866 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
867 	    !file->f_op->write)
868 		lo_flags |= LO_FLAGS_READ_ONLY;
869 
870 	lo_blocksize = S_ISBLK(inode->i_mode) ?
871 		inode->i_bdev->bd_block_size : PAGE_SIZE;
872 
873 	error = -EFBIG;
874 	size = get_loop_size(lo, file);
875 	if ((loff_t)(sector_t)size != size)
876 		goto out_putf;
877 
878 	error = 0;
879 
880 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
881 
882 	lo->lo_blocksize = lo_blocksize;
883 	lo->lo_device = bdev;
884 	lo->lo_flags = lo_flags;
885 	lo->lo_backing_file = file;
886 	lo->transfer = transfer_none;
887 	lo->ioctl = NULL;
888 	lo->lo_sizelimit = 0;
889 	lo->lo_bio_count = 0;
890 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
891 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
892 
893 	bio_list_init(&lo->lo_bio_list);
894 
895 	/*
896 	 * set queue make_request_fn, and add limits based on lower level
897 	 * device
898 	 */
899 	blk_queue_make_request(lo->lo_queue, loop_make_request);
900 	lo->lo_queue->queuedata = lo;
901 
902 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
903 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
904 
905 	set_capacity(lo->lo_disk, size);
906 	bd_set_size(bdev, size << 9);
907 	loop_sysfs_init(lo);
908 	/* let user-space know about the new size */
909 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
910 
911 	set_blocksize(bdev, lo_blocksize);
912 
913 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
914 						lo->lo_number);
915 	if (IS_ERR(lo->lo_thread)) {
916 		error = PTR_ERR(lo->lo_thread);
917 		goto out_clr;
918 	}
919 	lo->lo_state = Lo_bound;
920 	wake_up_process(lo->lo_thread);
921 	if (part_shift)
922 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
923 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
924 		ioctl_by_bdev(bdev, BLKRRPART, 0);
925 	return 0;
926 
927 out_clr:
928 	loop_sysfs_exit(lo);
929 	lo->lo_thread = NULL;
930 	lo->lo_device = NULL;
931 	lo->lo_backing_file = NULL;
932 	lo->lo_flags = 0;
933 	set_capacity(lo->lo_disk, 0);
934 	invalidate_bdev(bdev);
935 	bd_set_size(bdev, 0);
936 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
937 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
938 	lo->lo_state = Lo_unbound;
939  out_putf:
940 	fput(file);
941  out:
942 	/* This is safe: open() is still holding a reference. */
943 	module_put(THIS_MODULE);
944 	return error;
945 }
946 
947 static int
948 loop_release_xfer(struct loop_device *lo)
949 {
950 	int err = 0;
951 	struct loop_func_table *xfer = lo->lo_encryption;
952 
953 	if (xfer) {
954 		if (xfer->release)
955 			err = xfer->release(lo);
956 		lo->transfer = NULL;
957 		lo->lo_encryption = NULL;
958 		module_put(xfer->owner);
959 	}
960 	return err;
961 }
962 
963 static int
964 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
965 	       const struct loop_info64 *i)
966 {
967 	int err = 0;
968 
969 	if (xfer) {
970 		struct module *owner = xfer->owner;
971 
972 		if (!try_module_get(owner))
973 			return -EINVAL;
974 		if (xfer->init)
975 			err = xfer->init(lo, i);
976 		if (err)
977 			module_put(owner);
978 		else
979 			lo->lo_encryption = xfer;
980 	}
981 	return err;
982 }
983 
984 static int loop_clr_fd(struct loop_device *lo)
985 {
986 	struct file *filp = lo->lo_backing_file;
987 	gfp_t gfp = lo->old_gfp_mask;
988 	struct block_device *bdev = lo->lo_device;
989 
990 	if (lo->lo_state != Lo_bound)
991 		return -ENXIO;
992 
993 	/*
994 	 * If we've explicitly asked to tear down the loop device,
995 	 * and it has an elevated reference count, set it for auto-teardown when
996 	 * the last reference goes away. This stops $!~#$@ udev from
997 	 * preventing teardown because it decided that it needs to run blkid on
998 	 * the loopback device whenever they appear. xfstests is notorious for
999 	 * failing tests because blkid via udev races with a losetup
1000 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1001 	 * command to fail with EBUSY.
1002 	 */
1003 	if (lo->lo_refcnt > 1) {
1004 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1005 		mutex_unlock(&lo->lo_ctl_mutex);
1006 		return 0;
1007 	}
1008 
1009 	if (filp == NULL)
1010 		return -EINVAL;
1011 
1012 	spin_lock_irq(&lo->lo_lock);
1013 	lo->lo_state = Lo_rundown;
1014 	spin_unlock_irq(&lo->lo_lock);
1015 
1016 	kthread_stop(lo->lo_thread);
1017 
1018 	spin_lock_irq(&lo->lo_lock);
1019 	lo->lo_backing_file = NULL;
1020 	spin_unlock_irq(&lo->lo_lock);
1021 
1022 	loop_release_xfer(lo);
1023 	lo->transfer = NULL;
1024 	lo->ioctl = NULL;
1025 	lo->lo_device = NULL;
1026 	lo->lo_encryption = NULL;
1027 	lo->lo_offset = 0;
1028 	lo->lo_sizelimit = 0;
1029 	lo->lo_encrypt_key_size = 0;
1030 	lo->lo_thread = NULL;
1031 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1032 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1033 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1034 	if (bdev)
1035 		invalidate_bdev(bdev);
1036 	set_capacity(lo->lo_disk, 0);
1037 	loop_sysfs_exit(lo);
1038 	if (bdev) {
1039 		bd_set_size(bdev, 0);
1040 		/* let user-space know about this change */
1041 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1042 	}
1043 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1044 	lo->lo_state = Lo_unbound;
1045 	/* This is safe: open() is still holding a reference. */
1046 	module_put(THIS_MODULE);
1047 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1048 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1049 	lo->lo_flags = 0;
1050 	if (!part_shift)
1051 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1052 	mutex_unlock(&lo->lo_ctl_mutex);
1053 	/*
1054 	 * Need not hold lo_ctl_mutex to fput backing file.
1055 	 * Calling fput holding lo_ctl_mutex triggers a circular
1056 	 * lock dependency possibility warning as fput can take
1057 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1058 	 */
1059 	fput(filp);
1060 	return 0;
1061 }
1062 
1063 static int
1064 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1065 {
1066 	int err;
1067 	struct loop_func_table *xfer;
1068 	kuid_t uid = current_uid();
1069 
1070 	if (lo->lo_encrypt_key_size &&
1071 	    !uid_eq(lo->lo_key_owner, uid) &&
1072 	    !capable(CAP_SYS_ADMIN))
1073 		return -EPERM;
1074 	if (lo->lo_state != Lo_bound)
1075 		return -ENXIO;
1076 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1077 		return -EINVAL;
1078 
1079 	err = loop_release_xfer(lo);
1080 	if (err)
1081 		return err;
1082 
1083 	if (info->lo_encrypt_type) {
1084 		unsigned int type = info->lo_encrypt_type;
1085 
1086 		if (type >= MAX_LO_CRYPT)
1087 			return -EINVAL;
1088 		xfer = xfer_funcs[type];
1089 		if (xfer == NULL)
1090 			return -EINVAL;
1091 	} else
1092 		xfer = NULL;
1093 
1094 	err = loop_init_xfer(lo, xfer, info);
1095 	if (err)
1096 		return err;
1097 
1098 	if (lo->lo_offset != info->lo_offset ||
1099 	    lo->lo_sizelimit != info->lo_sizelimit)
1100 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1101 			return -EFBIG;
1102 
1103 	loop_config_discard(lo);
1104 
1105 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1106 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1107 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1108 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1109 
1110 	if (!xfer)
1111 		xfer = &none_funcs;
1112 	lo->transfer = xfer->transfer;
1113 	lo->ioctl = xfer->ioctl;
1114 
1115 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1116 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1117 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1118 
1119 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1120 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1121 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1122 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1123 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1124 	}
1125 
1126 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1127 	lo->lo_init[0] = info->lo_init[0];
1128 	lo->lo_init[1] = info->lo_init[1];
1129 	if (info->lo_encrypt_key_size) {
1130 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1131 		       info->lo_encrypt_key_size);
1132 		lo->lo_key_owner = uid;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static int
1139 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1140 {
1141 	struct file *file = lo->lo_backing_file;
1142 	struct kstat stat;
1143 	int error;
1144 
1145 	if (lo->lo_state != Lo_bound)
1146 		return -ENXIO;
1147 	error = vfs_getattr(&file->f_path, &stat);
1148 	if (error)
1149 		return error;
1150 	memset(info, 0, sizeof(*info));
1151 	info->lo_number = lo->lo_number;
1152 	info->lo_device = huge_encode_dev(stat.dev);
1153 	info->lo_inode = stat.ino;
1154 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1155 	info->lo_offset = lo->lo_offset;
1156 	info->lo_sizelimit = lo->lo_sizelimit;
1157 	info->lo_flags = lo->lo_flags;
1158 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1159 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1160 	info->lo_encrypt_type =
1161 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1162 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1163 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1164 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1165 		       lo->lo_encrypt_key_size);
1166 	}
1167 	return 0;
1168 }
1169 
1170 static void
1171 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1172 {
1173 	memset(info64, 0, sizeof(*info64));
1174 	info64->lo_number = info->lo_number;
1175 	info64->lo_device = info->lo_device;
1176 	info64->lo_inode = info->lo_inode;
1177 	info64->lo_rdevice = info->lo_rdevice;
1178 	info64->lo_offset = info->lo_offset;
1179 	info64->lo_sizelimit = 0;
1180 	info64->lo_encrypt_type = info->lo_encrypt_type;
1181 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1182 	info64->lo_flags = info->lo_flags;
1183 	info64->lo_init[0] = info->lo_init[0];
1184 	info64->lo_init[1] = info->lo_init[1];
1185 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1186 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1187 	else
1188 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1189 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1190 }
1191 
1192 static int
1193 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1194 {
1195 	memset(info, 0, sizeof(*info));
1196 	info->lo_number = info64->lo_number;
1197 	info->lo_device = info64->lo_device;
1198 	info->lo_inode = info64->lo_inode;
1199 	info->lo_rdevice = info64->lo_rdevice;
1200 	info->lo_offset = info64->lo_offset;
1201 	info->lo_encrypt_type = info64->lo_encrypt_type;
1202 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1203 	info->lo_flags = info64->lo_flags;
1204 	info->lo_init[0] = info64->lo_init[0];
1205 	info->lo_init[1] = info64->lo_init[1];
1206 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1207 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1208 	else
1209 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1210 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1211 
1212 	/* error in case values were truncated */
1213 	if (info->lo_device != info64->lo_device ||
1214 	    info->lo_rdevice != info64->lo_rdevice ||
1215 	    info->lo_inode != info64->lo_inode ||
1216 	    info->lo_offset != info64->lo_offset)
1217 		return -EOVERFLOW;
1218 
1219 	return 0;
1220 }
1221 
1222 static int
1223 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1224 {
1225 	struct loop_info info;
1226 	struct loop_info64 info64;
1227 
1228 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1229 		return -EFAULT;
1230 	loop_info64_from_old(&info, &info64);
1231 	return loop_set_status(lo, &info64);
1232 }
1233 
1234 static int
1235 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1236 {
1237 	struct loop_info64 info64;
1238 
1239 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1240 		return -EFAULT;
1241 	return loop_set_status(lo, &info64);
1242 }
1243 
1244 static int
1245 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1246 	struct loop_info info;
1247 	struct loop_info64 info64;
1248 	int err = 0;
1249 
1250 	if (!arg)
1251 		err = -EINVAL;
1252 	if (!err)
1253 		err = loop_get_status(lo, &info64);
1254 	if (!err)
1255 		err = loop_info64_to_old(&info64, &info);
1256 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1257 		err = -EFAULT;
1258 
1259 	return err;
1260 }
1261 
1262 static int
1263 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1264 	struct loop_info64 info64;
1265 	int err = 0;
1266 
1267 	if (!arg)
1268 		err = -EINVAL;
1269 	if (!err)
1270 		err = loop_get_status(lo, &info64);
1271 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1272 		err = -EFAULT;
1273 
1274 	return err;
1275 }
1276 
1277 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1278 {
1279 	if (unlikely(lo->lo_state != Lo_bound))
1280 		return -ENXIO;
1281 
1282 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1283 }
1284 
1285 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1286 	unsigned int cmd, unsigned long arg)
1287 {
1288 	struct loop_device *lo = bdev->bd_disk->private_data;
1289 	int err;
1290 
1291 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1292 	switch (cmd) {
1293 	case LOOP_SET_FD:
1294 		err = loop_set_fd(lo, mode, bdev, arg);
1295 		break;
1296 	case LOOP_CHANGE_FD:
1297 		err = loop_change_fd(lo, bdev, arg);
1298 		break;
1299 	case LOOP_CLR_FD:
1300 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1301 		err = loop_clr_fd(lo);
1302 		if (!err)
1303 			goto out_unlocked;
1304 		break;
1305 	case LOOP_SET_STATUS:
1306 		err = -EPERM;
1307 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1308 			err = loop_set_status_old(lo,
1309 					(struct loop_info __user *)arg);
1310 		break;
1311 	case LOOP_GET_STATUS:
1312 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1313 		break;
1314 	case LOOP_SET_STATUS64:
1315 		err = -EPERM;
1316 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1317 			err = loop_set_status64(lo,
1318 					(struct loop_info64 __user *) arg);
1319 		break;
1320 	case LOOP_GET_STATUS64:
1321 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1322 		break;
1323 	case LOOP_SET_CAPACITY:
1324 		err = -EPERM;
1325 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1326 			err = loop_set_capacity(lo, bdev);
1327 		break;
1328 	default:
1329 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1330 	}
1331 	mutex_unlock(&lo->lo_ctl_mutex);
1332 
1333 out_unlocked:
1334 	return err;
1335 }
1336 
1337 #ifdef CONFIG_COMPAT
1338 struct compat_loop_info {
1339 	compat_int_t	lo_number;      /* ioctl r/o */
1340 	compat_dev_t	lo_device;      /* ioctl r/o */
1341 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1342 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1343 	compat_int_t	lo_offset;
1344 	compat_int_t	lo_encrypt_type;
1345 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1346 	compat_int_t	lo_flags;       /* ioctl r/o */
1347 	char		lo_name[LO_NAME_SIZE];
1348 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1349 	compat_ulong_t	lo_init[2];
1350 	char		reserved[4];
1351 };
1352 
1353 /*
1354  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1355  * - noinlined to reduce stack space usage in main part of driver
1356  */
1357 static noinline int
1358 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1359 			struct loop_info64 *info64)
1360 {
1361 	struct compat_loop_info info;
1362 
1363 	if (copy_from_user(&info, arg, sizeof(info)))
1364 		return -EFAULT;
1365 
1366 	memset(info64, 0, sizeof(*info64));
1367 	info64->lo_number = info.lo_number;
1368 	info64->lo_device = info.lo_device;
1369 	info64->lo_inode = info.lo_inode;
1370 	info64->lo_rdevice = info.lo_rdevice;
1371 	info64->lo_offset = info.lo_offset;
1372 	info64->lo_sizelimit = 0;
1373 	info64->lo_encrypt_type = info.lo_encrypt_type;
1374 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1375 	info64->lo_flags = info.lo_flags;
1376 	info64->lo_init[0] = info.lo_init[0];
1377 	info64->lo_init[1] = info.lo_init[1];
1378 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1379 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1380 	else
1381 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1382 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1383 	return 0;
1384 }
1385 
1386 /*
1387  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1388  * - noinlined to reduce stack space usage in main part of driver
1389  */
1390 static noinline int
1391 loop_info64_to_compat(const struct loop_info64 *info64,
1392 		      struct compat_loop_info __user *arg)
1393 {
1394 	struct compat_loop_info info;
1395 
1396 	memset(&info, 0, sizeof(info));
1397 	info.lo_number = info64->lo_number;
1398 	info.lo_device = info64->lo_device;
1399 	info.lo_inode = info64->lo_inode;
1400 	info.lo_rdevice = info64->lo_rdevice;
1401 	info.lo_offset = info64->lo_offset;
1402 	info.lo_encrypt_type = info64->lo_encrypt_type;
1403 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1404 	info.lo_flags = info64->lo_flags;
1405 	info.lo_init[0] = info64->lo_init[0];
1406 	info.lo_init[1] = info64->lo_init[1];
1407 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1408 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1409 	else
1410 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1411 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1412 
1413 	/* error in case values were truncated */
1414 	if (info.lo_device != info64->lo_device ||
1415 	    info.lo_rdevice != info64->lo_rdevice ||
1416 	    info.lo_inode != info64->lo_inode ||
1417 	    info.lo_offset != info64->lo_offset ||
1418 	    info.lo_init[0] != info64->lo_init[0] ||
1419 	    info.lo_init[1] != info64->lo_init[1])
1420 		return -EOVERFLOW;
1421 
1422 	if (copy_to_user(arg, &info, sizeof(info)))
1423 		return -EFAULT;
1424 	return 0;
1425 }
1426 
1427 static int
1428 loop_set_status_compat(struct loop_device *lo,
1429 		       const struct compat_loop_info __user *arg)
1430 {
1431 	struct loop_info64 info64;
1432 	int ret;
1433 
1434 	ret = loop_info64_from_compat(arg, &info64);
1435 	if (ret < 0)
1436 		return ret;
1437 	return loop_set_status(lo, &info64);
1438 }
1439 
1440 static int
1441 loop_get_status_compat(struct loop_device *lo,
1442 		       struct compat_loop_info __user *arg)
1443 {
1444 	struct loop_info64 info64;
1445 	int err = 0;
1446 
1447 	if (!arg)
1448 		err = -EINVAL;
1449 	if (!err)
1450 		err = loop_get_status(lo, &info64);
1451 	if (!err)
1452 		err = loop_info64_to_compat(&info64, arg);
1453 	return err;
1454 }
1455 
1456 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1457 			   unsigned int cmd, unsigned long arg)
1458 {
1459 	struct loop_device *lo = bdev->bd_disk->private_data;
1460 	int err;
1461 
1462 	switch(cmd) {
1463 	case LOOP_SET_STATUS:
1464 		mutex_lock(&lo->lo_ctl_mutex);
1465 		err = loop_set_status_compat(
1466 			lo, (const struct compat_loop_info __user *) arg);
1467 		mutex_unlock(&lo->lo_ctl_mutex);
1468 		break;
1469 	case LOOP_GET_STATUS:
1470 		mutex_lock(&lo->lo_ctl_mutex);
1471 		err = loop_get_status_compat(
1472 			lo, (struct compat_loop_info __user *) arg);
1473 		mutex_unlock(&lo->lo_ctl_mutex);
1474 		break;
1475 	case LOOP_SET_CAPACITY:
1476 	case LOOP_CLR_FD:
1477 	case LOOP_GET_STATUS64:
1478 	case LOOP_SET_STATUS64:
1479 		arg = (unsigned long) compat_ptr(arg);
1480 	case LOOP_SET_FD:
1481 	case LOOP_CHANGE_FD:
1482 		err = lo_ioctl(bdev, mode, cmd, arg);
1483 		break;
1484 	default:
1485 		err = -ENOIOCTLCMD;
1486 		break;
1487 	}
1488 	return err;
1489 }
1490 #endif
1491 
1492 static int lo_open(struct block_device *bdev, fmode_t mode)
1493 {
1494 	struct loop_device *lo;
1495 	int err = 0;
1496 
1497 	mutex_lock(&loop_index_mutex);
1498 	lo = bdev->bd_disk->private_data;
1499 	if (!lo) {
1500 		err = -ENXIO;
1501 		goto out;
1502 	}
1503 
1504 	mutex_lock(&lo->lo_ctl_mutex);
1505 	lo->lo_refcnt++;
1506 	mutex_unlock(&lo->lo_ctl_mutex);
1507 out:
1508 	mutex_unlock(&loop_index_mutex);
1509 	return err;
1510 }
1511 
1512 static int lo_release(struct gendisk *disk, fmode_t mode)
1513 {
1514 	struct loop_device *lo = disk->private_data;
1515 	int err;
1516 
1517 	mutex_lock(&lo->lo_ctl_mutex);
1518 
1519 	if (--lo->lo_refcnt)
1520 		goto out;
1521 
1522 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1523 		/*
1524 		 * In autoclear mode, stop the loop thread
1525 		 * and remove configuration after last close.
1526 		 */
1527 		err = loop_clr_fd(lo);
1528 		if (!err)
1529 			goto out_unlocked;
1530 	} else {
1531 		/*
1532 		 * Otherwise keep thread (if running) and config,
1533 		 * but flush possible ongoing bios in thread.
1534 		 */
1535 		loop_flush(lo);
1536 	}
1537 
1538 out:
1539 	mutex_unlock(&lo->lo_ctl_mutex);
1540 out_unlocked:
1541 	return 0;
1542 }
1543 
1544 static const struct block_device_operations lo_fops = {
1545 	.owner =	THIS_MODULE,
1546 	.open =		lo_open,
1547 	.release =	lo_release,
1548 	.ioctl =	lo_ioctl,
1549 #ifdef CONFIG_COMPAT
1550 	.compat_ioctl =	lo_compat_ioctl,
1551 #endif
1552 };
1553 
1554 /*
1555  * And now the modules code and kernel interface.
1556  */
1557 static int max_loop;
1558 module_param(max_loop, int, S_IRUGO);
1559 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1560 module_param(max_part, int, S_IRUGO);
1561 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1562 MODULE_LICENSE("GPL");
1563 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1564 
1565 int loop_register_transfer(struct loop_func_table *funcs)
1566 {
1567 	unsigned int n = funcs->number;
1568 
1569 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1570 		return -EINVAL;
1571 	xfer_funcs[n] = funcs;
1572 	return 0;
1573 }
1574 
1575 static int unregister_transfer_cb(int id, void *ptr, void *data)
1576 {
1577 	struct loop_device *lo = ptr;
1578 	struct loop_func_table *xfer = data;
1579 
1580 	mutex_lock(&lo->lo_ctl_mutex);
1581 	if (lo->lo_encryption == xfer)
1582 		loop_release_xfer(lo);
1583 	mutex_unlock(&lo->lo_ctl_mutex);
1584 	return 0;
1585 }
1586 
1587 int loop_unregister_transfer(int number)
1588 {
1589 	unsigned int n = number;
1590 	struct loop_func_table *xfer;
1591 
1592 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1593 		return -EINVAL;
1594 
1595 	xfer_funcs[n] = NULL;
1596 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1597 	return 0;
1598 }
1599 
1600 EXPORT_SYMBOL(loop_register_transfer);
1601 EXPORT_SYMBOL(loop_unregister_transfer);
1602 
1603 static int loop_add(struct loop_device **l, int i)
1604 {
1605 	struct loop_device *lo;
1606 	struct gendisk *disk;
1607 	int err;
1608 
1609 	err = -ENOMEM;
1610 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1611 	if (!lo)
1612 		goto out;
1613 
1614 	/* allocate id, if @id >= 0, we're requesting that specific id */
1615 	if (i >= 0) {
1616 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1617 		if (err == -ENOSPC)
1618 			err = -EEXIST;
1619 	} else {
1620 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1621 	}
1622 	if (err < 0)
1623 		goto out_free_dev;
1624 	i = err;
1625 
1626 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1627 	if (!lo->lo_queue)
1628 		goto out_free_dev;
1629 
1630 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1631 	if (!disk)
1632 		goto out_free_queue;
1633 
1634 	/*
1635 	 * Disable partition scanning by default. The in-kernel partition
1636 	 * scanning can be requested individually per-device during its
1637 	 * setup. Userspace can always add and remove partitions from all
1638 	 * devices. The needed partition minors are allocated from the
1639 	 * extended minor space, the main loop device numbers will continue
1640 	 * to match the loop minors, regardless of the number of partitions
1641 	 * used.
1642 	 *
1643 	 * If max_part is given, partition scanning is globally enabled for
1644 	 * all loop devices. The minors for the main loop devices will be
1645 	 * multiples of max_part.
1646 	 *
1647 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1648 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1649 	 * complicated, are too static, inflexible and may surprise
1650 	 * userspace tools. Parameters like this in general should be avoided.
1651 	 */
1652 	if (!part_shift)
1653 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1654 	disk->flags |= GENHD_FL_EXT_DEVT;
1655 	mutex_init(&lo->lo_ctl_mutex);
1656 	lo->lo_number		= i;
1657 	lo->lo_thread		= NULL;
1658 	init_waitqueue_head(&lo->lo_event);
1659 	init_waitqueue_head(&lo->lo_req_wait);
1660 	spin_lock_init(&lo->lo_lock);
1661 	disk->major		= LOOP_MAJOR;
1662 	disk->first_minor	= i << part_shift;
1663 	disk->fops		= &lo_fops;
1664 	disk->private_data	= lo;
1665 	disk->queue		= lo->lo_queue;
1666 	sprintf(disk->disk_name, "loop%d", i);
1667 	add_disk(disk);
1668 	*l = lo;
1669 	return lo->lo_number;
1670 
1671 out_free_queue:
1672 	blk_cleanup_queue(lo->lo_queue);
1673 out_free_dev:
1674 	kfree(lo);
1675 out:
1676 	return err;
1677 }
1678 
1679 static void loop_remove(struct loop_device *lo)
1680 {
1681 	del_gendisk(lo->lo_disk);
1682 	blk_cleanup_queue(lo->lo_queue);
1683 	put_disk(lo->lo_disk);
1684 	kfree(lo);
1685 }
1686 
1687 static int find_free_cb(int id, void *ptr, void *data)
1688 {
1689 	struct loop_device *lo = ptr;
1690 	struct loop_device **l = data;
1691 
1692 	if (lo->lo_state == Lo_unbound) {
1693 		*l = lo;
1694 		return 1;
1695 	}
1696 	return 0;
1697 }
1698 
1699 static int loop_lookup(struct loop_device **l, int i)
1700 {
1701 	struct loop_device *lo;
1702 	int ret = -ENODEV;
1703 
1704 	if (i < 0) {
1705 		int err;
1706 
1707 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1708 		if (err == 1) {
1709 			*l = lo;
1710 			ret = lo->lo_number;
1711 		}
1712 		goto out;
1713 	}
1714 
1715 	/* lookup and return a specific i */
1716 	lo = idr_find(&loop_index_idr, i);
1717 	if (lo) {
1718 		*l = lo;
1719 		ret = lo->lo_number;
1720 	}
1721 out:
1722 	return ret;
1723 }
1724 
1725 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1726 {
1727 	struct loop_device *lo;
1728 	struct kobject *kobj;
1729 	int err;
1730 
1731 	mutex_lock(&loop_index_mutex);
1732 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1733 	if (err < 0)
1734 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1735 	if (err < 0)
1736 		kobj = ERR_PTR(err);
1737 	else
1738 		kobj = get_disk(lo->lo_disk);
1739 	mutex_unlock(&loop_index_mutex);
1740 
1741 	*part = 0;
1742 	return kobj;
1743 }
1744 
1745 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1746 			       unsigned long parm)
1747 {
1748 	struct loop_device *lo;
1749 	int ret = -ENOSYS;
1750 
1751 	mutex_lock(&loop_index_mutex);
1752 	switch (cmd) {
1753 	case LOOP_CTL_ADD:
1754 		ret = loop_lookup(&lo, parm);
1755 		if (ret >= 0) {
1756 			ret = -EEXIST;
1757 			break;
1758 		}
1759 		ret = loop_add(&lo, parm);
1760 		break;
1761 	case LOOP_CTL_REMOVE:
1762 		ret = loop_lookup(&lo, parm);
1763 		if (ret < 0)
1764 			break;
1765 		mutex_lock(&lo->lo_ctl_mutex);
1766 		if (lo->lo_state != Lo_unbound) {
1767 			ret = -EBUSY;
1768 			mutex_unlock(&lo->lo_ctl_mutex);
1769 			break;
1770 		}
1771 		if (lo->lo_refcnt > 0) {
1772 			ret = -EBUSY;
1773 			mutex_unlock(&lo->lo_ctl_mutex);
1774 			break;
1775 		}
1776 		lo->lo_disk->private_data = NULL;
1777 		mutex_unlock(&lo->lo_ctl_mutex);
1778 		idr_remove(&loop_index_idr, lo->lo_number);
1779 		loop_remove(lo);
1780 		break;
1781 	case LOOP_CTL_GET_FREE:
1782 		ret = loop_lookup(&lo, -1);
1783 		if (ret >= 0)
1784 			break;
1785 		ret = loop_add(&lo, -1);
1786 	}
1787 	mutex_unlock(&loop_index_mutex);
1788 
1789 	return ret;
1790 }
1791 
1792 static const struct file_operations loop_ctl_fops = {
1793 	.open		= nonseekable_open,
1794 	.unlocked_ioctl	= loop_control_ioctl,
1795 	.compat_ioctl	= loop_control_ioctl,
1796 	.owner		= THIS_MODULE,
1797 	.llseek		= noop_llseek,
1798 };
1799 
1800 static struct miscdevice loop_misc = {
1801 	.minor		= LOOP_CTRL_MINOR,
1802 	.name		= "loop-control",
1803 	.fops		= &loop_ctl_fops,
1804 };
1805 
1806 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1807 MODULE_ALIAS("devname:loop-control");
1808 
1809 static int __init loop_init(void)
1810 {
1811 	int i, nr;
1812 	unsigned long range;
1813 	struct loop_device *lo;
1814 	int err;
1815 
1816 	err = misc_register(&loop_misc);
1817 	if (err < 0)
1818 		return err;
1819 
1820 	part_shift = 0;
1821 	if (max_part > 0) {
1822 		part_shift = fls(max_part);
1823 
1824 		/*
1825 		 * Adjust max_part according to part_shift as it is exported
1826 		 * to user space so that user can decide correct minor number
1827 		 * if [s]he want to create more devices.
1828 		 *
1829 		 * Note that -1 is required because partition 0 is reserved
1830 		 * for the whole disk.
1831 		 */
1832 		max_part = (1UL << part_shift) - 1;
1833 	}
1834 
1835 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1836 		err = -EINVAL;
1837 		goto misc_out;
1838 	}
1839 
1840 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1841 		err = -EINVAL;
1842 		goto misc_out;
1843 	}
1844 
1845 	/*
1846 	 * If max_loop is specified, create that many devices upfront.
1847 	 * This also becomes a hard limit. If max_loop is not specified,
1848 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1849 	 * init time. Loop devices can be requested on-demand with the
1850 	 * /dev/loop-control interface, or be instantiated by accessing
1851 	 * a 'dead' device node.
1852 	 */
1853 	if (max_loop) {
1854 		nr = max_loop;
1855 		range = max_loop << part_shift;
1856 	} else {
1857 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1858 		range = 1UL << MINORBITS;
1859 	}
1860 
1861 	if (register_blkdev(LOOP_MAJOR, "loop")) {
1862 		err = -EIO;
1863 		goto misc_out;
1864 	}
1865 
1866 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1867 				  THIS_MODULE, loop_probe, NULL, NULL);
1868 
1869 	/* pre-create number of devices given by config or max_loop */
1870 	mutex_lock(&loop_index_mutex);
1871 	for (i = 0; i < nr; i++)
1872 		loop_add(&lo, i);
1873 	mutex_unlock(&loop_index_mutex);
1874 
1875 	printk(KERN_INFO "loop: module loaded\n");
1876 	return 0;
1877 
1878 misc_out:
1879 	misc_deregister(&loop_misc);
1880 	return err;
1881 }
1882 
1883 static int loop_exit_cb(int id, void *ptr, void *data)
1884 {
1885 	struct loop_device *lo = ptr;
1886 
1887 	loop_remove(lo);
1888 	return 0;
1889 }
1890 
1891 static void __exit loop_exit(void)
1892 {
1893 	unsigned long range;
1894 
1895 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1896 
1897 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1898 	idr_destroy(&loop_index_idr);
1899 
1900 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1901 	unregister_blkdev(LOOP_MAJOR, "loop");
1902 
1903 	misc_deregister(&loop_misc);
1904 }
1905 
1906 module_init(loop_init);
1907 module_exit(loop_exit);
1908 
1909 #ifndef MODULE
1910 static int __init max_loop_setup(char *str)
1911 {
1912 	max_loop = simple_strtol(str, NULL, 0);
1913 	return 1;
1914 }
1915 
1916 __setup("max_loop=", max_loop_setup);
1917 #endif
1918