1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_device { 49 int lo_number; 50 loff_t lo_offset; 51 loff_t lo_sizelimit; 52 int lo_flags; 53 char lo_file_name[LO_NAME_SIZE]; 54 55 struct file *lo_backing_file; 56 unsigned int lo_min_dio_size; 57 struct block_device *lo_device; 58 59 gfp_t old_gfp_mask; 60 61 spinlock_t lo_lock; 62 int lo_state; 63 spinlock_t lo_work_lock; 64 struct workqueue_struct *workqueue; 65 struct work_struct rootcg_work; 66 struct list_head rootcg_cmd_list; 67 struct list_head idle_worker_list; 68 struct rb_root worker_tree; 69 struct timer_list timer; 70 bool sysfs_inited; 71 72 struct request_queue *lo_queue; 73 struct blk_mq_tag_set tag_set; 74 struct gendisk *lo_disk; 75 struct mutex lo_mutex; 76 bool idr_visible; 77 }; 78 79 struct loop_cmd { 80 struct list_head list_entry; 81 bool use_aio; /* use AIO interface to handle I/O */ 82 atomic_t ref; /* only for aio */ 83 long ret; 84 struct kiocb iocb; 85 struct bio_vec *bvec; 86 struct cgroup_subsys_state *blkcg_css; 87 struct cgroup_subsys_state *memcg_css; 88 }; 89 90 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 91 #define LOOP_DEFAULT_HW_Q_DEPTH 128 92 93 static DEFINE_IDR(loop_index_idr); 94 static DEFINE_MUTEX(loop_ctl_mutex); 95 static DEFINE_MUTEX(loop_validate_mutex); 96 97 /** 98 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 99 * 100 * @lo: struct loop_device 101 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 102 * 103 * Returns 0 on success, -EINTR otherwise. 104 * 105 * Since loop_validate_file() traverses on other "struct loop_device" if 106 * is_loop_device() is true, we need a global lock for serializing concurrent 107 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 108 */ 109 static int loop_global_lock_killable(struct loop_device *lo, bool global) 110 { 111 int err; 112 113 if (global) { 114 err = mutex_lock_killable(&loop_validate_mutex); 115 if (err) 116 return err; 117 } 118 err = mutex_lock_killable(&lo->lo_mutex); 119 if (err && global) 120 mutex_unlock(&loop_validate_mutex); 121 return err; 122 } 123 124 /** 125 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 126 * 127 * @lo: struct loop_device 128 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 129 */ 130 static void loop_global_unlock(struct loop_device *lo, bool global) 131 { 132 mutex_unlock(&lo->lo_mutex); 133 if (global) 134 mutex_unlock(&loop_validate_mutex); 135 } 136 137 static int max_part; 138 static int part_shift; 139 140 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 141 { 142 loff_t loopsize; 143 144 /* Compute loopsize in bytes */ 145 loopsize = i_size_read(file->f_mapping->host); 146 if (offset > 0) 147 loopsize -= offset; 148 /* offset is beyond i_size, weird but possible */ 149 if (loopsize < 0) 150 return 0; 151 152 if (sizelimit > 0 && sizelimit < loopsize) 153 loopsize = sizelimit; 154 /* 155 * Unfortunately, if we want to do I/O on the device, 156 * the number of 512-byte sectors has to fit into a sector_t. 157 */ 158 return loopsize >> 9; 159 } 160 161 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 162 { 163 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 164 } 165 166 /* 167 * We support direct I/O only if lo_offset is aligned with the logical I/O size 168 * of backing device, and the logical block size of loop is bigger than that of 169 * the backing device. 170 */ 171 static bool lo_can_use_dio(struct loop_device *lo) 172 { 173 if (!(lo->lo_backing_file->f_mode & FMODE_CAN_ODIRECT)) 174 return false; 175 if (queue_logical_block_size(lo->lo_queue) < lo->lo_min_dio_size) 176 return false; 177 if (lo->lo_offset & (lo->lo_min_dio_size - 1)) 178 return false; 179 return true; 180 } 181 182 /* 183 * Direct I/O can be enabled either by using an O_DIRECT file descriptor, or by 184 * passing in the LO_FLAGS_DIRECT_IO flag from userspace. It will be silently 185 * disabled when the device block size is too small or the offset is unaligned. 186 * 187 * loop_get_status will always report the effective LO_FLAGS_DIRECT_IO flag and 188 * not the originally passed in one. 189 */ 190 static inline void loop_update_dio(struct loop_device *lo) 191 { 192 lockdep_assert_held(&lo->lo_mutex); 193 WARN_ON_ONCE(lo->lo_state == Lo_bound && 194 lo->lo_queue->mq_freeze_depth == 0); 195 196 if ((lo->lo_flags & LO_FLAGS_DIRECT_IO) && !lo_can_use_dio(lo)) 197 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 198 } 199 200 /** 201 * loop_set_size() - sets device size and notifies userspace 202 * @lo: struct loop_device to set the size for 203 * @size: new size of the loop device 204 * 205 * Callers must validate that the size passed into this function fits into 206 * a sector_t, eg using loop_validate_size() 207 */ 208 static void loop_set_size(struct loop_device *lo, loff_t size) 209 { 210 if (!set_capacity_and_notify(lo->lo_disk, size)) 211 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 212 } 213 214 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 215 { 216 struct iov_iter i; 217 ssize_t bw; 218 219 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 220 221 bw = vfs_iter_write(file, &i, ppos, 0); 222 223 if (likely(bw == bvec->bv_len)) 224 return 0; 225 226 printk_ratelimited(KERN_ERR 227 "loop: Write error at byte offset %llu, length %i.\n", 228 (unsigned long long)*ppos, bvec->bv_len); 229 if (bw >= 0) 230 bw = -EIO; 231 return bw; 232 } 233 234 static int lo_write_simple(struct loop_device *lo, struct request *rq, 235 loff_t pos) 236 { 237 struct bio_vec bvec; 238 struct req_iterator iter; 239 int ret = 0; 240 241 rq_for_each_segment(bvec, rq, iter) { 242 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 243 if (ret < 0) 244 break; 245 cond_resched(); 246 } 247 248 return ret; 249 } 250 251 static int lo_read_simple(struct loop_device *lo, struct request *rq, 252 loff_t pos) 253 { 254 struct bio_vec bvec; 255 struct req_iterator iter; 256 struct iov_iter i; 257 ssize_t len; 258 259 rq_for_each_segment(bvec, rq, iter) { 260 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 261 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 262 if (len < 0) 263 return len; 264 265 flush_dcache_page(bvec.bv_page); 266 267 if (len != bvec.bv_len) { 268 struct bio *bio; 269 270 __rq_for_each_bio(bio, rq) 271 zero_fill_bio(bio); 272 break; 273 } 274 cond_resched(); 275 } 276 277 return 0; 278 } 279 280 static void loop_clear_limits(struct loop_device *lo, int mode) 281 { 282 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 283 284 if (mode & FALLOC_FL_ZERO_RANGE) 285 lim.max_write_zeroes_sectors = 0; 286 287 if (mode & FALLOC_FL_PUNCH_HOLE) { 288 lim.max_hw_discard_sectors = 0; 289 lim.discard_granularity = 0; 290 } 291 292 /* 293 * XXX: this updates the queue limits without freezing the queue, which 294 * is against the locking protocol and dangerous. But we can't just 295 * freeze the queue as we're inside the ->queue_rq method here. So this 296 * should move out into a workqueue unless we get the file operations to 297 * advertise if they support specific fallocate operations. 298 */ 299 queue_limits_commit_update(lo->lo_queue, &lim); 300 } 301 302 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 303 int mode) 304 { 305 /* 306 * We use fallocate to manipulate the space mappings used by the image 307 * a.k.a. discard/zerorange. 308 */ 309 struct file *file = lo->lo_backing_file; 310 int ret; 311 312 mode |= FALLOC_FL_KEEP_SIZE; 313 314 if (!bdev_max_discard_sectors(lo->lo_device)) 315 return -EOPNOTSUPP; 316 317 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 318 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 319 return -EIO; 320 321 /* 322 * We initially configure the limits in a hope that fallocate is 323 * supported and clear them here if that turns out not to be true. 324 */ 325 if (unlikely(ret == -EOPNOTSUPP)) 326 loop_clear_limits(lo, mode); 327 328 return ret; 329 } 330 331 static int lo_req_flush(struct loop_device *lo, struct request *rq) 332 { 333 int ret = vfs_fsync(lo->lo_backing_file, 0); 334 if (unlikely(ret && ret != -EINVAL)) 335 ret = -EIO; 336 337 return ret; 338 } 339 340 static void lo_complete_rq(struct request *rq) 341 { 342 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 343 blk_status_t ret = BLK_STS_OK; 344 345 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 346 req_op(rq) != REQ_OP_READ) { 347 if (cmd->ret < 0) 348 ret = errno_to_blk_status(cmd->ret); 349 goto end_io; 350 } 351 352 /* 353 * Short READ - if we got some data, advance our request and 354 * retry it. If we got no data, end the rest with EIO. 355 */ 356 if (cmd->ret) { 357 blk_update_request(rq, BLK_STS_OK, cmd->ret); 358 cmd->ret = 0; 359 blk_mq_requeue_request(rq, true); 360 } else { 361 if (cmd->use_aio) { 362 struct bio *bio = rq->bio; 363 364 while (bio) { 365 zero_fill_bio(bio); 366 bio = bio->bi_next; 367 } 368 } 369 ret = BLK_STS_IOERR; 370 end_io: 371 blk_mq_end_request(rq, ret); 372 } 373 } 374 375 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 376 { 377 struct request *rq = blk_mq_rq_from_pdu(cmd); 378 379 if (!atomic_dec_and_test(&cmd->ref)) 380 return; 381 kfree(cmd->bvec); 382 cmd->bvec = NULL; 383 if (likely(!blk_should_fake_timeout(rq->q))) 384 blk_mq_complete_request(rq); 385 } 386 387 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 388 { 389 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 390 391 cmd->ret = ret; 392 lo_rw_aio_do_completion(cmd); 393 } 394 395 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 396 loff_t pos, int rw) 397 { 398 struct iov_iter iter; 399 struct req_iterator rq_iter; 400 struct bio_vec *bvec; 401 struct request *rq = blk_mq_rq_from_pdu(cmd); 402 struct bio *bio = rq->bio; 403 struct file *file = lo->lo_backing_file; 404 struct bio_vec tmp; 405 unsigned int offset; 406 int nr_bvec = 0; 407 int ret; 408 409 rq_for_each_bvec(tmp, rq, rq_iter) 410 nr_bvec++; 411 412 if (rq->bio != rq->biotail) { 413 414 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 415 GFP_NOIO); 416 if (!bvec) 417 return -EIO; 418 cmd->bvec = bvec; 419 420 /* 421 * The bios of the request may be started from the middle of 422 * the 'bvec' because of bio splitting, so we can't directly 423 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 424 * API will take care of all details for us. 425 */ 426 rq_for_each_bvec(tmp, rq, rq_iter) { 427 *bvec = tmp; 428 bvec++; 429 } 430 bvec = cmd->bvec; 431 offset = 0; 432 } else { 433 /* 434 * Same here, this bio may be started from the middle of the 435 * 'bvec' because of bio splitting, so offset from the bvec 436 * must be passed to iov iterator 437 */ 438 offset = bio->bi_iter.bi_bvec_done; 439 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 440 } 441 atomic_set(&cmd->ref, 2); 442 443 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 444 iter.iov_offset = offset; 445 446 cmd->iocb.ki_pos = pos; 447 cmd->iocb.ki_filp = file; 448 cmd->iocb.ki_complete = lo_rw_aio_complete; 449 cmd->iocb.ki_flags = IOCB_DIRECT; 450 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 451 452 if (rw == ITER_SOURCE) 453 ret = file->f_op->write_iter(&cmd->iocb, &iter); 454 else 455 ret = file->f_op->read_iter(&cmd->iocb, &iter); 456 457 lo_rw_aio_do_completion(cmd); 458 459 if (ret != -EIOCBQUEUED) 460 lo_rw_aio_complete(&cmd->iocb, ret); 461 return 0; 462 } 463 464 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 465 { 466 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 467 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 468 469 /* 470 * lo_write_simple and lo_read_simple should have been covered 471 * by io submit style function like lo_rw_aio(), one blocker 472 * is that lo_read_simple() need to call flush_dcache_page after 473 * the page is written from kernel, and it isn't easy to handle 474 * this in io submit style function which submits all segments 475 * of the req at one time. And direct read IO doesn't need to 476 * run flush_dcache_page(). 477 */ 478 switch (req_op(rq)) { 479 case REQ_OP_FLUSH: 480 return lo_req_flush(lo, rq); 481 case REQ_OP_WRITE_ZEROES: 482 /* 483 * If the caller doesn't want deallocation, call zeroout to 484 * write zeroes the range. Otherwise, punch them out. 485 */ 486 return lo_fallocate(lo, rq, pos, 487 (rq->cmd_flags & REQ_NOUNMAP) ? 488 FALLOC_FL_ZERO_RANGE : 489 FALLOC_FL_PUNCH_HOLE); 490 case REQ_OP_DISCARD: 491 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 492 case REQ_OP_WRITE: 493 if (cmd->use_aio) 494 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 495 else 496 return lo_write_simple(lo, rq, pos); 497 case REQ_OP_READ: 498 if (cmd->use_aio) 499 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 500 else 501 return lo_read_simple(lo, rq, pos); 502 default: 503 WARN_ON_ONCE(1); 504 return -EIO; 505 } 506 } 507 508 static void loop_reread_partitions(struct loop_device *lo) 509 { 510 int rc; 511 512 mutex_lock(&lo->lo_disk->open_mutex); 513 rc = bdev_disk_changed(lo->lo_disk, false); 514 mutex_unlock(&lo->lo_disk->open_mutex); 515 if (rc) 516 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 517 __func__, lo->lo_number, lo->lo_file_name, rc); 518 } 519 520 static unsigned int loop_query_min_dio_size(struct loop_device *lo) 521 { 522 struct file *file = lo->lo_backing_file; 523 struct block_device *sb_bdev = file->f_mapping->host->i_sb->s_bdev; 524 struct kstat st; 525 526 /* 527 * Use the minimal dio alignment of the file system if provided. 528 */ 529 if (!vfs_getattr(&file->f_path, &st, STATX_DIOALIGN, 0) && 530 (st.result_mask & STATX_DIOALIGN)) 531 return st.dio_offset_align; 532 533 /* 534 * In a perfect world this wouldn't be needed, but as of Linux 6.13 only 535 * a handful of file systems support the STATX_DIOALIGN flag. 536 */ 537 if (sb_bdev) 538 return bdev_logical_block_size(sb_bdev); 539 return SECTOR_SIZE; 540 } 541 542 static inline int is_loop_device(struct file *file) 543 { 544 struct inode *i = file->f_mapping->host; 545 546 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 547 } 548 549 static int loop_validate_file(struct file *file, struct block_device *bdev) 550 { 551 struct inode *inode = file->f_mapping->host; 552 struct file *f = file; 553 554 /* Avoid recursion */ 555 while (is_loop_device(f)) { 556 struct loop_device *l; 557 558 lockdep_assert_held(&loop_validate_mutex); 559 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 560 return -EBADF; 561 562 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 563 if (l->lo_state != Lo_bound) 564 return -EINVAL; 565 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 566 rmb(); 567 f = l->lo_backing_file; 568 } 569 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 570 return -EINVAL; 571 return 0; 572 } 573 574 static void loop_assign_backing_file(struct loop_device *lo, struct file *file) 575 { 576 lo->lo_backing_file = file; 577 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 578 mapping_set_gfp_mask(file->f_mapping, 579 lo->old_gfp_mask & ~(__GFP_IO | __GFP_FS)); 580 if (lo->lo_backing_file->f_flags & O_DIRECT) 581 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 582 lo->lo_min_dio_size = loop_query_min_dio_size(lo); 583 } 584 585 /* 586 * loop_change_fd switched the backing store of a loopback device to 587 * a new file. This is useful for operating system installers to free up 588 * the original file and in High Availability environments to switch to 589 * an alternative location for the content in case of server meltdown. 590 * This can only work if the loop device is used read-only, and if the 591 * new backing store is the same size and type as the old backing store. 592 */ 593 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 594 unsigned int arg) 595 { 596 struct file *file = fget(arg); 597 struct file *old_file; 598 unsigned int memflags; 599 int error; 600 bool partscan; 601 bool is_loop; 602 603 if (!file) 604 return -EBADF; 605 606 /* suppress uevents while reconfiguring the device */ 607 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 608 609 is_loop = is_loop_device(file); 610 error = loop_global_lock_killable(lo, is_loop); 611 if (error) 612 goto out_putf; 613 error = -ENXIO; 614 if (lo->lo_state != Lo_bound) 615 goto out_err; 616 617 /* the loop device has to be read-only */ 618 error = -EINVAL; 619 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 620 goto out_err; 621 622 error = loop_validate_file(file, bdev); 623 if (error) 624 goto out_err; 625 626 old_file = lo->lo_backing_file; 627 628 error = -EINVAL; 629 630 /* size of the new backing store needs to be the same */ 631 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 632 goto out_err; 633 634 /* 635 * We might switch to direct I/O mode for the loop device, write back 636 * all dirty data the page cache now that so that the individual I/O 637 * operations don't have to do that. 638 */ 639 vfs_fsync(file, 0); 640 641 /* and ... switch */ 642 disk_force_media_change(lo->lo_disk); 643 memflags = blk_mq_freeze_queue(lo->lo_queue); 644 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 645 loop_assign_backing_file(lo, file); 646 loop_update_dio(lo); 647 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 648 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 649 loop_global_unlock(lo, is_loop); 650 651 /* 652 * Flush loop_validate_file() before fput(), for l->lo_backing_file 653 * might be pointing at old_file which might be the last reference. 654 */ 655 if (!is_loop) { 656 mutex_lock(&loop_validate_mutex); 657 mutex_unlock(&loop_validate_mutex); 658 } 659 /* 660 * We must drop file reference outside of lo_mutex as dropping 661 * the file ref can take open_mutex which creates circular locking 662 * dependency. 663 */ 664 fput(old_file); 665 if (partscan) 666 loop_reread_partitions(lo); 667 668 error = 0; 669 done: 670 /* enable and uncork uevent now that we are done */ 671 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 672 return error; 673 674 out_err: 675 loop_global_unlock(lo, is_loop); 676 out_putf: 677 fput(file); 678 goto done; 679 } 680 681 /* loop sysfs attributes */ 682 683 static ssize_t loop_attr_show(struct device *dev, char *page, 684 ssize_t (*callback)(struct loop_device *, char *)) 685 { 686 struct gendisk *disk = dev_to_disk(dev); 687 struct loop_device *lo = disk->private_data; 688 689 return callback(lo, page); 690 } 691 692 #define LOOP_ATTR_RO(_name) \ 693 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 694 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 695 struct device_attribute *attr, char *b) \ 696 { \ 697 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 698 } \ 699 static struct device_attribute loop_attr_##_name = \ 700 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 701 702 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 703 { 704 ssize_t ret; 705 char *p = NULL; 706 707 spin_lock_irq(&lo->lo_lock); 708 if (lo->lo_backing_file) 709 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 710 spin_unlock_irq(&lo->lo_lock); 711 712 if (IS_ERR_OR_NULL(p)) 713 ret = PTR_ERR(p); 714 else { 715 ret = strlen(p); 716 memmove(buf, p, ret); 717 buf[ret++] = '\n'; 718 buf[ret] = 0; 719 } 720 721 return ret; 722 } 723 724 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 725 { 726 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 727 } 728 729 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 730 { 731 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 732 } 733 734 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 735 { 736 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 737 738 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 739 } 740 741 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 742 { 743 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 744 745 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 746 } 747 748 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 749 { 750 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 751 752 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 753 } 754 755 LOOP_ATTR_RO(backing_file); 756 LOOP_ATTR_RO(offset); 757 LOOP_ATTR_RO(sizelimit); 758 LOOP_ATTR_RO(autoclear); 759 LOOP_ATTR_RO(partscan); 760 LOOP_ATTR_RO(dio); 761 762 static struct attribute *loop_attrs[] = { 763 &loop_attr_backing_file.attr, 764 &loop_attr_offset.attr, 765 &loop_attr_sizelimit.attr, 766 &loop_attr_autoclear.attr, 767 &loop_attr_partscan.attr, 768 &loop_attr_dio.attr, 769 NULL, 770 }; 771 772 static struct attribute_group loop_attribute_group = { 773 .name = "loop", 774 .attrs= loop_attrs, 775 }; 776 777 static void loop_sysfs_init(struct loop_device *lo) 778 { 779 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 780 &loop_attribute_group); 781 } 782 783 static void loop_sysfs_exit(struct loop_device *lo) 784 { 785 if (lo->sysfs_inited) 786 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 787 &loop_attribute_group); 788 } 789 790 static void loop_get_discard_config(struct loop_device *lo, 791 u32 *granularity, u32 *max_discard_sectors) 792 { 793 struct file *file = lo->lo_backing_file; 794 struct inode *inode = file->f_mapping->host; 795 struct kstatfs sbuf; 796 797 /* 798 * If the backing device is a block device, mirror its zeroing 799 * capability. Set the discard sectors to the block device's zeroing 800 * capabilities because loop discards result in blkdev_issue_zeroout(), 801 * not blkdev_issue_discard(). This maintains consistent behavior with 802 * file-backed loop devices: discarded regions read back as zero. 803 */ 804 if (S_ISBLK(inode->i_mode)) { 805 struct block_device *bdev = I_BDEV(inode); 806 807 *max_discard_sectors = bdev_write_zeroes_sectors(bdev); 808 *granularity = bdev_discard_granularity(bdev); 809 810 /* 811 * We use punch hole to reclaim the free space used by the 812 * image a.k.a. discard. 813 */ 814 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 815 *max_discard_sectors = UINT_MAX >> 9; 816 *granularity = sbuf.f_bsize; 817 } 818 } 819 820 struct loop_worker { 821 struct rb_node rb_node; 822 struct work_struct work; 823 struct list_head cmd_list; 824 struct list_head idle_list; 825 struct loop_device *lo; 826 struct cgroup_subsys_state *blkcg_css; 827 unsigned long last_ran_at; 828 }; 829 830 static void loop_workfn(struct work_struct *work); 831 832 #ifdef CONFIG_BLK_CGROUP 833 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 834 { 835 return !css || css == blkcg_root_css; 836 } 837 #else 838 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 839 { 840 return !css; 841 } 842 #endif 843 844 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 845 { 846 struct rb_node **node, *parent = NULL; 847 struct loop_worker *cur_worker, *worker = NULL; 848 struct work_struct *work; 849 struct list_head *cmd_list; 850 851 spin_lock_irq(&lo->lo_work_lock); 852 853 if (queue_on_root_worker(cmd->blkcg_css)) 854 goto queue_work; 855 856 node = &lo->worker_tree.rb_node; 857 858 while (*node) { 859 parent = *node; 860 cur_worker = container_of(*node, struct loop_worker, rb_node); 861 if (cur_worker->blkcg_css == cmd->blkcg_css) { 862 worker = cur_worker; 863 break; 864 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 865 node = &(*node)->rb_left; 866 } else { 867 node = &(*node)->rb_right; 868 } 869 } 870 if (worker) 871 goto queue_work; 872 873 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 874 /* 875 * In the event we cannot allocate a worker, just queue on the 876 * rootcg worker and issue the I/O as the rootcg 877 */ 878 if (!worker) { 879 cmd->blkcg_css = NULL; 880 if (cmd->memcg_css) 881 css_put(cmd->memcg_css); 882 cmd->memcg_css = NULL; 883 goto queue_work; 884 } 885 886 worker->blkcg_css = cmd->blkcg_css; 887 css_get(worker->blkcg_css); 888 INIT_WORK(&worker->work, loop_workfn); 889 INIT_LIST_HEAD(&worker->cmd_list); 890 INIT_LIST_HEAD(&worker->idle_list); 891 worker->lo = lo; 892 rb_link_node(&worker->rb_node, parent, node); 893 rb_insert_color(&worker->rb_node, &lo->worker_tree); 894 queue_work: 895 if (worker) { 896 /* 897 * We need to remove from the idle list here while 898 * holding the lock so that the idle timer doesn't 899 * free the worker 900 */ 901 if (!list_empty(&worker->idle_list)) 902 list_del_init(&worker->idle_list); 903 work = &worker->work; 904 cmd_list = &worker->cmd_list; 905 } else { 906 work = &lo->rootcg_work; 907 cmd_list = &lo->rootcg_cmd_list; 908 } 909 list_add_tail(&cmd->list_entry, cmd_list); 910 queue_work(lo->workqueue, work); 911 spin_unlock_irq(&lo->lo_work_lock); 912 } 913 914 static void loop_set_timer(struct loop_device *lo) 915 { 916 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 917 } 918 919 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 920 { 921 struct loop_worker *pos, *worker; 922 923 spin_lock_irq(&lo->lo_work_lock); 924 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 925 idle_list) { 926 if (!delete_all && 927 time_is_after_jiffies(worker->last_ran_at + 928 LOOP_IDLE_WORKER_TIMEOUT)) 929 break; 930 list_del(&worker->idle_list); 931 rb_erase(&worker->rb_node, &lo->worker_tree); 932 css_put(worker->blkcg_css); 933 kfree(worker); 934 } 935 if (!list_empty(&lo->idle_worker_list)) 936 loop_set_timer(lo); 937 spin_unlock_irq(&lo->lo_work_lock); 938 } 939 940 static void loop_free_idle_workers_timer(struct timer_list *timer) 941 { 942 struct loop_device *lo = container_of(timer, struct loop_device, timer); 943 944 return loop_free_idle_workers(lo, false); 945 } 946 947 /** 948 * loop_set_status_from_info - configure device from loop_info 949 * @lo: struct loop_device to configure 950 * @info: struct loop_info64 to configure the device with 951 * 952 * Configures the loop device parameters according to the passed 953 * in loop_info64 configuration. 954 */ 955 static int 956 loop_set_status_from_info(struct loop_device *lo, 957 const struct loop_info64 *info) 958 { 959 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 960 return -EINVAL; 961 962 switch (info->lo_encrypt_type) { 963 case LO_CRYPT_NONE: 964 break; 965 case LO_CRYPT_XOR: 966 pr_warn("support for the xor transformation has been removed.\n"); 967 return -EINVAL; 968 case LO_CRYPT_CRYPTOAPI: 969 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 970 return -EINVAL; 971 default: 972 return -EINVAL; 973 } 974 975 /* Avoid assigning overflow values */ 976 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 977 return -EOVERFLOW; 978 979 lo->lo_offset = info->lo_offset; 980 lo->lo_sizelimit = info->lo_sizelimit; 981 982 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 983 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 984 return 0; 985 } 986 987 static unsigned int loop_default_blocksize(struct loop_device *lo) 988 { 989 /* In case of direct I/O, match underlying minimum I/O size */ 990 if (lo->lo_flags & LO_FLAGS_DIRECT_IO) 991 return lo->lo_min_dio_size; 992 return SECTOR_SIZE; 993 } 994 995 static void loop_update_limits(struct loop_device *lo, struct queue_limits *lim, 996 unsigned int bsize) 997 { 998 struct file *file = lo->lo_backing_file; 999 struct inode *inode = file->f_mapping->host; 1000 struct block_device *backing_bdev = NULL; 1001 u32 granularity = 0, max_discard_sectors = 0; 1002 1003 if (S_ISBLK(inode->i_mode)) 1004 backing_bdev = I_BDEV(inode); 1005 else if (inode->i_sb->s_bdev) 1006 backing_bdev = inode->i_sb->s_bdev; 1007 1008 if (!bsize) 1009 bsize = loop_default_blocksize(lo); 1010 1011 loop_get_discard_config(lo, &granularity, &max_discard_sectors); 1012 1013 lim->logical_block_size = bsize; 1014 lim->physical_block_size = bsize; 1015 lim->io_min = bsize; 1016 lim->features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 1017 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 1018 lim->features |= BLK_FEAT_WRITE_CACHE; 1019 if (backing_bdev && !bdev_nonrot(backing_bdev)) 1020 lim->features |= BLK_FEAT_ROTATIONAL; 1021 lim->max_hw_discard_sectors = max_discard_sectors; 1022 lim->max_write_zeroes_sectors = max_discard_sectors; 1023 if (max_discard_sectors) 1024 lim->discard_granularity = granularity; 1025 else 1026 lim->discard_granularity = 0; 1027 } 1028 1029 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 1030 struct block_device *bdev, 1031 const struct loop_config *config) 1032 { 1033 struct file *file = fget(config->fd); 1034 struct queue_limits lim; 1035 int error; 1036 loff_t size; 1037 bool partscan; 1038 bool is_loop; 1039 1040 if (!file) 1041 return -EBADF; 1042 is_loop = is_loop_device(file); 1043 1044 /* This is safe, since we have a reference from open(). */ 1045 __module_get(THIS_MODULE); 1046 1047 /* 1048 * If we don't hold exclusive handle for the device, upgrade to it 1049 * here to avoid changing device under exclusive owner. 1050 */ 1051 if (!(mode & BLK_OPEN_EXCL)) { 1052 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1053 if (error) 1054 goto out_putf; 1055 } 1056 1057 error = loop_global_lock_killable(lo, is_loop); 1058 if (error) 1059 goto out_bdev; 1060 1061 error = -EBUSY; 1062 if (lo->lo_state != Lo_unbound) 1063 goto out_unlock; 1064 1065 error = loop_validate_file(file, bdev); 1066 if (error) 1067 goto out_unlock; 1068 1069 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1070 error = -EINVAL; 1071 goto out_unlock; 1072 } 1073 1074 error = loop_set_status_from_info(lo, &config->info); 1075 if (error) 1076 goto out_unlock; 1077 lo->lo_flags = config->info.lo_flags; 1078 1079 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1080 !file->f_op->write_iter) 1081 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1082 1083 if (!lo->workqueue) { 1084 lo->workqueue = alloc_workqueue("loop%d", 1085 WQ_UNBOUND | WQ_FREEZABLE, 1086 0, lo->lo_number); 1087 if (!lo->workqueue) { 1088 error = -ENOMEM; 1089 goto out_unlock; 1090 } 1091 } 1092 1093 /* suppress uevents while reconfiguring the device */ 1094 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1095 1096 disk_force_media_change(lo->lo_disk); 1097 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1098 1099 lo->lo_device = bdev; 1100 loop_assign_backing_file(lo, file); 1101 1102 lim = queue_limits_start_update(lo->lo_queue); 1103 loop_update_limits(lo, &lim, config->block_size); 1104 /* No need to freeze the queue as the device isn't bound yet. */ 1105 error = queue_limits_commit_update(lo->lo_queue, &lim); 1106 if (error) 1107 goto out_unlock; 1108 1109 /* 1110 * We might switch to direct I/O mode for the loop device, write back 1111 * all dirty data the page cache now that so that the individual I/O 1112 * operations don't have to do that. 1113 */ 1114 vfs_fsync(file, 0); 1115 1116 loop_update_dio(lo); 1117 loop_sysfs_init(lo); 1118 1119 size = get_loop_size(lo, file); 1120 loop_set_size(lo, size); 1121 1122 /* Order wrt reading lo_state in loop_validate_file(). */ 1123 wmb(); 1124 1125 lo->lo_state = Lo_bound; 1126 if (part_shift) 1127 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1128 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1129 if (partscan) 1130 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1131 1132 /* enable and uncork uevent now that we are done */ 1133 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1134 1135 loop_global_unlock(lo, is_loop); 1136 if (partscan) 1137 loop_reread_partitions(lo); 1138 1139 if (!(mode & BLK_OPEN_EXCL)) 1140 bd_abort_claiming(bdev, loop_configure); 1141 1142 return 0; 1143 1144 out_unlock: 1145 loop_global_unlock(lo, is_loop); 1146 out_bdev: 1147 if (!(mode & BLK_OPEN_EXCL)) 1148 bd_abort_claiming(bdev, loop_configure); 1149 out_putf: 1150 fput(file); 1151 /* This is safe: open() is still holding a reference. */ 1152 module_put(THIS_MODULE); 1153 return error; 1154 } 1155 1156 static void __loop_clr_fd(struct loop_device *lo) 1157 { 1158 struct queue_limits lim; 1159 struct file *filp; 1160 gfp_t gfp = lo->old_gfp_mask; 1161 1162 spin_lock_irq(&lo->lo_lock); 1163 filp = lo->lo_backing_file; 1164 lo->lo_backing_file = NULL; 1165 spin_unlock_irq(&lo->lo_lock); 1166 1167 lo->lo_device = NULL; 1168 lo->lo_offset = 0; 1169 lo->lo_sizelimit = 0; 1170 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1171 1172 /* 1173 * Reset the block size to the default. 1174 * 1175 * No queue freezing needed because this is called from the final 1176 * ->release call only, so there can't be any outstanding I/O. 1177 */ 1178 lim = queue_limits_start_update(lo->lo_queue); 1179 lim.logical_block_size = SECTOR_SIZE; 1180 lim.physical_block_size = SECTOR_SIZE; 1181 lim.io_min = SECTOR_SIZE; 1182 queue_limits_commit_update(lo->lo_queue, &lim); 1183 1184 invalidate_disk(lo->lo_disk); 1185 loop_sysfs_exit(lo); 1186 /* let user-space know about this change */ 1187 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1188 mapping_set_gfp_mask(filp->f_mapping, gfp); 1189 /* This is safe: open() is still holding a reference. */ 1190 module_put(THIS_MODULE); 1191 1192 disk_force_media_change(lo->lo_disk); 1193 1194 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1195 int err; 1196 1197 /* 1198 * open_mutex has been held already in release path, so don't 1199 * acquire it if this function is called in such case. 1200 * 1201 * If the reread partition isn't from release path, lo_refcnt 1202 * must be at least one and it can only become zero when the 1203 * current holder is released. 1204 */ 1205 err = bdev_disk_changed(lo->lo_disk, false); 1206 if (err) 1207 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1208 __func__, lo->lo_number, err); 1209 /* Device is gone, no point in returning error */ 1210 } 1211 1212 /* 1213 * lo->lo_state is set to Lo_unbound here after above partscan has 1214 * finished. There cannot be anybody else entering __loop_clr_fd() as 1215 * Lo_rundown state protects us from all the other places trying to 1216 * change the 'lo' device. 1217 */ 1218 lo->lo_flags = 0; 1219 if (!part_shift) 1220 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1221 mutex_lock(&lo->lo_mutex); 1222 lo->lo_state = Lo_unbound; 1223 mutex_unlock(&lo->lo_mutex); 1224 1225 /* 1226 * Need not hold lo_mutex to fput backing file. Calling fput holding 1227 * lo_mutex triggers a circular lock dependency possibility warning as 1228 * fput can take open_mutex which is usually taken before lo_mutex. 1229 */ 1230 fput(filp); 1231 } 1232 1233 static int loop_clr_fd(struct loop_device *lo) 1234 { 1235 int err; 1236 1237 /* 1238 * Since lo_ioctl() is called without locks held, it is possible that 1239 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1240 * 1241 * Therefore, use global lock when setting Lo_rundown state in order to 1242 * make sure that loop_validate_file() will fail if the "struct file" 1243 * which loop_configure()/loop_change_fd() found via fget() was this 1244 * loop device. 1245 */ 1246 err = loop_global_lock_killable(lo, true); 1247 if (err) 1248 return err; 1249 if (lo->lo_state != Lo_bound) { 1250 loop_global_unlock(lo, true); 1251 return -ENXIO; 1252 } 1253 /* 1254 * Mark the device for removing the backing device on last close. 1255 * If we are the only opener, also switch the state to roundown here to 1256 * prevent new openers from coming in. 1257 */ 1258 1259 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1260 if (disk_openers(lo->lo_disk) == 1) 1261 lo->lo_state = Lo_rundown; 1262 loop_global_unlock(lo, true); 1263 1264 return 0; 1265 } 1266 1267 static int 1268 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1269 { 1270 int err; 1271 bool partscan = false; 1272 bool size_changed = false; 1273 unsigned int memflags; 1274 1275 err = mutex_lock_killable(&lo->lo_mutex); 1276 if (err) 1277 return err; 1278 if (lo->lo_state != Lo_bound) { 1279 err = -ENXIO; 1280 goto out_unlock; 1281 } 1282 1283 if (lo->lo_offset != info->lo_offset || 1284 lo->lo_sizelimit != info->lo_sizelimit) { 1285 size_changed = true; 1286 sync_blockdev(lo->lo_device); 1287 invalidate_bdev(lo->lo_device); 1288 } 1289 1290 /* I/O needs to be drained before changing lo_offset or lo_sizelimit */ 1291 memflags = blk_mq_freeze_queue(lo->lo_queue); 1292 1293 err = loop_set_status_from_info(lo, info); 1294 if (err) 1295 goto out_unfreeze; 1296 1297 partscan = !(lo->lo_flags & LO_FLAGS_PARTSCAN) && 1298 (info->lo_flags & LO_FLAGS_PARTSCAN); 1299 1300 lo->lo_flags &= ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1301 lo->lo_flags |= (info->lo_flags & LOOP_SET_STATUS_SETTABLE_FLAGS); 1302 1303 if (size_changed) { 1304 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1305 lo->lo_backing_file); 1306 loop_set_size(lo, new_size); 1307 } 1308 1309 /* update the direct I/O flag if lo_offset changed */ 1310 loop_update_dio(lo); 1311 1312 out_unfreeze: 1313 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1314 if (partscan) 1315 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1316 out_unlock: 1317 mutex_unlock(&lo->lo_mutex); 1318 if (partscan) 1319 loop_reread_partitions(lo); 1320 1321 return err; 1322 } 1323 1324 static int 1325 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1326 { 1327 struct path path; 1328 struct kstat stat; 1329 int ret; 1330 1331 ret = mutex_lock_killable(&lo->lo_mutex); 1332 if (ret) 1333 return ret; 1334 if (lo->lo_state != Lo_bound) { 1335 mutex_unlock(&lo->lo_mutex); 1336 return -ENXIO; 1337 } 1338 1339 memset(info, 0, sizeof(*info)); 1340 info->lo_number = lo->lo_number; 1341 info->lo_offset = lo->lo_offset; 1342 info->lo_sizelimit = lo->lo_sizelimit; 1343 info->lo_flags = lo->lo_flags; 1344 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1345 1346 /* Drop lo_mutex while we call into the filesystem. */ 1347 path = lo->lo_backing_file->f_path; 1348 path_get(&path); 1349 mutex_unlock(&lo->lo_mutex); 1350 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1351 if (!ret) { 1352 info->lo_device = huge_encode_dev(stat.dev); 1353 info->lo_inode = stat.ino; 1354 info->lo_rdevice = huge_encode_dev(stat.rdev); 1355 } 1356 path_put(&path); 1357 return ret; 1358 } 1359 1360 static void 1361 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1362 { 1363 memset(info64, 0, sizeof(*info64)); 1364 info64->lo_number = info->lo_number; 1365 info64->lo_device = info->lo_device; 1366 info64->lo_inode = info->lo_inode; 1367 info64->lo_rdevice = info->lo_rdevice; 1368 info64->lo_offset = info->lo_offset; 1369 info64->lo_sizelimit = 0; 1370 info64->lo_flags = info->lo_flags; 1371 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1372 } 1373 1374 static int 1375 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1376 { 1377 memset(info, 0, sizeof(*info)); 1378 info->lo_number = info64->lo_number; 1379 info->lo_device = info64->lo_device; 1380 info->lo_inode = info64->lo_inode; 1381 info->lo_rdevice = info64->lo_rdevice; 1382 info->lo_offset = info64->lo_offset; 1383 info->lo_flags = info64->lo_flags; 1384 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1385 1386 /* error in case values were truncated */ 1387 if (info->lo_device != info64->lo_device || 1388 info->lo_rdevice != info64->lo_rdevice || 1389 info->lo_inode != info64->lo_inode || 1390 info->lo_offset != info64->lo_offset) 1391 return -EOVERFLOW; 1392 1393 return 0; 1394 } 1395 1396 static int 1397 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1398 { 1399 struct loop_info info; 1400 struct loop_info64 info64; 1401 1402 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1403 return -EFAULT; 1404 loop_info64_from_old(&info, &info64); 1405 return loop_set_status(lo, &info64); 1406 } 1407 1408 static int 1409 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1410 { 1411 struct loop_info64 info64; 1412 1413 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1414 return -EFAULT; 1415 return loop_set_status(lo, &info64); 1416 } 1417 1418 static int 1419 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1420 struct loop_info info; 1421 struct loop_info64 info64; 1422 int err; 1423 1424 if (!arg) 1425 return -EINVAL; 1426 err = loop_get_status(lo, &info64); 1427 if (!err) 1428 err = loop_info64_to_old(&info64, &info); 1429 if (!err && copy_to_user(arg, &info, sizeof(info))) 1430 err = -EFAULT; 1431 1432 return err; 1433 } 1434 1435 static int 1436 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1437 struct loop_info64 info64; 1438 int err; 1439 1440 if (!arg) 1441 return -EINVAL; 1442 err = loop_get_status(lo, &info64); 1443 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1444 err = -EFAULT; 1445 1446 return err; 1447 } 1448 1449 static int loop_set_capacity(struct loop_device *lo) 1450 { 1451 loff_t size; 1452 1453 if (unlikely(lo->lo_state != Lo_bound)) 1454 return -ENXIO; 1455 1456 size = get_loop_size(lo, lo->lo_backing_file); 1457 loop_set_size(lo, size); 1458 1459 return 0; 1460 } 1461 1462 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1463 { 1464 bool use_dio = !!arg; 1465 unsigned int memflags; 1466 1467 if (lo->lo_state != Lo_bound) 1468 return -ENXIO; 1469 if (use_dio == !!(lo->lo_flags & LO_FLAGS_DIRECT_IO)) 1470 return 0; 1471 1472 if (use_dio) { 1473 if (!lo_can_use_dio(lo)) 1474 return -EINVAL; 1475 /* flush dirty pages before starting to use direct I/O */ 1476 vfs_fsync(lo->lo_backing_file, 0); 1477 } 1478 1479 memflags = blk_mq_freeze_queue(lo->lo_queue); 1480 if (use_dio) 1481 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 1482 else 1483 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 1484 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1485 return 0; 1486 } 1487 1488 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1489 { 1490 struct queue_limits lim; 1491 unsigned int memflags; 1492 int err = 0; 1493 1494 if (lo->lo_state != Lo_bound) 1495 return -ENXIO; 1496 1497 if (lo->lo_queue->limits.logical_block_size == arg) 1498 return 0; 1499 1500 sync_blockdev(lo->lo_device); 1501 invalidate_bdev(lo->lo_device); 1502 1503 lim = queue_limits_start_update(lo->lo_queue); 1504 loop_update_limits(lo, &lim, arg); 1505 1506 memflags = blk_mq_freeze_queue(lo->lo_queue); 1507 err = queue_limits_commit_update(lo->lo_queue, &lim); 1508 loop_update_dio(lo); 1509 blk_mq_unfreeze_queue(lo->lo_queue, memflags); 1510 1511 return err; 1512 } 1513 1514 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1515 unsigned long arg) 1516 { 1517 int err; 1518 1519 err = mutex_lock_killable(&lo->lo_mutex); 1520 if (err) 1521 return err; 1522 switch (cmd) { 1523 case LOOP_SET_CAPACITY: 1524 err = loop_set_capacity(lo); 1525 break; 1526 case LOOP_SET_DIRECT_IO: 1527 err = loop_set_dio(lo, arg); 1528 break; 1529 case LOOP_SET_BLOCK_SIZE: 1530 err = loop_set_block_size(lo, arg); 1531 break; 1532 default: 1533 err = -EINVAL; 1534 } 1535 mutex_unlock(&lo->lo_mutex); 1536 return err; 1537 } 1538 1539 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1540 unsigned int cmd, unsigned long arg) 1541 { 1542 struct loop_device *lo = bdev->bd_disk->private_data; 1543 void __user *argp = (void __user *) arg; 1544 int err; 1545 1546 switch (cmd) { 1547 case LOOP_SET_FD: { 1548 /* 1549 * Legacy case - pass in a zeroed out struct loop_config with 1550 * only the file descriptor set , which corresponds with the 1551 * default parameters we'd have used otherwise. 1552 */ 1553 struct loop_config config; 1554 1555 memset(&config, 0, sizeof(config)); 1556 config.fd = arg; 1557 1558 return loop_configure(lo, mode, bdev, &config); 1559 } 1560 case LOOP_CONFIGURE: { 1561 struct loop_config config; 1562 1563 if (copy_from_user(&config, argp, sizeof(config))) 1564 return -EFAULT; 1565 1566 return loop_configure(lo, mode, bdev, &config); 1567 } 1568 case LOOP_CHANGE_FD: 1569 return loop_change_fd(lo, bdev, arg); 1570 case LOOP_CLR_FD: 1571 return loop_clr_fd(lo); 1572 case LOOP_SET_STATUS: 1573 err = -EPERM; 1574 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1575 err = loop_set_status_old(lo, argp); 1576 break; 1577 case LOOP_GET_STATUS: 1578 return loop_get_status_old(lo, argp); 1579 case LOOP_SET_STATUS64: 1580 err = -EPERM; 1581 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1582 err = loop_set_status64(lo, argp); 1583 break; 1584 case LOOP_GET_STATUS64: 1585 return loop_get_status64(lo, argp); 1586 case LOOP_SET_CAPACITY: 1587 case LOOP_SET_DIRECT_IO: 1588 case LOOP_SET_BLOCK_SIZE: 1589 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1590 return -EPERM; 1591 fallthrough; 1592 default: 1593 err = lo_simple_ioctl(lo, cmd, arg); 1594 break; 1595 } 1596 1597 return err; 1598 } 1599 1600 #ifdef CONFIG_COMPAT 1601 struct compat_loop_info { 1602 compat_int_t lo_number; /* ioctl r/o */ 1603 compat_dev_t lo_device; /* ioctl r/o */ 1604 compat_ulong_t lo_inode; /* ioctl r/o */ 1605 compat_dev_t lo_rdevice; /* ioctl r/o */ 1606 compat_int_t lo_offset; 1607 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1608 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1609 compat_int_t lo_flags; /* ioctl r/o */ 1610 char lo_name[LO_NAME_SIZE]; 1611 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1612 compat_ulong_t lo_init[2]; 1613 char reserved[4]; 1614 }; 1615 1616 /* 1617 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1618 * - noinlined to reduce stack space usage in main part of driver 1619 */ 1620 static noinline int 1621 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1622 struct loop_info64 *info64) 1623 { 1624 struct compat_loop_info info; 1625 1626 if (copy_from_user(&info, arg, sizeof(info))) 1627 return -EFAULT; 1628 1629 memset(info64, 0, sizeof(*info64)); 1630 info64->lo_number = info.lo_number; 1631 info64->lo_device = info.lo_device; 1632 info64->lo_inode = info.lo_inode; 1633 info64->lo_rdevice = info.lo_rdevice; 1634 info64->lo_offset = info.lo_offset; 1635 info64->lo_sizelimit = 0; 1636 info64->lo_flags = info.lo_flags; 1637 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1638 return 0; 1639 } 1640 1641 /* 1642 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1643 * - noinlined to reduce stack space usage in main part of driver 1644 */ 1645 static noinline int 1646 loop_info64_to_compat(const struct loop_info64 *info64, 1647 struct compat_loop_info __user *arg) 1648 { 1649 struct compat_loop_info info; 1650 1651 memset(&info, 0, sizeof(info)); 1652 info.lo_number = info64->lo_number; 1653 info.lo_device = info64->lo_device; 1654 info.lo_inode = info64->lo_inode; 1655 info.lo_rdevice = info64->lo_rdevice; 1656 info.lo_offset = info64->lo_offset; 1657 info.lo_flags = info64->lo_flags; 1658 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1659 1660 /* error in case values were truncated */ 1661 if (info.lo_device != info64->lo_device || 1662 info.lo_rdevice != info64->lo_rdevice || 1663 info.lo_inode != info64->lo_inode || 1664 info.lo_offset != info64->lo_offset) 1665 return -EOVERFLOW; 1666 1667 if (copy_to_user(arg, &info, sizeof(info))) 1668 return -EFAULT; 1669 return 0; 1670 } 1671 1672 static int 1673 loop_set_status_compat(struct loop_device *lo, 1674 const struct compat_loop_info __user *arg) 1675 { 1676 struct loop_info64 info64; 1677 int ret; 1678 1679 ret = loop_info64_from_compat(arg, &info64); 1680 if (ret < 0) 1681 return ret; 1682 return loop_set_status(lo, &info64); 1683 } 1684 1685 static int 1686 loop_get_status_compat(struct loop_device *lo, 1687 struct compat_loop_info __user *arg) 1688 { 1689 struct loop_info64 info64; 1690 int err; 1691 1692 if (!arg) 1693 return -EINVAL; 1694 err = loop_get_status(lo, &info64); 1695 if (!err) 1696 err = loop_info64_to_compat(&info64, arg); 1697 return err; 1698 } 1699 1700 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1701 unsigned int cmd, unsigned long arg) 1702 { 1703 struct loop_device *lo = bdev->bd_disk->private_data; 1704 int err; 1705 1706 switch(cmd) { 1707 case LOOP_SET_STATUS: 1708 err = loop_set_status_compat(lo, 1709 (const struct compat_loop_info __user *)arg); 1710 break; 1711 case LOOP_GET_STATUS: 1712 err = loop_get_status_compat(lo, 1713 (struct compat_loop_info __user *)arg); 1714 break; 1715 case LOOP_SET_CAPACITY: 1716 case LOOP_CLR_FD: 1717 case LOOP_GET_STATUS64: 1718 case LOOP_SET_STATUS64: 1719 case LOOP_CONFIGURE: 1720 arg = (unsigned long) compat_ptr(arg); 1721 fallthrough; 1722 case LOOP_SET_FD: 1723 case LOOP_CHANGE_FD: 1724 case LOOP_SET_BLOCK_SIZE: 1725 case LOOP_SET_DIRECT_IO: 1726 err = lo_ioctl(bdev, mode, cmd, arg); 1727 break; 1728 default: 1729 err = -ENOIOCTLCMD; 1730 break; 1731 } 1732 return err; 1733 } 1734 #endif 1735 1736 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1737 { 1738 struct loop_device *lo = disk->private_data; 1739 int err; 1740 1741 err = mutex_lock_killable(&lo->lo_mutex); 1742 if (err) 1743 return err; 1744 1745 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1746 err = -ENXIO; 1747 mutex_unlock(&lo->lo_mutex); 1748 return err; 1749 } 1750 1751 static void lo_release(struct gendisk *disk) 1752 { 1753 struct loop_device *lo = disk->private_data; 1754 bool need_clear = false; 1755 1756 if (disk_openers(disk) > 0) 1757 return; 1758 /* 1759 * Clear the backing device information if this is the last close of 1760 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1761 * has been called. 1762 */ 1763 1764 mutex_lock(&lo->lo_mutex); 1765 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1766 lo->lo_state = Lo_rundown; 1767 1768 need_clear = (lo->lo_state == Lo_rundown); 1769 mutex_unlock(&lo->lo_mutex); 1770 1771 if (need_clear) 1772 __loop_clr_fd(lo); 1773 } 1774 1775 static void lo_free_disk(struct gendisk *disk) 1776 { 1777 struct loop_device *lo = disk->private_data; 1778 1779 if (lo->workqueue) 1780 destroy_workqueue(lo->workqueue); 1781 loop_free_idle_workers(lo, true); 1782 timer_shutdown_sync(&lo->timer); 1783 mutex_destroy(&lo->lo_mutex); 1784 kfree(lo); 1785 } 1786 1787 static const struct block_device_operations lo_fops = { 1788 .owner = THIS_MODULE, 1789 .open = lo_open, 1790 .release = lo_release, 1791 .ioctl = lo_ioctl, 1792 #ifdef CONFIG_COMPAT 1793 .compat_ioctl = lo_compat_ioctl, 1794 #endif 1795 .free_disk = lo_free_disk, 1796 }; 1797 1798 /* 1799 * And now the modules code and kernel interface. 1800 */ 1801 1802 /* 1803 * If max_loop is specified, create that many devices upfront. 1804 * This also becomes a hard limit. If max_loop is not specified, 1805 * the default isn't a hard limit (as before commit 85c50197716c 1806 * changed the default value from 0 for max_loop=0 reasons), just 1807 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1808 * init time. Loop devices can be requested on-demand with the 1809 * /dev/loop-control interface, or be instantiated by accessing 1810 * a 'dead' device node. 1811 */ 1812 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1813 1814 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1815 static bool max_loop_specified; 1816 1817 static int max_loop_param_set_int(const char *val, 1818 const struct kernel_param *kp) 1819 { 1820 int ret; 1821 1822 ret = param_set_int(val, kp); 1823 if (ret < 0) 1824 return ret; 1825 1826 max_loop_specified = true; 1827 return 0; 1828 } 1829 1830 static const struct kernel_param_ops max_loop_param_ops = { 1831 .set = max_loop_param_set_int, 1832 .get = param_get_int, 1833 }; 1834 1835 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1836 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1837 #else 1838 module_param(max_loop, int, 0444); 1839 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1840 #endif 1841 1842 module_param(max_part, int, 0444); 1843 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1844 1845 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1846 1847 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1848 { 1849 int qd, ret; 1850 1851 ret = kstrtoint(s, 0, &qd); 1852 if (ret < 0) 1853 return ret; 1854 if (qd < 1) 1855 return -EINVAL; 1856 hw_queue_depth = qd; 1857 return 0; 1858 } 1859 1860 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1861 .set = loop_set_hw_queue_depth, 1862 .get = param_get_int, 1863 }; 1864 1865 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1866 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1867 1868 MODULE_DESCRIPTION("Loopback device support"); 1869 MODULE_LICENSE("GPL"); 1870 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1871 1872 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1873 const struct blk_mq_queue_data *bd) 1874 { 1875 struct request *rq = bd->rq; 1876 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1877 struct loop_device *lo = rq->q->queuedata; 1878 1879 blk_mq_start_request(rq); 1880 1881 if (lo->lo_state != Lo_bound) 1882 return BLK_STS_IOERR; 1883 1884 switch (req_op(rq)) { 1885 case REQ_OP_FLUSH: 1886 case REQ_OP_DISCARD: 1887 case REQ_OP_WRITE_ZEROES: 1888 cmd->use_aio = false; 1889 break; 1890 default: 1891 cmd->use_aio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1892 break; 1893 } 1894 1895 /* always use the first bio's css */ 1896 cmd->blkcg_css = NULL; 1897 cmd->memcg_css = NULL; 1898 #ifdef CONFIG_BLK_CGROUP 1899 if (rq->bio) { 1900 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1901 #ifdef CONFIG_MEMCG 1902 if (cmd->blkcg_css) { 1903 cmd->memcg_css = 1904 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1905 &memory_cgrp_subsys); 1906 } 1907 #endif 1908 } 1909 #endif 1910 loop_queue_work(lo, cmd); 1911 1912 return BLK_STS_OK; 1913 } 1914 1915 static void loop_handle_cmd(struct loop_cmd *cmd) 1916 { 1917 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1918 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1919 struct request *rq = blk_mq_rq_from_pdu(cmd); 1920 const bool write = op_is_write(req_op(rq)); 1921 struct loop_device *lo = rq->q->queuedata; 1922 int ret = 0; 1923 struct mem_cgroup *old_memcg = NULL; 1924 const bool use_aio = cmd->use_aio; 1925 1926 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1927 ret = -EIO; 1928 goto failed; 1929 } 1930 1931 if (cmd_blkcg_css) 1932 kthread_associate_blkcg(cmd_blkcg_css); 1933 if (cmd_memcg_css) 1934 old_memcg = set_active_memcg( 1935 mem_cgroup_from_css(cmd_memcg_css)); 1936 1937 /* 1938 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1939 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1940 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1941 * not yet been completed. 1942 */ 1943 ret = do_req_filebacked(lo, rq); 1944 1945 if (cmd_blkcg_css) 1946 kthread_associate_blkcg(NULL); 1947 1948 if (cmd_memcg_css) { 1949 set_active_memcg(old_memcg); 1950 css_put(cmd_memcg_css); 1951 } 1952 failed: 1953 /* complete non-aio request */ 1954 if (!use_aio || ret) { 1955 if (ret == -EOPNOTSUPP) 1956 cmd->ret = ret; 1957 else 1958 cmd->ret = ret ? -EIO : 0; 1959 if (likely(!blk_should_fake_timeout(rq->q))) 1960 blk_mq_complete_request(rq); 1961 } 1962 } 1963 1964 static void loop_process_work(struct loop_worker *worker, 1965 struct list_head *cmd_list, struct loop_device *lo) 1966 { 1967 int orig_flags = current->flags; 1968 struct loop_cmd *cmd; 1969 1970 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1971 spin_lock_irq(&lo->lo_work_lock); 1972 while (!list_empty(cmd_list)) { 1973 cmd = container_of( 1974 cmd_list->next, struct loop_cmd, list_entry); 1975 list_del(cmd_list->next); 1976 spin_unlock_irq(&lo->lo_work_lock); 1977 1978 loop_handle_cmd(cmd); 1979 cond_resched(); 1980 1981 spin_lock_irq(&lo->lo_work_lock); 1982 } 1983 1984 /* 1985 * We only add to the idle list if there are no pending cmds 1986 * *and* the worker will not run again which ensures that it 1987 * is safe to free any worker on the idle list 1988 */ 1989 if (worker && !work_pending(&worker->work)) { 1990 worker->last_ran_at = jiffies; 1991 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1992 loop_set_timer(lo); 1993 } 1994 spin_unlock_irq(&lo->lo_work_lock); 1995 current->flags = orig_flags; 1996 } 1997 1998 static void loop_workfn(struct work_struct *work) 1999 { 2000 struct loop_worker *worker = 2001 container_of(work, struct loop_worker, work); 2002 loop_process_work(worker, &worker->cmd_list, worker->lo); 2003 } 2004 2005 static void loop_rootcg_workfn(struct work_struct *work) 2006 { 2007 struct loop_device *lo = 2008 container_of(work, struct loop_device, rootcg_work); 2009 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 2010 } 2011 2012 static const struct blk_mq_ops loop_mq_ops = { 2013 .queue_rq = loop_queue_rq, 2014 .complete = lo_complete_rq, 2015 }; 2016 2017 static int loop_add(int i) 2018 { 2019 struct queue_limits lim = { 2020 /* 2021 * Random number picked from the historic block max_sectors cap. 2022 */ 2023 .max_hw_sectors = 2560u, 2024 }; 2025 struct loop_device *lo; 2026 struct gendisk *disk; 2027 int err; 2028 2029 err = -ENOMEM; 2030 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2031 if (!lo) 2032 goto out; 2033 lo->worker_tree = RB_ROOT; 2034 INIT_LIST_HEAD(&lo->idle_worker_list); 2035 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2036 lo->lo_state = Lo_unbound; 2037 2038 err = mutex_lock_killable(&loop_ctl_mutex); 2039 if (err) 2040 goto out_free_dev; 2041 2042 /* allocate id, if @id >= 0, we're requesting that specific id */ 2043 if (i >= 0) { 2044 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2045 if (err == -ENOSPC) 2046 err = -EEXIST; 2047 } else { 2048 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2049 } 2050 mutex_unlock(&loop_ctl_mutex); 2051 if (err < 0) 2052 goto out_free_dev; 2053 i = err; 2054 2055 lo->tag_set.ops = &loop_mq_ops; 2056 lo->tag_set.nr_hw_queues = 1; 2057 lo->tag_set.queue_depth = hw_queue_depth; 2058 lo->tag_set.numa_node = NUMA_NO_NODE; 2059 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2060 lo->tag_set.flags = BLK_MQ_F_STACKING | BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2061 lo->tag_set.driver_data = lo; 2062 2063 err = blk_mq_alloc_tag_set(&lo->tag_set); 2064 if (err) 2065 goto out_free_idr; 2066 2067 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2068 if (IS_ERR(disk)) { 2069 err = PTR_ERR(disk); 2070 goto out_cleanup_tags; 2071 } 2072 lo->lo_queue = lo->lo_disk->queue; 2073 2074 /* 2075 * Disable partition scanning by default. The in-kernel partition 2076 * scanning can be requested individually per-device during its 2077 * setup. Userspace can always add and remove partitions from all 2078 * devices. The needed partition minors are allocated from the 2079 * extended minor space, the main loop device numbers will continue 2080 * to match the loop minors, regardless of the number of partitions 2081 * used. 2082 * 2083 * If max_part is given, partition scanning is globally enabled for 2084 * all loop devices. The minors for the main loop devices will be 2085 * multiples of max_part. 2086 * 2087 * Note: Global-for-all-devices, set-only-at-init, read-only module 2088 * parameteters like 'max_loop' and 'max_part' make things needlessly 2089 * complicated, are too static, inflexible and may surprise 2090 * userspace tools. Parameters like this in general should be avoided. 2091 */ 2092 if (!part_shift) 2093 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2094 mutex_init(&lo->lo_mutex); 2095 lo->lo_number = i; 2096 spin_lock_init(&lo->lo_lock); 2097 spin_lock_init(&lo->lo_work_lock); 2098 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2099 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2100 disk->major = LOOP_MAJOR; 2101 disk->first_minor = i << part_shift; 2102 disk->minors = 1 << part_shift; 2103 disk->fops = &lo_fops; 2104 disk->private_data = lo; 2105 disk->queue = lo->lo_queue; 2106 disk->events = DISK_EVENT_MEDIA_CHANGE; 2107 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2108 sprintf(disk->disk_name, "loop%d", i); 2109 /* Make this loop device reachable from pathname. */ 2110 err = add_disk(disk); 2111 if (err) 2112 goto out_cleanup_disk; 2113 2114 /* Show this loop device. */ 2115 mutex_lock(&loop_ctl_mutex); 2116 lo->idr_visible = true; 2117 mutex_unlock(&loop_ctl_mutex); 2118 2119 return i; 2120 2121 out_cleanup_disk: 2122 put_disk(disk); 2123 out_cleanup_tags: 2124 blk_mq_free_tag_set(&lo->tag_set); 2125 out_free_idr: 2126 mutex_lock(&loop_ctl_mutex); 2127 idr_remove(&loop_index_idr, i); 2128 mutex_unlock(&loop_ctl_mutex); 2129 out_free_dev: 2130 kfree(lo); 2131 out: 2132 return err; 2133 } 2134 2135 static void loop_remove(struct loop_device *lo) 2136 { 2137 /* Make this loop device unreachable from pathname. */ 2138 del_gendisk(lo->lo_disk); 2139 blk_mq_free_tag_set(&lo->tag_set); 2140 2141 mutex_lock(&loop_ctl_mutex); 2142 idr_remove(&loop_index_idr, lo->lo_number); 2143 mutex_unlock(&loop_ctl_mutex); 2144 2145 put_disk(lo->lo_disk); 2146 } 2147 2148 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2149 static void loop_probe(dev_t dev) 2150 { 2151 int idx = MINOR(dev) >> part_shift; 2152 2153 if (max_loop_specified && max_loop && idx >= max_loop) 2154 return; 2155 loop_add(idx); 2156 } 2157 #else 2158 #define loop_probe NULL 2159 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2160 2161 static int loop_control_remove(int idx) 2162 { 2163 struct loop_device *lo; 2164 int ret; 2165 2166 if (idx < 0) { 2167 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2168 return -EINVAL; 2169 } 2170 2171 /* Hide this loop device for serialization. */ 2172 ret = mutex_lock_killable(&loop_ctl_mutex); 2173 if (ret) 2174 return ret; 2175 lo = idr_find(&loop_index_idr, idx); 2176 if (!lo || !lo->idr_visible) 2177 ret = -ENODEV; 2178 else 2179 lo->idr_visible = false; 2180 mutex_unlock(&loop_ctl_mutex); 2181 if (ret) 2182 return ret; 2183 2184 /* Check whether this loop device can be removed. */ 2185 ret = mutex_lock_killable(&lo->lo_mutex); 2186 if (ret) 2187 goto mark_visible; 2188 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2189 mutex_unlock(&lo->lo_mutex); 2190 ret = -EBUSY; 2191 goto mark_visible; 2192 } 2193 /* Mark this loop device as no more bound, but not quite unbound yet */ 2194 lo->lo_state = Lo_deleting; 2195 mutex_unlock(&lo->lo_mutex); 2196 2197 loop_remove(lo); 2198 return 0; 2199 2200 mark_visible: 2201 /* Show this loop device again. */ 2202 mutex_lock(&loop_ctl_mutex); 2203 lo->idr_visible = true; 2204 mutex_unlock(&loop_ctl_mutex); 2205 return ret; 2206 } 2207 2208 static int loop_control_get_free(int idx) 2209 { 2210 struct loop_device *lo; 2211 int id, ret; 2212 2213 ret = mutex_lock_killable(&loop_ctl_mutex); 2214 if (ret) 2215 return ret; 2216 idr_for_each_entry(&loop_index_idr, lo, id) { 2217 /* Hitting a race results in creating a new loop device which is harmless. */ 2218 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2219 goto found; 2220 } 2221 mutex_unlock(&loop_ctl_mutex); 2222 return loop_add(-1); 2223 found: 2224 mutex_unlock(&loop_ctl_mutex); 2225 return id; 2226 } 2227 2228 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2229 unsigned long parm) 2230 { 2231 switch (cmd) { 2232 case LOOP_CTL_ADD: 2233 return loop_add(parm); 2234 case LOOP_CTL_REMOVE: 2235 return loop_control_remove(parm); 2236 case LOOP_CTL_GET_FREE: 2237 return loop_control_get_free(parm); 2238 default: 2239 return -ENOSYS; 2240 } 2241 } 2242 2243 static const struct file_operations loop_ctl_fops = { 2244 .open = nonseekable_open, 2245 .unlocked_ioctl = loop_control_ioctl, 2246 .compat_ioctl = loop_control_ioctl, 2247 .owner = THIS_MODULE, 2248 .llseek = noop_llseek, 2249 }; 2250 2251 static struct miscdevice loop_misc = { 2252 .minor = LOOP_CTRL_MINOR, 2253 .name = "loop-control", 2254 .fops = &loop_ctl_fops, 2255 }; 2256 2257 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2258 MODULE_ALIAS("devname:loop-control"); 2259 2260 static int __init loop_init(void) 2261 { 2262 int i; 2263 int err; 2264 2265 part_shift = 0; 2266 if (max_part > 0) { 2267 part_shift = fls(max_part); 2268 2269 /* 2270 * Adjust max_part according to part_shift as it is exported 2271 * to user space so that user can decide correct minor number 2272 * if [s]he want to create more devices. 2273 * 2274 * Note that -1 is required because partition 0 is reserved 2275 * for the whole disk. 2276 */ 2277 max_part = (1UL << part_shift) - 1; 2278 } 2279 2280 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2281 err = -EINVAL; 2282 goto err_out; 2283 } 2284 2285 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2286 err = -EINVAL; 2287 goto err_out; 2288 } 2289 2290 err = misc_register(&loop_misc); 2291 if (err < 0) 2292 goto err_out; 2293 2294 2295 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2296 err = -EIO; 2297 goto misc_out; 2298 } 2299 2300 /* pre-create number of devices given by config or max_loop */ 2301 for (i = 0; i < max_loop; i++) 2302 loop_add(i); 2303 2304 printk(KERN_INFO "loop: module loaded\n"); 2305 return 0; 2306 2307 misc_out: 2308 misc_deregister(&loop_misc); 2309 err_out: 2310 return err; 2311 } 2312 2313 static void __exit loop_exit(void) 2314 { 2315 struct loop_device *lo; 2316 int id; 2317 2318 unregister_blkdev(LOOP_MAJOR, "loop"); 2319 misc_deregister(&loop_misc); 2320 2321 /* 2322 * There is no need to use loop_ctl_mutex here, for nobody else can 2323 * access loop_index_idr when this module is unloading (unless forced 2324 * module unloading is requested). If this is not a clean unloading, 2325 * we have no means to avoid kernel crash. 2326 */ 2327 idr_for_each_entry(&loop_index_idr, lo, id) 2328 loop_remove(lo); 2329 2330 idr_destroy(&loop_index_idr); 2331 } 2332 2333 module_init(loop_init); 2334 module_exit(loop_exit); 2335 2336 #ifndef MODULE 2337 static int __init max_loop_setup(char *str) 2338 { 2339 max_loop = simple_strtol(str, NULL, 0); 2340 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2341 max_loop_specified = true; 2342 #endif 2343 return 1; 2344 } 2345 2346 __setup("max_loop=", max_loop_setup); 2347 #endif 2348