xref: /linux/drivers/block/loop.c (revision c053784454550cf750399caa65482b31ffbe3c57)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h>		/* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 
79 #include <asm/uaccess.h>
80 
81 static DEFINE_MUTEX(loop_mutex);
82 static LIST_HEAD(loop_devices);
83 static DEFINE_MUTEX(loop_devices_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(raw_buf, KM_USER0);
105 	kunmap_atomic(loop_buf, KM_USER1);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(raw_buf, KM_USER0);
134 	kunmap_atomic(loop_buf, KM_USER1);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 	loff_t size, offset, loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	size = i_size_read(file->f_mapping->host);
169 	offset = lo->lo_offset;
170 	loopsize = size - offset;
171 	if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
172 		loopsize = lo->lo_sizelimit;
173 
174 	/*
175 	 * Unfortunately, if we want to do I/O on the device,
176 	 * the number of 512-byte sectors has to fit into a sector_t.
177 	 */
178 	return loopsize >> 9;
179 }
180 
181 static int
182 figure_loop_size(struct loop_device *lo)
183 {
184 	loff_t size = get_loop_size(lo, lo->lo_backing_file);
185 	sector_t x = (sector_t)size;
186 
187 	if (unlikely((loff_t)x != size))
188 		return -EFBIG;
189 
190 	set_capacity(lo->lo_disk, x);
191 	return 0;
192 }
193 
194 static inline int
195 lo_do_transfer(struct loop_device *lo, int cmd,
196 	       struct page *rpage, unsigned roffs,
197 	       struct page *lpage, unsigned loffs,
198 	       int size, sector_t rblock)
199 {
200 	if (unlikely(!lo->transfer))
201 		return 0;
202 
203 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
204 }
205 
206 /**
207  * do_lo_send_aops - helper for writing data to a loop device
208  *
209  * This is the fast version for backing filesystems which implement the address
210  * space operations write_begin and write_end.
211  */
212 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
213 		loff_t pos, struct page *unused)
214 {
215 	struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
216 	struct address_space *mapping = file->f_mapping;
217 	pgoff_t index;
218 	unsigned offset, bv_offs;
219 	int len, ret;
220 
221 	mutex_lock(&mapping->host->i_mutex);
222 	index = pos >> PAGE_CACHE_SHIFT;
223 	offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
224 	bv_offs = bvec->bv_offset;
225 	len = bvec->bv_len;
226 	while (len > 0) {
227 		sector_t IV;
228 		unsigned size, copied;
229 		int transfer_result;
230 		struct page *page;
231 		void *fsdata;
232 
233 		IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
234 		size = PAGE_CACHE_SIZE - offset;
235 		if (size > len)
236 			size = len;
237 
238 		ret = pagecache_write_begin(file, mapping, pos, size, 0,
239 							&page, &fsdata);
240 		if (ret)
241 			goto fail;
242 
243 		file_update_time(file);
244 
245 		transfer_result = lo_do_transfer(lo, WRITE, page, offset,
246 				bvec->bv_page, bv_offs, size, IV);
247 		copied = size;
248 		if (unlikely(transfer_result))
249 			copied = 0;
250 
251 		ret = pagecache_write_end(file, mapping, pos, size, copied,
252 							page, fsdata);
253 		if (ret < 0 || ret != copied)
254 			goto fail;
255 
256 		if (unlikely(transfer_result))
257 			goto fail;
258 
259 		bv_offs += copied;
260 		len -= copied;
261 		offset = 0;
262 		index++;
263 		pos += copied;
264 	}
265 	ret = 0;
266 out:
267 	mutex_unlock(&mapping->host->i_mutex);
268 	return ret;
269 fail:
270 	ret = -1;
271 	goto out;
272 }
273 
274 /**
275  * __do_lo_send_write - helper for writing data to a loop device
276  *
277  * This helper just factors out common code between do_lo_send_direct_write()
278  * and do_lo_send_write().
279  */
280 static int __do_lo_send_write(struct file *file,
281 		u8 *buf, const int len, loff_t pos)
282 {
283 	ssize_t bw;
284 	mm_segment_t old_fs = get_fs();
285 
286 	set_fs(get_ds());
287 	bw = file->f_op->write(file, buf, len, &pos);
288 	set_fs(old_fs);
289 	if (likely(bw == len))
290 		return 0;
291 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
292 			(unsigned long long)pos, len);
293 	if (bw >= 0)
294 		bw = -EIO;
295 	return bw;
296 }
297 
298 /**
299  * do_lo_send_direct_write - helper for writing data to a loop device
300  *
301  * This is the fast, non-transforming version for backing filesystems which do
302  * not implement the address space operations write_begin and write_end.
303  * It uses the write file operation which should be present on all writeable
304  * filesystems.
305  */
306 static int do_lo_send_direct_write(struct loop_device *lo,
307 		struct bio_vec *bvec, loff_t pos, struct page *page)
308 {
309 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
310 			kmap(bvec->bv_page) + bvec->bv_offset,
311 			bvec->bv_len, pos);
312 	kunmap(bvec->bv_page);
313 	cond_resched();
314 	return bw;
315 }
316 
317 /**
318  * do_lo_send_write - helper for writing data to a loop device
319  *
320  * This is the slow, transforming version for filesystems which do not
321  * implement the address space operations write_begin and write_end.  It
322  * uses the write file operation which should be present on all writeable
323  * filesystems.
324  *
325  * Using fops->write is slower than using aops->{prepare,commit}_write in the
326  * transforming case because we need to double buffer the data as we cannot do
327  * the transformations in place as we do not have direct access to the
328  * destination pages of the backing file.
329  */
330 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
331 		loff_t pos, struct page *page)
332 {
333 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
334 			bvec->bv_offset, bvec->bv_len, pos >> 9);
335 	if (likely(!ret))
336 		return __do_lo_send_write(lo->lo_backing_file,
337 				page_address(page), bvec->bv_len,
338 				pos);
339 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
340 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
341 	if (ret > 0)
342 		ret = -EIO;
343 	return ret;
344 }
345 
346 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
347 {
348 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
349 			struct page *page);
350 	struct bio_vec *bvec;
351 	struct page *page = NULL;
352 	int i, ret = 0;
353 
354 	do_lo_send = do_lo_send_aops;
355 	if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
356 		do_lo_send = do_lo_send_direct_write;
357 		if (lo->transfer != transfer_none) {
358 			page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
359 			if (unlikely(!page))
360 				goto fail;
361 			kmap(page);
362 			do_lo_send = do_lo_send_write;
363 		}
364 	}
365 	bio_for_each_segment(bvec, bio, i) {
366 		ret = do_lo_send(lo, bvec, pos, page);
367 		if (ret < 0)
368 			break;
369 		pos += bvec->bv_len;
370 	}
371 	if (page) {
372 		kunmap(page);
373 		__free_page(page);
374 	}
375 out:
376 	return ret;
377 fail:
378 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
379 	ret = -ENOMEM;
380 	goto out;
381 }
382 
383 struct lo_read_data {
384 	struct loop_device *lo;
385 	struct page *page;
386 	unsigned offset;
387 	int bsize;
388 };
389 
390 static int
391 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
392 		struct splice_desc *sd)
393 {
394 	struct lo_read_data *p = sd->u.data;
395 	struct loop_device *lo = p->lo;
396 	struct page *page = buf->page;
397 	sector_t IV;
398 	int size, ret;
399 
400 	ret = buf->ops->confirm(pipe, buf);
401 	if (unlikely(ret))
402 		return ret;
403 
404 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
405 							(buf->offset >> 9);
406 	size = sd->len;
407 	if (size > p->bsize)
408 		size = p->bsize;
409 
410 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
411 		printk(KERN_ERR "loop: transfer error block %ld\n",
412 		       page->index);
413 		size = -EINVAL;
414 	}
415 
416 	flush_dcache_page(p->page);
417 
418 	if (size > 0)
419 		p->offset += size;
420 
421 	return size;
422 }
423 
424 static int
425 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
426 {
427 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
428 }
429 
430 static int
431 do_lo_receive(struct loop_device *lo,
432 	      struct bio_vec *bvec, int bsize, loff_t pos)
433 {
434 	struct lo_read_data cookie;
435 	struct splice_desc sd;
436 	struct file *file;
437 	long retval;
438 
439 	cookie.lo = lo;
440 	cookie.page = bvec->bv_page;
441 	cookie.offset = bvec->bv_offset;
442 	cookie.bsize = bsize;
443 
444 	sd.len = 0;
445 	sd.total_len = bvec->bv_len;
446 	sd.flags = 0;
447 	sd.pos = pos;
448 	sd.u.data = &cookie;
449 
450 	file = lo->lo_backing_file;
451 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
452 
453 	if (retval < 0)
454 		return retval;
455 
456 	return 0;
457 }
458 
459 static int
460 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
461 {
462 	struct bio_vec *bvec;
463 	int i, ret = 0;
464 
465 	bio_for_each_segment(bvec, bio, i) {
466 		ret = do_lo_receive(lo, bvec, bsize, pos);
467 		if (ret < 0)
468 			break;
469 		pos += bvec->bv_len;
470 	}
471 	return ret;
472 }
473 
474 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
475 {
476 	loff_t pos;
477 	int ret;
478 
479 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
480 
481 	if (bio_rw(bio) == WRITE) {
482 		struct file *file = lo->lo_backing_file;
483 
484 		/* REQ_HARDBARRIER is deprecated */
485 		if (bio->bi_rw & REQ_HARDBARRIER) {
486 			ret = -EOPNOTSUPP;
487 			goto out;
488 		}
489 
490 		if (bio->bi_rw & REQ_FLUSH) {
491 			ret = vfs_fsync(file, 0);
492 			if (unlikely(ret && ret != -EINVAL)) {
493 				ret = -EIO;
494 				goto out;
495 			}
496 		}
497 
498 		ret = lo_send(lo, bio, pos);
499 
500 		if ((bio->bi_rw & REQ_FUA) && !ret) {
501 			ret = vfs_fsync(file, 0);
502 			if (unlikely(ret && ret != -EINVAL))
503 				ret = -EIO;
504 		}
505 	} else
506 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
507 
508 out:
509 	return ret;
510 }
511 
512 /*
513  * Add bio to back of pending list
514  */
515 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
516 {
517 	bio_list_add(&lo->lo_bio_list, bio);
518 }
519 
520 /*
521  * Grab first pending buffer
522  */
523 static struct bio *loop_get_bio(struct loop_device *lo)
524 {
525 	return bio_list_pop(&lo->lo_bio_list);
526 }
527 
528 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
529 {
530 	struct loop_device *lo = q->queuedata;
531 	int rw = bio_rw(old_bio);
532 
533 	if (rw == READA)
534 		rw = READ;
535 
536 	BUG_ON(!lo || (rw != READ && rw != WRITE));
537 
538 	spin_lock_irq(&lo->lo_lock);
539 	if (lo->lo_state != Lo_bound)
540 		goto out;
541 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
542 		goto out;
543 	loop_add_bio(lo, old_bio);
544 	wake_up(&lo->lo_event);
545 	spin_unlock_irq(&lo->lo_lock);
546 	return 0;
547 
548 out:
549 	spin_unlock_irq(&lo->lo_lock);
550 	bio_io_error(old_bio);
551 	return 0;
552 }
553 
554 /*
555  * kick off io on the underlying address space
556  */
557 static void loop_unplug(struct request_queue *q)
558 {
559 	struct loop_device *lo = q->queuedata;
560 
561 	queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
562 	blk_run_address_space(lo->lo_backing_file->f_mapping);
563 }
564 
565 struct switch_request {
566 	struct file *file;
567 	struct completion wait;
568 };
569 
570 static void do_loop_switch(struct loop_device *, struct switch_request *);
571 
572 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
573 {
574 	if (unlikely(!bio->bi_bdev)) {
575 		do_loop_switch(lo, bio->bi_private);
576 		bio_put(bio);
577 	} else {
578 		int ret = do_bio_filebacked(lo, bio);
579 		bio_endio(bio, ret);
580 	}
581 }
582 
583 /*
584  * worker thread that handles reads/writes to file backed loop devices,
585  * to avoid blocking in our make_request_fn. it also does loop decrypting
586  * on reads for block backed loop, as that is too heavy to do from
587  * b_end_io context where irqs may be disabled.
588  *
589  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
590  * calling kthread_stop().  Therefore once kthread_should_stop() is
591  * true, make_request will not place any more requests.  Therefore
592  * once kthread_should_stop() is true and lo_bio is NULL, we are
593  * done with the loop.
594  */
595 static int loop_thread(void *data)
596 {
597 	struct loop_device *lo = data;
598 	struct bio *bio;
599 
600 	set_user_nice(current, -20);
601 
602 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
603 
604 		wait_event_interruptible(lo->lo_event,
605 				!bio_list_empty(&lo->lo_bio_list) ||
606 				kthread_should_stop());
607 
608 		if (bio_list_empty(&lo->lo_bio_list))
609 			continue;
610 		spin_lock_irq(&lo->lo_lock);
611 		bio = loop_get_bio(lo);
612 		spin_unlock_irq(&lo->lo_lock);
613 
614 		BUG_ON(!bio);
615 		loop_handle_bio(lo, bio);
616 	}
617 
618 	return 0;
619 }
620 
621 /*
622  * loop_switch performs the hard work of switching a backing store.
623  * First it needs to flush existing IO, it does this by sending a magic
624  * BIO down the pipe. The completion of this BIO does the actual switch.
625  */
626 static int loop_switch(struct loop_device *lo, struct file *file)
627 {
628 	struct switch_request w;
629 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
630 	if (!bio)
631 		return -ENOMEM;
632 	init_completion(&w.wait);
633 	w.file = file;
634 	bio->bi_private = &w;
635 	bio->bi_bdev = NULL;
636 	loop_make_request(lo->lo_queue, bio);
637 	wait_for_completion(&w.wait);
638 	return 0;
639 }
640 
641 /*
642  * Helper to flush the IOs in loop, but keeping loop thread running
643  */
644 static int loop_flush(struct loop_device *lo)
645 {
646 	/* loop not yet configured, no running thread, nothing to flush */
647 	if (!lo->lo_thread)
648 		return 0;
649 
650 	return loop_switch(lo, NULL);
651 }
652 
653 /*
654  * Do the actual switch; called from the BIO completion routine
655  */
656 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
657 {
658 	struct file *file = p->file;
659 	struct file *old_file = lo->lo_backing_file;
660 	struct address_space *mapping;
661 
662 	/* if no new file, only flush of queued bios requested */
663 	if (!file)
664 		goto out;
665 
666 	mapping = file->f_mapping;
667 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
668 	lo->lo_backing_file = file;
669 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
670 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
671 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
672 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
673 out:
674 	complete(&p->wait);
675 }
676 
677 
678 /*
679  * loop_change_fd switched the backing store of a loopback device to
680  * a new file. This is useful for operating system installers to free up
681  * the original file and in High Availability environments to switch to
682  * an alternative location for the content in case of server meltdown.
683  * This can only work if the loop device is used read-only, and if the
684  * new backing store is the same size and type as the old backing store.
685  */
686 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
687 			  unsigned int arg)
688 {
689 	struct file	*file, *old_file;
690 	struct inode	*inode;
691 	int		error;
692 
693 	error = -ENXIO;
694 	if (lo->lo_state != Lo_bound)
695 		goto out;
696 
697 	/* the loop device has to be read-only */
698 	error = -EINVAL;
699 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
700 		goto out;
701 
702 	error = -EBADF;
703 	file = fget(arg);
704 	if (!file)
705 		goto out;
706 
707 	inode = file->f_mapping->host;
708 	old_file = lo->lo_backing_file;
709 
710 	error = -EINVAL;
711 
712 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
713 		goto out_putf;
714 
715 	/* size of the new backing store needs to be the same */
716 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
717 		goto out_putf;
718 
719 	/* and ... switch */
720 	error = loop_switch(lo, file);
721 	if (error)
722 		goto out_putf;
723 
724 	fput(old_file);
725 	if (max_part > 0)
726 		ioctl_by_bdev(bdev, BLKRRPART, 0);
727 	return 0;
728 
729  out_putf:
730 	fput(file);
731  out:
732 	return error;
733 }
734 
735 static inline int is_loop_device(struct file *file)
736 {
737 	struct inode *i = file->f_mapping->host;
738 
739 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
740 }
741 
742 /* loop sysfs attributes */
743 
744 static ssize_t loop_attr_show(struct device *dev, char *page,
745 			      ssize_t (*callback)(struct loop_device *, char *))
746 {
747 	struct loop_device *l, *lo = NULL;
748 
749 	mutex_lock(&loop_devices_mutex);
750 	list_for_each_entry(l, &loop_devices, lo_list)
751 		if (disk_to_dev(l->lo_disk) == dev) {
752 			lo = l;
753 			break;
754 		}
755 	mutex_unlock(&loop_devices_mutex);
756 
757 	return lo ? callback(lo, page) : -EIO;
758 }
759 
760 #define LOOP_ATTR_RO(_name)						\
761 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
762 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
763 				struct device_attribute *attr, char *b)	\
764 {									\
765 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
766 }									\
767 static struct device_attribute loop_attr_##_name =			\
768 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
769 
770 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
771 {
772 	ssize_t ret;
773 	char *p = NULL;
774 
775 	mutex_lock(&lo->lo_ctl_mutex);
776 	if (lo->lo_backing_file)
777 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
778 	mutex_unlock(&lo->lo_ctl_mutex);
779 
780 	if (IS_ERR_OR_NULL(p))
781 		ret = PTR_ERR(p);
782 	else {
783 		ret = strlen(p);
784 		memmove(buf, p, ret);
785 		buf[ret++] = '\n';
786 		buf[ret] = 0;
787 	}
788 
789 	return ret;
790 }
791 
792 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
793 {
794 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
795 }
796 
797 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
798 {
799 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
800 }
801 
802 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
803 {
804 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
805 
806 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
807 }
808 
809 LOOP_ATTR_RO(backing_file);
810 LOOP_ATTR_RO(offset);
811 LOOP_ATTR_RO(sizelimit);
812 LOOP_ATTR_RO(autoclear);
813 
814 static struct attribute *loop_attrs[] = {
815 	&loop_attr_backing_file.attr,
816 	&loop_attr_offset.attr,
817 	&loop_attr_sizelimit.attr,
818 	&loop_attr_autoclear.attr,
819 	NULL,
820 };
821 
822 static struct attribute_group loop_attribute_group = {
823 	.name = "loop",
824 	.attrs= loop_attrs,
825 };
826 
827 static int loop_sysfs_init(struct loop_device *lo)
828 {
829 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
830 				  &loop_attribute_group);
831 }
832 
833 static void loop_sysfs_exit(struct loop_device *lo)
834 {
835 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
836 			   &loop_attribute_group);
837 }
838 
839 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
840 		       struct block_device *bdev, unsigned int arg)
841 {
842 	struct file	*file, *f;
843 	struct inode	*inode;
844 	struct address_space *mapping;
845 	unsigned lo_blocksize;
846 	int		lo_flags = 0;
847 	int		error;
848 	loff_t		size;
849 
850 	/* This is safe, since we have a reference from open(). */
851 	__module_get(THIS_MODULE);
852 
853 	error = -EBADF;
854 	file = fget(arg);
855 	if (!file)
856 		goto out;
857 
858 	error = -EBUSY;
859 	if (lo->lo_state != Lo_unbound)
860 		goto out_putf;
861 
862 	/* Avoid recursion */
863 	f = file;
864 	while (is_loop_device(f)) {
865 		struct loop_device *l;
866 
867 		if (f->f_mapping->host->i_bdev == bdev)
868 			goto out_putf;
869 
870 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
871 		if (l->lo_state == Lo_unbound) {
872 			error = -EINVAL;
873 			goto out_putf;
874 		}
875 		f = l->lo_backing_file;
876 	}
877 
878 	mapping = file->f_mapping;
879 	inode = mapping->host;
880 
881 	if (!(file->f_mode & FMODE_WRITE))
882 		lo_flags |= LO_FLAGS_READ_ONLY;
883 
884 	error = -EINVAL;
885 	if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
886 		const struct address_space_operations *aops = mapping->a_ops;
887 
888 		if (aops->write_begin)
889 			lo_flags |= LO_FLAGS_USE_AOPS;
890 		if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
891 			lo_flags |= LO_FLAGS_READ_ONLY;
892 
893 		lo_blocksize = S_ISBLK(inode->i_mode) ?
894 			inode->i_bdev->bd_block_size : PAGE_SIZE;
895 
896 		error = 0;
897 	} else {
898 		goto out_putf;
899 	}
900 
901 	size = get_loop_size(lo, file);
902 
903 	if ((loff_t)(sector_t)size != size) {
904 		error = -EFBIG;
905 		goto out_putf;
906 	}
907 
908 	if (!(mode & FMODE_WRITE))
909 		lo_flags |= LO_FLAGS_READ_ONLY;
910 
911 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
912 
913 	lo->lo_blocksize = lo_blocksize;
914 	lo->lo_device = bdev;
915 	lo->lo_flags = lo_flags;
916 	lo->lo_backing_file = file;
917 	lo->transfer = transfer_none;
918 	lo->ioctl = NULL;
919 	lo->lo_sizelimit = 0;
920 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
921 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
922 
923 	bio_list_init(&lo->lo_bio_list);
924 
925 	/*
926 	 * set queue make_request_fn, and add limits based on lower level
927 	 * device
928 	 */
929 	blk_queue_make_request(lo->lo_queue, loop_make_request);
930 	lo->lo_queue->queuedata = lo;
931 	lo->lo_queue->unplug_fn = loop_unplug;
932 
933 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
934 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
935 
936 	set_capacity(lo->lo_disk, size);
937 	bd_set_size(bdev, size << 9);
938 	loop_sysfs_init(lo);
939 	/* let user-space know about the new size */
940 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
941 
942 	set_blocksize(bdev, lo_blocksize);
943 
944 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
945 						lo->lo_number);
946 	if (IS_ERR(lo->lo_thread)) {
947 		error = PTR_ERR(lo->lo_thread);
948 		goto out_clr;
949 	}
950 	lo->lo_state = Lo_bound;
951 	wake_up_process(lo->lo_thread);
952 	if (max_part > 0)
953 		ioctl_by_bdev(bdev, BLKRRPART, 0);
954 	return 0;
955 
956 out_clr:
957 	loop_sysfs_exit(lo);
958 	lo->lo_thread = NULL;
959 	lo->lo_device = NULL;
960 	lo->lo_backing_file = NULL;
961 	lo->lo_flags = 0;
962 	set_capacity(lo->lo_disk, 0);
963 	invalidate_bdev(bdev);
964 	bd_set_size(bdev, 0);
965 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
966 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
967 	lo->lo_state = Lo_unbound;
968  out_putf:
969 	fput(file);
970  out:
971 	/* This is safe: open() is still holding a reference. */
972 	module_put(THIS_MODULE);
973 	return error;
974 }
975 
976 static int
977 loop_release_xfer(struct loop_device *lo)
978 {
979 	int err = 0;
980 	struct loop_func_table *xfer = lo->lo_encryption;
981 
982 	if (xfer) {
983 		if (xfer->release)
984 			err = xfer->release(lo);
985 		lo->transfer = NULL;
986 		lo->lo_encryption = NULL;
987 		module_put(xfer->owner);
988 	}
989 	return err;
990 }
991 
992 static int
993 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
994 	       const struct loop_info64 *i)
995 {
996 	int err = 0;
997 
998 	if (xfer) {
999 		struct module *owner = xfer->owner;
1000 
1001 		if (!try_module_get(owner))
1002 			return -EINVAL;
1003 		if (xfer->init)
1004 			err = xfer->init(lo, i);
1005 		if (err)
1006 			module_put(owner);
1007 		else
1008 			lo->lo_encryption = xfer;
1009 	}
1010 	return err;
1011 }
1012 
1013 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
1014 {
1015 	struct file *filp = lo->lo_backing_file;
1016 	gfp_t gfp = lo->old_gfp_mask;
1017 
1018 	if (lo->lo_state != Lo_bound)
1019 		return -ENXIO;
1020 
1021 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
1022 		return -EBUSY;
1023 
1024 	if (filp == NULL)
1025 		return -EINVAL;
1026 
1027 	spin_lock_irq(&lo->lo_lock);
1028 	lo->lo_state = Lo_rundown;
1029 	spin_unlock_irq(&lo->lo_lock);
1030 
1031 	kthread_stop(lo->lo_thread);
1032 
1033 	lo->lo_queue->unplug_fn = NULL;
1034 	lo->lo_backing_file = NULL;
1035 
1036 	loop_release_xfer(lo);
1037 	lo->transfer = NULL;
1038 	lo->ioctl = NULL;
1039 	lo->lo_device = NULL;
1040 	lo->lo_encryption = NULL;
1041 	lo->lo_offset = 0;
1042 	lo->lo_sizelimit = 0;
1043 	lo->lo_encrypt_key_size = 0;
1044 	lo->lo_flags = 0;
1045 	lo->lo_thread = NULL;
1046 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1047 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1048 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1049 	if (bdev)
1050 		invalidate_bdev(bdev);
1051 	set_capacity(lo->lo_disk, 0);
1052 	if (bdev) {
1053 		bd_set_size(bdev, 0);
1054 		loop_sysfs_exit(lo);
1055 		/* let user-space know about this change */
1056 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1057 	}
1058 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1059 	lo->lo_state = Lo_unbound;
1060 	/* This is safe: open() is still holding a reference. */
1061 	module_put(THIS_MODULE);
1062 	if (max_part > 0 && bdev)
1063 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1064 	mutex_unlock(&lo->lo_ctl_mutex);
1065 	/*
1066 	 * Need not hold lo_ctl_mutex to fput backing file.
1067 	 * Calling fput holding lo_ctl_mutex triggers a circular
1068 	 * lock dependency possibility warning as fput can take
1069 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1070 	 */
1071 	fput(filp);
1072 	return 0;
1073 }
1074 
1075 static int
1076 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1077 {
1078 	int err;
1079 	struct loop_func_table *xfer;
1080 	uid_t uid = current_uid();
1081 
1082 	if (lo->lo_encrypt_key_size &&
1083 	    lo->lo_key_owner != uid &&
1084 	    !capable(CAP_SYS_ADMIN))
1085 		return -EPERM;
1086 	if (lo->lo_state != Lo_bound)
1087 		return -ENXIO;
1088 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1089 		return -EINVAL;
1090 
1091 	err = loop_release_xfer(lo);
1092 	if (err)
1093 		return err;
1094 
1095 	if (info->lo_encrypt_type) {
1096 		unsigned int type = info->lo_encrypt_type;
1097 
1098 		if (type >= MAX_LO_CRYPT)
1099 			return -EINVAL;
1100 		xfer = xfer_funcs[type];
1101 		if (xfer == NULL)
1102 			return -EINVAL;
1103 	} else
1104 		xfer = NULL;
1105 
1106 	err = loop_init_xfer(lo, xfer, info);
1107 	if (err)
1108 		return err;
1109 
1110 	if (lo->lo_offset != info->lo_offset ||
1111 	    lo->lo_sizelimit != info->lo_sizelimit) {
1112 		lo->lo_offset = info->lo_offset;
1113 		lo->lo_sizelimit = info->lo_sizelimit;
1114 		if (figure_loop_size(lo))
1115 			return -EFBIG;
1116 	}
1117 
1118 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1119 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1120 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1121 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1122 
1123 	if (!xfer)
1124 		xfer = &none_funcs;
1125 	lo->transfer = xfer->transfer;
1126 	lo->ioctl = xfer->ioctl;
1127 
1128 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1129 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1130 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1131 
1132 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1133 	lo->lo_init[0] = info->lo_init[0];
1134 	lo->lo_init[1] = info->lo_init[1];
1135 	if (info->lo_encrypt_key_size) {
1136 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1137 		       info->lo_encrypt_key_size);
1138 		lo->lo_key_owner = uid;
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 static int
1145 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1146 {
1147 	struct file *file = lo->lo_backing_file;
1148 	struct kstat stat;
1149 	int error;
1150 
1151 	if (lo->lo_state != Lo_bound)
1152 		return -ENXIO;
1153 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1154 	if (error)
1155 		return error;
1156 	memset(info, 0, sizeof(*info));
1157 	info->lo_number = lo->lo_number;
1158 	info->lo_device = huge_encode_dev(stat.dev);
1159 	info->lo_inode = stat.ino;
1160 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1161 	info->lo_offset = lo->lo_offset;
1162 	info->lo_sizelimit = lo->lo_sizelimit;
1163 	info->lo_flags = lo->lo_flags;
1164 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1165 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1166 	info->lo_encrypt_type =
1167 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1168 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1169 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1170 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1171 		       lo->lo_encrypt_key_size);
1172 	}
1173 	return 0;
1174 }
1175 
1176 static void
1177 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1178 {
1179 	memset(info64, 0, sizeof(*info64));
1180 	info64->lo_number = info->lo_number;
1181 	info64->lo_device = info->lo_device;
1182 	info64->lo_inode = info->lo_inode;
1183 	info64->lo_rdevice = info->lo_rdevice;
1184 	info64->lo_offset = info->lo_offset;
1185 	info64->lo_sizelimit = 0;
1186 	info64->lo_encrypt_type = info->lo_encrypt_type;
1187 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1188 	info64->lo_flags = info->lo_flags;
1189 	info64->lo_init[0] = info->lo_init[0];
1190 	info64->lo_init[1] = info->lo_init[1];
1191 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1192 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1193 	else
1194 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1195 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1196 }
1197 
1198 static int
1199 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1200 {
1201 	memset(info, 0, sizeof(*info));
1202 	info->lo_number = info64->lo_number;
1203 	info->lo_device = info64->lo_device;
1204 	info->lo_inode = info64->lo_inode;
1205 	info->lo_rdevice = info64->lo_rdevice;
1206 	info->lo_offset = info64->lo_offset;
1207 	info->lo_encrypt_type = info64->lo_encrypt_type;
1208 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1209 	info->lo_flags = info64->lo_flags;
1210 	info->lo_init[0] = info64->lo_init[0];
1211 	info->lo_init[1] = info64->lo_init[1];
1212 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1213 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1214 	else
1215 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1216 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1217 
1218 	/* error in case values were truncated */
1219 	if (info->lo_device != info64->lo_device ||
1220 	    info->lo_rdevice != info64->lo_rdevice ||
1221 	    info->lo_inode != info64->lo_inode ||
1222 	    info->lo_offset != info64->lo_offset)
1223 		return -EOVERFLOW;
1224 
1225 	return 0;
1226 }
1227 
1228 static int
1229 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1230 {
1231 	struct loop_info info;
1232 	struct loop_info64 info64;
1233 
1234 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1235 		return -EFAULT;
1236 	loop_info64_from_old(&info, &info64);
1237 	return loop_set_status(lo, &info64);
1238 }
1239 
1240 static int
1241 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1242 {
1243 	struct loop_info64 info64;
1244 
1245 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1246 		return -EFAULT;
1247 	return loop_set_status(lo, &info64);
1248 }
1249 
1250 static int
1251 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1252 	struct loop_info info;
1253 	struct loop_info64 info64;
1254 	int err = 0;
1255 
1256 	if (!arg)
1257 		err = -EINVAL;
1258 	if (!err)
1259 		err = loop_get_status(lo, &info64);
1260 	if (!err)
1261 		err = loop_info64_to_old(&info64, &info);
1262 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1263 		err = -EFAULT;
1264 
1265 	return err;
1266 }
1267 
1268 static int
1269 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1270 	struct loop_info64 info64;
1271 	int err = 0;
1272 
1273 	if (!arg)
1274 		err = -EINVAL;
1275 	if (!err)
1276 		err = loop_get_status(lo, &info64);
1277 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1278 		err = -EFAULT;
1279 
1280 	return err;
1281 }
1282 
1283 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1284 {
1285 	int err;
1286 	sector_t sec;
1287 	loff_t sz;
1288 
1289 	err = -ENXIO;
1290 	if (unlikely(lo->lo_state != Lo_bound))
1291 		goto out;
1292 	err = figure_loop_size(lo);
1293 	if (unlikely(err))
1294 		goto out;
1295 	sec = get_capacity(lo->lo_disk);
1296 	/* the width of sector_t may be narrow for bit-shift */
1297 	sz = sec;
1298 	sz <<= 9;
1299 	mutex_lock(&bdev->bd_mutex);
1300 	bd_set_size(bdev, sz);
1301 	/* let user-space know about the new size */
1302 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1303 	mutex_unlock(&bdev->bd_mutex);
1304 
1305  out:
1306 	return err;
1307 }
1308 
1309 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1310 	unsigned int cmd, unsigned long arg)
1311 {
1312 	struct loop_device *lo = bdev->bd_disk->private_data;
1313 	int err;
1314 
1315 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1316 	switch (cmd) {
1317 	case LOOP_SET_FD:
1318 		err = loop_set_fd(lo, mode, bdev, arg);
1319 		break;
1320 	case LOOP_CHANGE_FD:
1321 		err = loop_change_fd(lo, bdev, arg);
1322 		break;
1323 	case LOOP_CLR_FD:
1324 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1325 		err = loop_clr_fd(lo, bdev);
1326 		if (!err)
1327 			goto out_unlocked;
1328 		break;
1329 	case LOOP_SET_STATUS:
1330 		err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1331 		break;
1332 	case LOOP_GET_STATUS:
1333 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1334 		break;
1335 	case LOOP_SET_STATUS64:
1336 		err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1337 		break;
1338 	case LOOP_GET_STATUS64:
1339 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1340 		break;
1341 	case LOOP_SET_CAPACITY:
1342 		err = -EPERM;
1343 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1344 			err = loop_set_capacity(lo, bdev);
1345 		break;
1346 	default:
1347 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1348 	}
1349 	mutex_unlock(&lo->lo_ctl_mutex);
1350 
1351 out_unlocked:
1352 	return err;
1353 }
1354 
1355 #ifdef CONFIG_COMPAT
1356 struct compat_loop_info {
1357 	compat_int_t	lo_number;      /* ioctl r/o */
1358 	compat_dev_t	lo_device;      /* ioctl r/o */
1359 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1360 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1361 	compat_int_t	lo_offset;
1362 	compat_int_t	lo_encrypt_type;
1363 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1364 	compat_int_t	lo_flags;       /* ioctl r/o */
1365 	char		lo_name[LO_NAME_SIZE];
1366 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1367 	compat_ulong_t	lo_init[2];
1368 	char		reserved[4];
1369 };
1370 
1371 /*
1372  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1373  * - noinlined to reduce stack space usage in main part of driver
1374  */
1375 static noinline int
1376 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1377 			struct loop_info64 *info64)
1378 {
1379 	struct compat_loop_info info;
1380 
1381 	if (copy_from_user(&info, arg, sizeof(info)))
1382 		return -EFAULT;
1383 
1384 	memset(info64, 0, sizeof(*info64));
1385 	info64->lo_number = info.lo_number;
1386 	info64->lo_device = info.lo_device;
1387 	info64->lo_inode = info.lo_inode;
1388 	info64->lo_rdevice = info.lo_rdevice;
1389 	info64->lo_offset = info.lo_offset;
1390 	info64->lo_sizelimit = 0;
1391 	info64->lo_encrypt_type = info.lo_encrypt_type;
1392 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1393 	info64->lo_flags = info.lo_flags;
1394 	info64->lo_init[0] = info.lo_init[0];
1395 	info64->lo_init[1] = info.lo_init[1];
1396 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1397 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1398 	else
1399 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1400 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1401 	return 0;
1402 }
1403 
1404 /*
1405  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1406  * - noinlined to reduce stack space usage in main part of driver
1407  */
1408 static noinline int
1409 loop_info64_to_compat(const struct loop_info64 *info64,
1410 		      struct compat_loop_info __user *arg)
1411 {
1412 	struct compat_loop_info info;
1413 
1414 	memset(&info, 0, sizeof(info));
1415 	info.lo_number = info64->lo_number;
1416 	info.lo_device = info64->lo_device;
1417 	info.lo_inode = info64->lo_inode;
1418 	info.lo_rdevice = info64->lo_rdevice;
1419 	info.lo_offset = info64->lo_offset;
1420 	info.lo_encrypt_type = info64->lo_encrypt_type;
1421 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1422 	info.lo_flags = info64->lo_flags;
1423 	info.lo_init[0] = info64->lo_init[0];
1424 	info.lo_init[1] = info64->lo_init[1];
1425 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1426 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1427 	else
1428 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1429 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1430 
1431 	/* error in case values were truncated */
1432 	if (info.lo_device != info64->lo_device ||
1433 	    info.lo_rdevice != info64->lo_rdevice ||
1434 	    info.lo_inode != info64->lo_inode ||
1435 	    info.lo_offset != info64->lo_offset ||
1436 	    info.lo_init[0] != info64->lo_init[0] ||
1437 	    info.lo_init[1] != info64->lo_init[1])
1438 		return -EOVERFLOW;
1439 
1440 	if (copy_to_user(arg, &info, sizeof(info)))
1441 		return -EFAULT;
1442 	return 0;
1443 }
1444 
1445 static int
1446 loop_set_status_compat(struct loop_device *lo,
1447 		       const struct compat_loop_info __user *arg)
1448 {
1449 	struct loop_info64 info64;
1450 	int ret;
1451 
1452 	ret = loop_info64_from_compat(arg, &info64);
1453 	if (ret < 0)
1454 		return ret;
1455 	return loop_set_status(lo, &info64);
1456 }
1457 
1458 static int
1459 loop_get_status_compat(struct loop_device *lo,
1460 		       struct compat_loop_info __user *arg)
1461 {
1462 	struct loop_info64 info64;
1463 	int err = 0;
1464 
1465 	if (!arg)
1466 		err = -EINVAL;
1467 	if (!err)
1468 		err = loop_get_status(lo, &info64);
1469 	if (!err)
1470 		err = loop_info64_to_compat(&info64, arg);
1471 	return err;
1472 }
1473 
1474 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1475 			   unsigned int cmd, unsigned long arg)
1476 {
1477 	struct loop_device *lo = bdev->bd_disk->private_data;
1478 	int err;
1479 
1480 	switch(cmd) {
1481 	case LOOP_SET_STATUS:
1482 		mutex_lock(&lo->lo_ctl_mutex);
1483 		err = loop_set_status_compat(
1484 			lo, (const struct compat_loop_info __user *) arg);
1485 		mutex_unlock(&lo->lo_ctl_mutex);
1486 		break;
1487 	case LOOP_GET_STATUS:
1488 		mutex_lock(&lo->lo_ctl_mutex);
1489 		err = loop_get_status_compat(
1490 			lo, (struct compat_loop_info __user *) arg);
1491 		mutex_unlock(&lo->lo_ctl_mutex);
1492 		break;
1493 	case LOOP_SET_CAPACITY:
1494 	case LOOP_CLR_FD:
1495 	case LOOP_GET_STATUS64:
1496 	case LOOP_SET_STATUS64:
1497 		arg = (unsigned long) compat_ptr(arg);
1498 	case LOOP_SET_FD:
1499 	case LOOP_CHANGE_FD:
1500 		err = lo_ioctl(bdev, mode, cmd, arg);
1501 		break;
1502 	default:
1503 		err = -ENOIOCTLCMD;
1504 		break;
1505 	}
1506 	return err;
1507 }
1508 #endif
1509 
1510 static int lo_open(struct block_device *bdev, fmode_t mode)
1511 {
1512 	struct loop_device *lo = bdev->bd_disk->private_data;
1513 
1514 	mutex_lock(&loop_mutex);
1515 	mutex_lock(&lo->lo_ctl_mutex);
1516 	lo->lo_refcnt++;
1517 	mutex_unlock(&lo->lo_ctl_mutex);
1518 	mutex_unlock(&loop_mutex);
1519 
1520 	return 0;
1521 }
1522 
1523 static int lo_release(struct gendisk *disk, fmode_t mode)
1524 {
1525 	struct loop_device *lo = disk->private_data;
1526 	int err;
1527 
1528 	mutex_lock(&loop_mutex);
1529 	mutex_lock(&lo->lo_ctl_mutex);
1530 
1531 	if (--lo->lo_refcnt)
1532 		goto out;
1533 
1534 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1535 		/*
1536 		 * In autoclear mode, stop the loop thread
1537 		 * and remove configuration after last close.
1538 		 */
1539 		err = loop_clr_fd(lo, NULL);
1540 		if (!err)
1541 			goto out_unlocked;
1542 	} else {
1543 		/*
1544 		 * Otherwise keep thread (if running) and config,
1545 		 * but flush possible ongoing bios in thread.
1546 		 */
1547 		loop_flush(lo);
1548 	}
1549 
1550 out:
1551 	mutex_unlock(&lo->lo_ctl_mutex);
1552 out_unlocked:
1553 	mutex_unlock(&loop_mutex);
1554 	return 0;
1555 }
1556 
1557 static const struct block_device_operations lo_fops = {
1558 	.owner =	THIS_MODULE,
1559 	.open =		lo_open,
1560 	.release =	lo_release,
1561 	.ioctl =	lo_ioctl,
1562 #ifdef CONFIG_COMPAT
1563 	.compat_ioctl =	lo_compat_ioctl,
1564 #endif
1565 };
1566 
1567 /*
1568  * And now the modules code and kernel interface.
1569  */
1570 static int max_loop;
1571 module_param(max_loop, int, 0);
1572 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1573 module_param(max_part, int, 0);
1574 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1575 MODULE_LICENSE("GPL");
1576 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1577 
1578 int loop_register_transfer(struct loop_func_table *funcs)
1579 {
1580 	unsigned int n = funcs->number;
1581 
1582 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1583 		return -EINVAL;
1584 	xfer_funcs[n] = funcs;
1585 	return 0;
1586 }
1587 
1588 int loop_unregister_transfer(int number)
1589 {
1590 	unsigned int n = number;
1591 	struct loop_device *lo;
1592 	struct loop_func_table *xfer;
1593 
1594 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1595 		return -EINVAL;
1596 
1597 	xfer_funcs[n] = NULL;
1598 
1599 	list_for_each_entry(lo, &loop_devices, lo_list) {
1600 		mutex_lock(&lo->lo_ctl_mutex);
1601 
1602 		if (lo->lo_encryption == xfer)
1603 			loop_release_xfer(lo);
1604 
1605 		mutex_unlock(&lo->lo_ctl_mutex);
1606 	}
1607 
1608 	return 0;
1609 }
1610 
1611 EXPORT_SYMBOL(loop_register_transfer);
1612 EXPORT_SYMBOL(loop_unregister_transfer);
1613 
1614 static struct loop_device *loop_alloc(int i)
1615 {
1616 	struct loop_device *lo;
1617 	struct gendisk *disk;
1618 
1619 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1620 	if (!lo)
1621 		goto out;
1622 
1623 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1624 	if (!lo->lo_queue)
1625 		goto out_free_dev;
1626 
1627 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1628 	if (!disk)
1629 		goto out_free_queue;
1630 
1631 	mutex_init(&lo->lo_ctl_mutex);
1632 	lo->lo_number		= i;
1633 	lo->lo_thread		= NULL;
1634 	init_waitqueue_head(&lo->lo_event);
1635 	spin_lock_init(&lo->lo_lock);
1636 	disk->major		= LOOP_MAJOR;
1637 	disk->first_minor	= i << part_shift;
1638 	disk->fops		= &lo_fops;
1639 	disk->private_data	= lo;
1640 	disk->queue		= lo->lo_queue;
1641 	sprintf(disk->disk_name, "loop%d", i);
1642 	return lo;
1643 
1644 out_free_queue:
1645 	blk_cleanup_queue(lo->lo_queue);
1646 out_free_dev:
1647 	kfree(lo);
1648 out:
1649 	return NULL;
1650 }
1651 
1652 static void loop_free(struct loop_device *lo)
1653 {
1654 	blk_cleanup_queue(lo->lo_queue);
1655 	put_disk(lo->lo_disk);
1656 	list_del(&lo->lo_list);
1657 	kfree(lo);
1658 }
1659 
1660 static struct loop_device *loop_init_one(int i)
1661 {
1662 	struct loop_device *lo;
1663 
1664 	list_for_each_entry(lo, &loop_devices, lo_list) {
1665 		if (lo->lo_number == i)
1666 			return lo;
1667 	}
1668 
1669 	lo = loop_alloc(i);
1670 	if (lo) {
1671 		add_disk(lo->lo_disk);
1672 		list_add_tail(&lo->lo_list, &loop_devices);
1673 	}
1674 	return lo;
1675 }
1676 
1677 static void loop_del_one(struct loop_device *lo)
1678 {
1679 	del_gendisk(lo->lo_disk);
1680 	loop_free(lo);
1681 }
1682 
1683 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1684 {
1685 	struct loop_device *lo;
1686 	struct kobject *kobj;
1687 
1688 	mutex_lock(&loop_devices_mutex);
1689 	lo = loop_init_one(dev & MINORMASK);
1690 	kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1691 	mutex_unlock(&loop_devices_mutex);
1692 
1693 	*part = 0;
1694 	return kobj;
1695 }
1696 
1697 static int __init loop_init(void)
1698 {
1699 	int i, nr;
1700 	unsigned long range;
1701 	struct loop_device *lo, *next;
1702 
1703 	/*
1704 	 * loop module now has a feature to instantiate underlying device
1705 	 * structure on-demand, provided that there is an access dev node.
1706 	 * However, this will not work well with user space tool that doesn't
1707 	 * know about such "feature".  In order to not break any existing
1708 	 * tool, we do the following:
1709 	 *
1710 	 * (1) if max_loop is specified, create that many upfront, and this
1711 	 *     also becomes a hard limit.
1712 	 * (2) if max_loop is not specified, create 8 loop device on module
1713 	 *     load, user can further extend loop device by create dev node
1714 	 *     themselves and have kernel automatically instantiate actual
1715 	 *     device on-demand.
1716 	 */
1717 
1718 	part_shift = 0;
1719 	if (max_part > 0)
1720 		part_shift = fls(max_part);
1721 
1722 	if (max_loop > 1UL << (MINORBITS - part_shift))
1723 		return -EINVAL;
1724 
1725 	if (max_loop) {
1726 		nr = max_loop;
1727 		range = max_loop;
1728 	} else {
1729 		nr = 8;
1730 		range = 1UL << (MINORBITS - part_shift);
1731 	}
1732 
1733 	if (register_blkdev(LOOP_MAJOR, "loop"))
1734 		return -EIO;
1735 
1736 	for (i = 0; i < nr; i++) {
1737 		lo = loop_alloc(i);
1738 		if (!lo)
1739 			goto Enomem;
1740 		list_add_tail(&lo->lo_list, &loop_devices);
1741 	}
1742 
1743 	/* point of no return */
1744 
1745 	list_for_each_entry(lo, &loop_devices, lo_list)
1746 		add_disk(lo->lo_disk);
1747 
1748 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1749 				  THIS_MODULE, loop_probe, NULL, NULL);
1750 
1751 	printk(KERN_INFO "loop: module loaded\n");
1752 	return 0;
1753 
1754 Enomem:
1755 	printk(KERN_INFO "loop: out of memory\n");
1756 
1757 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1758 		loop_free(lo);
1759 
1760 	unregister_blkdev(LOOP_MAJOR, "loop");
1761 	return -ENOMEM;
1762 }
1763 
1764 static void __exit loop_exit(void)
1765 {
1766 	unsigned long range;
1767 	struct loop_device *lo, *next;
1768 
1769 	range = max_loop ? max_loop :  1UL << (MINORBITS - part_shift);
1770 
1771 	list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1772 		loop_del_one(lo);
1773 
1774 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1775 	unregister_blkdev(LOOP_MAJOR, "loop");
1776 }
1777 
1778 module_init(loop_init);
1779 module_exit(loop_exit);
1780 
1781 #ifndef MODULE
1782 static int __init max_loop_setup(char *str)
1783 {
1784 	max_loop = simple_strtol(str, NULL, 0);
1785 	return 1;
1786 }
1787 
1788 __setup("max_loop=", max_loop_setup);
1789 #endif
1790