xref: /linux/drivers/block/loop.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
79 
80 #include <asm/uaccess.h>
81 
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84 
85 static int max_part;
86 static int part_shift;
87 
88 /*
89  * Transfer functions
90  */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 			 struct page *raw_page, unsigned raw_off,
93 			 struct page *loop_page, unsigned loop_off,
94 			 int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98 
99 	if (cmd == READ)
100 		memcpy(loop_buf, raw_buf, size);
101 	else
102 		memcpy(raw_buf, loop_buf, size);
103 
104 	kunmap_atomic(loop_buf, KM_USER1);
105 	kunmap_atomic(raw_buf, KM_USER0);
106 	cond_resched();
107 	return 0;
108 }
109 
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 			struct page *raw_page, unsigned raw_off,
112 			struct page *loop_page, unsigned loop_off,
113 			int size, sector_t real_block)
114 {
115 	char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
116 	char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
117 	char *in, *out, *key;
118 	int i, keysize;
119 
120 	if (cmd == READ) {
121 		in = raw_buf;
122 		out = loop_buf;
123 	} else {
124 		in = loop_buf;
125 		out = raw_buf;
126 	}
127 
128 	key = lo->lo_encrypt_key;
129 	keysize = lo->lo_encrypt_key_size;
130 	for (i = 0; i < size; i++)
131 		*out++ = *in++ ^ key[(i & 511) % keysize];
132 
133 	kunmap_atomic(loop_buf, KM_USER1);
134 	kunmap_atomic(raw_buf, KM_USER0);
135 	cond_resched();
136 	return 0;
137 }
138 
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 	if (unlikely(info->lo_encrypt_key_size <= 0))
142 		return -EINVAL;
143 	return 0;
144 }
145 
146 static struct loop_func_table none_funcs = {
147 	.number = LO_CRYPT_NONE,
148 	.transfer = transfer_none,
149 };
150 
151 static struct loop_func_table xor_funcs = {
152 	.number = LO_CRYPT_XOR,
153 	.transfer = transfer_xor,
154 	.init = xor_init
155 };
156 
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 	&none_funcs,
160 	&xor_funcs
161 };
162 
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164 {
165 	loff_t size, loopsize;
166 
167 	/* Compute loopsize in bytes */
168 	size = i_size_read(file->f_mapping->host);
169 	loopsize = size - offset;
170 	/* offset is beyond i_size, wierd but possible */
171 	if (loopsize < 0)
172 		return 0;
173 
174 	if (sizelimit > 0 && sizelimit < loopsize)
175 		loopsize = sizelimit;
176 	/*
177 	 * Unfortunately, if we want to do I/O on the device,
178 	 * the number of 512-byte sectors has to fit into a sector_t.
179 	 */
180 	return loopsize >> 9;
181 }
182 
183 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
184 {
185 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
186 }
187 
188 static int
189 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
190 {
191 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
192 	sector_t x = (sector_t)size;
193 
194 	if (unlikely((loff_t)x != size))
195 		return -EFBIG;
196 	if (lo->lo_offset != offset)
197 		lo->lo_offset = offset;
198 	if (lo->lo_sizelimit != sizelimit)
199 		lo->lo_sizelimit = sizelimit;
200 	set_capacity(lo->lo_disk, x);
201 	return 0;
202 }
203 
204 static inline int
205 lo_do_transfer(struct loop_device *lo, int cmd,
206 	       struct page *rpage, unsigned roffs,
207 	       struct page *lpage, unsigned loffs,
208 	       int size, sector_t rblock)
209 {
210 	if (unlikely(!lo->transfer))
211 		return 0;
212 
213 	return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
214 }
215 
216 /**
217  * __do_lo_send_write - helper for writing data to a loop device
218  *
219  * This helper just factors out common code between do_lo_send_direct_write()
220  * and do_lo_send_write().
221  */
222 static int __do_lo_send_write(struct file *file,
223 		u8 *buf, const int len, loff_t pos)
224 {
225 	ssize_t bw;
226 	mm_segment_t old_fs = get_fs();
227 
228 	set_fs(get_ds());
229 	bw = file->f_op->write(file, buf, len, &pos);
230 	set_fs(old_fs);
231 	if (likely(bw == len))
232 		return 0;
233 	printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
234 			(unsigned long long)pos, len);
235 	if (bw >= 0)
236 		bw = -EIO;
237 	return bw;
238 }
239 
240 /**
241  * do_lo_send_direct_write - helper for writing data to a loop device
242  *
243  * This is the fast, non-transforming version that does not need double
244  * buffering.
245  */
246 static int do_lo_send_direct_write(struct loop_device *lo,
247 		struct bio_vec *bvec, loff_t pos, struct page *page)
248 {
249 	ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
250 			kmap(bvec->bv_page) + bvec->bv_offset,
251 			bvec->bv_len, pos);
252 	kunmap(bvec->bv_page);
253 	cond_resched();
254 	return bw;
255 }
256 
257 /**
258  * do_lo_send_write - helper for writing data to a loop device
259  *
260  * This is the slow, transforming version that needs to double buffer the
261  * data as it cannot do the transformations in place without having direct
262  * access to the destination pages of the backing file.
263  */
264 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
265 		loff_t pos, struct page *page)
266 {
267 	int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
268 			bvec->bv_offset, bvec->bv_len, pos >> 9);
269 	if (likely(!ret))
270 		return __do_lo_send_write(lo->lo_backing_file,
271 				page_address(page), bvec->bv_len,
272 				pos);
273 	printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
274 			"length %i.\n", (unsigned long long)pos, bvec->bv_len);
275 	if (ret > 0)
276 		ret = -EIO;
277 	return ret;
278 }
279 
280 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
281 {
282 	int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
283 			struct page *page);
284 	struct bio_vec *bvec;
285 	struct page *page = NULL;
286 	int i, ret = 0;
287 
288 	if (lo->transfer != transfer_none) {
289 		page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
290 		if (unlikely(!page))
291 			goto fail;
292 		kmap(page);
293 		do_lo_send = do_lo_send_write;
294 	} else {
295 		do_lo_send = do_lo_send_direct_write;
296 	}
297 
298 	bio_for_each_segment(bvec, bio, i) {
299 		ret = do_lo_send(lo, bvec, pos, page);
300 		if (ret < 0)
301 			break;
302 		pos += bvec->bv_len;
303 	}
304 	if (page) {
305 		kunmap(page);
306 		__free_page(page);
307 	}
308 out:
309 	return ret;
310 fail:
311 	printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
312 	ret = -ENOMEM;
313 	goto out;
314 }
315 
316 struct lo_read_data {
317 	struct loop_device *lo;
318 	struct page *page;
319 	unsigned offset;
320 	int bsize;
321 };
322 
323 static int
324 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
325 		struct splice_desc *sd)
326 {
327 	struct lo_read_data *p = sd->u.data;
328 	struct loop_device *lo = p->lo;
329 	struct page *page = buf->page;
330 	sector_t IV;
331 	int size;
332 
333 	IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
334 							(buf->offset >> 9);
335 	size = sd->len;
336 	if (size > p->bsize)
337 		size = p->bsize;
338 
339 	if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
340 		printk(KERN_ERR "loop: transfer error block %ld\n",
341 		       page->index);
342 		size = -EINVAL;
343 	}
344 
345 	flush_dcache_page(p->page);
346 
347 	if (size > 0)
348 		p->offset += size;
349 
350 	return size;
351 }
352 
353 static int
354 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
355 {
356 	return __splice_from_pipe(pipe, sd, lo_splice_actor);
357 }
358 
359 static int
360 do_lo_receive(struct loop_device *lo,
361 	      struct bio_vec *bvec, int bsize, loff_t pos)
362 {
363 	struct lo_read_data cookie;
364 	struct splice_desc sd;
365 	struct file *file;
366 	long retval;
367 
368 	cookie.lo = lo;
369 	cookie.page = bvec->bv_page;
370 	cookie.offset = bvec->bv_offset;
371 	cookie.bsize = bsize;
372 
373 	sd.len = 0;
374 	sd.total_len = bvec->bv_len;
375 	sd.flags = 0;
376 	sd.pos = pos;
377 	sd.u.data = &cookie;
378 
379 	file = lo->lo_backing_file;
380 	retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
381 
382 	if (retval < 0)
383 		return retval;
384 	if (retval != bvec->bv_len)
385 		return -EIO;
386 	return 0;
387 }
388 
389 static int
390 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
391 {
392 	struct bio_vec *bvec;
393 	int i, ret = 0;
394 
395 	bio_for_each_segment(bvec, bio, i) {
396 		ret = do_lo_receive(lo, bvec, bsize, pos);
397 		if (ret < 0)
398 			break;
399 		pos += bvec->bv_len;
400 	}
401 	return ret;
402 }
403 
404 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
405 {
406 	loff_t pos;
407 	int ret;
408 
409 	pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
410 
411 	if (bio_rw(bio) == WRITE) {
412 		struct file *file = lo->lo_backing_file;
413 
414 		if (bio->bi_rw & REQ_FLUSH) {
415 			ret = vfs_fsync(file, 0);
416 			if (unlikely(ret && ret != -EINVAL)) {
417 				ret = -EIO;
418 				goto out;
419 			}
420 		}
421 
422 		/*
423 		 * We use punch hole to reclaim the free space used by the
424 		 * image a.k.a. discard. However we do not support discard if
425 		 * encryption is enabled, because it may give an attacker
426 		 * useful information.
427 		 */
428 		if (bio->bi_rw & REQ_DISCARD) {
429 			struct file *file = lo->lo_backing_file;
430 			int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
431 
432 			if ((!file->f_op->fallocate) ||
433 			    lo->lo_encrypt_key_size) {
434 				ret = -EOPNOTSUPP;
435 				goto out;
436 			}
437 			ret = file->f_op->fallocate(file, mode, pos,
438 						    bio->bi_size);
439 			if (unlikely(ret && ret != -EINVAL &&
440 				     ret != -EOPNOTSUPP))
441 				ret = -EIO;
442 			goto out;
443 		}
444 
445 		ret = lo_send(lo, bio, pos);
446 
447 		if ((bio->bi_rw & REQ_FUA) && !ret) {
448 			ret = vfs_fsync(file, 0);
449 			if (unlikely(ret && ret != -EINVAL))
450 				ret = -EIO;
451 		}
452 	} else
453 		ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
454 
455 out:
456 	return ret;
457 }
458 
459 /*
460  * Add bio to back of pending list
461  */
462 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
463 {
464 	bio_list_add(&lo->lo_bio_list, bio);
465 }
466 
467 /*
468  * Grab first pending buffer
469  */
470 static struct bio *loop_get_bio(struct loop_device *lo)
471 {
472 	return bio_list_pop(&lo->lo_bio_list);
473 }
474 
475 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
476 {
477 	struct loop_device *lo = q->queuedata;
478 	int rw = bio_rw(old_bio);
479 
480 	if (rw == READA)
481 		rw = READ;
482 
483 	BUG_ON(!lo || (rw != READ && rw != WRITE));
484 
485 	spin_lock_irq(&lo->lo_lock);
486 	if (lo->lo_state != Lo_bound)
487 		goto out;
488 	if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
489 		goto out;
490 	loop_add_bio(lo, old_bio);
491 	wake_up(&lo->lo_event);
492 	spin_unlock_irq(&lo->lo_lock);
493 	return;
494 
495 out:
496 	spin_unlock_irq(&lo->lo_lock);
497 	bio_io_error(old_bio);
498 }
499 
500 struct switch_request {
501 	struct file *file;
502 	struct completion wait;
503 };
504 
505 static void do_loop_switch(struct loop_device *, struct switch_request *);
506 
507 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
508 {
509 	if (unlikely(!bio->bi_bdev)) {
510 		do_loop_switch(lo, bio->bi_private);
511 		bio_put(bio);
512 	} else {
513 		int ret = do_bio_filebacked(lo, bio);
514 		bio_endio(bio, ret);
515 	}
516 }
517 
518 /*
519  * worker thread that handles reads/writes to file backed loop devices,
520  * to avoid blocking in our make_request_fn. it also does loop decrypting
521  * on reads for block backed loop, as that is too heavy to do from
522  * b_end_io context where irqs may be disabled.
523  *
524  * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
525  * calling kthread_stop().  Therefore once kthread_should_stop() is
526  * true, make_request will not place any more requests.  Therefore
527  * once kthread_should_stop() is true and lo_bio is NULL, we are
528  * done with the loop.
529  */
530 static int loop_thread(void *data)
531 {
532 	struct loop_device *lo = data;
533 	struct bio *bio;
534 
535 	set_user_nice(current, -20);
536 
537 	while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
538 
539 		wait_event_interruptible(lo->lo_event,
540 				!bio_list_empty(&lo->lo_bio_list) ||
541 				kthread_should_stop());
542 
543 		if (bio_list_empty(&lo->lo_bio_list))
544 			continue;
545 		spin_lock_irq(&lo->lo_lock);
546 		bio = loop_get_bio(lo);
547 		spin_unlock_irq(&lo->lo_lock);
548 
549 		BUG_ON(!bio);
550 		loop_handle_bio(lo, bio);
551 	}
552 
553 	return 0;
554 }
555 
556 /*
557  * loop_switch performs the hard work of switching a backing store.
558  * First it needs to flush existing IO, it does this by sending a magic
559  * BIO down the pipe. The completion of this BIO does the actual switch.
560  */
561 static int loop_switch(struct loop_device *lo, struct file *file)
562 {
563 	struct switch_request w;
564 	struct bio *bio = bio_alloc(GFP_KERNEL, 0);
565 	if (!bio)
566 		return -ENOMEM;
567 	init_completion(&w.wait);
568 	w.file = file;
569 	bio->bi_private = &w;
570 	bio->bi_bdev = NULL;
571 	loop_make_request(lo->lo_queue, bio);
572 	wait_for_completion(&w.wait);
573 	return 0;
574 }
575 
576 /*
577  * Helper to flush the IOs in loop, but keeping loop thread running
578  */
579 static int loop_flush(struct loop_device *lo)
580 {
581 	/* loop not yet configured, no running thread, nothing to flush */
582 	if (!lo->lo_thread)
583 		return 0;
584 
585 	return loop_switch(lo, NULL);
586 }
587 
588 /*
589  * Do the actual switch; called from the BIO completion routine
590  */
591 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
592 {
593 	struct file *file = p->file;
594 	struct file *old_file = lo->lo_backing_file;
595 	struct address_space *mapping;
596 
597 	/* if no new file, only flush of queued bios requested */
598 	if (!file)
599 		goto out;
600 
601 	mapping = file->f_mapping;
602 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
603 	lo->lo_backing_file = file;
604 	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
605 		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
606 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
607 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
608 out:
609 	complete(&p->wait);
610 }
611 
612 
613 /*
614  * loop_change_fd switched the backing store of a loopback device to
615  * a new file. This is useful for operating system installers to free up
616  * the original file and in High Availability environments to switch to
617  * an alternative location for the content in case of server meltdown.
618  * This can only work if the loop device is used read-only, and if the
619  * new backing store is the same size and type as the old backing store.
620  */
621 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
622 			  unsigned int arg)
623 {
624 	struct file	*file, *old_file;
625 	struct inode	*inode;
626 	int		error;
627 
628 	error = -ENXIO;
629 	if (lo->lo_state != Lo_bound)
630 		goto out;
631 
632 	/* the loop device has to be read-only */
633 	error = -EINVAL;
634 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
635 		goto out;
636 
637 	error = -EBADF;
638 	file = fget(arg);
639 	if (!file)
640 		goto out;
641 
642 	inode = file->f_mapping->host;
643 	old_file = lo->lo_backing_file;
644 
645 	error = -EINVAL;
646 
647 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
648 		goto out_putf;
649 
650 	/* size of the new backing store needs to be the same */
651 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
652 		goto out_putf;
653 
654 	/* and ... switch */
655 	error = loop_switch(lo, file);
656 	if (error)
657 		goto out_putf;
658 
659 	fput(old_file);
660 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
661 		ioctl_by_bdev(bdev, BLKRRPART, 0);
662 	return 0;
663 
664  out_putf:
665 	fput(file);
666  out:
667 	return error;
668 }
669 
670 static inline int is_loop_device(struct file *file)
671 {
672 	struct inode *i = file->f_mapping->host;
673 
674 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
675 }
676 
677 /* loop sysfs attributes */
678 
679 static ssize_t loop_attr_show(struct device *dev, char *page,
680 			      ssize_t (*callback)(struct loop_device *, char *))
681 {
682 	struct gendisk *disk = dev_to_disk(dev);
683 	struct loop_device *lo = disk->private_data;
684 
685 	return callback(lo, page);
686 }
687 
688 #define LOOP_ATTR_RO(_name)						\
689 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
690 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
691 				struct device_attribute *attr, char *b)	\
692 {									\
693 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
694 }									\
695 static struct device_attribute loop_attr_##_name =			\
696 	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
697 
698 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
699 {
700 	ssize_t ret;
701 	char *p = NULL;
702 
703 	spin_lock_irq(&lo->lo_lock);
704 	if (lo->lo_backing_file)
705 		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
706 	spin_unlock_irq(&lo->lo_lock);
707 
708 	if (IS_ERR_OR_NULL(p))
709 		ret = PTR_ERR(p);
710 	else {
711 		ret = strlen(p);
712 		memmove(buf, p, ret);
713 		buf[ret++] = '\n';
714 		buf[ret] = 0;
715 	}
716 
717 	return ret;
718 }
719 
720 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
721 {
722 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
723 }
724 
725 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
726 {
727 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
728 }
729 
730 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
731 {
732 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
733 
734 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
735 }
736 
737 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
738 {
739 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
740 
741 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
742 }
743 
744 LOOP_ATTR_RO(backing_file);
745 LOOP_ATTR_RO(offset);
746 LOOP_ATTR_RO(sizelimit);
747 LOOP_ATTR_RO(autoclear);
748 LOOP_ATTR_RO(partscan);
749 
750 static struct attribute *loop_attrs[] = {
751 	&loop_attr_backing_file.attr,
752 	&loop_attr_offset.attr,
753 	&loop_attr_sizelimit.attr,
754 	&loop_attr_autoclear.attr,
755 	&loop_attr_partscan.attr,
756 	NULL,
757 };
758 
759 static struct attribute_group loop_attribute_group = {
760 	.name = "loop",
761 	.attrs= loop_attrs,
762 };
763 
764 static int loop_sysfs_init(struct loop_device *lo)
765 {
766 	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
767 				  &loop_attribute_group);
768 }
769 
770 static void loop_sysfs_exit(struct loop_device *lo)
771 {
772 	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
773 			   &loop_attribute_group);
774 }
775 
776 static void loop_config_discard(struct loop_device *lo)
777 {
778 	struct file *file = lo->lo_backing_file;
779 	struct inode *inode = file->f_mapping->host;
780 	struct request_queue *q = lo->lo_queue;
781 
782 	/*
783 	 * We use punch hole to reclaim the free space used by the
784 	 * image a.k.a. discard. However we do support discard if
785 	 * encryption is enabled, because it may give an attacker
786 	 * useful information.
787 	 */
788 	if ((!file->f_op->fallocate) ||
789 	    lo->lo_encrypt_key_size) {
790 		q->limits.discard_granularity = 0;
791 		q->limits.discard_alignment = 0;
792 		q->limits.max_discard_sectors = 0;
793 		q->limits.discard_zeroes_data = 0;
794 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
795 		return;
796 	}
797 
798 	q->limits.discard_granularity = inode->i_sb->s_blocksize;
799 	q->limits.discard_alignment = 0;
800 	q->limits.max_discard_sectors = UINT_MAX >> 9;
801 	q->limits.discard_zeroes_data = 1;
802 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
803 }
804 
805 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
806 		       struct block_device *bdev, unsigned int arg)
807 {
808 	struct file	*file, *f;
809 	struct inode	*inode;
810 	struct address_space *mapping;
811 	unsigned lo_blocksize;
812 	int		lo_flags = 0;
813 	int		error;
814 	loff_t		size;
815 
816 	/* This is safe, since we have a reference from open(). */
817 	__module_get(THIS_MODULE);
818 
819 	error = -EBADF;
820 	file = fget(arg);
821 	if (!file)
822 		goto out;
823 
824 	error = -EBUSY;
825 	if (lo->lo_state != Lo_unbound)
826 		goto out_putf;
827 
828 	/* Avoid recursion */
829 	f = file;
830 	while (is_loop_device(f)) {
831 		struct loop_device *l;
832 
833 		if (f->f_mapping->host->i_bdev == bdev)
834 			goto out_putf;
835 
836 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
837 		if (l->lo_state == Lo_unbound) {
838 			error = -EINVAL;
839 			goto out_putf;
840 		}
841 		f = l->lo_backing_file;
842 	}
843 
844 	mapping = file->f_mapping;
845 	inode = mapping->host;
846 
847 	error = -EINVAL;
848 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
849 		goto out_putf;
850 
851 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
852 	    !file->f_op->write)
853 		lo_flags |= LO_FLAGS_READ_ONLY;
854 
855 	lo_blocksize = S_ISBLK(inode->i_mode) ?
856 		inode->i_bdev->bd_block_size : PAGE_SIZE;
857 
858 	error = -EFBIG;
859 	size = get_loop_size(lo, file);
860 	if ((loff_t)(sector_t)size != size)
861 		goto out_putf;
862 
863 	error = 0;
864 
865 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
866 
867 	lo->lo_blocksize = lo_blocksize;
868 	lo->lo_device = bdev;
869 	lo->lo_flags = lo_flags;
870 	lo->lo_backing_file = file;
871 	lo->transfer = transfer_none;
872 	lo->ioctl = NULL;
873 	lo->lo_sizelimit = 0;
874 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
875 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
876 
877 	bio_list_init(&lo->lo_bio_list);
878 
879 	/*
880 	 * set queue make_request_fn, and add limits based on lower level
881 	 * device
882 	 */
883 	blk_queue_make_request(lo->lo_queue, loop_make_request);
884 	lo->lo_queue->queuedata = lo;
885 
886 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
887 		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
888 
889 	set_capacity(lo->lo_disk, size);
890 	bd_set_size(bdev, size << 9);
891 	loop_sysfs_init(lo);
892 	/* let user-space know about the new size */
893 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
894 
895 	set_blocksize(bdev, lo_blocksize);
896 
897 	lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
898 						lo->lo_number);
899 	if (IS_ERR(lo->lo_thread)) {
900 		error = PTR_ERR(lo->lo_thread);
901 		goto out_clr;
902 	}
903 	lo->lo_state = Lo_bound;
904 	wake_up_process(lo->lo_thread);
905 	if (part_shift)
906 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
907 	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
908 		ioctl_by_bdev(bdev, BLKRRPART, 0);
909 	return 0;
910 
911 out_clr:
912 	loop_sysfs_exit(lo);
913 	lo->lo_thread = NULL;
914 	lo->lo_device = NULL;
915 	lo->lo_backing_file = NULL;
916 	lo->lo_flags = 0;
917 	set_capacity(lo->lo_disk, 0);
918 	invalidate_bdev(bdev);
919 	bd_set_size(bdev, 0);
920 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
921 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
922 	lo->lo_state = Lo_unbound;
923  out_putf:
924 	fput(file);
925  out:
926 	/* This is safe: open() is still holding a reference. */
927 	module_put(THIS_MODULE);
928 	return error;
929 }
930 
931 static int
932 loop_release_xfer(struct loop_device *lo)
933 {
934 	int err = 0;
935 	struct loop_func_table *xfer = lo->lo_encryption;
936 
937 	if (xfer) {
938 		if (xfer->release)
939 			err = xfer->release(lo);
940 		lo->transfer = NULL;
941 		lo->lo_encryption = NULL;
942 		module_put(xfer->owner);
943 	}
944 	return err;
945 }
946 
947 static int
948 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
949 	       const struct loop_info64 *i)
950 {
951 	int err = 0;
952 
953 	if (xfer) {
954 		struct module *owner = xfer->owner;
955 
956 		if (!try_module_get(owner))
957 			return -EINVAL;
958 		if (xfer->init)
959 			err = xfer->init(lo, i);
960 		if (err)
961 			module_put(owner);
962 		else
963 			lo->lo_encryption = xfer;
964 	}
965 	return err;
966 }
967 
968 static int loop_clr_fd(struct loop_device *lo)
969 {
970 	struct file *filp = lo->lo_backing_file;
971 	gfp_t gfp = lo->old_gfp_mask;
972 	struct block_device *bdev = lo->lo_device;
973 
974 	if (lo->lo_state != Lo_bound)
975 		return -ENXIO;
976 
977 	if (lo->lo_refcnt > 1)	/* we needed one fd for the ioctl */
978 		return -EBUSY;
979 
980 	if (filp == NULL)
981 		return -EINVAL;
982 
983 	spin_lock_irq(&lo->lo_lock);
984 	lo->lo_state = Lo_rundown;
985 	spin_unlock_irq(&lo->lo_lock);
986 
987 	kthread_stop(lo->lo_thread);
988 
989 	spin_lock_irq(&lo->lo_lock);
990 	lo->lo_backing_file = NULL;
991 	spin_unlock_irq(&lo->lo_lock);
992 
993 	loop_release_xfer(lo);
994 	lo->transfer = NULL;
995 	lo->ioctl = NULL;
996 	lo->lo_device = NULL;
997 	lo->lo_encryption = NULL;
998 	lo->lo_offset = 0;
999 	lo->lo_sizelimit = 0;
1000 	lo->lo_encrypt_key_size = 0;
1001 	lo->lo_thread = NULL;
1002 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1003 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1004 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1005 	if (bdev)
1006 		invalidate_bdev(bdev);
1007 	set_capacity(lo->lo_disk, 0);
1008 	loop_sysfs_exit(lo);
1009 	if (bdev) {
1010 		bd_set_size(bdev, 0);
1011 		/* let user-space know about this change */
1012 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1013 	}
1014 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1015 	lo->lo_state = Lo_unbound;
1016 	/* This is safe: open() is still holding a reference. */
1017 	module_put(THIS_MODULE);
1018 	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1019 		ioctl_by_bdev(bdev, BLKRRPART, 0);
1020 	lo->lo_flags = 0;
1021 	if (!part_shift)
1022 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1023 	mutex_unlock(&lo->lo_ctl_mutex);
1024 	/*
1025 	 * Need not hold lo_ctl_mutex to fput backing file.
1026 	 * Calling fput holding lo_ctl_mutex triggers a circular
1027 	 * lock dependency possibility warning as fput can take
1028 	 * bd_mutex which is usually taken before lo_ctl_mutex.
1029 	 */
1030 	fput(filp);
1031 	return 0;
1032 }
1033 
1034 static int
1035 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1036 {
1037 	int err;
1038 	struct loop_func_table *xfer;
1039 	uid_t uid = current_uid();
1040 
1041 	if (lo->lo_encrypt_key_size &&
1042 	    lo->lo_key_owner != uid &&
1043 	    !capable(CAP_SYS_ADMIN))
1044 		return -EPERM;
1045 	if (lo->lo_state != Lo_bound)
1046 		return -ENXIO;
1047 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1048 		return -EINVAL;
1049 
1050 	err = loop_release_xfer(lo);
1051 	if (err)
1052 		return err;
1053 
1054 	if (info->lo_encrypt_type) {
1055 		unsigned int type = info->lo_encrypt_type;
1056 
1057 		if (type >= MAX_LO_CRYPT)
1058 			return -EINVAL;
1059 		xfer = xfer_funcs[type];
1060 		if (xfer == NULL)
1061 			return -EINVAL;
1062 	} else
1063 		xfer = NULL;
1064 
1065 	err = loop_init_xfer(lo, xfer, info);
1066 	if (err)
1067 		return err;
1068 
1069 	if (lo->lo_offset != info->lo_offset ||
1070 	    lo->lo_sizelimit != info->lo_sizelimit) {
1071 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1072 			return -EFBIG;
1073 	}
1074 	loop_config_discard(lo);
1075 
1076 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1077 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1078 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1079 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1080 
1081 	if (!xfer)
1082 		xfer = &none_funcs;
1083 	lo->transfer = xfer->transfer;
1084 	lo->ioctl = xfer->ioctl;
1085 
1086 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1087 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1088 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1089 
1090 	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1091 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1092 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1093 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1094 		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1095 	}
1096 
1097 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1098 	lo->lo_init[0] = info->lo_init[0];
1099 	lo->lo_init[1] = info->lo_init[1];
1100 	if (info->lo_encrypt_key_size) {
1101 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1102 		       info->lo_encrypt_key_size);
1103 		lo->lo_key_owner = uid;
1104 	}
1105 
1106 	return 0;
1107 }
1108 
1109 static int
1110 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1111 {
1112 	struct file *file = lo->lo_backing_file;
1113 	struct kstat stat;
1114 	int error;
1115 
1116 	if (lo->lo_state != Lo_bound)
1117 		return -ENXIO;
1118 	error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1119 	if (error)
1120 		return error;
1121 	memset(info, 0, sizeof(*info));
1122 	info->lo_number = lo->lo_number;
1123 	info->lo_device = huge_encode_dev(stat.dev);
1124 	info->lo_inode = stat.ino;
1125 	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1126 	info->lo_offset = lo->lo_offset;
1127 	info->lo_sizelimit = lo->lo_sizelimit;
1128 	info->lo_flags = lo->lo_flags;
1129 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1130 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1131 	info->lo_encrypt_type =
1132 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1133 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1134 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1135 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1136 		       lo->lo_encrypt_key_size);
1137 	}
1138 	return 0;
1139 }
1140 
1141 static void
1142 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1143 {
1144 	memset(info64, 0, sizeof(*info64));
1145 	info64->lo_number = info->lo_number;
1146 	info64->lo_device = info->lo_device;
1147 	info64->lo_inode = info->lo_inode;
1148 	info64->lo_rdevice = info->lo_rdevice;
1149 	info64->lo_offset = info->lo_offset;
1150 	info64->lo_sizelimit = 0;
1151 	info64->lo_encrypt_type = info->lo_encrypt_type;
1152 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1153 	info64->lo_flags = info->lo_flags;
1154 	info64->lo_init[0] = info->lo_init[0];
1155 	info64->lo_init[1] = info->lo_init[1];
1156 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1157 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1158 	else
1159 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1160 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1161 }
1162 
1163 static int
1164 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1165 {
1166 	memset(info, 0, sizeof(*info));
1167 	info->lo_number = info64->lo_number;
1168 	info->lo_device = info64->lo_device;
1169 	info->lo_inode = info64->lo_inode;
1170 	info->lo_rdevice = info64->lo_rdevice;
1171 	info->lo_offset = info64->lo_offset;
1172 	info->lo_encrypt_type = info64->lo_encrypt_type;
1173 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1174 	info->lo_flags = info64->lo_flags;
1175 	info->lo_init[0] = info64->lo_init[0];
1176 	info->lo_init[1] = info64->lo_init[1];
1177 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1178 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1179 	else
1180 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1181 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1182 
1183 	/* error in case values were truncated */
1184 	if (info->lo_device != info64->lo_device ||
1185 	    info->lo_rdevice != info64->lo_rdevice ||
1186 	    info->lo_inode != info64->lo_inode ||
1187 	    info->lo_offset != info64->lo_offset)
1188 		return -EOVERFLOW;
1189 
1190 	return 0;
1191 }
1192 
1193 static int
1194 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1195 {
1196 	struct loop_info info;
1197 	struct loop_info64 info64;
1198 
1199 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1200 		return -EFAULT;
1201 	loop_info64_from_old(&info, &info64);
1202 	return loop_set_status(lo, &info64);
1203 }
1204 
1205 static int
1206 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1207 {
1208 	struct loop_info64 info64;
1209 
1210 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1211 		return -EFAULT;
1212 	return loop_set_status(lo, &info64);
1213 }
1214 
1215 static int
1216 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1217 	struct loop_info info;
1218 	struct loop_info64 info64;
1219 	int err = 0;
1220 
1221 	if (!arg)
1222 		err = -EINVAL;
1223 	if (!err)
1224 		err = loop_get_status(lo, &info64);
1225 	if (!err)
1226 		err = loop_info64_to_old(&info64, &info);
1227 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1228 		err = -EFAULT;
1229 
1230 	return err;
1231 }
1232 
1233 static int
1234 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1235 	struct loop_info64 info64;
1236 	int err = 0;
1237 
1238 	if (!arg)
1239 		err = -EINVAL;
1240 	if (!err)
1241 		err = loop_get_status(lo, &info64);
1242 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1243 		err = -EFAULT;
1244 
1245 	return err;
1246 }
1247 
1248 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1249 {
1250 	int err;
1251 	sector_t sec;
1252 	loff_t sz;
1253 
1254 	err = -ENXIO;
1255 	if (unlikely(lo->lo_state != Lo_bound))
1256 		goto out;
1257 	err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1258 	if (unlikely(err))
1259 		goto out;
1260 	sec = get_capacity(lo->lo_disk);
1261 	/* the width of sector_t may be narrow for bit-shift */
1262 	sz = sec;
1263 	sz <<= 9;
1264 	mutex_lock(&bdev->bd_mutex);
1265 	bd_set_size(bdev, sz);
1266 	/* let user-space know about the new size */
1267 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1268 	mutex_unlock(&bdev->bd_mutex);
1269 
1270  out:
1271 	return err;
1272 }
1273 
1274 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1275 	unsigned int cmd, unsigned long arg)
1276 {
1277 	struct loop_device *lo = bdev->bd_disk->private_data;
1278 	int err;
1279 
1280 	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1281 	switch (cmd) {
1282 	case LOOP_SET_FD:
1283 		err = loop_set_fd(lo, mode, bdev, arg);
1284 		break;
1285 	case LOOP_CHANGE_FD:
1286 		err = loop_change_fd(lo, bdev, arg);
1287 		break;
1288 	case LOOP_CLR_FD:
1289 		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1290 		err = loop_clr_fd(lo);
1291 		if (!err)
1292 			goto out_unlocked;
1293 		break;
1294 	case LOOP_SET_STATUS:
1295 		err = -EPERM;
1296 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1297 			err = loop_set_status_old(lo,
1298 					(struct loop_info __user *)arg);
1299 		break;
1300 	case LOOP_GET_STATUS:
1301 		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1302 		break;
1303 	case LOOP_SET_STATUS64:
1304 		err = -EPERM;
1305 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1306 			err = loop_set_status64(lo,
1307 					(struct loop_info64 __user *) arg);
1308 		break;
1309 	case LOOP_GET_STATUS64:
1310 		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1311 		break;
1312 	case LOOP_SET_CAPACITY:
1313 		err = -EPERM;
1314 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1315 			err = loop_set_capacity(lo, bdev);
1316 		break;
1317 	default:
1318 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1319 	}
1320 	mutex_unlock(&lo->lo_ctl_mutex);
1321 
1322 out_unlocked:
1323 	return err;
1324 }
1325 
1326 #ifdef CONFIG_COMPAT
1327 struct compat_loop_info {
1328 	compat_int_t	lo_number;      /* ioctl r/o */
1329 	compat_dev_t	lo_device;      /* ioctl r/o */
1330 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1331 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1332 	compat_int_t	lo_offset;
1333 	compat_int_t	lo_encrypt_type;
1334 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1335 	compat_int_t	lo_flags;       /* ioctl r/o */
1336 	char		lo_name[LO_NAME_SIZE];
1337 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1338 	compat_ulong_t	lo_init[2];
1339 	char		reserved[4];
1340 };
1341 
1342 /*
1343  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1344  * - noinlined to reduce stack space usage in main part of driver
1345  */
1346 static noinline int
1347 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1348 			struct loop_info64 *info64)
1349 {
1350 	struct compat_loop_info info;
1351 
1352 	if (copy_from_user(&info, arg, sizeof(info)))
1353 		return -EFAULT;
1354 
1355 	memset(info64, 0, sizeof(*info64));
1356 	info64->lo_number = info.lo_number;
1357 	info64->lo_device = info.lo_device;
1358 	info64->lo_inode = info.lo_inode;
1359 	info64->lo_rdevice = info.lo_rdevice;
1360 	info64->lo_offset = info.lo_offset;
1361 	info64->lo_sizelimit = 0;
1362 	info64->lo_encrypt_type = info.lo_encrypt_type;
1363 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1364 	info64->lo_flags = info.lo_flags;
1365 	info64->lo_init[0] = info.lo_init[0];
1366 	info64->lo_init[1] = info.lo_init[1];
1367 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1368 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1369 	else
1370 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1371 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1377  * - noinlined to reduce stack space usage in main part of driver
1378  */
1379 static noinline int
1380 loop_info64_to_compat(const struct loop_info64 *info64,
1381 		      struct compat_loop_info __user *arg)
1382 {
1383 	struct compat_loop_info info;
1384 
1385 	memset(&info, 0, sizeof(info));
1386 	info.lo_number = info64->lo_number;
1387 	info.lo_device = info64->lo_device;
1388 	info.lo_inode = info64->lo_inode;
1389 	info.lo_rdevice = info64->lo_rdevice;
1390 	info.lo_offset = info64->lo_offset;
1391 	info.lo_encrypt_type = info64->lo_encrypt_type;
1392 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1393 	info.lo_flags = info64->lo_flags;
1394 	info.lo_init[0] = info64->lo_init[0];
1395 	info.lo_init[1] = info64->lo_init[1];
1396 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1397 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1398 	else
1399 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1400 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1401 
1402 	/* error in case values were truncated */
1403 	if (info.lo_device != info64->lo_device ||
1404 	    info.lo_rdevice != info64->lo_rdevice ||
1405 	    info.lo_inode != info64->lo_inode ||
1406 	    info.lo_offset != info64->lo_offset ||
1407 	    info.lo_init[0] != info64->lo_init[0] ||
1408 	    info.lo_init[1] != info64->lo_init[1])
1409 		return -EOVERFLOW;
1410 
1411 	if (copy_to_user(arg, &info, sizeof(info)))
1412 		return -EFAULT;
1413 	return 0;
1414 }
1415 
1416 static int
1417 loop_set_status_compat(struct loop_device *lo,
1418 		       const struct compat_loop_info __user *arg)
1419 {
1420 	struct loop_info64 info64;
1421 	int ret;
1422 
1423 	ret = loop_info64_from_compat(arg, &info64);
1424 	if (ret < 0)
1425 		return ret;
1426 	return loop_set_status(lo, &info64);
1427 }
1428 
1429 static int
1430 loop_get_status_compat(struct loop_device *lo,
1431 		       struct compat_loop_info __user *arg)
1432 {
1433 	struct loop_info64 info64;
1434 	int err = 0;
1435 
1436 	if (!arg)
1437 		err = -EINVAL;
1438 	if (!err)
1439 		err = loop_get_status(lo, &info64);
1440 	if (!err)
1441 		err = loop_info64_to_compat(&info64, arg);
1442 	return err;
1443 }
1444 
1445 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1446 			   unsigned int cmd, unsigned long arg)
1447 {
1448 	struct loop_device *lo = bdev->bd_disk->private_data;
1449 	int err;
1450 
1451 	switch(cmd) {
1452 	case LOOP_SET_STATUS:
1453 		mutex_lock(&lo->lo_ctl_mutex);
1454 		err = loop_set_status_compat(
1455 			lo, (const struct compat_loop_info __user *) arg);
1456 		mutex_unlock(&lo->lo_ctl_mutex);
1457 		break;
1458 	case LOOP_GET_STATUS:
1459 		mutex_lock(&lo->lo_ctl_mutex);
1460 		err = loop_get_status_compat(
1461 			lo, (struct compat_loop_info __user *) arg);
1462 		mutex_unlock(&lo->lo_ctl_mutex);
1463 		break;
1464 	case LOOP_SET_CAPACITY:
1465 	case LOOP_CLR_FD:
1466 	case LOOP_GET_STATUS64:
1467 	case LOOP_SET_STATUS64:
1468 		arg = (unsigned long) compat_ptr(arg);
1469 	case LOOP_SET_FD:
1470 	case LOOP_CHANGE_FD:
1471 		err = lo_ioctl(bdev, mode, cmd, arg);
1472 		break;
1473 	default:
1474 		err = -ENOIOCTLCMD;
1475 		break;
1476 	}
1477 	return err;
1478 }
1479 #endif
1480 
1481 static int lo_open(struct block_device *bdev, fmode_t mode)
1482 {
1483 	struct loop_device *lo;
1484 	int err = 0;
1485 
1486 	mutex_lock(&loop_index_mutex);
1487 	lo = bdev->bd_disk->private_data;
1488 	if (!lo) {
1489 		err = -ENXIO;
1490 		goto out;
1491 	}
1492 
1493 	mutex_lock(&lo->lo_ctl_mutex);
1494 	lo->lo_refcnt++;
1495 	mutex_unlock(&lo->lo_ctl_mutex);
1496 out:
1497 	mutex_unlock(&loop_index_mutex);
1498 	return err;
1499 }
1500 
1501 static int lo_release(struct gendisk *disk, fmode_t mode)
1502 {
1503 	struct loop_device *lo = disk->private_data;
1504 	int err;
1505 
1506 	mutex_lock(&lo->lo_ctl_mutex);
1507 
1508 	if (--lo->lo_refcnt)
1509 		goto out;
1510 
1511 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1512 		/*
1513 		 * In autoclear mode, stop the loop thread
1514 		 * and remove configuration after last close.
1515 		 */
1516 		err = loop_clr_fd(lo);
1517 		if (!err)
1518 			goto out_unlocked;
1519 	} else {
1520 		/*
1521 		 * Otherwise keep thread (if running) and config,
1522 		 * but flush possible ongoing bios in thread.
1523 		 */
1524 		loop_flush(lo);
1525 	}
1526 
1527 out:
1528 	mutex_unlock(&lo->lo_ctl_mutex);
1529 out_unlocked:
1530 	return 0;
1531 }
1532 
1533 static const struct block_device_operations lo_fops = {
1534 	.owner =	THIS_MODULE,
1535 	.open =		lo_open,
1536 	.release =	lo_release,
1537 	.ioctl =	lo_ioctl,
1538 #ifdef CONFIG_COMPAT
1539 	.compat_ioctl =	lo_compat_ioctl,
1540 #endif
1541 };
1542 
1543 /*
1544  * And now the modules code and kernel interface.
1545  */
1546 static int max_loop;
1547 module_param(max_loop, int, S_IRUGO);
1548 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1549 module_param(max_part, int, S_IRUGO);
1550 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1551 MODULE_LICENSE("GPL");
1552 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1553 
1554 int loop_register_transfer(struct loop_func_table *funcs)
1555 {
1556 	unsigned int n = funcs->number;
1557 
1558 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1559 		return -EINVAL;
1560 	xfer_funcs[n] = funcs;
1561 	return 0;
1562 }
1563 
1564 static int unregister_transfer_cb(int id, void *ptr, void *data)
1565 {
1566 	struct loop_device *lo = ptr;
1567 	struct loop_func_table *xfer = data;
1568 
1569 	mutex_lock(&lo->lo_ctl_mutex);
1570 	if (lo->lo_encryption == xfer)
1571 		loop_release_xfer(lo);
1572 	mutex_unlock(&lo->lo_ctl_mutex);
1573 	return 0;
1574 }
1575 
1576 int loop_unregister_transfer(int number)
1577 {
1578 	unsigned int n = number;
1579 	struct loop_func_table *xfer;
1580 
1581 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1582 		return -EINVAL;
1583 
1584 	xfer_funcs[n] = NULL;
1585 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1586 	return 0;
1587 }
1588 
1589 EXPORT_SYMBOL(loop_register_transfer);
1590 EXPORT_SYMBOL(loop_unregister_transfer);
1591 
1592 static int loop_add(struct loop_device **l, int i)
1593 {
1594 	struct loop_device *lo;
1595 	struct gendisk *disk;
1596 	int err;
1597 
1598 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1599 	if (!lo) {
1600 		err = -ENOMEM;
1601 		goto out;
1602 	}
1603 
1604 	err = idr_pre_get(&loop_index_idr, GFP_KERNEL);
1605 	if (err < 0)
1606 		goto out_free_dev;
1607 
1608 	if (i >= 0) {
1609 		int m;
1610 
1611 		/* create specific i in the index */
1612 		err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1613 		if (err >= 0 && i != m) {
1614 			idr_remove(&loop_index_idr, m);
1615 			err = -EEXIST;
1616 		}
1617 	} else if (i == -1) {
1618 		int m;
1619 
1620 		/* get next free nr */
1621 		err = idr_get_new(&loop_index_idr, lo, &m);
1622 		if (err >= 0)
1623 			i = m;
1624 	} else {
1625 		err = -EINVAL;
1626 	}
1627 	if (err < 0)
1628 		goto out_free_dev;
1629 
1630 	lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1631 	if (!lo->lo_queue)
1632 		goto out_free_dev;
1633 
1634 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1635 	if (!disk)
1636 		goto out_free_queue;
1637 
1638 	/*
1639 	 * Disable partition scanning by default. The in-kernel partition
1640 	 * scanning can be requested individually per-device during its
1641 	 * setup. Userspace can always add and remove partitions from all
1642 	 * devices. The needed partition minors are allocated from the
1643 	 * extended minor space, the main loop device numbers will continue
1644 	 * to match the loop minors, regardless of the number of partitions
1645 	 * used.
1646 	 *
1647 	 * If max_part is given, partition scanning is globally enabled for
1648 	 * all loop devices. The minors for the main loop devices will be
1649 	 * multiples of max_part.
1650 	 *
1651 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1652 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1653 	 * complicated, are too static, inflexible and may surprise
1654 	 * userspace tools. Parameters like this in general should be avoided.
1655 	 */
1656 	if (!part_shift)
1657 		disk->flags |= GENHD_FL_NO_PART_SCAN;
1658 	disk->flags |= GENHD_FL_EXT_DEVT;
1659 	mutex_init(&lo->lo_ctl_mutex);
1660 	lo->lo_number		= i;
1661 	lo->lo_thread		= NULL;
1662 	init_waitqueue_head(&lo->lo_event);
1663 	spin_lock_init(&lo->lo_lock);
1664 	disk->major		= LOOP_MAJOR;
1665 	disk->first_minor	= i << part_shift;
1666 	disk->fops		= &lo_fops;
1667 	disk->private_data	= lo;
1668 	disk->queue		= lo->lo_queue;
1669 	sprintf(disk->disk_name, "loop%d", i);
1670 	add_disk(disk);
1671 	*l = lo;
1672 	return lo->lo_number;
1673 
1674 out_free_queue:
1675 	blk_cleanup_queue(lo->lo_queue);
1676 out_free_dev:
1677 	kfree(lo);
1678 out:
1679 	return err;
1680 }
1681 
1682 static void loop_remove(struct loop_device *lo)
1683 {
1684 	del_gendisk(lo->lo_disk);
1685 	blk_cleanup_queue(lo->lo_queue);
1686 	put_disk(lo->lo_disk);
1687 	kfree(lo);
1688 }
1689 
1690 static int find_free_cb(int id, void *ptr, void *data)
1691 {
1692 	struct loop_device *lo = ptr;
1693 	struct loop_device **l = data;
1694 
1695 	if (lo->lo_state == Lo_unbound) {
1696 		*l = lo;
1697 		return 1;
1698 	}
1699 	return 0;
1700 }
1701 
1702 static int loop_lookup(struct loop_device **l, int i)
1703 {
1704 	struct loop_device *lo;
1705 	int ret = -ENODEV;
1706 
1707 	if (i < 0) {
1708 		int err;
1709 
1710 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1711 		if (err == 1) {
1712 			*l = lo;
1713 			ret = lo->lo_number;
1714 		}
1715 		goto out;
1716 	}
1717 
1718 	/* lookup and return a specific i */
1719 	lo = idr_find(&loop_index_idr, i);
1720 	if (lo) {
1721 		*l = lo;
1722 		ret = lo->lo_number;
1723 	}
1724 out:
1725 	return ret;
1726 }
1727 
1728 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1729 {
1730 	struct loop_device *lo;
1731 	struct kobject *kobj;
1732 	int err;
1733 
1734 	mutex_lock(&loop_index_mutex);
1735 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1736 	if (err < 0)
1737 		err = loop_add(&lo, MINOR(dev) >> part_shift);
1738 	if (err < 0)
1739 		kobj = ERR_PTR(err);
1740 	else
1741 		kobj = get_disk(lo->lo_disk);
1742 	mutex_unlock(&loop_index_mutex);
1743 
1744 	*part = 0;
1745 	return kobj;
1746 }
1747 
1748 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1749 			       unsigned long parm)
1750 {
1751 	struct loop_device *lo;
1752 	int ret = -ENOSYS;
1753 
1754 	mutex_lock(&loop_index_mutex);
1755 	switch (cmd) {
1756 	case LOOP_CTL_ADD:
1757 		ret = loop_lookup(&lo, parm);
1758 		if (ret >= 0) {
1759 			ret = -EEXIST;
1760 			break;
1761 		}
1762 		ret = loop_add(&lo, parm);
1763 		break;
1764 	case LOOP_CTL_REMOVE:
1765 		ret = loop_lookup(&lo, parm);
1766 		if (ret < 0)
1767 			break;
1768 		mutex_lock(&lo->lo_ctl_mutex);
1769 		if (lo->lo_state != Lo_unbound) {
1770 			ret = -EBUSY;
1771 			mutex_unlock(&lo->lo_ctl_mutex);
1772 			break;
1773 		}
1774 		if (lo->lo_refcnt > 0) {
1775 			ret = -EBUSY;
1776 			mutex_unlock(&lo->lo_ctl_mutex);
1777 			break;
1778 		}
1779 		lo->lo_disk->private_data = NULL;
1780 		mutex_unlock(&lo->lo_ctl_mutex);
1781 		idr_remove(&loop_index_idr, lo->lo_number);
1782 		loop_remove(lo);
1783 		break;
1784 	case LOOP_CTL_GET_FREE:
1785 		ret = loop_lookup(&lo, -1);
1786 		if (ret >= 0)
1787 			break;
1788 		ret = loop_add(&lo, -1);
1789 	}
1790 	mutex_unlock(&loop_index_mutex);
1791 
1792 	return ret;
1793 }
1794 
1795 static const struct file_operations loop_ctl_fops = {
1796 	.open		= nonseekable_open,
1797 	.unlocked_ioctl	= loop_control_ioctl,
1798 	.compat_ioctl	= loop_control_ioctl,
1799 	.owner		= THIS_MODULE,
1800 	.llseek		= noop_llseek,
1801 };
1802 
1803 static struct miscdevice loop_misc = {
1804 	.minor		= LOOP_CTRL_MINOR,
1805 	.name		= "loop-control",
1806 	.fops		= &loop_ctl_fops,
1807 };
1808 
1809 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1810 MODULE_ALIAS("devname:loop-control");
1811 
1812 static int __init loop_init(void)
1813 {
1814 	int i, nr;
1815 	unsigned long range;
1816 	struct loop_device *lo;
1817 	int err;
1818 
1819 	err = misc_register(&loop_misc);
1820 	if (err < 0)
1821 		return err;
1822 
1823 	part_shift = 0;
1824 	if (max_part > 0) {
1825 		part_shift = fls(max_part);
1826 
1827 		/*
1828 		 * Adjust max_part according to part_shift as it is exported
1829 		 * to user space so that user can decide correct minor number
1830 		 * if [s]he want to create more devices.
1831 		 *
1832 		 * Note that -1 is required because partition 0 is reserved
1833 		 * for the whole disk.
1834 		 */
1835 		max_part = (1UL << part_shift) - 1;
1836 	}
1837 
1838 	if ((1UL << part_shift) > DISK_MAX_PARTS)
1839 		return -EINVAL;
1840 
1841 	if (max_loop > 1UL << (MINORBITS - part_shift))
1842 		return -EINVAL;
1843 
1844 	/*
1845 	 * If max_loop is specified, create that many devices upfront.
1846 	 * This also becomes a hard limit. If max_loop is not specified,
1847 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1848 	 * init time. Loop devices can be requested on-demand with the
1849 	 * /dev/loop-control interface, or be instantiated by accessing
1850 	 * a 'dead' device node.
1851 	 */
1852 	if (max_loop) {
1853 		nr = max_loop;
1854 		range = max_loop << part_shift;
1855 	} else {
1856 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1857 		range = 1UL << MINORBITS;
1858 	}
1859 
1860 	if (register_blkdev(LOOP_MAJOR, "loop"))
1861 		return -EIO;
1862 
1863 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1864 				  THIS_MODULE, loop_probe, NULL, NULL);
1865 
1866 	/* pre-create number of devices given by config or max_loop */
1867 	mutex_lock(&loop_index_mutex);
1868 	for (i = 0; i < nr; i++)
1869 		loop_add(&lo, i);
1870 	mutex_unlock(&loop_index_mutex);
1871 
1872 	printk(KERN_INFO "loop: module loaded\n");
1873 	return 0;
1874 }
1875 
1876 static int loop_exit_cb(int id, void *ptr, void *data)
1877 {
1878 	struct loop_device *lo = ptr;
1879 
1880 	loop_remove(lo);
1881 	return 0;
1882 }
1883 
1884 static void __exit loop_exit(void)
1885 {
1886 	unsigned long range;
1887 
1888 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1889 
1890 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1891 	idr_remove_all(&loop_index_idr);
1892 	idr_destroy(&loop_index_idr);
1893 
1894 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1895 	unregister_blkdev(LOOP_MAJOR, "loop");
1896 
1897 	misc_deregister(&loop_misc);
1898 }
1899 
1900 module_init(loop_init);
1901 module_exit(loop_exit);
1902 
1903 #ifndef MODULE
1904 static int __init max_loop_setup(char *str)
1905 {
1906 	max_loop = simple_strtol(str, NULL, 0);
1907 	return 1;
1908 }
1909 
1910 __setup("max_loop=", max_loop_setup);
1911 #endif
1912