1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/smp_lock.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/loop.h> 68 #include <linux/compat.h> 69 #include <linux/suspend.h> 70 #include <linux/freezer.h> 71 #include <linux/writeback.h> 72 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 73 #include <linux/completion.h> 74 #include <linux/highmem.h> 75 #include <linux/gfp.h> 76 #include <linux/kthread.h> 77 #include <linux/splice.h> 78 79 #include <asm/uaccess.h> 80 81 static LIST_HEAD(loop_devices); 82 static DEFINE_MUTEX(loop_devices_mutex); 83 84 static int max_part; 85 static int part_shift; 86 87 /* 88 * Transfer functions 89 */ 90 static int transfer_none(struct loop_device *lo, int cmd, 91 struct page *raw_page, unsigned raw_off, 92 struct page *loop_page, unsigned loop_off, 93 int size, sector_t real_block) 94 { 95 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 96 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 97 98 if (cmd == READ) 99 memcpy(loop_buf, raw_buf, size); 100 else 101 memcpy(raw_buf, loop_buf, size); 102 103 kunmap_atomic(raw_buf, KM_USER0); 104 kunmap_atomic(loop_buf, KM_USER1); 105 cond_resched(); 106 return 0; 107 } 108 109 static int transfer_xor(struct loop_device *lo, int cmd, 110 struct page *raw_page, unsigned raw_off, 111 struct page *loop_page, unsigned loop_off, 112 int size, sector_t real_block) 113 { 114 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 115 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 116 char *in, *out, *key; 117 int i, keysize; 118 119 if (cmd == READ) { 120 in = raw_buf; 121 out = loop_buf; 122 } else { 123 in = loop_buf; 124 out = raw_buf; 125 } 126 127 key = lo->lo_encrypt_key; 128 keysize = lo->lo_encrypt_key_size; 129 for (i = 0; i < size; i++) 130 *out++ = *in++ ^ key[(i & 511) % keysize]; 131 132 kunmap_atomic(raw_buf, KM_USER0); 133 kunmap_atomic(loop_buf, KM_USER1); 134 cond_resched(); 135 return 0; 136 } 137 138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 139 { 140 if (unlikely(info->lo_encrypt_key_size <= 0)) 141 return -EINVAL; 142 return 0; 143 } 144 145 static struct loop_func_table none_funcs = { 146 .number = LO_CRYPT_NONE, 147 .transfer = transfer_none, 148 }; 149 150 static struct loop_func_table xor_funcs = { 151 .number = LO_CRYPT_XOR, 152 .transfer = transfer_xor, 153 .init = xor_init 154 }; 155 156 /* xfer_funcs[0] is special - its release function is never called */ 157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 158 &none_funcs, 159 &xor_funcs 160 }; 161 162 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 163 { 164 loff_t size, offset, loopsize; 165 166 /* Compute loopsize in bytes */ 167 size = i_size_read(file->f_mapping->host); 168 offset = lo->lo_offset; 169 loopsize = size - offset; 170 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 171 loopsize = lo->lo_sizelimit; 172 173 /* 174 * Unfortunately, if we want to do I/O on the device, 175 * the number of 512-byte sectors has to fit into a sector_t. 176 */ 177 return loopsize >> 9; 178 } 179 180 static int 181 figure_loop_size(struct loop_device *lo) 182 { 183 loff_t size = get_loop_size(lo, lo->lo_backing_file); 184 sector_t x = (sector_t)size; 185 186 if (unlikely((loff_t)x != size)) 187 return -EFBIG; 188 189 set_capacity(lo->lo_disk, x); 190 return 0; 191 } 192 193 static inline int 194 lo_do_transfer(struct loop_device *lo, int cmd, 195 struct page *rpage, unsigned roffs, 196 struct page *lpage, unsigned loffs, 197 int size, sector_t rblock) 198 { 199 if (unlikely(!lo->transfer)) 200 return 0; 201 202 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 203 } 204 205 /** 206 * do_lo_send_aops - helper for writing data to a loop device 207 * 208 * This is the fast version for backing filesystems which implement the address 209 * space operations write_begin and write_end. 210 */ 211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 212 loff_t pos, struct page *unused) 213 { 214 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 215 struct address_space *mapping = file->f_mapping; 216 pgoff_t index; 217 unsigned offset, bv_offs; 218 int len, ret; 219 220 mutex_lock(&mapping->host->i_mutex); 221 index = pos >> PAGE_CACHE_SHIFT; 222 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 223 bv_offs = bvec->bv_offset; 224 len = bvec->bv_len; 225 while (len > 0) { 226 sector_t IV; 227 unsigned size, copied; 228 int transfer_result; 229 struct page *page; 230 void *fsdata; 231 232 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 233 size = PAGE_CACHE_SIZE - offset; 234 if (size > len) 235 size = len; 236 237 ret = pagecache_write_begin(file, mapping, pos, size, 0, 238 &page, &fsdata); 239 if (ret) 240 goto fail; 241 242 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 243 bvec->bv_page, bv_offs, size, IV); 244 copied = size; 245 if (unlikely(transfer_result)) 246 copied = 0; 247 248 ret = pagecache_write_end(file, mapping, pos, size, copied, 249 page, fsdata); 250 if (ret < 0 || ret != copied) 251 goto fail; 252 253 if (unlikely(transfer_result)) 254 goto fail; 255 256 bv_offs += copied; 257 len -= copied; 258 offset = 0; 259 index++; 260 pos += copied; 261 } 262 ret = 0; 263 out: 264 mutex_unlock(&mapping->host->i_mutex); 265 return ret; 266 fail: 267 ret = -1; 268 goto out; 269 } 270 271 /** 272 * __do_lo_send_write - helper for writing data to a loop device 273 * 274 * This helper just factors out common code between do_lo_send_direct_write() 275 * and do_lo_send_write(). 276 */ 277 static int __do_lo_send_write(struct file *file, 278 u8 *buf, const int len, loff_t pos) 279 { 280 ssize_t bw; 281 mm_segment_t old_fs = get_fs(); 282 283 set_fs(get_ds()); 284 bw = file->f_op->write(file, buf, len, &pos); 285 set_fs(old_fs); 286 if (likely(bw == len)) 287 return 0; 288 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 289 (unsigned long long)pos, len); 290 if (bw >= 0) 291 bw = -EIO; 292 return bw; 293 } 294 295 /** 296 * do_lo_send_direct_write - helper for writing data to a loop device 297 * 298 * This is the fast, non-transforming version for backing filesystems which do 299 * not implement the address space operations write_begin and write_end. 300 * It uses the write file operation which should be present on all writeable 301 * filesystems. 302 */ 303 static int do_lo_send_direct_write(struct loop_device *lo, 304 struct bio_vec *bvec, loff_t pos, struct page *page) 305 { 306 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 307 kmap(bvec->bv_page) + bvec->bv_offset, 308 bvec->bv_len, pos); 309 kunmap(bvec->bv_page); 310 cond_resched(); 311 return bw; 312 } 313 314 /** 315 * do_lo_send_write - helper for writing data to a loop device 316 * 317 * This is the slow, transforming version for filesystems which do not 318 * implement the address space operations write_begin and write_end. It 319 * uses the write file operation which should be present on all writeable 320 * filesystems. 321 * 322 * Using fops->write is slower than using aops->{prepare,commit}_write in the 323 * transforming case because we need to double buffer the data as we cannot do 324 * the transformations in place as we do not have direct access to the 325 * destination pages of the backing file. 326 */ 327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 328 loff_t pos, struct page *page) 329 { 330 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 331 bvec->bv_offset, bvec->bv_len, pos >> 9); 332 if (likely(!ret)) 333 return __do_lo_send_write(lo->lo_backing_file, 334 page_address(page), bvec->bv_len, 335 pos); 336 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 337 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 338 if (ret > 0) 339 ret = -EIO; 340 return ret; 341 } 342 343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 344 { 345 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 346 struct page *page); 347 struct bio_vec *bvec; 348 struct page *page = NULL; 349 int i, ret = 0; 350 351 do_lo_send = do_lo_send_aops; 352 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 353 do_lo_send = do_lo_send_direct_write; 354 if (lo->transfer != transfer_none) { 355 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 356 if (unlikely(!page)) 357 goto fail; 358 kmap(page); 359 do_lo_send = do_lo_send_write; 360 } 361 } 362 bio_for_each_segment(bvec, bio, i) { 363 ret = do_lo_send(lo, bvec, pos, page); 364 if (ret < 0) 365 break; 366 pos += bvec->bv_len; 367 } 368 if (page) { 369 kunmap(page); 370 __free_page(page); 371 } 372 out: 373 return ret; 374 fail: 375 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 376 ret = -ENOMEM; 377 goto out; 378 } 379 380 struct lo_read_data { 381 struct loop_device *lo; 382 struct page *page; 383 unsigned offset; 384 int bsize; 385 }; 386 387 static int 388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 389 struct splice_desc *sd) 390 { 391 struct lo_read_data *p = sd->u.data; 392 struct loop_device *lo = p->lo; 393 struct page *page = buf->page; 394 sector_t IV; 395 size_t size; 396 int ret; 397 398 ret = buf->ops->confirm(pipe, buf); 399 if (unlikely(ret)) 400 return ret; 401 402 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 403 (buf->offset >> 9); 404 size = sd->len; 405 if (size > p->bsize) 406 size = p->bsize; 407 408 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 409 printk(KERN_ERR "loop: transfer error block %ld\n", 410 page->index); 411 size = -EINVAL; 412 } 413 414 flush_dcache_page(p->page); 415 416 if (size > 0) 417 p->offset += size; 418 419 return size; 420 } 421 422 static int 423 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 424 { 425 return __splice_from_pipe(pipe, sd, lo_splice_actor); 426 } 427 428 static int 429 do_lo_receive(struct loop_device *lo, 430 struct bio_vec *bvec, int bsize, loff_t pos) 431 { 432 struct lo_read_data cookie; 433 struct splice_desc sd; 434 struct file *file; 435 long retval; 436 437 cookie.lo = lo; 438 cookie.page = bvec->bv_page; 439 cookie.offset = bvec->bv_offset; 440 cookie.bsize = bsize; 441 442 sd.len = 0; 443 sd.total_len = bvec->bv_len; 444 sd.flags = 0; 445 sd.pos = pos; 446 sd.u.data = &cookie; 447 448 file = lo->lo_backing_file; 449 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 450 451 if (retval < 0) 452 return retval; 453 454 return 0; 455 } 456 457 static int 458 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 459 { 460 struct bio_vec *bvec; 461 int i, ret = 0; 462 463 bio_for_each_segment(bvec, bio, i) { 464 ret = do_lo_receive(lo, bvec, bsize, pos); 465 if (ret < 0) 466 break; 467 pos += bvec->bv_len; 468 } 469 return ret; 470 } 471 472 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 473 { 474 loff_t pos; 475 int ret; 476 477 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 478 if (bio_rw(bio) == WRITE) 479 ret = lo_send(lo, bio, pos); 480 else 481 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 482 return ret; 483 } 484 485 /* 486 * Add bio to back of pending list 487 */ 488 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 489 { 490 if (lo->lo_biotail) { 491 lo->lo_biotail->bi_next = bio; 492 lo->lo_biotail = bio; 493 } else 494 lo->lo_bio = lo->lo_biotail = bio; 495 } 496 497 /* 498 * Grab first pending buffer 499 */ 500 static struct bio *loop_get_bio(struct loop_device *lo) 501 { 502 struct bio *bio; 503 504 if ((bio = lo->lo_bio)) { 505 if (bio == lo->lo_biotail) 506 lo->lo_biotail = NULL; 507 lo->lo_bio = bio->bi_next; 508 bio->bi_next = NULL; 509 } 510 511 return bio; 512 } 513 514 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 515 { 516 struct loop_device *lo = q->queuedata; 517 int rw = bio_rw(old_bio); 518 519 if (rw == READA) 520 rw = READ; 521 522 BUG_ON(!lo || (rw != READ && rw != WRITE)); 523 524 spin_lock_irq(&lo->lo_lock); 525 if (lo->lo_state != Lo_bound) 526 goto out; 527 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 528 goto out; 529 loop_add_bio(lo, old_bio); 530 wake_up(&lo->lo_event); 531 spin_unlock_irq(&lo->lo_lock); 532 return 0; 533 534 out: 535 spin_unlock_irq(&lo->lo_lock); 536 bio_io_error(old_bio); 537 return 0; 538 } 539 540 /* 541 * kick off io on the underlying address space 542 */ 543 static void loop_unplug(struct request_queue *q) 544 { 545 struct loop_device *lo = q->queuedata; 546 547 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 548 blk_run_address_space(lo->lo_backing_file->f_mapping); 549 } 550 551 struct switch_request { 552 struct file *file; 553 struct completion wait; 554 }; 555 556 static void do_loop_switch(struct loop_device *, struct switch_request *); 557 558 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 559 { 560 if (unlikely(!bio->bi_bdev)) { 561 do_loop_switch(lo, bio->bi_private); 562 bio_put(bio); 563 } else { 564 int ret = do_bio_filebacked(lo, bio); 565 bio_endio(bio, ret); 566 } 567 } 568 569 /* 570 * worker thread that handles reads/writes to file backed loop devices, 571 * to avoid blocking in our make_request_fn. it also does loop decrypting 572 * on reads for block backed loop, as that is too heavy to do from 573 * b_end_io context where irqs may be disabled. 574 * 575 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 576 * calling kthread_stop(). Therefore once kthread_should_stop() is 577 * true, make_request will not place any more requests. Therefore 578 * once kthread_should_stop() is true and lo_bio is NULL, we are 579 * done with the loop. 580 */ 581 static int loop_thread(void *data) 582 { 583 struct loop_device *lo = data; 584 struct bio *bio; 585 586 set_user_nice(current, -20); 587 588 while (!kthread_should_stop() || lo->lo_bio) { 589 590 wait_event_interruptible(lo->lo_event, 591 lo->lo_bio || kthread_should_stop()); 592 593 if (!lo->lo_bio) 594 continue; 595 spin_lock_irq(&lo->lo_lock); 596 bio = loop_get_bio(lo); 597 spin_unlock_irq(&lo->lo_lock); 598 599 BUG_ON(!bio); 600 loop_handle_bio(lo, bio); 601 } 602 603 return 0; 604 } 605 606 /* 607 * loop_switch performs the hard work of switching a backing store. 608 * First it needs to flush existing IO, it does this by sending a magic 609 * BIO down the pipe. The completion of this BIO does the actual switch. 610 */ 611 static int loop_switch(struct loop_device *lo, struct file *file) 612 { 613 struct switch_request w; 614 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 615 if (!bio) 616 return -ENOMEM; 617 init_completion(&w.wait); 618 w.file = file; 619 bio->bi_private = &w; 620 bio->bi_bdev = NULL; 621 loop_make_request(lo->lo_queue, bio); 622 wait_for_completion(&w.wait); 623 return 0; 624 } 625 626 /* 627 * Helper to flush the IOs in loop, but keeping loop thread running 628 */ 629 static int loop_flush(struct loop_device *lo) 630 { 631 /* loop not yet configured, no running thread, nothing to flush */ 632 if (!lo->lo_thread) 633 return 0; 634 635 return loop_switch(lo, NULL); 636 } 637 638 /* 639 * Do the actual switch; called from the BIO completion routine 640 */ 641 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 642 { 643 struct file *file = p->file; 644 struct file *old_file = lo->lo_backing_file; 645 struct address_space *mapping; 646 647 /* if no new file, only flush of queued bios requested */ 648 if (!file) 649 goto out; 650 651 mapping = file->f_mapping; 652 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 653 lo->lo_backing_file = file; 654 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 655 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 656 lo->old_gfp_mask = mapping_gfp_mask(mapping); 657 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 658 out: 659 complete(&p->wait); 660 } 661 662 663 /* 664 * loop_change_fd switched the backing store of a loopback device to 665 * a new file. This is useful for operating system installers to free up 666 * the original file and in High Availability environments to switch to 667 * an alternative location for the content in case of server meltdown. 668 * This can only work if the loop device is used read-only, and if the 669 * new backing store is the same size and type as the old backing store. 670 */ 671 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 672 unsigned int arg) 673 { 674 struct file *file, *old_file; 675 struct inode *inode; 676 int error; 677 678 error = -ENXIO; 679 if (lo->lo_state != Lo_bound) 680 goto out; 681 682 /* the loop device has to be read-only */ 683 error = -EINVAL; 684 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 685 goto out; 686 687 error = -EBADF; 688 file = fget(arg); 689 if (!file) 690 goto out; 691 692 inode = file->f_mapping->host; 693 old_file = lo->lo_backing_file; 694 695 error = -EINVAL; 696 697 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 698 goto out_putf; 699 700 /* new backing store needs to support loop (eg splice_read) */ 701 if (!inode->i_fop->splice_read) 702 goto out_putf; 703 704 /* size of the new backing store needs to be the same */ 705 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 706 goto out_putf; 707 708 /* and ... switch */ 709 error = loop_switch(lo, file); 710 if (error) 711 goto out_putf; 712 713 fput(old_file); 714 if (max_part > 0) 715 ioctl_by_bdev(bdev, BLKRRPART, 0); 716 return 0; 717 718 out_putf: 719 fput(file); 720 out: 721 return error; 722 } 723 724 static inline int is_loop_device(struct file *file) 725 { 726 struct inode *i = file->f_mapping->host; 727 728 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 729 } 730 731 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 732 struct block_device *bdev, unsigned int arg) 733 { 734 struct file *file, *f; 735 struct inode *inode; 736 struct address_space *mapping; 737 unsigned lo_blocksize; 738 int lo_flags = 0; 739 int error; 740 loff_t size; 741 742 /* This is safe, since we have a reference from open(). */ 743 __module_get(THIS_MODULE); 744 745 error = -EBADF; 746 file = fget(arg); 747 if (!file) 748 goto out; 749 750 error = -EBUSY; 751 if (lo->lo_state != Lo_unbound) 752 goto out_putf; 753 754 /* Avoid recursion */ 755 f = file; 756 while (is_loop_device(f)) { 757 struct loop_device *l; 758 759 if (f->f_mapping->host->i_bdev == bdev) 760 goto out_putf; 761 762 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 763 if (l->lo_state == Lo_unbound) { 764 error = -EINVAL; 765 goto out_putf; 766 } 767 f = l->lo_backing_file; 768 } 769 770 mapping = file->f_mapping; 771 inode = mapping->host; 772 773 if (!(file->f_mode & FMODE_WRITE)) 774 lo_flags |= LO_FLAGS_READ_ONLY; 775 776 error = -EINVAL; 777 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 778 const struct address_space_operations *aops = mapping->a_ops; 779 /* 780 * If we can't read - sorry. If we only can't write - well, 781 * it's going to be read-only. 782 */ 783 if (!file->f_op->splice_read) 784 goto out_putf; 785 if (aops->write_begin) 786 lo_flags |= LO_FLAGS_USE_AOPS; 787 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 788 lo_flags |= LO_FLAGS_READ_ONLY; 789 790 lo_blocksize = S_ISBLK(inode->i_mode) ? 791 inode->i_bdev->bd_block_size : PAGE_SIZE; 792 793 error = 0; 794 } else { 795 goto out_putf; 796 } 797 798 size = get_loop_size(lo, file); 799 800 if ((loff_t)(sector_t)size != size) { 801 error = -EFBIG; 802 goto out_putf; 803 } 804 805 if (!(mode & FMODE_WRITE)) 806 lo_flags |= LO_FLAGS_READ_ONLY; 807 808 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 809 810 lo->lo_blocksize = lo_blocksize; 811 lo->lo_device = bdev; 812 lo->lo_flags = lo_flags; 813 lo->lo_backing_file = file; 814 lo->transfer = transfer_none; 815 lo->ioctl = NULL; 816 lo->lo_sizelimit = 0; 817 lo->old_gfp_mask = mapping_gfp_mask(mapping); 818 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 819 820 lo->lo_bio = lo->lo_biotail = NULL; 821 822 /* 823 * set queue make_request_fn, and add limits based on lower level 824 * device 825 */ 826 blk_queue_make_request(lo->lo_queue, loop_make_request); 827 lo->lo_queue->queuedata = lo; 828 lo->lo_queue->unplug_fn = loop_unplug; 829 830 set_capacity(lo->lo_disk, size); 831 bd_set_size(bdev, size << 9); 832 833 set_blocksize(bdev, lo_blocksize); 834 835 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 836 lo->lo_number); 837 if (IS_ERR(lo->lo_thread)) { 838 error = PTR_ERR(lo->lo_thread); 839 goto out_clr; 840 } 841 lo->lo_state = Lo_bound; 842 wake_up_process(lo->lo_thread); 843 if (max_part > 0) 844 ioctl_by_bdev(bdev, BLKRRPART, 0); 845 return 0; 846 847 out_clr: 848 lo->lo_thread = NULL; 849 lo->lo_device = NULL; 850 lo->lo_backing_file = NULL; 851 lo->lo_flags = 0; 852 set_capacity(lo->lo_disk, 0); 853 invalidate_bdev(bdev); 854 bd_set_size(bdev, 0); 855 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 856 lo->lo_state = Lo_unbound; 857 out_putf: 858 fput(file); 859 out: 860 /* This is safe: open() is still holding a reference. */ 861 module_put(THIS_MODULE); 862 return error; 863 } 864 865 static int 866 loop_release_xfer(struct loop_device *lo) 867 { 868 int err = 0; 869 struct loop_func_table *xfer = lo->lo_encryption; 870 871 if (xfer) { 872 if (xfer->release) 873 err = xfer->release(lo); 874 lo->transfer = NULL; 875 lo->lo_encryption = NULL; 876 module_put(xfer->owner); 877 } 878 return err; 879 } 880 881 static int 882 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 883 const struct loop_info64 *i) 884 { 885 int err = 0; 886 887 if (xfer) { 888 struct module *owner = xfer->owner; 889 890 if (!try_module_get(owner)) 891 return -EINVAL; 892 if (xfer->init) 893 err = xfer->init(lo, i); 894 if (err) 895 module_put(owner); 896 else 897 lo->lo_encryption = xfer; 898 } 899 return err; 900 } 901 902 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 903 { 904 struct file *filp = lo->lo_backing_file; 905 gfp_t gfp = lo->old_gfp_mask; 906 907 if (lo->lo_state != Lo_bound) 908 return -ENXIO; 909 910 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 911 return -EBUSY; 912 913 if (filp == NULL) 914 return -EINVAL; 915 916 spin_lock_irq(&lo->lo_lock); 917 lo->lo_state = Lo_rundown; 918 spin_unlock_irq(&lo->lo_lock); 919 920 kthread_stop(lo->lo_thread); 921 922 lo->lo_queue->unplug_fn = NULL; 923 lo->lo_backing_file = NULL; 924 925 loop_release_xfer(lo); 926 lo->transfer = NULL; 927 lo->ioctl = NULL; 928 lo->lo_device = NULL; 929 lo->lo_encryption = NULL; 930 lo->lo_offset = 0; 931 lo->lo_sizelimit = 0; 932 lo->lo_encrypt_key_size = 0; 933 lo->lo_flags = 0; 934 lo->lo_thread = NULL; 935 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 936 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 937 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 938 if (bdev) 939 invalidate_bdev(bdev); 940 set_capacity(lo->lo_disk, 0); 941 if (bdev) 942 bd_set_size(bdev, 0); 943 mapping_set_gfp_mask(filp->f_mapping, gfp); 944 lo->lo_state = Lo_unbound; 945 fput(filp); 946 /* This is safe: open() is still holding a reference. */ 947 module_put(THIS_MODULE); 948 if (max_part > 0) 949 ioctl_by_bdev(bdev, BLKRRPART, 0); 950 return 0; 951 } 952 953 static int 954 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 955 { 956 int err; 957 struct loop_func_table *xfer; 958 uid_t uid = current_uid(); 959 960 if (lo->lo_encrypt_key_size && 961 lo->lo_key_owner != uid && 962 !capable(CAP_SYS_ADMIN)) 963 return -EPERM; 964 if (lo->lo_state != Lo_bound) 965 return -ENXIO; 966 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 967 return -EINVAL; 968 969 err = loop_release_xfer(lo); 970 if (err) 971 return err; 972 973 if (info->lo_encrypt_type) { 974 unsigned int type = info->lo_encrypt_type; 975 976 if (type >= MAX_LO_CRYPT) 977 return -EINVAL; 978 xfer = xfer_funcs[type]; 979 if (xfer == NULL) 980 return -EINVAL; 981 } else 982 xfer = NULL; 983 984 err = loop_init_xfer(lo, xfer, info); 985 if (err) 986 return err; 987 988 if (lo->lo_offset != info->lo_offset || 989 lo->lo_sizelimit != info->lo_sizelimit) { 990 lo->lo_offset = info->lo_offset; 991 lo->lo_sizelimit = info->lo_sizelimit; 992 if (figure_loop_size(lo)) 993 return -EFBIG; 994 } 995 996 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 997 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 998 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 999 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1000 1001 if (!xfer) 1002 xfer = &none_funcs; 1003 lo->transfer = xfer->transfer; 1004 lo->ioctl = xfer->ioctl; 1005 1006 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1007 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1008 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1009 1010 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1011 lo->lo_init[0] = info->lo_init[0]; 1012 lo->lo_init[1] = info->lo_init[1]; 1013 if (info->lo_encrypt_key_size) { 1014 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1015 info->lo_encrypt_key_size); 1016 lo->lo_key_owner = uid; 1017 } 1018 1019 return 0; 1020 } 1021 1022 static int 1023 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1024 { 1025 struct file *file = lo->lo_backing_file; 1026 struct kstat stat; 1027 int error; 1028 1029 if (lo->lo_state != Lo_bound) 1030 return -ENXIO; 1031 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1032 if (error) 1033 return error; 1034 memset(info, 0, sizeof(*info)); 1035 info->lo_number = lo->lo_number; 1036 info->lo_device = huge_encode_dev(stat.dev); 1037 info->lo_inode = stat.ino; 1038 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1039 info->lo_offset = lo->lo_offset; 1040 info->lo_sizelimit = lo->lo_sizelimit; 1041 info->lo_flags = lo->lo_flags; 1042 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1043 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1044 info->lo_encrypt_type = 1045 lo->lo_encryption ? lo->lo_encryption->number : 0; 1046 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1047 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1048 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1049 lo->lo_encrypt_key_size); 1050 } 1051 return 0; 1052 } 1053 1054 static void 1055 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1056 { 1057 memset(info64, 0, sizeof(*info64)); 1058 info64->lo_number = info->lo_number; 1059 info64->lo_device = info->lo_device; 1060 info64->lo_inode = info->lo_inode; 1061 info64->lo_rdevice = info->lo_rdevice; 1062 info64->lo_offset = info->lo_offset; 1063 info64->lo_sizelimit = 0; 1064 info64->lo_encrypt_type = info->lo_encrypt_type; 1065 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1066 info64->lo_flags = info->lo_flags; 1067 info64->lo_init[0] = info->lo_init[0]; 1068 info64->lo_init[1] = info->lo_init[1]; 1069 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1070 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1071 else 1072 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1073 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1074 } 1075 1076 static int 1077 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1078 { 1079 memset(info, 0, sizeof(*info)); 1080 info->lo_number = info64->lo_number; 1081 info->lo_device = info64->lo_device; 1082 info->lo_inode = info64->lo_inode; 1083 info->lo_rdevice = info64->lo_rdevice; 1084 info->lo_offset = info64->lo_offset; 1085 info->lo_encrypt_type = info64->lo_encrypt_type; 1086 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1087 info->lo_flags = info64->lo_flags; 1088 info->lo_init[0] = info64->lo_init[0]; 1089 info->lo_init[1] = info64->lo_init[1]; 1090 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1091 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1092 else 1093 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1094 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1095 1096 /* error in case values were truncated */ 1097 if (info->lo_device != info64->lo_device || 1098 info->lo_rdevice != info64->lo_rdevice || 1099 info->lo_inode != info64->lo_inode || 1100 info->lo_offset != info64->lo_offset) 1101 return -EOVERFLOW; 1102 1103 return 0; 1104 } 1105 1106 static int 1107 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1108 { 1109 struct loop_info info; 1110 struct loop_info64 info64; 1111 1112 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1113 return -EFAULT; 1114 loop_info64_from_old(&info, &info64); 1115 return loop_set_status(lo, &info64); 1116 } 1117 1118 static int 1119 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1120 { 1121 struct loop_info64 info64; 1122 1123 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1124 return -EFAULT; 1125 return loop_set_status(lo, &info64); 1126 } 1127 1128 static int 1129 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1130 struct loop_info info; 1131 struct loop_info64 info64; 1132 int err = 0; 1133 1134 if (!arg) 1135 err = -EINVAL; 1136 if (!err) 1137 err = loop_get_status(lo, &info64); 1138 if (!err) 1139 err = loop_info64_to_old(&info64, &info); 1140 if (!err && copy_to_user(arg, &info, sizeof(info))) 1141 err = -EFAULT; 1142 1143 return err; 1144 } 1145 1146 static int 1147 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1148 struct loop_info64 info64; 1149 int err = 0; 1150 1151 if (!arg) 1152 err = -EINVAL; 1153 if (!err) 1154 err = loop_get_status(lo, &info64); 1155 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1156 err = -EFAULT; 1157 1158 return err; 1159 } 1160 1161 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1162 unsigned int cmd, unsigned long arg) 1163 { 1164 struct loop_device *lo = bdev->bd_disk->private_data; 1165 int err; 1166 1167 mutex_lock(&lo->lo_ctl_mutex); 1168 switch (cmd) { 1169 case LOOP_SET_FD: 1170 err = loop_set_fd(lo, mode, bdev, arg); 1171 break; 1172 case LOOP_CHANGE_FD: 1173 err = loop_change_fd(lo, bdev, arg); 1174 break; 1175 case LOOP_CLR_FD: 1176 err = loop_clr_fd(lo, bdev); 1177 break; 1178 case LOOP_SET_STATUS: 1179 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1180 break; 1181 case LOOP_GET_STATUS: 1182 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1183 break; 1184 case LOOP_SET_STATUS64: 1185 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1186 break; 1187 case LOOP_GET_STATUS64: 1188 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1189 break; 1190 default: 1191 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1192 } 1193 mutex_unlock(&lo->lo_ctl_mutex); 1194 return err; 1195 } 1196 1197 #ifdef CONFIG_COMPAT 1198 struct compat_loop_info { 1199 compat_int_t lo_number; /* ioctl r/o */ 1200 compat_dev_t lo_device; /* ioctl r/o */ 1201 compat_ulong_t lo_inode; /* ioctl r/o */ 1202 compat_dev_t lo_rdevice; /* ioctl r/o */ 1203 compat_int_t lo_offset; 1204 compat_int_t lo_encrypt_type; 1205 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1206 compat_int_t lo_flags; /* ioctl r/o */ 1207 char lo_name[LO_NAME_SIZE]; 1208 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1209 compat_ulong_t lo_init[2]; 1210 char reserved[4]; 1211 }; 1212 1213 /* 1214 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1215 * - noinlined to reduce stack space usage in main part of driver 1216 */ 1217 static noinline int 1218 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1219 struct loop_info64 *info64) 1220 { 1221 struct compat_loop_info info; 1222 1223 if (copy_from_user(&info, arg, sizeof(info))) 1224 return -EFAULT; 1225 1226 memset(info64, 0, sizeof(*info64)); 1227 info64->lo_number = info.lo_number; 1228 info64->lo_device = info.lo_device; 1229 info64->lo_inode = info.lo_inode; 1230 info64->lo_rdevice = info.lo_rdevice; 1231 info64->lo_offset = info.lo_offset; 1232 info64->lo_sizelimit = 0; 1233 info64->lo_encrypt_type = info.lo_encrypt_type; 1234 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1235 info64->lo_flags = info.lo_flags; 1236 info64->lo_init[0] = info.lo_init[0]; 1237 info64->lo_init[1] = info.lo_init[1]; 1238 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1239 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1240 else 1241 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1242 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1243 return 0; 1244 } 1245 1246 /* 1247 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1248 * - noinlined to reduce stack space usage in main part of driver 1249 */ 1250 static noinline int 1251 loop_info64_to_compat(const struct loop_info64 *info64, 1252 struct compat_loop_info __user *arg) 1253 { 1254 struct compat_loop_info info; 1255 1256 memset(&info, 0, sizeof(info)); 1257 info.lo_number = info64->lo_number; 1258 info.lo_device = info64->lo_device; 1259 info.lo_inode = info64->lo_inode; 1260 info.lo_rdevice = info64->lo_rdevice; 1261 info.lo_offset = info64->lo_offset; 1262 info.lo_encrypt_type = info64->lo_encrypt_type; 1263 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1264 info.lo_flags = info64->lo_flags; 1265 info.lo_init[0] = info64->lo_init[0]; 1266 info.lo_init[1] = info64->lo_init[1]; 1267 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1268 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1269 else 1270 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1271 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1272 1273 /* error in case values were truncated */ 1274 if (info.lo_device != info64->lo_device || 1275 info.lo_rdevice != info64->lo_rdevice || 1276 info.lo_inode != info64->lo_inode || 1277 info.lo_offset != info64->lo_offset || 1278 info.lo_init[0] != info64->lo_init[0] || 1279 info.lo_init[1] != info64->lo_init[1]) 1280 return -EOVERFLOW; 1281 1282 if (copy_to_user(arg, &info, sizeof(info))) 1283 return -EFAULT; 1284 return 0; 1285 } 1286 1287 static int 1288 loop_set_status_compat(struct loop_device *lo, 1289 const struct compat_loop_info __user *arg) 1290 { 1291 struct loop_info64 info64; 1292 int ret; 1293 1294 ret = loop_info64_from_compat(arg, &info64); 1295 if (ret < 0) 1296 return ret; 1297 return loop_set_status(lo, &info64); 1298 } 1299 1300 static int 1301 loop_get_status_compat(struct loop_device *lo, 1302 struct compat_loop_info __user *arg) 1303 { 1304 struct loop_info64 info64; 1305 int err = 0; 1306 1307 if (!arg) 1308 err = -EINVAL; 1309 if (!err) 1310 err = loop_get_status(lo, &info64); 1311 if (!err) 1312 err = loop_info64_to_compat(&info64, arg); 1313 return err; 1314 } 1315 1316 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1317 unsigned int cmd, unsigned long arg) 1318 { 1319 struct loop_device *lo = bdev->bd_disk->private_data; 1320 int err; 1321 1322 switch(cmd) { 1323 case LOOP_SET_STATUS: 1324 mutex_lock(&lo->lo_ctl_mutex); 1325 err = loop_set_status_compat( 1326 lo, (const struct compat_loop_info __user *) arg); 1327 mutex_unlock(&lo->lo_ctl_mutex); 1328 break; 1329 case LOOP_GET_STATUS: 1330 mutex_lock(&lo->lo_ctl_mutex); 1331 err = loop_get_status_compat( 1332 lo, (struct compat_loop_info __user *) arg); 1333 mutex_unlock(&lo->lo_ctl_mutex); 1334 break; 1335 case LOOP_CLR_FD: 1336 case LOOP_GET_STATUS64: 1337 case LOOP_SET_STATUS64: 1338 arg = (unsigned long) compat_ptr(arg); 1339 case LOOP_SET_FD: 1340 case LOOP_CHANGE_FD: 1341 err = lo_ioctl(bdev, mode, cmd, arg); 1342 break; 1343 default: 1344 err = -ENOIOCTLCMD; 1345 break; 1346 } 1347 return err; 1348 } 1349 #endif 1350 1351 static int lo_open(struct block_device *bdev, fmode_t mode) 1352 { 1353 struct loop_device *lo = bdev->bd_disk->private_data; 1354 1355 mutex_lock(&lo->lo_ctl_mutex); 1356 lo->lo_refcnt++; 1357 mutex_unlock(&lo->lo_ctl_mutex); 1358 1359 return 0; 1360 } 1361 1362 static int lo_release(struct gendisk *disk, fmode_t mode) 1363 { 1364 struct loop_device *lo = disk->private_data; 1365 1366 mutex_lock(&lo->lo_ctl_mutex); 1367 1368 if (--lo->lo_refcnt) 1369 goto out; 1370 1371 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1372 /* 1373 * In autoclear mode, stop the loop thread 1374 * and remove configuration after last close. 1375 */ 1376 loop_clr_fd(lo, NULL); 1377 } else { 1378 /* 1379 * Otherwise keep thread (if running) and config, 1380 * but flush possible ongoing bios in thread. 1381 */ 1382 loop_flush(lo); 1383 } 1384 1385 out: 1386 mutex_unlock(&lo->lo_ctl_mutex); 1387 1388 return 0; 1389 } 1390 1391 static struct block_device_operations lo_fops = { 1392 .owner = THIS_MODULE, 1393 .open = lo_open, 1394 .release = lo_release, 1395 .ioctl = lo_ioctl, 1396 #ifdef CONFIG_COMPAT 1397 .compat_ioctl = lo_compat_ioctl, 1398 #endif 1399 }; 1400 1401 /* 1402 * And now the modules code and kernel interface. 1403 */ 1404 static int max_loop; 1405 module_param(max_loop, int, 0); 1406 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1407 module_param(max_part, int, 0); 1408 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1409 MODULE_LICENSE("GPL"); 1410 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1411 1412 int loop_register_transfer(struct loop_func_table *funcs) 1413 { 1414 unsigned int n = funcs->number; 1415 1416 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1417 return -EINVAL; 1418 xfer_funcs[n] = funcs; 1419 return 0; 1420 } 1421 1422 int loop_unregister_transfer(int number) 1423 { 1424 unsigned int n = number; 1425 struct loop_device *lo; 1426 struct loop_func_table *xfer; 1427 1428 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1429 return -EINVAL; 1430 1431 xfer_funcs[n] = NULL; 1432 1433 list_for_each_entry(lo, &loop_devices, lo_list) { 1434 mutex_lock(&lo->lo_ctl_mutex); 1435 1436 if (lo->lo_encryption == xfer) 1437 loop_release_xfer(lo); 1438 1439 mutex_unlock(&lo->lo_ctl_mutex); 1440 } 1441 1442 return 0; 1443 } 1444 1445 EXPORT_SYMBOL(loop_register_transfer); 1446 EXPORT_SYMBOL(loop_unregister_transfer); 1447 1448 static struct loop_device *loop_alloc(int i) 1449 { 1450 struct loop_device *lo; 1451 struct gendisk *disk; 1452 1453 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1454 if (!lo) 1455 goto out; 1456 1457 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1458 if (!lo->lo_queue) 1459 goto out_free_dev; 1460 1461 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1462 if (!disk) 1463 goto out_free_queue; 1464 1465 mutex_init(&lo->lo_ctl_mutex); 1466 lo->lo_number = i; 1467 lo->lo_thread = NULL; 1468 init_waitqueue_head(&lo->lo_event); 1469 spin_lock_init(&lo->lo_lock); 1470 disk->major = LOOP_MAJOR; 1471 disk->first_minor = i << part_shift; 1472 disk->fops = &lo_fops; 1473 disk->private_data = lo; 1474 disk->queue = lo->lo_queue; 1475 sprintf(disk->disk_name, "loop%d", i); 1476 return lo; 1477 1478 out_free_queue: 1479 blk_cleanup_queue(lo->lo_queue); 1480 out_free_dev: 1481 kfree(lo); 1482 out: 1483 return NULL; 1484 } 1485 1486 static void loop_free(struct loop_device *lo) 1487 { 1488 blk_cleanup_queue(lo->lo_queue); 1489 put_disk(lo->lo_disk); 1490 list_del(&lo->lo_list); 1491 kfree(lo); 1492 } 1493 1494 static struct loop_device *loop_init_one(int i) 1495 { 1496 struct loop_device *lo; 1497 1498 list_for_each_entry(lo, &loop_devices, lo_list) { 1499 if (lo->lo_number == i) 1500 return lo; 1501 } 1502 1503 lo = loop_alloc(i); 1504 if (lo) { 1505 add_disk(lo->lo_disk); 1506 list_add_tail(&lo->lo_list, &loop_devices); 1507 } 1508 return lo; 1509 } 1510 1511 static void loop_del_one(struct loop_device *lo) 1512 { 1513 del_gendisk(lo->lo_disk); 1514 loop_free(lo); 1515 } 1516 1517 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1518 { 1519 struct loop_device *lo; 1520 struct kobject *kobj; 1521 1522 mutex_lock(&loop_devices_mutex); 1523 lo = loop_init_one(dev & MINORMASK); 1524 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1525 mutex_unlock(&loop_devices_mutex); 1526 1527 *part = 0; 1528 return kobj; 1529 } 1530 1531 static int __init loop_init(void) 1532 { 1533 int i, nr; 1534 unsigned long range; 1535 struct loop_device *lo, *next; 1536 1537 /* 1538 * loop module now has a feature to instantiate underlying device 1539 * structure on-demand, provided that there is an access dev node. 1540 * However, this will not work well with user space tool that doesn't 1541 * know about such "feature". In order to not break any existing 1542 * tool, we do the following: 1543 * 1544 * (1) if max_loop is specified, create that many upfront, and this 1545 * also becomes a hard limit. 1546 * (2) if max_loop is not specified, create 8 loop device on module 1547 * load, user can further extend loop device by create dev node 1548 * themselves and have kernel automatically instantiate actual 1549 * device on-demand. 1550 */ 1551 1552 part_shift = 0; 1553 if (max_part > 0) 1554 part_shift = fls(max_part); 1555 1556 if (max_loop > 1UL << (MINORBITS - part_shift)) 1557 return -EINVAL; 1558 1559 if (max_loop) { 1560 nr = max_loop; 1561 range = max_loop; 1562 } else { 1563 nr = 8; 1564 range = 1UL << (MINORBITS - part_shift); 1565 } 1566 1567 if (register_blkdev(LOOP_MAJOR, "loop")) 1568 return -EIO; 1569 1570 for (i = 0; i < nr; i++) { 1571 lo = loop_alloc(i); 1572 if (!lo) 1573 goto Enomem; 1574 list_add_tail(&lo->lo_list, &loop_devices); 1575 } 1576 1577 /* point of no return */ 1578 1579 list_for_each_entry(lo, &loop_devices, lo_list) 1580 add_disk(lo->lo_disk); 1581 1582 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1583 THIS_MODULE, loop_probe, NULL, NULL); 1584 1585 printk(KERN_INFO "loop: module loaded\n"); 1586 return 0; 1587 1588 Enomem: 1589 printk(KERN_INFO "loop: out of memory\n"); 1590 1591 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1592 loop_free(lo); 1593 1594 unregister_blkdev(LOOP_MAJOR, "loop"); 1595 return -ENOMEM; 1596 } 1597 1598 static void __exit loop_exit(void) 1599 { 1600 unsigned long range; 1601 struct loop_device *lo, *next; 1602 1603 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1604 1605 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1606 loop_del_one(lo); 1607 1608 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1609 unregister_blkdev(LOOP_MAJOR, "loop"); 1610 } 1611 1612 module_init(loop_init); 1613 module_exit(loop_exit); 1614 1615 #ifndef MODULE 1616 static int __init max_loop_setup(char *str) 1617 { 1618 max_loop = simple_strtol(str, NULL, 0); 1619 return 1; 1620 } 1621 1622 __setup("max_loop=", max_loop_setup); 1623 #endif 1624