1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/file.h> 57 #include <linux/stat.h> 58 #include <linux/errno.h> 59 #include <linux/major.h> 60 #include <linux/wait.h> 61 #include <linux/blkdev.h> 62 #include <linux/blkpg.h> 63 #include <linux/init.h> 64 #include <linux/swap.h> 65 #include <linux/slab.h> 66 #include <linux/loop.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/writeback.h> 71 #include <linux/buffer_head.h> /* for invalidate_bdev() */ 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/kthread.h> 75 #include <linux/splice.h> 76 77 #include <asm/uaccess.h> 78 79 static LIST_HEAD(loop_devices); 80 static DEFINE_MUTEX(loop_devices_mutex); 81 82 static int max_part; 83 static int part_shift; 84 85 /* 86 * Transfer functions 87 */ 88 static int transfer_none(struct loop_device *lo, int cmd, 89 struct page *raw_page, unsigned raw_off, 90 struct page *loop_page, unsigned loop_off, 91 int size, sector_t real_block) 92 { 93 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 94 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 95 96 if (cmd == READ) 97 memcpy(loop_buf, raw_buf, size); 98 else 99 memcpy(raw_buf, loop_buf, size); 100 101 kunmap_atomic(raw_buf, KM_USER0); 102 kunmap_atomic(loop_buf, KM_USER1); 103 cond_resched(); 104 return 0; 105 } 106 107 static int transfer_xor(struct loop_device *lo, int cmd, 108 struct page *raw_page, unsigned raw_off, 109 struct page *loop_page, unsigned loop_off, 110 int size, sector_t real_block) 111 { 112 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off; 113 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off; 114 char *in, *out, *key; 115 int i, keysize; 116 117 if (cmd == READ) { 118 in = raw_buf; 119 out = loop_buf; 120 } else { 121 in = loop_buf; 122 out = raw_buf; 123 } 124 125 key = lo->lo_encrypt_key; 126 keysize = lo->lo_encrypt_key_size; 127 for (i = 0; i < size; i++) 128 *out++ = *in++ ^ key[(i & 511) % keysize]; 129 130 kunmap_atomic(raw_buf, KM_USER0); 131 kunmap_atomic(loop_buf, KM_USER1); 132 cond_resched(); 133 return 0; 134 } 135 136 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 137 { 138 if (unlikely(info->lo_encrypt_key_size <= 0)) 139 return -EINVAL; 140 return 0; 141 } 142 143 static struct loop_func_table none_funcs = { 144 .number = LO_CRYPT_NONE, 145 .transfer = transfer_none, 146 }; 147 148 static struct loop_func_table xor_funcs = { 149 .number = LO_CRYPT_XOR, 150 .transfer = transfer_xor, 151 .init = xor_init 152 }; 153 154 /* xfer_funcs[0] is special - its release function is never called */ 155 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 156 &none_funcs, 157 &xor_funcs 158 }; 159 160 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 161 { 162 loff_t size, offset, loopsize; 163 164 /* Compute loopsize in bytes */ 165 size = i_size_read(file->f_mapping->host); 166 offset = lo->lo_offset; 167 loopsize = size - offset; 168 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize) 169 loopsize = lo->lo_sizelimit; 170 171 /* 172 * Unfortunately, if we want to do I/O on the device, 173 * the number of 512-byte sectors has to fit into a sector_t. 174 */ 175 return loopsize >> 9; 176 } 177 178 static int 179 figure_loop_size(struct loop_device *lo) 180 { 181 loff_t size = get_loop_size(lo, lo->lo_backing_file); 182 sector_t x = (sector_t)size; 183 184 if (unlikely((loff_t)x != size)) 185 return -EFBIG; 186 187 set_capacity(lo->lo_disk, x); 188 return 0; 189 } 190 191 static inline int 192 lo_do_transfer(struct loop_device *lo, int cmd, 193 struct page *rpage, unsigned roffs, 194 struct page *lpage, unsigned loffs, 195 int size, sector_t rblock) 196 { 197 if (unlikely(!lo->transfer)) 198 return 0; 199 200 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 201 } 202 203 /** 204 * do_lo_send_aops - helper for writing data to a loop device 205 * 206 * This is the fast version for backing filesystems which implement the address 207 * space operations write_begin and write_end. 208 */ 209 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec, 210 loff_t pos, struct page *unused) 211 { 212 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */ 213 struct address_space *mapping = file->f_mapping; 214 pgoff_t index; 215 unsigned offset, bv_offs; 216 int len, ret; 217 218 mutex_lock(&mapping->host->i_mutex); 219 index = pos >> PAGE_CACHE_SHIFT; 220 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1); 221 bv_offs = bvec->bv_offset; 222 len = bvec->bv_len; 223 while (len > 0) { 224 sector_t IV; 225 unsigned size, copied; 226 int transfer_result; 227 struct page *page; 228 void *fsdata; 229 230 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9); 231 size = PAGE_CACHE_SIZE - offset; 232 if (size > len) 233 size = len; 234 235 ret = pagecache_write_begin(file, mapping, pos, size, 0, 236 &page, &fsdata); 237 if (ret) 238 goto fail; 239 240 file_update_time(file); 241 242 transfer_result = lo_do_transfer(lo, WRITE, page, offset, 243 bvec->bv_page, bv_offs, size, IV); 244 copied = size; 245 if (unlikely(transfer_result)) 246 copied = 0; 247 248 ret = pagecache_write_end(file, mapping, pos, size, copied, 249 page, fsdata); 250 if (ret < 0 || ret != copied) 251 goto fail; 252 253 if (unlikely(transfer_result)) 254 goto fail; 255 256 bv_offs += copied; 257 len -= copied; 258 offset = 0; 259 index++; 260 pos += copied; 261 } 262 ret = 0; 263 out: 264 mutex_unlock(&mapping->host->i_mutex); 265 return ret; 266 fail: 267 ret = -1; 268 goto out; 269 } 270 271 /** 272 * __do_lo_send_write - helper for writing data to a loop device 273 * 274 * This helper just factors out common code between do_lo_send_direct_write() 275 * and do_lo_send_write(). 276 */ 277 static int __do_lo_send_write(struct file *file, 278 u8 *buf, const int len, loff_t pos) 279 { 280 ssize_t bw; 281 mm_segment_t old_fs = get_fs(); 282 283 set_fs(get_ds()); 284 bw = file->f_op->write(file, buf, len, &pos); 285 set_fs(old_fs); 286 if (likely(bw == len)) 287 return 0; 288 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 289 (unsigned long long)pos, len); 290 if (bw >= 0) 291 bw = -EIO; 292 return bw; 293 } 294 295 /** 296 * do_lo_send_direct_write - helper for writing data to a loop device 297 * 298 * This is the fast, non-transforming version for backing filesystems which do 299 * not implement the address space operations write_begin and write_end. 300 * It uses the write file operation which should be present on all writeable 301 * filesystems. 302 */ 303 static int do_lo_send_direct_write(struct loop_device *lo, 304 struct bio_vec *bvec, loff_t pos, struct page *page) 305 { 306 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 307 kmap(bvec->bv_page) + bvec->bv_offset, 308 bvec->bv_len, pos); 309 kunmap(bvec->bv_page); 310 cond_resched(); 311 return bw; 312 } 313 314 /** 315 * do_lo_send_write - helper for writing data to a loop device 316 * 317 * This is the slow, transforming version for filesystems which do not 318 * implement the address space operations write_begin and write_end. It 319 * uses the write file operation which should be present on all writeable 320 * filesystems. 321 * 322 * Using fops->write is slower than using aops->{prepare,commit}_write in the 323 * transforming case because we need to double buffer the data as we cannot do 324 * the transformations in place as we do not have direct access to the 325 * destination pages of the backing file. 326 */ 327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 328 loff_t pos, struct page *page) 329 { 330 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 331 bvec->bv_offset, bvec->bv_len, pos >> 9); 332 if (likely(!ret)) 333 return __do_lo_send_write(lo->lo_backing_file, 334 page_address(page), bvec->bv_len, 335 pos); 336 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 337 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 338 if (ret > 0) 339 ret = -EIO; 340 return ret; 341 } 342 343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 344 { 345 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 346 struct page *page); 347 struct bio_vec *bvec; 348 struct page *page = NULL; 349 int i, ret = 0; 350 351 do_lo_send = do_lo_send_aops; 352 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) { 353 do_lo_send = do_lo_send_direct_write; 354 if (lo->transfer != transfer_none) { 355 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 356 if (unlikely(!page)) 357 goto fail; 358 kmap(page); 359 do_lo_send = do_lo_send_write; 360 } 361 } 362 bio_for_each_segment(bvec, bio, i) { 363 ret = do_lo_send(lo, bvec, pos, page); 364 if (ret < 0) 365 break; 366 pos += bvec->bv_len; 367 } 368 if (page) { 369 kunmap(page); 370 __free_page(page); 371 } 372 out: 373 return ret; 374 fail: 375 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 376 ret = -ENOMEM; 377 goto out; 378 } 379 380 struct lo_read_data { 381 struct loop_device *lo; 382 struct page *page; 383 unsigned offset; 384 int bsize; 385 }; 386 387 static int 388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 389 struct splice_desc *sd) 390 { 391 struct lo_read_data *p = sd->u.data; 392 struct loop_device *lo = p->lo; 393 struct page *page = buf->page; 394 sector_t IV; 395 int size, ret; 396 397 ret = buf->ops->confirm(pipe, buf); 398 if (unlikely(ret)) 399 return ret; 400 401 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 402 (buf->offset >> 9); 403 size = sd->len; 404 if (size > p->bsize) 405 size = p->bsize; 406 407 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 408 printk(KERN_ERR "loop: transfer error block %ld\n", 409 page->index); 410 size = -EINVAL; 411 } 412 413 flush_dcache_page(p->page); 414 415 if (size > 0) 416 p->offset += size; 417 418 return size; 419 } 420 421 static int 422 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 423 { 424 return __splice_from_pipe(pipe, sd, lo_splice_actor); 425 } 426 427 static int 428 do_lo_receive(struct loop_device *lo, 429 struct bio_vec *bvec, int bsize, loff_t pos) 430 { 431 struct lo_read_data cookie; 432 struct splice_desc sd; 433 struct file *file; 434 long retval; 435 436 cookie.lo = lo; 437 cookie.page = bvec->bv_page; 438 cookie.offset = bvec->bv_offset; 439 cookie.bsize = bsize; 440 441 sd.len = 0; 442 sd.total_len = bvec->bv_len; 443 sd.flags = 0; 444 sd.pos = pos; 445 sd.u.data = &cookie; 446 447 file = lo->lo_backing_file; 448 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 449 450 if (retval < 0) 451 return retval; 452 453 return 0; 454 } 455 456 static int 457 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 458 { 459 struct bio_vec *bvec; 460 int i, ret = 0; 461 462 bio_for_each_segment(bvec, bio, i) { 463 ret = do_lo_receive(lo, bvec, bsize, pos); 464 if (ret < 0) 465 break; 466 pos += bvec->bv_len; 467 } 468 return ret; 469 } 470 471 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 472 { 473 loff_t pos; 474 int ret; 475 476 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 477 478 if (bio_rw(bio) == WRITE) { 479 bool barrier = bio_rw_flagged(bio, BIO_RW_BARRIER); 480 struct file *file = lo->lo_backing_file; 481 482 if (barrier) { 483 if (unlikely(!file->f_op->fsync)) { 484 ret = -EOPNOTSUPP; 485 goto out; 486 } 487 488 ret = vfs_fsync(file, 0); 489 if (unlikely(ret)) { 490 ret = -EIO; 491 goto out; 492 } 493 } 494 495 ret = lo_send(lo, bio, pos); 496 497 if (barrier && !ret) { 498 ret = vfs_fsync(file, 0); 499 if (unlikely(ret)) 500 ret = -EIO; 501 } 502 } else 503 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 504 505 out: 506 return ret; 507 } 508 509 /* 510 * Add bio to back of pending list 511 */ 512 static void loop_add_bio(struct loop_device *lo, struct bio *bio) 513 { 514 bio_list_add(&lo->lo_bio_list, bio); 515 } 516 517 /* 518 * Grab first pending buffer 519 */ 520 static struct bio *loop_get_bio(struct loop_device *lo) 521 { 522 return bio_list_pop(&lo->lo_bio_list); 523 } 524 525 static int loop_make_request(struct request_queue *q, struct bio *old_bio) 526 { 527 struct loop_device *lo = q->queuedata; 528 int rw = bio_rw(old_bio); 529 530 if (rw == READA) 531 rw = READ; 532 533 BUG_ON(!lo || (rw != READ && rw != WRITE)); 534 535 spin_lock_irq(&lo->lo_lock); 536 if (lo->lo_state != Lo_bound) 537 goto out; 538 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 539 goto out; 540 loop_add_bio(lo, old_bio); 541 wake_up(&lo->lo_event); 542 spin_unlock_irq(&lo->lo_lock); 543 return 0; 544 545 out: 546 spin_unlock_irq(&lo->lo_lock); 547 bio_io_error(old_bio); 548 return 0; 549 } 550 551 /* 552 * kick off io on the underlying address space 553 */ 554 static void loop_unplug(struct request_queue *q) 555 { 556 struct loop_device *lo = q->queuedata; 557 558 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q); 559 blk_run_address_space(lo->lo_backing_file->f_mapping); 560 } 561 562 struct switch_request { 563 struct file *file; 564 struct completion wait; 565 }; 566 567 static void do_loop_switch(struct loop_device *, struct switch_request *); 568 569 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 570 { 571 if (unlikely(!bio->bi_bdev)) { 572 do_loop_switch(lo, bio->bi_private); 573 bio_put(bio); 574 } else { 575 int ret = do_bio_filebacked(lo, bio); 576 bio_endio(bio, ret); 577 } 578 } 579 580 /* 581 * worker thread that handles reads/writes to file backed loop devices, 582 * to avoid blocking in our make_request_fn. it also does loop decrypting 583 * on reads for block backed loop, as that is too heavy to do from 584 * b_end_io context where irqs may be disabled. 585 * 586 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 587 * calling kthread_stop(). Therefore once kthread_should_stop() is 588 * true, make_request will not place any more requests. Therefore 589 * once kthread_should_stop() is true and lo_bio is NULL, we are 590 * done with the loop. 591 */ 592 static int loop_thread(void *data) 593 { 594 struct loop_device *lo = data; 595 struct bio *bio; 596 597 set_user_nice(current, -20); 598 599 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 600 601 wait_event_interruptible(lo->lo_event, 602 !bio_list_empty(&lo->lo_bio_list) || 603 kthread_should_stop()); 604 605 if (bio_list_empty(&lo->lo_bio_list)) 606 continue; 607 spin_lock_irq(&lo->lo_lock); 608 bio = loop_get_bio(lo); 609 spin_unlock_irq(&lo->lo_lock); 610 611 BUG_ON(!bio); 612 loop_handle_bio(lo, bio); 613 } 614 615 return 0; 616 } 617 618 /* 619 * loop_switch performs the hard work of switching a backing store. 620 * First it needs to flush existing IO, it does this by sending a magic 621 * BIO down the pipe. The completion of this BIO does the actual switch. 622 */ 623 static int loop_switch(struct loop_device *lo, struct file *file) 624 { 625 struct switch_request w; 626 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 627 if (!bio) 628 return -ENOMEM; 629 init_completion(&w.wait); 630 w.file = file; 631 bio->bi_private = &w; 632 bio->bi_bdev = NULL; 633 loop_make_request(lo->lo_queue, bio); 634 wait_for_completion(&w.wait); 635 return 0; 636 } 637 638 /* 639 * Helper to flush the IOs in loop, but keeping loop thread running 640 */ 641 static int loop_flush(struct loop_device *lo) 642 { 643 /* loop not yet configured, no running thread, nothing to flush */ 644 if (!lo->lo_thread) 645 return 0; 646 647 return loop_switch(lo, NULL); 648 } 649 650 /* 651 * Do the actual switch; called from the BIO completion routine 652 */ 653 static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 654 { 655 struct file *file = p->file; 656 struct file *old_file = lo->lo_backing_file; 657 struct address_space *mapping; 658 659 /* if no new file, only flush of queued bios requested */ 660 if (!file) 661 goto out; 662 663 mapping = file->f_mapping; 664 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 665 lo->lo_backing_file = file; 666 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 667 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 668 lo->old_gfp_mask = mapping_gfp_mask(mapping); 669 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 670 out: 671 complete(&p->wait); 672 } 673 674 675 /* 676 * loop_change_fd switched the backing store of a loopback device to 677 * a new file. This is useful for operating system installers to free up 678 * the original file and in High Availability environments to switch to 679 * an alternative location for the content in case of server meltdown. 680 * This can only work if the loop device is used read-only, and if the 681 * new backing store is the same size and type as the old backing store. 682 */ 683 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 684 unsigned int arg) 685 { 686 struct file *file, *old_file; 687 struct inode *inode; 688 int error; 689 690 error = -ENXIO; 691 if (lo->lo_state != Lo_bound) 692 goto out; 693 694 /* the loop device has to be read-only */ 695 error = -EINVAL; 696 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 697 goto out; 698 699 error = -EBADF; 700 file = fget(arg); 701 if (!file) 702 goto out; 703 704 inode = file->f_mapping->host; 705 old_file = lo->lo_backing_file; 706 707 error = -EINVAL; 708 709 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 710 goto out_putf; 711 712 /* size of the new backing store needs to be the same */ 713 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 714 goto out_putf; 715 716 /* and ... switch */ 717 error = loop_switch(lo, file); 718 if (error) 719 goto out_putf; 720 721 fput(old_file); 722 if (max_part > 0) 723 ioctl_by_bdev(bdev, BLKRRPART, 0); 724 return 0; 725 726 out_putf: 727 fput(file); 728 out: 729 return error; 730 } 731 732 static inline int is_loop_device(struct file *file) 733 { 734 struct inode *i = file->f_mapping->host; 735 736 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 737 } 738 739 static int loop_set_fd(struct loop_device *lo, fmode_t mode, 740 struct block_device *bdev, unsigned int arg) 741 { 742 struct file *file, *f; 743 struct inode *inode; 744 struct address_space *mapping; 745 unsigned lo_blocksize; 746 int lo_flags = 0; 747 int error; 748 loff_t size; 749 750 /* This is safe, since we have a reference from open(). */ 751 __module_get(THIS_MODULE); 752 753 error = -EBADF; 754 file = fget(arg); 755 if (!file) 756 goto out; 757 758 error = -EBUSY; 759 if (lo->lo_state != Lo_unbound) 760 goto out_putf; 761 762 /* Avoid recursion */ 763 f = file; 764 while (is_loop_device(f)) { 765 struct loop_device *l; 766 767 if (f->f_mapping->host->i_bdev == bdev) 768 goto out_putf; 769 770 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 771 if (l->lo_state == Lo_unbound) { 772 error = -EINVAL; 773 goto out_putf; 774 } 775 f = l->lo_backing_file; 776 } 777 778 mapping = file->f_mapping; 779 inode = mapping->host; 780 781 if (!(file->f_mode & FMODE_WRITE)) 782 lo_flags |= LO_FLAGS_READ_ONLY; 783 784 error = -EINVAL; 785 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) { 786 const struct address_space_operations *aops = mapping->a_ops; 787 788 if (aops->write_begin) 789 lo_flags |= LO_FLAGS_USE_AOPS; 790 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write) 791 lo_flags |= LO_FLAGS_READ_ONLY; 792 793 lo_blocksize = S_ISBLK(inode->i_mode) ? 794 inode->i_bdev->bd_block_size : PAGE_SIZE; 795 796 error = 0; 797 } else { 798 goto out_putf; 799 } 800 801 size = get_loop_size(lo, file); 802 803 if ((loff_t)(sector_t)size != size) { 804 error = -EFBIG; 805 goto out_putf; 806 } 807 808 if (!(mode & FMODE_WRITE)) 809 lo_flags |= LO_FLAGS_READ_ONLY; 810 811 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 812 813 lo->lo_blocksize = lo_blocksize; 814 lo->lo_device = bdev; 815 lo->lo_flags = lo_flags; 816 lo->lo_backing_file = file; 817 lo->transfer = transfer_none; 818 lo->ioctl = NULL; 819 lo->lo_sizelimit = 0; 820 lo->old_gfp_mask = mapping_gfp_mask(mapping); 821 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 822 823 bio_list_init(&lo->lo_bio_list); 824 825 /* 826 * set queue make_request_fn, and add limits based on lower level 827 * device 828 */ 829 blk_queue_make_request(lo->lo_queue, loop_make_request); 830 lo->lo_queue->queuedata = lo; 831 lo->lo_queue->unplug_fn = loop_unplug; 832 833 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 834 blk_queue_ordered(lo->lo_queue, QUEUE_ORDERED_DRAIN, NULL); 835 836 set_capacity(lo->lo_disk, size); 837 bd_set_size(bdev, size << 9); 838 /* let user-space know about the new size */ 839 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 840 841 set_blocksize(bdev, lo_blocksize); 842 843 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 844 lo->lo_number); 845 if (IS_ERR(lo->lo_thread)) { 846 error = PTR_ERR(lo->lo_thread); 847 goto out_clr; 848 } 849 lo->lo_state = Lo_bound; 850 wake_up_process(lo->lo_thread); 851 if (max_part > 0) 852 ioctl_by_bdev(bdev, BLKRRPART, 0); 853 return 0; 854 855 out_clr: 856 lo->lo_thread = NULL; 857 lo->lo_device = NULL; 858 lo->lo_backing_file = NULL; 859 lo->lo_flags = 0; 860 set_capacity(lo->lo_disk, 0); 861 invalidate_bdev(bdev); 862 bd_set_size(bdev, 0); 863 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 864 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 865 lo->lo_state = Lo_unbound; 866 out_putf: 867 fput(file); 868 out: 869 /* This is safe: open() is still holding a reference. */ 870 module_put(THIS_MODULE); 871 return error; 872 } 873 874 static int 875 loop_release_xfer(struct loop_device *lo) 876 { 877 int err = 0; 878 struct loop_func_table *xfer = lo->lo_encryption; 879 880 if (xfer) { 881 if (xfer->release) 882 err = xfer->release(lo); 883 lo->transfer = NULL; 884 lo->lo_encryption = NULL; 885 module_put(xfer->owner); 886 } 887 return err; 888 } 889 890 static int 891 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 892 const struct loop_info64 *i) 893 { 894 int err = 0; 895 896 if (xfer) { 897 struct module *owner = xfer->owner; 898 899 if (!try_module_get(owner)) 900 return -EINVAL; 901 if (xfer->init) 902 err = xfer->init(lo, i); 903 if (err) 904 module_put(owner); 905 else 906 lo->lo_encryption = xfer; 907 } 908 return err; 909 } 910 911 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev) 912 { 913 struct file *filp = lo->lo_backing_file; 914 gfp_t gfp = lo->old_gfp_mask; 915 916 if (lo->lo_state != Lo_bound) 917 return -ENXIO; 918 919 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */ 920 return -EBUSY; 921 922 if (filp == NULL) 923 return -EINVAL; 924 925 spin_lock_irq(&lo->lo_lock); 926 lo->lo_state = Lo_rundown; 927 spin_unlock_irq(&lo->lo_lock); 928 929 kthread_stop(lo->lo_thread); 930 931 lo->lo_queue->unplug_fn = NULL; 932 lo->lo_backing_file = NULL; 933 934 loop_release_xfer(lo); 935 lo->transfer = NULL; 936 lo->ioctl = NULL; 937 lo->lo_device = NULL; 938 lo->lo_encryption = NULL; 939 lo->lo_offset = 0; 940 lo->lo_sizelimit = 0; 941 lo->lo_encrypt_key_size = 0; 942 lo->lo_flags = 0; 943 lo->lo_thread = NULL; 944 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 945 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 946 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 947 if (bdev) 948 invalidate_bdev(bdev); 949 set_capacity(lo->lo_disk, 0); 950 if (bdev) { 951 bd_set_size(bdev, 0); 952 /* let user-space know about this change */ 953 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 954 } 955 mapping_set_gfp_mask(filp->f_mapping, gfp); 956 lo->lo_state = Lo_unbound; 957 /* This is safe: open() is still holding a reference. */ 958 module_put(THIS_MODULE); 959 if (max_part > 0 && bdev) 960 ioctl_by_bdev(bdev, BLKRRPART, 0); 961 mutex_unlock(&lo->lo_ctl_mutex); 962 /* 963 * Need not hold lo_ctl_mutex to fput backing file. 964 * Calling fput holding lo_ctl_mutex triggers a circular 965 * lock dependency possibility warning as fput can take 966 * bd_mutex which is usually taken before lo_ctl_mutex. 967 */ 968 fput(filp); 969 return 0; 970 } 971 972 static int 973 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 974 { 975 int err; 976 struct loop_func_table *xfer; 977 uid_t uid = current_uid(); 978 979 if (lo->lo_encrypt_key_size && 980 lo->lo_key_owner != uid && 981 !capable(CAP_SYS_ADMIN)) 982 return -EPERM; 983 if (lo->lo_state != Lo_bound) 984 return -ENXIO; 985 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 986 return -EINVAL; 987 988 err = loop_release_xfer(lo); 989 if (err) 990 return err; 991 992 if (info->lo_encrypt_type) { 993 unsigned int type = info->lo_encrypt_type; 994 995 if (type >= MAX_LO_CRYPT) 996 return -EINVAL; 997 xfer = xfer_funcs[type]; 998 if (xfer == NULL) 999 return -EINVAL; 1000 } else 1001 xfer = NULL; 1002 1003 err = loop_init_xfer(lo, xfer, info); 1004 if (err) 1005 return err; 1006 1007 if (lo->lo_offset != info->lo_offset || 1008 lo->lo_sizelimit != info->lo_sizelimit) { 1009 lo->lo_offset = info->lo_offset; 1010 lo->lo_sizelimit = info->lo_sizelimit; 1011 if (figure_loop_size(lo)) 1012 return -EFBIG; 1013 } 1014 1015 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1016 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1017 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1018 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1019 1020 if (!xfer) 1021 xfer = &none_funcs; 1022 lo->transfer = xfer->transfer; 1023 lo->ioctl = xfer->ioctl; 1024 1025 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1026 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1027 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1028 1029 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1030 lo->lo_init[0] = info->lo_init[0]; 1031 lo->lo_init[1] = info->lo_init[1]; 1032 if (info->lo_encrypt_key_size) { 1033 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1034 info->lo_encrypt_key_size); 1035 lo->lo_key_owner = uid; 1036 } 1037 1038 return 0; 1039 } 1040 1041 static int 1042 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1043 { 1044 struct file *file = lo->lo_backing_file; 1045 struct kstat stat; 1046 int error; 1047 1048 if (lo->lo_state != Lo_bound) 1049 return -ENXIO; 1050 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat); 1051 if (error) 1052 return error; 1053 memset(info, 0, sizeof(*info)); 1054 info->lo_number = lo->lo_number; 1055 info->lo_device = huge_encode_dev(stat.dev); 1056 info->lo_inode = stat.ino; 1057 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1058 info->lo_offset = lo->lo_offset; 1059 info->lo_sizelimit = lo->lo_sizelimit; 1060 info->lo_flags = lo->lo_flags; 1061 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1062 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1063 info->lo_encrypt_type = 1064 lo->lo_encryption ? lo->lo_encryption->number : 0; 1065 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1066 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1067 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1068 lo->lo_encrypt_key_size); 1069 } 1070 return 0; 1071 } 1072 1073 static void 1074 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1075 { 1076 memset(info64, 0, sizeof(*info64)); 1077 info64->lo_number = info->lo_number; 1078 info64->lo_device = info->lo_device; 1079 info64->lo_inode = info->lo_inode; 1080 info64->lo_rdevice = info->lo_rdevice; 1081 info64->lo_offset = info->lo_offset; 1082 info64->lo_sizelimit = 0; 1083 info64->lo_encrypt_type = info->lo_encrypt_type; 1084 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1085 info64->lo_flags = info->lo_flags; 1086 info64->lo_init[0] = info->lo_init[0]; 1087 info64->lo_init[1] = info->lo_init[1]; 1088 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1089 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1090 else 1091 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1092 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1093 } 1094 1095 static int 1096 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1097 { 1098 memset(info, 0, sizeof(*info)); 1099 info->lo_number = info64->lo_number; 1100 info->lo_device = info64->lo_device; 1101 info->lo_inode = info64->lo_inode; 1102 info->lo_rdevice = info64->lo_rdevice; 1103 info->lo_offset = info64->lo_offset; 1104 info->lo_encrypt_type = info64->lo_encrypt_type; 1105 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1106 info->lo_flags = info64->lo_flags; 1107 info->lo_init[0] = info64->lo_init[0]; 1108 info->lo_init[1] = info64->lo_init[1]; 1109 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1110 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1111 else 1112 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1113 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1114 1115 /* error in case values were truncated */ 1116 if (info->lo_device != info64->lo_device || 1117 info->lo_rdevice != info64->lo_rdevice || 1118 info->lo_inode != info64->lo_inode || 1119 info->lo_offset != info64->lo_offset) 1120 return -EOVERFLOW; 1121 1122 return 0; 1123 } 1124 1125 static int 1126 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1127 { 1128 struct loop_info info; 1129 struct loop_info64 info64; 1130 1131 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1132 return -EFAULT; 1133 loop_info64_from_old(&info, &info64); 1134 return loop_set_status(lo, &info64); 1135 } 1136 1137 static int 1138 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1139 { 1140 struct loop_info64 info64; 1141 1142 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1143 return -EFAULT; 1144 return loop_set_status(lo, &info64); 1145 } 1146 1147 static int 1148 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1149 struct loop_info info; 1150 struct loop_info64 info64; 1151 int err = 0; 1152 1153 if (!arg) 1154 err = -EINVAL; 1155 if (!err) 1156 err = loop_get_status(lo, &info64); 1157 if (!err) 1158 err = loop_info64_to_old(&info64, &info); 1159 if (!err && copy_to_user(arg, &info, sizeof(info))) 1160 err = -EFAULT; 1161 1162 return err; 1163 } 1164 1165 static int 1166 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1167 struct loop_info64 info64; 1168 int err = 0; 1169 1170 if (!arg) 1171 err = -EINVAL; 1172 if (!err) 1173 err = loop_get_status(lo, &info64); 1174 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1175 err = -EFAULT; 1176 1177 return err; 1178 } 1179 1180 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1181 { 1182 int err; 1183 sector_t sec; 1184 loff_t sz; 1185 1186 err = -ENXIO; 1187 if (unlikely(lo->lo_state != Lo_bound)) 1188 goto out; 1189 err = figure_loop_size(lo); 1190 if (unlikely(err)) 1191 goto out; 1192 sec = get_capacity(lo->lo_disk); 1193 /* the width of sector_t may be narrow for bit-shift */ 1194 sz = sec; 1195 sz <<= 9; 1196 mutex_lock(&bdev->bd_mutex); 1197 bd_set_size(bdev, sz); 1198 /* let user-space know about the new size */ 1199 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1200 mutex_unlock(&bdev->bd_mutex); 1201 1202 out: 1203 return err; 1204 } 1205 1206 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1207 unsigned int cmd, unsigned long arg) 1208 { 1209 struct loop_device *lo = bdev->bd_disk->private_data; 1210 int err; 1211 1212 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1213 switch (cmd) { 1214 case LOOP_SET_FD: 1215 err = loop_set_fd(lo, mode, bdev, arg); 1216 break; 1217 case LOOP_CHANGE_FD: 1218 err = loop_change_fd(lo, bdev, arg); 1219 break; 1220 case LOOP_CLR_FD: 1221 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1222 err = loop_clr_fd(lo, bdev); 1223 if (!err) 1224 goto out_unlocked; 1225 break; 1226 case LOOP_SET_STATUS: 1227 err = loop_set_status_old(lo, (struct loop_info __user *) arg); 1228 break; 1229 case LOOP_GET_STATUS: 1230 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1231 break; 1232 case LOOP_SET_STATUS64: 1233 err = loop_set_status64(lo, (struct loop_info64 __user *) arg); 1234 break; 1235 case LOOP_GET_STATUS64: 1236 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1237 break; 1238 case LOOP_SET_CAPACITY: 1239 err = -EPERM; 1240 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1241 err = loop_set_capacity(lo, bdev); 1242 break; 1243 default: 1244 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1245 } 1246 mutex_unlock(&lo->lo_ctl_mutex); 1247 1248 out_unlocked: 1249 return err; 1250 } 1251 1252 #ifdef CONFIG_COMPAT 1253 struct compat_loop_info { 1254 compat_int_t lo_number; /* ioctl r/o */ 1255 compat_dev_t lo_device; /* ioctl r/o */ 1256 compat_ulong_t lo_inode; /* ioctl r/o */ 1257 compat_dev_t lo_rdevice; /* ioctl r/o */ 1258 compat_int_t lo_offset; 1259 compat_int_t lo_encrypt_type; 1260 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1261 compat_int_t lo_flags; /* ioctl r/o */ 1262 char lo_name[LO_NAME_SIZE]; 1263 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1264 compat_ulong_t lo_init[2]; 1265 char reserved[4]; 1266 }; 1267 1268 /* 1269 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1270 * - noinlined to reduce stack space usage in main part of driver 1271 */ 1272 static noinline int 1273 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1274 struct loop_info64 *info64) 1275 { 1276 struct compat_loop_info info; 1277 1278 if (copy_from_user(&info, arg, sizeof(info))) 1279 return -EFAULT; 1280 1281 memset(info64, 0, sizeof(*info64)); 1282 info64->lo_number = info.lo_number; 1283 info64->lo_device = info.lo_device; 1284 info64->lo_inode = info.lo_inode; 1285 info64->lo_rdevice = info.lo_rdevice; 1286 info64->lo_offset = info.lo_offset; 1287 info64->lo_sizelimit = 0; 1288 info64->lo_encrypt_type = info.lo_encrypt_type; 1289 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1290 info64->lo_flags = info.lo_flags; 1291 info64->lo_init[0] = info.lo_init[0]; 1292 info64->lo_init[1] = info.lo_init[1]; 1293 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1294 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1295 else 1296 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1297 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1298 return 0; 1299 } 1300 1301 /* 1302 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1303 * - noinlined to reduce stack space usage in main part of driver 1304 */ 1305 static noinline int 1306 loop_info64_to_compat(const struct loop_info64 *info64, 1307 struct compat_loop_info __user *arg) 1308 { 1309 struct compat_loop_info info; 1310 1311 memset(&info, 0, sizeof(info)); 1312 info.lo_number = info64->lo_number; 1313 info.lo_device = info64->lo_device; 1314 info.lo_inode = info64->lo_inode; 1315 info.lo_rdevice = info64->lo_rdevice; 1316 info.lo_offset = info64->lo_offset; 1317 info.lo_encrypt_type = info64->lo_encrypt_type; 1318 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1319 info.lo_flags = info64->lo_flags; 1320 info.lo_init[0] = info64->lo_init[0]; 1321 info.lo_init[1] = info64->lo_init[1]; 1322 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1323 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1324 else 1325 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1326 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1327 1328 /* error in case values were truncated */ 1329 if (info.lo_device != info64->lo_device || 1330 info.lo_rdevice != info64->lo_rdevice || 1331 info.lo_inode != info64->lo_inode || 1332 info.lo_offset != info64->lo_offset || 1333 info.lo_init[0] != info64->lo_init[0] || 1334 info.lo_init[1] != info64->lo_init[1]) 1335 return -EOVERFLOW; 1336 1337 if (copy_to_user(arg, &info, sizeof(info))) 1338 return -EFAULT; 1339 return 0; 1340 } 1341 1342 static int 1343 loop_set_status_compat(struct loop_device *lo, 1344 const struct compat_loop_info __user *arg) 1345 { 1346 struct loop_info64 info64; 1347 int ret; 1348 1349 ret = loop_info64_from_compat(arg, &info64); 1350 if (ret < 0) 1351 return ret; 1352 return loop_set_status(lo, &info64); 1353 } 1354 1355 static int 1356 loop_get_status_compat(struct loop_device *lo, 1357 struct compat_loop_info __user *arg) 1358 { 1359 struct loop_info64 info64; 1360 int err = 0; 1361 1362 if (!arg) 1363 err = -EINVAL; 1364 if (!err) 1365 err = loop_get_status(lo, &info64); 1366 if (!err) 1367 err = loop_info64_to_compat(&info64, arg); 1368 return err; 1369 } 1370 1371 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1372 unsigned int cmd, unsigned long arg) 1373 { 1374 struct loop_device *lo = bdev->bd_disk->private_data; 1375 int err; 1376 1377 switch(cmd) { 1378 case LOOP_SET_STATUS: 1379 mutex_lock(&lo->lo_ctl_mutex); 1380 err = loop_set_status_compat( 1381 lo, (const struct compat_loop_info __user *) arg); 1382 mutex_unlock(&lo->lo_ctl_mutex); 1383 break; 1384 case LOOP_GET_STATUS: 1385 mutex_lock(&lo->lo_ctl_mutex); 1386 err = loop_get_status_compat( 1387 lo, (struct compat_loop_info __user *) arg); 1388 mutex_unlock(&lo->lo_ctl_mutex); 1389 break; 1390 case LOOP_SET_CAPACITY: 1391 case LOOP_CLR_FD: 1392 case LOOP_GET_STATUS64: 1393 case LOOP_SET_STATUS64: 1394 arg = (unsigned long) compat_ptr(arg); 1395 case LOOP_SET_FD: 1396 case LOOP_CHANGE_FD: 1397 err = lo_ioctl(bdev, mode, cmd, arg); 1398 break; 1399 default: 1400 err = -ENOIOCTLCMD; 1401 break; 1402 } 1403 return err; 1404 } 1405 #endif 1406 1407 static int lo_open(struct block_device *bdev, fmode_t mode) 1408 { 1409 struct loop_device *lo = bdev->bd_disk->private_data; 1410 1411 mutex_lock(&lo->lo_ctl_mutex); 1412 lo->lo_refcnt++; 1413 mutex_unlock(&lo->lo_ctl_mutex); 1414 1415 return 0; 1416 } 1417 1418 static int lo_release(struct gendisk *disk, fmode_t mode) 1419 { 1420 struct loop_device *lo = disk->private_data; 1421 int err; 1422 1423 mutex_lock(&lo->lo_ctl_mutex); 1424 1425 if (--lo->lo_refcnt) 1426 goto out; 1427 1428 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1429 /* 1430 * In autoclear mode, stop the loop thread 1431 * and remove configuration after last close. 1432 */ 1433 err = loop_clr_fd(lo, NULL); 1434 if (!err) 1435 goto out_unlocked; 1436 } else { 1437 /* 1438 * Otherwise keep thread (if running) and config, 1439 * but flush possible ongoing bios in thread. 1440 */ 1441 loop_flush(lo); 1442 } 1443 1444 out: 1445 mutex_unlock(&lo->lo_ctl_mutex); 1446 out_unlocked: 1447 return 0; 1448 } 1449 1450 static const struct block_device_operations lo_fops = { 1451 .owner = THIS_MODULE, 1452 .open = lo_open, 1453 .release = lo_release, 1454 .ioctl = lo_ioctl, 1455 #ifdef CONFIG_COMPAT 1456 .compat_ioctl = lo_compat_ioctl, 1457 #endif 1458 }; 1459 1460 /* 1461 * And now the modules code and kernel interface. 1462 */ 1463 static int max_loop; 1464 module_param(max_loop, int, 0); 1465 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1466 module_param(max_part, int, 0); 1467 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1468 MODULE_LICENSE("GPL"); 1469 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1470 1471 int loop_register_transfer(struct loop_func_table *funcs) 1472 { 1473 unsigned int n = funcs->number; 1474 1475 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1476 return -EINVAL; 1477 xfer_funcs[n] = funcs; 1478 return 0; 1479 } 1480 1481 int loop_unregister_transfer(int number) 1482 { 1483 unsigned int n = number; 1484 struct loop_device *lo; 1485 struct loop_func_table *xfer; 1486 1487 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1488 return -EINVAL; 1489 1490 xfer_funcs[n] = NULL; 1491 1492 list_for_each_entry(lo, &loop_devices, lo_list) { 1493 mutex_lock(&lo->lo_ctl_mutex); 1494 1495 if (lo->lo_encryption == xfer) 1496 loop_release_xfer(lo); 1497 1498 mutex_unlock(&lo->lo_ctl_mutex); 1499 } 1500 1501 return 0; 1502 } 1503 1504 EXPORT_SYMBOL(loop_register_transfer); 1505 EXPORT_SYMBOL(loop_unregister_transfer); 1506 1507 static struct loop_device *loop_alloc(int i) 1508 { 1509 struct loop_device *lo; 1510 struct gendisk *disk; 1511 1512 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1513 if (!lo) 1514 goto out; 1515 1516 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1517 if (!lo->lo_queue) 1518 goto out_free_dev; 1519 1520 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1521 if (!disk) 1522 goto out_free_queue; 1523 1524 mutex_init(&lo->lo_ctl_mutex); 1525 lo->lo_number = i; 1526 lo->lo_thread = NULL; 1527 init_waitqueue_head(&lo->lo_event); 1528 spin_lock_init(&lo->lo_lock); 1529 disk->major = LOOP_MAJOR; 1530 disk->first_minor = i << part_shift; 1531 disk->fops = &lo_fops; 1532 disk->private_data = lo; 1533 disk->queue = lo->lo_queue; 1534 sprintf(disk->disk_name, "loop%d", i); 1535 return lo; 1536 1537 out_free_queue: 1538 blk_cleanup_queue(lo->lo_queue); 1539 out_free_dev: 1540 kfree(lo); 1541 out: 1542 return NULL; 1543 } 1544 1545 static void loop_free(struct loop_device *lo) 1546 { 1547 blk_cleanup_queue(lo->lo_queue); 1548 put_disk(lo->lo_disk); 1549 list_del(&lo->lo_list); 1550 kfree(lo); 1551 } 1552 1553 static struct loop_device *loop_init_one(int i) 1554 { 1555 struct loop_device *lo; 1556 1557 list_for_each_entry(lo, &loop_devices, lo_list) { 1558 if (lo->lo_number == i) 1559 return lo; 1560 } 1561 1562 lo = loop_alloc(i); 1563 if (lo) { 1564 add_disk(lo->lo_disk); 1565 list_add_tail(&lo->lo_list, &loop_devices); 1566 } 1567 return lo; 1568 } 1569 1570 static void loop_del_one(struct loop_device *lo) 1571 { 1572 del_gendisk(lo->lo_disk); 1573 loop_free(lo); 1574 } 1575 1576 static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1577 { 1578 struct loop_device *lo; 1579 struct kobject *kobj; 1580 1581 mutex_lock(&loop_devices_mutex); 1582 lo = loop_init_one(dev & MINORMASK); 1583 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM); 1584 mutex_unlock(&loop_devices_mutex); 1585 1586 *part = 0; 1587 return kobj; 1588 } 1589 1590 static int __init loop_init(void) 1591 { 1592 int i, nr; 1593 unsigned long range; 1594 struct loop_device *lo, *next; 1595 1596 /* 1597 * loop module now has a feature to instantiate underlying device 1598 * structure on-demand, provided that there is an access dev node. 1599 * However, this will not work well with user space tool that doesn't 1600 * know about such "feature". In order to not break any existing 1601 * tool, we do the following: 1602 * 1603 * (1) if max_loop is specified, create that many upfront, and this 1604 * also becomes a hard limit. 1605 * (2) if max_loop is not specified, create 8 loop device on module 1606 * load, user can further extend loop device by create dev node 1607 * themselves and have kernel automatically instantiate actual 1608 * device on-demand. 1609 */ 1610 1611 part_shift = 0; 1612 if (max_part > 0) 1613 part_shift = fls(max_part); 1614 1615 if (max_loop > 1UL << (MINORBITS - part_shift)) 1616 return -EINVAL; 1617 1618 if (max_loop) { 1619 nr = max_loop; 1620 range = max_loop; 1621 } else { 1622 nr = 8; 1623 range = 1UL << (MINORBITS - part_shift); 1624 } 1625 1626 if (register_blkdev(LOOP_MAJOR, "loop")) 1627 return -EIO; 1628 1629 for (i = 0; i < nr; i++) { 1630 lo = loop_alloc(i); 1631 if (!lo) 1632 goto Enomem; 1633 list_add_tail(&lo->lo_list, &loop_devices); 1634 } 1635 1636 /* point of no return */ 1637 1638 list_for_each_entry(lo, &loop_devices, lo_list) 1639 add_disk(lo->lo_disk); 1640 1641 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1642 THIS_MODULE, loop_probe, NULL, NULL); 1643 1644 printk(KERN_INFO "loop: module loaded\n"); 1645 return 0; 1646 1647 Enomem: 1648 printk(KERN_INFO "loop: out of memory\n"); 1649 1650 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1651 loop_free(lo); 1652 1653 unregister_blkdev(LOOP_MAJOR, "loop"); 1654 return -ENOMEM; 1655 } 1656 1657 static void __exit loop_exit(void) 1658 { 1659 unsigned long range; 1660 struct loop_device *lo, *next; 1661 1662 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift); 1663 1664 list_for_each_entry_safe(lo, next, &loop_devices, lo_list) 1665 loop_del_one(lo); 1666 1667 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1668 unregister_blkdev(LOOP_MAJOR, "loop"); 1669 } 1670 1671 module_init(loop_init); 1672 module_exit(loop_exit); 1673 1674 #ifndef MODULE 1675 static int __init max_loop_setup(char *str) 1676 { 1677 max_loop = simple_strtol(str, NULL, 0); 1678 return 1; 1679 } 1680 1681 __setup("max_loop=", max_loop_setup); 1682 #endif 1683