xref: /linux/drivers/block/loop.c (revision a3f143c461444c0b56360bbf468615fa814a8372)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 1993 by Theodore Ts'o.
4  */
5 #include <linux/module.h>
6 #include <linux/moduleparam.h>
7 #include <linux/sched.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/file.h>
11 #include <linux/stat.h>
12 #include <linux/errno.h>
13 #include <linux/major.h>
14 #include <linux/wait.h>
15 #include <linux/blkpg.h>
16 #include <linux/init.h>
17 #include <linux/swap.h>
18 #include <linux/slab.h>
19 #include <linux/compat.h>
20 #include <linux/suspend.h>
21 #include <linux/freezer.h>
22 #include <linux/mutex.h>
23 #include <linux/writeback.h>
24 #include <linux/completion.h>
25 #include <linux/highmem.h>
26 #include <linux/splice.h>
27 #include <linux/sysfs.h>
28 #include <linux/miscdevice.h>
29 #include <linux/falloc.h>
30 #include <linux/uio.h>
31 #include <linux/ioprio.h>
32 #include <linux/blk-cgroup.h>
33 #include <linux/sched/mm.h>
34 #include <linux/statfs.h>
35 #include <linux/uaccess.h>
36 #include <linux/blk-mq.h>
37 #include <linux/spinlock.h>
38 #include <uapi/linux/loop.h>
39 
40 /* Possible states of device */
41 enum {
42 	Lo_unbound,
43 	Lo_bound,
44 	Lo_rundown,
45 	Lo_deleting,
46 };
47 
48 struct loop_func_table;
49 
50 struct loop_device {
51 	int		lo_number;
52 	loff_t		lo_offset;
53 	loff_t		lo_sizelimit;
54 	int		lo_flags;
55 	char		lo_file_name[LO_NAME_SIZE];
56 
57 	struct file *	lo_backing_file;
58 	struct block_device *lo_device;
59 
60 	gfp_t		old_gfp_mask;
61 
62 	spinlock_t		lo_lock;
63 	int			lo_state;
64 	spinlock_t              lo_work_lock;
65 	struct workqueue_struct *workqueue;
66 	struct work_struct      rootcg_work;
67 	struct list_head        rootcg_cmd_list;
68 	struct list_head        idle_worker_list;
69 	struct rb_root          worker_tree;
70 	struct timer_list       timer;
71 	bool			use_dio;
72 	bool			sysfs_inited;
73 
74 	struct request_queue	*lo_queue;
75 	struct blk_mq_tag_set	tag_set;
76 	struct gendisk		*lo_disk;
77 	struct mutex		lo_mutex;
78 	bool			idr_visible;
79 };
80 
81 struct loop_cmd {
82 	struct list_head list_entry;
83 	bool use_aio; /* use AIO interface to handle I/O */
84 	atomic_t ref; /* only for aio */
85 	long ret;
86 	struct kiocb iocb;
87 	struct bio_vec *bvec;
88 	struct cgroup_subsys_state *blkcg_css;
89 	struct cgroup_subsys_state *memcg_css;
90 };
91 
92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
93 #define LOOP_DEFAULT_HW_Q_DEPTH 128
94 
95 static DEFINE_IDR(loop_index_idr);
96 static DEFINE_MUTEX(loop_ctl_mutex);
97 static DEFINE_MUTEX(loop_validate_mutex);
98 
99 /**
100  * loop_global_lock_killable() - take locks for safe loop_validate_file() test
101  *
102  * @lo: struct loop_device
103  * @global: true if @lo is about to bind another "struct loop_device", false otherwise
104  *
105  * Returns 0 on success, -EINTR otherwise.
106  *
107  * Since loop_validate_file() traverses on other "struct loop_device" if
108  * is_loop_device() is true, we need a global lock for serializing concurrent
109  * loop_configure()/loop_change_fd()/__loop_clr_fd() calls.
110  */
111 static int loop_global_lock_killable(struct loop_device *lo, bool global)
112 {
113 	int err;
114 
115 	if (global) {
116 		err = mutex_lock_killable(&loop_validate_mutex);
117 		if (err)
118 			return err;
119 	}
120 	err = mutex_lock_killable(&lo->lo_mutex);
121 	if (err && global)
122 		mutex_unlock(&loop_validate_mutex);
123 	return err;
124 }
125 
126 /**
127  * loop_global_unlock() - release locks taken by loop_global_lock_killable()
128  *
129  * @lo: struct loop_device
130  * @global: true if @lo was about to bind another "struct loop_device", false otherwise
131  */
132 static void loop_global_unlock(struct loop_device *lo, bool global)
133 {
134 	mutex_unlock(&lo->lo_mutex);
135 	if (global)
136 		mutex_unlock(&loop_validate_mutex);
137 }
138 
139 static int max_part;
140 static int part_shift;
141 
142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 {
144 	loff_t loopsize;
145 
146 	/* Compute loopsize in bytes */
147 	loopsize = i_size_read(file->f_mapping->host);
148 	if (offset > 0)
149 		loopsize -= offset;
150 	/* offset is beyond i_size, weird but possible */
151 	if (loopsize < 0)
152 		return 0;
153 
154 	if (sizelimit > 0 && sizelimit < loopsize)
155 		loopsize = sizelimit;
156 	/*
157 	 * Unfortunately, if we want to do I/O on the device,
158 	 * the number of 512-byte sectors has to fit into a sector_t.
159 	 */
160 	return loopsize >> 9;
161 }
162 
163 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 {
165 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
166 }
167 
168 /*
169  * We support direct I/O only if lo_offset is aligned with the logical I/O size
170  * of backing device, and the logical block size of loop is bigger than that of
171  * the backing device.
172  */
173 static bool lo_bdev_can_use_dio(struct loop_device *lo,
174 		struct block_device *backing_bdev)
175 {
176 	unsigned int sb_bsize = bdev_logical_block_size(backing_bdev);
177 
178 	if (queue_logical_block_size(lo->lo_queue) < sb_bsize)
179 		return false;
180 	if (lo->lo_offset & (sb_bsize - 1))
181 		return false;
182 	return true;
183 }
184 
185 static void __loop_update_dio(struct loop_device *lo, bool dio)
186 {
187 	struct file *file = lo->lo_backing_file;
188 	struct inode *inode = file->f_mapping->host;
189 	struct block_device *backing_bdev = NULL;
190 	bool use_dio;
191 
192 	if (S_ISBLK(inode->i_mode))
193 		backing_bdev = I_BDEV(inode);
194 	else if (inode->i_sb->s_bdev)
195 		backing_bdev = inode->i_sb->s_bdev;
196 
197 	use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) &&
198 		(!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev));
199 
200 	if (lo->use_dio == use_dio)
201 		return;
202 
203 	/* flush dirty pages before changing direct IO */
204 	vfs_fsync(file, 0);
205 
206 	/*
207 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
208 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
209 	 * will get updated by ioctl(LOOP_GET_STATUS)
210 	 */
211 	if (lo->lo_state == Lo_bound)
212 		blk_mq_freeze_queue(lo->lo_queue);
213 	lo->use_dio = use_dio;
214 	if (use_dio)
215 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
216 	else
217 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
218 	if (lo->lo_state == Lo_bound)
219 		blk_mq_unfreeze_queue(lo->lo_queue);
220 }
221 
222 /**
223  * loop_set_size() - sets device size and notifies userspace
224  * @lo: struct loop_device to set the size for
225  * @size: new size of the loop device
226  *
227  * Callers must validate that the size passed into this function fits into
228  * a sector_t, eg using loop_validate_size()
229  */
230 static void loop_set_size(struct loop_device *lo, loff_t size)
231 {
232 	if (!set_capacity_and_notify(lo->lo_disk, size))
233 		kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
234 }
235 
236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
237 {
238 	struct iov_iter i;
239 	ssize_t bw;
240 
241 	iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len);
242 
243 	bw = vfs_iter_write(file, &i, ppos, 0);
244 
245 	if (likely(bw ==  bvec->bv_len))
246 		return 0;
247 
248 	printk_ratelimited(KERN_ERR
249 		"loop: Write error at byte offset %llu, length %i.\n",
250 		(unsigned long long)*ppos, bvec->bv_len);
251 	if (bw >= 0)
252 		bw = -EIO;
253 	return bw;
254 }
255 
256 static int lo_write_simple(struct loop_device *lo, struct request *rq,
257 		loff_t pos)
258 {
259 	struct bio_vec bvec;
260 	struct req_iterator iter;
261 	int ret = 0;
262 
263 	rq_for_each_segment(bvec, rq, iter) {
264 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
265 		if (ret < 0)
266 			break;
267 		cond_resched();
268 	}
269 
270 	return ret;
271 }
272 
273 static int lo_read_simple(struct loop_device *lo, struct request *rq,
274 		loff_t pos)
275 {
276 	struct bio_vec bvec;
277 	struct req_iterator iter;
278 	struct iov_iter i;
279 	ssize_t len;
280 
281 	rq_for_each_segment(bvec, rq, iter) {
282 		iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len);
283 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
284 		if (len < 0)
285 			return len;
286 
287 		flush_dcache_page(bvec.bv_page);
288 
289 		if (len != bvec.bv_len) {
290 			struct bio *bio;
291 
292 			__rq_for_each_bio(bio, rq)
293 				zero_fill_bio(bio);
294 			break;
295 		}
296 		cond_resched();
297 	}
298 
299 	return 0;
300 }
301 
302 static void loop_clear_limits(struct loop_device *lo, int mode)
303 {
304 	struct queue_limits lim = queue_limits_start_update(lo->lo_queue);
305 
306 	if (mode & FALLOC_FL_ZERO_RANGE)
307 		lim.max_write_zeroes_sectors = 0;
308 
309 	if (mode & FALLOC_FL_PUNCH_HOLE) {
310 		lim.max_hw_discard_sectors = 0;
311 		lim.discard_granularity = 0;
312 	}
313 
314 	queue_limits_commit_update(lo->lo_queue, &lim);
315 }
316 
317 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
318 			int mode)
319 {
320 	/*
321 	 * We use fallocate to manipulate the space mappings used by the image
322 	 * a.k.a. discard/zerorange.
323 	 */
324 	struct file *file = lo->lo_backing_file;
325 	int ret;
326 
327 	mode |= FALLOC_FL_KEEP_SIZE;
328 
329 	if (!bdev_max_discard_sectors(lo->lo_device))
330 		return -EOPNOTSUPP;
331 
332 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
333 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
334 		return -EIO;
335 
336 	/*
337 	 * We initially configure the limits in a hope that fallocate is
338 	 * supported and clear them here if that turns out not to be true.
339 	 */
340 	if (unlikely(ret == -EOPNOTSUPP))
341 		loop_clear_limits(lo, mode);
342 
343 	return ret;
344 }
345 
346 static int lo_req_flush(struct loop_device *lo, struct request *rq)
347 {
348 	int ret = vfs_fsync(lo->lo_backing_file, 0);
349 	if (unlikely(ret && ret != -EINVAL))
350 		ret = -EIO;
351 
352 	return ret;
353 }
354 
355 static void lo_complete_rq(struct request *rq)
356 {
357 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
358 	blk_status_t ret = BLK_STS_OK;
359 
360 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
361 	    req_op(rq) != REQ_OP_READ) {
362 		if (cmd->ret < 0)
363 			ret = errno_to_blk_status(cmd->ret);
364 		goto end_io;
365 	}
366 
367 	/*
368 	 * Short READ - if we got some data, advance our request and
369 	 * retry it. If we got no data, end the rest with EIO.
370 	 */
371 	if (cmd->ret) {
372 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
373 		cmd->ret = 0;
374 		blk_mq_requeue_request(rq, true);
375 	} else {
376 		if (cmd->use_aio) {
377 			struct bio *bio = rq->bio;
378 
379 			while (bio) {
380 				zero_fill_bio(bio);
381 				bio = bio->bi_next;
382 			}
383 		}
384 		ret = BLK_STS_IOERR;
385 end_io:
386 		blk_mq_end_request(rq, ret);
387 	}
388 }
389 
390 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
391 {
392 	struct request *rq = blk_mq_rq_from_pdu(cmd);
393 
394 	if (!atomic_dec_and_test(&cmd->ref))
395 		return;
396 	kfree(cmd->bvec);
397 	cmd->bvec = NULL;
398 	if (likely(!blk_should_fake_timeout(rq->q)))
399 		blk_mq_complete_request(rq);
400 }
401 
402 static void lo_rw_aio_complete(struct kiocb *iocb, long ret)
403 {
404 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
405 
406 	cmd->ret = ret;
407 	lo_rw_aio_do_completion(cmd);
408 }
409 
410 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
411 		     loff_t pos, int rw)
412 {
413 	struct iov_iter iter;
414 	struct req_iterator rq_iter;
415 	struct bio_vec *bvec;
416 	struct request *rq = blk_mq_rq_from_pdu(cmd);
417 	struct bio *bio = rq->bio;
418 	struct file *file = lo->lo_backing_file;
419 	struct bio_vec tmp;
420 	unsigned int offset;
421 	int nr_bvec = 0;
422 	int ret;
423 
424 	rq_for_each_bvec(tmp, rq, rq_iter)
425 		nr_bvec++;
426 
427 	if (rq->bio != rq->biotail) {
428 
429 		bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
430 				     GFP_NOIO);
431 		if (!bvec)
432 			return -EIO;
433 		cmd->bvec = bvec;
434 
435 		/*
436 		 * The bios of the request may be started from the middle of
437 		 * the 'bvec' because of bio splitting, so we can't directly
438 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
439 		 * API will take care of all details for us.
440 		 */
441 		rq_for_each_bvec(tmp, rq, rq_iter) {
442 			*bvec = tmp;
443 			bvec++;
444 		}
445 		bvec = cmd->bvec;
446 		offset = 0;
447 	} else {
448 		/*
449 		 * Same here, this bio may be started from the middle of the
450 		 * 'bvec' because of bio splitting, so offset from the bvec
451 		 * must be passed to iov iterator
452 		 */
453 		offset = bio->bi_iter.bi_bvec_done;
454 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
455 	}
456 	atomic_set(&cmd->ref, 2);
457 
458 	iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
459 	iter.iov_offset = offset;
460 
461 	cmd->iocb.ki_pos = pos;
462 	cmd->iocb.ki_filp = file;
463 	cmd->iocb.ki_complete = lo_rw_aio_complete;
464 	cmd->iocb.ki_flags = IOCB_DIRECT;
465 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
466 
467 	if (rw == ITER_SOURCE)
468 		ret = file->f_op->write_iter(&cmd->iocb, &iter);
469 	else
470 		ret = file->f_op->read_iter(&cmd->iocb, &iter);
471 
472 	lo_rw_aio_do_completion(cmd);
473 
474 	if (ret != -EIOCBQUEUED)
475 		lo_rw_aio_complete(&cmd->iocb, ret);
476 	return 0;
477 }
478 
479 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
480 {
481 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
482 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
483 
484 	/*
485 	 * lo_write_simple and lo_read_simple should have been covered
486 	 * by io submit style function like lo_rw_aio(), one blocker
487 	 * is that lo_read_simple() need to call flush_dcache_page after
488 	 * the page is written from kernel, and it isn't easy to handle
489 	 * this in io submit style function which submits all segments
490 	 * of the req at one time. And direct read IO doesn't need to
491 	 * run flush_dcache_page().
492 	 */
493 	switch (req_op(rq)) {
494 	case REQ_OP_FLUSH:
495 		return lo_req_flush(lo, rq);
496 	case REQ_OP_WRITE_ZEROES:
497 		/*
498 		 * If the caller doesn't want deallocation, call zeroout to
499 		 * write zeroes the range.  Otherwise, punch them out.
500 		 */
501 		return lo_fallocate(lo, rq, pos,
502 			(rq->cmd_flags & REQ_NOUNMAP) ?
503 				FALLOC_FL_ZERO_RANGE :
504 				FALLOC_FL_PUNCH_HOLE);
505 	case REQ_OP_DISCARD:
506 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
507 	case REQ_OP_WRITE:
508 		if (cmd->use_aio)
509 			return lo_rw_aio(lo, cmd, pos, ITER_SOURCE);
510 		else
511 			return lo_write_simple(lo, rq, pos);
512 	case REQ_OP_READ:
513 		if (cmd->use_aio)
514 			return lo_rw_aio(lo, cmd, pos, ITER_DEST);
515 		else
516 			return lo_read_simple(lo, rq, pos);
517 	default:
518 		WARN_ON_ONCE(1);
519 		return -EIO;
520 	}
521 }
522 
523 static inline void loop_update_dio(struct loop_device *lo)
524 {
525 	__loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
526 				lo->use_dio);
527 }
528 
529 static void loop_reread_partitions(struct loop_device *lo)
530 {
531 	int rc;
532 
533 	mutex_lock(&lo->lo_disk->open_mutex);
534 	rc = bdev_disk_changed(lo->lo_disk, false);
535 	mutex_unlock(&lo->lo_disk->open_mutex);
536 	if (rc)
537 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
538 			__func__, lo->lo_number, lo->lo_file_name, rc);
539 }
540 
541 static inline int is_loop_device(struct file *file)
542 {
543 	struct inode *i = file->f_mapping->host;
544 
545 	return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
546 }
547 
548 static int loop_validate_file(struct file *file, struct block_device *bdev)
549 {
550 	struct inode	*inode = file->f_mapping->host;
551 	struct file	*f = file;
552 
553 	/* Avoid recursion */
554 	while (is_loop_device(f)) {
555 		struct loop_device *l;
556 
557 		lockdep_assert_held(&loop_validate_mutex);
558 		if (f->f_mapping->host->i_rdev == bdev->bd_dev)
559 			return -EBADF;
560 
561 		l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
562 		if (l->lo_state != Lo_bound)
563 			return -EINVAL;
564 		/* Order wrt setting lo->lo_backing_file in loop_configure(). */
565 		rmb();
566 		f = l->lo_backing_file;
567 	}
568 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
569 		return -EINVAL;
570 	return 0;
571 }
572 
573 /*
574  * loop_change_fd switched the backing store of a loopback device to
575  * a new file. This is useful for operating system installers to free up
576  * the original file and in High Availability environments to switch to
577  * an alternative location for the content in case of server meltdown.
578  * This can only work if the loop device is used read-only, and if the
579  * new backing store is the same size and type as the old backing store.
580  */
581 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
582 			  unsigned int arg)
583 {
584 	struct file *file = fget(arg);
585 	struct file *old_file;
586 	int error;
587 	bool partscan;
588 	bool is_loop;
589 
590 	if (!file)
591 		return -EBADF;
592 
593 	/* suppress uevents while reconfiguring the device */
594 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
595 
596 	is_loop = is_loop_device(file);
597 	error = loop_global_lock_killable(lo, is_loop);
598 	if (error)
599 		goto out_putf;
600 	error = -ENXIO;
601 	if (lo->lo_state != Lo_bound)
602 		goto out_err;
603 
604 	/* the loop device has to be read-only */
605 	error = -EINVAL;
606 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
607 		goto out_err;
608 
609 	error = loop_validate_file(file, bdev);
610 	if (error)
611 		goto out_err;
612 
613 	old_file = lo->lo_backing_file;
614 
615 	error = -EINVAL;
616 
617 	/* size of the new backing store needs to be the same */
618 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
619 		goto out_err;
620 
621 	/* and ... switch */
622 	disk_force_media_change(lo->lo_disk);
623 	blk_mq_freeze_queue(lo->lo_queue);
624 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
625 	lo->lo_backing_file = file;
626 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
627 	mapping_set_gfp_mask(file->f_mapping,
628 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
629 	loop_update_dio(lo);
630 	blk_mq_unfreeze_queue(lo->lo_queue);
631 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
632 	loop_global_unlock(lo, is_loop);
633 
634 	/*
635 	 * Flush loop_validate_file() before fput(), for l->lo_backing_file
636 	 * might be pointing at old_file which might be the last reference.
637 	 */
638 	if (!is_loop) {
639 		mutex_lock(&loop_validate_mutex);
640 		mutex_unlock(&loop_validate_mutex);
641 	}
642 	/*
643 	 * We must drop file reference outside of lo_mutex as dropping
644 	 * the file ref can take open_mutex which creates circular locking
645 	 * dependency.
646 	 */
647 	fput(old_file);
648 	if (partscan)
649 		loop_reread_partitions(lo);
650 
651 	error = 0;
652 done:
653 	/* enable and uncork uevent now that we are done */
654 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
655 	return error;
656 
657 out_err:
658 	loop_global_unlock(lo, is_loop);
659 out_putf:
660 	fput(file);
661 	goto done;
662 }
663 
664 /* loop sysfs attributes */
665 
666 static ssize_t loop_attr_show(struct device *dev, char *page,
667 			      ssize_t (*callback)(struct loop_device *, char *))
668 {
669 	struct gendisk *disk = dev_to_disk(dev);
670 	struct loop_device *lo = disk->private_data;
671 
672 	return callback(lo, page);
673 }
674 
675 #define LOOP_ATTR_RO(_name)						\
676 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
677 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
678 				struct device_attribute *attr, char *b)	\
679 {									\
680 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
681 }									\
682 static struct device_attribute loop_attr_##_name =			\
683 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
684 
685 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
686 {
687 	ssize_t ret;
688 	char *p = NULL;
689 
690 	spin_lock_irq(&lo->lo_lock);
691 	if (lo->lo_backing_file)
692 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
693 	spin_unlock_irq(&lo->lo_lock);
694 
695 	if (IS_ERR_OR_NULL(p))
696 		ret = PTR_ERR(p);
697 	else {
698 		ret = strlen(p);
699 		memmove(buf, p, ret);
700 		buf[ret++] = '\n';
701 		buf[ret] = 0;
702 	}
703 
704 	return ret;
705 }
706 
707 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
708 {
709 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset);
710 }
711 
712 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
713 {
714 	return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
715 }
716 
717 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
718 {
719 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
720 
721 	return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0");
722 }
723 
724 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
725 {
726 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
727 
728 	return sysfs_emit(buf, "%s\n", partscan ? "1" : "0");
729 }
730 
731 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
732 {
733 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
734 
735 	return sysfs_emit(buf, "%s\n", dio ? "1" : "0");
736 }
737 
738 LOOP_ATTR_RO(backing_file);
739 LOOP_ATTR_RO(offset);
740 LOOP_ATTR_RO(sizelimit);
741 LOOP_ATTR_RO(autoclear);
742 LOOP_ATTR_RO(partscan);
743 LOOP_ATTR_RO(dio);
744 
745 static struct attribute *loop_attrs[] = {
746 	&loop_attr_backing_file.attr,
747 	&loop_attr_offset.attr,
748 	&loop_attr_sizelimit.attr,
749 	&loop_attr_autoclear.attr,
750 	&loop_attr_partscan.attr,
751 	&loop_attr_dio.attr,
752 	NULL,
753 };
754 
755 static struct attribute_group loop_attribute_group = {
756 	.name = "loop",
757 	.attrs= loop_attrs,
758 };
759 
760 static void loop_sysfs_init(struct loop_device *lo)
761 {
762 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
763 						&loop_attribute_group);
764 }
765 
766 static void loop_sysfs_exit(struct loop_device *lo)
767 {
768 	if (lo->sysfs_inited)
769 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
770 				   &loop_attribute_group);
771 }
772 
773 static void loop_config_discard(struct loop_device *lo,
774 		struct queue_limits *lim)
775 {
776 	struct file *file = lo->lo_backing_file;
777 	struct inode *inode = file->f_mapping->host;
778 	u32 granularity = 0, max_discard_sectors = 0;
779 	struct kstatfs sbuf;
780 
781 	/*
782 	 * If the backing device is a block device, mirror its zeroing
783 	 * capability. Set the discard sectors to the block device's zeroing
784 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
785 	 * not blkdev_issue_discard(). This maintains consistent behavior with
786 	 * file-backed loop devices: discarded regions read back as zero.
787 	 */
788 	if (S_ISBLK(inode->i_mode)) {
789 		struct block_device *bdev = I_BDEV(inode);
790 
791 		max_discard_sectors = bdev_write_zeroes_sectors(bdev);
792 		granularity = bdev_discard_granularity(bdev);
793 
794 	/*
795 	 * We use punch hole to reclaim the free space used by the
796 	 * image a.k.a. discard.
797 	 */
798 	} else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) {
799 		max_discard_sectors = UINT_MAX >> 9;
800 		granularity = sbuf.f_bsize;
801 	}
802 
803 	lim->max_hw_discard_sectors = max_discard_sectors;
804 	lim->max_write_zeroes_sectors = max_discard_sectors;
805 	if (max_discard_sectors)
806 		lim->discard_granularity = granularity;
807 	else
808 		lim->discard_granularity = 0;
809 }
810 
811 struct loop_worker {
812 	struct rb_node rb_node;
813 	struct work_struct work;
814 	struct list_head cmd_list;
815 	struct list_head idle_list;
816 	struct loop_device *lo;
817 	struct cgroup_subsys_state *blkcg_css;
818 	unsigned long last_ran_at;
819 };
820 
821 static void loop_workfn(struct work_struct *work);
822 
823 #ifdef CONFIG_BLK_CGROUP
824 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
825 {
826 	return !css || css == blkcg_root_css;
827 }
828 #else
829 static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
830 {
831 	return !css;
832 }
833 #endif
834 
835 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
836 {
837 	struct rb_node **node, *parent = NULL;
838 	struct loop_worker *cur_worker, *worker = NULL;
839 	struct work_struct *work;
840 	struct list_head *cmd_list;
841 
842 	spin_lock_irq(&lo->lo_work_lock);
843 
844 	if (queue_on_root_worker(cmd->blkcg_css))
845 		goto queue_work;
846 
847 	node = &lo->worker_tree.rb_node;
848 
849 	while (*node) {
850 		parent = *node;
851 		cur_worker = container_of(*node, struct loop_worker, rb_node);
852 		if (cur_worker->blkcg_css == cmd->blkcg_css) {
853 			worker = cur_worker;
854 			break;
855 		} else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
856 			node = &(*node)->rb_left;
857 		} else {
858 			node = &(*node)->rb_right;
859 		}
860 	}
861 	if (worker)
862 		goto queue_work;
863 
864 	worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
865 	/*
866 	 * In the event we cannot allocate a worker, just queue on the
867 	 * rootcg worker and issue the I/O as the rootcg
868 	 */
869 	if (!worker) {
870 		cmd->blkcg_css = NULL;
871 		if (cmd->memcg_css)
872 			css_put(cmd->memcg_css);
873 		cmd->memcg_css = NULL;
874 		goto queue_work;
875 	}
876 
877 	worker->blkcg_css = cmd->blkcg_css;
878 	css_get(worker->blkcg_css);
879 	INIT_WORK(&worker->work, loop_workfn);
880 	INIT_LIST_HEAD(&worker->cmd_list);
881 	INIT_LIST_HEAD(&worker->idle_list);
882 	worker->lo = lo;
883 	rb_link_node(&worker->rb_node, parent, node);
884 	rb_insert_color(&worker->rb_node, &lo->worker_tree);
885 queue_work:
886 	if (worker) {
887 		/*
888 		 * We need to remove from the idle list here while
889 		 * holding the lock so that the idle timer doesn't
890 		 * free the worker
891 		 */
892 		if (!list_empty(&worker->idle_list))
893 			list_del_init(&worker->idle_list);
894 		work = &worker->work;
895 		cmd_list = &worker->cmd_list;
896 	} else {
897 		work = &lo->rootcg_work;
898 		cmd_list = &lo->rootcg_cmd_list;
899 	}
900 	list_add_tail(&cmd->list_entry, cmd_list);
901 	queue_work(lo->workqueue, work);
902 	spin_unlock_irq(&lo->lo_work_lock);
903 }
904 
905 static void loop_set_timer(struct loop_device *lo)
906 {
907 	timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
908 }
909 
910 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all)
911 {
912 	struct loop_worker *pos, *worker;
913 
914 	spin_lock_irq(&lo->lo_work_lock);
915 	list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
916 				idle_list) {
917 		if (!delete_all &&
918 		    time_is_after_jiffies(worker->last_ran_at +
919 					  LOOP_IDLE_WORKER_TIMEOUT))
920 			break;
921 		list_del(&worker->idle_list);
922 		rb_erase(&worker->rb_node, &lo->worker_tree);
923 		css_put(worker->blkcg_css);
924 		kfree(worker);
925 	}
926 	if (!list_empty(&lo->idle_worker_list))
927 		loop_set_timer(lo);
928 	spin_unlock_irq(&lo->lo_work_lock);
929 }
930 
931 static void loop_free_idle_workers_timer(struct timer_list *timer)
932 {
933 	struct loop_device *lo = container_of(timer, struct loop_device, timer);
934 
935 	return loop_free_idle_workers(lo, false);
936 }
937 
938 /**
939  * loop_set_status_from_info - configure device from loop_info
940  * @lo: struct loop_device to configure
941  * @info: struct loop_info64 to configure the device with
942  *
943  * Configures the loop device parameters according to the passed
944  * in loop_info64 configuration.
945  */
946 static int
947 loop_set_status_from_info(struct loop_device *lo,
948 			  const struct loop_info64 *info)
949 {
950 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
951 		return -EINVAL;
952 
953 	switch (info->lo_encrypt_type) {
954 	case LO_CRYPT_NONE:
955 		break;
956 	case LO_CRYPT_XOR:
957 		pr_warn("support for the xor transformation has been removed.\n");
958 		return -EINVAL;
959 	case LO_CRYPT_CRYPTOAPI:
960 		pr_warn("support for cryptoloop has been removed.  Use dm-crypt instead.\n");
961 		return -EINVAL;
962 	default:
963 		return -EINVAL;
964 	}
965 
966 	/* Avoid assigning overflow values */
967 	if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX)
968 		return -EOVERFLOW;
969 
970 	lo->lo_offset = info->lo_offset;
971 	lo->lo_sizelimit = info->lo_sizelimit;
972 
973 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
974 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
975 	lo->lo_flags = info->lo_flags;
976 	return 0;
977 }
978 
979 static unsigned int loop_default_blocksize(struct loop_device *lo,
980 		struct block_device *backing_bdev)
981 {
982 	/* In case of direct I/O, match underlying block size */
983 	if ((lo->lo_backing_file->f_flags & O_DIRECT) && backing_bdev)
984 		return bdev_logical_block_size(backing_bdev);
985 	return SECTOR_SIZE;
986 }
987 
988 static int loop_reconfigure_limits(struct loop_device *lo, unsigned int bsize)
989 {
990 	struct file *file = lo->lo_backing_file;
991 	struct inode *inode = file->f_mapping->host;
992 	struct block_device *backing_bdev = NULL;
993 	struct queue_limits lim;
994 
995 	if (S_ISBLK(inode->i_mode))
996 		backing_bdev = I_BDEV(inode);
997 	else if (inode->i_sb->s_bdev)
998 		backing_bdev = inode->i_sb->s_bdev;
999 
1000 	if (!bsize)
1001 		bsize = loop_default_blocksize(lo, backing_bdev);
1002 
1003 	lim = queue_limits_start_update(lo->lo_queue);
1004 	lim.logical_block_size = bsize;
1005 	lim.physical_block_size = bsize;
1006 	lim.io_min = bsize;
1007 	lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL);
1008 	if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY))
1009 		lim.features |= BLK_FEAT_WRITE_CACHE;
1010 	if (backing_bdev && !bdev_nonrot(backing_bdev))
1011 		lim.features |= BLK_FEAT_ROTATIONAL;
1012 	loop_config_discard(lo, &lim);
1013 	return queue_limits_commit_update(lo->lo_queue, &lim);
1014 }
1015 
1016 static int loop_configure(struct loop_device *lo, blk_mode_t mode,
1017 			  struct block_device *bdev,
1018 			  const struct loop_config *config)
1019 {
1020 	struct file *file = fget(config->fd);
1021 	struct address_space *mapping;
1022 	int error;
1023 	loff_t size;
1024 	bool partscan;
1025 	bool is_loop;
1026 
1027 	if (!file)
1028 		return -EBADF;
1029 	is_loop = is_loop_device(file);
1030 
1031 	/* This is safe, since we have a reference from open(). */
1032 	__module_get(THIS_MODULE);
1033 
1034 	/*
1035 	 * If we don't hold exclusive handle for the device, upgrade to it
1036 	 * here to avoid changing device under exclusive owner.
1037 	 */
1038 	if (!(mode & BLK_OPEN_EXCL)) {
1039 		error = bd_prepare_to_claim(bdev, loop_configure, NULL);
1040 		if (error)
1041 			goto out_putf;
1042 	}
1043 
1044 	error = loop_global_lock_killable(lo, is_loop);
1045 	if (error)
1046 		goto out_bdev;
1047 
1048 	error = -EBUSY;
1049 	if (lo->lo_state != Lo_unbound)
1050 		goto out_unlock;
1051 
1052 	error = loop_validate_file(file, bdev);
1053 	if (error)
1054 		goto out_unlock;
1055 
1056 	mapping = file->f_mapping;
1057 
1058 	if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1059 		error = -EINVAL;
1060 		goto out_unlock;
1061 	}
1062 
1063 	error = loop_set_status_from_info(lo, &config->info);
1064 	if (error)
1065 		goto out_unlock;
1066 
1067 	if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) ||
1068 	    !file->f_op->write_iter)
1069 		lo->lo_flags |= LO_FLAGS_READ_ONLY;
1070 
1071 	if (!lo->workqueue) {
1072 		lo->workqueue = alloc_workqueue("loop%d",
1073 						WQ_UNBOUND | WQ_FREEZABLE,
1074 						0, lo->lo_number);
1075 		if (!lo->workqueue) {
1076 			error = -ENOMEM;
1077 			goto out_unlock;
1078 		}
1079 	}
1080 
1081 	/* suppress uevents while reconfiguring the device */
1082 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1);
1083 
1084 	disk_force_media_change(lo->lo_disk);
1085 	set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1086 
1087 	lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1088 	lo->lo_device = bdev;
1089 	lo->lo_backing_file = file;
1090 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
1091 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1092 
1093 	error = loop_reconfigure_limits(lo, config->block_size);
1094 	if (error)
1095 		goto out_unlock;
1096 
1097 	loop_update_dio(lo);
1098 	loop_sysfs_init(lo);
1099 
1100 	size = get_loop_size(lo, file);
1101 	loop_set_size(lo, size);
1102 
1103 	/* Order wrt reading lo_state in loop_validate_file(). */
1104 	wmb();
1105 
1106 	lo->lo_state = Lo_bound;
1107 	if (part_shift)
1108 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1109 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1110 	if (partscan)
1111 		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1112 
1113 	/* enable and uncork uevent now that we are done */
1114 	dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0);
1115 
1116 	loop_global_unlock(lo, is_loop);
1117 	if (partscan)
1118 		loop_reread_partitions(lo);
1119 
1120 	if (!(mode & BLK_OPEN_EXCL))
1121 		bd_abort_claiming(bdev, loop_configure);
1122 
1123 	return 0;
1124 
1125 out_unlock:
1126 	loop_global_unlock(lo, is_loop);
1127 out_bdev:
1128 	if (!(mode & BLK_OPEN_EXCL))
1129 		bd_abort_claiming(bdev, loop_configure);
1130 out_putf:
1131 	fput(file);
1132 	/* This is safe: open() is still holding a reference. */
1133 	module_put(THIS_MODULE);
1134 	return error;
1135 }
1136 
1137 static void __loop_clr_fd(struct loop_device *lo)
1138 {
1139 	struct queue_limits lim;
1140 	struct file *filp;
1141 	gfp_t gfp = lo->old_gfp_mask;
1142 
1143 	spin_lock_irq(&lo->lo_lock);
1144 	filp = lo->lo_backing_file;
1145 	lo->lo_backing_file = NULL;
1146 	spin_unlock_irq(&lo->lo_lock);
1147 
1148 	lo->lo_device = NULL;
1149 	lo->lo_offset = 0;
1150 	lo->lo_sizelimit = 0;
1151 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1152 
1153 	/* reset the block size to the default */
1154 	lim = queue_limits_start_update(lo->lo_queue);
1155 	lim.logical_block_size = SECTOR_SIZE;
1156 	lim.physical_block_size = SECTOR_SIZE;
1157 	lim.io_min = SECTOR_SIZE;
1158 	queue_limits_commit_update(lo->lo_queue, &lim);
1159 
1160 	invalidate_disk(lo->lo_disk);
1161 	loop_sysfs_exit(lo);
1162 	/* let user-space know about this change */
1163 	kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
1164 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1165 	/* This is safe: open() is still holding a reference. */
1166 	module_put(THIS_MODULE);
1167 
1168 	disk_force_media_change(lo->lo_disk);
1169 
1170 	if (lo->lo_flags & LO_FLAGS_PARTSCAN) {
1171 		int err;
1172 
1173 		/*
1174 		 * open_mutex has been held already in release path, so don't
1175 		 * acquire it if this function is called in such case.
1176 		 *
1177 		 * If the reread partition isn't from release path, lo_refcnt
1178 		 * must be at least one and it can only become zero when the
1179 		 * current holder is released.
1180 		 */
1181 		err = bdev_disk_changed(lo->lo_disk, false);
1182 		if (err)
1183 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1184 				__func__, lo->lo_number, err);
1185 		/* Device is gone, no point in returning error */
1186 	}
1187 
1188 	/*
1189 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1190 	 * finished. There cannot be anybody else entering __loop_clr_fd() as
1191 	 * Lo_rundown state protects us from all the other places trying to
1192 	 * change the 'lo' device.
1193 	 */
1194 	lo->lo_flags = 0;
1195 	if (!part_shift)
1196 		set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1197 	mutex_lock(&lo->lo_mutex);
1198 	lo->lo_state = Lo_unbound;
1199 	mutex_unlock(&lo->lo_mutex);
1200 
1201 	/*
1202 	 * Need not hold lo_mutex to fput backing file. Calling fput holding
1203 	 * lo_mutex triggers a circular lock dependency possibility warning as
1204 	 * fput can take open_mutex which is usually taken before lo_mutex.
1205 	 */
1206 	fput(filp);
1207 }
1208 
1209 static int loop_clr_fd(struct loop_device *lo)
1210 {
1211 	int err;
1212 
1213 	/*
1214 	 * Since lo_ioctl() is called without locks held, it is possible that
1215 	 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel.
1216 	 *
1217 	 * Therefore, use global lock when setting Lo_rundown state in order to
1218 	 * make sure that loop_validate_file() will fail if the "struct file"
1219 	 * which loop_configure()/loop_change_fd() found via fget() was this
1220 	 * loop device.
1221 	 */
1222 	err = loop_global_lock_killable(lo, true);
1223 	if (err)
1224 		return err;
1225 	if (lo->lo_state != Lo_bound) {
1226 		loop_global_unlock(lo, true);
1227 		return -ENXIO;
1228 	}
1229 	/*
1230 	 * Mark the device for removing the backing device on last close.
1231 	 * If we are the only opener, also switch the state to roundown here to
1232 	 * prevent new openers from coming in.
1233 	 */
1234 
1235 	lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1236 	if (disk_openers(lo->lo_disk) == 1)
1237 		lo->lo_state = Lo_rundown;
1238 	loop_global_unlock(lo, true);
1239 
1240 	return 0;
1241 }
1242 
1243 static int
1244 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1245 {
1246 	int err;
1247 	int prev_lo_flags;
1248 	bool partscan = false;
1249 	bool size_changed = false;
1250 
1251 	err = mutex_lock_killable(&lo->lo_mutex);
1252 	if (err)
1253 		return err;
1254 	if (lo->lo_state != Lo_bound) {
1255 		err = -ENXIO;
1256 		goto out_unlock;
1257 	}
1258 
1259 	if (lo->lo_offset != info->lo_offset ||
1260 	    lo->lo_sizelimit != info->lo_sizelimit) {
1261 		size_changed = true;
1262 		sync_blockdev(lo->lo_device);
1263 		invalidate_bdev(lo->lo_device);
1264 	}
1265 
1266 	/* I/O need to be drained during transfer transition */
1267 	blk_mq_freeze_queue(lo->lo_queue);
1268 
1269 	prev_lo_flags = lo->lo_flags;
1270 
1271 	err = loop_set_status_from_info(lo, info);
1272 	if (err)
1273 		goto out_unfreeze;
1274 
1275 	/* Mask out flags that can't be set using LOOP_SET_STATUS. */
1276 	lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1277 	/* For those flags, use the previous values instead */
1278 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1279 	/* For flags that can't be cleared, use previous values too */
1280 	lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1281 
1282 	if (size_changed) {
1283 		loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1284 					   lo->lo_backing_file);
1285 		loop_set_size(lo, new_size);
1286 	}
1287 
1288 	/* update dio if lo_offset or transfer is changed */
1289 	__loop_update_dio(lo, lo->use_dio);
1290 
1291 out_unfreeze:
1292 	blk_mq_unfreeze_queue(lo->lo_queue);
1293 
1294 	if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1295 	     !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1296 		clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state);
1297 		partscan = true;
1298 	}
1299 out_unlock:
1300 	mutex_unlock(&lo->lo_mutex);
1301 	if (partscan)
1302 		loop_reread_partitions(lo);
1303 
1304 	return err;
1305 }
1306 
1307 static int
1308 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1309 {
1310 	struct path path;
1311 	struct kstat stat;
1312 	int ret;
1313 
1314 	ret = mutex_lock_killable(&lo->lo_mutex);
1315 	if (ret)
1316 		return ret;
1317 	if (lo->lo_state != Lo_bound) {
1318 		mutex_unlock(&lo->lo_mutex);
1319 		return -ENXIO;
1320 	}
1321 
1322 	memset(info, 0, sizeof(*info));
1323 	info->lo_number = lo->lo_number;
1324 	info->lo_offset = lo->lo_offset;
1325 	info->lo_sizelimit = lo->lo_sizelimit;
1326 	info->lo_flags = lo->lo_flags;
1327 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1328 
1329 	/* Drop lo_mutex while we call into the filesystem. */
1330 	path = lo->lo_backing_file->f_path;
1331 	path_get(&path);
1332 	mutex_unlock(&lo->lo_mutex);
1333 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1334 	if (!ret) {
1335 		info->lo_device = huge_encode_dev(stat.dev);
1336 		info->lo_inode = stat.ino;
1337 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1338 	}
1339 	path_put(&path);
1340 	return ret;
1341 }
1342 
1343 static void
1344 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1345 {
1346 	memset(info64, 0, sizeof(*info64));
1347 	info64->lo_number = info->lo_number;
1348 	info64->lo_device = info->lo_device;
1349 	info64->lo_inode = info->lo_inode;
1350 	info64->lo_rdevice = info->lo_rdevice;
1351 	info64->lo_offset = info->lo_offset;
1352 	info64->lo_sizelimit = 0;
1353 	info64->lo_flags = info->lo_flags;
1354 	memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1355 }
1356 
1357 static int
1358 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1359 {
1360 	memset(info, 0, sizeof(*info));
1361 	info->lo_number = info64->lo_number;
1362 	info->lo_device = info64->lo_device;
1363 	info->lo_inode = info64->lo_inode;
1364 	info->lo_rdevice = info64->lo_rdevice;
1365 	info->lo_offset = info64->lo_offset;
1366 	info->lo_flags = info64->lo_flags;
1367 	memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1368 
1369 	/* error in case values were truncated */
1370 	if (info->lo_device != info64->lo_device ||
1371 	    info->lo_rdevice != info64->lo_rdevice ||
1372 	    info->lo_inode != info64->lo_inode ||
1373 	    info->lo_offset != info64->lo_offset)
1374 		return -EOVERFLOW;
1375 
1376 	return 0;
1377 }
1378 
1379 static int
1380 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1381 {
1382 	struct loop_info info;
1383 	struct loop_info64 info64;
1384 
1385 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1386 		return -EFAULT;
1387 	loop_info64_from_old(&info, &info64);
1388 	return loop_set_status(lo, &info64);
1389 }
1390 
1391 static int
1392 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1393 {
1394 	struct loop_info64 info64;
1395 
1396 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1397 		return -EFAULT;
1398 	return loop_set_status(lo, &info64);
1399 }
1400 
1401 static int
1402 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1403 	struct loop_info info;
1404 	struct loop_info64 info64;
1405 	int err;
1406 
1407 	if (!arg)
1408 		return -EINVAL;
1409 	err = loop_get_status(lo, &info64);
1410 	if (!err)
1411 		err = loop_info64_to_old(&info64, &info);
1412 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1413 		err = -EFAULT;
1414 
1415 	return err;
1416 }
1417 
1418 static int
1419 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1420 	struct loop_info64 info64;
1421 	int err;
1422 
1423 	if (!arg)
1424 		return -EINVAL;
1425 	err = loop_get_status(lo, &info64);
1426 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1427 		err = -EFAULT;
1428 
1429 	return err;
1430 }
1431 
1432 static int loop_set_capacity(struct loop_device *lo)
1433 {
1434 	loff_t size;
1435 
1436 	if (unlikely(lo->lo_state != Lo_bound))
1437 		return -ENXIO;
1438 
1439 	size = get_loop_size(lo, lo->lo_backing_file);
1440 	loop_set_size(lo, size);
1441 
1442 	return 0;
1443 }
1444 
1445 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1446 {
1447 	int error = -ENXIO;
1448 	if (lo->lo_state != Lo_bound)
1449 		goto out;
1450 
1451 	__loop_update_dio(lo, !!arg);
1452 	if (lo->use_dio == !!arg)
1453 		return 0;
1454 	error = -EINVAL;
1455  out:
1456 	return error;
1457 }
1458 
1459 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1460 {
1461 	int err = 0;
1462 
1463 	if (lo->lo_state != Lo_bound)
1464 		return -ENXIO;
1465 
1466 	if (lo->lo_queue->limits.logical_block_size == arg)
1467 		return 0;
1468 
1469 	sync_blockdev(lo->lo_device);
1470 	invalidate_bdev(lo->lo_device);
1471 
1472 	blk_mq_freeze_queue(lo->lo_queue);
1473 	err = loop_reconfigure_limits(lo, arg);
1474 	loop_update_dio(lo);
1475 	blk_mq_unfreeze_queue(lo->lo_queue);
1476 
1477 	return err;
1478 }
1479 
1480 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1481 			   unsigned long arg)
1482 {
1483 	int err;
1484 
1485 	err = mutex_lock_killable(&lo->lo_mutex);
1486 	if (err)
1487 		return err;
1488 	switch (cmd) {
1489 	case LOOP_SET_CAPACITY:
1490 		err = loop_set_capacity(lo);
1491 		break;
1492 	case LOOP_SET_DIRECT_IO:
1493 		err = loop_set_dio(lo, arg);
1494 		break;
1495 	case LOOP_SET_BLOCK_SIZE:
1496 		err = loop_set_block_size(lo, arg);
1497 		break;
1498 	default:
1499 		err = -EINVAL;
1500 	}
1501 	mutex_unlock(&lo->lo_mutex);
1502 	return err;
1503 }
1504 
1505 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode,
1506 	unsigned int cmd, unsigned long arg)
1507 {
1508 	struct loop_device *lo = bdev->bd_disk->private_data;
1509 	void __user *argp = (void __user *) arg;
1510 	int err;
1511 
1512 	switch (cmd) {
1513 	case LOOP_SET_FD: {
1514 		/*
1515 		 * Legacy case - pass in a zeroed out struct loop_config with
1516 		 * only the file descriptor set , which corresponds with the
1517 		 * default parameters we'd have used otherwise.
1518 		 */
1519 		struct loop_config config;
1520 
1521 		memset(&config, 0, sizeof(config));
1522 		config.fd = arg;
1523 
1524 		return loop_configure(lo, mode, bdev, &config);
1525 	}
1526 	case LOOP_CONFIGURE: {
1527 		struct loop_config config;
1528 
1529 		if (copy_from_user(&config, argp, sizeof(config)))
1530 			return -EFAULT;
1531 
1532 		return loop_configure(lo, mode, bdev, &config);
1533 	}
1534 	case LOOP_CHANGE_FD:
1535 		return loop_change_fd(lo, bdev, arg);
1536 	case LOOP_CLR_FD:
1537 		return loop_clr_fd(lo);
1538 	case LOOP_SET_STATUS:
1539 		err = -EPERM;
1540 		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1541 			err = loop_set_status_old(lo, argp);
1542 		break;
1543 	case LOOP_GET_STATUS:
1544 		return loop_get_status_old(lo, argp);
1545 	case LOOP_SET_STATUS64:
1546 		err = -EPERM;
1547 		if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN))
1548 			err = loop_set_status64(lo, argp);
1549 		break;
1550 	case LOOP_GET_STATUS64:
1551 		return loop_get_status64(lo, argp);
1552 	case LOOP_SET_CAPACITY:
1553 	case LOOP_SET_DIRECT_IO:
1554 	case LOOP_SET_BLOCK_SIZE:
1555 		if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN))
1556 			return -EPERM;
1557 		fallthrough;
1558 	default:
1559 		err = lo_simple_ioctl(lo, cmd, arg);
1560 		break;
1561 	}
1562 
1563 	return err;
1564 }
1565 
1566 #ifdef CONFIG_COMPAT
1567 struct compat_loop_info {
1568 	compat_int_t	lo_number;      /* ioctl r/o */
1569 	compat_dev_t	lo_device;      /* ioctl r/o */
1570 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1571 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1572 	compat_int_t	lo_offset;
1573 	compat_int_t	lo_encrypt_type;        /* obsolete, ignored */
1574 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1575 	compat_int_t	lo_flags;       /* ioctl r/o */
1576 	char		lo_name[LO_NAME_SIZE];
1577 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1578 	compat_ulong_t	lo_init[2];
1579 	char		reserved[4];
1580 };
1581 
1582 /*
1583  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1584  * - noinlined to reduce stack space usage in main part of driver
1585  */
1586 static noinline int
1587 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1588 			struct loop_info64 *info64)
1589 {
1590 	struct compat_loop_info info;
1591 
1592 	if (copy_from_user(&info, arg, sizeof(info)))
1593 		return -EFAULT;
1594 
1595 	memset(info64, 0, sizeof(*info64));
1596 	info64->lo_number = info.lo_number;
1597 	info64->lo_device = info.lo_device;
1598 	info64->lo_inode = info.lo_inode;
1599 	info64->lo_rdevice = info.lo_rdevice;
1600 	info64->lo_offset = info.lo_offset;
1601 	info64->lo_sizelimit = 0;
1602 	info64->lo_flags = info.lo_flags;
1603 	memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1604 	return 0;
1605 }
1606 
1607 /*
1608  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1609  * - noinlined to reduce stack space usage in main part of driver
1610  */
1611 static noinline int
1612 loop_info64_to_compat(const struct loop_info64 *info64,
1613 		      struct compat_loop_info __user *arg)
1614 {
1615 	struct compat_loop_info info;
1616 
1617 	memset(&info, 0, sizeof(info));
1618 	info.lo_number = info64->lo_number;
1619 	info.lo_device = info64->lo_device;
1620 	info.lo_inode = info64->lo_inode;
1621 	info.lo_rdevice = info64->lo_rdevice;
1622 	info.lo_offset = info64->lo_offset;
1623 	info.lo_flags = info64->lo_flags;
1624 	memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1625 
1626 	/* error in case values were truncated */
1627 	if (info.lo_device != info64->lo_device ||
1628 	    info.lo_rdevice != info64->lo_rdevice ||
1629 	    info.lo_inode != info64->lo_inode ||
1630 	    info.lo_offset != info64->lo_offset)
1631 		return -EOVERFLOW;
1632 
1633 	if (copy_to_user(arg, &info, sizeof(info)))
1634 		return -EFAULT;
1635 	return 0;
1636 }
1637 
1638 static int
1639 loop_set_status_compat(struct loop_device *lo,
1640 		       const struct compat_loop_info __user *arg)
1641 {
1642 	struct loop_info64 info64;
1643 	int ret;
1644 
1645 	ret = loop_info64_from_compat(arg, &info64);
1646 	if (ret < 0)
1647 		return ret;
1648 	return loop_set_status(lo, &info64);
1649 }
1650 
1651 static int
1652 loop_get_status_compat(struct loop_device *lo,
1653 		       struct compat_loop_info __user *arg)
1654 {
1655 	struct loop_info64 info64;
1656 	int err;
1657 
1658 	if (!arg)
1659 		return -EINVAL;
1660 	err = loop_get_status(lo, &info64);
1661 	if (!err)
1662 		err = loop_info64_to_compat(&info64, arg);
1663 	return err;
1664 }
1665 
1666 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
1667 			   unsigned int cmd, unsigned long arg)
1668 {
1669 	struct loop_device *lo = bdev->bd_disk->private_data;
1670 	int err;
1671 
1672 	switch(cmd) {
1673 	case LOOP_SET_STATUS:
1674 		err = loop_set_status_compat(lo,
1675 			     (const struct compat_loop_info __user *)arg);
1676 		break;
1677 	case LOOP_GET_STATUS:
1678 		err = loop_get_status_compat(lo,
1679 				     (struct compat_loop_info __user *)arg);
1680 		break;
1681 	case LOOP_SET_CAPACITY:
1682 	case LOOP_CLR_FD:
1683 	case LOOP_GET_STATUS64:
1684 	case LOOP_SET_STATUS64:
1685 	case LOOP_CONFIGURE:
1686 		arg = (unsigned long) compat_ptr(arg);
1687 		fallthrough;
1688 	case LOOP_SET_FD:
1689 	case LOOP_CHANGE_FD:
1690 	case LOOP_SET_BLOCK_SIZE:
1691 	case LOOP_SET_DIRECT_IO:
1692 		err = lo_ioctl(bdev, mode, cmd, arg);
1693 		break;
1694 	default:
1695 		err = -ENOIOCTLCMD;
1696 		break;
1697 	}
1698 	return err;
1699 }
1700 #endif
1701 
1702 static int lo_open(struct gendisk *disk, blk_mode_t mode)
1703 {
1704 	struct loop_device *lo = disk->private_data;
1705 	int err;
1706 
1707 	err = mutex_lock_killable(&lo->lo_mutex);
1708 	if (err)
1709 		return err;
1710 
1711 	if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown)
1712 		err = -ENXIO;
1713 	mutex_unlock(&lo->lo_mutex);
1714 	return err;
1715 }
1716 
1717 static void lo_release(struct gendisk *disk)
1718 {
1719 	struct loop_device *lo = disk->private_data;
1720 	bool need_clear = false;
1721 
1722 	if (disk_openers(disk) > 0)
1723 		return;
1724 	/*
1725 	 * Clear the backing device information if this is the last close of
1726 	 * a device that's been marked for auto clear, or on which LOOP_CLR_FD
1727 	 * has been called.
1728 	 */
1729 
1730 	mutex_lock(&lo->lo_mutex);
1731 	if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR))
1732 		lo->lo_state = Lo_rundown;
1733 
1734 	need_clear = (lo->lo_state == Lo_rundown);
1735 	mutex_unlock(&lo->lo_mutex);
1736 
1737 	if (need_clear)
1738 		__loop_clr_fd(lo);
1739 }
1740 
1741 static void lo_free_disk(struct gendisk *disk)
1742 {
1743 	struct loop_device *lo = disk->private_data;
1744 
1745 	if (lo->workqueue)
1746 		destroy_workqueue(lo->workqueue);
1747 	loop_free_idle_workers(lo, true);
1748 	timer_shutdown_sync(&lo->timer);
1749 	mutex_destroy(&lo->lo_mutex);
1750 	kfree(lo);
1751 }
1752 
1753 static const struct block_device_operations lo_fops = {
1754 	.owner =	THIS_MODULE,
1755 	.open =         lo_open,
1756 	.release =	lo_release,
1757 	.ioctl =	lo_ioctl,
1758 #ifdef CONFIG_COMPAT
1759 	.compat_ioctl =	lo_compat_ioctl,
1760 #endif
1761 	.free_disk =	lo_free_disk,
1762 };
1763 
1764 /*
1765  * And now the modules code and kernel interface.
1766  */
1767 
1768 /*
1769  * If max_loop is specified, create that many devices upfront.
1770  * This also becomes a hard limit. If max_loop is not specified,
1771  * the default isn't a hard limit (as before commit 85c50197716c
1772  * changed the default value from 0 for max_loop=0 reasons), just
1773  * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1774  * init time. Loop devices can be requested on-demand with the
1775  * /dev/loop-control interface, or be instantiated by accessing
1776  * a 'dead' device node.
1777  */
1778 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1779 
1780 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
1781 static bool max_loop_specified;
1782 
1783 static int max_loop_param_set_int(const char *val,
1784 				  const struct kernel_param *kp)
1785 {
1786 	int ret;
1787 
1788 	ret = param_set_int(val, kp);
1789 	if (ret < 0)
1790 		return ret;
1791 
1792 	max_loop_specified = true;
1793 	return 0;
1794 }
1795 
1796 static const struct kernel_param_ops max_loop_param_ops = {
1797 	.set = max_loop_param_set_int,
1798 	.get = param_get_int,
1799 };
1800 
1801 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444);
1802 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1803 #else
1804 module_param(max_loop, int, 0444);
1805 MODULE_PARM_DESC(max_loop, "Initial number of loop devices");
1806 #endif
1807 
1808 module_param(max_part, int, 0444);
1809 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1810 
1811 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH;
1812 
1813 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p)
1814 {
1815 	int qd, ret;
1816 
1817 	ret = kstrtoint(s, 0, &qd);
1818 	if (ret < 0)
1819 		return ret;
1820 	if (qd < 1)
1821 		return -EINVAL;
1822 	hw_queue_depth = qd;
1823 	return 0;
1824 }
1825 
1826 static const struct kernel_param_ops loop_hw_qdepth_param_ops = {
1827 	.set	= loop_set_hw_queue_depth,
1828 	.get	= param_get_int,
1829 };
1830 
1831 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444);
1832 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH));
1833 
1834 MODULE_DESCRIPTION("Loopback device support");
1835 MODULE_LICENSE("GPL");
1836 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1837 
1838 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1839 		const struct blk_mq_queue_data *bd)
1840 {
1841 	struct request *rq = bd->rq;
1842 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1843 	struct loop_device *lo = rq->q->queuedata;
1844 
1845 	blk_mq_start_request(rq);
1846 
1847 	if (lo->lo_state != Lo_bound)
1848 		return BLK_STS_IOERR;
1849 
1850 	switch (req_op(rq)) {
1851 	case REQ_OP_FLUSH:
1852 	case REQ_OP_DISCARD:
1853 	case REQ_OP_WRITE_ZEROES:
1854 		cmd->use_aio = false;
1855 		break;
1856 	default:
1857 		cmd->use_aio = lo->use_dio;
1858 		break;
1859 	}
1860 
1861 	/* always use the first bio's css */
1862 	cmd->blkcg_css = NULL;
1863 	cmd->memcg_css = NULL;
1864 #ifdef CONFIG_BLK_CGROUP
1865 	if (rq->bio) {
1866 		cmd->blkcg_css = bio_blkcg_css(rq->bio);
1867 #ifdef CONFIG_MEMCG
1868 		if (cmd->blkcg_css) {
1869 			cmd->memcg_css =
1870 				cgroup_get_e_css(cmd->blkcg_css->cgroup,
1871 						&memory_cgrp_subsys);
1872 		}
1873 #endif
1874 	}
1875 #endif
1876 	loop_queue_work(lo, cmd);
1877 
1878 	return BLK_STS_OK;
1879 }
1880 
1881 static void loop_handle_cmd(struct loop_cmd *cmd)
1882 {
1883 	struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css;
1884 	struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css;
1885 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1886 	const bool write = op_is_write(req_op(rq));
1887 	struct loop_device *lo = rq->q->queuedata;
1888 	int ret = 0;
1889 	struct mem_cgroup *old_memcg = NULL;
1890 	const bool use_aio = cmd->use_aio;
1891 
1892 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1893 		ret = -EIO;
1894 		goto failed;
1895 	}
1896 
1897 	if (cmd_blkcg_css)
1898 		kthread_associate_blkcg(cmd_blkcg_css);
1899 	if (cmd_memcg_css)
1900 		old_memcg = set_active_memcg(
1901 			mem_cgroup_from_css(cmd_memcg_css));
1902 
1903 	/*
1904 	 * do_req_filebacked() may call blk_mq_complete_request() synchronously
1905 	 * or asynchronously if using aio. Hence, do not touch 'cmd' after
1906 	 * do_req_filebacked() has returned unless we are sure that 'cmd' has
1907 	 * not yet been completed.
1908 	 */
1909 	ret = do_req_filebacked(lo, rq);
1910 
1911 	if (cmd_blkcg_css)
1912 		kthread_associate_blkcg(NULL);
1913 
1914 	if (cmd_memcg_css) {
1915 		set_active_memcg(old_memcg);
1916 		css_put(cmd_memcg_css);
1917 	}
1918  failed:
1919 	/* complete non-aio request */
1920 	if (!use_aio || ret) {
1921 		if (ret == -EOPNOTSUPP)
1922 			cmd->ret = ret;
1923 		else
1924 			cmd->ret = ret ? -EIO : 0;
1925 		if (likely(!blk_should_fake_timeout(rq->q)))
1926 			blk_mq_complete_request(rq);
1927 	}
1928 }
1929 
1930 static void loop_process_work(struct loop_worker *worker,
1931 			struct list_head *cmd_list, struct loop_device *lo)
1932 {
1933 	int orig_flags = current->flags;
1934 	struct loop_cmd *cmd;
1935 
1936 	current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
1937 	spin_lock_irq(&lo->lo_work_lock);
1938 	while (!list_empty(cmd_list)) {
1939 		cmd = container_of(
1940 			cmd_list->next, struct loop_cmd, list_entry);
1941 		list_del(cmd_list->next);
1942 		spin_unlock_irq(&lo->lo_work_lock);
1943 
1944 		loop_handle_cmd(cmd);
1945 		cond_resched();
1946 
1947 		spin_lock_irq(&lo->lo_work_lock);
1948 	}
1949 
1950 	/*
1951 	 * We only add to the idle list if there are no pending cmds
1952 	 * *and* the worker will not run again which ensures that it
1953 	 * is safe to free any worker on the idle list
1954 	 */
1955 	if (worker && !work_pending(&worker->work)) {
1956 		worker->last_ran_at = jiffies;
1957 		list_add_tail(&worker->idle_list, &lo->idle_worker_list);
1958 		loop_set_timer(lo);
1959 	}
1960 	spin_unlock_irq(&lo->lo_work_lock);
1961 	current->flags = orig_flags;
1962 }
1963 
1964 static void loop_workfn(struct work_struct *work)
1965 {
1966 	struct loop_worker *worker =
1967 		container_of(work, struct loop_worker, work);
1968 	loop_process_work(worker, &worker->cmd_list, worker->lo);
1969 }
1970 
1971 static void loop_rootcg_workfn(struct work_struct *work)
1972 {
1973 	struct loop_device *lo =
1974 		container_of(work, struct loop_device, rootcg_work);
1975 	loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
1976 }
1977 
1978 static const struct blk_mq_ops loop_mq_ops = {
1979 	.queue_rq       = loop_queue_rq,
1980 	.complete	= lo_complete_rq,
1981 };
1982 
1983 static int loop_add(int i)
1984 {
1985 	struct queue_limits lim = {
1986 		/*
1987 		 * Random number picked from the historic block max_sectors cap.
1988 		 */
1989 		.max_hw_sectors		= 2560u,
1990 	};
1991 	struct loop_device *lo;
1992 	struct gendisk *disk;
1993 	int err;
1994 
1995 	err = -ENOMEM;
1996 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1997 	if (!lo)
1998 		goto out;
1999 	lo->worker_tree = RB_ROOT;
2000 	INIT_LIST_HEAD(&lo->idle_worker_list);
2001 	timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE);
2002 	lo->lo_state = Lo_unbound;
2003 
2004 	err = mutex_lock_killable(&loop_ctl_mutex);
2005 	if (err)
2006 		goto out_free_dev;
2007 
2008 	/* allocate id, if @id >= 0, we're requesting that specific id */
2009 	if (i >= 0) {
2010 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2011 		if (err == -ENOSPC)
2012 			err = -EEXIST;
2013 	} else {
2014 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2015 	}
2016 	mutex_unlock(&loop_ctl_mutex);
2017 	if (err < 0)
2018 		goto out_free_dev;
2019 	i = err;
2020 
2021 	lo->tag_set.ops = &loop_mq_ops;
2022 	lo->tag_set.nr_hw_queues = 1;
2023 	lo->tag_set.queue_depth = hw_queue_depth;
2024 	lo->tag_set.numa_node = NUMA_NO_NODE;
2025 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2026 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING |
2027 		BLK_MQ_F_NO_SCHED_BY_DEFAULT;
2028 	lo->tag_set.driver_data = lo;
2029 
2030 	err = blk_mq_alloc_tag_set(&lo->tag_set);
2031 	if (err)
2032 		goto out_free_idr;
2033 
2034 	disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo);
2035 	if (IS_ERR(disk)) {
2036 		err = PTR_ERR(disk);
2037 		goto out_cleanup_tags;
2038 	}
2039 	lo->lo_queue = lo->lo_disk->queue;
2040 
2041 	/*
2042 	 * Disable partition scanning by default. The in-kernel partition
2043 	 * scanning can be requested individually per-device during its
2044 	 * setup. Userspace can always add and remove partitions from all
2045 	 * devices. The needed partition minors are allocated from the
2046 	 * extended minor space, the main loop device numbers will continue
2047 	 * to match the loop minors, regardless of the number of partitions
2048 	 * used.
2049 	 *
2050 	 * If max_part is given, partition scanning is globally enabled for
2051 	 * all loop devices. The minors for the main loop devices will be
2052 	 * multiples of max_part.
2053 	 *
2054 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2055 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2056 	 * complicated, are too static, inflexible and may surprise
2057 	 * userspace tools. Parameters like this in general should be avoided.
2058 	 */
2059 	if (!part_shift)
2060 		set_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
2061 	mutex_init(&lo->lo_mutex);
2062 	lo->lo_number		= i;
2063 	spin_lock_init(&lo->lo_lock);
2064 	spin_lock_init(&lo->lo_work_lock);
2065 	INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
2066 	INIT_LIST_HEAD(&lo->rootcg_cmd_list);
2067 	disk->major		= LOOP_MAJOR;
2068 	disk->first_minor	= i << part_shift;
2069 	disk->minors		= 1 << part_shift;
2070 	disk->fops		= &lo_fops;
2071 	disk->private_data	= lo;
2072 	disk->queue		= lo->lo_queue;
2073 	disk->events		= DISK_EVENT_MEDIA_CHANGE;
2074 	disk->event_flags	= DISK_EVENT_FLAG_UEVENT;
2075 	sprintf(disk->disk_name, "loop%d", i);
2076 	/* Make this loop device reachable from pathname. */
2077 	err = add_disk(disk);
2078 	if (err)
2079 		goto out_cleanup_disk;
2080 
2081 	/* Show this loop device. */
2082 	mutex_lock(&loop_ctl_mutex);
2083 	lo->idr_visible = true;
2084 	mutex_unlock(&loop_ctl_mutex);
2085 
2086 	return i;
2087 
2088 out_cleanup_disk:
2089 	put_disk(disk);
2090 out_cleanup_tags:
2091 	blk_mq_free_tag_set(&lo->tag_set);
2092 out_free_idr:
2093 	mutex_lock(&loop_ctl_mutex);
2094 	idr_remove(&loop_index_idr, i);
2095 	mutex_unlock(&loop_ctl_mutex);
2096 out_free_dev:
2097 	kfree(lo);
2098 out:
2099 	return err;
2100 }
2101 
2102 static void loop_remove(struct loop_device *lo)
2103 {
2104 	/* Make this loop device unreachable from pathname. */
2105 	del_gendisk(lo->lo_disk);
2106 	blk_mq_free_tag_set(&lo->tag_set);
2107 
2108 	mutex_lock(&loop_ctl_mutex);
2109 	idr_remove(&loop_index_idr, lo->lo_number);
2110 	mutex_unlock(&loop_ctl_mutex);
2111 
2112 	put_disk(lo->lo_disk);
2113 }
2114 
2115 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2116 static void loop_probe(dev_t dev)
2117 {
2118 	int idx = MINOR(dev) >> part_shift;
2119 
2120 	if (max_loop_specified && max_loop && idx >= max_loop)
2121 		return;
2122 	loop_add(idx);
2123 }
2124 #else
2125 #define loop_probe NULL
2126 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */
2127 
2128 static int loop_control_remove(int idx)
2129 {
2130 	struct loop_device *lo;
2131 	int ret;
2132 
2133 	if (idx < 0) {
2134 		pr_warn_once("deleting an unspecified loop device is not supported.\n");
2135 		return -EINVAL;
2136 	}
2137 
2138 	/* Hide this loop device for serialization. */
2139 	ret = mutex_lock_killable(&loop_ctl_mutex);
2140 	if (ret)
2141 		return ret;
2142 	lo = idr_find(&loop_index_idr, idx);
2143 	if (!lo || !lo->idr_visible)
2144 		ret = -ENODEV;
2145 	else
2146 		lo->idr_visible = false;
2147 	mutex_unlock(&loop_ctl_mutex);
2148 	if (ret)
2149 		return ret;
2150 
2151 	/* Check whether this loop device can be removed. */
2152 	ret = mutex_lock_killable(&lo->lo_mutex);
2153 	if (ret)
2154 		goto mark_visible;
2155 	if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) {
2156 		mutex_unlock(&lo->lo_mutex);
2157 		ret = -EBUSY;
2158 		goto mark_visible;
2159 	}
2160 	/* Mark this loop device as no more bound, but not quite unbound yet */
2161 	lo->lo_state = Lo_deleting;
2162 	mutex_unlock(&lo->lo_mutex);
2163 
2164 	loop_remove(lo);
2165 	return 0;
2166 
2167 mark_visible:
2168 	/* Show this loop device again. */
2169 	mutex_lock(&loop_ctl_mutex);
2170 	lo->idr_visible = true;
2171 	mutex_unlock(&loop_ctl_mutex);
2172 	return ret;
2173 }
2174 
2175 static int loop_control_get_free(int idx)
2176 {
2177 	struct loop_device *lo;
2178 	int id, ret;
2179 
2180 	ret = mutex_lock_killable(&loop_ctl_mutex);
2181 	if (ret)
2182 		return ret;
2183 	idr_for_each_entry(&loop_index_idr, lo, id) {
2184 		/* Hitting a race results in creating a new loop device which is harmless. */
2185 		if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound)
2186 			goto found;
2187 	}
2188 	mutex_unlock(&loop_ctl_mutex);
2189 	return loop_add(-1);
2190 found:
2191 	mutex_unlock(&loop_ctl_mutex);
2192 	return id;
2193 }
2194 
2195 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2196 			       unsigned long parm)
2197 {
2198 	switch (cmd) {
2199 	case LOOP_CTL_ADD:
2200 		return loop_add(parm);
2201 	case LOOP_CTL_REMOVE:
2202 		return loop_control_remove(parm);
2203 	case LOOP_CTL_GET_FREE:
2204 		return loop_control_get_free(parm);
2205 	default:
2206 		return -ENOSYS;
2207 	}
2208 }
2209 
2210 static const struct file_operations loop_ctl_fops = {
2211 	.open		= nonseekable_open,
2212 	.unlocked_ioctl	= loop_control_ioctl,
2213 	.compat_ioctl	= loop_control_ioctl,
2214 	.owner		= THIS_MODULE,
2215 	.llseek		= noop_llseek,
2216 };
2217 
2218 static struct miscdevice loop_misc = {
2219 	.minor		= LOOP_CTRL_MINOR,
2220 	.name		= "loop-control",
2221 	.fops		= &loop_ctl_fops,
2222 };
2223 
2224 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2225 MODULE_ALIAS("devname:loop-control");
2226 
2227 static int __init loop_init(void)
2228 {
2229 	int i;
2230 	int err;
2231 
2232 	part_shift = 0;
2233 	if (max_part > 0) {
2234 		part_shift = fls(max_part);
2235 
2236 		/*
2237 		 * Adjust max_part according to part_shift as it is exported
2238 		 * to user space so that user can decide correct minor number
2239 		 * if [s]he want to create more devices.
2240 		 *
2241 		 * Note that -1 is required because partition 0 is reserved
2242 		 * for the whole disk.
2243 		 */
2244 		max_part = (1UL << part_shift) - 1;
2245 	}
2246 
2247 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2248 		err = -EINVAL;
2249 		goto err_out;
2250 	}
2251 
2252 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2253 		err = -EINVAL;
2254 		goto err_out;
2255 	}
2256 
2257 	err = misc_register(&loop_misc);
2258 	if (err < 0)
2259 		goto err_out;
2260 
2261 
2262 	if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2263 		err = -EIO;
2264 		goto misc_out;
2265 	}
2266 
2267 	/* pre-create number of devices given by config or max_loop */
2268 	for (i = 0; i < max_loop; i++)
2269 		loop_add(i);
2270 
2271 	printk(KERN_INFO "loop: module loaded\n");
2272 	return 0;
2273 
2274 misc_out:
2275 	misc_deregister(&loop_misc);
2276 err_out:
2277 	return err;
2278 }
2279 
2280 static void __exit loop_exit(void)
2281 {
2282 	struct loop_device *lo;
2283 	int id;
2284 
2285 	unregister_blkdev(LOOP_MAJOR, "loop");
2286 	misc_deregister(&loop_misc);
2287 
2288 	/*
2289 	 * There is no need to use loop_ctl_mutex here, for nobody else can
2290 	 * access loop_index_idr when this module is unloading (unless forced
2291 	 * module unloading is requested). If this is not a clean unloading,
2292 	 * we have no means to avoid kernel crash.
2293 	 */
2294 	idr_for_each_entry(&loop_index_idr, lo, id)
2295 		loop_remove(lo);
2296 
2297 	idr_destroy(&loop_index_idr);
2298 }
2299 
2300 module_init(loop_init);
2301 module_exit(loop_exit);
2302 
2303 #ifndef MODULE
2304 static int __init max_loop_setup(char *str)
2305 {
2306 	max_loop = simple_strtol(str, NULL, 0);
2307 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD
2308 	max_loop_specified = true;
2309 #endif
2310 	return 1;
2311 }
2312 
2313 __setup("max_loop=", max_loop_setup);
2314 #endif
2315