1 /* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52 #include <linux/module.h> 53 #include <linux/moduleparam.h> 54 #include <linux/sched.h> 55 #include <linux/fs.h> 56 #include <linux/pagemap.h> 57 #include <linux/file.h> 58 #include <linux/stat.h> 59 #include <linux/errno.h> 60 #include <linux/major.h> 61 #include <linux/wait.h> 62 #include <linux/blkdev.h> 63 #include <linux/blkpg.h> 64 #include <linux/init.h> 65 #include <linux/swap.h> 66 #include <linux/slab.h> 67 #include <linux/compat.h> 68 #include <linux/suspend.h> 69 #include <linux/freezer.h> 70 #include <linux/mutex.h> 71 #include <linux/writeback.h> 72 #include <linux/completion.h> 73 #include <linux/highmem.h> 74 #include <linux/kthread.h> 75 #include <linux/splice.h> 76 #include <linux/sysfs.h> 77 #include <linux/miscdevice.h> 78 #include <linux/falloc.h> 79 #include <linux/uio.h> 80 #include <linux/ioprio.h> 81 #include <linux/blk-cgroup.h> 82 83 #include "loop.h" 84 85 #include <linux/uaccess.h> 86 87 static DEFINE_IDR(loop_index_idr); 88 static DEFINE_MUTEX(loop_ctl_mutex); 89 90 static int max_part; 91 static int part_shift; 92 93 static int transfer_xor(struct loop_device *lo, int cmd, 94 struct page *raw_page, unsigned raw_off, 95 struct page *loop_page, unsigned loop_off, 96 int size, sector_t real_block) 97 { 98 char *raw_buf = kmap_atomic(raw_page) + raw_off; 99 char *loop_buf = kmap_atomic(loop_page) + loop_off; 100 char *in, *out, *key; 101 int i, keysize; 102 103 if (cmd == READ) { 104 in = raw_buf; 105 out = loop_buf; 106 } else { 107 in = loop_buf; 108 out = raw_buf; 109 } 110 111 key = lo->lo_encrypt_key; 112 keysize = lo->lo_encrypt_key_size; 113 for (i = 0; i < size; i++) 114 *out++ = *in++ ^ key[(i & 511) % keysize]; 115 116 kunmap_atomic(loop_buf); 117 kunmap_atomic(raw_buf); 118 cond_resched(); 119 return 0; 120 } 121 122 static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 123 { 124 if (unlikely(info->lo_encrypt_key_size <= 0)) 125 return -EINVAL; 126 return 0; 127 } 128 129 static struct loop_func_table none_funcs = { 130 .number = LO_CRYPT_NONE, 131 }; 132 133 static struct loop_func_table xor_funcs = { 134 .number = LO_CRYPT_XOR, 135 .transfer = transfer_xor, 136 .init = xor_init 137 }; 138 139 /* xfer_funcs[0] is special - its release function is never called */ 140 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 141 &none_funcs, 142 &xor_funcs 143 }; 144 145 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 146 { 147 loff_t loopsize; 148 149 /* Compute loopsize in bytes */ 150 loopsize = i_size_read(file->f_mapping->host); 151 if (offset > 0) 152 loopsize -= offset; 153 /* offset is beyond i_size, weird but possible */ 154 if (loopsize < 0) 155 return 0; 156 157 if (sizelimit > 0 && sizelimit < loopsize) 158 loopsize = sizelimit; 159 /* 160 * Unfortunately, if we want to do I/O on the device, 161 * the number of 512-byte sectors has to fit into a sector_t. 162 */ 163 return loopsize >> 9; 164 } 165 166 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 167 { 168 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 169 } 170 171 static void __loop_update_dio(struct loop_device *lo, bool dio) 172 { 173 struct file *file = lo->lo_backing_file; 174 struct address_space *mapping = file->f_mapping; 175 struct inode *inode = mapping->host; 176 unsigned short sb_bsize = 0; 177 unsigned dio_align = 0; 178 bool use_dio; 179 180 if (inode->i_sb->s_bdev) { 181 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 182 dio_align = sb_bsize - 1; 183 } 184 185 /* 186 * We support direct I/O only if lo_offset is aligned with the 187 * logical I/O size of backing device, and the logical block 188 * size of loop is bigger than the backing device's and the loop 189 * needn't transform transfer. 190 * 191 * TODO: the above condition may be loosed in the future, and 192 * direct I/O may be switched runtime at that time because most 193 * of requests in sane applications should be PAGE_SIZE aligned 194 */ 195 if (dio) { 196 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && 197 !(lo->lo_offset & dio_align) && 198 mapping->a_ops->direct_IO && 199 !lo->transfer) 200 use_dio = true; 201 else 202 use_dio = false; 203 } else { 204 use_dio = false; 205 } 206 207 if (lo->use_dio == use_dio) 208 return; 209 210 /* flush dirty pages before changing direct IO */ 211 vfs_fsync(file, 0); 212 213 /* 214 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 215 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 216 * will get updated by ioctl(LOOP_GET_STATUS) 217 */ 218 if (lo->lo_state == Lo_bound) 219 blk_mq_freeze_queue(lo->lo_queue); 220 lo->use_dio = use_dio; 221 if (use_dio) { 222 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue); 223 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 224 } else { 225 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 226 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 227 } 228 if (lo->lo_state == Lo_bound) 229 blk_mq_unfreeze_queue(lo->lo_queue); 230 } 231 232 /** 233 * loop_validate_block_size() - validates the passed in block size 234 * @bsize: size to validate 235 */ 236 static int 237 loop_validate_block_size(unsigned short bsize) 238 { 239 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 240 return -EINVAL; 241 242 return 0; 243 } 244 245 /** 246 * loop_set_size() - sets device size and notifies userspace 247 * @lo: struct loop_device to set the size for 248 * @size: new size of the loop device 249 * 250 * Callers must validate that the size passed into this function fits into 251 * a sector_t, eg using loop_validate_size() 252 */ 253 static void loop_set_size(struct loop_device *lo, loff_t size) 254 { 255 if (!set_capacity_and_notify(lo->lo_disk, size)) 256 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 257 } 258 259 static inline int 260 lo_do_transfer(struct loop_device *lo, int cmd, 261 struct page *rpage, unsigned roffs, 262 struct page *lpage, unsigned loffs, 263 int size, sector_t rblock) 264 { 265 int ret; 266 267 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 268 if (likely(!ret)) 269 return 0; 270 271 printk_ratelimited(KERN_ERR 272 "loop: Transfer error at byte offset %llu, length %i.\n", 273 (unsigned long long)rblock << 9, size); 274 return ret; 275 } 276 277 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 278 { 279 struct iov_iter i; 280 ssize_t bw; 281 282 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len); 283 284 file_start_write(file); 285 bw = vfs_iter_write(file, &i, ppos, 0); 286 file_end_write(file); 287 288 if (likely(bw == bvec->bv_len)) 289 return 0; 290 291 printk_ratelimited(KERN_ERR 292 "loop: Write error at byte offset %llu, length %i.\n", 293 (unsigned long long)*ppos, bvec->bv_len); 294 if (bw >= 0) 295 bw = -EIO; 296 return bw; 297 } 298 299 static int lo_write_simple(struct loop_device *lo, struct request *rq, 300 loff_t pos) 301 { 302 struct bio_vec bvec; 303 struct req_iterator iter; 304 int ret = 0; 305 306 rq_for_each_segment(bvec, rq, iter) { 307 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 308 if (ret < 0) 309 break; 310 cond_resched(); 311 } 312 313 return ret; 314 } 315 316 /* 317 * This is the slow, transforming version that needs to double buffer the 318 * data as it cannot do the transformations in place without having direct 319 * access to the destination pages of the backing file. 320 */ 321 static int lo_write_transfer(struct loop_device *lo, struct request *rq, 322 loff_t pos) 323 { 324 struct bio_vec bvec, b; 325 struct req_iterator iter; 326 struct page *page; 327 int ret = 0; 328 329 page = alloc_page(GFP_NOIO); 330 if (unlikely(!page)) 331 return -ENOMEM; 332 333 rq_for_each_segment(bvec, rq, iter) { 334 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, 335 bvec.bv_offset, bvec.bv_len, pos >> 9); 336 if (unlikely(ret)) 337 break; 338 339 b.bv_page = page; 340 b.bv_offset = 0; 341 b.bv_len = bvec.bv_len; 342 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); 343 if (ret < 0) 344 break; 345 } 346 347 __free_page(page); 348 return ret; 349 } 350 351 static int lo_read_simple(struct loop_device *lo, struct request *rq, 352 loff_t pos) 353 { 354 struct bio_vec bvec; 355 struct req_iterator iter; 356 struct iov_iter i; 357 ssize_t len; 358 359 rq_for_each_segment(bvec, rq, iter) { 360 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len); 361 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 362 if (len < 0) 363 return len; 364 365 flush_dcache_page(bvec.bv_page); 366 367 if (len != bvec.bv_len) { 368 struct bio *bio; 369 370 __rq_for_each_bio(bio, rq) 371 zero_fill_bio(bio); 372 break; 373 } 374 cond_resched(); 375 } 376 377 return 0; 378 } 379 380 static int lo_read_transfer(struct loop_device *lo, struct request *rq, 381 loff_t pos) 382 { 383 struct bio_vec bvec, b; 384 struct req_iterator iter; 385 struct iov_iter i; 386 struct page *page; 387 ssize_t len; 388 int ret = 0; 389 390 page = alloc_page(GFP_NOIO); 391 if (unlikely(!page)) 392 return -ENOMEM; 393 394 rq_for_each_segment(bvec, rq, iter) { 395 loff_t offset = pos; 396 397 b.bv_page = page; 398 b.bv_offset = 0; 399 b.bv_len = bvec.bv_len; 400 401 iov_iter_bvec(&i, READ, &b, 1, b.bv_len); 402 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 403 if (len < 0) { 404 ret = len; 405 goto out_free_page; 406 } 407 408 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, 409 bvec.bv_offset, len, offset >> 9); 410 if (ret) 411 goto out_free_page; 412 413 flush_dcache_page(bvec.bv_page); 414 415 if (len != bvec.bv_len) { 416 struct bio *bio; 417 418 __rq_for_each_bio(bio, rq) 419 zero_fill_bio(bio); 420 break; 421 } 422 } 423 424 ret = 0; 425 out_free_page: 426 __free_page(page); 427 return ret; 428 } 429 430 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 431 int mode) 432 { 433 /* 434 * We use fallocate to manipulate the space mappings used by the image 435 * a.k.a. discard/zerorange. However we do not support this if 436 * encryption is enabled, because it may give an attacker useful 437 * information. 438 */ 439 struct file *file = lo->lo_backing_file; 440 struct request_queue *q = lo->lo_queue; 441 int ret; 442 443 mode |= FALLOC_FL_KEEP_SIZE; 444 445 if (!blk_queue_discard(q)) { 446 ret = -EOPNOTSUPP; 447 goto out; 448 } 449 450 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 451 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 452 ret = -EIO; 453 out: 454 return ret; 455 } 456 457 static int lo_req_flush(struct loop_device *lo, struct request *rq) 458 { 459 struct file *file = lo->lo_backing_file; 460 int ret = vfs_fsync(file, 0); 461 if (unlikely(ret && ret != -EINVAL)) 462 ret = -EIO; 463 464 return ret; 465 } 466 467 static void lo_complete_rq(struct request *rq) 468 { 469 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 470 blk_status_t ret = BLK_STS_OK; 471 472 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 473 req_op(rq) != REQ_OP_READ) { 474 if (cmd->ret < 0) 475 ret = errno_to_blk_status(cmd->ret); 476 goto end_io; 477 } 478 479 /* 480 * Short READ - if we got some data, advance our request and 481 * retry it. If we got no data, end the rest with EIO. 482 */ 483 if (cmd->ret) { 484 blk_update_request(rq, BLK_STS_OK, cmd->ret); 485 cmd->ret = 0; 486 blk_mq_requeue_request(rq, true); 487 } else { 488 if (cmd->use_aio) { 489 struct bio *bio = rq->bio; 490 491 while (bio) { 492 zero_fill_bio(bio); 493 bio = bio->bi_next; 494 } 495 } 496 ret = BLK_STS_IOERR; 497 end_io: 498 blk_mq_end_request(rq, ret); 499 } 500 } 501 502 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 503 { 504 struct request *rq = blk_mq_rq_from_pdu(cmd); 505 506 if (!atomic_dec_and_test(&cmd->ref)) 507 return; 508 kfree(cmd->bvec); 509 cmd->bvec = NULL; 510 if (likely(!blk_should_fake_timeout(rq->q))) 511 blk_mq_complete_request(rq); 512 } 513 514 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) 515 { 516 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 517 518 if (cmd->css) 519 css_put(cmd->css); 520 cmd->ret = ret; 521 lo_rw_aio_do_completion(cmd); 522 } 523 524 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 525 loff_t pos, bool rw) 526 { 527 struct iov_iter iter; 528 struct req_iterator rq_iter; 529 struct bio_vec *bvec; 530 struct request *rq = blk_mq_rq_from_pdu(cmd); 531 struct bio *bio = rq->bio; 532 struct file *file = lo->lo_backing_file; 533 struct bio_vec tmp; 534 unsigned int offset; 535 int nr_bvec = 0; 536 int ret; 537 538 rq_for_each_bvec(tmp, rq, rq_iter) 539 nr_bvec++; 540 541 if (rq->bio != rq->biotail) { 542 543 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 544 GFP_NOIO); 545 if (!bvec) 546 return -EIO; 547 cmd->bvec = bvec; 548 549 /* 550 * The bios of the request may be started from the middle of 551 * the 'bvec' because of bio splitting, so we can't directly 552 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 553 * API will take care of all details for us. 554 */ 555 rq_for_each_bvec(tmp, rq, rq_iter) { 556 *bvec = tmp; 557 bvec++; 558 } 559 bvec = cmd->bvec; 560 offset = 0; 561 } else { 562 /* 563 * Same here, this bio may be started from the middle of the 564 * 'bvec' because of bio splitting, so offset from the bvec 565 * must be passed to iov iterator 566 */ 567 offset = bio->bi_iter.bi_bvec_done; 568 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 569 } 570 atomic_set(&cmd->ref, 2); 571 572 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 573 iter.iov_offset = offset; 574 575 cmd->iocb.ki_pos = pos; 576 cmd->iocb.ki_filp = file; 577 cmd->iocb.ki_complete = lo_rw_aio_complete; 578 cmd->iocb.ki_flags = IOCB_DIRECT; 579 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 580 if (cmd->css) 581 kthread_associate_blkcg(cmd->css); 582 583 if (rw == WRITE) 584 ret = call_write_iter(file, &cmd->iocb, &iter); 585 else 586 ret = call_read_iter(file, &cmd->iocb, &iter); 587 588 lo_rw_aio_do_completion(cmd); 589 kthread_associate_blkcg(NULL); 590 591 if (ret != -EIOCBQUEUED) 592 cmd->iocb.ki_complete(&cmd->iocb, ret, 0); 593 return 0; 594 } 595 596 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 597 { 598 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 599 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 600 601 /* 602 * lo_write_simple and lo_read_simple should have been covered 603 * by io submit style function like lo_rw_aio(), one blocker 604 * is that lo_read_simple() need to call flush_dcache_page after 605 * the page is written from kernel, and it isn't easy to handle 606 * this in io submit style function which submits all segments 607 * of the req at one time. And direct read IO doesn't need to 608 * run flush_dcache_page(). 609 */ 610 switch (req_op(rq)) { 611 case REQ_OP_FLUSH: 612 return lo_req_flush(lo, rq); 613 case REQ_OP_WRITE_ZEROES: 614 /* 615 * If the caller doesn't want deallocation, call zeroout to 616 * write zeroes the range. Otherwise, punch them out. 617 */ 618 return lo_fallocate(lo, rq, pos, 619 (rq->cmd_flags & REQ_NOUNMAP) ? 620 FALLOC_FL_ZERO_RANGE : 621 FALLOC_FL_PUNCH_HOLE); 622 case REQ_OP_DISCARD: 623 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 624 case REQ_OP_WRITE: 625 if (lo->transfer) 626 return lo_write_transfer(lo, rq, pos); 627 else if (cmd->use_aio) 628 return lo_rw_aio(lo, cmd, pos, WRITE); 629 else 630 return lo_write_simple(lo, rq, pos); 631 case REQ_OP_READ: 632 if (lo->transfer) 633 return lo_read_transfer(lo, rq, pos); 634 else if (cmd->use_aio) 635 return lo_rw_aio(lo, cmd, pos, READ); 636 else 637 return lo_read_simple(lo, rq, pos); 638 default: 639 WARN_ON_ONCE(1); 640 return -EIO; 641 } 642 } 643 644 static inline void loop_update_dio(struct loop_device *lo) 645 { 646 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 647 lo->use_dio); 648 } 649 650 static void loop_reread_partitions(struct loop_device *lo, 651 struct block_device *bdev) 652 { 653 int rc; 654 655 mutex_lock(&bdev->bd_mutex); 656 rc = bdev_disk_changed(bdev, false); 657 mutex_unlock(&bdev->bd_mutex); 658 if (rc) 659 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 660 __func__, lo->lo_number, lo->lo_file_name, rc); 661 } 662 663 static inline int is_loop_device(struct file *file) 664 { 665 struct inode *i = file->f_mapping->host; 666 667 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 668 } 669 670 static int loop_validate_file(struct file *file, struct block_device *bdev) 671 { 672 struct inode *inode = file->f_mapping->host; 673 struct file *f = file; 674 675 /* Avoid recursion */ 676 while (is_loop_device(f)) { 677 struct loop_device *l; 678 679 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 680 return -EBADF; 681 682 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 683 if (l->lo_state != Lo_bound) { 684 return -EINVAL; 685 } 686 f = l->lo_backing_file; 687 } 688 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 689 return -EINVAL; 690 return 0; 691 } 692 693 /* 694 * loop_change_fd switched the backing store of a loopback device to 695 * a new file. This is useful for operating system installers to free up 696 * the original file and in High Availability environments to switch to 697 * an alternative location for the content in case of server meltdown. 698 * This can only work if the loop device is used read-only, and if the 699 * new backing store is the same size and type as the old backing store. 700 */ 701 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 702 unsigned int arg) 703 { 704 struct file *file = NULL, *old_file; 705 int error; 706 bool partscan; 707 708 error = mutex_lock_killable(&lo->lo_mutex); 709 if (error) 710 return error; 711 error = -ENXIO; 712 if (lo->lo_state != Lo_bound) 713 goto out_err; 714 715 /* the loop device has to be read-only */ 716 error = -EINVAL; 717 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 718 goto out_err; 719 720 error = -EBADF; 721 file = fget(arg); 722 if (!file) 723 goto out_err; 724 725 error = loop_validate_file(file, bdev); 726 if (error) 727 goto out_err; 728 729 old_file = lo->lo_backing_file; 730 731 error = -EINVAL; 732 733 /* size of the new backing store needs to be the same */ 734 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 735 goto out_err; 736 737 /* and ... switch */ 738 blk_mq_freeze_queue(lo->lo_queue); 739 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 740 lo->lo_backing_file = file; 741 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 742 mapping_set_gfp_mask(file->f_mapping, 743 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 744 loop_update_dio(lo); 745 blk_mq_unfreeze_queue(lo->lo_queue); 746 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 747 mutex_unlock(&lo->lo_mutex); 748 /* 749 * We must drop file reference outside of lo_mutex as dropping 750 * the file ref can take bd_mutex which creates circular locking 751 * dependency. 752 */ 753 fput(old_file); 754 if (partscan) 755 loop_reread_partitions(lo, bdev); 756 return 0; 757 758 out_err: 759 mutex_unlock(&lo->lo_mutex); 760 if (file) 761 fput(file); 762 return error; 763 } 764 765 /* loop sysfs attributes */ 766 767 static ssize_t loop_attr_show(struct device *dev, char *page, 768 ssize_t (*callback)(struct loop_device *, char *)) 769 { 770 struct gendisk *disk = dev_to_disk(dev); 771 struct loop_device *lo = disk->private_data; 772 773 return callback(lo, page); 774 } 775 776 #define LOOP_ATTR_RO(_name) \ 777 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 778 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 779 struct device_attribute *attr, char *b) \ 780 { \ 781 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 782 } \ 783 static struct device_attribute loop_attr_##_name = \ 784 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 785 786 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 787 { 788 ssize_t ret; 789 char *p = NULL; 790 791 spin_lock_irq(&lo->lo_lock); 792 if (lo->lo_backing_file) 793 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 794 spin_unlock_irq(&lo->lo_lock); 795 796 if (IS_ERR_OR_NULL(p)) 797 ret = PTR_ERR(p); 798 else { 799 ret = strlen(p); 800 memmove(buf, p, ret); 801 buf[ret++] = '\n'; 802 buf[ret] = 0; 803 } 804 805 return ret; 806 } 807 808 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 809 { 810 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 811 } 812 813 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 814 { 815 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 816 } 817 818 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 819 { 820 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 821 822 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 823 } 824 825 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 826 { 827 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 828 829 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 830 } 831 832 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 833 { 834 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 835 836 return sprintf(buf, "%s\n", dio ? "1" : "0"); 837 } 838 839 LOOP_ATTR_RO(backing_file); 840 LOOP_ATTR_RO(offset); 841 LOOP_ATTR_RO(sizelimit); 842 LOOP_ATTR_RO(autoclear); 843 LOOP_ATTR_RO(partscan); 844 LOOP_ATTR_RO(dio); 845 846 static struct attribute *loop_attrs[] = { 847 &loop_attr_backing_file.attr, 848 &loop_attr_offset.attr, 849 &loop_attr_sizelimit.attr, 850 &loop_attr_autoclear.attr, 851 &loop_attr_partscan.attr, 852 &loop_attr_dio.attr, 853 NULL, 854 }; 855 856 static struct attribute_group loop_attribute_group = { 857 .name = "loop", 858 .attrs= loop_attrs, 859 }; 860 861 static void loop_sysfs_init(struct loop_device *lo) 862 { 863 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 864 &loop_attribute_group); 865 } 866 867 static void loop_sysfs_exit(struct loop_device *lo) 868 { 869 if (lo->sysfs_inited) 870 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 871 &loop_attribute_group); 872 } 873 874 static void loop_config_discard(struct loop_device *lo) 875 { 876 struct file *file = lo->lo_backing_file; 877 struct inode *inode = file->f_mapping->host; 878 struct request_queue *q = lo->lo_queue; 879 u32 granularity, max_discard_sectors; 880 881 /* 882 * If the backing device is a block device, mirror its zeroing 883 * capability. Set the discard sectors to the block device's zeroing 884 * capabilities because loop discards result in blkdev_issue_zeroout(), 885 * not blkdev_issue_discard(). This maintains consistent behavior with 886 * file-backed loop devices: discarded regions read back as zero. 887 */ 888 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) { 889 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 890 891 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 892 granularity = backingq->limits.discard_granularity ?: 893 queue_physical_block_size(backingq); 894 895 /* 896 * We use punch hole to reclaim the free space used by the 897 * image a.k.a. discard. However we do not support discard if 898 * encryption is enabled, because it may give an attacker 899 * useful information. 900 */ 901 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) { 902 max_discard_sectors = 0; 903 granularity = 0; 904 905 } else { 906 max_discard_sectors = UINT_MAX >> 9; 907 granularity = inode->i_sb->s_blocksize; 908 } 909 910 if (max_discard_sectors) { 911 q->limits.discard_granularity = granularity; 912 blk_queue_max_discard_sectors(q, max_discard_sectors); 913 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); 914 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 915 } else { 916 q->limits.discard_granularity = 0; 917 blk_queue_max_discard_sectors(q, 0); 918 blk_queue_max_write_zeroes_sectors(q, 0); 919 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 920 } 921 q->limits.discard_alignment = 0; 922 } 923 924 static void loop_unprepare_queue(struct loop_device *lo) 925 { 926 kthread_flush_worker(&lo->worker); 927 kthread_stop(lo->worker_task); 928 } 929 930 static int loop_kthread_worker_fn(void *worker_ptr) 931 { 932 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 933 return kthread_worker_fn(worker_ptr); 934 } 935 936 static int loop_prepare_queue(struct loop_device *lo) 937 { 938 kthread_init_worker(&lo->worker); 939 lo->worker_task = kthread_run(loop_kthread_worker_fn, 940 &lo->worker, "loop%d", lo->lo_number); 941 if (IS_ERR(lo->worker_task)) 942 return -ENOMEM; 943 set_user_nice(lo->worker_task, MIN_NICE); 944 return 0; 945 } 946 947 static void loop_update_rotational(struct loop_device *lo) 948 { 949 struct file *file = lo->lo_backing_file; 950 struct inode *file_inode = file->f_mapping->host; 951 struct block_device *file_bdev = file_inode->i_sb->s_bdev; 952 struct request_queue *q = lo->lo_queue; 953 bool nonrot = true; 954 955 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */ 956 if (file_bdev) 957 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev)); 958 959 if (nonrot) 960 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 961 else 962 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 963 } 964 965 static int 966 loop_release_xfer(struct loop_device *lo) 967 { 968 int err = 0; 969 struct loop_func_table *xfer = lo->lo_encryption; 970 971 if (xfer) { 972 if (xfer->release) 973 err = xfer->release(lo); 974 lo->transfer = NULL; 975 lo->lo_encryption = NULL; 976 module_put(xfer->owner); 977 } 978 return err; 979 } 980 981 static int 982 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 983 const struct loop_info64 *i) 984 { 985 int err = 0; 986 987 if (xfer) { 988 struct module *owner = xfer->owner; 989 990 if (!try_module_get(owner)) 991 return -EINVAL; 992 if (xfer->init) 993 err = xfer->init(lo, i); 994 if (err) 995 module_put(owner); 996 else 997 lo->lo_encryption = xfer; 998 } 999 return err; 1000 } 1001 1002 /** 1003 * loop_set_status_from_info - configure device from loop_info 1004 * @lo: struct loop_device to configure 1005 * @info: struct loop_info64 to configure the device with 1006 * 1007 * Configures the loop device parameters according to the passed 1008 * in loop_info64 configuration. 1009 */ 1010 static int 1011 loop_set_status_from_info(struct loop_device *lo, 1012 const struct loop_info64 *info) 1013 { 1014 int err; 1015 struct loop_func_table *xfer; 1016 kuid_t uid = current_uid(); 1017 1018 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1019 return -EINVAL; 1020 1021 err = loop_release_xfer(lo); 1022 if (err) 1023 return err; 1024 1025 if (info->lo_encrypt_type) { 1026 unsigned int type = info->lo_encrypt_type; 1027 1028 if (type >= MAX_LO_CRYPT) 1029 return -EINVAL; 1030 xfer = xfer_funcs[type]; 1031 if (xfer == NULL) 1032 return -EINVAL; 1033 } else 1034 xfer = NULL; 1035 1036 err = loop_init_xfer(lo, xfer, info); 1037 if (err) 1038 return err; 1039 1040 lo->lo_offset = info->lo_offset; 1041 lo->lo_sizelimit = info->lo_sizelimit; 1042 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1043 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1044 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1045 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1046 1047 if (!xfer) 1048 xfer = &none_funcs; 1049 lo->transfer = xfer->transfer; 1050 lo->ioctl = xfer->ioctl; 1051 1052 lo->lo_flags = info->lo_flags; 1053 1054 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1055 lo->lo_init[0] = info->lo_init[0]; 1056 lo->lo_init[1] = info->lo_init[1]; 1057 if (info->lo_encrypt_key_size) { 1058 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1059 info->lo_encrypt_key_size); 1060 lo->lo_key_owner = uid; 1061 } 1062 1063 return 0; 1064 } 1065 1066 static int loop_configure(struct loop_device *lo, fmode_t mode, 1067 struct block_device *bdev, 1068 const struct loop_config *config) 1069 { 1070 struct file *file; 1071 struct inode *inode; 1072 struct address_space *mapping; 1073 int error; 1074 loff_t size; 1075 bool partscan; 1076 unsigned short bsize; 1077 1078 /* This is safe, since we have a reference from open(). */ 1079 __module_get(THIS_MODULE); 1080 1081 error = -EBADF; 1082 file = fget(config->fd); 1083 if (!file) 1084 goto out; 1085 1086 /* 1087 * If we don't hold exclusive handle for the device, upgrade to it 1088 * here to avoid changing device under exclusive owner. 1089 */ 1090 if (!(mode & FMODE_EXCL)) { 1091 error = bd_prepare_to_claim(bdev, loop_configure); 1092 if (error) 1093 goto out_putf; 1094 } 1095 1096 error = mutex_lock_killable(&lo->lo_mutex); 1097 if (error) 1098 goto out_bdev; 1099 1100 error = -EBUSY; 1101 if (lo->lo_state != Lo_unbound) 1102 goto out_unlock; 1103 1104 error = loop_validate_file(file, bdev); 1105 if (error) 1106 goto out_unlock; 1107 1108 mapping = file->f_mapping; 1109 inode = mapping->host; 1110 1111 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1112 error = -EINVAL; 1113 goto out_unlock; 1114 } 1115 1116 if (config->block_size) { 1117 error = loop_validate_block_size(config->block_size); 1118 if (error) 1119 goto out_unlock; 1120 } 1121 1122 error = loop_set_status_from_info(lo, &config->info); 1123 if (error) 1124 goto out_unlock; 1125 1126 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 1127 !file->f_op->write_iter) 1128 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1129 1130 error = loop_prepare_queue(lo); 1131 if (error) 1132 goto out_unlock; 1133 1134 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1135 1136 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1137 lo->lo_device = bdev; 1138 lo->lo_backing_file = file; 1139 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1140 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1141 1142 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 1143 blk_queue_write_cache(lo->lo_queue, true, false); 1144 1145 if (config->block_size) 1146 bsize = config->block_size; 1147 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev) 1148 /* In case of direct I/O, match underlying block size */ 1149 bsize = bdev_logical_block_size(inode->i_sb->s_bdev); 1150 else 1151 bsize = 512; 1152 1153 blk_queue_logical_block_size(lo->lo_queue, bsize); 1154 blk_queue_physical_block_size(lo->lo_queue, bsize); 1155 blk_queue_io_min(lo->lo_queue, bsize); 1156 1157 loop_update_rotational(lo); 1158 loop_update_dio(lo); 1159 loop_sysfs_init(lo); 1160 1161 size = get_loop_size(lo, file); 1162 loop_set_size(lo, size); 1163 1164 lo->lo_state = Lo_bound; 1165 if (part_shift) 1166 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1167 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1168 if (partscan) 1169 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1170 1171 /* Grab the block_device to prevent its destruction after we 1172 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev). 1173 */ 1174 bdgrab(bdev); 1175 mutex_unlock(&lo->lo_mutex); 1176 if (partscan) 1177 loop_reread_partitions(lo, bdev); 1178 if (!(mode & FMODE_EXCL)) 1179 bd_abort_claiming(bdev, loop_configure); 1180 return 0; 1181 1182 out_unlock: 1183 mutex_unlock(&lo->lo_mutex); 1184 out_bdev: 1185 if (!(mode & FMODE_EXCL)) 1186 bd_abort_claiming(bdev, loop_configure); 1187 out_putf: 1188 fput(file); 1189 out: 1190 /* This is safe: open() is still holding a reference. */ 1191 module_put(THIS_MODULE); 1192 return error; 1193 } 1194 1195 static int __loop_clr_fd(struct loop_device *lo, bool release) 1196 { 1197 struct file *filp = NULL; 1198 gfp_t gfp = lo->old_gfp_mask; 1199 struct block_device *bdev = lo->lo_device; 1200 int err = 0; 1201 bool partscan = false; 1202 int lo_number; 1203 1204 mutex_lock(&lo->lo_mutex); 1205 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) { 1206 err = -ENXIO; 1207 goto out_unlock; 1208 } 1209 1210 filp = lo->lo_backing_file; 1211 if (filp == NULL) { 1212 err = -EINVAL; 1213 goto out_unlock; 1214 } 1215 1216 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags)) 1217 blk_queue_write_cache(lo->lo_queue, false, false); 1218 1219 /* freeze request queue during the transition */ 1220 blk_mq_freeze_queue(lo->lo_queue); 1221 1222 spin_lock_irq(&lo->lo_lock); 1223 lo->lo_backing_file = NULL; 1224 spin_unlock_irq(&lo->lo_lock); 1225 1226 loop_release_xfer(lo); 1227 lo->transfer = NULL; 1228 lo->ioctl = NULL; 1229 lo->lo_device = NULL; 1230 lo->lo_encryption = NULL; 1231 lo->lo_offset = 0; 1232 lo->lo_sizelimit = 0; 1233 lo->lo_encrypt_key_size = 0; 1234 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1235 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1236 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1237 blk_queue_logical_block_size(lo->lo_queue, 512); 1238 blk_queue_physical_block_size(lo->lo_queue, 512); 1239 blk_queue_io_min(lo->lo_queue, 512); 1240 if (bdev) { 1241 bdput(bdev); 1242 invalidate_bdev(bdev); 1243 bdev->bd_inode->i_mapping->wb_err = 0; 1244 } 1245 set_capacity(lo->lo_disk, 0); 1246 loop_sysfs_exit(lo); 1247 if (bdev) { 1248 /* let user-space know about this change */ 1249 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1250 } 1251 mapping_set_gfp_mask(filp->f_mapping, gfp); 1252 /* This is safe: open() is still holding a reference. */ 1253 module_put(THIS_MODULE); 1254 blk_mq_unfreeze_queue(lo->lo_queue); 1255 1256 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev; 1257 lo_number = lo->lo_number; 1258 loop_unprepare_queue(lo); 1259 out_unlock: 1260 mutex_unlock(&lo->lo_mutex); 1261 if (partscan) { 1262 /* 1263 * bd_mutex has been held already in release path, so don't 1264 * acquire it if this function is called in such case. 1265 * 1266 * If the reread partition isn't from release path, lo_refcnt 1267 * must be at least one and it can only become zero when the 1268 * current holder is released. 1269 */ 1270 if (!release) 1271 mutex_lock(&bdev->bd_mutex); 1272 err = bdev_disk_changed(bdev, false); 1273 if (!release) 1274 mutex_unlock(&bdev->bd_mutex); 1275 if (err) 1276 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1277 __func__, lo_number, err); 1278 /* Device is gone, no point in returning error */ 1279 err = 0; 1280 } 1281 1282 /* 1283 * lo->lo_state is set to Lo_unbound here after above partscan has 1284 * finished. 1285 * 1286 * There cannot be anybody else entering __loop_clr_fd() as 1287 * lo->lo_backing_file is already cleared and Lo_rundown state 1288 * protects us from all the other places trying to change the 'lo' 1289 * device. 1290 */ 1291 mutex_lock(&lo->lo_mutex); 1292 lo->lo_flags = 0; 1293 if (!part_shift) 1294 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1295 lo->lo_state = Lo_unbound; 1296 mutex_unlock(&lo->lo_mutex); 1297 1298 /* 1299 * Need not hold lo_mutex to fput backing file. Calling fput holding 1300 * lo_mutex triggers a circular lock dependency possibility warning as 1301 * fput can take bd_mutex which is usually taken before lo_mutex. 1302 */ 1303 if (filp) 1304 fput(filp); 1305 return err; 1306 } 1307 1308 static int loop_clr_fd(struct loop_device *lo) 1309 { 1310 int err; 1311 1312 err = mutex_lock_killable(&lo->lo_mutex); 1313 if (err) 1314 return err; 1315 if (lo->lo_state != Lo_bound) { 1316 mutex_unlock(&lo->lo_mutex); 1317 return -ENXIO; 1318 } 1319 /* 1320 * If we've explicitly asked to tear down the loop device, 1321 * and it has an elevated reference count, set it for auto-teardown when 1322 * the last reference goes away. This stops $!~#$@ udev from 1323 * preventing teardown because it decided that it needs to run blkid on 1324 * the loopback device whenever they appear. xfstests is notorious for 1325 * failing tests because blkid via udev races with a losetup 1326 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1327 * command to fail with EBUSY. 1328 */ 1329 if (atomic_read(&lo->lo_refcnt) > 1) { 1330 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1331 mutex_unlock(&lo->lo_mutex); 1332 return 0; 1333 } 1334 lo->lo_state = Lo_rundown; 1335 mutex_unlock(&lo->lo_mutex); 1336 1337 return __loop_clr_fd(lo, false); 1338 } 1339 1340 static int 1341 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1342 { 1343 int err; 1344 struct block_device *bdev; 1345 kuid_t uid = current_uid(); 1346 int prev_lo_flags; 1347 bool partscan = false; 1348 bool size_changed = false; 1349 1350 err = mutex_lock_killable(&lo->lo_mutex); 1351 if (err) 1352 return err; 1353 if (lo->lo_encrypt_key_size && 1354 !uid_eq(lo->lo_key_owner, uid) && 1355 !capable(CAP_SYS_ADMIN)) { 1356 err = -EPERM; 1357 goto out_unlock; 1358 } 1359 if (lo->lo_state != Lo_bound) { 1360 err = -ENXIO; 1361 goto out_unlock; 1362 } 1363 1364 if (lo->lo_offset != info->lo_offset || 1365 lo->lo_sizelimit != info->lo_sizelimit) { 1366 size_changed = true; 1367 sync_blockdev(lo->lo_device); 1368 invalidate_bdev(lo->lo_device); 1369 } 1370 1371 /* I/O need to be drained during transfer transition */ 1372 blk_mq_freeze_queue(lo->lo_queue); 1373 1374 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) { 1375 /* If any pages were dirtied after invalidate_bdev(), try again */ 1376 err = -EAGAIN; 1377 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1378 __func__, lo->lo_number, lo->lo_file_name, 1379 lo->lo_device->bd_inode->i_mapping->nrpages); 1380 goto out_unfreeze; 1381 } 1382 1383 prev_lo_flags = lo->lo_flags; 1384 1385 err = loop_set_status_from_info(lo, info); 1386 if (err) 1387 goto out_unfreeze; 1388 1389 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1390 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1391 /* For those flags, use the previous values instead */ 1392 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1393 /* For flags that can't be cleared, use previous values too */ 1394 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1395 1396 if (size_changed) { 1397 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1398 lo->lo_backing_file); 1399 loop_set_size(lo, new_size); 1400 } 1401 1402 loop_config_discard(lo); 1403 1404 /* update dio if lo_offset or transfer is changed */ 1405 __loop_update_dio(lo, lo->use_dio); 1406 1407 out_unfreeze: 1408 blk_mq_unfreeze_queue(lo->lo_queue); 1409 1410 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1411 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1412 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1413 bdev = lo->lo_device; 1414 partscan = true; 1415 } 1416 out_unlock: 1417 mutex_unlock(&lo->lo_mutex); 1418 if (partscan) 1419 loop_reread_partitions(lo, bdev); 1420 1421 return err; 1422 } 1423 1424 static int 1425 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1426 { 1427 struct path path; 1428 struct kstat stat; 1429 int ret; 1430 1431 ret = mutex_lock_killable(&lo->lo_mutex); 1432 if (ret) 1433 return ret; 1434 if (lo->lo_state != Lo_bound) { 1435 mutex_unlock(&lo->lo_mutex); 1436 return -ENXIO; 1437 } 1438 1439 memset(info, 0, sizeof(*info)); 1440 info->lo_number = lo->lo_number; 1441 info->lo_offset = lo->lo_offset; 1442 info->lo_sizelimit = lo->lo_sizelimit; 1443 info->lo_flags = lo->lo_flags; 1444 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1445 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1446 info->lo_encrypt_type = 1447 lo->lo_encryption ? lo->lo_encryption->number : 0; 1448 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1449 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1450 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1451 lo->lo_encrypt_key_size); 1452 } 1453 1454 /* Drop lo_mutex while we call into the filesystem. */ 1455 path = lo->lo_backing_file->f_path; 1456 path_get(&path); 1457 mutex_unlock(&lo->lo_mutex); 1458 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1459 if (!ret) { 1460 info->lo_device = huge_encode_dev(stat.dev); 1461 info->lo_inode = stat.ino; 1462 info->lo_rdevice = huge_encode_dev(stat.rdev); 1463 } 1464 path_put(&path); 1465 return ret; 1466 } 1467 1468 static void 1469 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1470 { 1471 memset(info64, 0, sizeof(*info64)); 1472 info64->lo_number = info->lo_number; 1473 info64->lo_device = info->lo_device; 1474 info64->lo_inode = info->lo_inode; 1475 info64->lo_rdevice = info->lo_rdevice; 1476 info64->lo_offset = info->lo_offset; 1477 info64->lo_sizelimit = 0; 1478 info64->lo_encrypt_type = info->lo_encrypt_type; 1479 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1480 info64->lo_flags = info->lo_flags; 1481 info64->lo_init[0] = info->lo_init[0]; 1482 info64->lo_init[1] = info->lo_init[1]; 1483 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1484 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1485 else 1486 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1487 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1488 } 1489 1490 static int 1491 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1492 { 1493 memset(info, 0, sizeof(*info)); 1494 info->lo_number = info64->lo_number; 1495 info->lo_device = info64->lo_device; 1496 info->lo_inode = info64->lo_inode; 1497 info->lo_rdevice = info64->lo_rdevice; 1498 info->lo_offset = info64->lo_offset; 1499 info->lo_encrypt_type = info64->lo_encrypt_type; 1500 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1501 info->lo_flags = info64->lo_flags; 1502 info->lo_init[0] = info64->lo_init[0]; 1503 info->lo_init[1] = info64->lo_init[1]; 1504 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1505 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1506 else 1507 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1508 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1509 1510 /* error in case values were truncated */ 1511 if (info->lo_device != info64->lo_device || 1512 info->lo_rdevice != info64->lo_rdevice || 1513 info->lo_inode != info64->lo_inode || 1514 info->lo_offset != info64->lo_offset) 1515 return -EOVERFLOW; 1516 1517 return 0; 1518 } 1519 1520 static int 1521 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1522 { 1523 struct loop_info info; 1524 struct loop_info64 info64; 1525 1526 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1527 return -EFAULT; 1528 loop_info64_from_old(&info, &info64); 1529 return loop_set_status(lo, &info64); 1530 } 1531 1532 static int 1533 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1534 { 1535 struct loop_info64 info64; 1536 1537 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1538 return -EFAULT; 1539 return loop_set_status(lo, &info64); 1540 } 1541 1542 static int 1543 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1544 struct loop_info info; 1545 struct loop_info64 info64; 1546 int err; 1547 1548 if (!arg) 1549 return -EINVAL; 1550 err = loop_get_status(lo, &info64); 1551 if (!err) 1552 err = loop_info64_to_old(&info64, &info); 1553 if (!err && copy_to_user(arg, &info, sizeof(info))) 1554 err = -EFAULT; 1555 1556 return err; 1557 } 1558 1559 static int 1560 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1561 struct loop_info64 info64; 1562 int err; 1563 1564 if (!arg) 1565 return -EINVAL; 1566 err = loop_get_status(lo, &info64); 1567 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1568 err = -EFAULT; 1569 1570 return err; 1571 } 1572 1573 static int loop_set_capacity(struct loop_device *lo) 1574 { 1575 loff_t size; 1576 1577 if (unlikely(lo->lo_state != Lo_bound)) 1578 return -ENXIO; 1579 1580 size = get_loop_size(lo, lo->lo_backing_file); 1581 loop_set_size(lo, size); 1582 1583 return 0; 1584 } 1585 1586 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1587 { 1588 int error = -ENXIO; 1589 if (lo->lo_state != Lo_bound) 1590 goto out; 1591 1592 __loop_update_dio(lo, !!arg); 1593 if (lo->use_dio == !!arg) 1594 return 0; 1595 error = -EINVAL; 1596 out: 1597 return error; 1598 } 1599 1600 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1601 { 1602 int err = 0; 1603 1604 if (lo->lo_state != Lo_bound) 1605 return -ENXIO; 1606 1607 err = loop_validate_block_size(arg); 1608 if (err) 1609 return err; 1610 1611 if (lo->lo_queue->limits.logical_block_size == arg) 1612 return 0; 1613 1614 sync_blockdev(lo->lo_device); 1615 invalidate_bdev(lo->lo_device); 1616 1617 blk_mq_freeze_queue(lo->lo_queue); 1618 1619 /* invalidate_bdev should have truncated all the pages */ 1620 if (lo->lo_device->bd_inode->i_mapping->nrpages) { 1621 err = -EAGAIN; 1622 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n", 1623 __func__, lo->lo_number, lo->lo_file_name, 1624 lo->lo_device->bd_inode->i_mapping->nrpages); 1625 goto out_unfreeze; 1626 } 1627 1628 blk_queue_logical_block_size(lo->lo_queue, arg); 1629 blk_queue_physical_block_size(lo->lo_queue, arg); 1630 blk_queue_io_min(lo->lo_queue, arg); 1631 loop_update_dio(lo); 1632 out_unfreeze: 1633 blk_mq_unfreeze_queue(lo->lo_queue); 1634 1635 return err; 1636 } 1637 1638 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1639 unsigned long arg) 1640 { 1641 int err; 1642 1643 err = mutex_lock_killable(&lo->lo_mutex); 1644 if (err) 1645 return err; 1646 switch (cmd) { 1647 case LOOP_SET_CAPACITY: 1648 err = loop_set_capacity(lo); 1649 break; 1650 case LOOP_SET_DIRECT_IO: 1651 err = loop_set_dio(lo, arg); 1652 break; 1653 case LOOP_SET_BLOCK_SIZE: 1654 err = loop_set_block_size(lo, arg); 1655 break; 1656 default: 1657 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1658 } 1659 mutex_unlock(&lo->lo_mutex); 1660 return err; 1661 } 1662 1663 static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1664 unsigned int cmd, unsigned long arg) 1665 { 1666 struct loop_device *lo = bdev->bd_disk->private_data; 1667 void __user *argp = (void __user *) arg; 1668 int err; 1669 1670 switch (cmd) { 1671 case LOOP_SET_FD: { 1672 /* 1673 * Legacy case - pass in a zeroed out struct loop_config with 1674 * only the file descriptor set , which corresponds with the 1675 * default parameters we'd have used otherwise. 1676 */ 1677 struct loop_config config; 1678 1679 memset(&config, 0, sizeof(config)); 1680 config.fd = arg; 1681 1682 return loop_configure(lo, mode, bdev, &config); 1683 } 1684 case LOOP_CONFIGURE: { 1685 struct loop_config config; 1686 1687 if (copy_from_user(&config, argp, sizeof(config))) 1688 return -EFAULT; 1689 1690 return loop_configure(lo, mode, bdev, &config); 1691 } 1692 case LOOP_CHANGE_FD: 1693 return loop_change_fd(lo, bdev, arg); 1694 case LOOP_CLR_FD: 1695 return loop_clr_fd(lo); 1696 case LOOP_SET_STATUS: 1697 err = -EPERM; 1698 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1699 err = loop_set_status_old(lo, argp); 1700 } 1701 break; 1702 case LOOP_GET_STATUS: 1703 return loop_get_status_old(lo, argp); 1704 case LOOP_SET_STATUS64: 1705 err = -EPERM; 1706 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) { 1707 err = loop_set_status64(lo, argp); 1708 } 1709 break; 1710 case LOOP_GET_STATUS64: 1711 return loop_get_status64(lo, argp); 1712 case LOOP_SET_CAPACITY: 1713 case LOOP_SET_DIRECT_IO: 1714 case LOOP_SET_BLOCK_SIZE: 1715 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN)) 1716 return -EPERM; 1717 fallthrough; 1718 default: 1719 err = lo_simple_ioctl(lo, cmd, arg); 1720 break; 1721 } 1722 1723 return err; 1724 } 1725 1726 #ifdef CONFIG_COMPAT 1727 struct compat_loop_info { 1728 compat_int_t lo_number; /* ioctl r/o */ 1729 compat_dev_t lo_device; /* ioctl r/o */ 1730 compat_ulong_t lo_inode; /* ioctl r/o */ 1731 compat_dev_t lo_rdevice; /* ioctl r/o */ 1732 compat_int_t lo_offset; 1733 compat_int_t lo_encrypt_type; 1734 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1735 compat_int_t lo_flags; /* ioctl r/o */ 1736 char lo_name[LO_NAME_SIZE]; 1737 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1738 compat_ulong_t lo_init[2]; 1739 char reserved[4]; 1740 }; 1741 1742 /* 1743 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1744 * - noinlined to reduce stack space usage in main part of driver 1745 */ 1746 static noinline int 1747 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1748 struct loop_info64 *info64) 1749 { 1750 struct compat_loop_info info; 1751 1752 if (copy_from_user(&info, arg, sizeof(info))) 1753 return -EFAULT; 1754 1755 memset(info64, 0, sizeof(*info64)); 1756 info64->lo_number = info.lo_number; 1757 info64->lo_device = info.lo_device; 1758 info64->lo_inode = info.lo_inode; 1759 info64->lo_rdevice = info.lo_rdevice; 1760 info64->lo_offset = info.lo_offset; 1761 info64->lo_sizelimit = 0; 1762 info64->lo_encrypt_type = info.lo_encrypt_type; 1763 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1764 info64->lo_flags = info.lo_flags; 1765 info64->lo_init[0] = info.lo_init[0]; 1766 info64->lo_init[1] = info.lo_init[1]; 1767 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1768 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1769 else 1770 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1771 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1772 return 0; 1773 } 1774 1775 /* 1776 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1777 * - noinlined to reduce stack space usage in main part of driver 1778 */ 1779 static noinline int 1780 loop_info64_to_compat(const struct loop_info64 *info64, 1781 struct compat_loop_info __user *arg) 1782 { 1783 struct compat_loop_info info; 1784 1785 memset(&info, 0, sizeof(info)); 1786 info.lo_number = info64->lo_number; 1787 info.lo_device = info64->lo_device; 1788 info.lo_inode = info64->lo_inode; 1789 info.lo_rdevice = info64->lo_rdevice; 1790 info.lo_offset = info64->lo_offset; 1791 info.lo_encrypt_type = info64->lo_encrypt_type; 1792 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1793 info.lo_flags = info64->lo_flags; 1794 info.lo_init[0] = info64->lo_init[0]; 1795 info.lo_init[1] = info64->lo_init[1]; 1796 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1797 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1798 else 1799 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1800 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1801 1802 /* error in case values were truncated */ 1803 if (info.lo_device != info64->lo_device || 1804 info.lo_rdevice != info64->lo_rdevice || 1805 info.lo_inode != info64->lo_inode || 1806 info.lo_offset != info64->lo_offset || 1807 info.lo_init[0] != info64->lo_init[0] || 1808 info.lo_init[1] != info64->lo_init[1]) 1809 return -EOVERFLOW; 1810 1811 if (copy_to_user(arg, &info, sizeof(info))) 1812 return -EFAULT; 1813 return 0; 1814 } 1815 1816 static int 1817 loop_set_status_compat(struct loop_device *lo, 1818 const struct compat_loop_info __user *arg) 1819 { 1820 struct loop_info64 info64; 1821 int ret; 1822 1823 ret = loop_info64_from_compat(arg, &info64); 1824 if (ret < 0) 1825 return ret; 1826 return loop_set_status(lo, &info64); 1827 } 1828 1829 static int 1830 loop_get_status_compat(struct loop_device *lo, 1831 struct compat_loop_info __user *arg) 1832 { 1833 struct loop_info64 info64; 1834 int err; 1835 1836 if (!arg) 1837 return -EINVAL; 1838 err = loop_get_status(lo, &info64); 1839 if (!err) 1840 err = loop_info64_to_compat(&info64, arg); 1841 return err; 1842 } 1843 1844 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1845 unsigned int cmd, unsigned long arg) 1846 { 1847 struct loop_device *lo = bdev->bd_disk->private_data; 1848 int err; 1849 1850 switch(cmd) { 1851 case LOOP_SET_STATUS: 1852 err = loop_set_status_compat(lo, 1853 (const struct compat_loop_info __user *)arg); 1854 break; 1855 case LOOP_GET_STATUS: 1856 err = loop_get_status_compat(lo, 1857 (struct compat_loop_info __user *)arg); 1858 break; 1859 case LOOP_SET_CAPACITY: 1860 case LOOP_CLR_FD: 1861 case LOOP_GET_STATUS64: 1862 case LOOP_SET_STATUS64: 1863 case LOOP_CONFIGURE: 1864 arg = (unsigned long) compat_ptr(arg); 1865 fallthrough; 1866 case LOOP_SET_FD: 1867 case LOOP_CHANGE_FD: 1868 case LOOP_SET_BLOCK_SIZE: 1869 case LOOP_SET_DIRECT_IO: 1870 err = lo_ioctl(bdev, mode, cmd, arg); 1871 break; 1872 default: 1873 err = -ENOIOCTLCMD; 1874 break; 1875 } 1876 return err; 1877 } 1878 #endif 1879 1880 static int lo_open(struct block_device *bdev, fmode_t mode) 1881 { 1882 struct loop_device *lo; 1883 int err; 1884 1885 /* 1886 * take loop_ctl_mutex to protect lo pointer from race with 1887 * loop_control_ioctl(LOOP_CTL_REMOVE), however, to reduce contention 1888 * release it prior to updating lo->lo_refcnt. 1889 */ 1890 err = mutex_lock_killable(&loop_ctl_mutex); 1891 if (err) 1892 return err; 1893 lo = bdev->bd_disk->private_data; 1894 if (!lo) { 1895 mutex_unlock(&loop_ctl_mutex); 1896 return -ENXIO; 1897 } 1898 err = mutex_lock_killable(&lo->lo_mutex); 1899 mutex_unlock(&loop_ctl_mutex); 1900 if (err) 1901 return err; 1902 atomic_inc(&lo->lo_refcnt); 1903 mutex_unlock(&lo->lo_mutex); 1904 return 0; 1905 } 1906 1907 static void lo_release(struct gendisk *disk, fmode_t mode) 1908 { 1909 struct loop_device *lo = disk->private_data; 1910 1911 mutex_lock(&lo->lo_mutex); 1912 if (atomic_dec_return(&lo->lo_refcnt)) 1913 goto out_unlock; 1914 1915 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1916 if (lo->lo_state != Lo_bound) 1917 goto out_unlock; 1918 lo->lo_state = Lo_rundown; 1919 mutex_unlock(&lo->lo_mutex); 1920 /* 1921 * In autoclear mode, stop the loop thread 1922 * and remove configuration after last close. 1923 */ 1924 __loop_clr_fd(lo, true); 1925 return; 1926 } else if (lo->lo_state == Lo_bound) { 1927 /* 1928 * Otherwise keep thread (if running) and config, 1929 * but flush possible ongoing bios in thread. 1930 */ 1931 blk_mq_freeze_queue(lo->lo_queue); 1932 blk_mq_unfreeze_queue(lo->lo_queue); 1933 } 1934 1935 out_unlock: 1936 mutex_unlock(&lo->lo_mutex); 1937 } 1938 1939 static const struct block_device_operations lo_fops = { 1940 .owner = THIS_MODULE, 1941 .open = lo_open, 1942 .release = lo_release, 1943 .ioctl = lo_ioctl, 1944 #ifdef CONFIG_COMPAT 1945 .compat_ioctl = lo_compat_ioctl, 1946 #endif 1947 }; 1948 1949 /* 1950 * And now the modules code and kernel interface. 1951 */ 1952 static int max_loop; 1953 module_param(max_loop, int, 0444); 1954 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1955 module_param(max_part, int, 0444); 1956 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1957 MODULE_LICENSE("GPL"); 1958 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1959 1960 int loop_register_transfer(struct loop_func_table *funcs) 1961 { 1962 unsigned int n = funcs->number; 1963 1964 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1965 return -EINVAL; 1966 xfer_funcs[n] = funcs; 1967 return 0; 1968 } 1969 1970 static int unregister_transfer_cb(int id, void *ptr, void *data) 1971 { 1972 struct loop_device *lo = ptr; 1973 struct loop_func_table *xfer = data; 1974 1975 mutex_lock(&lo->lo_mutex); 1976 if (lo->lo_encryption == xfer) 1977 loop_release_xfer(lo); 1978 mutex_unlock(&lo->lo_mutex); 1979 return 0; 1980 } 1981 1982 int loop_unregister_transfer(int number) 1983 { 1984 unsigned int n = number; 1985 struct loop_func_table *xfer; 1986 1987 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1988 return -EINVAL; 1989 1990 xfer_funcs[n] = NULL; 1991 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1992 return 0; 1993 } 1994 1995 EXPORT_SYMBOL(loop_register_transfer); 1996 EXPORT_SYMBOL(loop_unregister_transfer); 1997 1998 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1999 const struct blk_mq_queue_data *bd) 2000 { 2001 struct request *rq = bd->rq; 2002 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2003 struct loop_device *lo = rq->q->queuedata; 2004 2005 blk_mq_start_request(rq); 2006 2007 if (lo->lo_state != Lo_bound) 2008 return BLK_STS_IOERR; 2009 2010 switch (req_op(rq)) { 2011 case REQ_OP_FLUSH: 2012 case REQ_OP_DISCARD: 2013 case REQ_OP_WRITE_ZEROES: 2014 cmd->use_aio = false; 2015 break; 2016 default: 2017 cmd->use_aio = lo->use_dio; 2018 break; 2019 } 2020 2021 /* always use the first bio's css */ 2022 #ifdef CONFIG_BLK_CGROUP 2023 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) { 2024 cmd->css = &bio_blkcg(rq->bio)->css; 2025 css_get(cmd->css); 2026 } else 2027 #endif 2028 cmd->css = NULL; 2029 kthread_queue_work(&lo->worker, &cmd->work); 2030 2031 return BLK_STS_OK; 2032 } 2033 2034 static void loop_handle_cmd(struct loop_cmd *cmd) 2035 { 2036 struct request *rq = blk_mq_rq_from_pdu(cmd); 2037 const bool write = op_is_write(req_op(rq)); 2038 struct loop_device *lo = rq->q->queuedata; 2039 int ret = 0; 2040 2041 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 2042 ret = -EIO; 2043 goto failed; 2044 } 2045 2046 ret = do_req_filebacked(lo, rq); 2047 failed: 2048 /* complete non-aio request */ 2049 if (!cmd->use_aio || ret) { 2050 if (ret == -EOPNOTSUPP) 2051 cmd->ret = ret; 2052 else 2053 cmd->ret = ret ? -EIO : 0; 2054 if (likely(!blk_should_fake_timeout(rq->q))) 2055 blk_mq_complete_request(rq); 2056 } 2057 } 2058 2059 static void loop_queue_work(struct kthread_work *work) 2060 { 2061 struct loop_cmd *cmd = 2062 container_of(work, struct loop_cmd, work); 2063 2064 loop_handle_cmd(cmd); 2065 } 2066 2067 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq, 2068 unsigned int hctx_idx, unsigned int numa_node) 2069 { 2070 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 2071 2072 kthread_init_work(&cmd->work, loop_queue_work); 2073 return 0; 2074 } 2075 2076 static const struct blk_mq_ops loop_mq_ops = { 2077 .queue_rq = loop_queue_rq, 2078 .init_request = loop_init_request, 2079 .complete = lo_complete_rq, 2080 }; 2081 2082 static int loop_add(struct loop_device **l, int i) 2083 { 2084 struct loop_device *lo; 2085 struct gendisk *disk; 2086 int err; 2087 2088 err = -ENOMEM; 2089 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 2090 if (!lo) 2091 goto out; 2092 2093 lo->lo_state = Lo_unbound; 2094 2095 /* allocate id, if @id >= 0, we're requesting that specific id */ 2096 if (i >= 0) { 2097 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2098 if (err == -ENOSPC) 2099 err = -EEXIST; 2100 } else { 2101 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2102 } 2103 if (err < 0) 2104 goto out_free_dev; 2105 i = err; 2106 2107 err = -ENOMEM; 2108 lo->tag_set.ops = &loop_mq_ops; 2109 lo->tag_set.nr_hw_queues = 1; 2110 lo->tag_set.queue_depth = 128; 2111 lo->tag_set.numa_node = NUMA_NO_NODE; 2112 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2113 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING; 2114 lo->tag_set.driver_data = lo; 2115 2116 err = blk_mq_alloc_tag_set(&lo->tag_set); 2117 if (err) 2118 goto out_free_idr; 2119 2120 lo->lo_queue = blk_mq_init_queue(&lo->tag_set); 2121 if (IS_ERR(lo->lo_queue)) { 2122 err = PTR_ERR(lo->lo_queue); 2123 goto out_cleanup_tags; 2124 } 2125 lo->lo_queue->queuedata = lo; 2126 2127 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS); 2128 2129 /* 2130 * By default, we do buffer IO, so it doesn't make sense to enable 2131 * merge because the I/O submitted to backing file is handled page by 2132 * page. For directio mode, merge does help to dispatch bigger request 2133 * to underlayer disk. We will enable merge once directio is enabled. 2134 */ 2135 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue); 2136 2137 err = -ENOMEM; 2138 disk = lo->lo_disk = alloc_disk(1 << part_shift); 2139 if (!disk) 2140 goto out_free_queue; 2141 2142 /* 2143 * Disable partition scanning by default. The in-kernel partition 2144 * scanning can be requested individually per-device during its 2145 * setup. Userspace can always add and remove partitions from all 2146 * devices. The needed partition minors are allocated from the 2147 * extended minor space, the main loop device numbers will continue 2148 * to match the loop minors, regardless of the number of partitions 2149 * used. 2150 * 2151 * If max_part is given, partition scanning is globally enabled for 2152 * all loop devices. The minors for the main loop devices will be 2153 * multiples of max_part. 2154 * 2155 * Note: Global-for-all-devices, set-only-at-init, read-only module 2156 * parameteters like 'max_loop' and 'max_part' make things needlessly 2157 * complicated, are too static, inflexible and may surprise 2158 * userspace tools. Parameters like this in general should be avoided. 2159 */ 2160 if (!part_shift) 2161 disk->flags |= GENHD_FL_NO_PART_SCAN; 2162 disk->flags |= GENHD_FL_EXT_DEVT; 2163 atomic_set(&lo->lo_refcnt, 0); 2164 mutex_init(&lo->lo_mutex); 2165 lo->lo_number = i; 2166 spin_lock_init(&lo->lo_lock); 2167 disk->major = LOOP_MAJOR; 2168 disk->first_minor = i << part_shift; 2169 disk->fops = &lo_fops; 2170 disk->private_data = lo; 2171 disk->queue = lo->lo_queue; 2172 sprintf(disk->disk_name, "loop%d", i); 2173 add_disk(disk); 2174 *l = lo; 2175 return lo->lo_number; 2176 2177 out_free_queue: 2178 blk_cleanup_queue(lo->lo_queue); 2179 out_cleanup_tags: 2180 blk_mq_free_tag_set(&lo->tag_set); 2181 out_free_idr: 2182 idr_remove(&loop_index_idr, i); 2183 out_free_dev: 2184 kfree(lo); 2185 out: 2186 return err; 2187 } 2188 2189 static void loop_remove(struct loop_device *lo) 2190 { 2191 del_gendisk(lo->lo_disk); 2192 blk_cleanup_queue(lo->lo_queue); 2193 blk_mq_free_tag_set(&lo->tag_set); 2194 put_disk(lo->lo_disk); 2195 mutex_destroy(&lo->lo_mutex); 2196 kfree(lo); 2197 } 2198 2199 static int find_free_cb(int id, void *ptr, void *data) 2200 { 2201 struct loop_device *lo = ptr; 2202 struct loop_device **l = data; 2203 2204 if (lo->lo_state == Lo_unbound) { 2205 *l = lo; 2206 return 1; 2207 } 2208 return 0; 2209 } 2210 2211 static int loop_lookup(struct loop_device **l, int i) 2212 { 2213 struct loop_device *lo; 2214 int ret = -ENODEV; 2215 2216 if (i < 0) { 2217 int err; 2218 2219 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 2220 if (err == 1) { 2221 *l = lo; 2222 ret = lo->lo_number; 2223 } 2224 goto out; 2225 } 2226 2227 /* lookup and return a specific i */ 2228 lo = idr_find(&loop_index_idr, i); 2229 if (lo) { 2230 *l = lo; 2231 ret = lo->lo_number; 2232 } 2233 out: 2234 return ret; 2235 } 2236 2237 static void loop_probe(dev_t dev) 2238 { 2239 int idx = MINOR(dev) >> part_shift; 2240 struct loop_device *lo; 2241 2242 if (max_loop && idx >= max_loop) 2243 return; 2244 2245 mutex_lock(&loop_ctl_mutex); 2246 if (loop_lookup(&lo, idx) < 0) 2247 loop_add(&lo, idx); 2248 mutex_unlock(&loop_ctl_mutex); 2249 } 2250 2251 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2252 unsigned long parm) 2253 { 2254 struct loop_device *lo; 2255 int ret; 2256 2257 ret = mutex_lock_killable(&loop_ctl_mutex); 2258 if (ret) 2259 return ret; 2260 2261 ret = -ENOSYS; 2262 switch (cmd) { 2263 case LOOP_CTL_ADD: 2264 ret = loop_lookup(&lo, parm); 2265 if (ret >= 0) { 2266 ret = -EEXIST; 2267 break; 2268 } 2269 ret = loop_add(&lo, parm); 2270 break; 2271 case LOOP_CTL_REMOVE: 2272 ret = loop_lookup(&lo, parm); 2273 if (ret < 0) 2274 break; 2275 ret = mutex_lock_killable(&lo->lo_mutex); 2276 if (ret) 2277 break; 2278 if (lo->lo_state != Lo_unbound) { 2279 ret = -EBUSY; 2280 mutex_unlock(&lo->lo_mutex); 2281 break; 2282 } 2283 if (atomic_read(&lo->lo_refcnt) > 0) { 2284 ret = -EBUSY; 2285 mutex_unlock(&lo->lo_mutex); 2286 break; 2287 } 2288 lo->lo_disk->private_data = NULL; 2289 mutex_unlock(&lo->lo_mutex); 2290 idr_remove(&loop_index_idr, lo->lo_number); 2291 loop_remove(lo); 2292 break; 2293 case LOOP_CTL_GET_FREE: 2294 ret = loop_lookup(&lo, -1); 2295 if (ret >= 0) 2296 break; 2297 ret = loop_add(&lo, -1); 2298 } 2299 mutex_unlock(&loop_ctl_mutex); 2300 2301 return ret; 2302 } 2303 2304 static const struct file_operations loop_ctl_fops = { 2305 .open = nonseekable_open, 2306 .unlocked_ioctl = loop_control_ioctl, 2307 .compat_ioctl = loop_control_ioctl, 2308 .owner = THIS_MODULE, 2309 .llseek = noop_llseek, 2310 }; 2311 2312 static struct miscdevice loop_misc = { 2313 .minor = LOOP_CTRL_MINOR, 2314 .name = "loop-control", 2315 .fops = &loop_ctl_fops, 2316 }; 2317 2318 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2319 MODULE_ALIAS("devname:loop-control"); 2320 2321 static int __init loop_init(void) 2322 { 2323 int i, nr; 2324 struct loop_device *lo; 2325 int err; 2326 2327 part_shift = 0; 2328 if (max_part > 0) { 2329 part_shift = fls(max_part); 2330 2331 /* 2332 * Adjust max_part according to part_shift as it is exported 2333 * to user space so that user can decide correct minor number 2334 * if [s]he want to create more devices. 2335 * 2336 * Note that -1 is required because partition 0 is reserved 2337 * for the whole disk. 2338 */ 2339 max_part = (1UL << part_shift) - 1; 2340 } 2341 2342 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2343 err = -EINVAL; 2344 goto err_out; 2345 } 2346 2347 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2348 err = -EINVAL; 2349 goto err_out; 2350 } 2351 2352 /* 2353 * If max_loop is specified, create that many devices upfront. 2354 * This also becomes a hard limit. If max_loop is not specified, 2355 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 2356 * init time. Loop devices can be requested on-demand with the 2357 * /dev/loop-control interface, or be instantiated by accessing 2358 * a 'dead' device node. 2359 */ 2360 if (max_loop) 2361 nr = max_loop; 2362 else 2363 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 2364 2365 err = misc_register(&loop_misc); 2366 if (err < 0) 2367 goto err_out; 2368 2369 2370 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2371 err = -EIO; 2372 goto misc_out; 2373 } 2374 2375 /* pre-create number of devices given by config or max_loop */ 2376 mutex_lock(&loop_ctl_mutex); 2377 for (i = 0; i < nr; i++) 2378 loop_add(&lo, i); 2379 mutex_unlock(&loop_ctl_mutex); 2380 2381 printk(KERN_INFO "loop: module loaded\n"); 2382 return 0; 2383 2384 misc_out: 2385 misc_deregister(&loop_misc); 2386 err_out: 2387 return err; 2388 } 2389 2390 static int loop_exit_cb(int id, void *ptr, void *data) 2391 { 2392 struct loop_device *lo = ptr; 2393 2394 loop_remove(lo); 2395 return 0; 2396 } 2397 2398 static void __exit loop_exit(void) 2399 { 2400 mutex_lock(&loop_ctl_mutex); 2401 2402 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 2403 idr_destroy(&loop_index_idr); 2404 2405 unregister_blkdev(LOOP_MAJOR, "loop"); 2406 2407 misc_deregister(&loop_misc); 2408 2409 mutex_unlock(&loop_ctl_mutex); 2410 } 2411 2412 module_init(loop_init); 2413 module_exit(loop_exit); 2414 2415 #ifndef MODULE 2416 static int __init max_loop_setup(char *str) 2417 { 2418 max_loop = simple_strtol(str, NULL, 0); 2419 return 1; 2420 } 2421 2422 __setup("max_loop=", max_loop_setup); 2423 #endif 2424