1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 1993 by Theodore Ts'o. 4 */ 5 #include <linux/module.h> 6 #include <linux/moduleparam.h> 7 #include <linux/sched.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/file.h> 11 #include <linux/stat.h> 12 #include <linux/errno.h> 13 #include <linux/major.h> 14 #include <linux/wait.h> 15 #include <linux/blkpg.h> 16 #include <linux/init.h> 17 #include <linux/swap.h> 18 #include <linux/slab.h> 19 #include <linux/compat.h> 20 #include <linux/suspend.h> 21 #include <linux/freezer.h> 22 #include <linux/mutex.h> 23 #include <linux/writeback.h> 24 #include <linux/completion.h> 25 #include <linux/highmem.h> 26 #include <linux/splice.h> 27 #include <linux/sysfs.h> 28 #include <linux/miscdevice.h> 29 #include <linux/falloc.h> 30 #include <linux/uio.h> 31 #include <linux/ioprio.h> 32 #include <linux/blk-cgroup.h> 33 #include <linux/sched/mm.h> 34 #include <linux/statfs.h> 35 #include <linux/uaccess.h> 36 #include <linux/blk-mq.h> 37 #include <linux/spinlock.h> 38 #include <uapi/linux/loop.h> 39 40 /* Possible states of device */ 41 enum { 42 Lo_unbound, 43 Lo_bound, 44 Lo_rundown, 45 Lo_deleting, 46 }; 47 48 struct loop_func_table; 49 50 struct loop_device { 51 int lo_number; 52 loff_t lo_offset; 53 loff_t lo_sizelimit; 54 int lo_flags; 55 char lo_file_name[LO_NAME_SIZE]; 56 57 struct file * lo_backing_file; 58 struct block_device *lo_device; 59 60 gfp_t old_gfp_mask; 61 62 spinlock_t lo_lock; 63 int lo_state; 64 spinlock_t lo_work_lock; 65 struct workqueue_struct *workqueue; 66 struct work_struct rootcg_work; 67 struct list_head rootcg_cmd_list; 68 struct list_head idle_worker_list; 69 struct rb_root worker_tree; 70 struct timer_list timer; 71 bool use_dio; 72 bool sysfs_inited; 73 74 struct request_queue *lo_queue; 75 struct blk_mq_tag_set tag_set; 76 struct gendisk *lo_disk; 77 struct mutex lo_mutex; 78 bool idr_visible; 79 }; 80 81 struct loop_cmd { 82 struct list_head list_entry; 83 bool use_aio; /* use AIO interface to handle I/O */ 84 atomic_t ref; /* only for aio */ 85 long ret; 86 struct kiocb iocb; 87 struct bio_vec *bvec; 88 struct cgroup_subsys_state *blkcg_css; 89 struct cgroup_subsys_state *memcg_css; 90 }; 91 92 #define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ) 93 #define LOOP_DEFAULT_HW_Q_DEPTH 128 94 95 static DEFINE_IDR(loop_index_idr); 96 static DEFINE_MUTEX(loop_ctl_mutex); 97 static DEFINE_MUTEX(loop_validate_mutex); 98 99 /** 100 * loop_global_lock_killable() - take locks for safe loop_validate_file() test 101 * 102 * @lo: struct loop_device 103 * @global: true if @lo is about to bind another "struct loop_device", false otherwise 104 * 105 * Returns 0 on success, -EINTR otherwise. 106 * 107 * Since loop_validate_file() traverses on other "struct loop_device" if 108 * is_loop_device() is true, we need a global lock for serializing concurrent 109 * loop_configure()/loop_change_fd()/__loop_clr_fd() calls. 110 */ 111 static int loop_global_lock_killable(struct loop_device *lo, bool global) 112 { 113 int err; 114 115 if (global) { 116 err = mutex_lock_killable(&loop_validate_mutex); 117 if (err) 118 return err; 119 } 120 err = mutex_lock_killable(&lo->lo_mutex); 121 if (err && global) 122 mutex_unlock(&loop_validate_mutex); 123 return err; 124 } 125 126 /** 127 * loop_global_unlock() - release locks taken by loop_global_lock_killable() 128 * 129 * @lo: struct loop_device 130 * @global: true if @lo was about to bind another "struct loop_device", false otherwise 131 */ 132 static void loop_global_unlock(struct loop_device *lo, bool global) 133 { 134 mutex_unlock(&lo->lo_mutex); 135 if (global) 136 mutex_unlock(&loop_validate_mutex); 137 } 138 139 static int max_part; 140 static int part_shift; 141 142 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 143 { 144 loff_t loopsize; 145 146 /* Compute loopsize in bytes */ 147 loopsize = i_size_read(file->f_mapping->host); 148 if (offset > 0) 149 loopsize -= offset; 150 /* offset is beyond i_size, weird but possible */ 151 if (loopsize < 0) 152 return 0; 153 154 if (sizelimit > 0 && sizelimit < loopsize) 155 loopsize = sizelimit; 156 /* 157 * Unfortunately, if we want to do I/O on the device, 158 * the number of 512-byte sectors has to fit into a sector_t. 159 */ 160 return loopsize >> 9; 161 } 162 163 static loff_t get_loop_size(struct loop_device *lo, struct file *file) 164 { 165 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 166 } 167 168 /* 169 * We support direct I/O only if lo_offset is aligned with the logical I/O size 170 * of backing device, and the logical block size of loop is bigger than that of 171 * the backing device. 172 */ 173 static bool lo_bdev_can_use_dio(struct loop_device *lo, 174 struct block_device *backing_bdev) 175 { 176 unsigned short sb_bsize = bdev_logical_block_size(backing_bdev); 177 178 if (queue_logical_block_size(lo->lo_queue) < sb_bsize) 179 return false; 180 if (lo->lo_offset & (sb_bsize - 1)) 181 return false; 182 return true; 183 } 184 185 static void __loop_update_dio(struct loop_device *lo, bool dio) 186 { 187 struct file *file = lo->lo_backing_file; 188 struct inode *inode = file->f_mapping->host; 189 struct block_device *backing_bdev = NULL; 190 bool use_dio; 191 192 if (S_ISBLK(inode->i_mode)) 193 backing_bdev = I_BDEV(inode); 194 else if (inode->i_sb->s_bdev) 195 backing_bdev = inode->i_sb->s_bdev; 196 197 use_dio = dio && (file->f_mode & FMODE_CAN_ODIRECT) && 198 (!backing_bdev || lo_bdev_can_use_dio(lo, backing_bdev)); 199 200 if (lo->use_dio == use_dio) 201 return; 202 203 /* flush dirty pages before changing direct IO */ 204 vfs_fsync(file, 0); 205 206 /* 207 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with 208 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup 209 * will get updated by ioctl(LOOP_GET_STATUS) 210 */ 211 if (lo->lo_state == Lo_bound) 212 blk_mq_freeze_queue(lo->lo_queue); 213 lo->use_dio = use_dio; 214 if (use_dio) 215 lo->lo_flags |= LO_FLAGS_DIRECT_IO; 216 else 217 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; 218 if (lo->lo_state == Lo_bound) 219 blk_mq_unfreeze_queue(lo->lo_queue); 220 } 221 222 /** 223 * loop_set_size() - sets device size and notifies userspace 224 * @lo: struct loop_device to set the size for 225 * @size: new size of the loop device 226 * 227 * Callers must validate that the size passed into this function fits into 228 * a sector_t, eg using loop_validate_size() 229 */ 230 static void loop_set_size(struct loop_device *lo, loff_t size) 231 { 232 if (!set_capacity_and_notify(lo->lo_disk, size)) 233 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 234 } 235 236 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) 237 { 238 struct iov_iter i; 239 ssize_t bw; 240 241 iov_iter_bvec(&i, ITER_SOURCE, bvec, 1, bvec->bv_len); 242 243 bw = vfs_iter_write(file, &i, ppos, 0); 244 245 if (likely(bw == bvec->bv_len)) 246 return 0; 247 248 printk_ratelimited(KERN_ERR 249 "loop: Write error at byte offset %llu, length %i.\n", 250 (unsigned long long)*ppos, bvec->bv_len); 251 if (bw >= 0) 252 bw = -EIO; 253 return bw; 254 } 255 256 static int lo_write_simple(struct loop_device *lo, struct request *rq, 257 loff_t pos) 258 { 259 struct bio_vec bvec; 260 struct req_iterator iter; 261 int ret = 0; 262 263 rq_for_each_segment(bvec, rq, iter) { 264 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); 265 if (ret < 0) 266 break; 267 cond_resched(); 268 } 269 270 return ret; 271 } 272 273 static int lo_read_simple(struct loop_device *lo, struct request *rq, 274 loff_t pos) 275 { 276 struct bio_vec bvec; 277 struct req_iterator iter; 278 struct iov_iter i; 279 ssize_t len; 280 281 rq_for_each_segment(bvec, rq, iter) { 282 iov_iter_bvec(&i, ITER_DEST, &bvec, 1, bvec.bv_len); 283 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0); 284 if (len < 0) 285 return len; 286 287 flush_dcache_page(bvec.bv_page); 288 289 if (len != bvec.bv_len) { 290 struct bio *bio; 291 292 __rq_for_each_bio(bio, rq) 293 zero_fill_bio(bio); 294 break; 295 } 296 cond_resched(); 297 } 298 299 return 0; 300 } 301 302 static void loop_clear_limits(struct loop_device *lo, int mode) 303 { 304 struct queue_limits lim = queue_limits_start_update(lo->lo_queue); 305 306 if (mode & FALLOC_FL_ZERO_RANGE) 307 lim.max_write_zeroes_sectors = 0; 308 309 if (mode & FALLOC_FL_PUNCH_HOLE) { 310 lim.max_hw_discard_sectors = 0; 311 lim.discard_granularity = 0; 312 } 313 314 queue_limits_commit_update(lo->lo_queue, &lim); 315 } 316 317 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos, 318 int mode) 319 { 320 /* 321 * We use fallocate to manipulate the space mappings used by the image 322 * a.k.a. discard/zerorange. 323 */ 324 struct file *file = lo->lo_backing_file; 325 int ret; 326 327 mode |= FALLOC_FL_KEEP_SIZE; 328 329 if (!bdev_max_discard_sectors(lo->lo_device)) 330 return -EOPNOTSUPP; 331 332 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); 333 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) 334 return -EIO; 335 336 /* 337 * We initially configure the limits in a hope that fallocate is 338 * supported and clear them here if that turns out not to be true. 339 */ 340 if (unlikely(ret == -EOPNOTSUPP)) 341 loop_clear_limits(lo, mode); 342 343 return ret; 344 } 345 346 static int lo_req_flush(struct loop_device *lo, struct request *rq) 347 { 348 int ret = vfs_fsync(lo->lo_backing_file, 0); 349 if (unlikely(ret && ret != -EINVAL)) 350 ret = -EIO; 351 352 return ret; 353 } 354 355 static void lo_complete_rq(struct request *rq) 356 { 357 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 358 blk_status_t ret = BLK_STS_OK; 359 360 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) || 361 req_op(rq) != REQ_OP_READ) { 362 if (cmd->ret < 0) 363 ret = errno_to_blk_status(cmd->ret); 364 goto end_io; 365 } 366 367 /* 368 * Short READ - if we got some data, advance our request and 369 * retry it. If we got no data, end the rest with EIO. 370 */ 371 if (cmd->ret) { 372 blk_update_request(rq, BLK_STS_OK, cmd->ret); 373 cmd->ret = 0; 374 blk_mq_requeue_request(rq, true); 375 } else { 376 if (cmd->use_aio) { 377 struct bio *bio = rq->bio; 378 379 while (bio) { 380 zero_fill_bio(bio); 381 bio = bio->bi_next; 382 } 383 } 384 ret = BLK_STS_IOERR; 385 end_io: 386 blk_mq_end_request(rq, ret); 387 } 388 } 389 390 static void lo_rw_aio_do_completion(struct loop_cmd *cmd) 391 { 392 struct request *rq = blk_mq_rq_from_pdu(cmd); 393 394 if (!atomic_dec_and_test(&cmd->ref)) 395 return; 396 kfree(cmd->bvec); 397 cmd->bvec = NULL; 398 if (likely(!blk_should_fake_timeout(rq->q))) 399 blk_mq_complete_request(rq); 400 } 401 402 static void lo_rw_aio_complete(struct kiocb *iocb, long ret) 403 { 404 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); 405 406 cmd->ret = ret; 407 lo_rw_aio_do_completion(cmd); 408 } 409 410 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, 411 loff_t pos, int rw) 412 { 413 struct iov_iter iter; 414 struct req_iterator rq_iter; 415 struct bio_vec *bvec; 416 struct request *rq = blk_mq_rq_from_pdu(cmd); 417 struct bio *bio = rq->bio; 418 struct file *file = lo->lo_backing_file; 419 struct bio_vec tmp; 420 unsigned int offset; 421 int nr_bvec = 0; 422 int ret; 423 424 rq_for_each_bvec(tmp, rq, rq_iter) 425 nr_bvec++; 426 427 if (rq->bio != rq->biotail) { 428 429 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec), 430 GFP_NOIO); 431 if (!bvec) 432 return -EIO; 433 cmd->bvec = bvec; 434 435 /* 436 * The bios of the request may be started from the middle of 437 * the 'bvec' because of bio splitting, so we can't directly 438 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec 439 * API will take care of all details for us. 440 */ 441 rq_for_each_bvec(tmp, rq, rq_iter) { 442 *bvec = tmp; 443 bvec++; 444 } 445 bvec = cmd->bvec; 446 offset = 0; 447 } else { 448 /* 449 * Same here, this bio may be started from the middle of the 450 * 'bvec' because of bio splitting, so offset from the bvec 451 * must be passed to iov iterator 452 */ 453 offset = bio->bi_iter.bi_bvec_done; 454 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); 455 } 456 atomic_set(&cmd->ref, 2); 457 458 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq)); 459 iter.iov_offset = offset; 460 461 cmd->iocb.ki_pos = pos; 462 cmd->iocb.ki_filp = file; 463 cmd->iocb.ki_complete = lo_rw_aio_complete; 464 cmd->iocb.ki_flags = IOCB_DIRECT; 465 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 466 467 if (rw == ITER_SOURCE) 468 ret = file->f_op->write_iter(&cmd->iocb, &iter); 469 else 470 ret = file->f_op->read_iter(&cmd->iocb, &iter); 471 472 lo_rw_aio_do_completion(cmd); 473 474 if (ret != -EIOCBQUEUED) 475 lo_rw_aio_complete(&cmd->iocb, ret); 476 return 0; 477 } 478 479 static int do_req_filebacked(struct loop_device *lo, struct request *rq) 480 { 481 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 482 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; 483 484 /* 485 * lo_write_simple and lo_read_simple should have been covered 486 * by io submit style function like lo_rw_aio(), one blocker 487 * is that lo_read_simple() need to call flush_dcache_page after 488 * the page is written from kernel, and it isn't easy to handle 489 * this in io submit style function which submits all segments 490 * of the req at one time. And direct read IO doesn't need to 491 * run flush_dcache_page(). 492 */ 493 switch (req_op(rq)) { 494 case REQ_OP_FLUSH: 495 return lo_req_flush(lo, rq); 496 case REQ_OP_WRITE_ZEROES: 497 /* 498 * If the caller doesn't want deallocation, call zeroout to 499 * write zeroes the range. Otherwise, punch them out. 500 */ 501 return lo_fallocate(lo, rq, pos, 502 (rq->cmd_flags & REQ_NOUNMAP) ? 503 FALLOC_FL_ZERO_RANGE : 504 FALLOC_FL_PUNCH_HOLE); 505 case REQ_OP_DISCARD: 506 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE); 507 case REQ_OP_WRITE: 508 if (cmd->use_aio) 509 return lo_rw_aio(lo, cmd, pos, ITER_SOURCE); 510 else 511 return lo_write_simple(lo, rq, pos); 512 case REQ_OP_READ: 513 if (cmd->use_aio) 514 return lo_rw_aio(lo, cmd, pos, ITER_DEST); 515 else 516 return lo_read_simple(lo, rq, pos); 517 default: 518 WARN_ON_ONCE(1); 519 return -EIO; 520 } 521 } 522 523 static inline void loop_update_dio(struct loop_device *lo) 524 { 525 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) | 526 lo->use_dio); 527 } 528 529 static void loop_reread_partitions(struct loop_device *lo) 530 { 531 int rc; 532 533 mutex_lock(&lo->lo_disk->open_mutex); 534 rc = bdev_disk_changed(lo->lo_disk, false); 535 mutex_unlock(&lo->lo_disk->open_mutex); 536 if (rc) 537 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", 538 __func__, lo->lo_number, lo->lo_file_name, rc); 539 } 540 541 static inline int is_loop_device(struct file *file) 542 { 543 struct inode *i = file->f_mapping->host; 544 545 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR; 546 } 547 548 static int loop_validate_file(struct file *file, struct block_device *bdev) 549 { 550 struct inode *inode = file->f_mapping->host; 551 struct file *f = file; 552 553 /* Avoid recursion */ 554 while (is_loop_device(f)) { 555 struct loop_device *l; 556 557 lockdep_assert_held(&loop_validate_mutex); 558 if (f->f_mapping->host->i_rdev == bdev->bd_dev) 559 return -EBADF; 560 561 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data; 562 if (l->lo_state != Lo_bound) 563 return -EINVAL; 564 /* Order wrt setting lo->lo_backing_file in loop_configure(). */ 565 rmb(); 566 f = l->lo_backing_file; 567 } 568 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 569 return -EINVAL; 570 return 0; 571 } 572 573 /* 574 * loop_change_fd switched the backing store of a loopback device to 575 * a new file. This is useful for operating system installers to free up 576 * the original file and in High Availability environments to switch to 577 * an alternative location for the content in case of server meltdown. 578 * This can only work if the loop device is used read-only, and if the 579 * new backing store is the same size and type as the old backing store. 580 */ 581 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 582 unsigned int arg) 583 { 584 struct file *file = fget(arg); 585 struct file *old_file; 586 int error; 587 bool partscan; 588 bool is_loop; 589 590 if (!file) 591 return -EBADF; 592 593 /* suppress uevents while reconfiguring the device */ 594 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 595 596 is_loop = is_loop_device(file); 597 error = loop_global_lock_killable(lo, is_loop); 598 if (error) 599 goto out_putf; 600 error = -ENXIO; 601 if (lo->lo_state != Lo_bound) 602 goto out_err; 603 604 /* the loop device has to be read-only */ 605 error = -EINVAL; 606 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 607 goto out_err; 608 609 error = loop_validate_file(file, bdev); 610 if (error) 611 goto out_err; 612 613 old_file = lo->lo_backing_file; 614 615 error = -EINVAL; 616 617 /* size of the new backing store needs to be the same */ 618 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 619 goto out_err; 620 621 /* and ... switch */ 622 disk_force_media_change(lo->lo_disk); 623 blk_mq_freeze_queue(lo->lo_queue); 624 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 625 lo->lo_backing_file = file; 626 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping); 627 mapping_set_gfp_mask(file->f_mapping, 628 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 629 loop_update_dio(lo); 630 blk_mq_unfreeze_queue(lo->lo_queue); 631 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 632 loop_global_unlock(lo, is_loop); 633 634 /* 635 * Flush loop_validate_file() before fput(), for l->lo_backing_file 636 * might be pointing at old_file which might be the last reference. 637 */ 638 if (!is_loop) { 639 mutex_lock(&loop_validate_mutex); 640 mutex_unlock(&loop_validate_mutex); 641 } 642 /* 643 * We must drop file reference outside of lo_mutex as dropping 644 * the file ref can take open_mutex which creates circular locking 645 * dependency. 646 */ 647 fput(old_file); 648 if (partscan) 649 loop_reread_partitions(lo); 650 651 error = 0; 652 done: 653 /* enable and uncork uevent now that we are done */ 654 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 655 return error; 656 657 out_err: 658 loop_global_unlock(lo, is_loop); 659 out_putf: 660 fput(file); 661 goto done; 662 } 663 664 /* loop sysfs attributes */ 665 666 static ssize_t loop_attr_show(struct device *dev, char *page, 667 ssize_t (*callback)(struct loop_device *, char *)) 668 { 669 struct gendisk *disk = dev_to_disk(dev); 670 struct loop_device *lo = disk->private_data; 671 672 return callback(lo, page); 673 } 674 675 #define LOOP_ATTR_RO(_name) \ 676 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 677 static ssize_t loop_attr_do_show_##_name(struct device *d, \ 678 struct device_attribute *attr, char *b) \ 679 { \ 680 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 681 } \ 682 static struct device_attribute loop_attr_##_name = \ 683 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL); 684 685 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 686 { 687 ssize_t ret; 688 char *p = NULL; 689 690 spin_lock_irq(&lo->lo_lock); 691 if (lo->lo_backing_file) 692 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); 693 spin_unlock_irq(&lo->lo_lock); 694 695 if (IS_ERR_OR_NULL(p)) 696 ret = PTR_ERR(p); 697 else { 698 ret = strlen(p); 699 memmove(buf, p, ret); 700 buf[ret++] = '\n'; 701 buf[ret] = 0; 702 } 703 704 return ret; 705 } 706 707 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 708 { 709 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); 710 } 711 712 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 713 { 714 return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 715 } 716 717 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 718 { 719 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 720 721 return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); 722 } 723 724 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 725 { 726 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 727 728 return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); 729 } 730 731 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) 732 { 733 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); 734 735 return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); 736 } 737 738 LOOP_ATTR_RO(backing_file); 739 LOOP_ATTR_RO(offset); 740 LOOP_ATTR_RO(sizelimit); 741 LOOP_ATTR_RO(autoclear); 742 LOOP_ATTR_RO(partscan); 743 LOOP_ATTR_RO(dio); 744 745 static struct attribute *loop_attrs[] = { 746 &loop_attr_backing_file.attr, 747 &loop_attr_offset.attr, 748 &loop_attr_sizelimit.attr, 749 &loop_attr_autoclear.attr, 750 &loop_attr_partscan.attr, 751 &loop_attr_dio.attr, 752 NULL, 753 }; 754 755 static struct attribute_group loop_attribute_group = { 756 .name = "loop", 757 .attrs= loop_attrs, 758 }; 759 760 static void loop_sysfs_init(struct loop_device *lo) 761 { 762 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 763 &loop_attribute_group); 764 } 765 766 static void loop_sysfs_exit(struct loop_device *lo) 767 { 768 if (lo->sysfs_inited) 769 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 770 &loop_attribute_group); 771 } 772 773 static void loop_config_discard(struct loop_device *lo, 774 struct queue_limits *lim) 775 { 776 struct file *file = lo->lo_backing_file; 777 struct inode *inode = file->f_mapping->host; 778 u32 granularity = 0, max_discard_sectors = 0; 779 struct kstatfs sbuf; 780 781 /* 782 * If the backing device is a block device, mirror its zeroing 783 * capability. Set the discard sectors to the block device's zeroing 784 * capabilities because loop discards result in blkdev_issue_zeroout(), 785 * not blkdev_issue_discard(). This maintains consistent behavior with 786 * file-backed loop devices: discarded regions read back as zero. 787 */ 788 if (S_ISBLK(inode->i_mode)) { 789 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode)); 790 791 max_discard_sectors = backingq->limits.max_write_zeroes_sectors; 792 granularity = bdev_discard_granularity(I_BDEV(inode)) ?: 793 queue_physical_block_size(backingq); 794 795 /* 796 * We use punch hole to reclaim the free space used by the 797 * image a.k.a. discard. 798 */ 799 } else if (file->f_op->fallocate && !vfs_statfs(&file->f_path, &sbuf)) { 800 max_discard_sectors = UINT_MAX >> 9; 801 granularity = sbuf.f_bsize; 802 } 803 804 lim->max_hw_discard_sectors = max_discard_sectors; 805 lim->max_write_zeroes_sectors = max_discard_sectors; 806 if (max_discard_sectors) 807 lim->discard_granularity = granularity; 808 else 809 lim->discard_granularity = 0; 810 } 811 812 struct loop_worker { 813 struct rb_node rb_node; 814 struct work_struct work; 815 struct list_head cmd_list; 816 struct list_head idle_list; 817 struct loop_device *lo; 818 struct cgroup_subsys_state *blkcg_css; 819 unsigned long last_ran_at; 820 }; 821 822 static void loop_workfn(struct work_struct *work); 823 824 #ifdef CONFIG_BLK_CGROUP 825 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 826 { 827 return !css || css == blkcg_root_css; 828 } 829 #else 830 static inline int queue_on_root_worker(struct cgroup_subsys_state *css) 831 { 832 return !css; 833 } 834 #endif 835 836 static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd) 837 { 838 struct rb_node **node, *parent = NULL; 839 struct loop_worker *cur_worker, *worker = NULL; 840 struct work_struct *work; 841 struct list_head *cmd_list; 842 843 spin_lock_irq(&lo->lo_work_lock); 844 845 if (queue_on_root_worker(cmd->blkcg_css)) 846 goto queue_work; 847 848 node = &lo->worker_tree.rb_node; 849 850 while (*node) { 851 parent = *node; 852 cur_worker = container_of(*node, struct loop_worker, rb_node); 853 if (cur_worker->blkcg_css == cmd->blkcg_css) { 854 worker = cur_worker; 855 break; 856 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) { 857 node = &(*node)->rb_left; 858 } else { 859 node = &(*node)->rb_right; 860 } 861 } 862 if (worker) 863 goto queue_work; 864 865 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN); 866 /* 867 * In the event we cannot allocate a worker, just queue on the 868 * rootcg worker and issue the I/O as the rootcg 869 */ 870 if (!worker) { 871 cmd->blkcg_css = NULL; 872 if (cmd->memcg_css) 873 css_put(cmd->memcg_css); 874 cmd->memcg_css = NULL; 875 goto queue_work; 876 } 877 878 worker->blkcg_css = cmd->blkcg_css; 879 css_get(worker->blkcg_css); 880 INIT_WORK(&worker->work, loop_workfn); 881 INIT_LIST_HEAD(&worker->cmd_list); 882 INIT_LIST_HEAD(&worker->idle_list); 883 worker->lo = lo; 884 rb_link_node(&worker->rb_node, parent, node); 885 rb_insert_color(&worker->rb_node, &lo->worker_tree); 886 queue_work: 887 if (worker) { 888 /* 889 * We need to remove from the idle list here while 890 * holding the lock so that the idle timer doesn't 891 * free the worker 892 */ 893 if (!list_empty(&worker->idle_list)) 894 list_del_init(&worker->idle_list); 895 work = &worker->work; 896 cmd_list = &worker->cmd_list; 897 } else { 898 work = &lo->rootcg_work; 899 cmd_list = &lo->rootcg_cmd_list; 900 } 901 list_add_tail(&cmd->list_entry, cmd_list); 902 queue_work(lo->workqueue, work); 903 spin_unlock_irq(&lo->lo_work_lock); 904 } 905 906 static void loop_set_timer(struct loop_device *lo) 907 { 908 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT); 909 } 910 911 static void loop_free_idle_workers(struct loop_device *lo, bool delete_all) 912 { 913 struct loop_worker *pos, *worker; 914 915 spin_lock_irq(&lo->lo_work_lock); 916 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list, 917 idle_list) { 918 if (!delete_all && 919 time_is_after_jiffies(worker->last_ran_at + 920 LOOP_IDLE_WORKER_TIMEOUT)) 921 break; 922 list_del(&worker->idle_list); 923 rb_erase(&worker->rb_node, &lo->worker_tree); 924 css_put(worker->blkcg_css); 925 kfree(worker); 926 } 927 if (!list_empty(&lo->idle_worker_list)) 928 loop_set_timer(lo); 929 spin_unlock_irq(&lo->lo_work_lock); 930 } 931 932 static void loop_free_idle_workers_timer(struct timer_list *timer) 933 { 934 struct loop_device *lo = container_of(timer, struct loop_device, timer); 935 936 return loop_free_idle_workers(lo, false); 937 } 938 939 /** 940 * loop_set_status_from_info - configure device from loop_info 941 * @lo: struct loop_device to configure 942 * @info: struct loop_info64 to configure the device with 943 * 944 * Configures the loop device parameters according to the passed 945 * in loop_info64 configuration. 946 */ 947 static int 948 loop_set_status_from_info(struct loop_device *lo, 949 const struct loop_info64 *info) 950 { 951 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 952 return -EINVAL; 953 954 switch (info->lo_encrypt_type) { 955 case LO_CRYPT_NONE: 956 break; 957 case LO_CRYPT_XOR: 958 pr_warn("support for the xor transformation has been removed.\n"); 959 return -EINVAL; 960 case LO_CRYPT_CRYPTOAPI: 961 pr_warn("support for cryptoloop has been removed. Use dm-crypt instead.\n"); 962 return -EINVAL; 963 default: 964 return -EINVAL; 965 } 966 967 /* Avoid assigning overflow values */ 968 if (info->lo_offset > LLONG_MAX || info->lo_sizelimit > LLONG_MAX) 969 return -EOVERFLOW; 970 971 lo->lo_offset = info->lo_offset; 972 lo->lo_sizelimit = info->lo_sizelimit; 973 974 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 975 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 976 lo->lo_flags = info->lo_flags; 977 return 0; 978 } 979 980 static unsigned short loop_default_blocksize(struct loop_device *lo, 981 struct block_device *backing_bdev) 982 { 983 /* In case of direct I/O, match underlying block size */ 984 if ((lo->lo_backing_file->f_flags & O_DIRECT) && backing_bdev) 985 return bdev_logical_block_size(backing_bdev); 986 return SECTOR_SIZE; 987 } 988 989 static int loop_reconfigure_limits(struct loop_device *lo, unsigned short bsize) 990 { 991 struct file *file = lo->lo_backing_file; 992 struct inode *inode = file->f_mapping->host; 993 struct block_device *backing_bdev = NULL; 994 struct queue_limits lim; 995 996 if (S_ISBLK(inode->i_mode)) 997 backing_bdev = I_BDEV(inode); 998 else if (inode->i_sb->s_bdev) 999 backing_bdev = inode->i_sb->s_bdev; 1000 1001 if (!bsize) 1002 bsize = loop_default_blocksize(lo, backing_bdev); 1003 1004 lim = queue_limits_start_update(lo->lo_queue); 1005 lim.logical_block_size = bsize; 1006 lim.physical_block_size = bsize; 1007 lim.io_min = bsize; 1008 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_ROTATIONAL); 1009 if (file->f_op->fsync && !(lo->lo_flags & LO_FLAGS_READ_ONLY)) 1010 lim.features |= BLK_FEAT_WRITE_CACHE; 1011 if (backing_bdev && !bdev_nonrot(backing_bdev)) 1012 lim.features |= BLK_FEAT_ROTATIONAL; 1013 loop_config_discard(lo, &lim); 1014 return queue_limits_commit_update(lo->lo_queue, &lim); 1015 } 1016 1017 static int loop_configure(struct loop_device *lo, blk_mode_t mode, 1018 struct block_device *bdev, 1019 const struct loop_config *config) 1020 { 1021 struct file *file = fget(config->fd); 1022 struct address_space *mapping; 1023 int error; 1024 loff_t size; 1025 bool partscan; 1026 bool is_loop; 1027 1028 if (!file) 1029 return -EBADF; 1030 is_loop = is_loop_device(file); 1031 1032 /* This is safe, since we have a reference from open(). */ 1033 __module_get(THIS_MODULE); 1034 1035 /* 1036 * If we don't hold exclusive handle for the device, upgrade to it 1037 * here to avoid changing device under exclusive owner. 1038 */ 1039 if (!(mode & BLK_OPEN_EXCL)) { 1040 error = bd_prepare_to_claim(bdev, loop_configure, NULL); 1041 if (error) 1042 goto out_putf; 1043 } 1044 1045 error = loop_global_lock_killable(lo, is_loop); 1046 if (error) 1047 goto out_bdev; 1048 1049 error = -EBUSY; 1050 if (lo->lo_state != Lo_unbound) 1051 goto out_unlock; 1052 1053 error = loop_validate_file(file, bdev); 1054 if (error) 1055 goto out_unlock; 1056 1057 mapping = file->f_mapping; 1058 1059 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) { 1060 error = -EINVAL; 1061 goto out_unlock; 1062 } 1063 1064 error = loop_set_status_from_info(lo, &config->info); 1065 if (error) 1066 goto out_unlock; 1067 1068 if (!(file->f_mode & FMODE_WRITE) || !(mode & BLK_OPEN_WRITE) || 1069 !file->f_op->write_iter) 1070 lo->lo_flags |= LO_FLAGS_READ_ONLY; 1071 1072 if (!lo->workqueue) { 1073 lo->workqueue = alloc_workqueue("loop%d", 1074 WQ_UNBOUND | WQ_FREEZABLE, 1075 0, lo->lo_number); 1076 if (!lo->workqueue) { 1077 error = -ENOMEM; 1078 goto out_unlock; 1079 } 1080 } 1081 1082 /* suppress uevents while reconfiguring the device */ 1083 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 1); 1084 1085 disk_force_media_change(lo->lo_disk); 1086 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0); 1087 1088 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO; 1089 lo->lo_device = bdev; 1090 lo->lo_backing_file = file; 1091 lo->old_gfp_mask = mapping_gfp_mask(mapping); 1092 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 1093 1094 error = loop_reconfigure_limits(lo, config->block_size); 1095 if (error) 1096 goto out_unlock; 1097 1098 loop_update_dio(lo); 1099 loop_sysfs_init(lo); 1100 1101 size = get_loop_size(lo, file); 1102 loop_set_size(lo, size); 1103 1104 /* Order wrt reading lo_state in loop_validate_file(). */ 1105 wmb(); 1106 1107 lo->lo_state = Lo_bound; 1108 if (part_shift) 1109 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1110 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN; 1111 if (partscan) 1112 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1113 1114 /* enable and uncork uevent now that we are done */ 1115 dev_set_uevent_suppress(disk_to_dev(lo->lo_disk), 0); 1116 1117 loop_global_unlock(lo, is_loop); 1118 if (partscan) 1119 loop_reread_partitions(lo); 1120 1121 if (!(mode & BLK_OPEN_EXCL)) 1122 bd_abort_claiming(bdev, loop_configure); 1123 1124 return 0; 1125 1126 out_unlock: 1127 loop_global_unlock(lo, is_loop); 1128 out_bdev: 1129 if (!(mode & BLK_OPEN_EXCL)) 1130 bd_abort_claiming(bdev, loop_configure); 1131 out_putf: 1132 fput(file); 1133 /* This is safe: open() is still holding a reference. */ 1134 module_put(THIS_MODULE); 1135 return error; 1136 } 1137 1138 static void __loop_clr_fd(struct loop_device *lo) 1139 { 1140 struct queue_limits lim; 1141 struct file *filp; 1142 gfp_t gfp = lo->old_gfp_mask; 1143 1144 spin_lock_irq(&lo->lo_lock); 1145 filp = lo->lo_backing_file; 1146 lo->lo_backing_file = NULL; 1147 spin_unlock_irq(&lo->lo_lock); 1148 1149 lo->lo_device = NULL; 1150 lo->lo_offset = 0; 1151 lo->lo_sizelimit = 0; 1152 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1153 1154 /* reset the block size to the default */ 1155 lim = queue_limits_start_update(lo->lo_queue); 1156 lim.logical_block_size = SECTOR_SIZE; 1157 lim.physical_block_size = SECTOR_SIZE; 1158 lim.io_min = SECTOR_SIZE; 1159 queue_limits_commit_update(lo->lo_queue, &lim); 1160 1161 invalidate_disk(lo->lo_disk); 1162 loop_sysfs_exit(lo); 1163 /* let user-space know about this change */ 1164 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE); 1165 mapping_set_gfp_mask(filp->f_mapping, gfp); 1166 /* This is safe: open() is still holding a reference. */ 1167 module_put(THIS_MODULE); 1168 1169 disk_force_media_change(lo->lo_disk); 1170 1171 if (lo->lo_flags & LO_FLAGS_PARTSCAN) { 1172 int err; 1173 1174 /* 1175 * open_mutex has been held already in release path, so don't 1176 * acquire it if this function is called in such case. 1177 * 1178 * If the reread partition isn't from release path, lo_refcnt 1179 * must be at least one and it can only become zero when the 1180 * current holder is released. 1181 */ 1182 err = bdev_disk_changed(lo->lo_disk, false); 1183 if (err) 1184 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n", 1185 __func__, lo->lo_number, err); 1186 /* Device is gone, no point in returning error */ 1187 } 1188 1189 /* 1190 * lo->lo_state is set to Lo_unbound here after above partscan has 1191 * finished. There cannot be anybody else entering __loop_clr_fd() as 1192 * Lo_rundown state protects us from all the other places trying to 1193 * change the 'lo' device. 1194 */ 1195 lo->lo_flags = 0; 1196 if (!part_shift) 1197 set_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1198 mutex_lock(&lo->lo_mutex); 1199 lo->lo_state = Lo_unbound; 1200 mutex_unlock(&lo->lo_mutex); 1201 1202 /* 1203 * Need not hold lo_mutex to fput backing file. Calling fput holding 1204 * lo_mutex triggers a circular lock dependency possibility warning as 1205 * fput can take open_mutex which is usually taken before lo_mutex. 1206 */ 1207 fput(filp); 1208 } 1209 1210 static int loop_clr_fd(struct loop_device *lo) 1211 { 1212 int err; 1213 1214 /* 1215 * Since lo_ioctl() is called without locks held, it is possible that 1216 * loop_configure()/loop_change_fd() and loop_clr_fd() run in parallel. 1217 * 1218 * Therefore, use global lock when setting Lo_rundown state in order to 1219 * make sure that loop_validate_file() will fail if the "struct file" 1220 * which loop_configure()/loop_change_fd() found via fget() was this 1221 * loop device. 1222 */ 1223 err = loop_global_lock_killable(lo, true); 1224 if (err) 1225 return err; 1226 if (lo->lo_state != Lo_bound) { 1227 loop_global_unlock(lo, true); 1228 return -ENXIO; 1229 } 1230 /* 1231 * Mark the device for removing the backing device on last close. 1232 * If we are the only opener, also switch the state to roundown here to 1233 * prevent new openers from coming in. 1234 */ 1235 1236 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1237 if (disk_openers(lo->lo_disk) == 1) 1238 lo->lo_state = Lo_rundown; 1239 loop_global_unlock(lo, true); 1240 1241 return 0; 1242 } 1243 1244 static int 1245 loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1246 { 1247 int err; 1248 int prev_lo_flags; 1249 bool partscan = false; 1250 bool size_changed = false; 1251 1252 err = mutex_lock_killable(&lo->lo_mutex); 1253 if (err) 1254 return err; 1255 if (lo->lo_state != Lo_bound) { 1256 err = -ENXIO; 1257 goto out_unlock; 1258 } 1259 1260 if (lo->lo_offset != info->lo_offset || 1261 lo->lo_sizelimit != info->lo_sizelimit) { 1262 size_changed = true; 1263 sync_blockdev(lo->lo_device); 1264 invalidate_bdev(lo->lo_device); 1265 } 1266 1267 /* I/O need to be drained during transfer transition */ 1268 blk_mq_freeze_queue(lo->lo_queue); 1269 1270 prev_lo_flags = lo->lo_flags; 1271 1272 err = loop_set_status_from_info(lo, info); 1273 if (err) 1274 goto out_unfreeze; 1275 1276 /* Mask out flags that can't be set using LOOP_SET_STATUS. */ 1277 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS; 1278 /* For those flags, use the previous values instead */ 1279 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS; 1280 /* For flags that can't be cleared, use previous values too */ 1281 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS; 1282 1283 if (size_changed) { 1284 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit, 1285 lo->lo_backing_file); 1286 loop_set_size(lo, new_size); 1287 } 1288 1289 /* update dio if lo_offset or transfer is changed */ 1290 __loop_update_dio(lo, lo->use_dio); 1291 1292 out_unfreeze: 1293 blk_mq_unfreeze_queue(lo->lo_queue); 1294 1295 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) && 1296 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) { 1297 clear_bit(GD_SUPPRESS_PART_SCAN, &lo->lo_disk->state); 1298 partscan = true; 1299 } 1300 out_unlock: 1301 mutex_unlock(&lo->lo_mutex); 1302 if (partscan) 1303 loop_reread_partitions(lo); 1304 1305 return err; 1306 } 1307 1308 static int 1309 loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1310 { 1311 struct path path; 1312 struct kstat stat; 1313 int ret; 1314 1315 ret = mutex_lock_killable(&lo->lo_mutex); 1316 if (ret) 1317 return ret; 1318 if (lo->lo_state != Lo_bound) { 1319 mutex_unlock(&lo->lo_mutex); 1320 return -ENXIO; 1321 } 1322 1323 memset(info, 0, sizeof(*info)); 1324 info->lo_number = lo->lo_number; 1325 info->lo_offset = lo->lo_offset; 1326 info->lo_sizelimit = lo->lo_sizelimit; 1327 info->lo_flags = lo->lo_flags; 1328 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1329 1330 /* Drop lo_mutex while we call into the filesystem. */ 1331 path = lo->lo_backing_file->f_path; 1332 path_get(&path); 1333 mutex_unlock(&lo->lo_mutex); 1334 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT); 1335 if (!ret) { 1336 info->lo_device = huge_encode_dev(stat.dev); 1337 info->lo_inode = stat.ino; 1338 info->lo_rdevice = huge_encode_dev(stat.rdev); 1339 } 1340 path_put(&path); 1341 return ret; 1342 } 1343 1344 static void 1345 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1346 { 1347 memset(info64, 0, sizeof(*info64)); 1348 info64->lo_number = info->lo_number; 1349 info64->lo_device = info->lo_device; 1350 info64->lo_inode = info->lo_inode; 1351 info64->lo_rdevice = info->lo_rdevice; 1352 info64->lo_offset = info->lo_offset; 1353 info64->lo_sizelimit = 0; 1354 info64->lo_flags = info->lo_flags; 1355 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1356 } 1357 1358 static int 1359 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1360 { 1361 memset(info, 0, sizeof(*info)); 1362 info->lo_number = info64->lo_number; 1363 info->lo_device = info64->lo_device; 1364 info->lo_inode = info64->lo_inode; 1365 info->lo_rdevice = info64->lo_rdevice; 1366 info->lo_offset = info64->lo_offset; 1367 info->lo_flags = info64->lo_flags; 1368 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1369 1370 /* error in case values were truncated */ 1371 if (info->lo_device != info64->lo_device || 1372 info->lo_rdevice != info64->lo_rdevice || 1373 info->lo_inode != info64->lo_inode || 1374 info->lo_offset != info64->lo_offset) 1375 return -EOVERFLOW; 1376 1377 return 0; 1378 } 1379 1380 static int 1381 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1382 { 1383 struct loop_info info; 1384 struct loop_info64 info64; 1385 1386 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1387 return -EFAULT; 1388 loop_info64_from_old(&info, &info64); 1389 return loop_set_status(lo, &info64); 1390 } 1391 1392 static int 1393 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1394 { 1395 struct loop_info64 info64; 1396 1397 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1398 return -EFAULT; 1399 return loop_set_status(lo, &info64); 1400 } 1401 1402 static int 1403 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1404 struct loop_info info; 1405 struct loop_info64 info64; 1406 int err; 1407 1408 if (!arg) 1409 return -EINVAL; 1410 err = loop_get_status(lo, &info64); 1411 if (!err) 1412 err = loop_info64_to_old(&info64, &info); 1413 if (!err && copy_to_user(arg, &info, sizeof(info))) 1414 err = -EFAULT; 1415 1416 return err; 1417 } 1418 1419 static int 1420 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1421 struct loop_info64 info64; 1422 int err; 1423 1424 if (!arg) 1425 return -EINVAL; 1426 err = loop_get_status(lo, &info64); 1427 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1428 err = -EFAULT; 1429 1430 return err; 1431 } 1432 1433 static int loop_set_capacity(struct loop_device *lo) 1434 { 1435 loff_t size; 1436 1437 if (unlikely(lo->lo_state != Lo_bound)) 1438 return -ENXIO; 1439 1440 size = get_loop_size(lo, lo->lo_backing_file); 1441 loop_set_size(lo, size); 1442 1443 return 0; 1444 } 1445 1446 static int loop_set_dio(struct loop_device *lo, unsigned long arg) 1447 { 1448 int error = -ENXIO; 1449 if (lo->lo_state != Lo_bound) 1450 goto out; 1451 1452 __loop_update_dio(lo, !!arg); 1453 if (lo->use_dio == !!arg) 1454 return 0; 1455 error = -EINVAL; 1456 out: 1457 return error; 1458 } 1459 1460 static int loop_set_block_size(struct loop_device *lo, unsigned long arg) 1461 { 1462 int err = 0; 1463 1464 if (lo->lo_state != Lo_bound) 1465 return -ENXIO; 1466 1467 if (lo->lo_queue->limits.logical_block_size == arg) 1468 return 0; 1469 1470 sync_blockdev(lo->lo_device); 1471 invalidate_bdev(lo->lo_device); 1472 1473 blk_mq_freeze_queue(lo->lo_queue); 1474 err = loop_reconfigure_limits(lo, arg); 1475 loop_update_dio(lo); 1476 blk_mq_unfreeze_queue(lo->lo_queue); 1477 1478 return err; 1479 } 1480 1481 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd, 1482 unsigned long arg) 1483 { 1484 int err; 1485 1486 err = mutex_lock_killable(&lo->lo_mutex); 1487 if (err) 1488 return err; 1489 switch (cmd) { 1490 case LOOP_SET_CAPACITY: 1491 err = loop_set_capacity(lo); 1492 break; 1493 case LOOP_SET_DIRECT_IO: 1494 err = loop_set_dio(lo, arg); 1495 break; 1496 case LOOP_SET_BLOCK_SIZE: 1497 err = loop_set_block_size(lo, arg); 1498 break; 1499 default: 1500 err = -EINVAL; 1501 } 1502 mutex_unlock(&lo->lo_mutex); 1503 return err; 1504 } 1505 1506 static int lo_ioctl(struct block_device *bdev, blk_mode_t mode, 1507 unsigned int cmd, unsigned long arg) 1508 { 1509 struct loop_device *lo = bdev->bd_disk->private_data; 1510 void __user *argp = (void __user *) arg; 1511 int err; 1512 1513 switch (cmd) { 1514 case LOOP_SET_FD: { 1515 /* 1516 * Legacy case - pass in a zeroed out struct loop_config with 1517 * only the file descriptor set , which corresponds with the 1518 * default parameters we'd have used otherwise. 1519 */ 1520 struct loop_config config; 1521 1522 memset(&config, 0, sizeof(config)); 1523 config.fd = arg; 1524 1525 return loop_configure(lo, mode, bdev, &config); 1526 } 1527 case LOOP_CONFIGURE: { 1528 struct loop_config config; 1529 1530 if (copy_from_user(&config, argp, sizeof(config))) 1531 return -EFAULT; 1532 1533 return loop_configure(lo, mode, bdev, &config); 1534 } 1535 case LOOP_CHANGE_FD: 1536 return loop_change_fd(lo, bdev, arg); 1537 case LOOP_CLR_FD: 1538 return loop_clr_fd(lo); 1539 case LOOP_SET_STATUS: 1540 err = -EPERM; 1541 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1542 err = loop_set_status_old(lo, argp); 1543 break; 1544 case LOOP_GET_STATUS: 1545 return loop_get_status_old(lo, argp); 1546 case LOOP_SET_STATUS64: 1547 err = -EPERM; 1548 if ((mode & BLK_OPEN_WRITE) || capable(CAP_SYS_ADMIN)) 1549 err = loop_set_status64(lo, argp); 1550 break; 1551 case LOOP_GET_STATUS64: 1552 return loop_get_status64(lo, argp); 1553 case LOOP_SET_CAPACITY: 1554 case LOOP_SET_DIRECT_IO: 1555 case LOOP_SET_BLOCK_SIZE: 1556 if (!(mode & BLK_OPEN_WRITE) && !capable(CAP_SYS_ADMIN)) 1557 return -EPERM; 1558 fallthrough; 1559 default: 1560 err = lo_simple_ioctl(lo, cmd, arg); 1561 break; 1562 } 1563 1564 return err; 1565 } 1566 1567 #ifdef CONFIG_COMPAT 1568 struct compat_loop_info { 1569 compat_int_t lo_number; /* ioctl r/o */ 1570 compat_dev_t lo_device; /* ioctl r/o */ 1571 compat_ulong_t lo_inode; /* ioctl r/o */ 1572 compat_dev_t lo_rdevice; /* ioctl r/o */ 1573 compat_int_t lo_offset; 1574 compat_int_t lo_encrypt_type; /* obsolete, ignored */ 1575 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1576 compat_int_t lo_flags; /* ioctl r/o */ 1577 char lo_name[LO_NAME_SIZE]; 1578 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1579 compat_ulong_t lo_init[2]; 1580 char reserved[4]; 1581 }; 1582 1583 /* 1584 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1585 * - noinlined to reduce stack space usage in main part of driver 1586 */ 1587 static noinline int 1588 loop_info64_from_compat(const struct compat_loop_info __user *arg, 1589 struct loop_info64 *info64) 1590 { 1591 struct compat_loop_info info; 1592 1593 if (copy_from_user(&info, arg, sizeof(info))) 1594 return -EFAULT; 1595 1596 memset(info64, 0, sizeof(*info64)); 1597 info64->lo_number = info.lo_number; 1598 info64->lo_device = info.lo_device; 1599 info64->lo_inode = info.lo_inode; 1600 info64->lo_rdevice = info.lo_rdevice; 1601 info64->lo_offset = info.lo_offset; 1602 info64->lo_sizelimit = 0; 1603 info64->lo_flags = info.lo_flags; 1604 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1605 return 0; 1606 } 1607 1608 /* 1609 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1610 * - noinlined to reduce stack space usage in main part of driver 1611 */ 1612 static noinline int 1613 loop_info64_to_compat(const struct loop_info64 *info64, 1614 struct compat_loop_info __user *arg) 1615 { 1616 struct compat_loop_info info; 1617 1618 memset(&info, 0, sizeof(info)); 1619 info.lo_number = info64->lo_number; 1620 info.lo_device = info64->lo_device; 1621 info.lo_inode = info64->lo_inode; 1622 info.lo_rdevice = info64->lo_rdevice; 1623 info.lo_offset = info64->lo_offset; 1624 info.lo_flags = info64->lo_flags; 1625 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1626 1627 /* error in case values were truncated */ 1628 if (info.lo_device != info64->lo_device || 1629 info.lo_rdevice != info64->lo_rdevice || 1630 info.lo_inode != info64->lo_inode || 1631 info.lo_offset != info64->lo_offset) 1632 return -EOVERFLOW; 1633 1634 if (copy_to_user(arg, &info, sizeof(info))) 1635 return -EFAULT; 1636 return 0; 1637 } 1638 1639 static int 1640 loop_set_status_compat(struct loop_device *lo, 1641 const struct compat_loop_info __user *arg) 1642 { 1643 struct loop_info64 info64; 1644 int ret; 1645 1646 ret = loop_info64_from_compat(arg, &info64); 1647 if (ret < 0) 1648 return ret; 1649 return loop_set_status(lo, &info64); 1650 } 1651 1652 static int 1653 loop_get_status_compat(struct loop_device *lo, 1654 struct compat_loop_info __user *arg) 1655 { 1656 struct loop_info64 info64; 1657 int err; 1658 1659 if (!arg) 1660 return -EINVAL; 1661 err = loop_get_status(lo, &info64); 1662 if (!err) 1663 err = loop_info64_to_compat(&info64, arg); 1664 return err; 1665 } 1666 1667 static int lo_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 1668 unsigned int cmd, unsigned long arg) 1669 { 1670 struct loop_device *lo = bdev->bd_disk->private_data; 1671 int err; 1672 1673 switch(cmd) { 1674 case LOOP_SET_STATUS: 1675 err = loop_set_status_compat(lo, 1676 (const struct compat_loop_info __user *)arg); 1677 break; 1678 case LOOP_GET_STATUS: 1679 err = loop_get_status_compat(lo, 1680 (struct compat_loop_info __user *)arg); 1681 break; 1682 case LOOP_SET_CAPACITY: 1683 case LOOP_CLR_FD: 1684 case LOOP_GET_STATUS64: 1685 case LOOP_SET_STATUS64: 1686 case LOOP_CONFIGURE: 1687 arg = (unsigned long) compat_ptr(arg); 1688 fallthrough; 1689 case LOOP_SET_FD: 1690 case LOOP_CHANGE_FD: 1691 case LOOP_SET_BLOCK_SIZE: 1692 case LOOP_SET_DIRECT_IO: 1693 err = lo_ioctl(bdev, mode, cmd, arg); 1694 break; 1695 default: 1696 err = -ENOIOCTLCMD; 1697 break; 1698 } 1699 return err; 1700 } 1701 #endif 1702 1703 static int lo_open(struct gendisk *disk, blk_mode_t mode) 1704 { 1705 struct loop_device *lo = disk->private_data; 1706 int err; 1707 1708 err = mutex_lock_killable(&lo->lo_mutex); 1709 if (err) 1710 return err; 1711 1712 if (lo->lo_state == Lo_deleting || lo->lo_state == Lo_rundown) 1713 err = -ENXIO; 1714 mutex_unlock(&lo->lo_mutex); 1715 return err; 1716 } 1717 1718 static void lo_release(struct gendisk *disk) 1719 { 1720 struct loop_device *lo = disk->private_data; 1721 bool need_clear = false; 1722 1723 if (disk_openers(disk) > 0) 1724 return; 1725 /* 1726 * Clear the backing device information if this is the last close of 1727 * a device that's been marked for auto clear, or on which LOOP_CLR_FD 1728 * has been called. 1729 */ 1730 1731 mutex_lock(&lo->lo_mutex); 1732 if (lo->lo_state == Lo_bound && (lo->lo_flags & LO_FLAGS_AUTOCLEAR)) 1733 lo->lo_state = Lo_rundown; 1734 1735 need_clear = (lo->lo_state == Lo_rundown); 1736 mutex_unlock(&lo->lo_mutex); 1737 1738 if (need_clear) 1739 __loop_clr_fd(lo); 1740 } 1741 1742 static void lo_free_disk(struct gendisk *disk) 1743 { 1744 struct loop_device *lo = disk->private_data; 1745 1746 if (lo->workqueue) 1747 destroy_workqueue(lo->workqueue); 1748 loop_free_idle_workers(lo, true); 1749 timer_shutdown_sync(&lo->timer); 1750 mutex_destroy(&lo->lo_mutex); 1751 kfree(lo); 1752 } 1753 1754 static const struct block_device_operations lo_fops = { 1755 .owner = THIS_MODULE, 1756 .open = lo_open, 1757 .release = lo_release, 1758 .ioctl = lo_ioctl, 1759 #ifdef CONFIG_COMPAT 1760 .compat_ioctl = lo_compat_ioctl, 1761 #endif 1762 .free_disk = lo_free_disk, 1763 }; 1764 1765 /* 1766 * And now the modules code and kernel interface. 1767 */ 1768 1769 /* 1770 * If max_loop is specified, create that many devices upfront. 1771 * This also becomes a hard limit. If max_loop is not specified, 1772 * the default isn't a hard limit (as before commit 85c50197716c 1773 * changed the default value from 0 for max_loop=0 reasons), just 1774 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1775 * init time. Loop devices can be requested on-demand with the 1776 * /dev/loop-control interface, or be instantiated by accessing 1777 * a 'dead' device node. 1778 */ 1779 static int max_loop = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1780 1781 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 1782 static bool max_loop_specified; 1783 1784 static int max_loop_param_set_int(const char *val, 1785 const struct kernel_param *kp) 1786 { 1787 int ret; 1788 1789 ret = param_set_int(val, kp); 1790 if (ret < 0) 1791 return ret; 1792 1793 max_loop_specified = true; 1794 return 0; 1795 } 1796 1797 static const struct kernel_param_ops max_loop_param_ops = { 1798 .set = max_loop_param_set_int, 1799 .get = param_get_int, 1800 }; 1801 1802 module_param_cb(max_loop, &max_loop_param_ops, &max_loop, 0444); 1803 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1804 #else 1805 module_param(max_loop, int, 0444); 1806 MODULE_PARM_DESC(max_loop, "Initial number of loop devices"); 1807 #endif 1808 1809 module_param(max_part, int, 0444); 1810 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1811 1812 static int hw_queue_depth = LOOP_DEFAULT_HW_Q_DEPTH; 1813 1814 static int loop_set_hw_queue_depth(const char *s, const struct kernel_param *p) 1815 { 1816 int qd, ret; 1817 1818 ret = kstrtoint(s, 0, &qd); 1819 if (ret < 0) 1820 return ret; 1821 if (qd < 1) 1822 return -EINVAL; 1823 hw_queue_depth = qd; 1824 return 0; 1825 } 1826 1827 static const struct kernel_param_ops loop_hw_qdepth_param_ops = { 1828 .set = loop_set_hw_queue_depth, 1829 .get = param_get_int, 1830 }; 1831 1832 device_param_cb(hw_queue_depth, &loop_hw_qdepth_param_ops, &hw_queue_depth, 0444); 1833 MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: " __stringify(LOOP_DEFAULT_HW_Q_DEPTH)); 1834 1835 MODULE_DESCRIPTION("Loopback device support"); 1836 MODULE_LICENSE("GPL"); 1837 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1838 1839 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx, 1840 const struct blk_mq_queue_data *bd) 1841 { 1842 struct request *rq = bd->rq; 1843 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); 1844 struct loop_device *lo = rq->q->queuedata; 1845 1846 blk_mq_start_request(rq); 1847 1848 if (lo->lo_state != Lo_bound) 1849 return BLK_STS_IOERR; 1850 1851 switch (req_op(rq)) { 1852 case REQ_OP_FLUSH: 1853 case REQ_OP_DISCARD: 1854 case REQ_OP_WRITE_ZEROES: 1855 cmd->use_aio = false; 1856 break; 1857 default: 1858 cmd->use_aio = lo->use_dio; 1859 break; 1860 } 1861 1862 /* always use the first bio's css */ 1863 cmd->blkcg_css = NULL; 1864 cmd->memcg_css = NULL; 1865 #ifdef CONFIG_BLK_CGROUP 1866 if (rq->bio) { 1867 cmd->blkcg_css = bio_blkcg_css(rq->bio); 1868 #ifdef CONFIG_MEMCG 1869 if (cmd->blkcg_css) { 1870 cmd->memcg_css = 1871 cgroup_get_e_css(cmd->blkcg_css->cgroup, 1872 &memory_cgrp_subsys); 1873 } 1874 #endif 1875 } 1876 #endif 1877 loop_queue_work(lo, cmd); 1878 1879 return BLK_STS_OK; 1880 } 1881 1882 static void loop_handle_cmd(struct loop_cmd *cmd) 1883 { 1884 struct cgroup_subsys_state *cmd_blkcg_css = cmd->blkcg_css; 1885 struct cgroup_subsys_state *cmd_memcg_css = cmd->memcg_css; 1886 struct request *rq = blk_mq_rq_from_pdu(cmd); 1887 const bool write = op_is_write(req_op(rq)); 1888 struct loop_device *lo = rq->q->queuedata; 1889 int ret = 0; 1890 struct mem_cgroup *old_memcg = NULL; 1891 const bool use_aio = cmd->use_aio; 1892 1893 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { 1894 ret = -EIO; 1895 goto failed; 1896 } 1897 1898 if (cmd_blkcg_css) 1899 kthread_associate_blkcg(cmd_blkcg_css); 1900 if (cmd_memcg_css) 1901 old_memcg = set_active_memcg( 1902 mem_cgroup_from_css(cmd_memcg_css)); 1903 1904 /* 1905 * do_req_filebacked() may call blk_mq_complete_request() synchronously 1906 * or asynchronously if using aio. Hence, do not touch 'cmd' after 1907 * do_req_filebacked() has returned unless we are sure that 'cmd' has 1908 * not yet been completed. 1909 */ 1910 ret = do_req_filebacked(lo, rq); 1911 1912 if (cmd_blkcg_css) 1913 kthread_associate_blkcg(NULL); 1914 1915 if (cmd_memcg_css) { 1916 set_active_memcg(old_memcg); 1917 css_put(cmd_memcg_css); 1918 } 1919 failed: 1920 /* complete non-aio request */ 1921 if (!use_aio || ret) { 1922 if (ret == -EOPNOTSUPP) 1923 cmd->ret = ret; 1924 else 1925 cmd->ret = ret ? -EIO : 0; 1926 if (likely(!blk_should_fake_timeout(rq->q))) 1927 blk_mq_complete_request(rq); 1928 } 1929 } 1930 1931 static void loop_process_work(struct loop_worker *worker, 1932 struct list_head *cmd_list, struct loop_device *lo) 1933 { 1934 int orig_flags = current->flags; 1935 struct loop_cmd *cmd; 1936 1937 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO; 1938 spin_lock_irq(&lo->lo_work_lock); 1939 while (!list_empty(cmd_list)) { 1940 cmd = container_of( 1941 cmd_list->next, struct loop_cmd, list_entry); 1942 list_del(cmd_list->next); 1943 spin_unlock_irq(&lo->lo_work_lock); 1944 1945 loop_handle_cmd(cmd); 1946 cond_resched(); 1947 1948 spin_lock_irq(&lo->lo_work_lock); 1949 } 1950 1951 /* 1952 * We only add to the idle list if there are no pending cmds 1953 * *and* the worker will not run again which ensures that it 1954 * is safe to free any worker on the idle list 1955 */ 1956 if (worker && !work_pending(&worker->work)) { 1957 worker->last_ran_at = jiffies; 1958 list_add_tail(&worker->idle_list, &lo->idle_worker_list); 1959 loop_set_timer(lo); 1960 } 1961 spin_unlock_irq(&lo->lo_work_lock); 1962 current->flags = orig_flags; 1963 } 1964 1965 static void loop_workfn(struct work_struct *work) 1966 { 1967 struct loop_worker *worker = 1968 container_of(work, struct loop_worker, work); 1969 loop_process_work(worker, &worker->cmd_list, worker->lo); 1970 } 1971 1972 static void loop_rootcg_workfn(struct work_struct *work) 1973 { 1974 struct loop_device *lo = 1975 container_of(work, struct loop_device, rootcg_work); 1976 loop_process_work(NULL, &lo->rootcg_cmd_list, lo); 1977 } 1978 1979 static const struct blk_mq_ops loop_mq_ops = { 1980 .queue_rq = loop_queue_rq, 1981 .complete = lo_complete_rq, 1982 }; 1983 1984 static int loop_add(int i) 1985 { 1986 struct queue_limits lim = { 1987 /* 1988 * Random number picked from the historic block max_sectors cap. 1989 */ 1990 .max_hw_sectors = 2560u, 1991 }; 1992 struct loop_device *lo; 1993 struct gendisk *disk; 1994 int err; 1995 1996 err = -ENOMEM; 1997 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1998 if (!lo) 1999 goto out; 2000 lo->worker_tree = RB_ROOT; 2001 INIT_LIST_HEAD(&lo->idle_worker_list); 2002 timer_setup(&lo->timer, loop_free_idle_workers_timer, TIMER_DEFERRABLE); 2003 lo->lo_state = Lo_unbound; 2004 2005 err = mutex_lock_killable(&loop_ctl_mutex); 2006 if (err) 2007 goto out_free_dev; 2008 2009 /* allocate id, if @id >= 0, we're requesting that specific id */ 2010 if (i >= 0) { 2011 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 2012 if (err == -ENOSPC) 2013 err = -EEXIST; 2014 } else { 2015 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 2016 } 2017 mutex_unlock(&loop_ctl_mutex); 2018 if (err < 0) 2019 goto out_free_dev; 2020 i = err; 2021 2022 lo->tag_set.ops = &loop_mq_ops; 2023 lo->tag_set.nr_hw_queues = 1; 2024 lo->tag_set.queue_depth = hw_queue_depth; 2025 lo->tag_set.numa_node = NUMA_NO_NODE; 2026 lo->tag_set.cmd_size = sizeof(struct loop_cmd); 2027 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING | 2028 BLK_MQ_F_NO_SCHED_BY_DEFAULT; 2029 lo->tag_set.driver_data = lo; 2030 2031 err = blk_mq_alloc_tag_set(&lo->tag_set); 2032 if (err) 2033 goto out_free_idr; 2034 2035 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, &lim, lo); 2036 if (IS_ERR(disk)) { 2037 err = PTR_ERR(disk); 2038 goto out_cleanup_tags; 2039 } 2040 lo->lo_queue = lo->lo_disk->queue; 2041 2042 /* 2043 * Disable partition scanning by default. The in-kernel partition 2044 * scanning can be requested individually per-device during its 2045 * setup. Userspace can always add and remove partitions from all 2046 * devices. The needed partition minors are allocated from the 2047 * extended minor space, the main loop device numbers will continue 2048 * to match the loop minors, regardless of the number of partitions 2049 * used. 2050 * 2051 * If max_part is given, partition scanning is globally enabled for 2052 * all loop devices. The minors for the main loop devices will be 2053 * multiples of max_part. 2054 * 2055 * Note: Global-for-all-devices, set-only-at-init, read-only module 2056 * parameteters like 'max_loop' and 'max_part' make things needlessly 2057 * complicated, are too static, inflexible and may surprise 2058 * userspace tools. Parameters like this in general should be avoided. 2059 */ 2060 if (!part_shift) 2061 set_bit(GD_SUPPRESS_PART_SCAN, &disk->state); 2062 mutex_init(&lo->lo_mutex); 2063 lo->lo_number = i; 2064 spin_lock_init(&lo->lo_lock); 2065 spin_lock_init(&lo->lo_work_lock); 2066 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn); 2067 INIT_LIST_HEAD(&lo->rootcg_cmd_list); 2068 disk->major = LOOP_MAJOR; 2069 disk->first_minor = i << part_shift; 2070 disk->minors = 1 << part_shift; 2071 disk->fops = &lo_fops; 2072 disk->private_data = lo; 2073 disk->queue = lo->lo_queue; 2074 disk->events = DISK_EVENT_MEDIA_CHANGE; 2075 disk->event_flags = DISK_EVENT_FLAG_UEVENT; 2076 sprintf(disk->disk_name, "loop%d", i); 2077 /* Make this loop device reachable from pathname. */ 2078 err = add_disk(disk); 2079 if (err) 2080 goto out_cleanup_disk; 2081 2082 /* Show this loop device. */ 2083 mutex_lock(&loop_ctl_mutex); 2084 lo->idr_visible = true; 2085 mutex_unlock(&loop_ctl_mutex); 2086 2087 return i; 2088 2089 out_cleanup_disk: 2090 put_disk(disk); 2091 out_cleanup_tags: 2092 blk_mq_free_tag_set(&lo->tag_set); 2093 out_free_idr: 2094 mutex_lock(&loop_ctl_mutex); 2095 idr_remove(&loop_index_idr, i); 2096 mutex_unlock(&loop_ctl_mutex); 2097 out_free_dev: 2098 kfree(lo); 2099 out: 2100 return err; 2101 } 2102 2103 static void loop_remove(struct loop_device *lo) 2104 { 2105 /* Make this loop device unreachable from pathname. */ 2106 del_gendisk(lo->lo_disk); 2107 blk_mq_free_tag_set(&lo->tag_set); 2108 2109 mutex_lock(&loop_ctl_mutex); 2110 idr_remove(&loop_index_idr, lo->lo_number); 2111 mutex_unlock(&loop_ctl_mutex); 2112 2113 put_disk(lo->lo_disk); 2114 } 2115 2116 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2117 static void loop_probe(dev_t dev) 2118 { 2119 int idx = MINOR(dev) >> part_shift; 2120 2121 if (max_loop_specified && max_loop && idx >= max_loop) 2122 return; 2123 loop_add(idx); 2124 } 2125 #else 2126 #define loop_probe NULL 2127 #endif /* !CONFIG_BLOCK_LEGACY_AUTOLOAD */ 2128 2129 static int loop_control_remove(int idx) 2130 { 2131 struct loop_device *lo; 2132 int ret; 2133 2134 if (idx < 0) { 2135 pr_warn_once("deleting an unspecified loop device is not supported.\n"); 2136 return -EINVAL; 2137 } 2138 2139 /* Hide this loop device for serialization. */ 2140 ret = mutex_lock_killable(&loop_ctl_mutex); 2141 if (ret) 2142 return ret; 2143 lo = idr_find(&loop_index_idr, idx); 2144 if (!lo || !lo->idr_visible) 2145 ret = -ENODEV; 2146 else 2147 lo->idr_visible = false; 2148 mutex_unlock(&loop_ctl_mutex); 2149 if (ret) 2150 return ret; 2151 2152 /* Check whether this loop device can be removed. */ 2153 ret = mutex_lock_killable(&lo->lo_mutex); 2154 if (ret) 2155 goto mark_visible; 2156 if (lo->lo_state != Lo_unbound || disk_openers(lo->lo_disk) > 0) { 2157 mutex_unlock(&lo->lo_mutex); 2158 ret = -EBUSY; 2159 goto mark_visible; 2160 } 2161 /* Mark this loop device as no more bound, but not quite unbound yet */ 2162 lo->lo_state = Lo_deleting; 2163 mutex_unlock(&lo->lo_mutex); 2164 2165 loop_remove(lo); 2166 return 0; 2167 2168 mark_visible: 2169 /* Show this loop device again. */ 2170 mutex_lock(&loop_ctl_mutex); 2171 lo->idr_visible = true; 2172 mutex_unlock(&loop_ctl_mutex); 2173 return ret; 2174 } 2175 2176 static int loop_control_get_free(int idx) 2177 { 2178 struct loop_device *lo; 2179 int id, ret; 2180 2181 ret = mutex_lock_killable(&loop_ctl_mutex); 2182 if (ret) 2183 return ret; 2184 idr_for_each_entry(&loop_index_idr, lo, id) { 2185 /* Hitting a race results in creating a new loop device which is harmless. */ 2186 if (lo->idr_visible && data_race(lo->lo_state) == Lo_unbound) 2187 goto found; 2188 } 2189 mutex_unlock(&loop_ctl_mutex); 2190 return loop_add(-1); 2191 found: 2192 mutex_unlock(&loop_ctl_mutex); 2193 return id; 2194 } 2195 2196 static long loop_control_ioctl(struct file *file, unsigned int cmd, 2197 unsigned long parm) 2198 { 2199 switch (cmd) { 2200 case LOOP_CTL_ADD: 2201 return loop_add(parm); 2202 case LOOP_CTL_REMOVE: 2203 return loop_control_remove(parm); 2204 case LOOP_CTL_GET_FREE: 2205 return loop_control_get_free(parm); 2206 default: 2207 return -ENOSYS; 2208 } 2209 } 2210 2211 static const struct file_operations loop_ctl_fops = { 2212 .open = nonseekable_open, 2213 .unlocked_ioctl = loop_control_ioctl, 2214 .compat_ioctl = loop_control_ioctl, 2215 .owner = THIS_MODULE, 2216 .llseek = noop_llseek, 2217 }; 2218 2219 static struct miscdevice loop_misc = { 2220 .minor = LOOP_CTRL_MINOR, 2221 .name = "loop-control", 2222 .fops = &loop_ctl_fops, 2223 }; 2224 2225 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 2226 MODULE_ALIAS("devname:loop-control"); 2227 2228 static int __init loop_init(void) 2229 { 2230 int i; 2231 int err; 2232 2233 part_shift = 0; 2234 if (max_part > 0) { 2235 part_shift = fls(max_part); 2236 2237 /* 2238 * Adjust max_part according to part_shift as it is exported 2239 * to user space so that user can decide correct minor number 2240 * if [s]he want to create more devices. 2241 * 2242 * Note that -1 is required because partition 0 is reserved 2243 * for the whole disk. 2244 */ 2245 max_part = (1UL << part_shift) - 1; 2246 } 2247 2248 if ((1UL << part_shift) > DISK_MAX_PARTS) { 2249 err = -EINVAL; 2250 goto err_out; 2251 } 2252 2253 if (max_loop > 1UL << (MINORBITS - part_shift)) { 2254 err = -EINVAL; 2255 goto err_out; 2256 } 2257 2258 err = misc_register(&loop_misc); 2259 if (err < 0) 2260 goto err_out; 2261 2262 2263 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) { 2264 err = -EIO; 2265 goto misc_out; 2266 } 2267 2268 /* pre-create number of devices given by config or max_loop */ 2269 for (i = 0; i < max_loop; i++) 2270 loop_add(i); 2271 2272 printk(KERN_INFO "loop: module loaded\n"); 2273 return 0; 2274 2275 misc_out: 2276 misc_deregister(&loop_misc); 2277 err_out: 2278 return err; 2279 } 2280 2281 static void __exit loop_exit(void) 2282 { 2283 struct loop_device *lo; 2284 int id; 2285 2286 unregister_blkdev(LOOP_MAJOR, "loop"); 2287 misc_deregister(&loop_misc); 2288 2289 /* 2290 * There is no need to use loop_ctl_mutex here, for nobody else can 2291 * access loop_index_idr when this module is unloading (unless forced 2292 * module unloading is requested). If this is not a clean unloading, 2293 * we have no means to avoid kernel crash. 2294 */ 2295 idr_for_each_entry(&loop_index_idr, lo, id) 2296 loop_remove(lo); 2297 2298 idr_destroy(&loop_index_idr); 2299 } 2300 2301 module_init(loop_init); 2302 module_exit(loop_exit); 2303 2304 #ifndef MODULE 2305 static int __init max_loop_setup(char *str) 2306 { 2307 max_loop = simple_strtol(str, NULL, 0); 2308 #ifdef CONFIG_BLOCK_LEGACY_AUTOLOAD 2309 max_loop_specified = true; 2310 #endif 2311 return 1; 2312 } 2313 2314 __setup("max_loop=", max_loop_setup); 2315 #endif 2316